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Critical stationary Kirchhoff equations in R
N

involving nonlocal operators

Patrizia Pucci and Sara Saldi

Abstract. In this paper we establish existence and multiplicity of non-
trivial non-negative entire (weak) solutions of a stationary Kirchhoff eigen-
value problem, involving a general nonlocal integro-differential operator.
The model under consideration depends on a real parameter λ and in-
volves two superlinear nonlinearities, one of which could be critical or
even supercritical.

1. Introduction

In recent years stationary Kirchhoff problems have been widely studied. We re-
fer to [2], [19], [15], [18], [21] for problems involving the classical Laplace operator,
to [16], [4] for the p-Laplacian case, and to [27] for Kirchhoff models with critical ex-
ponents. For evolution problems we refer to [5], [8], [3] and the references therein.
More recently, following [14], Fiscella and Valdinoci [20] proposed a stationary
Kirchhoff variational model, in bounded regular domains of RN , which takes into
account the nonlocal aspect of the tension arising from nonlocal measurements of
the fractional length of the string. In [2], [18], and [20], the authors use variational
methods, as well as a concentration compactness arguments. In [15] and [21], vari-
ational methods are still used, but the stationary Kirchhoff problems are set in the
whole of RN . In [16] and [4], the so-called degenerate case is covered (see also [5],
[8], [27]), that is, the main Kirchhoff non-negative non-decreasing functionM could
be zero at 0, while in [20] only the non-degenerate case is covered. Lately, several
papers have been devoted to problems involving critical non-linearities and non-
local elliptic operators; see [9], [10], [23], [24], [25], [26], [27] in bounded regular
domains of RN , and [7], [21] in all RN , and the references therein.

In this paper, inspired by the above articles and the fact that several interesting
questions arise from the search of nontrivial non-negative (weak) solutions, we
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deal with existence and multiplicity of nontrivial non-negative entire solutions of a
Kirchhoff eigenvalue problem, involving critical non-linearities and nonlocal elliptic
operators. More precisely, we consider the problem

(Pλ)
M

(
[u]2s,K

)
LKu= λw(x)|u|q−2u− h(x)|u|r−2u in R

N ,

[u]2s,K =

∫∫
R2N

|u(x)− u(y)|2K(x− y) dx dy,

where λ ∈ R, 0 < s < 1, 2s < N , and LK is an integro-differential nonlocal
operator, defined pointwise by

LKϕ(x) =
1

2

∫
RN

[2ϕ(x)− ϕ(x + y)− ϕ(x − y)]K(y) dy,

for any function ϕ ∈ C∞
0 (RN ). The weight K : RN \ {0} → R

+ is a measurable
function satisfying the natural restrictions

(K1) there exists a number β > 0 such that K(x)|x|N+2s ≥ β for all x ∈ R
N \{0} ;

(K2) mK ∈ L1(RN ), where m(x) = min{1, |x|2}.
Clearly, when K(x) = |x|−(N+2s), the operator LK reduces to the more fa-

miliar fractional Laplace operator (−Δ)s, which, up to a multiplicative constant
depending only on N and s, is defined by

(−Δ)sϕ(x) =
1

2

∫
RN

2ϕ(x)− ϕ(x + y)− ϕ(x − y)

|y|N+2s
dy,

for any rapidly decaying function ϕ of class C∞(RN ), see Lemma 3.5 of [17].
The nonlinear terms in (Pλ) are related to the main elliptic part by the request

that

(1.1) 2 < q < min{r, 2∗},

where 2∗ = 2N/(N−2s) is the critical Sobolev exponent forHs(RN ). The weight w
satisfies

(1.2) w ∈ L℘(RN ) ∩ Lσ
loc(R

N ), with ℘ = 2∗/(2∗ − q), σ > ℘,

while h is a positive weight of class L1
loc(R

N ). Finally, h and w are related by the
condition

(1.3)

∫
RN

[w(x)r
h(x)q

]1/(r−q)

dx = H ∈ R
+.

The Kirchhoff function M : R+
0 → R

+
0 satisfies the following condition:

(M) M is an increasing and continuous function, with M(t) > 0 for t ≥ 0, and

M (t) =
∫ t

0 M(τ) dτ .
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Problem (Pλ) is said to be degenerate when M(0) = 0, and non-degenerate
when M(0) > 0. In this paper we cover only the non-degenerate case, as in [20].
From now on we put M(0) = m0 and recall that m0 > 0 by (M).

A typical prototype of Kirchhoff function is given by

(1.4) M(t) = m0 + 2bt, with m0 =M(0) ≥ 0, b ≥ 0 and m0 + b > 0.

When M is of the type (1.4), problem (Pλ) is non-degenerate when m0 > 0 and
b ≥ 0, while it is degenerate if m0 = 0 and b > 0. We refer to [16], [3], and [4] for
further details and references.

In (Pλ) the Kirchhoff function M , which represents the elastic tension term,
depends on the Gagliardo fractional norm [·]s,K arising from general kernel K and
generating nonlocal operators LK . It is clear from symmetry properties that if u
is a solution of (Pλ) also −u is a solution of (Pλ). The main result of the paper is:

Theorem 1.1. Under the above assumptions, there exists λ > 0 such that (Pλ)
admits at least two nontrivial non-negative entire solutions for all λ > λ, one of
which is a global minimizer of the underlying functional Jλ of (Pλ), and the second
independent solution uλ is a mountain pass critical point of Jλ. In particular,
‖uλ‖ → 0 as λ → ∞, where ‖ · ‖ is the natural solution space norm of (Pλ).
Moreover, there exist λ∗ and λ∗∗, with 0 < λ∗ ≤ λ∗∗ ≤ λ, such that

(i) (Pλ) possesses only the trivial solution if λ < λ∗;

(ii) (Pλ) admits a nontrivial non-negative entire solution if and only if λ ≥ λ∗∗.

The paper is organized as follows. In Section 2 we define the main solution
spaceX and give some preliminary results, from which we derive (i) of Theorem 1.1.
In Section 3 we prove the existence of λ > 0 such that, for all λ > λ, problem (Pλ)
admits a first nontrivial non-negative entire solution and then, thanks to a modified
version of the mountain pass theorem established in [6], we construct a second
independent nontrivial non-negative entire solution uλ of (Pλ). We end Section 3
by proving the asymptotic property for uλ stated in Theorem 1.1. Finally in
Section 4 we prove part (ii) of Theorem 1.1.

2. Solution spaces and preliminaries

Throughout the paper Ds(RN ) denotes the completion of C∞
0 (RN ) with respect

to the Gagliardo norm

[u]s =
(∫∫

R2N

|u(x)− u(y)|2
|x− y|N+2s

dx dy
)1/2

.

The embedding Ds(RN ) ↪→ L2∗(RN ) is continuous, that is,

(2.1) ‖u‖2∗ ≤ C2∗ [u]s for all u ∈ Ds(RN ),

where C2
2∗ = c(N)

s(1 − s)

N − 2s
by Theorem 1 of [22], see also Theorem 1 of [12].



4 P. Pucci and S. Saldi

By (K2), for all ϕ ∈ C∞
0 (RN ) the function

(x, y) 	→ [ϕ(x) − ϕ(y)] ·
√
K(x− y) ∈ L2(R2N ).

Let Ds
K(RN ) be the completion of C∞

0 (RN ) with respect to the Hilbertian
norm [·]s,K , defined in (Pλ) and induced by the inner product

(2.2) 〈u, v〉s,K =

∫∫
R2N

[u(x)− u(y)] · [v(x) − v(y)] ·K(x− y) dx dy.

Clearly, by (K1), the embedding Ds
K(RN ) ↪→ Ds(RN ) is continuous, being

(2.3) [u]s ≤ β−1/2 [u]s,K for all u ∈ Ds
K(RN ).

Hence, by (2.1) we obtain

(2.4) ‖u‖2∗ ≤ C2∗ β
−1/2 [u]s,K for all u ∈ Ds

K(RN ).

Finally, the space X denotes the completion of C∞
0 (RN ) with respect to the norm

‖u‖ =
(
[u]2s,K + ‖u‖2r,h

)1/2
, where ‖u‖rr,h =

∫
RN

h(x)|u|rdx.

The embedding

(2.5) X ↪→ Ds
K(RN ) is continuous,

with [u]s,K ≤ ‖u‖ for all u ∈ X . In particular, by (2.1) and (2.3),

X ↪→ Ds
K(RN ) ↪→ L2∗(RN ).

Moreover, for all R > 0 and p ∈ [1, 2∗), the embedding

(2.6) Ds
K(RN ) ↪→↪→ Lp(BR)

is compact. Indeed, Ds
K(RN ) ↪→ Ds(RN ) ↪→ Hs(BR) by (2.3) and the embedding

Hs(BR) ↪→↪→ Lp(BR) is compact for all p ∈ [1, 2∗) by Corollary 7.2 of [17].

We also have the following main embedding result, whose proof is referred to
the Appendix.

Lemma 2.1. The embedding Ds
K(RN ) ↪→↪→ Lq(RN , w) is compact, with

(2.7) ‖u‖q,w ≤ Cw[u]s,K for all u ∈ Ds
K(RN ),

and Cw = C2∗‖w‖1/q℘ β−1/2 > 0. Furthermore, the embedding

X ↪→↪→ Lq(RN , w)

is also compact.
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An entire (weak ) solution u of (Pλ) is a function in X such that

(2.8) M([u]2s,K)〈u, ϕ〉s,K = λ

∫
RN

w(x) |u|q−2 uϕdx−
∫
RN

h(x) |u|r−2 uϕdx,

for all ϕ ∈ X , where 〈·, ·〉s,K is given in (2.2).

Lemma 2.2. If λ ∈ R and u = uλ ∈ X \ {0} satisfy

(2.9) M([u]2s,K)[u]2s,K + ‖u‖rr,h = λ‖u‖qq,w ,

then λ > 0 and

(2.10) κ1 λ
1/(2−q) ≤ ‖uλ‖q,w ≤ κ2 λ

r/2(r−q),

where κ1 and κ2 are positive constants independent of λ and uλ.

Proof. Let u ∈ X \ {0} and λ ∈ R satisfy (2.9). By (2.7), (M) and (2.9),

(2.11) ‖u‖2q,w ≤ C2
w [u]2s,K ≤ C2

w

m0
M([u]2s,K) [u]2s,K ≤ λ

C2
w

m0
‖u‖qq,w.

Hence, λ > 0, being u �= 0. Moreover, λ‖u‖q−2
q,w ≥ m0/C

2
w, that is ‖u‖q,w ≥

κ1λ
1/(2−q), with κ1 = (m0/C

2
w)

1/(q−2). In other words, the first part of (2.10)
holds true. By Young’s inequality,

ab ≤ aα

α
+
bβ

β
,

with a = h(x)q/r |u|q ≥ 0, b = λw(x)h(x)−q/r ≥0, α = r/q>1 and β = r/(r − q)>1,
we find

λw(x) |u|q ≤ q

r
h(x) |u|r + r − q

r

( λw(x)

h(x)q/r

)r/(r−q)

.

Integration over RN , (M) and (2.9) give

m0[u]
2
s,K ≤M([u]2s,K)[u]2s,K ≤ q − r

r
‖u‖rr,h +

r − q

r
H λr/(r−q) ≤ r − q

r
H λr/(r−q),

being q < r. Since u �≡ 0 by assumption, the last inequality and (2.11) yield
the second part of (2.10), with κ2 = [(r − q)C2

wH/m0r]
1/2. This completes the

proof. �

If (Pλ) admits a nontrivial entire solution u ∈ X , then λ > 0 by Lemma 2.2,
and actually λ ≥ λ0 by (2.10), where λ0 = (κ1/κ2)

2(r−q)(q−2)/q(r−2) > 0. Define

λ∗ = sup{λ > 0 : (Pμ) admits only the trivial entire solution for all μ < λ}.

Clearly λ∗ ≥ λ0 > 0. Theorem 1.1 (i) follows directly from the definition of λ∗.
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For the proof of Theorem 1.1 we use variational arguments since the entire
solutions of (Pλ) are exactly the critical points of the natural underlying energy
functional Jλ associated to (Pλ), that is

(2.12) Jλ(u) =
1

2
M ([u]2s,K)− λ

q
‖u‖qq,w +

1

r
‖u‖rr,h, u ∈ X,

where M is defined in (M). Clearly, Jλ is Gâteaux-differentiable in X and, for
all u, ϕ ∈ X ,

(2.13)
〈J ′

λ(u), ϕ〉 =M([u]2s,K)〈u, ϕ〉s,K − λ

∫
RN

w(x) |u|q−2 uϕdx

+

∫
RN

h(x) |u|r−2 uϕdx,

where 〈·, ·〉 denotes the duality pairing between X and its dual space X ′.
Thanks to the results of this section, from now on we assume that λ > 0,

without loss of generality.

Lemma 2.3. The functional Jλ : X → R is bounded below and coercive in X.
In particular, any sequence (un)n in X such that (Jλ(un))n is bounded admits a
weakly convergent subsequence in X.

Proof. Let us consider the following elementary inequality: for every k1, k2 > 0
and 0 < α < β,

(2.14) k1 |t|α − k2 |t|β ≤ Cαβ k1

(k1
k2

)α/(β−α)

for all t ∈ R,

where Cαβ > 0 is a constant depending only on α and β. Taking k1 = λw(x)/q,
k2 = h(x)/2r, α = q, β = r and t = u(x) in (2.14), for all x ∈ R

N we have

λ

q
w(x)|u(x)|q − h(x)

2r
|u(x)|r ≤ C λr/(r−q)

[
w(x)r

h(x)q

]1/(r−q)

,

where C = Cqr [2r/q]
q/(r−q)

/q. Integrating the above inequality over RN , we get
by (1.3),

λ

q
‖u‖qq,w − 1

2r
‖u‖rr,h ≤ Cλ,

where Cλ = CHλr/(r−q) > 0 by Lemma 2.2.
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Therefore, by (M), for all u ∈ X ,

(2.15)

Jλ(u) ≥ 1

2
m0[u]

2
s,K − λ

q
‖u‖qq,w +

1

r
‖u‖rr,h

=
1

2
m0[u]

2
s,K −

[λ
q
‖u‖qq,w − 1

2r
‖u‖rr,h

]
− 1

2r
‖u‖rr,h +

1

r
‖u‖rr,h

≥ 1

2
m0[u]

2
s,K − Cλ +

1

2r
‖u‖rr,h

≥ 1

2
m0[u]

2
s,K +

1

2r

(‖u‖2r,h − 1
)− Cλ

≥ min
{
m0, r

−1
}

2
‖u‖2 − Cλ − 1

2r
.

Hence, Jλ is bounded below and coercive in X . The last part of the lemma follows
at once by the coercivity of Jλ and the reflexivity of the space X , proved in
Proposition A.1. �

For any (x, u) ∈ R
N × R, put

(2.16) f(x, u) = λw(x)|u|q−2u− h(x)|u|r−2u,

so that

(2.17) F (x, u) =

∫ u

0

f(x, v) dv =
λ

q
w(x)|u|q − h(x)

|u|r
r
.

Lemma 2.4. For any fixed u ∈ X the functional Fu : X → R, defined by

Fu(v) =

∫
RN

f(x, u(x)) v(x) dx,

is in X ′. In particular, if vn ⇀ v in X then Fu(vn) → Fu(v) as n→ ∞.

Proof. Fix u ∈ X . Clearly Fu is linear. Moreover, using (2.7), we get for all v ∈ X

|Fu(v)| ≤ λ

∫
RN

w(x)|u|q−1|v| dx+

∫
RN

h(x)|u|r−1|v|dx

≤ λ ‖u‖q−1
q,w ‖v‖q,w + ‖u‖r−1

r,h ‖v‖r,h ≤
√
2
(
λCw‖u‖q−1

q,w + ‖u‖r−1
r,h

) ‖v‖,
and so Fu is continuous in X . �

Lemma 2.5. The functional Jλ : X → R is of class C1(X) and Jλ is sequentially
weakly lower semicontinuous in X, that is, if un ⇀ u in X, then

(2.18) Jλ(u) ≤ lim inf
n→∞ Jλ(un).

Moreover, Jλ attains its infimum e = eλ in X, which is an entire solution of (Pλ).
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Proof. A simple calculation shows that 1
2M ([u]2s,K) is convex in X , since M is

convex and monotone non-decreasing in R
+
0 by (M) and of class C1(X). Therefore,

1
2M ([u]2s,K) is sequentially weakly lower semicontinuous in X by Corollary 3.9
of [13], so that

(2.19) M ([u]2s,K) ≤ lim inf
n→∞ M ([un]

2
s,K)

along any sequence (un)n, with un ⇀ u in X .
Denote with Φw the functional u 	→ ‖u‖qq,w/q. By Lemma 2.1 and Theorem 3.10

of [13] we also have that Φw is weakly continuous, so that in particular Φw is con-
tinuous in X . Furthermore, Φw is Gâteaux-differentiable in X and for all u, ϕ ∈ X ,

〈Φ′
w(u), ϕ〉 =

∫
RN

w(x) |u|q−2 uϕdx.

Now, let (un)n, u ∈ X be such that un ⇀ u in X and fix ϕ ∈ X , with ‖ϕ‖ = 1.
By Lemma 2.1 and Proposition A.8 (ii) of [6], it follows that vn = |un|q−2un →
v = |u|q−2u in Lq′(RN , w). Therefore,

|〈Φ′
w(un)− Φ′

w(u), ϕ〉| ≤ ‖vn − v‖q′,w ‖ϕ‖q,w ≤ Cw‖vn − v‖q′,w,
by (2.7). Hence, ‖Φ′

w(un)−Φ′
w(u)‖X′ ≤ Cw‖vn − v‖q′,w, that is Φ′

w(un) → Φ′
w(u)

in X ′. Thus, Φw is of class C1(X) and, as n→ ∞,

(2.20)

∫
RN

w(x)|un|q−2 un ϕdx→
∫
RN

w(x) |u|q−2 uϕdx

for all ϕ ∈ X .
Finally, it remains to show that also the functional u 	→ ‖u‖rr,h/r, denoted

by Φh, is of class C
1(X). The continuity of Φh follows from the continuity of the

embedding X ↪→ Lr(RN , h). Hence Φh is weakly lower semicontinuous in X , again
by Corollary 3.9 of [13]. On the other hand, Φh is Gâteaux-differentiable in X and
for all u, ϕ ∈ X ,

〈Φ′
h(u), ϕ〉 =

∫
RN

h(x)|u|r−2 uϕdx.

Let (un)n, u ∈ X be such that un → u in X . Then, un → u in Lr(RN , h), and
so vn = |un|r−2un → v = |u|r−2u in Lr′(RN , h) by Proposition A.8 (ii) of [6].
Therefore,

‖Φ′
h(un)− Φ′

h(u)‖X′ ≤ sup
ϕ∈X
‖ϕ‖=1

‖vn − v‖r′,h · ‖ϕ‖r,h ≤ ‖vn − v‖r′,h = o(1)

as n→ ∞. This gives the C1 regularity of Φh.
Suppose now that un ⇀ u in X . Fix a subsequence (vnk

)k of the sequence
n 	→ vn = |un|r−2un. Of course unk

⇀ u in X and by Proposition A.2 there
exists a further subsequence (unkj

)j such that unkj
→ u a.e. in R

N . Thus vnkj
→

v = |u|r−2u a.e. in R
N . On the other hand, (vnkj

)j is bounded in Lr′(RN , h),



Critical stationary Kirchhoff equations 9

since ‖vnkj
‖r′r′,h = ‖unkj

‖rr,h and (unkj
)j is bounded in Lr(RN , h). Therefore,

vnkj
⇀ v in Lr′(RN , h) by Proposition A.8 (i) of [6]. In conclusion, due to the ar-

bitrariness of (vnk
)k, the entire sequence vn ⇀ v in Lr′(RN , h) as n → ∞. In

particular, for all ϕ ∈ X ,

(2.21)

∫
RN

h(x) |un|r−2 un ϕdx→
∫
RN

h(x) |u|r−2 uϕdx

as n→ ∞.
For the second part of the lemma, let (un)n, u ∈ X be such that un ⇀ u in X .

The definition of Jλ and (2.17) give

Jλ(u)− Jλ(un) =
1

2

[
M ([u]2s,K)− M ([un]

2
s,K)

]
+

∫
RN

[F (x, un)− F (x, u)] dx.

Hence, by (2.19),

(2.22) lim sup
n→∞

[Jλ(u)− Jλ(un)] ≤ lim sup
n→∞

∫
RN

[F (x, un)− F (x, u)] dx.

By (2.16) and (2.17), for all t ∈ [0, 1],

(2.23)

Fu(x, u + t(un − u)) = f(x, u + t(un − u))

= f(x, u) + (un − u)

∫ t

0

fu(x, u+ τ(un − u)) dτ,

where clearly fu(x, z) = λ(q− 1)w(x)|z|q−2−h(x)(r− 1)|z|r−2. Multiplying (2.23)
by un − u and integrating over [0, 1], we obtain

(2.24)

F (x, un)− F (x, u) = f(x, u)(un − u)

+ (un − u)2
∫ 1

0

(∫ t

0

fu(x, u + τ(un − u))dτ
)
dt.

By (2.14), with t = z, k1 = λw(x)(q − 1), k2 = h(x)(r − 1), α = q − 2 > 0 and
β = r − 2 > 0, we get

(2.25) fu(x, z) ≤ 2C1 w(x)
2/q

[w(x)r/q
h(x)

](q−2)/(r−q)

,

where C1 is a positive constant, depending only on q, r and λ. Consequently, (2.24)
yields

(2.26)

∫
RN

[F (x, un)− F (x, u)]dx ≤
∫
RN

f(x, u)(un − u) dx

+ C1H
(q−2)/q‖un − u‖2q,w,

by Hölder’s inequality and (1.3). Now, Lemma 2.4 gives

(2.27) lim
n→∞

∫
RN

f(x, u)(un − u) dx = 0,
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and Lemma 2.1 implies

(2.28) lim
n→∞ ‖un − u‖q,w = 0.

Combining (2.26)–(2.28) with (2.22) we get the claim (2.18).
Finally, Corollary 3.23 of [13] yields the existence of a global minimizer e = eλ

of Jλ in X for each λ > 0 and e is therefore an entire solution of (Pλ). �

3. Existence of two solutions

The number
λ = inf

u∈X
‖u‖q,w=1

{q
2
M ([u]2s,K) +

q

r
‖u‖rr,h

}

is positive. Indeed, for all u ∈ X with ‖u‖q,w = 1, by Hölder’s inequality and (1.3),
we have

1 = ‖u‖qq,w =

∫
RN

w(x)

h(x)q/r
h(x)q/r |u|qdx ≤ H(r−q)/r‖u‖qr,h.

Consequently, we get

q

2
M ([u]2s,K) +

q

r
‖u‖rr,h ≥ m0q

2
[u]2s,K +

q

r
H(q−r)/q ≥ m0 q

2C2
w

+
q

r
H(q−r)/q.

In other words, λ ≥ m0q/2C
2
w + qH(q−r)/q/r > 0, as stated.

Lemma 3.1. For all λ > λ there exists a global nontrivial non-negative minimizer
e ∈ X of Jλ with negative energy, that is Jλ(e) < 0. In particular, e is a nontrivial
non-negative entire solution of (Pλ).

Proof. By Lemma 2.5 for each λ > 0 there exists a global minimizer e = eλ ∈ X
of Jλ, that is

Jλ(e) = inf
v∈X

Jλ(v).

We prove that e �≡ 0 whenever λ > λ, showing that Jλ(e) < 0.
Let λ > λ. Then there exists a function v ∈ X , with ‖v‖q,w = 1, such that

λ ‖v‖qq,w = λ >
q

2
M ([v]2s,K) +

q

r
‖v‖rr,h,

that is

Jλ(v) =
1

2
M ([v]2s,K)− λ

q
‖v‖qq,w +

1

r
‖v‖rr,h < 0.

In particular, Jλ(e) ≤ Jλ(v) < 0, as required.

Hence, for any λ > λ equation (Pλ) has a nontrivial entire solution e ∈ X
such that Jλ(e) < 0. Finally, we may assume e ≥ 0 in R

N . Indeed, |e| ∈ X , being∣∣ |e(x)| − |e(y)| ∣∣ ≤ |e(x)− e(y)| for all x, y ∈ R
N . Moreover, Jλ(|e|) ≤ Jλ(e), since

[|u|]s,K ≤ [u]s,K for all u ∈ X and so M ([|e|]2s,K) ≤ M ([e]2s,K) by (M). This gives
Jλ(e) = Jλ(|e|), due to the minimality of e. �
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Proposition 3.2. The non-negative entire solutions of (Pλ) are exactly the crit-
ical points of the C1(X) functional

Jλ(u) =
1

2
M ([u]2s,K)− λ

q
‖u+‖qq,w +

1

r
‖u‖rr,h, u ∈ X.

Proof. It is evident from the proof of Lemma 2.5 that also Jλ is of class C1(X).
For any non-negative function u ∈ X , we have Jλ(u) = Jλ(u), so that non-
negative entire solutions of (Pλ) are critical points of Jλ. To see the vice versa,
first observe that |u+(x)−u+(y)| ≤ |u(x)−u(y)| and |u−(x)−u−(y)| ≤ |u(x)−u(y)|
for all x, y ∈ R

N , so that both u+ and u− ∈ X for all u ∈ X . Furthermore, for all
u ∈ X ,

〈u,−u−〉s,K =

∫∫
R2N

(
u+(x)u−(y) + u−(x)u+(y) + |u−(x) − u−(y)|2)K(x−y) dx dy

≥ [u−]2s,K .

Finally, if u ∈ X is a critical point of Jλ, then, taking the test function ϕ =
−u− ∈ X , we get, by (M),

0 =M([u]2s,K)〈u,−u−〉s,K + ‖u−‖rr,h ≥ m0 [u
−]2s,K + ‖u−‖rr,h ≥ 0 ;

in other words u− = 0 in X , that is the critical point u of Jλ is non-negative
in R

N . �

By Lemma 3.1 and Proposition 3.2, the global nontrivial non-negative mini-
mizer e ∈ X of Jλ is also a critical point of Jλ and Jλ(e) = Jλ(e) < 0.

Lemma 3.3. For any v ∈ X \ {0} and λ > 0 there exist �, depending on v and λ,
with � ∈ (0, [v]s,K), and α = α(�, λ) > 0 such that Jλ(u) ≥ α for all u ∈ X,
with [u]s,K = �. Furthermore, Jλ also satisfies the mountain pass geometry stated
above.

Proof. Let u be in X , with [u]s,K = �. By (M) and (2.7),

Jλ(u) ≥ Jλ(u) ≥ m0

2
[u]2s,K − λ

q
Cq
w[u]

q
s,K ≥

(m0

2
− λ

q
Cq
w[u]

q−2
s,K

)
[u]2s,K .

Therefore, it is enough to take �, with 0 < � < min
{
(m0q/2λC

q
w)

1/(q−2), [v]s,K
}

and the number α =
(
m0/2 − λCq

w�
q−2/q

)
�2 > 0 satisfies the assertion. The last

part of the lemma follows now at once. �

The proof of Lemma 3.3 shows in particular that, for all λ > 0, the trivial
solution u = 0 is a strict local minimum of both Jλ and Jλ in X . Indeed, fix
a positive number �, with � < (m0q/2λC

q
w)

1/(q−2). Then for all u ∈ X , with
0 < ‖u‖ ≤ �, by (M) and (2.7),

Jλ(u) ≥ Jλ(u) ≥
(m0

2
− λ

q
Cq
w�

q−2
)
[u]2s,K > 0,

as stated.
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Proof of the first part of Theorem 1.1. We recall that Jλ is of class C1(X) by
Proposition 3.2. Moreover, by Lemmas 3.1 and 3.3 and Theorem A.3 of [6], for
all λ > λ there exists a sequence (un)n in X such that for all n

(3.1) cλ ≤ Jλ(un) ≤ cλ +
1

n2
and ‖J ′

λ(un)‖X′ ≤ 2

n
,

where

cλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) and Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = e}.

By Lemma 2.3 the sequence (un)n is bounded in X . By Propositions A.1, A.2,
Lemma 2.1 and the fact that Lq(RN , w) and Lr(RN , h) are uniformly convex Ba-
nach spaces by Proposition A.6 of [6], it is possible to extract a subsequence, still
relabeled (un)n, satisfying

(3.2)
un ⇀ u in X, un ⇀ u in Lr(RN , h), [un]s,K → �,

un → u in Lq(RN , w), u+n → u+ in Lq(RN , w),

for some u ∈ X and some � ∈ R
+
0 , since |u+n (x) − u+(x)| ≤ |un(x) − u(x)| for all

x ∈ R
N . In particular, by (M),

(3.3) M([un]
2
s,K) →M(�2) > 0 as n→ ∞.

We claim that ‖un − u‖ → 0 in X . Clearly, 〈J ′
λ(un) − J ′

λ(u), un − u〉 → 0 as
n → ∞, since un ⇀ u in X and J ′

λ(un) → 0 in X ′ as n → ∞ by (3.1) and (3.2).
Hence, as n→ ∞,

o(1) = 〈J ′
λ(un)− J ′

λ(u), un − u〉
=M([un]

2
s,K)[un]

2
s,K +M([u]2s,K)[u]2s,K(3.4)

− 〈un, u〉s,K
[
M([un]

2
s,K)+M([u]2s,K)

] −
∫
RN

[
g(x, un)−g(x, u)

]
(un−u) dx,

where g(x, z) = λw(x)(z+)q−1 − h(x)|z|r−2z for (x, z) ∈ R
N+1. Thus, using the

notation (2.16) and putting In = 〈un, u〉s,K
[
M([un]

2
s,K) +M([u]2s,K)

]
, we get,

by (2.25), Hölder’s inequality and (1.3),

M([un]
2
s,K)[un]

2
s,K +M([u]2s,K)[u]2s,K

= In +

∫
RN

[
g(x, un)− g(x, u)

]
(un − u) dx+ o(1)

= In +

∫
RN

(un − u)2dx

∫ 1

0

gu(x, u + t(un − u))dt+ o(1)

≤ In +

∫
RN

(un − u)2dx

∫ 1

0

fu(x, u + t(un − u))dt+ o(1)

≤ In + 2C1H
(q−2)/q‖un − u‖2q,w + o(1).
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Passing now to the limit as n → ∞, we have that M(�2)�2 +M([u]2s,K)[u]2s,K ≤
[u]2s,K

[
M(�2) +M([u]2s,K)

]
, that is � ≤ [u]s,K by (M) and (3.3). In other words,

[u]s,K ≤ lim
n→∞[un]s,K = � ≤ [u]s,K ,

which implies at once that

(3.5) [un − u]s,K → 0,

since un ⇀ u in X ↪→ Ds
K(RN ) and Ds

K(RN ) is a Hilbert space. Thus, (3.4)
and (3.5) yield that

0 ≤
∫
RN

h(x)(|un|r−2 un − |u|r−2 u) (un − u) dx→ 0

as n→ ∞. Hence,

(3.6) ‖un − u‖rr,h ≤ kr

∫
RN

h(x)(|un|r−2 un − |u|r−2 u) (un − u) dx→ 0,

thanks to Simon’s inequality |ξ − ξ0|r ≤ kr(|ξ|r−2ξ − |ξ0|r−2ξ0) · (ξ − ξ0), valid for
all ξ, ξ0 ∈ R, being r > 2. Therefore, ‖un − u‖r,h → 0 as n→ ∞. Combining this
fact with (3.5) we obtain that ‖un − u‖ → 0, that is un → u in X as n→ ∞.

We next prove that u is a second independent nontrivial non-negative entire
solution of problem (Pλ). Clearly, for any ϕ ∈ X ,

(3.7) 〈J ′
λ(un), ϕ〉 =M([un]

2
s,K)〈un, ϕ〉s,K −

∫
RN

g(x, un)ϕdx,

with g defined above. Now, by (2.20) and (3.2), as n→ ∞,
∫
RN

w(x) (u+n )
q−1ϕdx→

∫
RN

w(x) (u+)q−1ϕdx

for all ϕ ∈ X . Hence, since un → u in X , passing to the limit as n → ∞ in (3.7)
and using also (2.21) and (3.5), we have for all ϕ ∈ X

M([u]2s,K)〈u, ϕ〉s = λ

∫
RN

w(x) (u+)q−1ϕdx −
∫
RN

h(x) |u|r−2 uϕdx,

since 〈J ′
λ(un), ϕ〉 → 0 as n→ ∞ for all ϕ ∈ X by (3.1).

Finally, Jλ(u) = cλ = limn→∞ Jλ(un), being Jλ ∈ C1(X) by Proposi-
tion 3.2. Therefore, u is a second nontrivial independent critical point for Jλ,
being Jλ(u) = cλ > 0 > Jλ(e), that is u is a second nontrivial non-negative
entire solution of (Pλ). �

From Proposition 3.2 it is clear that the second nontrivial non-negative entire
solution u = uλ ∈ X , constructed in the proof above, is a critical point of Jλ, with
Jλ(u) = Jλ(u) = cλ > 0 > Jλ(e) = Jλ(e). We next prove an important property
of the asymptotic behavior as λ→ ∞ of cλ.
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Proposition 3.4. Under the assumptions of Theorem 1.1,

lim
λ→∞

cλ = 0,

where cλ is the level in (3.1) of the mountain pass solution uλ of (Pλ), constructed
in the proof of Theorem 1.1.

Proof. Let λ > λ and let e ∈ X be the function given in Lemma 3.1. Since Jλ
satisfies the mountain pass geometry of Lemma 3.3 and the path t 	→ te, t ∈ [0, 1],
is in Γ defined in (3.1), it follows that there exists tλ ∈ (0, 1) such that Jλ(tλe) =
maxt∈[0,1] Jλ(te), being cλ > 0. Hence, 〈J ′

λ(tλe), e〉 = 0. Thus, 〈J ′
λ(tλe), tλe〉 = 0

and by (2.13)

(3.8) M([tλe]
2
s,K)[tλe]

2
s,K = λ tqλ ‖e‖qq,w − trλ ‖e‖rr,h.

Let (λn)n be a sequence, with λn → ∞. We suppose that λn > λ for any n ∈ N,
without loss of generality. Thus, there exists t ≥ 0 and a subsequence (tnk

)k of
(tλn)n such that tnk

→ t as k → ∞. Clearly t = 0. Otherwise, (3.8) implies

M([te]2s,K)[te]2s,K + ‖te‖rr,h = ‖te‖qq,w lim
k→∞

λnk
= ∞,

which gives an obvious contradiction. In particular, the entire sequence (tλn)n
converges to 0. This shows that

lim
λ→∞

tλ = 0,

being (λn)n, with λn → ∞, arbitrary. In conclusion, as λ→ ∞,

0 < cλ ≤ max
t∈[0,1]

Jλ(te) = Jλ(tλe) =
1

2
M ([tλe]

2
s,K)− λ

q
tqλ ‖e‖qq,w +

1

r
trλ ‖e‖rr,h

≤ 1

2
M (t2λ[e]

2
s,K) +

‖e‖rr,h
r

trλ → 0,

since of course M (τ) → 0 as τ → 0+. This completes the proof. �

Proposition 3.5. Under the assumptions of Theorem 1.1,

lim
λ→∞

‖uλ‖ = 0,

where uλ is the mountain pass solution of (Pλ), constructed in the proof of Theo-
rem 1.1.

Proof. Using the notation of the statement, it is clear that

(3.9) lim sup
λ→∞

[uλ]s,K <∞ and lim sup
λ→∞

‖uλ‖r,h <∞.

Otherwise from (2.15) and Proposition 3.4 we would get an easy contradiction.
Now, fix a sequence (λn)n, with λn → ∞ as n→ ∞, and let n 	→ un = uλn be the
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corresponding mountain pass sequence of solutions of (Pλn). Hence, there exists
a subsequence (unk

)k of (un)n, a function u ∈ X and a number � ∈ R
+
0 such that

[unk
]s,K → � and

unk
⇀ u in Ds

K(RN ), unk
→ u in Lq(RN , w), unk

⇀ u in Lr(RN , h)

as k → ∞, by Proposition A.1 and Lemma 2.1. Assume by contradiction that
u �= 0. Then, (2.9) holds along any solution unk

, so that

M(�2)�2 + lim sup
k→∞

‖unk
‖rr,h = ‖u‖qq,w lim

k→∞
λnk

,

which contradicts (3.9). Therefore, u = 0 as stated and the entire sequence (un)n
satisfies (3.2), with u = 0.

By (2.8), for all n ∈ N and all ϕ ∈ X ,

M([un]
2
s,K)〈un, ϕ〉s,K +

∫
RN

h(x) |un|r−2 un ϕdx = λn

∫
RN

w(x) |un|q−2 un ϕdx.

Thus, by (2.21) the left-hand side approaches zero as n→ ∞, since un ⇀ 0 in X .
Hence also the right-hand side should tend to zero as n → ∞. In particular,
by (2.20),

(3.10) lim
n→∞λn ‖un‖qq,w = 0.

Therefore, [un]s,K → � = 0 by (2.11), that is un → 0 in Ds
K(RN ), by (3.2) and

the fact that Ds
K(RN ) is a Hilbert space. Moreover, (2.9) and (3.10) imply at once

that un → 0 in Lr(RN , h). In conclusion, un → 0 in X . Since the sequence (λn)n,
with λn → ∞, is arbitrary, this completes the proof. �

4. Existence of non-negative entire solutions

Put

λ∗∗ = inf {λ > 0 : (Pλ) admits a nontrivial non-negative entire solution} .

Lemma 3.1 assures that this definition is meaningful and, thanks to Lemma 2.2,
we have that λ ≥ λ∗∗ ≥ λ∗, where λ∗ was introduced in Section 2.

Theorem 4.1. For any λ > λ∗∗, problem (Pλ) admits a nontrivial non-negative
entire solution uλ ∈ X.

Proof. Fix λ > λ∗∗. By definition of λ∗∗ there exists μ ∈ (λ∗∗, λ) such that Jμ
has a nontrivial critical point uμ ∈ X , with uμ ≥ 0 in R

N . Of course, uμ is a
subsolution for (Pλ). Consider the following minimization problem:

inf
v∈C

Jλ(v), C = {v ∈ X : v ≥ uμ}.
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Clearly C is closed and convex by Proposition A.2, and in turn also weakly closed
in X . Moreover, by Lemmas 2.3 and 2.5, Theorem 6.1.1 of [11] can be applied
in X and so in the weakly closed set C. Hence, Jλ attains its infimum in C, i.e.,
there exists uλ ≥ uμ such that Jλ(uλ) = infv∈C Jλ(v).

We claim that uλ is a solution of (Pλ), which is clearly non-negative. Indeed,
take ϕ ∈ C∞

0 (RN ) and ε > 0. Put

ϕε = max{0, uμ − uλ − εϕ} ≥ 0 and vε = uλ + εϕ+ ϕε,

so that vε ∈ C. Of course, 0 ≤ 〈J ′
λ(uλ), vε−uλ〉 = ε〈J ′

λ(uλ), ϕ〉+ 〈J ′
λ(uλ), ϕε〉, and

in turn,

(4.1) 〈J ′
λ(uλ), ϕ〉 ≥ −1

ε
〈J ′

λ(uλ), ϕε〉.

Define Ωε = {x ∈ R
N : uλ(x) + εϕ(x) ≤ uμ(x) < uλ(x)}, so that Ωε is a subset of

suppϕ. Since uμ is a subsolution of (Pλ) and ϕε ≥ 0, then 〈J ′
λ(uμ), ϕε〉 ≤ 0. In

particular,

〈J ′
λ(uλ), ϕε〉 = 〈J ′

λ(uμ), ϕε〉+ 〈J ′
λ(uλ)− J ′

λ(uμ), ϕε〉 ≤ 〈J ′
λ(uλ)− J ′

λ(uμ), ϕε〉.

Using the notation of (2.16), we get

∣∣∣
∫
Ωε

[f(x, uλ)−f(x, uμ)]·[−u(x)−εϕ(x)] dx
∣∣∣ ≤ ε

∫
Ωε

|f(x, uλ)− f(x, uμ)|·|ϕ(x)| dx,

since 0 ≤ −u− εϕ = uμ − uλ + ε|ϕ| < ε|ϕ| in Ωε. Therefore,

〈J ′
λ(uλ), ϕε〉 ≤ 〈M([uλ]

2
s,K)uλ −M([uμ]

2
s,K)uμ, ϕε〉s,K

+ ε

∫
Ωε

|f(x, uλ)− f(x, uμ)| · |ϕ(x)| dx .

By the convexity of 1
2M ([u]2s,K) in X , we have

1

2
M ([uμ]

2
s,K) ≥ 1

2
M ([uλ]

2
s,K) + 〈M([uλ]

2
s,K)uλ, uμ − uλ〉s,K

≥ 1

2
M ([uμ]

2
s,K) + 〈M([uμ]

2
s,K)uμ, uλ − uμ〉s,K + 〈M([uλ]

2
s,K)uλ, uμ − uλ〉s,K ,

so that 〈M([uλ]
2
s,K)uλ −M([uμ]

2
s,K)uμ, uμ − uλ〉s,K ≤ 0. Hence,

〈J ′
λ(uλ), ϕε〉 ≤ ε

(∫
Ωε

ψ(x) dx +

∫∫
R2N

U (x, y) dx dy
)
,

where ψ(x) = |f(x, uλ)− f(x, uμ)| · |ϕ| and

U (x, y) =
[
M([uλ]

2
s,K)

(
uλ(x)− uλ(y)

)−M([uμ]
2
s,K)

(
uμ(x)− uμ(y)

)]
× [ϕ(x) − ϕ(y)] ·K(x− y).
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Now∫∫
R2N

U (x, y)dx dy =

∫∫
Ωε×Ωε

U (x, y) dx dy +

∫∫
Ωε×(RN\Ωε)

U (x, y) dx dy

+

∫∫
(RN\Ωε)×Ωε

U (x, y) dx dy

≤
∫∫

Ωε×RN

|U (x, y)| dx dy +
∫∫

RN×Ωε

|U (x, y)| dx dy.

Thus,

(4.2)

〈J ′
λ(uλ), ϕε〉 ≤ ε

(∫
Ωε

ψ(x) dx +

∫∫
Ωε×RN

|U (x, y)| dx dy

+

∫∫
RN×Ωε

|U (x, y)| dx dy
)
= εIε.

We claim that ψ is in L1(suppϕ). Indeed, |f(x, uλ) − f(x, uμ)| is in L1
loc(R

N ),
being

|f(x, uλ)− f(x, uμ)| ≤ λw(x)
(
uq−1
λ + uq−1

μ

)
+ h(x)

(
ur−1
λ + ur−1

μ

)
.

In fact, by Hölder’s inequality and (1.2), we obtain

(4.3)

∫
suppϕ

w(x)uq−1
λ dx ≤ |suppϕ|1/2∗‖w‖℘‖uλ‖q−1

2∗ = C1,

and C1 = C1(suppϕ). Finally, since h ∈ L1
loc(R

N ) and uλ ∈ Lr(RN , h), then

(4.4)

∫
suppϕ

h(x)ur−1
λ dx ≤

( ∫
suppϕ

h(x) dx
)1/r

‖uλ‖r−1
r,h = C2,

with C2 = C2(suppϕ). The estimates (4.3) and (4.4) hold also for uμ. The claim
is so proved.

We next show that

(4.5) lim
ε→0+

Iε = 0.

Indeed,
∫
Ωε
ψ(x) dx = o(1), since |Ωε| → 0 as ε → 0+, Ωε ⊂ suppϕ and by the

fact that ψ ∈ L1(suppϕ).
Now, U (x, y) ∈ L1(R2N ), being X ↪→ Ds

K(RN ) by (2.5). Thus for all η > 0
there exists Rη so large that∫∫

(suppϕ)×(RN\BRη )

|U (x, y)| dx dy < η/2,

∫∫
(RN\BRη )×(suppϕ)

|U (x, y)| dx dy < η/2.

Since |Ωε × BRη | = |BRη × Ωε| → 0 as ε → 0+ and U ∈ L1(R2N ), there exist
δη > 0 and εη > 0 such that, for all ε ∈ (0, εη],

|Ωε×BRη | < δη,

∫∫
Ωε×BRη

|U (x, y)| dx dy < η

2
and

∫∫
BRη×Ωε

|U (x, y)| dx dy < η

2
.



18 P. Pucci and S. Saldi

Therefore, for all ε ∈ (0, εη],∫∫
Ωε×RN

|U (x, y)| dx dy < η and

∫∫
RN×Ωε

|U (x, y)| dx dy < η,

being Ωε ⊂ suppϕ. Hence (4.5) holds.
In conclusion, by (4.1), (4.2) and (4.5) we finally get 〈J ′

λ(uλ), ϕε〉 ≤ o(ε) as
ε → 0+, so that by (4.1) it follows that 〈J ′

λ(uλ), ϕ〉 ≥ o(1) as ε → 0+. Therefore,
〈J ′

λ(uλ), ϕ〉 ≥ 0 for all ϕ ∈ C∞
0 (RN ), that is 〈J ′

λ(uλ), ϕ〉 = 0 for all ϕ ∈ C∞
0 (RN ).

Since X = C∞
0 (RN )

‖·‖
, we obtain that uλ is a nontrivial non-negative solution

of (Pλ). �

Theorem 4.2. Problem (Pλ∗∗) admits a nontrivial non-negative entire solution
in X.

Proof. Let (λn)n be a strictly decreasing sequence converging to λ∗∗ and un ∈ X be
a nontrivial non-negative entire solution of (Pλn). By (2.8) we get, for all ϕ ∈ X ,

(4.6) M([un]
2
s,K)〈un, ϕ〉s,K =

∫
RN

fn(x, un)ϕdx,

where n 	→ fn(x, un) = λnw(x)|un|q−2un − h(x)|un|r−2un, similarly as defined
in (2.16). By (2.8)–(2.10) and the monotonicity of (λn)n, we obtain

m0[un]
2
s,K + ‖un‖rr,h ≤M([un]

2
s,K)[un]

2
s,K + ‖un‖rr,h

= λn ‖un‖qq,w ≤ κq2 λ
1+rq/2(r−q)
n ≤ κq2 λ

1+rq/2(r−q)
1 .

Therefore ([un]s,K)n and (‖un‖r,h)n are bounded, and in turn also (‖un‖)n is
bounded. By Propositions A.1, A.2, Lemma 2.1 and the fact that Lq(RN , w) and
Lr(RN , h) are uniformly convex Banach spaces in virtue of Proposition A.6 of [6],
it is possible to extract a subsequence, still relabeled (un)n, satisfying

(4.7)
un ⇀ u in X, un ⇀ u in Lr(RN , h), [un]s,K → �,

un → u in Lq(RN , w), un → u a.e. in R
N ,

for some u ∈ X and some � ∈ R
+
0 . In particular, by (M),

M([un]
2
s,K) →M(�2) > 0 as n→ ∞.

Furthermore, u ≥ 0 a.e. in R
N . We claim that u is the solution we are looking for.

To this aim, we first show that [u]s,K = �. Since un is a nontrivial non-negative
entire solution of (Pλn), it follows that 〈J ′

λn
(un), ϕ〉 = 0 for all ϕ ∈ X and for all

n ∈ N. In particular, taking ϕ = un − u, we obtain

(4.8)

0 = 〈J ′
λn

(un), un − u〉 =M([un]
2
s,K)

(
[un]

2
s,K − 〈un, u〉s,K

)
− λn

[
‖un‖qq,w −

∫
RN

w(x) |un|q−2 un u dx
]

+ ‖un‖rr,h −
∫
RN

h(x)|un|r−2 un u dx.



Critical stationary Kirchhoff equations 19

Clearly 〈un, u〉s,K → [u]2s,K and
∫
RNw(x)|un|q−2unu dx → ‖u‖qq,w as n → ∞,

by (4.7). Thus, passing to the inferior limit in (4.8) and using also (2.21), we get

(4.9) M(�2)
(
�2 − [u]2s,K

)
+
(
lim inf
n→∞ ‖un‖rr,h − ‖u‖rr,h

)
= 0.

Now, [u]s,K ≤ lim infn→∞[un]s,K ≤ � and ‖u‖rr,h ≤ lim infn→∞‖un‖rr,h, so that the
two addends in (4.9) vanish, being both non-negative. In particular, this yields
that [u]s,K = �, since M(�2) > 0 by (M). Therefore, passing to the limit in (4.6)
as n→ ∞, we get, by (2.20) and (2.21),

M([u]2s,K)〈u, ϕ〉s,K = λ∗∗
∫
RN

w(x) |u|q−2 uϕdx−
∫
RN

h(x) |u|r−2 uϕdx

for all ϕ ∈ X . Hence u is a non-negative entire solution of (Pλ∗∗).
We finally claim that u �≡ 0. Indeed, (2.10) applied to each un implies that

‖un‖q,w ≥ κ1λ
1/(2−q)
n , so that, by (4.7),

‖u‖q,w = lim
n→∞‖un‖q,w ≥ κ1(λ

∗∗)1/(2−q) > 0,

since λn ↘ λ∗∗ and λ∗∗ > 0. This shows the claim and completes the proof. �

Proof of part (ii) of Theorem 1.1. The existence of λ∗∗ ≥ λ∗ follows directly from
Lemma 3.1, as already noted. The definition of λ∗∗, Theorems 4.1 and 4.2 show
at once the validity of (ii) of Theorem 1.1. �

Of course the nontrivial non-negative entire solutions constructed in Theo-
rems 4.1 and 4.2 are also critical points of Jλ.

A. Appendix

In this section we present briefly some useful results, which seem not so well known,
even if foreseeable. The first can be proved proceeding essentially as in the proof
of Proposition A.11 in [6], but we give the argument in order to make the paper
self-contained.

Proposition A.1. The Banach space (X, ‖ · ‖) is reflexive.

Proof. The product space Y = Ds
K(RN ) × Lr(RN , h), endowed with the norm

‖u‖Y = [u]s,K + ‖u‖r,h, is a reflexive Banach space by Theorem 1.22 (ii) of [1],
since Ds

K(RN ) is a Hilbert space and Lr(RN , h) is a uniformly convex Banach
space by Proposition A.6 in [6].

The operator T : (X, ‖ · ‖Y ) → (Y, ‖ · ‖Y ), T (u) = (u, u), is well defined, linear
and isometric. Therefore, T (X) is a closed subspace of the reflexive space Y ,
and so T (X) is reflexive by Theorem 1.21 (ii) of [1]. Consequently, (X, ‖ · ‖Y ) is
reflexive, being isomorphic to a reflexive Banach space. Finally, we conclude that
also (X, ‖ · ‖) is reflexive, because reflexivity is preserved under equivalent norms,
being ‖u‖ ≤ ‖u‖Y ≤ √

2‖u‖ for all u ∈ X . �
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The next proposition is given for functions in X , but of course remains valid
also in the main fractional weighted Sobolev space Ds

K(RN ).

Proposition A.2. If (un)n, u ∈ X and un ⇀ u in X, then, up to a subsequence,
un → u a.e. in R

N .

Proof. Let (un)n and u be as in the statement. Then, un → u as n→ ∞ in Lp(BR)
for all R > 0 and p ∈ [1, 2∗) by (2.5) and (2.6). In particular, in correspondence
to R = 1 there exists a subsequence (u1,n)n of (un)n such that u1,n → u a.e.
in B1. Clearly u1,n ⇀ u in X and so, in correspondence to R = 2, there exists
a subsequence (u2,n)n of (u1,n)n such that u2,n → u a.e. in B2, and so on. The
diagonal subsequence (un,n)n of (un)n, constructed by induction, converges to u
a.e. in R

N as n→ ∞. �

For completeness we end by presenting:

Proof of Lemma 2.1. By (1.2), (2.1), (2.3) and Hölder’s inequality, for all u ∈
Ds

K(RN ),

‖u‖q,w ≤
( ∫

RN

w(x)℘dx
)1/℘q

·
(∫

RN

|u|2∗dx
)1/2∗

≤ C2∗‖w‖1/q℘ [u]s

≤ C2∗‖w‖1/q℘ β−1/2[u]s,K ,

that is, (2.7) holds.
Let us now show that ‖un−u‖q,w → 0 as n→ ∞ whenever un ⇀ u in Ds

K(RN ).
By Hölder’s inequality,∫

RN\BR

w(x)|un − u|qdx ≤M
(∫

RN\BR

w(x)℘dx
)1/℘

= o(1)

as R → ∞, being w ∈ L℘(RN ) by (1.2) and M = supn ‖un − u‖q2∗ < ∞. For all
ε > 0 there exists Rε > 0 so large that

sup
n

∫
RN\BRε

w(x)|un − u|qdx < ε/2.

Moreover, by (1.2), Hölder’s inequality and (2.6) we have∫
BRε

w(x)|un − u|q dx ≤ ‖w‖Lσ(BRε )
‖un − u‖q

Lσ′q(BRε )
= o(1)

as n→ ∞, since σ′q < 2∗. Hence, there exists Nε > 0 such that∫
BRε

w(x) |un − u|q dx < ε/2

for all n ≥ Nε. In conclusion, for all n ≥ Nε

‖un − u‖qq,w =

∫
RN\BRε

w(x) |un − u|q dx+

∫
BRε

w(x) |un − u|q dx < ε,

as required.
The last part of the lemma follows at once by (2.5). �
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di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy.

E-mail: patrizia.pucci@unipg.it

Sara Saldi: Dipartimento di Matematica e Informatica “U. Dini”, Università degli
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