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A two weight theorem for a-fractional singular
integrals with an energy side condition

Eric T. Sawyer, Chun-Yen Shen and Ignacio Uriarte-Tuero

Abstract. Let ¢ and w be locally finite positive Borel measures on R"
with no common point masses, and let T* be a standard a-fractional
Calderén—Zygmund operator on R"™ with 0 < o < n. Furthermore, assume
as side conditions the A5 conditions and certain a-energy conditions. Then
we show that 7% is bounded from L?(¢) to L?*(w) if the cube testing
conditions hold for T and its dual, and if the weak boundedness property
holds for 7.

Conversely, if T is bounded from L?(o) to L*(w), then the testing
conditions hold, and the weak boundedness condition holds. If the vector
of a-fractional Riesz transforms R§ (or more generally a strongly ellip-
tic vector of transforms) is bounded from L?(c) to L?(w), then the A$
conditions hold. We do not know if our energy conditions are necessary
when n > 2.

The innovations in this higher dimensional setting are the control of
functional energy by energy modulo A%, the necessity of the A3 conditions
for elliptic vectors, the extension of certain one-dimensional arguments to
higher dimensions in light of the differing Poisson integrals used in A2
and energy conditions, and the treatment of certain complications arising
from the Lacey—Wick monotonicity lemma. The main obstacle in higher
dimensions is thus identified as the pair of energy conditions.

1. Introduction

In this paper we prove a two weight inequality for standard a-fractional Calderén—
Zygmund operators T in Euclidean space R™, where we assume the n-dimensio-
nal A$ conditions and certain a-energy conditions as side conditions (in higher
dimensions the Poisson kernels used in these two conditions differ). In particu-
lar, we show that for locally finite Borel measures o and w with no common point
masses, and assuming the energy conditions in the Theorem below, a strongly ellip-
tic collection of standard a-fractional Calderéon—Zygmund operators T is bounded
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from L%(0) to L?(w),
(1.1) IT*(fo)llrzw) S I fllLzeo)s

(with 0 < a < n) if and only if the AS conditions hold, the cube testing conditions
for T® hold, and the weak boundedness property for T® holds. This identifies the
culprit in higher dimensions as the pair of energy conditions. We point out that
these energy conditions are implied by higher dimensional analogues of essentially
all the other side conditions used previously in two weight theory, in particular
doubling conditions and the Energy Hypothesis (1.16) in [3].

The final argument by M. Lacey ([1]) in the proof of the Nazarov—Treil-Volberg
conjecture for the Hilbert transform is the culmination of a large body of work on
two-weighted inequalities beginning with the work of Nazarov, Treil and Volberg
([10], [11], [12], [13] and [23]) and continuing with that of Lacey and the authors
(2], [3], [4] and [5]), just to mention a few. See the references for further work.
We consider standard singular integrals T, as well as their a-fractional counter-
parts T%, and include

1. the control of the functional energy condition by the energy condition mod-
ulo Ag,

2. a proof of the necessity of the .A$ condition for the boundedness of the vector
of a-fractional Riesz transforms R*",

3. the extensions of certain one-dimensional arguments to higher dimension in
light of the differing Poisson integrals used in the A$ and energy conditions,

4. and the treatment of certain complications arising from the Lacey—Wick
monotonicity lemma.

These are the main innovations in this paper. The final point is to adapt the
clever stopping time and recursion arguments of M. Lacey [1] to complete the
proof of our theorem, but only after splitting the stopping form into two sublinear
stopping forms dictated by the right-hand side of the Lacey—Wick monotonicity
lemma. The basic idea of the generalization is that all of the decompositions of
functions are carried out independently of «;, while the estimates of the resulting
nonlinear forms depend on the a-Poisson integral and the a-energy conditions.

It turns out that in higher dimensions, there are two natural ‘Poisson inte-
grals’ P and P that arise, the usual Poisson integral P that emerges in connection
with energy considerations, and a different Poisson integral P that emerges in con-
nection with size considerations (in dimension n = 1 these two coincide). The
standard Poisson integral P appears in the energy conditions, and the reproducing
Poisson integral P appears in the As condition. These two kernels coincide in
dimension n = 1 for the case a = 0 corresponding to the Hilbert transform.

Acknowledgement. We are grateful to Michael Lacey for pointing out a number
of problems with our arguments and various oversights in the versions of [16], [17]
(now withdrawn), [18] on the arXiv, including the mistake in our monotonicity
lemma, which has been corrected by M. Lacey and B. Wick in [8], and in our con-
sequent adaptation of the stopping time and recursion argument in [1]. See these
preprints for some of the details.
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Remark 1.1. Version 5 of this paper [16] appeared in the arXiv in May 9, 2013,
with essentially the same results as appear here, except for a serious error in the
monotonicity lemma. We thank both M. Lacey and B. Wick for pointing us to
this error, as well as various others occurring in versions 1 through 4 of [16]. Seven
months after version 5 appeared, M. Lacey and B. Wick posted version 1 of their
paper [8] claiming to prove the same T'1 theorem we had claimed in our earlier
versions, and which had significant overlap with version 5 of [16], but they did not
acknowledge this overlap there, and only referred to our work in version 2 of [8].

The monotonicity Lemma 6.1 here is due to Lacey and Wick in Lemma 4.2
of [8]; Lemma 7.1 here is proved in [8], but with the larger bound .A$ there in place
of our bound A$; and an argument treating the additional term in the Lacey—Wick
monotonicity lemma as it arises in functional energy is essentially in [8]. We note
that the side condition in [8] —uniformly full dimension— permits a reversal of
energy, something not assumed in this paper, that implies our energy conditions.

Finally we point to more recent results to be found in our papers [20] and [21],
and with M. Lacey and B. Wick in [7].

2. Statements of results

Now we turn to a precise description of our two weight theorem. We will prove a
two weight inequality for standard a-fractional Calderén—Zygmund operators T in
Euclidean space R", where we assume the n-dimensional A$ and certain a-energy
conditions as side conditions. In higher dimensions the Poisson kernels P and P
used in defining these two conditions differ. In particular, we show that for locally
finite Borel measures ¢ and w in R™ with no common point masses, and assum-
ing that both the energy condition and its dual hold, a strongly elliptic vector
of standard a-fractional Calderén-Zygmund operators T is bounded from L?(o)
to L%(w) if and only if the A$ conditions hold, along with the cube testing condi-
tions and the weak boundedness property. In order to state our theorem precisely,
we need to define standard fractional singular integrals, the two different Poisson
kernels, and an energy condition sufficient for use in the proof of the two weight
theorem. These are introduced in the following subsections.

2.1. Standard fractional singular integrals

Let 0 < a < m. Consider a kernel function K“(x,y) defined on R™ x R™ satisfying
the following fractional size and smoothness conditions of order 1+ for some 6 > 0,

(2.1) K*(2,0)] < Cezla—y"~",
VK" (2,9)] < Coz lr — gl
NG _ 7!
VK" (r,y) ~ VE ! 9)] < Coz (L2 ja g, E22L L
|z -yl |z —yl

1
2
—q/\9 — 1

VK (a,) - VE (29| < Coz (L) oy, WL L
[z =yl [z -yl 2
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Then we define a standard a-fractional Calderén—Zygmund operator associated
with such a kernel as follows.

Definition 2.1. We say that T is a standard «-fractional integral operator with
kernel K if T® is a bounded linear operator from some LP(R™) to some L4(R™)
for some fixed 1 < p < g < oo, that is

1T fllLany < C | fllr@ny, [ € LP(R™),

if K*(z,y) is defined on R™ x R™ and satisfies (2.1), and if T* and K are related by

(2.2) Tf(x) = /Ko‘(x,y) fly)dy, a.e-x ¢ suppf,

whenever f € LP(R™) has compact support in R"”. We say K“(x,y) is a standard
a-fractional kernel if it satisfies (2.1).

We note that a more general definition of kernel has only order of smooth-
ness § > 0, rather than 1+ J, but the use of the monotonicity and energy lemmas
below requires order of smoothness more than 1. A smooth truncation of T
has kernel 05, g(|z — y|)K*(z,y) for a smooth function 75 r compactly supported
in (J,R), 0 < < R < 00, and satisfying standard CZ estimates. A typical example
of an a-fractional transform is the a-fractional Riesz vector of operators

R*" ={R)/":1<(<n}, 0<a<n.
The Riesz transforms R;"” are convolution fractional singular integrals R;"® f =
K,"® % f with odd kernel defined by

K = = )

— 1
= Jupe = a7 o)

The tangent line truncation of the Riesz transform Ry"" has kernel Q(w)yg p (Jw])
where 1§ 5 is continuously differentiable on an interval (0,.5) with 0 <0 < R < S,
and where Y p(r) = r*7" if § < r < R, and has constant derivative on both
(0,0) and (R, S) where ¢§ p(S) = 0. As shown in the one dimensional case in [6],
boundedness of R;"" with one set of appropriate truncations together with the A%
condition below, is equivalent to boundedness of R,”® with all truncations.

2.2. Cube testing conditions

The following ‘dual’ cube testing conditions are necessary for the boundedness
of T* from L*(o) to L?(w):

1
T2, = sup
’ QeQ" |Q|o’
* 1 *
(Tt = s oo [ [T (1gw)o < .
@ear [Qlw Jo

[ 1% 1g0)Pw < .
Q
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2.3. Weak boundedness property
The weak boundedness property for T with constant C' is given by

’/;T“UQmﬂdw’SlMB?HW«HQhAQﬂm
A 1
for all cubes @, Q" with — <

C |Q/|1/n
and either Q C 3Q"\ Q' or Q' C 3Q \ Q.

Note that the weak boundedness property is implied by either the tripled cube
testing condition,

1130 T*(1qo) | z2(w) S I1@llr2(s), for all cubes @ in R™,

or the tripled dual cube testing condition. In turn, the tripled cube testing con-
dition can be obtained from the cube testing condition for the truncated weight
pairs (w, 1go). See also Remark 2.9 below.

2.4. Poisson integrals and A%

Now let p be a locally finite positive Borel measure on R", and suppose @ is a
cube in R™. The two a-fractional Poisson integrals of 1 on a cube @ are given by:

a _ QI
P(Q,p) = /]R QY™ + |& — zg|)+i-e

1/n o
Pr@n= [ (g ey e

We refer to P® as the standard Poisson integral, and to P as the reproducing
Poisson integral. Let o and w be locally finite positive Borel measures on R™ with
no common point masses, and suppose 0 < a < n. Recall that the classical AS
constant is defined by

dp(z),

Qo 1@
Qll—(x/n |Q|1—o¢/n'

We now define the one-tailed A$ constant using P*. The energy constants &,
introduced in the next subsection will use the standard Poisson integral P*. Let Q™
denote the collection of all cubes in R", and denote by D™ or simply D a dyadic
grid in R™.

AS = sup
QeQ"L

Definition 2.2. The one-sided constants A$ and A3 for the weight pair (o, w)
are given by

« « |Q|w
= sup PYQ,0) ———— < 00,
2 Ocon ( ) |Q|1—a/n
(S Z i «@ |Q|U
A" = sup PY(Q,w) < 00.

Qeon |Q[1—a/n



84 E.T. SAWYER, C.-Y. SHEN AND I. URIARTE-TUERO

Convention. We will use the expressions |Q[/™ and /(Q) interchangeably to
denote the side length of a cube @ in R".

2.5. Good grids and energy conditions

Given a dyadic cube K € D and a positive measure p we define the Haar projection
Pr-=> A" on K by
JeD: JCK

Phf= Y D (LR and  Phfliag = > > AR,

Jep:Jck a€ly, Jep:JCcK a€ly,

and where a Haar basis {h;’a}aern and Jep adapted to the measure p is defined in
the section on a weighted Haar basis below. Now we recall the definition of a good
dyadic cube —see [13] and [3] for more detail.

Definition 2.3. Let r € N and 0 < ¢ < 1. A dyadic cube J is (r,e)-good, or
simply good, if for every dyadic supercube I, it is the case that either J has side
length at least 27 times that of I, or J &, I is (r,e)-deeply embedded in 1.

Here we say that a dyadic cube J is (r,e)-deeply embedded in a dyadic cube K,
or simply r-deeply embedded in K, which we write as J €, K, when J C K and
both

(2.3) |J|1/n <9°r |K|1/n, and dist(J, 0K) > |J|5/n|K|(175)/n.

|~

We say that J is r-nearby in K when J C K and
[T > 27 | K|

The parameters r, € will be fixed sufficiently large and small respectively later in the
proof, and we denote the set of such good dyadic cubes by Dgooa. Throughout the
proof, it will be convenient to also consider pairs of cubes J, K where J is p-deeply
embedded in K, written J €, K and meaning (2.3) holds with the same ¢ > 0
but with p in place of r; as well as pairs of cubes J, K where J is p-nearby in K,
|J|V/™ > 27P|K|Y/™, for a parameter p > r that will be fixed later.

Then we define the smaller ‘good’ Haar projection P%?Od’w by
PRV = D0 AGf= 30 DAL R R
JEG(K) Jeg (k) a€ly
where G(K) consists of the good subcubes of K:
G(K)={J € Dgooa : J C K},
and also the larger ‘subgood’” Haar projection PS2PE°%# by

Pbecodip = N N AL F= > N S (£ RN

JEMygoq () J'CJ TEMgooq (K) J'CJT a€ln
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where Mgooa(K) consists of the mazimal good subcubes of K. We thus have

PR < PR

X||72() < X[|%2 )

1 2
< WPl = [ |- (7 | = (a1,...
= ||PIXHL2(,U,) /I X (|I|u /IXd:L'> d,u(x), X (1'17 ,mn)v

where P/x is the orthogonal projection of the identity function x : R — R™ onto
the vector-valued subspace of ®}_, L?(u) consisting of functions supported in I
with pg-mean value zero.

Recall that in dimension n = 1, and for a = 0, the energy condition constant
was defined by

I & (P“(Ir, 1;0)

2
£ = sup — > ||P“’vx|\22w .
=01, || LA W)

Ila r=1

Our extension of the energy conditions to higher dimensions in this paper will
use the collection M,y_geep(K) of mazimal r-deeply embedded dyadic subcubes of
a cube K (a subcube J of K is a dyadic subcube of K if J € D when D is a
dyadic grid containing K). We let J* = ~J where v > 2. Then the goodness
parameter r is chosen sufficiently large, depending on € and -y, that the bounded
overlap property

(2.4) > 1< Bk,
JEMr_degp(K)

holds for some positive constant S depending only on n,v,r and €. Indeed, the
maximal r-deeply embedded subcubes J of K satisfy the condition

en | K79/ < dist(J, K€) < O, |J)7/™ | K|/,

Now with 0 < € < 1 and v > 2 fixed, choose r so large that 2= =9)" < ¢, /(27).
Let y € K. Then if y € vJ, we have

en T/ K9/ < dist(J, K©) < [TV +dist(yJ, K©) < v |J[Y" +dist(y, K°),
which implies
%L |J|€/” |K|(1_E)/" < dist(y, K°).
But we also have
dist(y, K°) < [J|M™ 4 dist(J, K¢) < |J|Y"™ + C,, ||/ | K |19/

< (52 + C) LI/ |0,
2y
and so altogether,
: c e/n —e)/n 2 : c
oo dist(y K°) S [T K09 < = dist(y, K°),

2y

which proves (2.4) since the number 3 of dyadic numbers 27 = |.J|'/™ that satisfy
this last inequality is bounded independent of K and y.
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A cube K is said to be a shifted D-dyadic cube if K is a union of 2™ D-dyadic
cubes K’, each with sidelength half that of K.

We will also need the following refinement of My geep(K) for each £ > 0 and
each shifted D-dyadic cube K:

M deep(K) = {J € Myaeep(m*K') for some K’ a child of K :
J C L for some L € Mgeep(K)}.

Since J € M. deep(K0) implies vJ C K, we also have from (2.4) that

(2.5) Z 15 <PB1lg, foreach?>0.
Jem'?

r- deep(K)

Of course MY_j,0, (K) = Mydeep(K), but MLy (K) is in general a finer subde-
composition of K the larger ¢ is, and may in fact be empty. We suppress in the
notation M¢ .., (K) the dependence on the dyadic grid D.

Definition 2.4. Suppose ¢ and w are positive Borel measures on R” without com-
mon point masses, and fix v > 2. Then the deep energy condition constant £3°°P
the refined energy condition constant £:¢"d and finally the energy condition
constant &, itself, are given by

PO(J, 114 50)\ 2 y
Z Z (WI/\;M) |pbeood: XH;(M)’

r=1JeM;_geep (Ir)

(E27)* = sup.

1 PO, 1 0) N 2
refined\2 _ ) HI\yJ subgood, w __[|2
(g s swpswpsup e 37 (S ) P x
J Mﬁdeep(l)

(8a)2 = (82eep)2 4 (g;eﬁned) )

where sup; in the second line is taken over all shifted D-dyadic cubes I, and
sup;_yy, in the first line is taken over

1. all dyadic grids D,
2. all D-dyadic cubes I,
3. and all subpartitions {7, }22; of the cube I into D-dyadic subcubes I,.

Note that in the refined energy condition there is no outer decomposition
I =UI.. There are similar definitions for the dual (backward) energy condi-
tions that simply interchange ¢ and w everywhere. These definitions of the en-
ergy conditions depend on the choice of v and the goodness parameters r and ¢.
Note that we can ‘plug the y-hole’ in the Poisson integral P*(.J, 11\, 0) for both
Edeer and grefined yging the AS condition and the bounded overlap property (2.5).
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Indeed, define

(2.6)

deepplug\2 1 - Pa(Jv ]-IU) 2 subgood,w__[|2
Ea) 71813 m;JeMgep(lr)< |J|t/m ) P57 XHLZ(w)’

Pa(Jv]- 0) 2 subgood,w 2
S (S ey,
JEME goep ()

((C/»éefﬂledplug)2 = supsupsup ——
D (>0 I |I|‘7

Then we have both

o0

1 PQ(J 1] JO') 2 2
deepplug\2 < - ( » I\ ) subgood,w
€ ) NIS:%I;T o z;JeMZ (I) |J|/m IP5 XHL?(“’)
r= r-deep ({7

POC J’l 2 su (e]e} w
Z Z (%) ||PJbg ¢ XHQL?(UJ)

r=1 JEM:‘ deep(IT)

J|o\2 "
=Y 5 By,

r=1 JEMr deep(I )

(2.7) SE+AT sup — > e S(E)*+BAS
7 JEMy-aeep (Ir)

+ sup

S (a)? + sup.

O'

and similarly
(28) (Eéeﬁnedplug)2 g (5;eﬁned)2 + 5/13,

by (2.4) and (2.5) respectively.
In the next remark we give a brief description of how and where these energy
conditions will be implemented in the proof.

Remark 2.5. There are two layers of dyadic decomposition in the energy con-
dition; the outer layer I = UI, which is essentially arbitrary, and an inner layer
I = Ujem,. aeep (1)) i which the cubes J are ‘nicely arranged’ within ;.. Relative
to this doubly layered decomposition we sum the products

Pa(‘]’lf\ JU) 2 subgood,w 2
( |J|1/n7 > HPJbg ¢ XHL%J)’

which resemble a type of A expression as defined above. The point of the outer
decomposition is to capture ‘stopping time cubes’, which are essentially arbitrary
in this proof, although sometimes restricted to certain collections of good cubes.
The point of the inner decomposition is that with J* = ~vJ for J € My_geep(Ir),
we have J* C I,. and we can then write

P*(J,1;0) = P*(J,15-0) + P*(J, 1 j-0),

and use that

|| PsJubgood,wX 2

||L2(w) _ HP?]ubgOOd’w

2 n
(x—e)[2a) < TP/ 171
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to estimate the product involving 1 ;-0 by

|J*|a/n—1 |J*|0'

Pa(Jv]- *0) 2 subgood,w 2
<7J> ||PJbg d XHL2(UJ) rg( |J|1/n

2 2/n Q| 7k
77 ) 1P L £ 481

~

to which we apply the bounded overlap property (2.4), while the remaining product
involving 1p j-0,

Pa(‘L 1I\J* U) 2 H Psubgood,t.«)XH2

| J|1/n J L2(w)’
has a ‘hole’ in the support of 11\ j«o that contains the support of w in the cube J
well inside the hole, and moreover these holes are ‘nicely arranged’ within I,..
Of particular importance is that for pairwise disjoint subcubes J’ C J, the projec-

. bgood o . . :
tions ||P%,°5%° ’wx||%2(w) are additive, and the Poisson ratios are essentially con-

stant P(J', 15 j-0)/|J'|V/™ ~ P*(J,1p -0)/|J|"/". The deep energy condition
suffices for all arguments in the proof except for bounding the two testing con-

ditions for the Poisson operator P, in which case we also use the refined energy
condition —see Lemma 10.5 below.

2.6. Statement of the theorem

We can now state our main two weight theorem. Let Q™ denote the collection of
all cubes in R™, and denote by D™ a dyadic grid in R".

Theorem 2.6. Suppose that T® is a standard a-fractional Calderon—Zygmund
operator on R™, and that w and o are positive Borel measures on R™ without
common point masses. Set T f = T*(fo) for any smooth truncation of T2

(1) Suppose 0 < oo < n and that v > 2 is given. Then the operator T is bounded
from L?(0) to L?(w), i.e.,

(2.9) 1T fllz2(w) < Nra I fllz2(o)

uniformly in smooth truncations of T, and moreover

Nrp < Co(\JAG + A5 + Tre + Tha + & + E5 + WEPT.),

provided that the two dual A conditions hold, and the two dual testing con-
ditions for T hold, the weak boundedness property for T holds for a suf-
ficiently large constant C' depending on the goodness parameter r, and pro-
vided that the two dual energy conditions E, + £ < 0o hold uniformly over
all dyadic grids D™, and where the goodness parameters r and € implicit in
the definition of Mﬁ_deep(K) are fixed sufficiently large and small respectively
depending on n, o and .

(2) Conversely, suppose 0 < a < n and that T* = {T{}J_, is a vector of

Calderon—Zygmund operators with standard kernels {KJO‘}J

5—1- In the range
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0 < a < n/2, we assume the following ellipticity condition: there is ¢ > 0
such that for each unit vector u there is j satisfying

(2.10) |K (z,z +tu)| > ct®™™, teR.

For the range n/2 < o < n, we asume the following strong ellipticity condi-
tion: for each m € {1, —1}", there is a sequence of coefficients {)\;7“}37:1 such
that

J
(2.11) ’ZA;’LK;’(J:,Htu) >ct*™  teR
j=1

holds for all unit vectors u in the n-ant
Vin={x €R" :myz; >0for 1 <i<n}, me{l,-1}".

Furthermore, assume that each operator T is bounded from L?(o) to L*(w),

H(qu)afnw(w) < Nre || fllz2o)-

Then the fractional AS condition holds, and moreover,

\AS + AT < CNea.

Problem 2.7. Given any strongly elliptic vector T of classical a-fractional Cal-
derén—Zygmund operators, it is an open question whether or not the energy condi-
tions are necessary for boundedness of T®. See [19] for a failure of energy reversal
in higher dimensions —such an energy reversal was used in dimension n = 1 to
prove the necessity of the energy condition for the Hilbert transform.

Remark 2.8. The boundedness of an individual operator T® cannot in general
imply the finiteness of either A§ or &,. For a trivial example, if ¢ and w are
supported on the z-axis in the plane, then the second Riesz transform R is the zero
operator from L?(c) to L?(w), simply because the kernel Ka(z,y) of Ry satisfies
Ka((@1,0), (41,0) = 20— = 0.

EZETERD

Remark 2.9. In [8], M. Lacey and B. Wick use the NTV technique of surgery
to show that the weak boundedness property for the Riesz transform vector R*™
is implied by the A$ and cube testing conditions, and this has the consequence
of eliminating the weak boundedness property as a condition. Their proof of this
implication extends to the more general operators T considered here, and so the
weak boundedness property can be dropped from the statement of Theorem 2.6.

3. Proof of Theorem 2.6

We now give the proof of Theorem 2.6 in the following 8 sections. Using the good
random grids of Nazarov, Treil and Volberg, a standard argument of NTV, see
e.g. [23], reduces the two weight inequality (1.1) for T* to proving boundedness of
a bilinear form 7°(f, g) with uniform constants over dyadic grids, and where the
Haar supports of the functions f and g are contained in good cubes, whose children
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are all good as well, with goodness parameters r < oo and € > 0 chosen sufficiently
large and small respectively. Here the Haar support of f is Haarsupp f = {I € D :
AJf # 0}, and similarly for g.

In fact we can assume even more, namely that the Haar supports of f and g
are contained in the collection of 7-good cubes

(3'1) z-r,s)—good = {K €D: Q:K - ,D(I"E)'gOOd

and 75 K are in D(r,e)-good for all 0 < £ < 7},
that are (r,e)-good, whose children are also (r,e)-good, and whose ¢-parents up
to level T are also (r,e)-good. Here 7 > r is a parameter to be fixed in Defini-

tion 8.6 below. We may assume this restriction on the Haar supports of f and g
by choosing (r, ) appropriately and using the following lemma.

Lemma 3.1. Givens>1,t>2 and 0 < e < 1, we have
D?s-‘rt,s)—good C D(t,ﬁ)—good )
provided

1
se<t(l—e)—2 and 625—1—55: .

Proof. Fix goodness parameters r = s+t and e, and suppose that s < r(1 —¢)—2.
Choose a good cube I and a supercube K with |[I|*/" < 27F|K|Y/". Set J = 7°1.
Then we have

J=rICcK and [|J|'/" <27t K'Y/

Because I is good we have

dist(I, K¢) > = |[I|¥/™|K|A==)/n,

DN | =

and hence also

|I|5/n |K|(17€)/n _9s |I|1/n

| =

dist(J, K£%) = dist(T, K°) = ]/ =

1/n —c
= Ly - {1 —res (LD 5 Ly perm ega-am
2 ER =1 ’

which follows from [I|/™ < 27%| K|/ provided we take 2!175277(1=¢) < 1/2 ie.,
s<r(l—e)—2.
Finally we choose § > ¢ so that

i |I|a/n |K|(176)/n — 9—se—2 |J|€/n |K|(175)/n > % |J|5/" |K|(176)/”
when [J|1/" < 27t |K|Y/" which follows if we choose § to satisfy

1
2—55—2 (2—t |K|1/7L)5|K|(1—5)/n _ 5 (2—t |K|1/n)6 |K|(1—6)/n;

1
7SR J (9700 _se—l=—t(i—e); d=e+ i
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For convenience in notation we will sometimes suppress the dependence on «a
in our nonlinear forms, but will retain it in the operators, Poisson integrals and
constants. More precisely, let D7 = D“ be an (r,e)-good grid on R™, and let
{hT“}repe aer, and {h?’b}Je'ngern be corresponding Haar bases as described
below, so that

F=3"A7f= > (ERPY R = > f(I;a) A7

IeDe I€D7, acT,, I1€D7, acT,,

_ w wb\ pwb _ TN pwd

g= > Ljg= ) (g.h5") h5P = g(J;b) b7,
JeDw JeDw, bel,, JeDw, bel,,

~

where the appropriate measure is understood in the notation f(I;a) and g(J;b),

and where these Haar coefficients f(I;a) and g(J;b) vanish if the cubes I and J
are not good. Inequality (2.9) is equivalent to boundedness of the bilinear form

T(f,9) =(T5(f), 9)w = Y. (THA) L)

IeDe and JeDvw
on L?(0) x L*(w), i.e.,
IT*(f, 9)| < Nre (1 fllL2(o) 19l £2(w)-

We may assume the two grids D? and D“ are equal here, and this we will do
throughout the paper, although we sometimes continue to use the measure as
a superscript on D for clarity of exposition. Roughly speaking, we analyze the
form T%(f,g) by splitting it in a nonlinear way into three main pieces, following
in part the approach in [5] and [6]. The first piece consists of cubes I and J that
are either disjoint or of comparable side length, and this piece is handled using
the section on preliminaries of NTV type. The second piece consists of cubes [
and J that overlap, but are ‘far apart’ in a nonlinear way, and this piece is handled
using the sections on the intertwining proposition and the control of the functional
energy condition by the energy condition. Finally, the remaining local piece where
the overlapping cubes are ‘close’ is handled by generalizing methods of NTV as
in [4], and then splitting the stopping form into two sublinear stopping forms, one
of which is handled using techniques of [3], and the other using the stopping time
and recursion of M. Lacey [1]. See the schematic diagram in Subsection 8.4 below.

4. Necessity of the AS conditions

Here we prove in particular the necessity of the fractional A$ condition when
0 < a < n, for the a-fractional Riesz vector transform R® defined by

R(fo)(e) = [ K7 f) o). K} (ey) =

T — y|n+1—a ’

whose kernel K (z, y) satisfies (2.1) for 0 < a < n. Parts of the following argument
are taken from unpublished material obtained in joint work with M. Lacey. Note
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also that the necessity of the classical AS condition, for many singular integral op-
erators, including among others the vector Riesz transforms, the Cauchy transform
and the Beurling transform was obtained previously by Liaw and Treil [9].

Lemma 4.1. Suppose 0 < « < n. Let T be any collection of operators with
a-standard fractional kernel satisfying the ellipticity condition (2.10), and in the
case n/2 < a < n, we also assume the more restrictive condition (2.11). Then for

0 < a < n we have
VAT SN (TY).

Remark 4.2. Cancellation properties of T* play no role in the proof below. Indeed
the proof shows that A9 is dominated by the best constant C' in the restricted
inequality

Ixe T*(fo)llLz=w) < Clflz20), £ =R"\supp f.

Proof. First we give the proof for the case when T¢ is the a-fractional Riesz trans-
form R®, whose kernel is K*(z,y) = m_ﬁ% . Define the 2™ generalized n-ants

Q, for m € {—1,1}", and their translates Q,,(w) for w € R"™ by
O = {(-rla ce amn) T METy > 0}7
On(w)={2z:z—we Q,}, weR™
Fix m € {—1,1}" and a cube I. For a € R™ and r > 0 let

(1
sp(r) = m’ and  for(y) = 1o_, (a)nB0,r) (Y)s1(y)" ™,

where (7 is the center of the cube I. Now
(1) |z =yl <L) |z = Gl + 1) 16—yl < [€) + |z = Gl ] [€() + [¢r =yl ]

implies

1 1
> —sr(x)sr(y), x,y€R"
=yl = o 1)

Now the key observation is that with L = m - (, we have

Liz—y)=m-(z—y) 2|z —yl, x€m(y),

which yields

(4D LK () = %
> e 2 ) @) )

provided z € Q4 4+ (y).
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Now we note that € 9,,(y) when z € Q,,(a) and y € Q_,,,(a) to obtain that
for x € O, (a),

LT (fos)(a)) = [ %smw do(y)

Q_m(a)NB(0,r) |z —

> 011 ()" / 51(8)2"2 do(y).

Q_m(a)NB(0,r)

Applying |L¢| < v/n|¢] and our assumed two weight inequality for the fractional
Riesz transform, we see that for » > 0 large,

2
€(1)2(x—2n/ Sl(x)2n—2a(/ S](y)Qn_QadO'(y)) dw(x)
Qm (a) Q_m(a)NB(0,r)

< LT (0 far)l72w) S Na(BY)?|| farl

2
L2(o)

— N (RY)? / 51(9)"do(y).
Q_ 1 (a)NB(0,r)

Rearranging the last inequality, we obtain
(o [ s o) [ 1 (0)" 2 do(y) < M (R7)
Qi (a) Q_m(a)NB(0,r)

and upon letting r — oo,

e (> o
/Qm<a) ((1) + |z = Cr[)*2e dw(x)/g_mm) T+l =iz o) S Ta(RY)

Note that the ranges of integration above are pairs of opposing n-ants.

Fix a cube @, which without loss of generality can be taken to be centered at
the origin, (g = 0. Then choose a = (2¢(Q), 2¢(Q)) and I = @ so that we have

Qe
(/Qm(a) (0(Q) + |a])2n—2 dw(m)) (E(Q) /Qdo)

(o) oQ)y—e
O (a) (U(Q) + [z])2n—2 du(z) /Qm(a) Q) + [yhzr—2= do(y)
S ma(Ra)2.

< Ca

Now fix m = (1,1, ...,1) and note that there is a fixed N (independent of ¢(Q))) and
a fixed collection of rotations {pk}ff:l, such that the rotates pp Q. (a), 1 <k < N,
of the n-ant Q,,(a) cover the complement of the ball B(0,4v/n¢(Q)):

N
B(0,4vn(@Q))° € | pr Qumla).
k=1
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Then we obtain, upon applying the same argument to these rotated pairs of n-ants,

(42 (/Bm,ww@))c (“Qf(ff;;’”“ dw(m)) (E(Q)a_n /Q da) S MR

Now we assume for the moment the tailless AS condition

K(Q’)Q(a’")(/ldw)(/lda) < A9

If we use this with Q' = 4y/nQ, together with (4.2), we obtain

( / (K(Qf(f f;;():nza Cluf(ﬂc))l/2 (K(Q)‘*‘” /Q do)1/2 < 9N, (R?)

or

) (ﬁ/ (1+ Z(_Q%zl)%—mdw(x))lm (ﬁ/@da)l/2 <N (RY).

Clearly we can reverse the roles of the measures w and o and obtain

VAS S N (RY) + /A
for the kernels K¢, 0 < a < n.

More generally, to obtain the case when T'* is elliptic and the tailless AS
condition holds, we note that the key estimate (4.1) above extends to the kernel
Z L ATVKS of Z] L ATTE in (2.11) if the n-ants above are replaced by thin cones
of sufﬁc1ently small aperture, and there is in addition sufficient separation between
opposing cones, which in turn may require a larger constant than 4,/7 in the choice

of @’ above.

Finally, we turn to showing that the tailless A condition is implied by the
norm inequality, i.e.,

- ol 1 /2 , 1 1/2 -
V AS :Sglpﬁ(Q) <|Q’| o dw) (@ o da) SN (RY);

e, (/ldw>(/lda> <9 (RY)2 |Q P20,

In the range 0 < o < n/2 where we only assume (2.10), we invoke the corresponding
argument in [2]. Indeed, with notation as in that proof, and suppressing some of
the initial work there, then As(w,0;Q) = |Q|wxe Where w X o denotes product
measure on R™ x R™, and we have

Ax(w, 01 Qo) =Y As(w, 51 Q) + Y As(w, 03 Pp).
¢ B

Now we have

> Aa(w,7;Qc) = Z|Q<|m 39, (RY)? Q[

¢ ¢
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and

Z |Q<|1—o</n — Z Z (22nk)1—o</n
¢

KEZ: 28 <U(Qo) ¢ 4(Q¢)=2F

Q

Z ( 2k )*"(QW)l—a/n (Whitney)
kEZ: 28 <0(Q (QO)

— K(Qo)” Z 2nk(—1+2—2a/n)

kEZ:2k<L(Qo)
Ca Qo)™ £(Q0)" 2%/ = Ca|Qo x Qo*?*/™ = Cu |Qol' /™,

provided 0 < o < n/2. Since w and o have no point masses in common, it
is not hard to show, using that the side length of Ps = Pz x Pj is 2N and

dist(Pg, D) < C27V, that we have the following limit:
Z.Az(w,a; Pg) -0 as N — oo.
B

Indeed, if o has no point masses at all, then

> As(w,05Pg) = Y |Palu |Phls < (Z|Pﬁ| ) sup P51
B B

< CQolw sup |Plo — O as N — oo,
B

while if o contains a point mass ¢d,, then
> Aew,oiPe) < (Y 1Pal) sup [Pl
Bz P, p:xEP) B:x€ Py
SC( Z |P5|w> —0 as N — oo,
ﬁ::v€P[;

since w has no point mass at x. This continues to hold if o contains finitely many
point masses disjoint from those of w, and a limiting argument finally applies. This
completes the proof that \/AS < 9, (R®) for the range 0 < a < n/2.

Now we turn to proving \/AS < M, (R?*) for the range n/2 < o < n, where we
assume the stronger ellipticity condition (2.11). So fix a cube @ =[]\, Q;, where
Q; = [a;, b;]. Choose 61 € [a1,b1] so that both

‘[alﬁl] <[] y
=2

Now denote the two intervals [ay, 61] and [0y, b1] by [a}, b}] and [a]*, b7*] where the
order is chosen so that

‘alv XHQz

1
> — .

and |[61,0:] x [T Q: )
=2

n
< |l b7 < [T @
o
=2
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Then we have both

1 *k k% . 1
‘ap HQz Z§|Q|w and ‘[(11 ’bl]xi_HQQiJZ§|Q|‘7'
Now choose 05 € [az,bz] so that both
1
‘[01, bi] x [az, 02] and ‘[01, 1] % [02, bo] Z |Qws

and denote the two intervals [ag, 03] and [0, bo] by [a}, b;] and [a%*,b**] where the
order is chosen so that

‘[a»{*’ »1«* a2,b2 HQz

< lai b x a3 b3 HQz

Then we have both

1
‘[alab las, b3] x HQz > Z|Q|w>
3k k kK ** 1
7,617 x a3, 6] < T @i = 1@ -
Then we choose 05 € [as, bs] so that both
* * 1
107, 57]  [a3,b3) = [as, 0] x HQz > <1l
* 1% k7% 1
a7, 1] x [a3,b5] x [63, o] > 2 1QL,

and continuing in this way we end up with two rectangles,
G = [a], b1] X [a3, b3] X -+ X [ay,, by],
H = [a1",077] X [a5", b5"] x -+ x [ay,", 0],
that satisfy
|G|w = |[a*lﬁﬁby1‘] X [a’éabﬁ] Koeee X [an’brz”w = om |Q|w’
[Hlo = |[o1",b77] x [a37,b57] x - x [ai", b7, > o ~ Q..

However, the rectangles G and H lie in opposing n-ants at the vertex 6 =
(01,04, ...,0,), and so we can apply (2.11) to obtain that for x € G,

J J
' ; AT Tﬁ(lgo)(w)' = ' /H ; N K (,y) da(y)'

> / & — y|* " do(y) 2 |QI*/" H],.
H
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Then from the norm inequality we get

2
‘dw

J
Gl@I" 1, 5 [ [ A7 77 (o)
j=1

2 2 _m2
<Nz, A,,LTJ_Q/1H do =Ny e |Hlo,

=173
from which we deduce that

|Q|2(0¢/n—1) |Q|w |Q|a < 22n |Q|2(0¢/n—1) |G|w |H|a < 22n mQ 3]:

~ ~ ) /\'J(rLTJgM
and hence
Aoe < 22n m2 R
2 -1 AP T
This completes the proof of Lemma 4.1. O

5. A weighted Haar basis

We will use a construction of the Haar basis in R™ that is adapted to a measure p
(cf. [12]). Given a dyadic cube @ € D let A’é denote orthogonal projection onto

the finite dimensional subspace Lg, (1) of L*(y) that consists of linear combinations
of the indicators of the children €(Q) of @ that have p-mean zero over Q:

Ly (p) = {f: Z ag'lg :ag € R,/ fdp :0}.
Qe @
Then we have the important telescoping property for dyadic cubes Q1 C Q2:
(5.1)
lo,@)( Y. Ahf@) =lay@) (B, S ~EL,S), Qoe @), f L)
Q€E[Q1,Q2]

We will at times find it convenient to use a fixed orthonormal basis {hga}aer, of
L3 () where T,y = {0, 1}" \ {1} is a convenient index set with 1 = (1,1,...,1).

w,a
Then {hQ }ael"n and QED
ing that we add the constant function 1 if p is a finite measure. In particular we

have
112200 = %: 1 8% 7200 = 2 2 1F@Q

Q acly,

is an orthonormal basis for L?(u), with the understand-

where

F@P= Y [(fh") [

ael,
and the measure is suppressed in the notation. We also record the following useful
estimate. If I’ is any of the 2" D-children of I, and a € T',,, then

a a 1
(5.2) |EX R < \JEX (R )2 < \/W'
I
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6. Monotonicity lemma and energy lemma

The monotonicity lemma below will be used to prove the energy lemma, which is
then used in several places in the proof of Theorem 2.6. The formulation of the
monotonicity lemma with m = 2 is due to M. Lacey and B. Wick [8], and corrects
that used in previous versions of this paper.

6.1. The monotonicity lemma

For 0 < a <n and m € R, we recall the m-weighted fractional Poisson integral

m\J ) = - (|J|1/”+|yfcj|)n+m7a HY),

where P¢(J, u) = P*(J, ) is the standard Poisson integral.

Lemma 6.1 (Monotonicity). Suppose that I, J and J* are cubes in R™ such that
J C J" C 2J* C I, and that u is a signed measure on R™ supported outside I.
Finally suppose that T is a standard fractional singular integral on R™ as defined
in Definition 2.1 with 0 < a < n. Then we have the estimate

(6.1) | AF Tpllp2(wy S 2 1l
where for a positive measure v,

« 2_ (J I/) w 2 P?+5(J,V) 2 2
@ () = (T T ) A9 XlEs + (S5 ) = mliEaq

w 1
mJ—IEJx—W/Jde.

Proof. The general case follows easily from the case J* = J, so we assume this
restriction.

Let {h%“}aer be an orthonormal basis of L% () as in the previous section.
Now we use the smoothness estimate (2.1), together with Taylor’s formula and
the vanishing mean of the Haar functions h%5* and m; = ﬁ [y xdu(x) € J, to
obtain

ay 7’/ /K“myh“’“( )dow(az du ’_‘/Kahwa )
- ’ /(K;‘(x) — Kg(my),h5"), du(y)‘
< ([ [ vrgmndu)] - mo. 1) |

([ [ sup (9K500) - VK ()| du(w)] 2~ msl, 157

0,
P(J, [pl) P s ( )
|J|1/n

< CCZ |J|1/n

< | A% x||L2(w) + Coz lIx —my|[r2(1,w)-



TWO WEIGHT BOUNDEDNESS 99

6.2. The energy lemma

Suppose now we are given a subset #H of the dyadic grid D¥. Let Py, = 3~ ;.5 AY
be the w-Haar projection onto H. For p,w positive locally finite Borel measures
on R™, and H a subset of the dyadic grid D“, we define

W= |J{J e T I}
JeH
Lemma 6.2 (Energy lemma). Let J be a cube in D¥. Let V; be an L?(w) function
supported in J and with w-integral zero, and denote its Haar support by H =
supp W ;. Let v be a positive measure supported in R™ \ vJ with v > 2, and for
each J' € H, let dvy = py dv with |py| < 1. Let T* be a standard a-fractional
Calderén—Zygmund operator with 0 < o < n. Then with &' = 6/2 we have
P*(J,v
| X @i 5900 S 1l (5 1Pl oo
J'eH

1 (P(lx_,'_(;/(J,V)

125l 5 (507 ) IPsexlee

P*(J,v)
S H‘I’J||L2(w) (W) ||P“’*x|\L2(w),

and in particular the ‘pivotal’ bound

(T (W), ¥a)ol < Cl L2y P V) VI -

Remark 6.3. The first term on the right side of the energy inequality above is
the ‘big’ Poisson integral P times the ‘small’ energy term ||P‘7*’{x|\%2(w) that is
additive in #H, while the second term on the right is the ‘small’ Poisson integral
P¢, 5 times the ‘big’ energy term [|P%).x|| 12 (. that is no longer additive in H. The
first term presents no problems in subsequent analysis due solely to the additivity
of the ‘small’ energy term. It is the second term that must be handled by special
methods. For example, in the intertwining proposition below, the interaction of
the singular integral occurs with a pair of cubes J C I at highly separated levels,
where the goodness of J can exploit the decay ¢’ in the kernel of the ‘small’
Poisson integral P{" s relative to the ‘big’ Poisson integral P*, and results in a
bound directly by the energy condition. On the other hand, in the local recursion
of M. Lacey at the end of the paper, the separation of levels in the pairs J C I can
be as little as a fixed parameter p, and here we must first separate the stopping
form into two sublinear forms that involve the two estimates respectively. The form
corresponding to the smaller Poisson integral P{", 5, is again handled using goodness
and the decay ¢’ in the kernel, while the form corresponding to the larger Poisson
integral P® requires the full force of the stopping time and recursion argument of
M. Lacey.

Proof. Using the monotonicity Lemma 6.1, followed by |v;/| < v and the Poisson
equivalence

« ! «
(6.2) Pm(J ’V) ~ Pm(J> V)

! —
i T J cJc2J, supprn2J =0,
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we have
|3 T ), 25 ) T (), A5, |
J'eH J'eEH
S| @ bl A% W)
J'eH
Pe(JU)N2, .o 1/2 " 1/2
S ( > (W> | A% X||2L2(w)> ( > Ay ‘I’JH%Z(UJ)>
JeH J'eH
(J',v) 1/2 1/2
[ w
(Y (¢ 1|+J,|1/n )’ 3l o) (185 WillEa,)
J'eH J'eH
PYT V)N o P 5 (J,v)
< (W)HPHxHL2<w>HMLQWW(W)||Pa;x||p<w>||wm>

The last inequality follows from

P s(J, )2 w o2
Z ( |J/|1/” > Z H AJ” X||L2(w)
JEH Jrcy

P? 6(‘]/7 V) 2 w
{ (W) | A% XH%%;)
Jrcg NJnarcicd

1 P?+5,(J”,1/) 2 )
Sqw 3 (S ) 185l

which in turn follows from (recalling 6 = 2¢")

(P?+6(J/7 V))2
1
yogicycs s ] "

1 2
_ 77120/ / .
2 ( woyg ([ + |y — cpr])nittome V(y))

T JrC I CT
1 J/ 28 /n Jé’/n 2
S Z 25" ||J||26/n (/ 1/n J nFltd —a dl/(y)>
grigicgcr ! r\yJ ([J]/" + |y — cg)
_L( > |J’|25/")( o (], V))
- 1 (P?+5,(J,y)>2
=5 T

Finally we have the ‘pivotal’ bound from (6.2) and

Do 1A% Xl aw) = Ix = mullfe,w) < P 1] O
Iy
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7. Preliminaries of NTV type

An important reduction of our theorem is delivered by the following two lemmas,
that in the case of one dimension are due to Nazarov, Treil and Volberg (see [13]
and [23]). The proofs given there do not extend in standard ways to higher dimen-
sions, and we use the weak boundedness property to handle the case of touching
cubes, and an application of Schur’s lemma to handle the case of separated cubes.
The first lemma below is Lemmas 8.1 and 8.7 in [8] but with the larger constant A§
there in place of A.

Lemma 7.1. Suppose T is a standard fractional singular integral with 0 < o < n,
and that all of the cubes I € D7, J € D below are good with goodness parameters £
and r. Fiz a positive integer p > r. For f € L*(0) and g € L?(w) we have

> (T (AT, B59).
(I,J)ED® xD¥
2fp|1|1/ng‘J‘l/n§2p|1|1/n

(7.1) S (Ta+ 5+ WBPre + VA | fll 20 |91 22
and
(7.2) > (T7 (AT ), ATg el S VASI 2o 19l 22 w)-
(1,J)ED? xD¥
INJ=0 and /" g[a—r 2#]

17

Lemma 7.2. Suppose T is a standard fractional singular integral with 0 < o < n,
that all of the cubes I € D?,.J € D* below are good, that p > v, that f € L?(c) and
g € L*(w), that F C D° and G C D¥ are o-Carleson and w-Carleson collections
respectively, i.e.,

> IF), <I|Fle, FeF, and > G $IGle, Geg,
F'eF:F'CF G'eG:G'CcG

that there are numerical sequences {ar(F)}rer and {Bg(G)}aeg such that

(7.3) Z ar(F)?|Fle <||flli2y and Z B86(G)*1Glo < llgll7z(0) »

FeF Geg

and finally that for each pair of cubes (I,J) € D7 x D, there are bounded functions
Br1.0 and 1,5 supported in I\ 2J and J\ 21 respectively, satisfying

181,710 171,000 < 1.
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Then
> (T3 (Brslrar(F)), Ajg)l
(F,J)EFxD*
FNJ=0 and |J|'/"<27°P|F|}/"
+ > (TG (AT ) v1,6168(G))wl
(I,G)eD XG
ING=0 and |I|*/"<27P|G|*/"
(7.4) SVAS fllL2 o gl 22 w)-

Remark 7.3. If F and G are o-Carleson and w-Carleson collections respectively,
and if ar(F) = E%|f| and Bg(G) = E¢&|g|, then the quasiorthogonality condi-
tion (7.3) holds, and this special case of Lemma 7.2 serves as a basic example.

Remark 7.4. Lemmas 7.1 and 7.2 differ mainly in that an orthogonal collec-
tion of Haar projections is replaced by a quasiorthogonal collection of indicators
{1par(F)}rer. More precisely, the main difference between (7.2) and (7.4) is that
a Haar projection A§f or AY%g has been replaced with a constant multiple of an
indicator 1par(F) or 165g(G), and in addition, a bounded function is permitted
to multiply the indicator of the cube having larger sidelength.

Proof. Note that in (7.1) we have used the parameter p in the exponent rather
than r, and this is possible because the arguments we use here only require that
there are finitely many levels of scale separating I and J. To handle this term we
first decompose it into

> + >
(I,J)ED? xD¥: JC3T (I,J)ED? xD¥: I1C3J
27p‘1‘1/’!L§|J|1/7LS2P‘I‘1/’!L 27p‘1‘1/’!L§|J|1/7LS2P‘I‘1/’!L

(I,J)ED? xD¥
27p‘1‘1/’!L§|J|1/7LS2P‘I‘1/’!L
JZ3I and I1¢Z3J

¥ 2 } (T(85 ), %))

=A; + Ay + As.

The proof of the bound for term Ajs is similar to that of the bound for the left side
of (7.2), and so we will defer the bound for A3 until after (7.2) has been proved.
We now consider term A; as term Ay is symmetric. To handle this term we will
write the Haar functions 2§ and h% as linear combinations of the indicators of the
children of their supporting cubes, denoted Iy and Jy: respectively. Then we use
the testing condition on Iy and Jyr when they overlap, i.e. their interiors intersect;
we use the weak boundedness property on Iy and Jyr when they touch, i.e., their
interiors are disjoint but their closures intersect (even in just a point); and finally
we use the AS condition when Iy and Jy are separated, i.e., their closures are
disjoint. We will suppose initially that the side length of J is at most the side
length I, i.e., |J|'/™ < |I|*™, the proof for J = nl being similar but for one point
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mentioned below. So suppose that Iy is a child of I and that Jy is a child of J.
If Jypr C Iy we have from (5.2) that

(g, 25" )l
V |J9’|w

,ha’aa
(T2 A7 )15y A% ghul S sup WPl

a,a’€ly \/|Ig|g

|<T§é(119)7 1J9/>w|

|<fah a>0’| / 2 1/2 w,a’
< sup ( T3(1; dw) g, h5 "),
S A 175 (11,)] (g, k7" )wl

Lo . ,
< sup BRIk 2 g,

~ a,a’€ln 4/ | 9|<7

S osup Tr [(f, A7)0l (g, G ul -
a,a’€ly,

The point referred to above is that when J = 7l we write (T3 (17,),17, )w
(11,,T5*(1,,,))o and get the dual testing constant T3, . If Jg» and Iy touch, then

w

|Jor |V < |Ip|*/™ and we have Jg: C 315 \ Iy, and so

(T2 (L, 8% £, 15, 89 ghl < sup WDl ypay gy 10057 Dl
a,a’€ly 4/ |Ie|a |J9’|w

(£, hT ") ol (g, 5" )l g,hw )wl
< sup WBPra \/|Ip|o|Jor | ————=—
a,a’ €l \/| 9|g \/ |

= sup WBPro [(f,h]")s] |<g,h§’“ Yol -

a,a’€ly

Finally, if Jo- and Iy are separated, and if K is the smallest (not necessarily dyadic)
cube containing both Jy: and Iy, then dist(ly, Jor) ~ |K|'/™ and we have

[{f,h7)ol (g, 85" )|

(T3 (11, A7 f), 10, AT 9)wl S sup (T3 (115)5 Ly )]

a,a’€ly 4/ |L9|a V |J9’|w
1(f, bS] 1 [(g, 7" )|

sup [To|o | Jor|e

a,a’e€ly, \/ |IG|¢7 diSt(IO, JG’)nia
V |19|0|J9’|W o,a w,a’
= su - LhT e Jhy
a,a’Epl—‘n dlSt(Ie, JG’)nia |<f ! > | |<g / >W|
|K|U|K|w o,a w,a’
2, LR 1) 1)
SVAS sup (A7 )6l (9, R )ul -

~Y
a,a’ €Ty,

\V4 |J6’ |w

A

Now we sum over all the children of J and I satisfying 27°|I|'/" < [J|V/" <
2°|I|*/™ for which J C 31 to obtain that

A1 S(Tr, 4T3, AWBPra+1/AS ) sup > [ hT o ll(g, B )l
@0’ €ln (1 7)eDTxD¥: JC3I
2fp|1|1/ng‘J‘l/n§2p|1|1/n
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Now Cauchy—Schwarz gives the estimate

> > (2ol (g, hS o

a,a’€ly,,  (I,J)€D°xD¥: JC3I
2P I L 2P

1/2 1/2
< swp S wmeP) S ekl
a,a’€ln (1,J)E€D’ xD¥: JC3I (1,J)ED" xD: JC3I
2P|/ <] <2 | 2P 1]/ <] <20 |/

S llz2o) lgllz2w) »

This completes our proof of (7.1) save for the deferral of term As, which we bound
below.

Now we turn to the sum of separated cubes in (7.2) and (7.4). In each of
these inequalities we have either orthogonality or quasiorthogonality, due either to
the presence of a Haar projection such as AJf, or the presence of an appropriate
Carleson indicator such as fp jlpar(F). We will prove below the estimate for
the separated sum corresponding to (7.2). The corresponding estimates for (7.4)
are handled in a similar way, the only difference being that the quasiorthogonality
of Carleson indicators such as Sp s1par(F) is used in place of the orthogonality of
Haar functions such as AJ f. The bounded functions Sr ; are replaced with con-
stants after an application of the energy lemma, and then the arguments proceed
as below.

We split the pairs (I,.J) € D7 x D¥ occurring in (7.2) into two groups, those
with side length of J smaller than side length of I, and those with side length
of I smaller than side length of J, treating only the former case, the latter being
symmetric. Thus we prove the following bound:

A 2 (T2 (A1) 859)0] S VA 1 ll200) l9ll 2o -
(I,J)ED xD¥
INJ=0 and |J|}/"<27P|1|*/"

We apply the ‘pivotal’ bound from the energy Lemma 6.2 to estimate the inner
product (T'Y (A9 f), AYg)., and obtain,

(TF(ATS): A59)el S 1A gllL2w) P AT flo) Ve,

Denote by dist the ¢>° distance in R™: dist(x,y) = maxi<j<n |x; — y;|. We now
estimate separately the long-range and mid-range cases where dist(J, 1) > |I|'/™
holds or not, and we decompose A accordingly:

A(f,g) = A5 (f. g) + A™(f, g).

The long-range case. We begin with the case where dist(.J, I) is at least |I|'/™,
i.e., JN3I = 0. Since J and I are separated by at least max{[.J|"/™, |I|'/"}, we
have the inequality

[/ 1Y/ o

PE(J, | AT flo) ~ /1 W|A?f(y)|d0(y) < HA(IIfHLQ(U)Wv
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since

/I | A £) doy) < || AF Fll 2o/ 1Tl
Thus with A(f, g) = A'"¢(f, g) we have

A(f»f]) < Z Z H AJ f||L2(O')H A gHLz(w)

I€D J: [J|V/n<| I/ 7 dist(1,0)>| 1|1/ 7

7 o7
dlst(I J)ntl-a Hlo /17

= > AT flleoll 2% gllir2 ) A, J);
(I,J)eP

with A(I,J) = L\/u NII®

dist (I, J)r+1-a
and P={(I,J) €D xD:|JMY" <|I|V™ and dist(1,J) > |I|'/"} .

Now let Dy = {K € D : |K|'/* = 2N} for each N € Z. For N € Z and s € Z,
we further decompose A(f,g) by pigeonholing the side lengths of I and J by 2V
and 2V~ respectively:

9)=>_> Ax(f.9)

s=0 N€Z

AN(F 9= D0 AT fllireel &Y gllrew AU, J),
(I,J)E’P*

where Py = {(I,J) € Dy x Dn_s : dist(I, J) > |[I|/"}.
Now A% (f,9) = AN (P& f, PR_s9) where Py, = 3", Ak denotes Haar pro-

jection onto Span{h}*}kepy.acr,, and so by orthogonality of the projections
{P%;} mez we have

|3 A9 = D2 1ARPH L PE—9) < D IANIPR 20 1P a9 22

NEZ NEZL NEZ
. . 1/2 " 1/2
< {sup 451} (X PSS 13e) (D2 IPS—9l3a)
Nez Nez Nez

< { s AR 17120 gl

Thus it suffices to show an estimate uniform in N with geometric decay in s, and
we will show

(75) |A§V(f, g)| < c27° \/Ag‘ ||f||L2(a) Hg||L2(w)a for s >0 and N € Z.
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We now pigeonhole the distance between I and J:
A% (f.9) Z A3y

AN (f.9) = }: I AT Fllrz) | &% gll 2wy A, J),
(I,J)EPR 4

where Py, = {(I,J) € Dy x Dy : dist(I,J) ~ 2V}
If we define H(A% ;) to be the bilinear form on (2% 0% with matrix [A(I,J)] 1, D)EP

then it remains to show that the norm [|H (A% )¢z e of H(A} ;) on the sequence
space /2 is bounded by C27°~¢ \/@ . In turn, this is equivalent to showing that
the norm [|H(B3 ¢)[l¢2—¢2 of the bilinear form H(BY ,) = H(Ay )" H(AL ) on
the sequence space £2 is bounded by C?272572¢AS. Here "H(va’é) is the quadratic
form with matrix kernel [BY, ,(J, J')],7epy . having entries:

By (J,J) = > A(I, J)A(I,J"), for J,J € Dy_s.
IeDy: dist(I,J) ~ dist(1,J7) o 2N +¢
We are reduced to showing
IH(B.o)lle2see < C272°72C A3 for s >0,£>0and N € Z.
For this we begin by computing By, ,(J, J'):

, J
By (') = > W\/Ulavlﬂw

IeDN
dist(1,.J) ~ dist(1,J") ~ 2N ¢

g/
W IVAVIPRVAPL

1
= > Ilo — ,
{ ] dlSt(I,J)”‘H—Oédlst(I)J/)n—i-l—oé}

IeDn
dist(I,J) ~ dist(1,.J") = 2N +*

PR PARARVIN IRV

Now we show that
(7.6) 1B alleoe S 27272048,

by applying the proof of Schur’s lemma. Fix ¢ > 0 and s > 0. Choose the Schur
function ﬂ(K) =1/+/|K|s,. Fix J € Dn_s. We have

22(Nfs) ,
> 4 ﬁ DY { 2 |I|U}W|J|w

J'€DN J DN _ 1Dy
dist(J,J’ )<2’\Uerr2 dist(I,J)~2N+¢

< o o |210+Z+8J| |212+€+5J|

25s—20 g«
QU+N)(n—a) 2(l+N)(n—a) ~ S 27 A
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since I € Dy and dist(1,J) ~ 2N+ imply that I C 297+ which has side
length comparable to 2N and similarly J' c 2'2+4+5J. Thus we can now
apply Schur’s argument with >_ ;(as)* =3, (b;)? = 1 to obtain

By (. J'
Yo abyBi( )= Y aJﬁ(J)bJ,g(J/)M

J,J'EDN s J,J EDN_s 6(J)ﬂ(<]/)
BM J J’ Byl
< asB(J (b B(J)) = rmrn
Z ! Z ; ’ BB

:Z(GJ)z{ZWBfV,e(J,J')} Z {ZB By JJ')}
J J’
g 2725726143(2(&])2 + Z(bJ/)2> _ 2172372€Ag¢.

J J’!

This completes the proof of (7.6). We can now sum in ¢ to get (7.5) and we are
done. This completes our proof of the long-range estimate

A(f,9) S /AS I f L2y N9l L2 -

At this point we pause to complete the proof of (7.1). Indeed, the deferred
term A3 can be handled using the above argument since 3J NI = @ = JN3I
implies that we can use the energy Lemma 6.2 as we did above.

The mid range case. Let
P={(I,]) €D xD:Jis good, |J|¥™ <27P|I|"/" JcC3I\I}.
For (I,J) € P, the ‘pivotal’ estimate from the energy Lemma 6.2 gives
(T (A7) A59)wl SN AT gllLzw) PO (ST AT flo) VIl -

Now we pigeonhole the lengths of I and J and the distance between them by
defining

Pya={I.J) €D xD:Jisgood, [I|'/"=2N [J}/"=2N"2
JC3IN\I, 297 <dist(I,J) <29} .

Note that the closest a good cube J can come to I is determined by the goodness
inequality, which gives this bound for 2¢ > dist (7, .J):

1
22N(1 e)g(N=s)e §2N_Es; which implies N—es—1<d<N,

Where the last inequality holds because we are in the case of the mid-range term.
Thus we have

S UTHATH, 2590l S D 118G gllrew) PO | AT flo)y/TT].
(I,J)eP (I,J)eP

oo

N
=X > > S 185 gllae PO AT flo)V T -

s=p N€Z d=N-es—1 (I,))eP ,
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Now we use

PAL AT flo) _/ L |87 f(y)ldo(y)
T = ey Y

QN s
S Sy | A1 Fllzz@o) Vi

and apply Cauchy—Schwarz in J and use J C 31 to get

> KTH(ATf), AYg)]

(I,J)eP

oN=sgN(n-a) VHov/[31]
S Z Z Z Z 2d(n+1 ) H A f||L2(‘7) IN(n—a)
s=p N€Z d=N-—es—1 I€Dyn

1/2
x ( Z [RAY? 9||L2(w)>

JEDN s
JC3I\I and dist(I,J) ~2¢

9N—s 9N (n—a) 1/2
3 ¥ s VE 2183l 3 1830l

s=p NEZ IeDn JEDN s
JC3I\I

[ee]
S 2 et =l JAS | Fll ooy gl 2wy S VAS 11|20y 9112w
s=p

. s N
where in the third line above we have used Zd:N%SA Qd("il,a) =S Q(N,Es)l(nﬂ,a) ,

and in the last line % = 2—sll—e(+1-a)] followed by Cauchy-Schwarz

in I and N, using that we have bounded overlap in the triples of I for I € Dy.
More precisely, if we define f; = ZleDk AT fhT and gi = ZIEDk A% ghY, then we
have the orthogonality inequality

1/2 1/2
S Inllra) lon—slleze < (30 1130 (D lon—sl3ae))

NeZ NEeZ NEeZ
= Ifllz2o) lgllz2w)

We have assumed that 0 < € < 1/(n+ 1 — @) in the calculations above, and this
completes the proof of Lemma 7.1. O

8. Corona decompositions and splittings

We will use two different corona constructions to reduce matters to the stopping
form, the main part of which is handled by Lacey’s recursion argument, namely
a Calderén—Zygmund decomposition and an energy decomposition of NTV type.
We will then iterate these coronas into a double corona. We first recall our basic
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setup. For convenience in notation we will sometimes suppress the dependence
on « in our nonlinear forms, but will retain it in the operators, Poisson integrals
and constants. We will assume that the good/bad cube machinery of Nazarov,
Treil and Volberg [23] is in force here. Let D7 = D* be an (r, e)-good grid on R™,
and let {h7*}repe, acr, and {h%"}jepe per, be corresponding Haar bases as
described above, so that

f=Y_A%f and g= Y AYg,

IeDe JeDw

where the Haar projections A7 f and A%g vanish if the cubes I and J are not
good. Inequality (2.9) is equivalent to boundedness of the bilinear form

T(f,9) =(T5(f), 9)w = Y (THAT)L59)

IeDe and JeDvw
on L?(0) x L*(w), i.e.,

[T(f,9)| < Nra|l fllz2o) l9llL2(w)-

8.1. The Calderén—Zygmund corona

We now introduce a stopping tree F for the function f € L?(0). Let F be a
collection of Calderén-Zygmund stopping cubes for f, and let D7 = Jp.»Cr be
the associated corona decomposition of the dyadic grid D.

For a cube I € D7 let mp-1 be the D?-parent of I in the grid D7, and let w1
be the smallest member of F that contains I. For F, F’ € F, we say that F’ is
an F-child of F' if mr(mp- F') = F (it could be that F' = mpo F"), and we denote
by €x(F) the set of F-children of F. For F' € F, define the projection PZ_ onto
the linear span of the Haar functions {h7*}rccy, aer, by

el =2 DFf= > ALK hT".
IeCr I1eCF, acl’y,
The standard properties of these projections are

F=SPet [(PEDr =00 Il = X IPE Sl

FeF FeF

8.2. The energy corona
We must also impose an energy corona decomposition as in [13] and [3].
Definition 8.1. Given a cube Sy, define S(Sp) to be the maximal subcubes I C Sy

such that
(8.1)

Pa(J,l o’) 2 cubeood.w
> (#) P57, ) > Coneray [(€27) + A3] |1,
TEMraesp(D)



110 E.T. SAWYER, C.-Y. SHEN AND I. URIARTE-TUERO

where £°°P is the constant in the deep energy condition defined in Definition 2.4,
and Cenergy is a sufficiently large positive constant depending only on 7, r,n and o
Then define the o-energy stopping cubes of Sy to be the collection S = {Sp}U
UnZo Sn, where Sy = S§(Sp) and Spy1 = Uges, S(S) for n > 0.

From the energy condition in Definition 2.4 we obtain the o-Carleson estimate

(8.2) > I8le <21, I€DC.
SeS: scI

Indeed, using the deep energy condition, the first generation satisfies

83 3 ISl

SeS

Pa((]’ ]'S \ JU) 2 subgood,w
S C 8deep Aa Z Z ( |J|1;nﬂ{ > ||PJ & ’ XH%Z(w)
energy[( + 5651 TEMauen(S)
Pa(Jv 1500) 2 subgood,w_ |12
e L () IR

energ}’[( SESl JEM 1 geep (S)

Crrna P(X(J 1S U) 2 b d
< > > (g ) Pt
< - ~ Tn J L2 (w)
energ}’[(‘g eep 2+ A SES JEM_deep (S) |J| !

1
(ggeepplug)z |SO|0' - §|SO|U7

CT r,n,o
Conergy [(E2°P)2 + A

I N

(Sgeepplug)Z

provided we take Cenergy = 2Cr rn.a The third inequality above, in

5 (ggeep)2+A§x .
which 7 is replaced by r (but the goodness parameter £ > 0 is unchanged), follows

because if J; € Mr_geep(S), then J; C Jy for a unique Jz € My_deep(S) and we
have [Jo|'/™ < 277T.J;|Y/" hence W < C, I‘,"»QW
generations satisfy a similar estimate, which then easily gives (8.2). We emphasize
that this collection of stopping times depends only on Sy and the weight pair (o, w),
and not on any functions at hand.

Finally, we record the reason for introducing energy stopping times. If

. Subsequent

Z (Pa(Ja1S\A/J0-))2HP?]ubgood,wX| 2

(84) X.(Cs)? = sup T ’LQ(w)
JEM r_deep (1)

IeCs |I|O'

is (the square of) the a-stopping energy of the weight pair (o,w) with respect to
the corona Cg, then we have the stopping energy bounds

(85) Xa(CS) < V Cenergy (ggeep)Q + Ag, S e S,

where the deep energy constant £4°°P is controlled by assumption.
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8.3. General stopping data

It is useful to extend our notion of corona decomposition to more general stopping
data. Our general definition of stopping data will use a positive constant Cy > 4.

Definition 8.2. Suppose we are given a positive constant Cy > 4, a subset F
of the dyadic grid D7 (called the stopping times), and a corresponding sequence
ar = {ar(F)}rer of nonnegative numbers ar(F) > 0 (called the stopping data).
Let (F,<,7F) be the tree structure on F inherited from D7, and for each F € F
denote by Cp = {I € D? : mzI = F} the corona associated with F:

Cr={1€D’:ICFandI¢F forany F' < F}.

We say the triple (Co, F, ax) constitutes stopping data for a function fe Ll (o) if
(1) E9|f| <ar(F)forall I € Cp and F € F,

(2) ZF/jF |F'|, < Cy|F|y for all F € F,

(3) Sperar(FPIFly < C3 1 f 120,
(4) ar(F) < ar(F’) whenever F', F € F with F’ C F.

Definition 8.3. If (Cy, F, ar) constitutes (general) stopping data for a function
f e LL (o), we refer to the orthogonal decomposition

loc
F=Y Pe [ PELf=D A%,

FeF IeCr

as the (general) corona decomposition of f associated with the stopping times F.

Property (1) says that az(F) bounds the averages of f in the corona Cp, and
property (2) says that the cubes at the tops of the coronas satisfy a Carleson
condition relative to the weight o. Note that a standard ‘maximal cube’ argument
extends the Carleson condition in property (2) to the inequality

Z |F'|, < Cy|A|, for all open sets A C R.
F/eF:F/CA

Property (3) is the quasiorthogonality condition that says the sequence of func-
tions {az(F)1F}rer is in the vector-valued space L?(¢2; o), and property (4) says
that the control on averages is nondecreasing on the stopping tree 7. We empha-
size that we are not assuming in this definition the stronger property that there
is C' > 1 such that az(F') > Caz(F) whenever F', F € F with F' & F. Instead,
the properties (2) and (3) substitute for this lack. Of course the stronger property
does hold for the familiar Calderon—Zygmund stopping data determined by the
following requirements for C' > 1,

@ |f| > CEZ|f|  whenever F',F € F with F' G F,
E7|f| < CE%|f| forI€Cp,

which are themselves sufficiently strong to automatically force properties (2)
and (3) with ar(F) =E%|f|.
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We have the following useful consequence of (2) and (3) that says the sequence
{ar(F)1r}rer has a quasiorthogonal property relative to f with a constant C})
depending only on Cjy:

(8.6) | > ar(pir|

< Col1f1172(0) -
FeF )

2
L2 (o

Indeed, the Carleson condition (2) implies a geometric decay in levels of the tree F,
namely that there are positive constants C; and e, depending on Cj, such that
if QS—TL)(F) denotes the set of n*® generation children of F in F,

> |Fs (G127 |F|,, foralln>0and F € F.
Free (F):

From this we obtain that

Z Z ar(F)|F|, < Z ( Z a}_(F/)QlF/|J)1/2 L2 /|F|0'

n=0pree (F): n=0 Free (F)
S —en AVAR nli /2
<OVIFL (S Y axE)?F,)
n=0 Free (k)

and hence that

Zar(F){i S ar(E)IF,}

FeF n=0 F/EQ:_(;)(F)

Y arEWVIFL (2 Y arEF)
n=0

FeF F/€¢f7?)(F)

(S ar@il) (Sre Y X axEiF)

FeF n=0 FG}—F’€¢‘(;)(F)

1/2
S leoy (D2 arE2IF) T S I 13

F'eF

1/2

This proves (8.6) since || Y per ar(F)1p ||2L2(J) is dominated by twice the left hand
side above.

We will use a construction that permits iteration of general corona decomposi-
tions.

Lemma 8.4. Suppose that (Co, F,ax) constitutes stopping data for a function
f e Ll (o), and that for each F € F, (Co, K(F), axc(ry) constitutes stopping data

loc
for the corona projection PE_ f, where, in addition, F' € IC(F). There is a positive
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constant Cy, depending only on Cy, such that if

IC*(F) = {K S IC(F)OCF : aK(F)(K) > Oé]:(F)}
K= J K (F)u{F},

FeF
N _ foxm)(K) for K e K*(F)\{F} o
r(K) = { max{ar(F), o) (F)y for K=F , for FeF,

the triple (Ch, K, ax) constitutes stopping data for f. We refer to the collection
of cubes KC as the iterated stopping times, and to the orthogonal decomposition
[=2kex Pc};%f as the iterated corona decomposition of f, where

Ck={IeD:ICcKandI ¢ K' for K' <x K}.

Note that in our definition of (Ci, K, axc) we have ‘discarded’ from KC(F') all of
those K € K(F) that are not in the corona Cp, and also all of those K € KC(F)
for which ajx(py(K) is strictly less than az(F). Then the union of over F' of what
remains is our new collection of stopping times. We then define stopping data
ai(K) according to whether or not K € F: if K ¢ F but K € Cp then ax(K)
equals oy (K), while if K € F, then ax (K) is the larger of aye () (F) and ar (K).

Proof. The monotonicity property (4) for the triple (C, K, ax) is obvious from
the construction of K and ax(K). To establish property (1), we must distin-
guish between the various coronas C, Cg(F) and C# that could be associated
with K € K, when K belongs to any of the stopping trees K, K(F) or F. Sup-
pose now that I € Cf for some K € K. Then there is a unique F € F such
that Clk C Cl’ﬁ(F) C Cf, and so E?|f| < ax(F) by property (1) for the triple
(Co, F,ar). Then ar(F) < ax(K) follows from the definition of ax(K), and
we have property (1) for the triple (C1, K, ax). Property (2) holds for the triple
(Ch, K, ax) since if K € Cf, then

oK = Y K+ )] > K

K'=x K K'eK(F): K'CK F'<FpF: F'CK K'€K(F’)

<GlEl+ > ColF'l, <2C3|K],.
F'<7zF:F'CK

Finally, property (3) holds for the triple (C1, K, ax) since

doaBKPIKlo =) Y axm(E)? Ko+ Y ax(F)|F,

Kek FeF Kek(F) FeF
<Y CHIPE Tty + Co N f 1720 < 2C8 1£1172(0)-
FeF
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8.4. Doubly iterated coronas and the NTV cube size splitting

Here is a brief schematic diagram of the decompositions, with bounds in (I, used
in this subsection:

(T3 f: 9)w
1

Be,(f:9) + Byalfiy) + Balfig) + B (f9)
¢
1

Tdiagonal(fag) + Tfarbelow(fag) + Tfarabove(fag) + Tdisjoint(fa 9)

A 2
\ X

Bép(-f?g) T%arbelow(f7g) + T%arbelow(f7g)
¢
1

Biop(f,9)

£8P + VA3

+ Bgaraproduct(f7 g) + B;?ei hbour(f7 g)

We begin with the NTV cube size splitting of the inner product (T f, g),, —and
later apply the iterated corona construction— that splits the pairs of cubes (I,.J)
in a simultaneous Haar decomposition of f and g into four groups, namely those
pairs that:

1. are below the size diagonal and p-deeply embedded,
2. are above the size diagonal and p-deeply embedded,
3. are disjoint, and

4. are of p-comparable size.

More precisely we have

(Tef.g)o= > (THAT), (AF9))w
IeDe, JeDv
= > TIN5+ D (THATS), (M%)
IeD?, JeD¥ IeD?, JeD¥
J@pl JP@I
+ Y (THATH, (A%59)) + S (THAT), (A59))e
IeD?, JeD¥ I1eD?, JeD*
JNI=0 27mP<| |/ |1|<2" P

=Be,(f,9) +B,5(f,9) +Bn(f,9) + B, (f,9)-

Lemma 7.1 in the section on NTV preliminaries show that the disjoint and com-
parable forms Bn(f,g) and B, (f,g) are both bounded by the A, testing and
weak boundedness property constants. The below and above forms are clearly
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symmetric, so we need only consider the form Be,(f,g), to which we turn for the
remainder of the proof.

In order to bound the below form Be, (f, g), we will apply two different corona
decompositions in succession to the function f € L2(o), gaining structure with
each application; first to a boundedness property for f, and then to a regularizing
property of the weight 0. We first apply the Calderén-Zygmund corona decompo-
sition to the function f € L?(o) obtain

= > P& .

FeF

Then for each fixed F' € F, construct the energy corona decomposition {CZ} ses(r)
corresponding to the weight pair (o,w) with top cube Sy = F, as given in Defini-
tion 8.1. At this point we apply Lemma 8.4 to obtain iterated stopping times S
and iterated stopping data {as(7)(S)}ses(r). This gives us the following double
corona decomposition of f:

87 f=3PLr=Y > PLPLf=) PLf=) PLf,

FEF FeF SeS*(F)U{F} Ses AcA

where A = S is the double stopping collection for f. We are relabeling the double
corona as A here so as to minimize confusion. We now record the main facts proved
above for the double corona.

Lemma 8.5. The data A and {a4(A)}aca satisfy properties (1), (2), (3) and (4)
in Definition 8.2.

To bound Be,(f,g) we fix the stopping data A and {a4(A)}aca constructed
above with the double iterated corona. We now consider the following canoni-
cal splitting of the form Be,(f, g) that involves the Haar corona projections Pg
acting on f and the 7-shifted Haar corona projections P‘é’g_shm acting on g. Here
the T-shifted corona C5 ™M is defined to include only those cubes J € Cp that are
not T-nearby B, and to include also such cubes J which in addition are T-nearby

in the children B’ of B.

Definition 8.6. The parameters 7 and p are now fixed to satisfy
T>r and p>r+T,

where r is the goodness parameter already fixed.

Definition 8.7. For B € A we define

cy -shift {JGCB J Er B} U U {JgD : JE, B and J is T-nearby in B’}.
B’e€4(B)

We will use repeatedly the fact that the 7-shifted coronas C;’E}'Shift have overlap
bounded by 7:

(8.8) d depeun () <7, JED.
BeA
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The forms Be,(f,g) are no longer linear in f and g as the ‘cut’ is determined
by the coronas Cr and CZ ", which depend on f as well as the measures o and w.
However, if the coronas are held fixed, then the forms can be considered bilinear
in f and ¢g. It is convenient at this point to introduce the following shorthand
notation:
€
(T (PE, £), Peroning),,” = > (T2(AT ), (859))e
I€C and JeCE =Mt
JEpl
We then have the canonical splitting
€

Be,(f.9) = Y (T5(PE,[)Perminng),”

A,BeA
le% o w S Ie% o w c
= Z <Tz7 ( Ca f)v Pcz>slliftg>wp + Z <Ta (PCA f)7 chdhiftg>wp
AcA A,BEA
B;A
OL S (07 ag w S
+ Z T PCA PCT :.h]ftg>wp + Z <T(7 (PcAf), ch»shiftg>wp
A,BEA A,BeA
B;A ANB=0
(89) = Tdiagonal(fa 9) + Tfarbelow(fa 9) + Tfarabove(fa g) + Tdisjoint(fa g) .

Now the final two terms Tgarabove(f,g) and Taigjoint(f, g) each vanish since there
are no pairs (I,J) € C4 x C5*M with both (i) J €, I and (ii) either B & A or
BNnA=40.

The far below term Tearbelow(f, g) is bounded using the intertwining proposition
and the control of functional energy condition by the energy condition given in the
next two sections. Indeed, assuming these two results, we have from 7 < p that

Tfarbelow(fag): Z Z <0a( (Iff)’( ?g»w

AAB€«4 T€C and JeCE, =it
JepI

Z > > (TE(AT ), (A%g))

BEA AcA:BGA I€C4 and JeCE=hift
JEpl

=> > > (T2(ATF), (D99))

BeA AEA:B;A I€CA and JEC;’Q:SMft

-y > > (T2 (AT 1), (D59)).

BeA AeA:BGA I€Cy and JeCq =Mt
Il

= T%arbelow(f’ ) - T?arbelow(fv ) .

Now TZ 1 elow (> 9) is bounded by N TV, by Lemma 7.1, since J is good if A%g # 0.
The form T}, 1 .10 (f> 9) can be written as

Thbelow (2 9) Z Z (TH(ATf),9B)w; where gp = Z VAN

BeA 1eD:BGI JeCyshift
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The intertwining Proposition 9.4 applies to this latter form and shows that it is
bounded by N TV, + Fo. Then Proposition 10.1 shows that §o < AS + £, which
completes the proof that

(810) |Tfarbelow(f7g)| 5 (NTVO& + 504) H-fHLZ(U) ||gHL2("J) :

The boundedness of the diagonal term Tgiagonal(f,g) will then be reduced to
the forms in the paraproduct/neighbour/stopping form decomposition of NTV.
The stopping form is then further split into two sublinear forms in (11.6) below,
where the boundedness of the more difficult of the two is treated by adapting
the stopping time and recuresion of M. Lacey [1]. More precisely, to handle the
diagonal term Taiagonal(f, g), it is enough to consider the individual corona pieces

c

a/po w S
Bép(‘f7 g) = <Tt7 ( CAf)v P(jz-dhiftg>W 9

and to prove the following estimate:

B2, (1.9 S NTVa + Ea) (aa(VTAL + IPE, fllz2o) ) [Pepasindl o)

Indeed, we then have from Cauchy—Schwarz that

Y BE,(fra)l =D IBE,(PE, £, Peraiag)|

AcA AcA
1/2 ) 1/2
S NTVa+E2) (3 aal@?Als +1PE fl30)) (D IPEangllie )
AcA AcA

S WTVa + &) 1 fll20) 191l 22wy -

where the last line uses quasiorthogonality in f and orthogonality in both f and g.

Following arguments in [13], [23] and [4], we now use the paraproduct/neigh-
bour/stopping splitting of NTV to reduce boundedness of Bép (f, g) to boundedness
of the associated stopping form

(811)  Biop(f9)= ) > (E7, A7 1) (T3 1as, A59)w s

Iesuppf J:J€pl and I;¢A

where f is supported in the cube A and its expectations EJ |f| are bounded
by a4 (A) for I € C9, the Haar support of f is contained in the corona Cg,
and the Haar support of g is contained in C7Mf and where I is the D-child of 1
that contains J. Indeed, to see this, we note that A7 f =1; A7 f and write both

1, =17, + Z Lo1,) s 17, =1a—1a1,,
0(I)een(H\{1s}

where 0(I7) € €p(I)\ {I,} ranges over the 2" — 1 D-children of I other than the
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child I; that contains J. Then we obtain

(T NG f,0%9)0 (T2 (11, AT f), A%9)w + > (T Lo,y O] £), L%9)e

o(1)eCn(D\{1s}
= (B7, A7 PTG (L1,), A59)w + > (T3 (Xo(1,) BT 1) B59)w
0(1,)eCn(D\{1s}

= (B7, A7 HI{T5 14, A59)w — (BT, AT H(TF 1 av1,, D5 9)w

+ > (TS (Loer,) D £y D59)
0(1y)eCp(IH\{Is}

and the corresponding NTV splitting of B‘ép( £ 9):

e
BE,(f.9) = (T35 (PE, /), Péruing)” = > SUNFINNTR
I€C and JeC=hift
JEHT
= > (BF, A7 PUTS 14, 559)e
I€C4 and JECZ’Shift
JEI
- > (E7, AT TS Lavs,, AT 9)w
I€C4 and JeCT=hift
Je,I
+ > > (T35 (Lory) AT ), A59)w
I1€C4 and JeCT =Mt 0(1)eCp (N\{1s}
JEpI
— RpA A A
- Bparaproduct(fv g) - BStOp(f? g) + Bneighbour(f, g) .

A

paraproduct

The paraproduct form B
for T*. Indeed, we have

Bsaraproduct(f,g) = Z ( }'J A(; f)<T:1A7 Aﬁgﬂ;

I€CA and JeCT=hift
Jel

> Tt sse.{ Y (® A7)

JecT-shife I€Ca: JET

= Y (T84, 059)u{ES ), f —E4f}

Jecz-shift

= (Te1a Y {E?b<J)Jf_Eif}A°jg>w’

Jecz-shift

(f,g) is easily controlled by the testing condition

where I%(.J) denotes the smallest cube I € C4 such that J €, I, and of course I%(.J) ;
denotes its child containing J. We claim that, by construction of the corona, we
have I%(J); ¢ A, and so |E}7a(J)Jf| S E|f] < aa(A). Indeed, in our application
of the stopping form we have f = PZ f and g = PE)Z’S““ g, and the definitions
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of the coronas C4 and CT*Mft together with r < 7 < p imply that I%(J); ¢ A
for J € Cc7shift,

Thus from the orthogonality of the Haar projections A%g and the bound on
the coefficients ’EIN(J)Jf EAf| < aa(A) we have

|Bparaproduct(f’ g)' = ‘<Tg1A7 Z {E?E(J)Jf _Ei-f} Ai}) g>w’
J€C£’Shift
S @a(4) [LaTS LAl 2y [Pemscd]l o)
< Tpa aa(4) VI]Ale HP‘é’Z,sl.;ftg||L2(w),

because

H oAy gH _(Sgplle)H Y Ay

Jec-r shift Jec:{»shift

L2(w)

Next, the neighbour form Bnelghbour( f,g) is easily controlled by the Ag
condltlon using the Energy Lemma 6.2 and the fact that the cubes J are good.
In particular, the information encoded in the stopping tree A plays no role here.
We have

Bg‘eighbour(f’ g) = Z Z <Taa(1t9(IJ) A(IT f)a A§g>w-
[€C and JeCTMit 0(1,)€Cn (D\{1,}
JEpI

Recall that I is the child of I that contains J. Fix 6(I;) € €p(I) \ {I;} momen-
tarily, and an integer s > r. The inner product to be estimated is

<T:(19(1J)0A(I7f)a Ai})g>w’
ie.,
(T3 (Lor,) AT ), D59 =EG (1) ATf - (T3 (Lo1,))s DT79)w-

Thus we can write

nelghbour (fv )

(8.12) = > > (Eg (1) AT )(Ts (Lo(1,)0), A5 G) -

I€C and JECZ'Shift 0(I1y)eCp(I)\{1}
JEpl

Now we will use the following fractional analogue of the Poisson inequality
in [23].

Lemma 8.8. Suppose that J C I C K and that dist(J,dI) > % [J|&/"|1](=)/m,
Then

Jl/” l—e(n+l—a)
| | ) POC(I,O']_K\I)

@ <
(8.13) P(J, 01\ 1) S (IIIV"
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Proof. We have

[oe]
“(J,oxr\1) / do,
' z_: |2’“J|1 2RI Joor pagenny
and (2%J) N (K \ I) # () requires dist(J, K \ I) < ¢2¥¢(J) for some dimensional
constant ¢ > 0.

Let ko be the smallest such k. By our distance assumption we must then have

% |J|=/™ [ 1|A=9)/™ < dist(J, 81) < ¢ 2k |J|1 /™,

or

1/n 1-¢
—ko—1 |J| )
2 S c(']'l/n

Now let k; be defined by 2F* = [I|'/"/|J|*/™. Then assuming k1 > ko (the case
k1 < ko is similar) we have

k
(J UXK\I { Z Z }2 |21<:J|1 a/n /2 do

EN(K\I)
Ill—a/n 1
52_k0 | ( / dU) +2_k1Pa(I,0'XK ])
28 [/ \TI=27 Joges ey \

|J|1/” (1—e)(n+1-a) |]|1/n n—a |J|1/n
< (=L a «a
(|I|1/n) (|J|1/n) PY(I,oxk\1) + TG P*(I,oxk\1),

which is the inequality (8.13). O

Now fix Iy, Iy € €p(I) with Iy # Iy and assume that J €, Iy. Let [J|'/™/|Io|'/™
= 27 in the pivotal estimate in the energy Lemma 6.2 with J C Iy C I to obtain
(T3 (11,0), A5g)u| S 1AT9ll L2y VI P (I, 11,0)
S AY 2wy VI w - g~ (=sntl=)s po(f 11.0).
Here we are using (8.13), which applies since J C .

In the sum below, we keep the side length of the cubes J fixed, and of course
J C Iy. We estimate

Al 1o, Ip,s) = Z (T3 (11,0A7 ), AT g)ul
J 25 0(J)=L(I):JCIo
< 27 (memHm s IBG AT 1P (L, 14,0) > 1A%l 22(w) V1]

J:250(J)=£(I): JCIo
< g~ (menti=als |g AT f| P*(Iy, 11,0) /| Iolw AL, 1o, I, s),

A(I, Io, Iy, 5)2 = > 1859017 2 ) -
JeCT-shitt; 25 ¢(J)=£(I): JCIo
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The last line follows upon using the Cauchy—Schwarz inequality and the fact that
A%g = 0if J ¢ C3™M. We also note that since 25714 (J) = ¢ (I),

(8.14) S AU I ) = > [NTIF

Io€ep(I) JECTShift: 25+1 o(J)=¢(I): JCI

33 AU 108 < [Pl

IeCa Ineep (1)

Using

(8.15) IES, AT f| < \/ELIATF2 < AT fllz2(o) ol "2,

we can thus estimate A(I, Iy, Iy, s) as follows, in which we use the A hypothesis
o]

SUPy [pati=aym = A < 00
A(I, Iy, 1Ip, s)
g 2*(1—5(n+1—a))8 ||A?f||L2(o') A(I7 10,1'97 S) . |L9|;1/2 ]_:)04(]'07 1190) /|IO|w
< VAT 2 A=) AT f| L A Ty, o)

since P*(Io, 17,0) < |Ip|o/|To|*~@/™ shows that

Tolo/ ol
10| /2 P* (Lo, 11,0) |10|w<\/|9—\/m< el

|I|1 a/n ~

An application of Cauchy—Schwarz in the sum over I using (8.14) then shows that

Z Z A(I7IO7‘[0?S)

I1€Ca Io,IpeCp()
Io#lg

1/2
A5 2-(-c(n1-a)s ( 3 ||A}’f||iz(o)>
IeCa

(Z( > A(I,IO,IQ,S))2>1/2

IeCa 1o, IQECD )
Io#lg

1/2
< /A<2x 2—(1—a(n+1—a))sH gAfHLZ( Qn(z ( Z A I, 1o, Iy, )) )

1€Ca NIpeCn()
Io#Iy

5 /A% 2—(1—8(%-’1—1—04))3 H gA fHLQ(O') HPEJZ'SMRQHLQ(L«)) .
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This estimate is summable in s > r, and so the proof of

> > (Ty (Lo A ) D59),

[€CA and JeCT=Hif 0(1;)eCn(D\{Ls}
Jepl

Z Z io:A(I,]b»IGvS)

1€Ca 1o, lgeCp(I) s=r
In#Iy

|Bfeighbour(f, g)! =

S VA HPgAfHLZ(J) HPg;‘ﬂhi“gHm(@

is complete.

It is to the sublinear form on the left side of (11.7) below, derived from the
stopping form BStop (f,g), that the argument of M. Lacey in [1] will be adapted.
This will result in the inequality

(8.16) [Bitop(f,9)| S (€8°P+ VAT ) (ea( VI Als + 1 Fll 29l 2wy » A€ A,

where the bounded averages of f in BStop (f, g) will prove crucial. But first we turn
to completing the proof of the bound (8.10) for the far below form Tiarbelow(f; 9)
using the intertwining proposition and the control of functional energy by the A%
condition and the energy condition &,.

9. Intertwining proposition

Here we generalize the intertwining proposition (see e.g. [15]) to higher dimen-
sions. The main principle here says that, modulo terms that are controlled by the
functional energy constant §, and the NTV constant ATV, (see below), we can
pass the shifted w-corona projection P‘é’T «nire through the operator T to become

the shifted corona projection o-corona projection PZ Cpremine-

More precisely, the idea is that with T f = T(f O') the intertwining operator
P e [P ain T = Te Pz un | PE,

is bounded with constant §o + N7 V.. In those cases where the coronas CEShift

and C4 are (almost) disjoint, the intertwining operator reduces (essentially) to

PerwinT,PZ,, and then combined with the control of the functional energy con-
B

stant §, by the energy condition constant £, and A$+.45"", we obtain the required
bound (8.10) for Ttarbelow ([, g) above.

To describe the quantities we use to bound these forms, we need to adapt to
higher dimensions three definitions used for the Hilbert transform that are relevant
to functional energy.

Definition 9.1. A collection F of dyadic cubes is o-Carleson if

> |Flo<CFr|Sl,, SEF.
FeF:FCS

The constant C'r is referred to as the Carleson norm of F.
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Definition 9.2. Let F be a collection of dyadic cubes. The good T-shifted corona
corresponding to F' is defined by
caood Tl — (] e DL i J €r F and J &, F' for any F' € €£(F)}.

good

Note that 50 Tshlt — cr-shift Dy, ,q and the collections ceood =il have
bounded overlap 7 since, for fixed J, there are at most 7 cubes F' € F with the
property that J is good, J € F and J &, F’ for any F’' € €x(F). Here Cx(F)
denotes the set of F-children of F. Given any collection H C D of cubes, and a
dyadic cube J, we define the corresponding Haar projection P4, and its localiza-

tion Py ; to J by

(9.1) =Y. 0% and Py, = Y Ay,
HeH HeH: HCJ

Definition 9.3. Let §, be the smallest constant in the ‘functional energy’ inequal-
ity below, holding for all h € L?(0), g € L?(w) and all o-Carleson collections F
with Carleson norm C'r bounded by a fixed constant C:

P*(J, h 2w
(9.2) Z Z (ﬁ) ||PC§ood,T—shift;JXHiz(w) < SaHhHLQ(a) .
FeF J€Mr-deep(F)

This definition of §, depends on the choice of the fixed constant C', but it
will be clear from the arguments below that C' may be taken to depend only on n
and «, and we do not compute its value here.

There is a similar definition of the dual constant 7.

We now show that the functional energy inequality (9.2) suffices to prove an
a-fractional n-dimensional analogue of the intertwining proposition (see e.g. [15]).
Let F be any subset of D. For any J € D, we define 7%.J to be the smallest F € F
that contains J. Then for s > 1, we recursively define 7%J to be the smallest
F € F that strictly contains 7T;_-71J . This definition satisfies 7T;_—+tJ = nimlJ for
all s,t > 0 and J € D. In particular 7%J = 7% F where F' = 7%J. In the special
case J = D we often suppress the subscript F and simply write 7° for 77,. Finally,
for F € F, we write €x(F) = {F' € F : 7. F' = F} for the collection of F-children
of F. Let

NTVa = /AS + Ty + WBP, .

Proposition 9.4 (The intertwining proposition). Suppose that F is o-Carleson.
Then

S (T AT L P g>w‘5<sa+8a+NTva> £l z2(o) 191l L2 -

FeF . IgF

Proof. We let gp = P‘é’good,_shm g, which is supported in F', and write the left-hand
F
side of the display above as

S @ o fgre=Y (T2(( X 81f)gr) =D @ frgr,

w
FeF 7. ]21:’ FeF I ]21:’ FeF



124 E.T. SAWYER, C.-Y. SHEN AND I. URIARTE-TUERO

where

fr= Y AfF.

I:I;F

Here, fr is constant on F'. We note that the cubes I occurring in this sum are
linearly and consecutively ordered by inclusion, along with the cubes F’ € F that
contain F'. More precisely, we can write

F=lhChCFhC - CF,CFy1 & C E,
where F,, = 72 F for all m > 1. We can also write
F=FRGhLCLGC CIy Gl C- G Ik =Fy,

where I, = 75 F for all k > 1. There is a (unique) subsequence {k,,}_, such
that
Fn=It,, 1<m<N.

Define -
=Y A%, f(@)
(=1

Assume now that k,, < k < k;,11. We denote the 2" — 1 siblings of I by 0(I),
0 €0, ie, {0(I)}oco = Cp(mpl)\ {I}. There are two cases to consider here:

0(Ix) ¢ F and 0(I) € F.

Suppose first that 0(I;) ¢ F. Then 0(Ix) € Cf, ., and using a telescoping sum,
we compute that for

x €0(I) CIp41 \ Ix C Frni1 \ Fin s
we have

Fe@)] = | > A5, 7(@)| = 15,0/ — Ef fI SEF,, 11
L=k

On the other hand, if 6(Ix) € F, then Iy41 € C%,  and we have

fr(@) = Mg f@) = | Y 7,£(@)| = B,/ B, JI SEG, 11

l=k+1

Now we write

fr=or+vr,
[ee]
er= Y gy AT f and Yp=fr—op;
k,0:0(I)EF

S (TS frgr)e =Y (Teer.gr)w+ > (T80r,gr)w

FeF FeF FeF
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and note that both ¢r and ¢ are constant on F. We can apply (7.4), using
0(I) € F, to the first sum here to obtain

‘ Z o PF, gF )w

> o,

@F‘

L2(o) L2(w)

1/2
SNTVa Il S I\gFllsz(w)} -

FeF

Turning to the second sum we note that

N

|¢F| S Z (Eom+1|f|) Fr41\Fm — (EF|f| 1F + Z m+1F|f|) 1 "‘+1F\n—mF

m=0

= EFN e+ D ELplf) Layrnse
FleF.FCF'

<ar(F)1p+ ), ar(mrF) Lgpp
FIeF.FCF'

<ar(F)1p+ Z ar(mrF") 1 p 1pe
FleF.FCF

=ar(F)1p+® 1pc, forall FeF,

where

P = Z a].-(F”) 1p0.

FreF

Now we write

Z (TS Yr, gr)w = Z (T (1pYr), gr)w + Z (T} (1pep),gr)e = 1+ 11

FeF FeF FeF
Then cube testing (T31r, gr), | = [((1rT31r, gr), | < Tra/|F|, lgFl 2, and

‘quasi’ orthogonality, together with the fact that ¢ is a constant on F' bounded
by ar (F), give

1<) (T8ledr,gr)ul S ) ar(F) (T3 1k, gr).]

FeF FeF
1/2
<Y ar(B)NTVaV Tl lor iz SNTVal flize | 3 lorltae)|
FeF FeF

Now 1pctp is supported outside F', and each J in the Haar support of gg is
r-deeply embedded in F, i.e., J €, F'. Thus we can apply the energy Lemma 6.2
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to obtain

|| = ’ Z (T3 (Lper), gF)w

FeF

P(J, 1pe®
5 Z Z (|J|17n U. HPCgoodehlft JX||L2(w)||P§gFHL2(w)
FE}- JEMr-deep(F)

> X
FEF JEMy-deep (F)
=1lg +11p.

Pe, 5, (J, 1p-®0)
|J|1/n

HP cgood - :.h]ft)*. X‘ Lz(w)||P§gFHL2(w)

Then from Cauchy-Schwarz, the functional energy condition, and || ®||z2¢,) <
|fll2(s) We obtain

c /2
el < (X (FEm ) 1P e W)

Fe]:JeMr deep( )

/
(XY IRl

FeF JeMr_geep(F)

1/2
S Fall®llezo) [ 3 lorlda] S Sallflzzolllzae),
FeF

by the bounded overlap by 7 of the shifted coronas Clg:OOd’T'Shift.

In term IIp the projections P‘("ct:,‘)od,,_dhift are no longer almost orthogonal,
F

.
and we must instead exploit the decay in t)he Poisson integral P{, 5 along with
goodness of the cubes J. This idea was already used by M. Lacey and B. Wick
in [8] in a similar situation. As a consequence of this decay we will be able to
bound Il directly by the energy condition, without having to invoke the more

difficult functional energy condition. For the decay we compute

P¢ 5 (J, @o) |.J|0"
|J|1/n = / ) |y _ CJ|"+1+5*0‘ CI)(y) dO’(y)

IN

/ ( |J|1/n >6/ 1 (I)( )da‘( )
et Ndist(es, (neF)) ) Ty —egprrima -0

( |J|1/n )51 Pa(J’ 17rf7:+1F\7r_t.FFq)0-)
dist(cy, (75 F)¢) |J|1/m '

IN

]2 I8 5

t

I
=)

and then use the goodness inequality

|ﬂ_ F|(1 s)/n|J|s/n 2t(1 5)|F|

diSt(CJ, (F%F)c) > > 2t(1—6)—1|J|1/n’

| =

-2
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to conclude that

(9.3)

A

P o (J,1pPo)\ 2 L PY(J,1 v1p e p®P0O) | 2
( 1+5|J|1/: ) (22 16’ (1—2) |J|11;’7\l LF )

K

<i2 5" (1~ (P (J’ 1“;+1F\W?F(I)U)>2.

1/n
2 [T

Now we apply Cauchy—Schwarz to obtain

-y %

FE]: JEMr»deep(F)

Pe o, (J, 1pe®
(XY (P e

FEF JeMygeep (F)

1/2
% [ llorlaq]
F
1/2
\/ IIenergy [Z ||gF||%2(w):| ’
F

w

P$, 5 (J, 1pc®0)
- T 1/ ‘ (Cgood,-r»shift)*,J X‘
F ’ L

|J|1/n

() IP79r L2 (w)

2 1/2
L2(w)>

and it remains to estimate Ilenergy. From (9.3) and the deep plugged energy
condition we have

II energy

> 48 (1—e Pa(‘]’lwt+lF\7rt F(I)U) 2
<Y Y yrves (e

FeF JeM;_deep(F) t=0

2

45" (1—e Pa<J,1 t (I)(I) 2
g 3y 3 ( |JC|*‘;/an )

GE]:F€¢;E+1)(G) JEM_deep (F)

M

~
Il
o

2

’ Pa J,]. 7t 2
-0 S aner Yy (Femed)

GeF F€¢g_f+l)(G) JEMy-deep (F)

A
NE

~
Il
o

bgood,
x [[PPE° x| T2

3

<Y 27070 N ar(G)? (€2 + A9) Glo S (E2+ A |1 £132(0)
t=0 GeF

This completes the proof of the intertwining Proposition 9.4. O
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10. Control of functional energy by energy modulo A%

Now we show that the functional energy constants §, are controlled by A$ and
both the deep and refined energy constants £3°°P and £refined defined in Defini-
tion 2.4. Recall (£,)2 = (£deep)? 4 (grefined)2,

Proposition 10.1.

Fa Séa+ VAT +1/AY" and F) SEL+ VAY +4/ A"

To prove this proposition, we fix F as in (9.2) and set

(10.1) =Y ‘P“’ m‘

F.J |J|1/n
FeF JeEMy-deep(F)

2

Loy DI
where My qeep(F') consists of the maximal r-deeply embedded subcubes of F. For
convenience in notation, we denote for any dyadic cube J the localized projection
ngood,r-shift,J glven ln (9~1) by

Fa ;

FJ= C}g:‘ood,‘r-shlft;J J’ -
d,r-shift
JICJ: Jrecye T

We emphasize that the cubes J € M geep(F) are not necessarily good, but that
the subcubes J’ C J arising in the projection P% s are good. We can replace = by
x — ¢ inside the projection for any choice of ¢ we wish; the projection is unchanged.
Here 6, denotes a Dirac unit mass at a point ¢ in the upper half plane Ri.

We prove the two-weight inequality

(102) [P0l agurer i S (Eat /A5 + /A7) 1 oo

for all nonnegative f in L?(o), noting that F and f are not related here. Above,
P*(-) denotes the a-fractional Poisson extension to the upper half-space Rﬁ“,

t
PO, ) = / —ey
R ( 2

2+ |z —y[?)
so that in particular

PG sy = D0 D2 o)), 1Tz

FeF JEMr-deep(F)

T 2

FJ|J|1/n

L2(w)’
and so (10.2) proves the first line in Proposition 10.1 upon inspecting (9.2).

By the two-weight inequality for the Poisson operator in [14], inequality (10.2)
requires checking these two inequalities

(10.3) / P (0) () 1) = [P (L0 |2, ) S (A5 + E2) (),

(10.4) /[P“*(tllu)] o(x) S (AS + Ear/AS) /t2 du(z,t)
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for all dyadic cubes I € D, where T=1x [0,]1]] is the box over I in the upper
half-space, and

t2
P (17 p) (2 :/ e du(y,t).
(t17p)(x) @ g (y,1)

It is important to note that we can choose for D any fixed dyadic grid, the com-
pensating point being that the integrations on the left sides of (10.3) and (10.4)
are taken over the entire spaces R’} and R™ respectively.

Remark 10.2. There is a gap in the proof of the Poisson inequality at the top of
page 542 in [14]. However, this gap can be fixed as in [22] or [2].

The following elementary Poisson inequalities will be used extensively.

Lemma 10.3. Suppose that J, K, I are cubes satisfying J C K C 2K C I, and
thatp is a positive measure supported in R™ \ I. Then

P(Jp)  PUK p) _ P )

Proof. We have

P(J, 1) 1 / ]/
(

[T I ) (T + [z — ey

e du(z),
where J C K C 2K C I implies that
TV ) — ey = | KV 4 | —ck|, zeR"\I. O
Now we record the bounded overlap of the projections P -

Lemma 10.4. Suppose P% ; is as above and fix any Io € D. If J € My.deep(F)
for some F' € F with F 2 Iy and P ; # 0, then

Fzﬁg)fo for some 0 < /¢ < 7.
As a consequence we have the bounded overlap,

#{FeF:.:JCl g F for some J € My_geep(F') with P% ; # 0} < 7.

Proof. Indeed, if J' € Cgi’gi’T'Shift for some ¢ > 7, then either J' N 7r(}9)1'0 =0 or
7T]_- 0

(0)

J' D wy’'ly. Since J C Iy C ﬂ(fo)lo, we cannot have J’ contained in J, and this
shows that P¥,, =0. O
m'Io,J

Finally we record the only place in the proof where the refined energy condition
is used. This lemma will be used in bounding both of the Poisson testing conditions.
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Lemma 10.5. Let F and {P% ;}rer, je My auep(F) be as above. For any shifted
D-dyadic cube 1y, define

(10.5) B(lo) = Z Z (WY”P%,JX@Z(@ .
FeF:F2Io JEMyacep(F): JCIo
Then
(10.6)  B(lp) S 7((E57mePlue)? 4 (£5°PP18)%) Loy S 7((€a)? + BAT) [Lolo -
Proof. Define, for Iy a dyadic cube,
AIo)={J C Iy : J € My geep(F) for some F 2 Iy with P%. ; # 0}.

By Lemma 10.4 we may pigeonhole the cubes J in A(ly) as follows:
ATo) = | ) Aello); ATy ={JClp:JeM 1)}
(Io) o(Io); Ae(Lo) ={J CIo: J € Mrdeep(5'Io) }
=0

Now fix ¢, and for each J in the pairwise disjoint decomposition A(ly) of Iy,
note that either J must contain some K € My deep(lo) or J C K for some K €

Mr-deep(IO);
Ag(Io) = Ag(Io) U AF™ (o) ;
A (T) = {T € Ag(Ip) : J C K for some K € My_geep(l)},

and we make the corresponding decomposition B(Iy) = BP®(Iy) + Bsmall([y),
where

Bbig/small (IO )

” P*(J,1 2 "
=> ¥ (D) > 1%l

=0 JGA;"E/S“‘(““([O) FeF: F2Ioand JEM,_deep (F)

Turning first to B*™al([y), we use the T-overlap of the projections P% 5, to-
gether with Lemma 10.3, to obtain

sma a pe J’lfoa 2 w
(10.7) B <ty Y (%) P12 )

/=0 JeAzmall(IO)
< T2 (EFTNEN | Lol S T2 [(Ea)® + BAS] Holo

where the final estimate follows from (2.8), and this, for both Iy D-dyadic and I
shifted D-dyadic, is the only point in the proof of Theorem 2.6 that the refined
energy condition is used. Indeed, each cube 71'%)[0 equals ﬂg,)lo for some ¢/, and
it is with this ¢ that we apply the plugged refined energy condition.
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Turning now to the more delicate term B"8(1,), we write for J € A‘Zig(Io),

d, 2 2
[|PE7%x ||L2(w) = Z 185X 2 ()
J'CJ: J’ good
2 dw_||2
= Z 1AT%[ 72 + Z PR wXHLZ(w) )
JEN(I): J'CT KEMygoep (In): KCJ

where Ny(I) = {J' C I :4(J") > 27"4(I)} denotes the set of r-near cubes in I,
and then using the 7-overlap of the projections P4 7.7, We estimate

Po(J,1 2
B (] Z Z (%) Z ||P%,JX||22(LU)

(=0 jenbie(r, FEF:F2Io and JEMgeep (F)

IN

Pe(J 2
TZ Z (%) ||P§00d’wXH%2(w)

=0 JEA?ig(IO)

¢ Po(J,1 2
DIED IR CE o D DR PN

=0 JEAbig(I ) J'eNy(Io): J'CJ

J 110 ) subgood,w_ 12
+TZ Z ( |7/ ) Z 1Pk X[ 72wy 22(w)

=0 JeA}™(Io) HEMr-donp (To): KCJ

= 7 (BY®(Io) + BY%(1y)) .

Now we have, using that the J € A}Dig(Io) are pairwise disjoint,

T

(1
B ~ 3 (D) S Ayl

=0 J'eN:(1o)

2

-
I 71 2 m nr
<5 #N () (%) o2/ [Iolu, < 727 A3 [T,
£=0

Using P*(J,11,0) = P*(J,1,0) + P*(J, 14\ y0), we have

.
. PO(J,1,0)\2
bi y +J subgood,w
By¥(Io)~ > > (W> > 1P 50 %12 )

£=0 JEAbig(Io) KEMr-deep(IO): KcJ

T Pa(‘L 11 \JU) 2 subgood,w_ |12
2 > (pEas) X PR
(=0 JeAb5 (1) KeM;-qeep(lo): KCJ
= By%(Ip) + By (Iy) .
Now, since the J € Abig(lo) are pairwise disjoint,

EEOFD DS (o) Wi ke 5 a5 Ll

. J|t/n
=0 JeAy®(Ip) 171
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and since, for K C J,

P(J,11,\0) _ P*(K,14,,50)
[J[Hm K

we have

' T P(J, 11,0 50)\2
bi s LIo\J subgood,w 2
=Y 3% () PRl
£=0 JEAEig(IO) KEMr»deep(IO): KcJ

T Pa(K» 110\J0) 2 subgood,w 2

S Z Z Z (|K|—1/"> IPx X[|72(0)
£=0 JeA;’ig([O) KEM;_geep(lo): KCJ
T Pa(K, 1IO\KU) 2 subgood,w _ |2

< Z Z Z (W> IPx X7z (0)
(=0 bi

JEAYE(Iy) KEMrdeep(lo): KCJ

i Pa(K, 1IO\KU) 2 subgood,w _ |2

< Z Z (—|K|1/" ) 1P X[ 72w
£=0 KEMr-deep(IO)

S 7€) |1, S T((E) 4 BA) T

~ a Oloe a 2 Olo >

where the final line follows from (2.7). Finally, the case when Iy is a shifted
D-dyadic cube is easy and left for the reader. O

10.1. The Poisson testing inequality
Fix I € D. We split the integration on the left side of (10.3) into a local and global
piece:
/ P*(1;0)% dp = / P*(1;0)? dp + / P*(170)? du
Ry T REHINT
= Local(I) + Global(I).

Here is a brief schematic diagram of the decompositions, with bounds in (I, used
in this subsection:

Local(I)
1
Local”™(I) + Local™"*(T) Glolial( 1)
+ (5geep)2 and

A + B+ C 4+ D |
A+ (5] [45] [45] [

[(Edeor) + A3 | [ (£a)® + 43

We turn first to estimating the local term Local(I).
An important consequence of the fact that I and J lie in the same grid D = D%,
is that (c(J),|J]) € I if and only if J C I.
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Thus we have

/f P (110) (2, £)? dpa(a, )

X 2
=Y X e P
FEF JEMy-doep(F): JCI @)
_ « 2 w X 2
-3 3 P, 110)? P2, 7 ey

FeF JeM; qeep(F): JCI

In the first stage of the proof, we ‘create some holes’ by restricting the support
of o to the cube F' in the ‘plugged’ local sum below:

u Pa(‘]) 1Fm[0') 2 w
LocalPl g(]) = Z Z (W) HPF“]XH%Q(LU)
FeF JeM; geep(F): JCI

Pa(JalF IU) 2 w
{ X+ X} X () P
FEF:FCI  FeF: F2I JEMudeep(F): JCI
= A+ B.

Then a trivial application of the deep energy condition (where ‘trivial’ means that
the outer decomposition is just a single cube) gives

Pe(J 2
A= Z Z (%) ||P%,JXH%2(LU)

FeF:FCI JEMr»deep(F)
< 3 (e B, < (€24 A3) 1],
FeF:FCI

since || PﬁﬂCH%g(w) <|| PﬁXH%g(w), where we recall that the energy constant £decpplug

is defined in (2.6). We also used that the stopping cubes F satisfy a o-Carleson
measure estimate,

Z |F|0§|F0|0~

FeF:FCF,
Lemma 10.5 applies with Iy = I to the remaining term B to obtain the bound

B < 7((€a) + BAS) 1], -

It remains then to show the inequality with ‘holes’, where the support of o is
restricted to the complement of the cube F'. For I € D we define

Fr={FeF:F&I}U{l},
so that the term Local™°(I) is the left-hand side of (10.8) below.
Lemma 10.6. We have

Local™*(I)

P*(J, 1 LI co
1ws =3 % (%) P22 e S (€2 1, .

FeFr JeMi_geep(F)
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Proof. We estimate

P(J,1 N2 aw
5= Y () IPeadiag

FEFT JEMy_qeep(F)
by

P, 1y o) N2 |
S= Z Z Z ( |J|?/: . ) ||PF,JXHiz(w)

FeFr JeMracep (F) F'€F: FCF'GI

P(J, 1, pr o)y 2
Yoy oy (e e

F'eF; FEF: FCF' JEMy_geep (F)

P(J, 1y, o r0) \ 2
YOy x oy (e

FreF KeMr-deep(F,) FeF: FCF' JeMr—deep(F): JCK

X ||P%»JXHiQ(w)

A

Z Z (PQ(K, 171'}‘IF/\F/0-)>2

1/n
F/E}-I KEMr-deep(F/) |K|
2
w
x> > (L s P
FEF: FCF' JEMyacep(F): JCK
by the Poisson inequalities in Lemma 10.3. We now invoke
w 2 pw 2
> 2 (LW PAIRSE Lo sl PR
FeF: FCF' JEMyacep(F): JCK
where the implied constant depends on 7 and for K € My qeep (F'),
Pc= D 2 ko
FeF: FCF' JEMy.qaeep(F): JCK

Now denote by d(F) = dg, (F,I) the distance from F to I in the tree Fj.
Since the collection F satisfies a Carleson condition, we have geometric decay in
generations:

> e S27% I, k>0
FeFr: d(F)=k
Thus we can write

P (K, 1, pn g ~
15| < Z Z ( ( 7 FI\F U)>2HPw’,KXHi2(w)

1/n
F’E-FI KEMr»deep(Fl) |K|

© P K,lﬂ. NFrO)N\N2  ~
:Z Z Z ( ( 7 FI\F )) ||Pw/7KX||2L2(w)

|K|1/n
k=0 F'€Fr: d(F")=k KEMy_geep(F")

= ZAk,
k=0
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where by the deep energy condition,

P (K, 1, prp .
A = Z Z ( : S U))znpw',KXHi?(w)

|K|1/n
FleFr: d(F’):k KeMr-deep(F,)

< (£deer)? 3 |F"), < (£3¢P)? 20k 1, |
FreFr: d(F")=k—1

and we finally obtain

|S| <Z gdeep 2= ok |I| (gdeep) |I|
k=0

which is (10.8). O

Altogether, then, we have proved that Local(lp) < ((€4)? + AS) |lo], when Iy
is a D-dyadic cube. We leave the straightforward extension of this inequality to
shifted D-dyadic cubes I for the reader.

Now we turn to proving the following estimate for the global part of the first
testing condition (10.3):

[ o) s 457 1
RYTIN\T

We begin by decomposing the integral on the left into four pieces where we use
F ~ J to denote the sum over those F' € F such that J € M;_geep(F). Note that
given J, there are at most a fixed number C' of F' € F such that F' ~ J. We have:

/ P*(170)%du
RYTIN\T
2
— 1/n\2 X
N 2 BT D, HP%’“’UM L2(w)
Ji(eq, | TV m)eRYINT FeF:

JeMr-deep (F)

—{ oo+ Y+ > +Z} (170) (e, |T|M™)?

JN3I=0 JC3I\I JNI=0

‘J‘l/ngllll/n ‘J‘l/n>|1|1/n ¢
2
X
< X |Prume
i Iz w)
JEMr»deep(F)
=A+B+C+D.

We further decompose term A according to the length of J and its distance
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from 7, and then use Lemma 10.4, with Iy = J, to obtain:

2—m|]|1/n

o0 oo 2
ASY D > (W |I|a) 7|

m=0 k=1 Jc3k+11\3k1
| T/ == 1

S

0 o I|2/n|]| |3k+11\3k1|
< —2m | o w
~ Z 2 Z |3k:]’|2(1+1/n7a/n) |I|‘7

k=1

k+1 k+1
2m 2k |3 I| |3 I|w «
< 22 23 { 3k]|2(1 a/n) }|I|0N 2 |I|a

m=0

For term B we let

= U U {K e C]g:‘ood,‘r—shift K C J},
FeF JeMT—deep(F)

which is the union of all K occurring in the projections P4 7. We further decompose
term B according to the length of J and use the fractional version of the Poisson
inequality (8.13) in Lemma 8.8 on the neighbour I’ of I containing K (essentially
in [23]),

|K|1/”)2—2(n+1—a)5

PQ(K?1[U)2 rg ( |I|1/n

P*(I,1;0)*, Ke J* K C3I\I,

where we have used that P*(I’,1;0) ~ P%*(I,1;0) and that the cubes K € J*
are good.

We then obtain from Lemma 10.4, with Iy = J,

Pe(J, 2
b= Z (%) Z IP% 172w

JC3INI FeF:
JEMr-deep (F)

)
—m\2—2(n+1—a)e |I|CT 2
Yoo X e (i) IR

m=0 KC3I\I
‘K‘l/n_277n|1|1/n

A

oo

m n «@)e |3I|U|3I|w [e%
Z 9—m2—2(n+1-a) |31_|2(17ﬂ/n)|I|(,§7-AQ|I|(,.

For term C' we will have to group the cubes J into blocks B;, and then exploit
Lemma 10.4. We first split the sum according to whether or not I intersects the
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triple of J:

1/n 2
C”{ 2t 2 }(<|J|1/n+c|1ﬂt(J,I>>"+1a”"’>

J:IN3J=0 J: IC3J\J
‘J‘l/">|]|1/" ‘J‘l/n>|1|1/n

w X
F,J|J|1/n

<D
FeF:
JeMr-deep(F)

L2 (w)

=C1+0C5.

We first consider . Let M be the maximal dyadic cubes in {Q : 3Q N T = 0},
and then let {B;}°, be an enumeration of those ) € M whose side length is at
least |I|'/™. Now we further decompose the sum in C; by grouping the cubes .J
into the Whitney cubes B;, and then using Lemma 10.4, with Iy = J,

1 2
01<Z 2 (|J|1/"erist(J,I))"ﬂ’a'I'”) >, PRl

i=1J: JCB;

FeF:
JEMr-deep(F)

[oe]
1 2 w 2
Z ((IBz-ll/" + dist(B;, I))"+1- '”") 2 2. PRl

i=1 J: JCB; FeF:
JeMr-deep(F)

1 2
_ o) 3 TPl
|1/n ; ntl-a
(|Bs|*/™ + dist(B;, I)) J: JCB;

A

A

2
™ |Bi|*™ | Bil.,

A

(]2 ‘1M8

>~ (
- ((|B |1/"+dls‘i(B I))n+i- a|I|a>

i Bilulllo
| |2(1 a/n) g

=1

.
I

s‘

and

o _Bilwllle e~ M
Z |Bi|2(17a/n) - |I|17a/n Z |B |2 (1—a/n) | |

i=1
N |I|a |I|1 a/n
|I|1 a/n Z dlSt Lﬂ I 2(n @) dW(lL')

i, / ( z]/n )
N dw(z)
Vi TTi—a/n Z |[|1/n +dist($,f)]2

o
- |I|17a/n

P(I,w) < A",

We obtain Cy < 7A3" |I],.
Next we turn to estimating term C5 where the triple of J contains I but J
itself does not. Note that there are at most 2™ such cubes J of a given side length,
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one in each ‘generalized octant’ relative to I. So with this in mind we sum over
the cubes J according to their lengths to obtain

|J|M/m 2 x 12
- 1) ¥ |Ptorzm
-3 2 (gmrasanrt) X Pl
‘JP/W om | /m JEM_qeep (F)
[oe] [oe]
||, mo 7], |I|'=e/™ (3. 27|,
<3 (nen ) Tl32 N =7 {eém 2 e ) 1l

|I|0' oL
< 79 pa < )
s7{ a7 P (Lw) b, <7457 |1,

since, in analogy with the corresponding estimate above,
(o)
|I|1—o</n |3.2n]| |I|1 a/n
) |2m [[2(=a/n) Z |2m[|2(1 oy Laani(z) dw(@) S P w).
m=0

Finally, we turn to term D, which is handled in the same way as term Cj.

The cubes J occurring here are included in the set of ancestors Ay = ﬂgc )T of T ,
1 <k < oco. We thus have from Lemma 10.4 again,

X
D= ZIP’C’ 170)(c(Ar), |Ag|/™)? Z HP%’A’“W

FeF:
A EMyr_geep (F)

o~ (o [AR" N2 I, & |Ipe/
< T . 171 N7 =
NZ (|Ak|1+(1—a)/n> T |Aglw T{|]|1*°‘/” ]; | Ay, |2 (1—o/n) | Akw }|I|a

k=1

2

L2 (w)

A

|I|U ok
1—a/n P(X(I’w) |I|U 5 A2 |I|U,
M

since
|I|1 a/n |I|1 a/n
Z |4, 20— a/n)| klo = Z |Ak|2(1 a7 1 z) dw(z)
|I|1 a/n
/Z 92(1— a/n)k |7]2(0=a/m) Lay(a) dw()

1 n—a .
g/((|l|1/"fdist(x’]))2> dw(x) = P(I,w).

10.2. The dual Poisson testing inequality

Again we split the integration on the left side of (10.4) into local and global parts:

/R[Pa*mfu)]% - /I[MHWH /R\I[P“*(tlfu)]%
(10.9) = Local(I) + Global(I).
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Here is a brief schematic diagram of the decompositions, with bounds in (I, used
in this subsection:

Local(I)
1
Us
! Global(])
Tsproximal + ‘/sremote q J(
an
AS +Eor/AS + AS ! Aa + Ba

TdiHerence + Tintersection
AS+EqJAS+AS | | Ear/AT

We begin with the local part Local(I). Note that the right hand side of (10.4) is

(10.10) /thu— oD PRl

FeF JeEM;y deep(F)

Jci
We now compute
1P 5172 ()
(10.11) P (t 17 ) (y) = > > — ,
/m _ +1—
FeF JGMr deep(F) (|J| L+ |y CJ|)” «
Jc1I

and then expand the square and integrate to obtain that the local term Local is

Z Z / HP%JXHQL?(w) HP%/,J/XH%Z(W do(y)
i (T ly =)= (T ly=eprei=e 0
JEM;_ deep(F)JEMy- deep(F

JcI J'cr

By symmetry we may assume that |J/|'/™ < [J|V/". We fix an integer s, and
consider those cubes .J and J' with |J/|'/™ = 275|J|*/™. For fixed s we will control
the expression

V= Y >

FF'eF JEMydeep(F), J' €EMr_deep(F')
J”]’CL ‘J/‘l/nZZ—S‘J‘l/n

/ ”P%JX”%?(M) ||P“1§',J'XH%2(w)
([ + y — cg))rti=o ()7 + |y — cp| )i

do(y),

by proving that
(10.12) Us S27°° (AS + Ea/AT) .

With this accomplished, we can sum in s > 0 to control the local term Local.
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Our first decomposition is to write

(1013) Us _ Tsproximal + ‘/Sremote ,

where we fix ¢ > 0 to be chosen later (¢ = 5~ works), and in the ‘proximal’
term TProximal we restrict the summation over pairs of cubes J,.J’ to those sat-
isfying |e(J) — c(J')| < 2%¢|J|*/™; while in the ‘remote’ term VI®™°' we restrict
the summation over pairs of cubes J, J’ to those satisfying the opposite inequality
le(J) — e(J")| > 2%¢|J|*/". Then we further decompose

remote __ rpdifference intersection
1% =T + 1T} :

where in the ‘difference’ term Tdifference we restrict integration in y to the difference
I\ B(J,J") of T and
B(J,J") = B(cs, t|cs —crl),

the ball centered at ¢; with radius %|c J — cy]; while in the ‘intersection’ term

Tintersection we restrict integration in y to the intersection I N B(J,J') of I with

the ball B(J,J'); i.e.,

intersection —
T =¥ S
F,F'€F JEMy-deep(F), J EMyp_qcep(F")
J,chL |J/‘1/n:2—s‘J‘1/n

le(J)—c(J")|>250F2) | g1/

<), 1P e Pl
oy QT ly — ea o= (7 Jy — epyrii=a 4 ()

We will exploit the restriction of integration to I N B(J,J'), together with the
condition
ey — ey 2 220 = 255 g,

in establishing (10.17) below, which will then give an estimate for the term
Tintersection yiing an argument dual to that used for the other terms 7Proximal
and Tdifference  We now turn to estimating the proximal and difference terms.

10.2.1. The proximal and difference terms. We have, using (10.10), that

proximal __
Tyem= ) >

F7FIE]: JEMr»deep(F)7 JlEMr-deep(F/)
JJ'CI, [T Y =27 TV ™ and |eg—c 0| <2 T/

/ HP‘}J«“,JX”QLz(w) ||P%',J'XH%2(UJ)
T+ 1y = ealy1=a QT+ ]y = ey

< Msproxirnal Z Z H UI?',JZHE; _ Msroximal/th d/,l,,

FeF Mr-deep(F)
JCI

do(y)
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where

M;)roxnnal = sup sup A];rox1mal(J);
FeF JEMy_deep (F)

AErOXimal(J) = Z Z /IS(FJIQJ) (y) dO’(y) ;

Frer J' €My _deep(F')
JCr, [T =272 J|Y"™ and |eg—c | <2%€| T/ ™

1 HP%',J'XH%%@
(|J|1/n + |y _ CJl)n—i-l—(x (|J/|1/n + |y _ CJ,|)7L+1—047

S(IT]/,J) (1’) =
and similarly

Tdifference —
s = E E

F.F'eF JEMy_deep(F), J' EMydeep (F')
JJ'C, |0 Y =275 " and |eg—c i |>2%¢ T/
<, IP% x| Pt o
a
sy (T +ly = eghrtt=e (7Y + |y — cp|)nrize

§ M;:lifference § § H ul*i',JZ”E) _ M;iifference/t2 d,u,
FeF Mr»deep(F) I

JCI
where
M;:lifference = sup sup A;emote(J)
FeF JeM; geep(F)
and
ifference
Ag (/)
=3 > L s S o).
F'eF T E€My-deop (F) IB(JJ")

J'CI, | T Y =272 g and |cg—c | >2%¢ T/

The restriction of integration in Adiflerence to 1\ B(.J, J') will be used to estab-
lish (10.15) below.

Notation. Since the cubes F, J, F’ and J’ that arise in all of the sums here
satisfy

J e Mr—deep (F) ) J e Mr—deep (F/) and / (J/) =27 (J) ,

we will often employ the notation ) to remind the reader that, as applicable, these
three conditions are in force even when they are not explicitly mentioned.

Now fix J as in MProximal pegpectively Msdlffere““, and decompose the sum
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over J' in AProximal( Jy regpectively Adifference( 1) by

Apreximal(7) = 3 ) | 565wt

Frer J' EMy_deep (F')
JCr, [T =272 g™ and |cy—c | <25 | TV ™

-y Y [shawdw
F'eF cy€2J I
|CJ—CJI‘<2SE|J|

FYY Y [shawa
FreF (=1 ¢ ettt \2%J
e e |<2e a1/

oo

— proximal, E

= g AP (J),
£=0

1/n

respectively,

A;iifference J) — / SF’/ (y do y)
( Z Z INB(J,J") () W) do

Frer JIEMr-deep(F/)
J/CI, ‘J"l/":Q_S‘J‘l/"
and |cy—c |>2%¢ [T/

> X [ shmde)
I\B(J,J")

F'eF ¢, €2
‘C]—CJ/‘>2SE‘J‘1/”

1555 SHEED DU N At

{=1F'eF ¢y 2£+1J\25 I\B(J,J")
e L1225 a1/

oo
= Z A(Siifference,é(J) )
=0

Let m be the smallest integer for which

1
(10.14) 27" < o

Now decompose the integrals over I in AProximalt( J) by

AIS)roximal,O(J) — Z Z ; S(FJ//”]) (y) dO’(y)

F'eF cyr€2] \4J
leg—c r|<2%c g™

*
+ Z Z / S(J’ () do(y)
F'eF cpe2d In4J
|CJ—CJ/|<256‘J‘

= Aproxnnal O(J) + Apro)umal O(J),

s,far s,near

1/n
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and

Ag)roximal,é J) = / SFl/ Yy do Yy
J)=> > nat+ag (7, () do(y)

FreF ¢ e2tt1\2%7
les—cyr|<2°¢ gt/

: / SF/’ Y do Y
Z Z IN(26+2 1\2¢-m ) (J ,J)( ) do( )

FreF ¢ ettt g\2fg
cyg—c g |<2%° T 1/m
J

I S SEE A Ort)
In2¢—mJj

FreF ¢ e2t41\2%7
les—c <25 | g™
= Aproxnnal,é(J) +APrOXimal’e(J) + Aprommal,é({]-)7 Vi Z 1.

s,far s,near s,close

Similarly we decompose the integrals over I* = I\ B(.J,J') in Adifference.f( 1y by

A;iifference,O(J) _ Z Z /I*\4J S(J/’,J) (y) da(y)

FleF cpe2]
les—c =2 | g/

+Y Y[ shawd

FeFr c €2 TnaJ
les—c 02255 T/
S .
= Ad1 erence,O(J) +Ad1fference,0(J))

s,far s,near

and

A;iifference,f(J) _ Z Z / S(FJ/,J) (y) da(y)

* 42
FreF ¢ ettt \2fg \26¥2J
cr—c | >2%¢ | 1/n
J

+ / S ) doty
S X SEt)

FreF ¢ ettt g\2%
les—cyr|>27¢|J|M/ ™

5 S DI S Oty
FIeF ¢ 2ttt \20 natmd
les—cyr|22°¢ T/ "
= Adifference,Z(J) + Adiﬂerence,@(J) + Adifference,é(J)’ ¢ Z 1.

s,far s,near s,close

We now note the important point that the close terms Agfﬁ’ggrélal’é(J) and

difference.t 1y hoth vanish for £ > es because of the decomposition (10.13):

s,close

(10-15) Aproximal,é(J) _ Adifference,é(J) _ 0) (> 1 +es.

s,close s,close
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Indeed, if c;r € 2¢41.7\ 2°J, then we have

1

(10.16) 524|J|1/” <les—cpl,

and if £ > 1 + s, then
|CJ _ CJ’l > 2€8|J|1/n — 2(1+€)8|J’|1/".

It now follows from the definition of Vs and Ty in (10.13), that AP"2malf( ) — ¢,

s,close

and so we are left to consider the term Agjgigince’é(J ), where the integration is

taken over the set I\ B(J,J'). But we are also restricted in A%iferencet( yy 44

s,close

integrating over the cube 2¢~™.J, which is contained in B(.J, J') by (10.16). Indeed,
the smallest ball centered at ¢(.J) that contains 2¢~™.J has radius \/5%24*’”|J|1/”,
which by (10.14) and (10.16) is at most

1 1
12€|J|1/n < B les —crl,

the radius of B(J,J’). Thus the range of integration in the term Adiﬁerence’e(J)

s,close

is the empty set, and so Agfgigeence’é(J ) = 0 as well as ASTS’;Z:M’Z(J) = 0. This
proves (10.15).

Thus from now on in this subsection we may replace I\ B(.J, J') by I since all
the terms are positive, and we treat TProximal and Tdifference i the same way now
that the terms A‘s),rcol’;iszlal’e(;] ) and Afjgirsince’e(J ) both vanish for £ > 1+ es. Thus
we will suppress the superscripts proximal and difference in the far, near and close

decomposition of A?rcol’;gal’e(J ) and Aglgigince’e(J ), and we will also suppress the

conditions |c; — ¢y < 2°5|J|Y™ and |c; — cyr| > 2°°|J|*/™ in the proximal and
difference terms since they no longer play a role. Using the bounded overlap of the
shifted coronas C&°T T e have

Z HP?',J'XH%%;) S T|J/|2/n|J/|w’
F'eF

A= 3 / S, () do(y)
FreFe,e2)’INBI)

*

|J/|2/n |J/|w
sty do(y)
CszezzJ nen (Y 4y —cg])2ntizo)

_ 9 * J|2/n
=727% |J' | / | do(y).
( 2 ) \an) IV + |y — cg))2nti=e)

cy€2J 1
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which is dominated by

1
R / do(y)
e N (V7 + Jy — eg])2n=a) (

_ 13| / | J|1 /™ n—a
~ 7'2 287 dO'
e o (T sy —epe) W

—2s |3J|w
~ T2 |3J|1—a/n

P*(3J,0) ST 92 AS .

To estimate the near term A
and write

enear Z Z/ S(’J) )dO’(y)

FreFe, 2y’ 1NBJ)

(J), we initially keep the energy HP%/,J/Z”%%Q,)

s,near

39 U ¥
~ o
o iy RO (T Jy = e

*

1 1
= E S — E P 5x||2. / d
[ F(F1=e) 1P 5% 72 0 i (TT + [y — ep)nti-e o (y)

F'eF cp€2J

1 - " o PUJ 1n@Eno)

=Y FECE > ||PF,,J,x||L2(w)—|J,|1/n :
FleF cp€2J

Now by Cauchy—Schwarz and Lemma 10.5, this is dominated by

1/2
(Y Pri)

F'eF c(J')e2J and J'CI

" PY(J", 1nanyo)\ 2\ 1/2
X ( Z Z ||PF’,J’X||%2(UJ)(W/7€)> >

F'eF cype2J and J'CI

*

1 n /
5 1 (n+l1-a) (T Z |J/|2/ |J/ 1/28 T|4J|"

|| cp€2J

< 2V e T

~ |J| Lpt+l—a)

4w 47|
|J|%(n—oc) |J|%(n—oc)

ST27%E8LVAS .

Here the estimate for Local(ly) applies to the expression

- P(J, 11 40)0)\ 2
w 2 ’ (4J)
Z Z IP ’,J’XHLQ(w)(m—l/n> ’

F'eF cjyp€2J and J'CI

<T27%8,
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with Iy = J, and where .J is a shifted D-dyadic cube satisfying UcJ/e2J J' C J and
|j|1/n < C |J|1/”.

Similarly, for £ > 1, we can estimate the far term

Aa=Y > [ s, W)
FIeF cpeirin)\(2tg) Y NEF2)

*

|J/|2/n|<]/|w
ST / do(y)
CJ/€(2‘5;])\(22J) neegy ([J[Y7 4y — eg])2nti=a)

*

, J|2/n
— g ) | | —_do(y)
(<Z> ) Jy evey, T Ty — e

|2€J|2/n

~ 7_2—23 2—22/n( |J/|w>/ da(y),
CJ/E%;+1J) ey (IZETIV7 + Jy = cge )20 =)

which is at most

1
7_2—23 2—22/n |2€+2J|w /
N2y (260197 + [y — eqe g

PN 327 ol J1/n n—a
~ 7927259 20/n | |W / ( | | 2) da(y)
Nz N

)2(n7a) d(f(y)

EXE STy ea])
< —2s 9—20/n |2£+2J|w a(ol+2 < —2s 9—20/n qo
ST27%%2 RIJ[iorm P2 T, 0)r ST27%2 A5 .

The near term A?near(J) is

DY / : St W) do(y)
F'EF ¢ e2t+1J\20] IN(26+20\26-m )

*

1
F/ze:]-' ey 62;1:J\213J /fﬂ(2“2J\2""‘J) |2¢1=2) ]| 7 (nt1-a)

| P%',J'X”zm(w)

x (|J/|1/n Ty — cprrti-a do(y)
1 *
= rTory O 2 PRl
|20-1.]|w( )
F'eF cje2t+t j\2tJ
1
x do(y),
/10(2‘]"*'2]\2@_’”]) (117 4y — egr|rtt=e w)
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and is dominated by

w P 1 n(2et20)0)
(n+1 ) Z Z HPF/vJ/XH%Z(W) |J/|1/n
FIeF ¢ et +1J\20

1/2
< e ( > Pl

F'eF ce2tttg\2tJ

* w Pa(J/71]m2g+2J 0') 2\ 1/2
(XX PR (— ) )

F/eF cjeatt1\2¢0

|2€ m_J

n

This can now be estimated by &, using >~ o+ HP%,J,ZH%Q(M) < 1 |J'[?/"|.J|., and
the estimate for Local(1y) to get

9¢ 1/n
AL (7) S 27027 J' i) =121 8022,

243 7], |26+3 ]|
< 9—sg—{/n | o s L/n a
S22 2043 J[1—a/n 2643 J[1=a/n ~ S22V AY

where Iy = J is a shifted D-dyadic cube satisfying ch,ezfﬂJ\szJ/ C J and

|f|1/” < 3-2¢F1|J|/". We are also using here that m ~ 1 + 1log, n is harmless.
These estimates are summable in both s and 4.

Now we turn to the terms A% . (J), and recall from (10.15) that AL 1 ..(J)=0

if £ > 14 es. So we now suppose that £ < 1+ es. We have, with m as in (10.14),

scose S ’ y do Yy
FUES YD S S o

F'eF cje2t+t g\2tJ

Q

* w 2
DS T e do()
F/EF ¢, eat+1\2¢ g/ INERT™T) (1™ + |y = cal) |20 | (nH1=e)

* 1
w 2
(X > Pl grms

FIeF ¢, e2t+1J\207

Q

></ : do(y)
g .
In(2¢-mJ) ([T[Y™ + |y — cg|)ntize

Now we use the inequality ) [|P% J’Z”Lz(w) < 7| J' 2" ||, to get the rela-
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tively crude estimate

Aﬁ,close(‘])
1 1
< 79728 2/n 2@—}-1
SRR TS Sy W07 1y — e )
< 7_2—2s |J|2/n |2£+1J|w |2€_m‘]|0
~ |24J|%(n+1—o¢) |J|%(n+1—0¢)
l+1 l+1

—2s |2 J|W |2 J|U l(n—1—a) —25 ol(n—1—a) po —5 pa

~ T2 |2€+1J|1—o¢/n |2£+1J|1—a/n 2 ’S T2 2 A2 ’S T2 A2

provided that ¢ < s/n. But we are assuming ¢ < 1 + s here and so we obtain a
suitable estimate for AQCIOSQ(J) provided we choose 0 < e < 1/n.

Remark 10.7. We cannot simply sum the estimate

1 Pa((]’ 122—1J0')

l < 9—2s 2/n |9l+1
A (J) ~ 2 |J| |2 J|w TIL("+170‘) |J|1/n

s,close

EZ;

over all £ > 1 to get

0 < 9—2s pa |J|1/n|2€+1‘]|W < 9—2s pa «
ZZ:AS7CIOSQ(J)N2 p (JvU)ZZ:W—n—H—a)NQ p (J,U)P (Jaw)a

since we only have control of the product P(J, 0)P(J,w) in dimension n = 1, where
the two Poisson kernels P and P coincide, and the two-tailed Ay condition is known
to hold.

The above estimates prove

Tsproximal +Tsdifference g 2—S(Ag¢ +(€QM+A(QX) g 2—S(Ag¢ +5Q\/@).

10.2.2. The intersection term. Now we return to the term

Tintersection —
s = E E

FF'eF JeEMydeep(F), J €Myaeep(F')
J,J/CI, ‘J"l/":Q_S‘J‘l/"
le()—e(")| 222 |t/
/ 1P, 51172 1P 1%l %2 )
1By (T + ly = cg)tt=e (L)Y + [y — ep|)ntt=e

do(y) -

It will suffice to show that Tintersection gatisfies the estimate

Tsintersection 5 9—se 8@\/14_% Z Z |‘P‘Ig§JXH%2(w) — 9—se 80t\/A_g/A t2 du-
I

FeF JeMr_deep (F)
JCI
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Using B(J,J') = B(cy, i|c; — cr]), we can write (suppressing some notation for
clarity),

Tintersection
S

_ / ||P%,JX||%2(M) HP%/,J/X”%?(M do(y)
I

) (VP +ly = stz (17t y—cp|)rit=e

1
J—Ccy

F.F J.J

~ Y Y lIPE 720 IPE X172 (0 B

|n+17a
F.F" .0

x/ 1 do(y)
o\y
INB(J,J") (|J|1/7L + |y _ cjl)n—i-l—a
1 Pa(J’llﬂB(J7J’)U)

~ w 2 w 2
~ ;}; JZ; HPF,JX”L?(UJ) P ’,J’X”L?(w) ey — cp|nti-e FER

1 PQ(J 1IOB(JJ’)U)
2 w 2 ) s
<D D MPE xlTew DD ey —cyririza IPRsXllLee) T ;
F g F J

and it remains to show that for each J’,

y 1P JX||2L2( y PY(J, 11aBes,01)0)
A 7 " : 7
SS(J):Z Z |CJ_CJ,|7L+1—04 |J|1/"
F i le()—c(J)|>280+e) | g7 |1/
S27%°E, \/AS .
We write
S (J) ~ 1
s(J ) ~ Z (Qk |J’|1/n)n+17a
k>s(14+e)—m
* " ]_:’OC(J7 148 g, g)
X PR

F . |CJ—CJ/|%2]“J"1/"

1 k
Z (2k|J/|1/n)n+17a SS (J/) ’

k>s(14+e)—m

where by [e; — ep| & 2517V we mean 241 < ey — eyl < 2CHI|Y
Here m is as in (10.14), and we are using the inequality,

(10.17) k+m>(1+¢)s.

Indeed, in the term V; we have |c; — ¢y > 2(1+5)3|J'|1/", and combined with
leg —cpr] < /n2F|J' |V we obtain (10.17).



150 E.T. SAWYER, C.-Y. SHEN AND I. URIARTE-TUERO

Now we apply Cauchy—Schwarz and Lemma 10.5 to get

*

/
S<(X Y Pl

FJ:|cj—cy|=2k|J/ |1/

* Pa(Jv]- J! )21/2
(XX IPrl (F ey

F J: |CJ—CJ/|%2]“J’|1/"

* 1/2
st X WL e Rh )
J:leg—cyr|m2k| |1/
STE2 |2 \J25 T S 7 Ea AT 20| 2R e
=7 Ea /A5 2028 | I,

provided
B(J,J)cC2kJ.

But this follows from |c; — cy/| & 2F|J'|'/™ and (10.17), which shows in particular
that £k > s +c.

Then we have

1 k
Ss(J) = Z (2K|J/[F/nynt1-a SS(T)
k>(14e)s—m

1 gk(n—a) | /| & (nt+1-a)
STEVAS ) e 2 2T
k>(14€)s—m

<T&, \/@ Z sk <T27°%E, \/@,

k>(1+e)s—m

which is summable in s. This completes the proof of (10.12), and hence of the
estimate for the local part Local(7) in (10.9) of the second testing condition (10.4).

10.2.3. The global estimate. It remains to prove the following estimate for the
global part Global(7) in (10.9) of the second testing condition (10.4):

[P £ 45 1.
R\I
We decompose the integral on the left into two pieces:

[oempe= [ @i Por [ (BUeiwfo—a+ B
R\I R\31 3I\I
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We further decompose term A in annuli and use (10.11) to obtain

A= Z / [P*(t17p))* 0

m+1]\3m[

w 2 2

_ Z/ |: Z HPF,JXHLQ(w) :| dO'(y)

SN L ECF Je My deep (F) (1 + Iy = ea)rtt=e
JCI

2
1
1P x| doty).
m+11\3m'1[1;JeM§ep(F) 7 COf (3m[[/m)2nt1-0)
JCI

oo
s>
m=13

Now use (10.10) to get

/t2 TR > IPE X122 S 7 IL1(e = enlFowy S 1P o,
FeF JEMr deep(F)
JCI

and to obtain that
1

A< 2dul [1I2™ 1], d
Z/m+11\3m1 / 'u] L ](3m|f|1/")2("+17a) o)

. 3m+1[ 3m+110
{ZS 2m | 3m+1|1_|2|(1 a/n)l }{/Tthu} SAg/Tﬂdu.

Finally, we estimate term B by using (10.11) to write

B= / [ > > P ing ]2da(y)
3I\I ([T 4y — e g])ntize ’

FeF JEMr-deep(F)
JcI

and then expanding the square and calculating as in the proof of the local part
given earlier to obtain the bound A$. The details are similar, but easier in that
the energy condition is not needed, and they are left to the reader.

11. The stopping form

In this section we adapt the argument of M. Lacey in [1] to apply in the setting
of a general a-fractional Calderén—Zygmund operator 7% in R™ using the mono-
tonicity Lemma 6.1 and our energy condition in Definition 2.4. We will prove the
bound (8.16) for the stopping form

(11.1) Bliop(f29) = > (E7, A7 PUT51avs, A59)w
I€C and JeCg=hift
JEply
= Z (E7 AT PNTS 1ag, AN59)w

I:7IE€C4 and JeCshift
Jepl
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where we have made the ‘change of dummy variable’ I; — I for convenience in
notation (recall that the child of I that contains J is denoted Iy).

However, the monotonicity lemma of Lacey and Wick has an additional term
on the right hand side, and our energy condition is not a direct generalization of
the one-dimensional energy condition. These differences in higher dimension result
in changes and complications that must be tracked throughout the argument. In
particular, we find it necessary to separate the interaction of the two terms on the
right side of the monotonicity lemma by splitting the stopping form into the two
corresponding sublinear forms in (11.6) below. Recall that for A € A the shifted
corona is given in Definition 8.7 by

ittt ={JeCa:Je, A}U |J {J€D:J & Aand Jis T-nearby in A'},
A’EC 4(A)

and in particular the 1-shifted corona is given by CY™Pft = (C4 \ {A}) U € 4(A).

Definition 11.1. Suppose that A € A and that P C C{shift x C7shift. We say
that the collection of pairs P is A-admissible if

e (good and (p — 1)-deeply embedded) J is good and J €,-1 I C A for
every (I,J) € P,

e (tree-connected in the first component) if I; C I and both (Iy,J) € P and
(I2,J) € P, then (I,J) € P for every I in the geodesic [I1,I3] = {I € D :
L clIC .[2}

However, since (I,.J) € P implies both J € C3*M! and J €, I, the assump-
tion p > 7 in Definition 8.6 shows that I is in the corona C4, and hence we may
replace CE ™M with the restricted corona C’y = Ca \ {A} in the above definition of
A-admissible. The basic example of an admissible collection of pairs is obtained
from the pairs of cubes summed in the stopping form Bgop(f,g) in (11.1), which
occurs in (8.16) above:

(11.2) PA={(1,J): I€C)y and JCTM™ where J is 7-good, J €,_1 I and I ¢ A}.

Recall that J is 7-good if J € DZ; o)-good 85 N (3.1), i.e., if J and its ¢-parents up
to level T are all good. Recall also that the Haar support of g is contained in the

collection of 7-good cubes.

Definition 11.2. Suppose that A € A and that P is an A-admissible collection

of pairs. Define the associated stopping form Bi’oz by

BAm(f:9)= > (Ef AL f) (T81ar, A59)w
(I,J)eP

where we may of course further restrict I to 7l € supp f if we wish.
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Given an A-admissible collection P of pairs define the reduced collection Pred
as follows. For each fixed J let I'*d be the largest good cube I such that (I,.J) € P.
Then set

pred = (I, J) e P: 1 cCI¥}.

Clearly Pr¢ is A-admissible. Now recall our assumption that the Haar support
of f is contained in the set of 7-good cubes, which in particular requires that their
children are all good as well. This assumption has the important implication that

red
Biw (f.9) =BLl  (f,9).

Indeed, if (Z,.J) € P\ P4 then nI ¢ Haarsuppf and so E A%, f = 0. Thus
for the purpose of bounding the stopping form, we may assume that the following
additional property holds for any A-admissible collection of pairs P:

e if (I,J) €P is maximal in the sense that I D I’ for all I’ satisfying (I’, J) € P,
then I is good.

Note that there is an asymmetry in our definition of P here, namely that the
second components J are required to be 7-good, while the maximal first compo-
nents [ are required to be good. Of course the treatment of the dual stopping forms
will use the reversed requirements, and this accounts for our symmetric restrictions
imposed on the Haar supports of f and g at the outset of the proof.

Definition 11.3. We say that an admissible collection P is reduced if P = Pred,
so that the additional property above holds.

Note that
AP AP/ po w
Bstop (f’ g) = Bstop(PCA f’ Pc;-shiftg)'

Recall that the deep energy condition constant £4°P is given by

1 & PO‘(J,lj\ JO)\2 | Csubgood,w
(ggeep)2 = sup T Z Z (W) ||PJ good, XH%Z(w) .
I=UI, g r=1 JEMr»deep(I’V‘)

Proposition 11.4. Suppose that A € A and that P is an A-admissible collection

of pairs. Then the stopping form Bi’oz satisfies the bound

(113)  [BLR(f9)l S (E8°P + V/AT) (If | 22(0) + a(F)VIALS) N9l 2o -

With this proposition in hand, we can complete the proof of (8.16), and hence
of Theorem 2.6, by summing over the stopping cubes A € A with the choice P4
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of A-admissible pairs for each A:

3 BAE (f.9)]

AcA

< Z (82eep + 4 /Ag‘) (||PcAf||L2(o') + OzA(f)\/ |A|g) HpczﬂhmgHLZ(w)

AeA

< €2+ /A5) (X (IPeufIiay +aa (17 14,)) "

AeA
1/2
< (X IPegamng7aq.)
AeA

< (&5 + VA £l z2(0) 9l 22w -

by orthogonality >, 4 HPcAfH%Q(U) < ||f||%2(0) in corona projections C%, ‘quasi’
orthogonality Y 4. 4 aa(f)?|Als < ||f||2L2(J) in the stopping cubes A, and by the
bounded overlap of the shifted coronas C7shift:

> lepan <Tlp.
AcA

To prove Proposition 11.4, we begin by letting IIoP consist of the second com-
ponents of the pairs in P and writing

B (f.9) = > (T29h A%g),; where o] = > EJ(AZf) 1ay-
JeIl, P Iec!,:(I,J)eP

By the tree-connected property of P, and the telescoping property of martingale
differences, together with the bound a4(A) on the averages of f in the corona Ca,
we have

(11.4) 07 S 0alA) Lavrp () s

where Ip(J) = N{I: (I,J) € P} is the smallest cube I for which (I,.J) € P.
Another important property of these functions is the sublinearity:

(11.5) 17 < |7+ 1972, P=PiUP,.

Now apply the monotonicity Lemma 6.1 to the inner product (T<¢s, AYg)w to
obtain

P(J, l@sla\ip (o)
|J|1/n

P s oL ars (o)
|J|1/n

(T35 e, A79)w] S | A% X2 [ 27 9ll22(w)

P9 L2y [ A% gllL2w) -
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Thus we have

P (J, l@slavip (o)

AP 1 )

(116) [Blp(fo)l < > T 85 ¥l A5 gl
JellsP

( les1a o)
P s( \Ip(J)O "
> T P | A9 gl

JellsP
|B|st0p 1 AW( ) + |B|st0p71+§,Pw (.f7 g) 9

where we have dominated the stopping form by two sublinear stopping forms that
involve the Poisson integrals of order 1 and 1 + § respectively, and where the
smaller Poisson integral P{ s is multiplied by the larger projection [[P4x||rz2(.).
This splitting turns out to be successful in separating the two energy terms from
the right hand side of the energy lemma, because of the two properties (11.4)
and (11.5) above. It remains to show the two inequalities:

(11.7) Bliop.1,00(f:9) S (€8P + VA5 ) aa(A) VVIALs 9] 220
for f € L?(o) satisfying where E|f| < a4 (A) for all I € Ca; and
(11.8) BIAT spe(F10) S (E25°P + /AT ) 1l 2(o) 192200 -

where we only need the case P = P4 in this latter inequality as there is no recur-
sion involved in treating this second sublinear form. We consider first the easier
inequality (11.8) that does not require recursion. In the subsequent subsections
we will control the more difficult inequality (11.7) by adapting the stopping time
and recursion of M. Lacey to the sublinear form |B|Stop 1.aw(fr9)-

11.1. The second inequality
Now we turn to proving (11.8), i.e

BILk 1 ispe(f9) S (€25 + V/AS) 1 fll 2o gl Lo

where since

o= Y BN Y EHALN LA,

Iec): (1,J)eP Iec),:(I,J)eP

the sublinear form |B|Stop 14+5,p~ can be dominated and then decomposed by pi-
geonholing the ratio of side lengths of J and I:

P s(J les|1 a1 (0)0)
BlAh 1pspe(frg) = > — = IPIxl 22| AF 9llL2(w)

1
Jella P |J| /n
P (L ET(AY )L avro) | o,
= Z = |J|1/n HPJXHLQ(w)H A 9||L2(w)
(I J)eP

AP;
- Z |B|stop,i+6 PW( g) ;
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and
AP _ s(LET(AZ f)Laro)
BUD s (fe) = 3 i 7 1Pl e 1259 2 -

(I,J)eP
|J| =2
Here we have the entire projection P4x onto all of the dyadic subintervals of J,
but this is offset by the smaller Poisson integral P{, ;. We will now adapt the
argument for the stopping term starting on page 42 of [3], where the geometric
gain from the assumed energy hypothesis there will be replaced by a geometric
gain from the smaller Poisson integral P{, 5 used here.
First, we exploit the additional decay in the Poisson integral P{ s as follows.
Suppose that (I,.J) € P with |J|*/™ = 27%|I|'/*. We then compute

Py s(J 1avgo) IR
FEC e

<[ Y o) 5 () P L)
= Jag \dist(cg, 1€)/ |y —cgntize ~ \dist(cy, I°) |J| Y/

and use the goodness inequality,

dlSt(CJ Ic) |I|(1 e)/n |J|s/n > %23(1—5) |J|1/n)

to conclude that

(11.9) (M) < ysiti-e) P L)

|J|1/n |J|1/n
We next claim that for s > 0 an integer,

|B|A’P;S (f7 ): Z 1+6(J |E ( g[f)llA\IU)

stop,1+4,P« |J|1/n

P9/l 2@ | A7 9llz2(w)
(I,1)eP
‘J‘l/n:2_5|1|1/n

$ 270079 (832 4+ /A ) 1 f |20y 191l 2w

from which (11.8) follows upon summing in s > 0. Now using both

1
5050 = [ 185 910 <185 flivey e
2”||f||%2(a) = Z | A% f”L?(g) )
I€D
we apply Cauchy—Schwarz in the I variable above to see that
A,P;s 2
[|B|stop,1+6,Pw (fv g)]
1 P (S 1av10) . 1/2

S| Do 3 A o) 45 glusc

Iec’, J:(I,J)eP

|J|Y/ =g 5| 1|1/ m
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We can then estimate the sum inside the square brackets by

S{ X IsdbG)

Iec) Ji(I,J)EP
‘J‘l/W'ZQ_S‘I‘l/"
1 PP s(J,1a\10)\2 ) , ,
g 2 W(W) IP5%/|72 () S 19117200y Als)?
J: (I, J)EP
|J|1/7L:2*5|I|1/n
where
1 /Py s(J, 14\ 70)\2
AP=sp Y _(%/Av» PxlZacs.
I€Ch 1. (1, )eP o |J]L/m

||V e |1/

Finally then we turn to the analysis of the supremum in last display. From the
Poisson decay (11.9) we have

1 S(1— PY(J, 14\ ;0)\2
A(3)2 < sup 1_2_266(1 ) Z (J 1}471\1 )> ||P§x||%2(w)
recy, o J: (IJ)eP 11
o()=2"0(I)

1 —2s8(1—¢) Pa(Ka 1A\IO) 2 w 112
< sup WQ Z (W) Z IPY2ll72 (e
A KeM;_geep(I) JCK: (I,J)eP
o(1)=2"%4(I)

< 2—236(1—5) [(g;ieep)Q + Ag] ,

where the last inequality is the one for which the definition of energy stopping
cubes was designed. Indeed, from Definition 8.1, as (I, J) € P, we have that [ is
not a stopping cube in A, and hence that (8.1) fails to hold, delivering the estimate
above since J €,_1 I good must be contained in some K € M geep(I), and since
P(J,14\70)/|J|M™ ~ PY(K, 14\ 0)/|K|"/". The terms [P9|72(,, are additive
since the J's are pigeonholed by |.J|'/™ = 275|I|'/".

11.2. The first inequality and the recursion of M. Lacey

Now we turn to proving the more difficult inequality (11.7). Recall that in dimen-
sion n = 1 the energy condition

3" o E(n, )2 P(Jn, 110)? S (NTV) o, Ufl JoC1,
n=1 n

could not be used in the NTV argument, because the set functional J— |J|,E(J, w)?
failed to be superadditive. On the other hand, the pivotal condition of NTV,

o0 .
Z:l |Jn|w P(Jna 110')2 ,S |I|O'7 Un:l Jn C 1,
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succeeded in the NTV argument because the set functional J — |.J|, is trivially
superadditive, indeed additive. The final piece of the argument needed to prove
the NTV conjecture was found by M. Lacey in [1], and amounts to first replacing
the additivity of the functional J — |J|, with the additivity of the projection
functional H — HP%mHQLQ(w) defined on subsets H of the dyadic grid D. Then a
stopping time argument relative to this more subtle functional, together with a
clever recursion, constitute the main new ingredients in Lacey’s argument [1].

To begin the extension to a more general Calderéon-Zygmund operator T'%, we
also recall the stopping energy generalized to higher dimensions by

1 POC J,lA JU 2 subegood.w
xoCa?=sup Y (P00 pebgocaip
T N )
IECA UJeMr-deep(I)

where My_qeep(I) is the set of maximal r-deeply embedded subcubes of I where r
is the goodness parameter. What now follows is an adaptation to our deep energy
condition and the sublinear form |B|$£,1,Aw of the arguments of M. Lacey in [1].
We have the following Poisson inequality for cubes B C A C I:

P (A, 15\ 40) / 1
11.10 _ v T~ - _ do
(11.10) A voa Qg —ealyiie W)
</ 1 ol )NPa(B,1,\Aa)
> Joa Qy—epprit—e T T BT

11.3. The stopping energy

Fix A € A. We will use a ‘decoupled’ modification of the stopping energy X(C4).
Suppose that P is an A-admissible collection of pairs of cubes in the product set
D X Dgooq of pairs of dyadic cubes in R" with second component good. For an
admissible collection P let II1P and IIsP be the cubes in the first and second
components of the pairs in P respectively, let [TP = I1;P UIIyP, and for K € IIP
define the 7-deep projection of P relative to K by

Hf*T'dEEPP ={JellbP: JeE, K}.

Now the cubes J in IIoP are of course always good, but this is not the case for
cubes I in IT;P. Indeed, the collection P is tree-connected in the first component,
and it is clear that there can be many bad cubes in a connected geodesic in the
tree D. But the Haar support of f is contained in good cubes I, and we have
also assumed that the children of these cubes I are good. As a consequence we
may always assume that our A-admissible collections P are reduced in the sense
of Definition 11.3. Thus we will use as our ‘size testing collection’ of cubes for P
the collection

[eecdbelowp — (K" ¢ D : K’ is good and K’ C K for some K € IIP},

which consists of all the good subcubes of any cube in IIP. Note that the maximal
cubes in IIP = IIP*4 are already good themselves, and so we have the important
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property that
(11.11) (I,J) € P =P implies I C K for some cube K € [18°cdbelowp

Now define the ‘size functional’ Ssoi‘;?(P) of P as follows. Recall that a projec-
tion P4, on x satisfies

HP%XH%%N) = Z | &% XH%%U)-
JeH

Definition 11.5. If P is A-admissible, define

(11.12) SLA(P)? = sup

size

(Y Pl
T-deep 5 X w)
K eT1oodbelow p |K|g |K|1/" 1y Taesrp L2 (w)

We should remark that that the cubes K in I18°°dPelowD that fail to contain
any T-parents of cubes from IIsP will not contribute to the size functional since
I 74°PD is empty in this case. We note three essential properties of this defini-
tion of size functional:

1. Monotonicity of size: SL4(P) < 8:4(Q) if P C Q,

size size

2. Goodness of testing cubes: IJ8odbelowp — Deood,

3. Control by deep energy condition: S&4(P) < £deer 4 | /AT

size

The monotonicity property follows from IIgeedbelowp  — Tygoodbelowd oy
o7 deePp c 74P 9 and the goodness property follows from the definition
of T18°°dbelowDd “The control property is contained in the next lemma, which uses
the stopping energy control for the form Bgop( f,g) associated with A.

Lemma 11.6. If P4 is as in (11.2) and P C P4, then
SAA(P) < Xo(Ca) S E3eP 4 \/Ag .

Proof. Suppose that K € I18°°dPelowD - To prove the first inequality in the state-
ment we note that

2

1 (PQ(K, 1A\KO')>2‘
|K o |K|'/n L2(w)

1 POK, 14 50)\?
<
—|K|(,( K[/ ) X
JEMr_degp(K)

1 Z (PQ(J,].A\KO')>2‘
T Kl [ T[4/
JEMr_degp(K)

1 Z (Pa(‘], 1A\'~/JU) >2’
™Kl T
JeMr-deep(K)

w
P(Hé(,-r»deepp)* X’

2
P?]ubgood,wx
L2(w)

A

2
PsJubgood,wX‘
L2(w)

P?]ubgood,wx 2
L?(w)

N

< XQ(CA) )
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where the first inequality above follows since every J € I ™ °PP is contained in
some J € My_deep(I), the second inequality follows from (11.10) with J C K C A,
and then the third inequality follows since J &, I implies vJ C I by (2.4), and
finally since IIX"79PP — () if K € A and K ¢ C4 by (11.13) below. The second
inequality in the statement of the lemma follows from (8.5). O

The following useful fact is needed above and will be used later as well:
(11.13) KCcAand K ¢Cy = ITPP=0.

To see this, suppose that K € C3*M%\ C4. Then K C A’ for some A’ € € 4(A),
and so if there is J € II579PP_ then |J|V/" < 277|K|V/" < 27| A’|"/", which
implies that J ¢ C7Mf which contradicts IT57-9PP c ¢7-shift,

Now define an atomic measure wp in the upper half space Rﬁ“ by

wp = Z | A7 XH%Z(W) O(cs | 71/m)-
Jella P
Define the tent T(K) over a cube K to be the convex hull of the n-cube K x {0}
and the point (cx,|K|/") € R}, Define the T-deep tent T74P(K) over a
cube K to be the restriction of the tent T(K) to those points at depth 7 or more
below K:
TT4P(K) = {(y,t) € T(K) : t <277 |K['/"}.
We can now rewrite the size functional (11.12) of P as

1 (Pa(K, 1a\k0)

a, A 2
(11.14) S5 (P)° = sup K[in

size

2
) wp (T‘r—deep(K)) )
Kengoodbelow’p |K|U

It will be convenient to write

(Pa(Ka 14\k0)

2
T ) eI ).

(K P)?

so that we have simply

Ve (K;P)?
spier = ap YUY
K eIlgoodbelow D |K|U

Remark 11.7. The functional wp(T79¢P(K)) is increasing in K, while the func-
tional P*(K, 14\ c0)/|K|Y/™ is ‘almost decreasing’ in K: if Ko C K then

PU(K. 1ak0) _ / do(y)
Ak (

K7 K77+ Ty — exl)ie
</ (V)" do(y)
~ Jak (

[ KoY/ + |y — e )

do(y)
<q, /
" ko (HKolYm 4y — ek |) 1

since [ KoY + |y — ek, | < [K[Y" + |y — ex| + Sdiam(K) for y € A\ K.

P (Ko, 14\k,0)
Ko/ ,

= Cn,oe
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11.4. The recursion

Recall that if P is an admissible collection for a dyadic cube A, the corresponding
sublinear form in (11.7) is given in (11.6) by

Pa(‘]a |90P|1A Ip(J U)
Bl sac(fg)= Y e A5 e 145 gll e
Jella P

where ¢/} = > Ef(AL) 1ay-
Iec’,: (I,J)eP

In the notation for |B|Stop 1,Aw, We are omitting dependence on the parameter «,
and to avoid clutter, we will often do so from now on when the dependence on «
is inconsequential. Following Lacey [1], we now claim the following proposition,
from which we obtain (11.7) as a corollary below. Motivated by the conclusion
of Proposition 11.4, we define the restricted norm ‘ﬁstoz LA of the sublinear form

|B|Stop 1.nw to be the best constant ‘ﬁst;p 1. in the inequality

1Bl 1,a0 (F9) < MG 1 A (@a(AVIAl + 1]l 22(0)) 9] 22(0)
where f € L?(0) satisfies ES|f| < aa(A) for all I € C5°7.

Proposition 11.8. (This is a variant for sublinear forms of the size lemma in
Lacey [1]) Suppose € > 0. Let P be an admissible collection of pairs for a dyadic
cube A. Then we can decompose P into two disjoint collections P = PPis () psmall,
and further decompose PS™ into pairwise disjoint collections P;mall psmall

pymall e, .
p=r"sJ (U, P™").

such that the collections P& and ijau are admissible and satisfy

*

(11.15) sup Sgo (P2 < e S5 (P)?,
£>1
and
o, ’P““'L“
(1116) mio?) 1,A = < C Ss1z1:( ) +vntT Sup mstop,l,A

Corollary 11.9. The sublinear stopping form inequality (11.7) holds.

Proof of Corollary 11.9. Set Q° = P4. Apply Proposition 11.8 to obtain a subde-
composition {Q}}52, of Q° such that

A,Q° a, A 0 S
s)’tstop 1, < C Ssme (Q ) nT Sup mstop,l,A ’

sup SYA Q) <e8%4(Q%).

size size
>
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Now apply Proposition 11.8 to each Q} to obtain a subdecomposition {Qi [ ity
of Q} such that

4,9; A [ Al — A,Q7F
s)’tstopel AN < C Ssme (Qé) +vnt igltl) s)’tstop,l,A ’

A A
sup S0(Q7 1) < e85 (Qh).

Altogether we have

A, A A Q
msto% NS Ce Sgre (Q%) + VT Sel>111) {C Seive (Qz) +vnt SUP mstopflle}

A,
= 0 {85HQ%) + VnreS3A(QY)) + (n) sup. ‘)’tstoifi’fA.

size size
L,k

Then with ( = y/nT, we obtain by induction for every N € N,

A,Q° A; A0 ArA0 N_N ca,Ar~0
mstop,l N = < C {nge Q )+C€Ssofze (Q ) C SSO:Z(e (Q )}
QN+1
+CN+1 sup mstop,l,A
meNN+1
Now we may assume the collection Q° = P4 of pairs is finite (simply trun-

cate the corona C4 and obtain bounds independent of the truncation) and so

N1
SUD,, e NN+1 ‘ﬁstof"l‘ A = 0 for N large enough.

Then we obtain (11.7) if we choose 0 < € < 1/(1+ () and apply Lemma 11.6.
O

Proof of Proposition 11.8. We first recall that the ‘size testing collection’ of cubes
[1800dbelowp js the collection of all good subcubes of a cube in IIP. We may assume
that P is a finite collection. Begin by defining the collection Ly to consist of the
minimal dyadic cubes K in I18°0dPelowp gych that

\Ija(K;,P) a,A
Ssme (P) :
1Ko

where we recall that

ey = (P ),

Note that such minimal cubes exist when 0 < € < 1 because SSZ‘;‘(P) is the

supremum over K € I[gocdbelowp of o (K;P)2/|K|,. A key property of the the
minimality requirement is that

‘IIOC(K/;,P) a, A
<e Ssme P ’
|K/|g- ( )

for all K’ € T18°°dbelowD with K’ & K and K € Lo.
We now perform a stopping time argument ‘from the bottom up’ with respect
to the atomic measure wp in the upper half space. This construction of a stopping

(11.17)
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time ‘from the bottom up’ is one of two key innovations in Lacey’s argument [1],
the other being the recursion described in Proposition 11.8.

We refer to Ly as the initial or level 0 generation of stopping times. Choose
p = 1+ e We then recursively define a sequence of generations {L,,}%_, by
letting £,, consist of the minimal dyadic cubes L in I18°°4PelowD that contain a
cube from some previous level Ly, £ < m, such that

(11.18) wp(TT9P(L)) > pwp ( U TT'deep(L’)) :
LeUy ' Lo L'CL

Since P is finite this recursion stops at some level M. We then let £;41 consist of
all the maximal cubes in I18°°9P¢loWD that are not already in some £,,. Thus £ M+1
will contain either none, some, or all of the maximal cubes in I18°°dPelowp We do
not of course have (11.18) for A’ € L/4+1 in this case, but we do have that (11.18)
fails for subcubes K of A’ € L4 that are not contained in any other L € L,,,
and this is sufficient for the arguments below.

We now define the collections P! and P8, The collection P8 will consist
of those pairs (I,J) € P for which there is L € U%iol Ly, with J @ L C I,
and P2l will consist of the remaining pairs. But a considerable amount of
further analysis is required to prove the conclusion of the proposition. First, let £ =
U%:& L., be the tree of stopping energy cubes defined above. By our construction
above, the maximal elements in £ are the maximal cubes in II8°dbelowp — For

L € L, denote by Cy, the corona associated with L in the tree L,
Ct={KeD:KCLandthereisno L' € L with K C L' G L},
and define the shifted corona by

Crshft={KeC,: Ke, L} U U {KeD:Ke&,Land K is T-nearby in L'} .
L'e¢,(L)

Now the parameter m in L,, refers to the level at which the stopping construction

was performed, but for L € L,,, the corona children L’ of L are not all necessarily

in £,,_1, but may be in L,,_; for ¢t large. Thus we need to introduce the notion
of geometric depth d in the tree £ by defining

Go={L € L: L is maximal},
Gi ={L € L: L is maximal with respect to L G L¢ for some Ly € Go},

Gay1 ={L € L: L is maximal with respect to L & Lg for some Lq € Ga} ,

We refer to Gy as the d generation of cubes in the tree £, and say that the cubes
in G4 are at depth d in the tree £. Thus the cubes in G; are the stopping cubes
in £ that are d levels in the geometric sense below the top level.
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Then for L € G4 and ¢t > 0 define
Pri={(,J)€P:I€Cpand J <€ CL*"" for some L' € Gy with L' C L}.

In particular, (I,J) € Pr; implies that I is in the corona Cr, and that J is in a
shifted corona CT;*Mf that is ¢ levels of generation below Cr. We emphasize the
distinction ‘generation’ as this refers to the depth rather than the level of stopping
construction. For t = 0 we further decompose Pr o as

PL 0= rPsmall U PEI% :
Pi‘fba“ ={{,J)ePro:1+#L},
Pré={(I,J) €Pro:I=L},

with one exeption: if L € L1 we set Psm"‘“ = Pr o since in this case L fails to
satisfy (11.18) as pointed out above. Then we set

pre={ U P U{U U P

t>1LeL
{pymallyee /= {Psman}Leg, after relabelling.

It is important to note that by (11.11), every pair (I,.J) € P will be included in
either Psmall or PPie. Now we turn to proving the inequalities (11.15) and (11.16).

To prove the inequality (11.15), it suffices with the above relabelling to prove
the following claim:

(11.19) SEAPEIN < (p-1)SLA(P)?, Lecl.

size size

To see (11.19), suppose first that L ¢ Ly41. In the case that L € Ly is an initial
generation cube, then from (11.17) we obtain that

1 Pa(K/ 1A\K’U) 2
SoeA Psnnll < su ( ) ) w T‘I’—deep K’
Slze( ) B K/Engoodbelcgv'p: K’gL |K/|U |K/|1/” P( ( ))
<SG ().

Now suppose that L ¢ Lo and also that L ¢ Larq1. Pick a pair (I,.J) € P!
Then I is in the strict corona C; and J is in the 7-shifted corona CT M. Since
Psma“ is a finite collection, the definition of Ssofzf(Psma“) shows that there is a
cube K € [goodbelowpsmall o that

- 1 (PYK,14g0)\2 §
SHAPE? = |K|U( R ) wp (TR ().

Now define

t' =t (K) = max{s : there is L' € L, with L' C K}.
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First, suppose that ¢/ = 0 so that K does not contain any L’ € £. Then it follows
from our construction at level £ = 0 that
1 (P“(K, 1ako
Ko (K|

))zwp(T""deep(K)) <eSLAPY,

size

and hence from p = 1 + € we obtain

S A(Psmall) < eS8 A(P) _ ( )Sa A(P)

s1ze S1ze s1ze

Now suppose that ¢’ > 1. Then K fails the stopping condition (11.18) with m =
t' + 1, and so

wP(TT-deep(K)) < pwp ( U TT-dEEp(L/)) .
L'eUl_, Lo L'CK

Now we use the crucial fact that wp is additive and finite to obtain from this that

(11.20)  wp (Tf-deep(K) \ U TT'deep(L’)>
L'eUl o Lo L'CK
_ wP(T‘r—deep(K)) — wp ( U T‘I’—deep(L/))

L'eUt_y Lo L'CK

<p-Der( U TTL)).

L'eUt_y Lo L'CK
Thus using
sz‘T‘Oa“ (Tr-deep(K)) < wp (Tr-deep(K) \ U TT-deep(L/)> ,
L'eUl_o Lo L'CK

and (11.20) we have

S A(Psmall) < sup

s1ze

1 (PQ(K, 1A\KU)>2

K eTTgoodbelow psmall |K|o‘ |K|1/"

X wp (TT-deep(K) \ U TT-deep(L/)>
L'eUt_o Lo L'CK

(e

<(p-1 su
— (p ) Kengoodbell)owpinball |K|O'

% UJ'p( U T‘r—deep(L/)) )
et oLy L'CK

and we can continue with

1 (PO‘(K, lA\K0)>2

Sa A Psnnll -1
51ze( ) - (p )Kengi})lgelowp |K|0 |K|1/n
_( —1)SaA(P)2-

S1ze

wp (T‘r—deep (K) )
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In the remaining case where L € Lj;41 we can include L as a testing cube K
and the same reasoning applies. This completes the proof of (11.19).

To prove the other inequality (11.16), we need a lemma to bound the norm of
certain ‘straddled’ stopping forms by the size functional SSOI‘Z‘:, and another lemma
to bound sums of ‘mutually orthogonal’ stopping forms. We interrupt the proof to

turn to these matters. O

11.4.1. The straddling lemma. Given an admissible collection of pairs Q for A,
and a subpartition S C I18°°dbelow 9 of pairwise disjoint cubes in A, we say that Q
T-straddles S if for every pair (I,J) € Q there is S € SN [J,I] where [J,I]
denotes the geodesic in the dyadic tree D that connects J to I, and moreover that
J € S. Denote by ./\/'5001d ~(S) the finite collection of cubes that are both good
and (p — 1 — 7)-nearby in S. For any good dyadic cube S € Dgooa, we will also
need the collection W#°°4(S) of maximal good subcubes I of S whose triples 37

are contained in S.

Lemma 11.10. Let S be a subpartition of A, and suppose that Q is an admissible
collection of pairs for A such that S C 118°°9P¢1%Q " and such that Q T-straddles S.
Then we have the sublinear form bound

AQ a,A;S a,A
mstop,l,A § Cf‘y‘ﬁp zupS (Q) S CI‘J'»P Ssize (Q) ’

s1ze

where SSOI‘Z': S is an S-localized version of SSOI‘Z': with an S-hole given by

1 (P (K, 1A\50)>

o, A;S 2
(11'21) Sss (Q) sup |K|0 |K|1/n

SlZe
KeNg"‘}d L(S)uweood ()

(T’T deep(K)).

Proof. For S € Slet Q° ={(I,J) € Q:J € S C I}. We begin by using that Q
T-straddles S, together with the sublinearity property (11.5) of gp?, to write

A (J |80 |1A I ) w
BIAS, (L) =Y T AT AY X p2) 1| A% 9ll22(w)

1
Jella P |J| /n
“(J, |80J 11 a\15(1)0)
< Z Z |J|1/n ol H A? XHLQ(w) H A? g||L2(w) ;
SeSs Jens T- deepQ
where ;
07 = > EF (A7, f) 1avs-

Iell Q5: (I,J)eQ”®
At this point, with S fixed for the moment, we consider separately the finitely
many cases |J|*/" = 27%|S|'/" where s > p — 1 and where 7 < s < p — 1. More
precisely, we pigeonhole the side length of J € I1,Q5 = IT5"79PQ by
Q7 ={(1,7) € Q% : J € I1,Q% and |J|'/" < 27°|S|*/"},
QS ={(1,7) € @%:J e, Q% and |J|V/" =27°|S|V/"}, T<s<p—1.
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Then we have
1,05 = {J € 1,05 : |J|V/" < 27P|S|V/}
Q5 = {J € L,QS s |71/ =215/}, r<s<p—1,

and we make the corresponding decomposition for the sublinear form

A, Q. A,Q,
|B|st0p71,A( ) |B|stop71,A(f7 g) + Z |B|st0%71,A(f7 g)

T<s<p

“(J, |90J |1A\I . ) w
Z Z |J|1/m 5 | &% X||L2(w)H AN gHL2(w)
SeS Jell, 0f

J|80J 1a\io. (1)0)
DD D S T 85 ol 45 gz

T<s<p—1SES Jell,QF

By the tree-connected property of Q, and the telescoping property of martingale
differences, together with the bound a4(A) on the averages of f in the corona Ca,
we have

(11.22) S aalA) 1asgs () s

where Igs(J) = ({1 : (I,J) € @} is the smallest cube I for which (I,.J) € Q.

Case for |B|Stop 1.a(fr9) when 7 < s < p—1. Now is a crucial definition that
permits us to bound ‘the form by the size functional with a large hole. Let

Cf = WT(HQQSS)

be the collection of T-parents of cubes in II,Q?, and denote by M?% the set of
mazimal cubes in the collection C2. We have that the cubes in M% are good by
our assumption that the Haar support of g is contained in the 7-good grid grid

DZ; ¢)-good’ and so M5 C N,_-(S). Here is the first of two key inclusions:

(11.23) JEr K8 if Ke M? is the unique cube containing .J.
Let I, = 7P~1755, so that for each J in Il Qf we have the second key inclusion:
(11.24) P T =1, CIgs(J).

Now each K € M? is also (p — 1 — 7)-deeply embedded in I, if p—1 > r + T,
so that in particular, 3K C Is. This and (11.24) have the consequence that the
following Poisson inequalities hold:

P(J, 1a\1 5 ()0) < PUdag0) P 1ap0) _ PU(K, 14\50)

Let
1,05 (K) = {J € ,Q : J € K},
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and let
[M2Q5], = {J € Q7 : |J'|V/" = 27| K[/},
M,07), ={J :J Cc J eI ||V =27 |K|'/"}.
Now set Qs = Jgeg Q5. We apply (11.22) and Cauchy—Schwarz in J to bound

A,Q,
|B|st0%,1,A(fag) by

P (K, 1 4 50) .
A > (|K|71/T>) IPhtg racer g X 2y [P maeer o a8l 2y
SeS KeMsS

where the localized projections P;S,_deep 0.k A€ defined in (9.1) above.
5

Thus using Cauchy—Schwarz in K we have that |BA’Q“" (f,9)| is bounded by

stop,1,A
aA(A)Z Z VKo

SeES KeM$
1 P*(K,1450) w w
x m( [K[1/n ) ||PH2Q§(K)XHL2(W) HPH2Q§(K)9HL2(w)

a,A;S 1/2
<SS 30 1K) gl

SES KEN,_+(S)

< sup S39(Q) aa(A) VIAls llgllz2(w) -

Se

since J € M C K by (11.23), since M5 C N,_;_-(S), and since the collection
of cubes (Jgcs M is pairwise disjoint in A.

Case for |B|$’OQPTLA(f, g). This time we let C2 = 77 (I1,Q?) and denote by M?

the set of maximal cubes in the collection C¥. We have the two key inclusions:
JerMep 15 ifMEe M? is the unique cube containing J,

and
mPJC S cClg(J).

Moreover there is K € W8°°4(S) that contains M. Thus 3K C S and we have

P/, 1as0) _ P(K,14\50)
|J|1/n ~ |K|1/n ’

and

los] S aa(A)1as.
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Now set Q. = Uges QY. Arguing as above, but with W8°°4(S) in place of
Np—1-+(S), and using J €,_1Io(J), we can bound |B|St0p’1$A(f,g) b

Ay, > VKl

SES Kewsood(S)
1 (PYK,1450)
. /1K ( |K|1/n )HP QQS(K)XHLz(w)||PHZQS(K)gHLz

< 0alA) s 510 (Z S 1l gl

S€S Kewsood(S)

Ass /
< Zlép Seve () aa(A) VIAls ll9ll2(w) -

We now sum these bounds in s and * and use supges SSOI‘Z': S(Q) 35;3(9) to

complete the proof of Lemma 11.10. O

11.4.2. The orthogonality lemma. Given a set {Q,,}5°_ of admissible col-
lections for A, we say that the collections Q,, are mutually orthogonal, if each
collection Q,, satisfies

Qm - U{Am,j X Bm,j}v
=0
where the sets { A, ;}m,; and {Bp, j}m,; each have bounded overlap on the dyadic
grid D:

i 14, , <Alp and Z 15, , < Blp.

m,j=0 m,j=0

Lemma 11.11. Suppose that {Qn}5°_ is a set of admissible collections for A
that are mutually orthogonal. Then if Q = Uf:zo Qm, the sublinear stopping form

|B|Stop 1. a(f,9) has its restricted norm n A controlled by the supremum of

stop,1,

the restricted norms ‘ﬁst;p 1A

/ A, Qm
mstop 1,A = < VnAB sup mstop,l,A .
m>0
Proof. If P7, =3 502 1ca,,, D% (note the parent 71 in the projection A7,
because of our ‘change of dummy variable’ in (11.1)) and Pf5, = >~ .~ ZJeBm,j AY,
then we have
B4:Qm (f; ) B4 Qm(Po 1P ) ’

stop stop
and

D IPLS Ty < D D WP, fle(e) < AnlflIZa(o),

m>0 m>0 ;>0

> U IPLglZz0) < D0 D P, aliaw < Bligllizw) -

m>0 m>0 ;>0
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The sublinear inequality (11.5) and Cauchy—Schwarz now give

A, Qm A, Qm w
|B|stop,1,A Z|B|sto%,1,A sttog meL2 )HngHLQ(a)
m>0 m>0
1/2
A, Qm
< (swp 2 ) (}jnP M) (}:HP 9l%0))
m

A, Qm
< (sup Moo 2) VRAB VR || fll 2o l9ll 2w -

m>0 O

11.4.3. Completion of the proof. Now we return to the proof of inequal-
ity (11.16) in Proposition 11.8.

Proof of (11.16). Recall that

pis= { U P} U{U U P = o=l

LeLl t>1LeL
b1 bi b1 bi big __
= U dr=Ums ms Urne
Lel t>1 Lel

We first consider the collection QP8 = P]Lm%, and claim that
LeLl

big
LR < CSTAPYE) < CSIAP), Lel.

stop,1,A — size size

(11.25) N

To see this we note that 77 ¢ T-straddles the trivial collection {L} consisting of a
single cube, since the pairs (I, J) that arise in PIL)% have I = L and J in the shifted

corona CTMf. Thus we can apply Lemma 11.10 with Q = PIL)% and S = {L} to
obtain (11.25).
Next, we observe that the collections Ple% are mutually orthogonal, namely

Pblg c Cr X C"--Shlft Z 1., <1 and Z lcz-shift <T.
LeLl Lel

Thus the orthogonality Lemma 11.11 shows that
mA,Q‘g‘g < Vit ot < JnT 0S4
stop,1,A —= nT Sup stop 1 A nT size (P)

Now we turn to the collection

blg UUPLt Upblg; blg_UPLt, t>0.

t>1LeL t>1 Lel
We claim that
A,PPiE _ A
(11.26) Mo 1.0 < Cp P 8L0(P), t>1.
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Note that with this claim established, we have

A,'Pbig A, le A, Qbi A, Q A
mSt‘)p’l’A < Mopi1,a mStopjl A= N o 1,0 T sttop 1,A < Cp S, (P),

stop,1, stop,1, size

which proves (11.16) if we apply the orthogonal Lemma 11.11 to the set of collec-
tions {P3"§"} L, which is mutually orthogonal since Py € €7 x C7="*. With
this the proof of Proposition 11.8 is now complete since p = 1 +¢. Thus it remains
only to show that (11.26) holds.

The cases 1 <t <r + 1 can be handled with relative ease since decay in t is
not needed there. Indeed, Py, ; T-straddles the collection €. (L) of L-children of L,
and so the straddling lemma applies to give

Miopri'a < OS50 (Pr) < CSGA(P),

size size

and then the orthogonality Lemma 11.11 applies to give
A,ppE —— APy, I ca,A
s)’tstopf;l,A s Vnt ilélz mstopflfA < Cynt Ssoltze( )

since {Pr ¢} rec is mutually orthogonal as Pr, C Cr, X CZ?Shift with L € G4 and
L' e gd+t for depth d = d(L)

Now we consider the case t > r 4 2, where it is essential to obtain decay in t.
We again apply Lemma 11.10 to Pr ¢ with S = €£(L), but this time we must use

the stronger localized bounds S% A5 with an S-hole, that give

size

(11.27) NP, <O sup SUAS(PLe), t20.

size
Sec,(L)

Fix L € G;. Now we note that if J € HQL’T'deepPLt then J belongs to the T-shifted
corona CT#P for some cube LT € Ggyy. Then 77J is 7 levels above .J, hence
in the corona Cra:. This cube L4t lies in some child S € S = €,(L). So fix
S € S and a cube L € G4, that is contained in S with ¢ > r + 2. Now the
cubes K that arise in the supremum defining Ssofzf S(PL ¢) in (11.21) belong to

either N,_(S) or We°°d(S). We will consider these two cases separately.
So first suppose that K € Np_1_,(S). A simple induction on levels yields

wpy,,(TT4P(K)) = > I 2% x[|7 2
Jelry mdeerpy
JCK
< wp ( U TT-deep(Ld+t))

LitteGy: LIHCK

1
= wp ( U TT'dEEP(Ld+t71)>
p La+t-1€Gy,_1: Latt-1CK

IN

Sp P p(TTP(K)), t>p—1—742.
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Thus we have

1 (PQ(K,]_A\SO')
(Kl N K

) wp, (T ()

¢ 1 (Pa(K,lA\SU)

2
e () @R (T (E) £ 07 SR

5 p_ size

Now suppose that K € We°d(S) and that J € II579PP,, and J C K.
There is a unique cube L™ € Gy, .11 such that J ¢ L1 ¢ §. Now L4+r+!
is good so L4+l €, §. Thus in particular 3L C § so that L4+ C K.

The above simple induction applies here to give

w 2 T-deep/ 7 d+t
> 1Al <wr U TTeR(L 1))
Jel-IQS,‘r—deep,PLyt Ld+t€gd+t:Lm—tCLd+r+l
JCLAtrHL

S T up (TR(LI), 242,

Thus we have

P(K,14\50)\2 w 112
(W> Z | AY XHL?(w)
Jerkom-deerp,

JCK

PO‘(K,IA\SO') 2
<Cl——F————=) p (t—1-r) E wP(TT-deep(LdJrrJrl))
( |K|1/” ) s
L €Gdtr+1
Latr+ic
P(K,1 2
( A\SU)> wp (T-r-deep(K)) < Cpf(tflfr)Sa,A(,P)z.

|K|1/n

size

< Cpf(tflfr)<

So altogether we conclude that

A8
sup S50 (Pry)?
Seec(L)

= sup sup
Se€s(L) KeN,_»(S)uwsood () | Ko

1 (PO‘(K,IA\KU))Q Z

w12
|K|1/n HPJX||L2(w)

Jel—[;{,r»deepplﬂt
JCK

§ Cr,T,p p_tSa’A (P)2 )

size

and combined with (11.27) this gives (11.26). As we pointed out above, this
completes the proof of Proposition 11.8, hence of Proposition 11.4, and finally of
Theorem 2.6. m
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