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Isotropic p-harmonic systems in 2D Jacobian
estimates and univalent solutions

Tadeusz Iwaniec, Aleksis Koski and Jani Onninen

Abstract. The core result of this paper is an inequality (rather tricky)
for the Jacobian determinant of solutions of nonlinear elliptic systems in
the plane.

The model case is the isotropic (rotationally invariant) p-harmonic
system

div |Dh|P?Dh = 0, h=(u,v) € #"P(R?), 1 <p< oo,
as opposed to a pair of scalar p-harmonic equations:
div |[Vu[P?Vu = 0 and div Vo[’ >Vo = 0.

Rotational invariance of the systems in question makes them meaningful,
both physically and geometrically. An issue is to overcome the nonlinear
coupling between Vu and Vwv. In the extensive literature dealing with
coupled systems various differential expressions of the form ®(Vu, Vo)
were subjected to thorough analysis. But the Jacobian determinant
det Dh = ug,vy — uyv, was never successfully incorporated into such anal-
ysis. We present here new nonlinear differential expressions of the form
®(|Dh|,det Dh) and show they are superharmonic, which yields much
needed lower bounds for det Dh. To illustrate the utility of such bounds
we extend the celebrated univalence theorem of Rad6—Kneser—-Choquet on
harmonic mappings (p = 2) to the solutions of the coupled p-harmonic
system.

1. Introduction

Suppose a domain Q C R? ~ C (thin plate or film), subject to a deformation
h: Q22 Q) is occupied by an isotropic elastic material. This amounts to saying
that a response of the material to the energy-minimal deformations is the same
in all directions. The precise mathematical statement is that the stored energy
functional for A is invariant under rotations.
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Such are the functionals of the form:
(1.1) £l = / E(|Dh(z)]) dedy, ==z +iy.
Q

where E: [0,00) — R depends only on the norm (Hilbert—Schmidt norm) of the
deformation gradient Dh : Q — R2X2. The Lagrange-Euler equation for the
energy-minimal map takes the form of a coupled system of nonlinear PDEs:

E'([Dh])
| DA
In geometric function theory (GFT) [4], [26] and nonlinear elasticity [6], [7],

[9], [39] we want to control the Jacobian determinant J(z,h) := det Dh(z) from

below, hopefully by a positive constant. Let us invoke the simplest case; that is,
the uncoupled system of two Laplace equations Au =0 and Av=0.

(1.2) Div[ Dh| =o0.

Proposition 1.1 (Minimum principle). Suppose H = u+iv: Q — C is a har-
monic map whose Jacobian determinant is positive in ). Then

1. i > min J(z, ¢ Q.
(1.3) min J(z,H) min J(z,H) for every compact G C

It may be worth pointing out that the Dirichlet energy-minimal deformations
are invertible exactly where they are harmonic, thus having positive Jacobian [27].
Proposition 1.1 is straightforward from the following superharmonicity result [35].

Proposition 1.2 (Superharmonicity). The function z — log J(z,H) is superhar-
monic in ).

Returning to more general energy integrals in (1.1) we assume, for ease of pre-
sentation rather than a desire for more generality, that E = E(s) is continuous in
[0,00) and € -smooth in (0,00). The assumptions essential for the results are:

1) E'(s) >0, for 0<s<o0;
1) 0 <infrk(s) <supk(s) < oo, where k(s) =sE"(s)/E'(s).
This furnishes a number
1—k(s) ‘
1+ k(s)
Needless to say, for general energy integrals, even in the model p-harmonic
case, it is not at all obvious which nonlinear differential expressions are suited to

the Jacobian estimates. The answer to this puzzle is contained in the following
theorem (our prime result).

(1.4) 0< T:Sup‘

Theorem 1.3 (Minimum principle). Let h : Q — C satisfy the Lagrange—Euler

equation for the energy integral (1.1), and suppose that its Jacobian determinant

det Dh = |h,|*> — |hz|* is positive. Then for every compact subset G € ), we have
st B/(|Dh)

: ' Z mi ; = —— .
(1.5) n%nT(Dh) IIBI%;HT(Dh) where  T(Dh) DI det Dh
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This is a straightforward corollary from the following:

Theorem 1.4 (Superharmonicity). The nonlinear differential expression

o (E0DA)

(1.6) ~Dh

det Dh) 18 a superharmonic function,

where we retrieve ® from @', uniquely up to a constant, by the rule:
(2-17)?2
41 —-7)°

The Dirichlet energy, which corresponds to 7 = 0, gives ®(T) = log T. We
save the reader from an uphill analysis leading to the peculiar nonlinear differential
expression T(Dh) in (1.5) and only say that it is unique for our purpose. Moreover,
the exponent N in (1.7) seems to be smallest possible. The proof of Theorem 1.4
goes through rather subtle (though elementary) algebra of quadratic forms with
respect to carefully selected linear combinations of the second derivatives of h. We
know of no way of simplifying the forthcoming computation; try it!

(1.7) '(T)=TN, N=

Remark 1.5. The utility of the minimum principle for the Jacobian of a harmonic
map is best demonstrated in [29] where we obtained a proof (not the shortest one)
of the celebrated theorem of Radé-Kneser-Choquet (RKC-theorem), [15], [13],
[30], and [36]. The novelty of this approach lies in the construction of a homotopy
between the given harmonic mapping and a conformal one. The minimum princi-
ple in Proposition 1.1 guarantees that the mappings remain injective all the way
through the homotopy. The advantage of the homotopy method is that it works
for fairly general coupled systems of PDEs as well. An observant reader may also
find this method in Section 12 where, by way of illustration, we prove the following
isotropic p-harmonic version of the RKC-theorem.

Theorem 1.6 (Univalence criterion). Let X and Y be bounded € -smooth sim-
ply connected domains in R?, Y being convex. Consider an isotropic p-harmonic
map h € €4*(X,R?) whose boundary data f = h:0X 2% 9Y is an immersion.
Then h is a €Y*-diffeomorphism of X onto Y and it is €°°-smooth in X.

Here the term immersion refers to a ¢*-map f: X ™ R? whose tangential
derivative along 0X is nowhere vanishing.

Most recent developments in the approximation of Sobolev homeomorphisms
with diffeomorphisms [25], [24], [23], [28] rely on local p-harmonic replacements,
encouraging enough to merit Theorem 1.6.

2. Remarks and a historical account

On the regularity. It should be noted that solutions to the (isotropic) p-harmonic
systems belong to (fli’ca (X,R?), with the Holder exponent depending only on p
([12], [20], [32], [38]). In Section 11 we discuss the very much needed explicit
local €1 -bounds. We work out a fairly detailed arguments, maybe too much

elementary and routine for some readers or specialists in PDEs; they may skip this
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section. Unfortunately, in the vast literature on nonlinear coupled systems ([2],
[10], [33]) there are no explicit statements concerning ¢ -bounds up to the
boundary. Thus we appeal only to the interior ¢'“-regularity results, as in the
paper by C. Hamburger [20]. However, if those estimates indeed extend up to the
boundary, as claimed by some authors, then the restriction to h € €%*(X,R?) in
Theorem 1.6 is redundant.

Historical account. Search for univalent solutions to a given system of PDEs
has a long and fascinating history. In his famous work, Beltrami (1867) intro-
duced a complex equation (first order) whose homeomorphic solutions have come
to be known in GFT as quasiconformal mappings. On the other hand the injective
energy-minimal deformations (solutions of second order variational PDEs) have
come to the core of nonlinear hyperelasticity [1], [5], [14] to act in accordance with
the principle of no interpenetration of matter. From the very beginning of both
theories, the Jacobian determinant has been subjected to a great deal of investiga-
tion. It tells us something about invertibility of the mapping. For the uncoupled
pair of Laplace equations, the theorem of Rad6—Kneser-Choquet [15], conjectured
in 1926 by Rado6 [36], was first proved by Kneser [30] and, independently in 1945, by
Choquet [13], see [22] (p. 78-80) for the original Kneser’s proof. Multiply connected
planar domains are treated in [16], [34]. The interested reader is also referred to
the survey paper by Bshouty and Hengartner [11] for further reading about planar
harmonic mappings. A generalization of RKC-theorem for a pair of planar elliptic
equations (uncoupled system) has been given by Bauman, Marini and Nesi [§].
Finally, an extension of RKC-theorem to nonlinear (still uncoupled) systems of
p-harmonic type has been offered by G. Alessandrini and M. Sigalotti [3]. At this
point we strongly emphasize that Theorem 1.6 deals with the isotropic p-harmonic
deformations. An issue is not a greater generality, but to overcome the difficulties
with the coupling that occurs between the coordinate components of h. Finally,
we refer to [31] where many interesting energy functionals (including Neohookean
models) are sorted out for the minimum principle.

3. Words on harmonic mappings

In this context the complex variables z = x + iy and h = u + v are particularly
convenient, so we work with the Cauchy—Riemann partial derivatives:

he = L(he —ihy) , hs = S(he +ihy),

|Dh|?> =2 (|h.|* + |hz[*) and  det Dh(z) = |h.|> — |hz|*.
Proposition 1.2 was shown by V. Manojlovié [35] with the aid of a local rep-

resentation H(z) = g(z) + f(z) in terms of analytic functions g and f. In fact
such representation gives further information about the Jacobian:

Proposition 3.1. Let H be a harmonic map in Q, whose Jacobian is strictly
subharmonic, meaning that

AT = A(H=? = H:?) = [Heel® = [Hazl* >0
in Q. Then log (AJ) is superharmonic in ).
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Unfortunately, these stylish arguments are unavailable for nonlinear systems of
PDEs. Before proceeding to nonlinear systems let us reveal a direct computation
for Proposition 1.2. It follows from the identity [29]:

|szH_2 - H—iin|2
| H[? = [Hz[?

Proof. This identity is very easy relative to the laborious computation yet to come
for the nonlinear p-harmonic type systems. Below, the rules of complex differen-
tiation are self-evident. Indeed, we have:

J=H.H,~H:Hz, Jo=HooH,~H:Hzz , Joz= |Hool® — |Hz: |,

(log J).z = (%)2 =T

(3.1) AlogJ = 4(logJ),: = —4 <0.

The terms in the numerator are:

Jods =L =M H — He s |

= |sz|2|7-[z|2 + |H22|2|H2|2 — 2Re(H..H:== EH_Z)
and
Jozd = (|Hee [P = [ Mz ?) - (1P — [ Hz]?)

= [ Hex PIH P = [ Haz P P = (M PIH P+ ez P

Hence the identity (3.1) follows;
JoJs— Jozd = |Haz | Ho P 4 | Hee P Hz [P — 2Re(H.Hzz HaHS)
= | Mooz — Hez M,

completing the calculation. O

Analogous computational attempts for harmonic mappings fail in higher dimen-
sions, though they can be reconstructed for the Hessian of a real-valued harmonic
function in dimension n = 3. We refer to [19] for this later result and for further
generalizations to dimensions n > 4.

4. The equation in complex notation

Let us write the Lagrange—Euler system (1.2) in complex variables:

(4.1) ND)h.]. + [MD)hs], =0, where D = |h.|? + |hs|?
and
(4.2) At) = E'(v27) .

V2t

Our hypotheses on E is now equivalently reformulated as:

_ % <infa(t) <supa(t) < oo, where aft) = tj\\'(g) _ H(\/2—2t) -1 '
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Regarding parameter 7, we have
t
a(t) ‘ <1
1+ a(t)
It should be noted that the solutions of the system (4.1) are at least %'-smooth.
They are actually 4°°-smooth whenever the Jacobian is positive, which is the

case. It is therefore legitimate to differentiate the system (4.1) as many times as
needed.

(4.3) 0<T= Sup‘

5. A linear system

One might view (4.1) as an uncoupled system of two linear equations, simply by
assuming that A(z) = A(D(z)) is a given function, positive and % -smooth:

(5.1) [AM2)h:]z + [Mz)hz]. =0.
Let us introduce more notation; T(z) = T(Dh) = A(2)J(2), where
(5.2) J=J(2) =det Dh = |h.|* — |hz|* = h.h, — hzhs.

The objective is to show that the function z — ®(T(z)) is superharmonic, so we
must compute its Laplacian:

(5.3)  [@®(T).:=[@(T)T.]: = [T VT.]: = (TT.: — N|T.]°) TV 1.
Therefore, we are reduced to proving the following:

Lemma 5.1. Under the above notation and the conditions of Theorem 1.4, we
have

(5.4) N|T.?>TT.:.

6. The third order derivatives cancel out

Clearly, the left hand side N |T,|? in (5.4) (once written explicitly in terms of h)
involves only first and second order derivatives of h. A priori, the right hand side
might depend (linearly) on the third derivatives. But this is not the case. And
that is why one would expect that Inequality (5.4) holds with N being a suitably
large constant.

Lemma 6.1. We have

(6.1) T.: = A(Jhoef? = |hzz?) + Re[As (hohon — hzhss — hohos + hohls)]
Proof. Let us begin with the product rule

(6.2) T.=0AJ).=XJT + \J..

Hence

(63) ngz[Ang + AJZ5]+2R€()\ZJ5)
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The last term contains no third derivatives of h. The cancellation of third
derivatives will take place within the rectangular bracket. To see this, we compute

(6.4) Jz = (hzh_z) - hih_i)i = hoh., +hoho: — hzhsz — hzhas.
One more differentiation reveals that
(6.5) Aoz = A(Jhz? = |hzz?) + 2ARe (hz hzzz — hshess) .

At this stage we appeal to the Euler-Lagrange equation (5.1), which upon differ-
entiation takes the form:

(6.6) 9N + Ashy + Mhs = 0.

Note that As = A\, since ) is real. Thus (6.6) can be written in two ways, the
first one o
2 h.z + Ao h, + Ao hs = 0,

and the second one, via conjugation,

2Ah.: + Mh. + M. h: = 0.

This linear system of equations, with A, and ), as unknowns, can be solved for A, .
The formula for A, involves only the first and second order derivatives of h:

(6.7) IN. = 2X(hzhas — hohiz).

Next, we apply the Cauchy—Riemann operator 9/9z to both sides of (6.7). The
term |h.z|? will cancel out and we obtain

J)\zi = _JE)\Z + 2)\2 (h_ihzi - hzh_zi) + QA(h_EthE - hz hzzi) .
Since J Az is real we can write it as

Ihs = —Re(I:A) +2 Re [As (B hoz — hafis)]
+ 2\ Re [h_ghzgg — hz hzzg .

Substituting (6.5) and (6.8) into (6.3) results in cancellation of the third order
derivatives of h. Specifically,

(6.8)

T.: = A (Jhoz|” = [hzz*) + 2 Re [A. (hzhzz — hohez)] + Re(A:J:) .

Further cancelation will occurs upon substitution of J; by (6.4), completing the
proof of Formula (6.1). O

At this stage we introduce the following linear forms of the second derivatives:

A == )\ (hz hzg - h
(6.9) B=X(h.h.. — hzh
E - )\ (hz hzg - h_ghzg) .
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Note that the coeflicients of these linear forms contain no gradient of \. In fact,
by (6.7), the complex gradient of A can be computed through the formula

(6.10) I\, = —2LC.

Then, in view of (6.4) , we write the second term in (6.2) as

(6.11) M. =AJz = X(hohee + hohoz — hzhzz — hzh.z) = L+ B.
Adding the last two formulas, we obtain

(6.12) T.=\)).=XJ+)N].=8B-L.

Now (6.1) reduces to ATz = A? (|h.2|? — |hzz[*) + Re [A.(B — £)]. We multiply
it by J. In view of the definition of T (T = AJ) and by (6.7), we conclude with
an identity:

(6.13) T -T.: = AT (|heef’ = |hz]*) + 2|L° — 2Re(LB).

7. Subtracting the term |T,|?> = |B — L|?

The expression T - T,z — |T,|?, that corresponds to N = 1 in (5.4), naturally
arises for the Dirichlet integral. In any case it simplifies to the following:

Lemma 7.1. We have
(7.1) T-T.: — |T.|> = L] - |A]*.
Proof. Subtract |T.|> = |B — £L]? from T - T,; in (6.13):

T -T.: — |LI> =X (|hee|® = |hzz|*) =2 Re [L(B-L)] — |B— L]

7.2
(72) PP + X33 (Jhs? = [hesl?) — |BI2.

The last two terms add up to —|.A|?. This is because
>\2 (|hz|2 - |h5|2) (|hzz|2 - |h25 2) - A2|h_zhzz - hih_ii|2 - _)\2|hzh_22_ h_ihzz|2
= _|A|27

as is easy to verify. We then conclude with (7.1). O

8. An upper bound of £

Up to this point we did not use any particular dependance of A on |Dh|. We now
recall the equation (4.1) and the associated notation;

_DX(D)

a:a(D> )\(D) ’

D = |h.|* + |hz]?.
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Lemma 8.1. We have

|

8.1 ol — 14
&1) 4] 2+ 20— |q

o
T, ) here 0< — % o
(| |+ A where 2+2a—|a|<

The factor in front of |T,| + |A| is smaller than 1, because a = a(D) > —1/2.
Proof. Let us first express h.z in terms of £ by using (6.9),
(82) )\thg = hgﬁ + hzZ

The proof of (8.1) relies on another formula for T,. This time we exploit the
structure of A = A\(D) = A\(|h.|? + |hz]?),

(8.3) Tz:AJZ+>\ZJ:L'+B+JXDZ:L‘+B+%>\JDZ.

By an elementary algebra we find that

J Dz — (hzh_z - hE 2)(h_zhzz + hzhzi + h_ihzi + hEhEE)
= (hzh_z + hi_i) (h_zhzz — hzhzz) + Qh_zhz(hzhzz — _Ehzz)
+ (hzh_z - hi_i) (hzhzi + h_ihzi) .

Hence,
ANJD. = DB + 2h.hz: A + Mhzh, — hzhz)(hhaz + hzh.s) .
We eliminate h,z by using (8.2),
AJD, = DB+ 2h,h:A + DL + 2h, h:L.

Therefore,
2h_hz 2h.h

DaA—i—D

It follows from (6.12) that B4+ L =2L+B— L = 2L+ T,. Hence the last equation
takes the form

al.

T.=(1+a)(B+L)+

2h, hs 2h,hs
aA+

—aT, =2(1+a)L + D D al.

By the triangle inequality, in view of |2h.hz| < D, we obtain
lof IT=] > (2+2a —|a] ) |£] = |af]4],

which gives the desired estimate of |£|, completing the proof of Lemma 8.1. O
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9. Proof of Theorem 1.4

It is natural to look first at the case of the Dirichlet energy. This case corresponds
to @ =0 and £ = 0. The identity (7.1) yields

IT.|> = T.T.: = |A> >0, hence [®(J)].: = (logJ).z <O0.

For such inequality to hold in a general case, even for the genuine p-harmonic
system with p # 2, one needs a large factor in front of |T,|?. The actual estimate
is straightforward from Lemma 8.1,

N|T.? = T.T.z = (N = 1)| T * + |AP — £

_ 2 2 |af 2 2
> (N = 1)|T.° + |4 (2+2a_|a|) (IT= | + [A])
2
T 2 2 2
> i TP AR = s (T 14)
— 1 2 2
S qo @ e L A2 0.

This is because N — 1 = 4(17—; and, in view of (4.3), we have

This yields the estimate (1.6).

10. Geometric properties of the p-harmonic mappings

Before proceeding to the proof of Theorem 1.6, let us collect some geometric prop-
erties of the isotropic p-harmonic mappings. We shall appeal to familiar technique
of elliptic PDEs. First note, since h : X — R? is continuous and its boundary

onto

map f=h:0X 2% 9Y is a homeomorphism, we have the inclusion
(10.1) h(X) D Y.

On the other hand, since dY is convex, with the aid of a weak mazimum principle
we obtain another inclusion:

Lemma 10.1.
(10.2) h(X) C Y.

Proof. Suppose that, on the contrary, there is z, € X whose image wo, = h(zo)
lies outside Y. Since Y is convex there is a straight line that separates Y from w, .
Choose an orthogonal coordinate system in the target space C = {u + iv, u,v € R}
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so that this line becomes the horizontal axis {u+iv,v = 0}. We assume that 0Y
lies in the upper half plane and w, lies in the lower half plane. Thus v(z) > 0
for every z € 0X and wv(z,) < 0. This leads to a contradiction by the fol-
lowing arguments. Consider a test mapping n = (0,v7) € %l’p(X, R?), where
v~ (z) = min{v(z), 0} . The integral form of the p-harmonic system with 7 as a
test function reads as:

0= /|Dh|1’*2 (Dh | Dn) :/|Dh|”’2|Vv’|2.

This implies that Vo~ =0 in X, because |Dh| > |[Vu~|. Since v~ € #,'*(X,R),
it follows that v~ =0 in X . In particular, v(z,) > 0, which is a contradiction. O

We shall need the following technical term:

Definition 10.2. A one-sided neighborhood of 9X (9Y, respectively) is any
topological annulus whose outer boundary coincides with 0X (9Y, respectively).
Since X and Y are simply connected such neighborhoods lay in X (Y, respectively).

We now choose and fix a one-sided neighborhood of 9X, say

e {z € X: dist{z,0X} < p} with p > 0 small enough to satisfy

def

(10.3) 0<m infy |Dh(z)| < sup |Dh(z)] = M < cc.
2€%

zEU
For the inequality 0 < m one must appeal to the tangential and normal derivatives
at OX. Indeed, we see that |Dh|?> = |hn|?> + |hr|? = |fr|> > 0, because the
boundary data f: OX — R? is an immersion. Since h is €% -smooth in X, the
inequalities (10.3) follow.

Lemma 10.3. Under the map h no point in % goes into OY . In other words,
(10.4) hZ)CY.

Proof. Suppose otherwise, some point z, € % goes to wo = h(z) € Y. Asnoted
before, we may assume that Y lies in the closed upper half plane {u+iv;v >0}
and wo =0+140 € 9Y. Since h(%) C h(X) C Y, it follows that

(10.5) v(z) =0, for every z € %, whereas v(z,) =0.

In other words, the function v : % — R reaches its minimum in % . This time
we arrive at a contradiction by viewing the p-harmonic system for h=u+iv as
a pair of linear uniformly elliptic scalar equations:

{ div A(2)Vu = 0,

(10.6) div A(2)Vv =0,

where \(z) = |Dh(2)|P™%, z€%.

Recall from (10.3) that A(z) lies between mP~2 and MP~2. By virtue of strong
maximum principle ([21], §6.5), any solution that reaches its infimum inside the
domain must be constant. Thus v =0 in % . But this would mean that h(0X) =
Y is a straight horizontal segment, a clear contradiction. O
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Lemma 10.4. The Jacobian determinant J = det Dh does not vanish on 0X.

Proof. Regarding orientation of h, we may assume that the boundaries 0X and 9Y
are positively oriented (counterclockwise); when traveling in such direction the do-
mains are in the left side. We may as well assume that the boundary homeomor-
phism f: 90X 2% JY is orientation preserving.

Now suppose, to the contrary, that the Jacobian determinant J = wu,v, —
UyUy = ULV, — UV, vanishes at some point z, € 0X. Hereafter, the sub-
script T refers to the tangential differentiation along 0X (in positive direction)
and N to inward drawn normal derivative. We can certainly assume (upon suit-
able rotation and translation) that the domain X lies in the upper half plane
{z=2+iy; y>0} and 2, = 0+ i0 is the lowest point in X, whereas the
target Y lies in the upper half plane {w =u+iv; v >0} and w, =0+40 is the
lowest point in dY . Since v assumes its minimum value along 0X at z,, we have
v, =0 at z,. However, by assumption, h, = u, +iv, # 0, everywhere in 0X.
In particular, u, # 0 at z,. Actually, u,(2,) > 0, because of the orientation.
Therefore J = |hr|v, at z,. It remains to observe that v, > 0. For this we
refer to the seminal paper by R. Finn and D. Gilbarg [17], Lemma 7. Recall our
assumption h € €1 (X,R?). In view of (10.3) we then see that the coefficient A
in (10.6) belongs to €“(%). We then have a uniformly elliptic single equation
for v:

divA(2)Vo =0 in %, whereve @ *(%)and A€ €*(%).

Let us express this equation in the form of a Beltrami type elliptic system,

)\UI = ‘Pyv N Y72
(10.7) { Aoy = —, for some ¢ € €% ).
Recall that v > 0 in % , by Lemma 10.3, and that v(z,) = 0. We now appeal
to Lemma 7 in [17]. Accordingly, vy > 0 and hence J(z,) > 0. Since J is
continuous along 9X, we conclude with

inf J(z) > 0. O
OX

We may, and do, further assume that for some positive constant d
(10.8) det Dh(z) > d, forallze %,

for if not, we replace % by a slightly thinner one-sided neighborhood of 9X. One
more thinning operation on % will be in order. Before proceeding we observe
that the map h : X — R? admits a ¢ - extension to a neighborhood of X. Thus
det Dh > 0 in a neighborhood of 0X. By the implicit function theorem, the
extended map P is a local ¢1-diffeomorphism, say in a domain % O 0X. The
following fact is an exercise in the first course of topology:

Lemma 10.5. FEvery local homeomorphism h: % ™ R? in a domain U C R2,
that is injective on a compact subset, say 0X € % , is injective (thus a homeomor-
phism) in a small neighborhood of 0X.
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Corollary 10.6. In a sufficiently thin one-sided neighborhood of 0X, still denoted
by % C X, the map h: % — R? is injective. Its image ¥V Lef M#Z)CY isa
one-sided neighborhood of 0Y .

No further thinning of % or ¥ will be performed. From (10.3) it follows that
(10.9) |Dh(2)[P~?det Dh(z) > ¢ >0 forallz€ %,
where ¢ = min{m?~2d, MP~2d}. We aim to prove the following.
Proposition 10.7. With the same constant ¢ as in (10.9), we have
(10.10) |Dh(2)[P~?det Dh(z) = ¢ >0 forallz € X,

This can be done, as one may have expected, with the aid of the minimum
principle at (1.5). Let us postpone the proof until we reminisce about p-harmonic
mappings.

11. The coupled p-harmonic systems

The arguments follow very closely the paper of C. Hamburger [20], except for more
explicit (very much needed) statements.

We shall work with a one-parameter family of p -harmonic type systems, non-
degenerate when ¢ # 0.

L) { div[ (2 +[Dre2) "2 Dhe] = 0, —c0< & <o,

he e f+ #P(X,R?).

Lemma 11.1. The system (11.1) has unique solution. The £P -norm of its gra-
dient matriz Dh® is uniformly controlled by that of Df . Explicitly, we have the
mequality

(11.2) /X (52 + |Dhs|2)(p—2)/2 |Dhe|2 < 2o t! /X (52 + |Df|2)(p—2)/2 IDfI?.
We also include to this set of estimates the following one for the map h = h° :
(11.3) /X(g2 + |Dh|? + |Dh|2)”/2 < 41)/X (1+ |Df|2)”/2 , when 0 <e<1.
Proof. We begin with the weak form of the system:

(11.4) /X (2 + |Dh2) P22 (Dhe | D) = 0, withp = h® — f € #P(X,R).
This identity gives

/(€2+|Dhs|2)(P—2)/2|Dhs|2 < /(€2+|Dh6|2)(p_2)/2 |Dh€||Df|
X X
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The rest of the derivation relies on an elementary inequality:

(11.5) (52+I2)(p—2)/2 2y < (62+:1:2)(p_2)/2 22 1 9P (€2+y2)(p—2)/2 2.

1
2
For verification, consider two cases. The obvious one is |y| < i|z|; the other,
|z] < 2lyl, is also easy. O

Lemma 11.2. As € — 0, the gradients Dh® converge to Dh in £P(X,R?*2).

Proof. The proof begins with the weak form of the system
(11.6) / ((2+|Dre[>)*""*Dhs — |DhP"2Dh | Db — D) =0.
X

We are going to use a uniform (independent of &) bound for the monotone operator
X — (24 |X|?)»=2)/2 X | which holds in any inner product space,

(& +IXP)eDRX — (2 4+ YRRy | X )
(11.7) = (24 X2+ YT x v
The symbol = (and =) indicates that in the inequalities there is a missing constant,
called implied constant, of no importance. It depends on p, but not on €. Thus, in
particular, (11.7 holds for matrices X,Y € R?*2. The reader will have no trouble
verifying (11.7) when ¢ = 1, with implied constant obviously depending only on

p € (1,00). The general case for all ¢ follows by re-scaling.

Now we exploit Holder’s inequality. Using (11.6) and (11.7), we proceed as
follows:

/X|Dhs — DhP < /X (IDh?| + |Dh|)"" Dk — Dh|
</X(EQJF|Dhs|2+|Dh|2)<pfl>/2|Dhs ~ Di|
:/§§(52+|Dh5|2+|Dh|2)p/4(52+|Dhs|2+|Dh|2)(p72)/4|Dhs — Dh|

[/X(a2+|Dh€|2+|Dh|2)p/2r/2

X {/ (€2 +|Dhe|? + [Dh2) > | Dhe — Dh|2] i
X

N

1/2 1/2
(11.8) < [/ (1+|Df|2)p/2] / [/(e2+ IDhe|? + |Dh|2)<”’2)/2|Dh6—Dh|2} ?
X X

by (11.3). The computation will henceforth be valid only for 0 < e < 1. The last
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integral can be estimated using (11.7) and the identity (11.6):
/ (2 + DB 2 + [DR?)*"2"% |Dhe — Dhf?
X
< / (2 +|Dne2) "2 Dhe — (2 + [DR?) """ D | Dhe — Dh)

X
:/<|Dh|P—2Dh— (2 +|Dh2)"" 22 Dh | Dh® — Dh)

X

R 1y -/ 1/
:{/||Dh|P*2Dh— (2+[Df?) "7 pp P/ Y )p{/ one D’}
X X

Inserting this estimate into (11.8) the norm |Dh® — Dh |, will be absorbed by the
left hand side. We arrive at the desired estimate:

/‘Dha Dh| }(217 D/p {/X(l_i_'Df'Q)P/Q}

/(p—1) § (p—1)/
'{/’|Dhlp‘2Dh— (= + 1DnP) 2w [ }p .
X

By Lebesgue’s convergence theorem, |Dh® — Dh|, — 0, as ¢ — 0, completing
the proof of the lemma. O

11.1. Local ¥1P-estimates

It will be necessary to control the dependence of Dh® on the parameter ¢. For
this, we ought to settle for local estimates (no satisfactory boundary estimates are
accessible in the literature).

Lemma 11.3. Let g € #1P(X,R?) satisfy (in the weak Sobolev sense) the non-
degenerate p -harmonic system:

(11.9) div (1+Dg>)* " Dg =0, 1<p<.
Define
(11.10) V(14 |Dg|2) """ Dy.

Then V € #,52(X,R2%2). It satisfies the following “reverse Poincdre” inequalities:

loc

(11.11) /|DV|2 ][ 'V -V’ < ]£B|V|2

for every pair of concentric balls B C 2B C X. The constant C,, depends only on
the exponent p.

We have used the notation §,, (or equivalently, ( )25 ) for integral averages.
The above explicit estimate, under the name Caccioppoli inequality, can be found
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in the paper by C. Hamburger [20], page 28. Then, by the Poincdre-Sobolev
inequality, we arrive at the “reverse Holder inequalities”

(11.12) ]{9 DV < C, {]éB |Dv{}2.

Next we invoke the celebrated Lemma of F. W. Gehring [18]. Accordingly, there
exist an exponent s > 2 and a constant A, (both depend only on the constant C,
in the reverse Holder inequalities (11.12), thus only on p) such that

w v eadf iy < {f, v

provided 4B C X. These local estimates may be added up to yield the following.

Corollary 11.4. To every compact subset K € X there corresponds a constant
Cp(K,X) such that

(11.14) {/K|DV|S}1/S < CP(K,X){/X|V|2}1/2, where s = s(p) > 2.

Returning to the system div(e? + |Dhe|?)P=2/2Dhs = 0, we set g = e 'h®
to obtain (11.9). Inequality (11.14) reads as:

1/s 1/2 p—2
(11.15) {/K|DVE|S} < CP(K,X){/XMF} . Vo= (24 |DEE]2) T Dhe,

where we recall from Lemma 11.1 the following uniform (independent of ¢ ) bound
of the right-hand side: when 0 < e < 1,

/|‘/€|2 :/ (€2+|Dha|2)(P—2)/2|Dha|2g 41)/ (1+|Df|2)p/2 )
X X X

Implications are immediate. The family {V:}oge<1, restricted to any com-

pactly contained subdomain @ € X, is bounded with respect to the Sobolev norm

A IVel #2(@) + |DVe| #:(q)- By the Sobolev imbedding theorem it is also

bounded in the space ¢”(Q) of Holder continuous functions with 8 =1—2/s.
In particular, the family {V.}o<e<1 is locally equicontinuous. Recall that, by
Lemma 11.2, lim._,o V. — |Dh|(p’2)/2Dh, almost everywhere. The Arzeld—Ascoli
theorem ensures that this convergence is also c-uniform. Hence:

Corollary 11.5. As & approaches 0, the gradient matrices Dh® converge c-umni-
formly to Dh . In particular,

det V. = (2 + |Dh|%) ?~?/% det Dh® — | Dh|P~2det Dh,

uniformly on compact subsets.
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12. Proof of Proposition 10.7
We fix a point z, € X to show that
(12.1) |Dh(2o)[P~2 det Dh(z,) > ¢> 0.

This inequality already appeared in (10.9) for z, € % . Thus assume that z, ¢ % .
Recall that h takes % diffeomorphically onto a one-sided neighborhood ¥ of 9Y .
Recall that ¥ is a topological annulus whose outer boundary agrees with Y.
We choose and fix a smooth conver Jordan curve T C ¥ that separates the
boundary components of ¥ . Define X = h=1(Y) C % . This is a smooth closed
Jordan curve in a topological annulus % which separates its boundary compo-
nents. Thus X = 99, for some simply connected domain 2 € X containing z, .
Fix a neighborhood of X that is compactly contained in % ; say,

Xeoe.
We then look at the mappings h® : & 2% R? with ¢ approaching zero. They con-
verge on ¢ to h, uniformly together with the first derivatives. Recall from (10.8)
that on % we already have det Dh > d > 0. Thus, for sufficiently small ¢, say

into

0 < e < &/, all the mappings h® : 0 % R? have positive Jacobian,
(12.2) det Dh® >0, in0, for0<e< K .

Thus h®: 0 2 R? are local diffeomorphisms, and we know that the limit map
h : 0 ™% ¥ is a global homeomorphism. Now the following topological argument
comes into play.

12.1. A topological analogue of Hurwitz’s theorem

Nonconstant holomorphic functions in a planar domain & are discrete and open.
If a sequence of such functions converges to a conformal homeomorphism, then
all but finite number of them are also conformal when restricted to a compact
subdomain &’ € ¢'. We ascribe this fact to Adolf Hurwitz. A topological variant
of Hurwitz’s theorem reads as:

Theorem 12.1. Let {h* }oceco be a continuous family of sense-preserving dis-

into

crete open mappings h®: 0 — R"™ in a domain € C R™, with h° Lfy . g ey Re
being a homeomorphism. Fiz a continuum X C O and its neighborhood 0" € O .
Then for sufficiently small 0 < o’ < o the following holds:

e the mappings h®: 0" — R™ are homeomorphisms whenever 0 < e < o',

e h&(0") D h(X), whenever 0 <e<o’.

Proof. We appeal to topological degree. One can certainly assume that h is a
homeomorphism on the closure of &; for if not, replace & by a slightly smaller
neighborhood of X.
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The sets h(0") and h(Q0) are disjoint and h(€) is a domain. Thus there
exists a domain G such that h(0”) C G € h(0). In particular, GNh(0O) = 0.
Since the mappings h® are uniformly close to h, we see that:

he(0') C G and GNA(O0) =0, whenever 0 < e <o’ — sufficiently small.

This is precisely the condition on ¢’ that guarantees the first statement in The-
orem 12.1. Indeed, since G is connected and disjoint with h®(9€) it lies in one
and only one component of R™ \ h%(00). It is therefore legitimate to speak of
the topological degree of h® at the points of G. The degree is independent of the
choice of a point in G, so we denote it by

deg 5|G; h®].

Moreover, the function ¢ — deg 5[G; h®] is integer valued and continuous, thus
constant. This constant equals to 1, because deg 5[G; h°] = deg 4[G; h] = 1.
The latter equation holds because G € h(&) and h is a sense preserving home-
omorphism. At this point the assumption of discreteness and openness of h®
becomes essential (such are local homeomorphisms). For such mappings the car-
dinality of the preimage of any admissible point does not exceed its degree, see
Proposition 4.10 in [37]. Precisely, we have

0<Card{z€ 0 :h(z) =y} <degyly; 0], whenevery & h*(00).

This applies to all points y € h*(6”), where we obviously have deg s[y;h°] = 1.
A geometric meaning of this fact is that given any z, € ¢’ , the equation

(12.3) he(z) = h(z), forze o

admits exactly one solution; z = z,. In particular, h° is one-to-one in €’ , thus
a homeomorphism.

The second statement of Theorem 12.1 also follows by a degree argument. The
set T = h(X) is a continuum. Since ¥ C ' and h: 0’ — R™ is a homeomor-
phism, it follows that h(00")NYT = (. Thus we can adjust ¢’ > 0 small enough so
that h&(00")NYT =, for all 0 < e < ¢’. This allows us to speak of deg 4 [Y; h¢].
It equals 1, again because in the limit case deg 4/ [Y; h] = 1. Since T is a contin-
uum, it lies in one and only one component of R™\ h¢(00") . Therefore, for every
y € T we have deg 4 [y; h] =1 #£ 0, yielding y € h¢(0"). O

Define X, = (h¥)"1(T) € 0’ € ¢ and let Q. denote the bounded component
of R?\ X.. This is a smooth simply connected domain. Let us look at h®: Q. — R?
as a solution to a linear elliptic system in .:

(12.4) div A:(z)Dhe = 0, where A.(2) = (e2 + |DRe[2) P22,
' he: 90 ™% T — smooth convex curve.

For fixed ¢ > 0 this system is uniformly elliptic because 0 < info A.(z) <
supg_ A:(2) < co. Moreover, A is Hélder continuous up to the boundary of €.
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Now we may appeal to an extension of Radé—Kneser—-Choquet theorem to di-
vergence type linear elliptic systems with Holder continuous coefficients, a result
of P. Bauman, A. Marini and V. Nesi [8]. Accordingly, by Theorem 3.1 in [§],
the solution A€ is univalent in €2, and det Dh® > 0. No uniform lower bounds
for det Dh® will be needed. But we notice that det Dh® > 0 also in €2, because
O\ Q. C 0. Let us record it as

det Dh* >0 in Q, for0<e <o’.

We now proceed to the final stage of the proof of Theorem 1.6.

Step 1. Since det Dh¢ > 0 in Q, for every 0 < € < o/, it is legitimate to apply
the minimum principle in Theorem 1.3. We have z, € Q and 092 = X, so

(€ + DR (20)[2)* "% det Db () > inf (2 + DR (2)|2) "~ ?"% det Dhe(2) .
z€E
Step 2. We pass to the limit as ¢ — 0,
|Dh(2,)|P~%det Dh(z,) > in:f;€ |Dh(2)[P~2det Dh(z) > ¢ >0,
ze

by (10.9). We then summarize,
|Dh(z)[P~2det Dh(z) =c¢ >0, foreveryz € X.

Step 3. Here h: X 2% Y is a local €"“-diffeomorphism on X, and its boundary
map h: 9X 2% JY is a homeomorphism. By topology we conclude that h: X 2
Y is a homeomorphism as well. This completes the proof of Theorem 1.6.
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