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A two weight theorem for α-fractional singular
integrals with an energy side condition

Eric T. Sawyer, Chun-Yen Shen and Ignacio Uriarte-Tuero

Abstract. Let σ and ω be locally finite positive Borel measures on Rn

with no common point masses, and let Tα be a standard α-fractional
Calderón–Zygmund operator on Rn with 0 ≤ α < n. Furthermore, assume
as side conditions theAα

2 conditions and certain α-energy conditions. Then
we show that Tα is bounded from L2(σ) to L2(ω) if the cube testing
conditions hold for Tα and its dual, and if the weak boundedness property
holds for Tα.

Conversely, if Tα is bounded from L2(σ) to L2(ω), then the testing
conditions hold, and the weak boundedness condition holds. If the vector
of α-fractional Riesz transforms Rα

σ (or more generally a strongly ellip-
tic vector of transforms) is bounded from L2(σ) to L2(ω), then the Aα

2

conditions hold. We do not know if our energy conditions are necessary
when n ≥ 2.

The innovations in this higher dimensional setting are the control of
functional energy by energy modulo Aα

2 , the necessity of the Aα
2 conditions

for elliptic vectors, the extension of certain one-dimensional arguments to
higher dimensions in light of the differing Poisson integrals used in A2

and energy conditions, and the treatment of certain complications arising
from the Lacey–Wick monotonicity lemma. The main obstacle in higher
dimensions is thus identified as the pair of energy conditions.

1. Introduction

In this paper we prove a two weight inequality for standard α-fractional Calderón–
Zygmund operators Tα in Euclidean space Rn, where we assume the n-dimensio-
nal Aα

2 conditions and certain α-energy conditions as side conditions (in higher
dimensions the Poisson kernels used in these two conditions differ). In particu-
lar, we show that for locally finite Borel measures σ and ω with no common point
masses, and assuming the energy conditions in the Theorem below, a strongly ellip-
tic collection of standard α-fractional Calderón–Zygmund operatorsTα is bounded
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from L2(σ) to L2(ω),

(1.1) ‖Tα(fσ)‖L2(ω) � ‖f‖L2(σ),

(with 0 ≤ α < n) if and only if the Aα
2 conditions hold, the cube testing conditions

for Tα hold, and the weak boundedness property for Tα holds. This identifies the
culprit in higher dimensions as the pair of energy conditions. We point out that
these energy conditions are implied by higher dimensional analogues of essentially
all the other side conditions used previously in two weight theory, in particular
doubling conditions and the Energy Hypothesis (1.16) in [3].

The final argument by M. Lacey ([1]) in the proof of the Nazarov–Treil–Volberg
conjecture for the Hilbert transform is the culmination of a large body of work on
two-weighted inequalities beginning with the work of Nazarov, Treil and Volberg
([10], [11], [12], [13] and [23]) and continuing with that of Lacey and the authors
([2], [3], [4] and [5]), just to mention a few. See the references for further work.
We consider standard singular integrals T , as well as their α-fractional counter-
parts Tα, and include

1. the control of the functional energy condition by the energy condition mod-
ulo Aα

2 ,

2. a proof of the necessity of the Aα
2 condition for the boundedness of the vector

of α-fractional Riesz transforms Rα,n,

3. the extensions of certain one-dimensional arguments to higher dimension in
light of the differing Poisson integrals used in the Aα

2 and energy conditions,

4. and the treatment of certain complications arising from the Lacey–Wick
monotonicity lemma.

These are the main innovations in this paper. The final point is to adapt the
clever stopping time and recursion arguments of M. Lacey [1] to complete the
proof of our theorem, but only after splitting the stopping form into two sublinear
stopping forms dictated by the right-hand side of the Lacey–Wick monotonicity
lemma. The basic idea of the generalization is that all of the decompositions of
functions are carried out independently of α, while the estimates of the resulting
nonlinear forms depend on the α-Poisson integral and the α-energy conditions.

It turns out that in higher dimensions, there are two natural ‘Poisson inte-
grals’ P and P that arise, the usual Poisson integral P that emerges in connection
with energy considerations, and a different Poisson integral P that emerges in con-
nection with size considerations (in dimension n = 1 these two coincide). The
standard Poisson integral P appears in the energy conditions, and the reproducing
Poisson integral P appears in the A2 condition. These two kernels coincide in
dimension n = 1 for the case α = 0 corresponding to the Hilbert transform.

Acknowledgement. We are grateful to Michael Lacey for pointing out a number
of problems with our arguments and various oversights in the versions of [16], [17]
(now withdrawn), [18] on the arXiv, including the mistake in our monotonicity
lemma, which has been corrected by M. Lacey and B. Wick in [8], and in our con-
sequent adaptation of the stopping time and recursion argument in [1]. See these
preprints for some of the details.
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Remark 1.1. Version 5 of this paper [16] appeared in the arXiv in May 9, 2013,
with essentially the same results as appear here, except for a serious error in the
monotonicity lemma. We thank both M. Lacey and B. Wick for pointing us to
this error, as well as various others occurring in versions 1 through 4 of [16]. Seven
months after version 5 appeared, M. Lacey and B. Wick posted version 1 of their
paper [8] claiming to prove the same T 1 theorem we had claimed in our earlier
versions, and which had significant overlap with version 5 of [16], but they did not
acknowledge this overlap there, and only referred to our work in version 2 of [8].

The monotonicity Lemma 6.1 here is due to Lacey and Wick in Lemma 4.2
of [8]; Lemma 7.1 here is proved in [8], but with the larger bound Aα

2 there in place
of our bound Aα

2 ; and an argument treating the additional term in the Lacey–Wick
monotonicity lemma as it arises in functional energy is essentially in [8]. We note
that the side condition in [8] – uniformly full dimension – permits a reversal of
energy, something not assumed in this paper, that implies our energy conditions.

Finally we point to more recent results to be found in our papers [20] and [21],
and with M. Lacey and B. Wick in [7].

2. Statements of results

Now we turn to a precise description of our two weight theorem. We will prove a
two weight inequality for standard α-fractional Calderón–Zygmund operators Tα in
Euclidean space Rn, where we assume the n-dimensional Aα

2 and certain α-energy
conditions as side conditions. In higher dimensions the Poisson kernels Pα and Pα

used in defining these two conditions differ. In particular, we show that for locally
finite Borel measures σ and ω in Rn with no common point masses, and assum-
ing that both the energy condition and its dual hold, a strongly elliptic vector
of standard α-fractional Calderón–Zygmund operators Tα is bounded from L2(σ)
to L2(ω) if and only if the Aα

2 conditions hold, along with the cube testing condi-
tions and the weak boundedness property. In order to state our theorem precisely,
we need to define standard fractional singular integrals, the two different Poisson
kernels, and an energy condition sufficient for use in the proof of the two weight
theorem. These are introduced in the following subsections.

2.1. Standard fractional singular integrals

Let 0 ≤ α < n. Consider a kernel function Kα(x, y) defined on Rn ×Rn satisfying
the following fractional size and smoothness conditions of order 1+δ for some δ > 0,

|Kα(x, y)| ≤ CCZ |x− y|α−n,(2.1)

|∇Kα(x, y)| ≤ CCZ |x− y|α−n−1,

|∇Kα(x, y)−∇Kα(x′, y)| ≤ CCZ

( |x− x′|
|x− y|

)δ
|x− y|α−n−1,

|x− x′|
|x− y| ≤ 1

2
,

|∇Kα(x, y)−∇Kα(x, y′)| ≤ CCZ

( |y − y′|
|x− y|

)δ
|x− y|α−n−1,

|y − y′|
|x− y| ≤ 1

2
.
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Then we define a standard α-fractional Calderón–Zygmund operator associated
with such a kernel as follows.

Definition 2.1. We say that Tα is a standard α-fractional integral operator with
kernel Kα if Tα is a bounded linear operator from some Lp(Rn) to some Lq(Rn)
for some fixed 1 < p ≤ q <∞, that is

‖Tαf‖Lq(Rn) ≤ C ‖f‖Lp(Rn), f ∈ Lp(Rn),

ifKα(x, y) is defined on Rn×Rn and satisfies (2.1), and if Tα andKα are related by

(2.2) Tαf(x) =

∫
Kα(x, y) f(y) dy, a.e.- x /∈ suppf,

whenever f ∈ Lp(Rn) has compact support in Rn. We say Kα(x, y) is a standard
α-fractional kernel if it satisfies (2.1).

We note that a more general definition of kernel has only order of smooth-
ness δ > 0, rather than 1 + δ, but the use of the monotonicity and energy lemmas
below requires order of smoothness more than 1. A smooth truncation of Tα

has kernel ηδ,R(|x − y|)Kα(x, y) for a smooth function ηδ,R compactly supported
in (δ, R), 0 < δ < R <∞, and satisfying standard CZ estimates. A typical example
of an α-fractional transform is the α-fractional Riesz vector of operators

Rα,n = {Rα,n
� : 1 ≤ � ≤ n}, 0 ≤ α < n.

The Riesz transforms Rn,α
� are convolution fractional singular integrals Rn,α

� f ≡
Kn,α

� ∗ f with odd kernel defined by

Kα,n
� (w) ≡ w�

|w|n+1−α
≡ Ω�(w)

|w|n−α
, w = (w1, . . . , wn).

The tangent line truncation of the Riesz transform Rα,n
� has kernel Ω�(w)ψ

α
δ,R(|w|)

where ψα
δ,R is continuously differentiable on an interval (0, S) with 0 < δ < R < S,

and where ψα
δ,R(r) = rα−n if δ ≤ r ≤ R, and has constant derivative on both

(0, δ) and (R,S) where ψα
δ,R(S) = 0. As shown in the one dimensional case in [6],

boundedness of Rn,α
� with one set of appropriate truncations together with the Aα

2

condition below, is equivalent to boundedness of Rn,α
� with all truncations.

2.2. Cube testing conditions

The following ‘dual’ cube testing conditions are necessary for the boundedness
of Tα from L2(σ) to L2(ω):

T2
Tα ≡ sup

Q∈Qn

1

|Q|σ

∫
Q

|Tα(1Qσ)|2ω <∞,

(T∗
Tα)2 ≡ sup

Q∈Qn

1

|Q|ω

∫
Q

|(Tα)∗(1Qω)|2σ <∞.
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2.3. Weak boundedness property

The weak boundedness property for Tα with constant C is given by∣∣∣ ∫
Q

Tα(1Q′σ)dω
∣∣∣ ≤ WBPTα

√
|Q|ω|Q′|σ,

for all cubes Q,Q′ with
1

C
≤ |Q|1/n

|Q′|1/n ≤ C,

and either Q ⊂ 3Q′ \Q′ or Q′ ⊂ 3Q \Q.

Note that the weak boundedness property is implied by either the tripled cube
testing condition,

‖13QTα(1Qσ)‖L2(ω) � ‖1Q‖L2(σ), for all cubes Q in Rn,

or the tripled dual cube testing condition. In turn, the tripled cube testing con-
dition can be obtained from the cube testing condition for the truncated weight
pairs (ω,1Qσ). See also Remark 2.9 below.

2.4. Poisson integrals and Aα
2

Now let μ be a locally finite positive Borel measure on Rn, and suppose Q is a
cube in Rn. The two α-fractional Poisson integrals of μ on a cube Q are given by:

Pα(Q,μ) ≡
∫
Rn

|Q|1/n
(|Q|1/n + |x− xQ|)n+1−α

dμ(x),

Pα(Q,μ) ≡
∫
Rn

( |Q|1/n
(|Q|1/n + |x− xQ|)2

)n−α

dμ(x).

We refer to Pα as the standard Poisson integral, and to Pα as the reproducing
Poisson integral. Let σ and ω be locally finite positive Borel measures on Rn with
no common point masses, and suppose 0 ≤ α < n. Recall that the classical Aα

2

constant is defined by

Aα
2 ≡ sup

Q∈Qn

|Q|σ
|Q|1−α/n

|Q|ω
|Q|1−α/n

.

We now define the one-tailed Aα
2 constant using Pα. The energy constants Eα

introduced in the next subsection will use the standard Poisson integral Pα. LetQn

denote the collection of all cubes in Rn, and denote by Dn or simply D a dyadic
grid in Rn.

Definition 2.2. The one-sided constants Aα
2 and Aα,∗

2 for the weight pair (σ, ω)
are given by

Aα
2 ≡ sup

Q∈Qn

Pα(Q, σ)
|Q|ω

|Q|1−α/n
<∞,

Aα,∗
2 ≡ sup

Q∈Qn

Pα(Q,ω)
|Q|σ

|Q|1−α/n
<∞.
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Convention. We will use the expressions |Q|1/n and �(Q) interchangeably to
denote the side length of a cube Q in Rn.

2.5. Good grids and energy conditions

Given a dyadic cube K ∈ D and a positive measure μ we define the Haar projection
Pμ
K ≡

∑
J∈D: J⊂K


μ
J on K by

Pμ
Kf =

∑
J∈D:J⊂K

∑
a∈Γn

〈f, hμ,aJ 〉μhμ,aJ and ‖Pμ
Kf‖2L2(μ) =

∑
J∈D:J⊂K

∑
a∈Γn

|〈f, hμ,aJ 〉μ|2,

and where a Haar basis {hμ,aJ }a∈Γn and J∈D adapted to the measure μ is defined in
the section on a weighted Haar basis below. Now we recall the definition of a good
dyadic cube – see [13] and [3] for more detail.

Definition 2.3. Let r ∈ N and 0 < ε < 1. A dyadic cube J is (r, ε)-good, or
simply good, if for every dyadic supercube I, it is the case that either J has side
length at least 2−r times that of I, or J �r I is (r, ε)-deeply embedded in I.

Here we say that a dyadic cube J is (r, ε)-deeply embedded in a dyadic cube K,
or simply r-deeply embedded in K, which we write as J �r K, when J ⊂ K and
both

|J |1/n ≤ 2−r |K|1/n, and dist(J, ∂K) ≥ 1

2
|J |ε/n|K|(1−ε)/n.(2.3)

We say that J is r-nearby in K when J ⊂ K and

|J |1/n > 2−r |K|1/n.

The parameters r, ε will be fixed sufficiently large and small respectively later in the
proof, and we denote the set of such good dyadic cubes by Dgood. Throughout the
proof, it will be convenient to also consider pairs of cubes J,K where J is ρ-deeply
embedded in K, written J �ρ K and meaning (2.3) holds with the same ε > 0
but with ρ in place of r; as well as pairs of cubes J,K where J is ρ-nearby in K,
|J |1/n > 2−ρ|K|1/n, for a parameter ρ � r that will be fixed later.

Then we define the smaller ‘good’ Haar projection Pgood,ω
K by

Pgood,μ
K f ≡

∑
J∈G(K)


μ
Jf =

∑
J∈G(K)

∑
a∈Γn

〈f, hμ,aJ 〉μhμ,aJ ,

where G(K) consists of the good subcubes of K:

G(K) ≡ {J ∈ Dgood : J ⊂ K},

and also the larger ‘subgood’ Haar projection Psubgood,μ
K by

Psubgood,μ
K f ≡

∑
J∈Mgood(K)

∑
J′⊂J


μ
J′f =

∑
J∈Mgood(K)

∑
J′⊂J

∑
a∈Γn

〈f, hμ,aJ′ 〉μhμ,aJ′ ,
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where Mgood(K) consists of the maximal good subcubes of K. We thus have

‖Pgood, μ
K x‖2L2(μ) ≤ ‖Psubgood, μ

K x‖2L2(μ)

≤ ‖Pμ
Ix‖2L2(μ) =

∫
I

∣∣∣x−
( 1

|I|μ

∫
I

xdx
)∣∣∣2dμ(x), x = (x1, . . . , xn),

where Pμ
Ix is the orthogonal projection of the identity function x : Rn → Rn onto

the vector-valued subspace of ⊕n
k=1L

2(μ) consisting of functions supported in I
with μ-mean value zero.

Recall that in dimension n = 1, and for α = 0, the energy condition constant
was defined by

E2 ≡ sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

(Pα(Ir ,1Iσ)

|Ir|

)2
‖Pω

Irx‖
2
L2(ω) .

Our extension of the energy conditions to higher dimensions in this paper will
use the collection Mr-deep(K) of maximal r-deeply embedded dyadic subcubes of
a cube K (a subcube J of K is a dyadic subcube of K if J ∈ D when D is a
dyadic grid containing K). We let J∗ = γJ where γ ≥ 2. Then the goodness
parameter r is chosen sufficiently large, depending on ε and γ, that the bounded
overlap property

(2.4)
∑

J∈Mr-deep(K)

1J∗ ≤ β 1K ,

holds for some positive constant β depending only on n, γ, r and ε. Indeed, the
maximal r-deeply embedded subcubes J of K satisfy the condition

cn |J |ε/n |K|(1−ε)/n ≤ dist(J,Kc) ≤ Cn |J |ε/n |K|(1−ε)/n.

Now with 0 < ε < 1 and γ ≥ 2 fixed, choose r so large that 2−(1−ε)r < cn/(2γ).
Let y ∈ K. Then if y ∈ γJ , we have

cn |J |ε/n |K|(1−ε)/n ≤ dist(J,Kc) ≤ γ |J |1/n+dist(γJ,Kc) ≤ γ |J |1/n+dist(y,Kc),

which implies
cn
2

|J |ε/n |K|(1−ε)/n ≤ dist(y,Kc).

But we also have

dist(y,Kc) ≤ |J |1/n + dist(J,Kc) ≤ |J |1/n + Cn |J |ε/n |K|(1−ε)/n

≤
( cn
2γ

+ Cn

)
|J |ε/n |K|(1−ε)/n,

and so altogether,

1
cn
2γ + Cn

dist(y,Kc) ≤ |J |ε/n |K|(1−ε)/n ≤ 2

cn
dist(y,Kc),

which proves (2.4) since the number β of dyadic numbers 2j = |J |1/n that satisfy
this last inequality is bounded independent of K and y.
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A cube K is said to be a shifted D-dyadic cube if K is a union of 2n D-dyadic
cubes K ′, each with sidelength half that of K.

We will also need the following refinement of Mr-deep(K) for each � ≥ 0 and
each shifted D-dyadic cube K:

M�
r-deep(K) ≡ {J ∈ Mr-deep(π

�K ′) for some K ′ a child of K :

J ⊂ L for some L ∈ Mdeep(K)}.

Since J ∈ M�
r-deep(K) implies γJ ⊂ K, we also have from (2.4) that

(2.5)
∑

J∈M(�)
r-deep(K)

1J∗ ≤ β 1K , for each � ≥ 0 .

Of course M0
r-deep(K) = Mr-deep(K), but M�

r-deep(K) is in general a finer subde-
composition of K the larger � is, and may in fact be empty. We suppress in the
notation M�

r-deep(K) the dependence on the dyadic grid D.

Definition 2.4. Suppose σ and ω are positive Borel measures on Rn without com-
mon point masses, and fix γ ≥ 2. Then the deep energy condition constant Edeep

α ,
the refined energy condition constant Erefined

α , and finally the energy condition
constant Eα itself, are given by

(Edeep
α )2 ≡ sup

I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr-deep(Ir)

(Pα(J,1I\γJσ)
|J |1/n

)2∥∥Psubgood, ω
J x

∥∥2
L2(ω)

,

(Erefined
α )2 ≡ sup

D
sup
�≥0

sup
I

1

|I|σ
∑

J∈M�
r-deep(I)

(Pα(J,1I\γJσ)
|J |1/n

)2∥∥Psubgood, ω
J x

∥∥2
L2(ω)

,

(Eα)2 ≡ (Edeep
α )2 + (Erefined

α )2 .

where supI in the second line is taken over all shifted D-dyadic cubes I, and
supI=∪̇Ir in the first line is taken over

1. all dyadic grids D,

2. all D-dyadic cubes I,

3. and all subpartitions {Ir}∞r=1 of the cube I into D-dyadic subcubes Ir.

Note that in the refined energy condition there is no outer decomposition
I = ∪̇Ir. There are similar definitions for the dual (backward) energy condi-
tions that simply interchange σ and ω everywhere. These definitions of the en-
ergy conditions depend on the choice of γ and the goodness parameters r and ε.
Note that we can ‘plug the γ-hole’ in the Poisson integral Pα(J,1I\γJσ) for both
Edeep
α and Erefined

α using the Aα
2 condition and the bounded overlap property (2.5).
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Indeed, define

(Edeepplug
α )2 ≡ sup

I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr-deep(Ir)

(Pα(J,1Iσ)

|J |1/n
)2∥∥Psubgood,ω

J x
∥∥2
L2(ω)

,

(2.6)

(Erefinedplug
α )2 ≡ sup

D
sup
�≥0

sup
I

1

|I|σ
∑

J∈M�
r-deep(I)

(Pα(J,1Iσ)

|J |1/n
)2∥∥Psubgood,ω

J x
∥∥2
L2(ω)

.

Then we have both

(Edeepplug
α )2 � sup

I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr-deep(Ir)

(Pα(J,1I\γJσ)
|J |1/n

)2∥∥Psubgood,ω
J x

∥∥2
L2(ω)

+ sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr-deep(Ir)

(Pα(J,1γJσ)

|J |1/n
)2∥∥Psubgood,ω

J x
∥∥2
L2(ω)

� (Eα)2 + sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr-deep(Ir)

( |γJ |σ
|J |1/n

)2
|J |2/n|J |ω

� (Eα)2 +Aα
2 sup

I=∪̇Ir

1

|I|σ
∑

J∈Mr-deep(Ir)

|γJ |σ � (Eα)2 + β Aα
2 ,(2.7)

and similarly

(2.8) (Erefinedplug
α )2 � (Erefined

α )2 + β Aα
2 ,

by (2.4) and (2.5) respectively.
In the next remark we give a brief description of how and where these energy

conditions will be implemented in the proof.

Remark 2.5. There are two layers of dyadic decomposition in the energy con-
dition; the outer layer I = ∪̇Ir which is essentially arbitrary, and an inner layer
Ir = ∪̇J∈Mr-deep(Ir)J in which the cubes J are ‘nicely arranged’ within Ir. Relative
to this doubly layered decomposition we sum the products(Pα(J,1I\γJσ)

|J |1/n
)2 ∥∥Psubgood,ω

J x
∥∥2
L2(ω)

,

which resemble a type of Aα
2 expression as defined above. The point of the outer

decomposition is to capture ‘stopping time cubes’, which are essentially arbitrary
in this proof, although sometimes restricted to certain collections of good cubes.
The point of the inner decomposition is that with J∗ = γJ for J ∈ Mr-deep(Ir),
we have J∗ ⊂ Ir and we can then write

Pα(J,1Iσ) = Pα(J,1J∗σ) + Pα(J,1I\J∗σ),

and use that∥∥Psubgood,ω
J x

∥∥2
L2(ω)

=
∥∥Psubgood,ω

J (x − cJ)
∥∥2
L2(ω)

≤ |J |2/n |J |ω
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to estimate the product involving 1J∗σ by(Pα(J,1J∗σ)

|J |1/n
)2∥∥Psubgood,ω

J x
∥∥2
L2(ω)

�
( |J∗|α/n−1 |J∗|σ

|J |1/n
)2

|J |2/n |J |ω � Aα
2 |J∗|σ ,

to which we apply the bounded overlap property (2.4), while the remaining product
involving 1I\J∗σ, (Pα(J,1I\J∗σ)

|J |1/n
)2 ∥∥Psubgood,ω

J x
∥∥2
L2(ω)

,

has a ‘hole’ in the support of 1I\J∗σ that contains the support of ω in the cube J
well inside the hole, and moreover these holes are ‘nicely arranged’ within Ir.
Of particular importance is that for pairwise disjoint subcubes J ′ ⊂ J , the projec-
tions ‖Psubgood,ω

J′ x‖2L2(ω) are additive, and the Poisson ratios are essentially con-

stant Pα(J ′,1I\J∗σ)/|J ′|1/n ≈ Pα(J,1I\J∗σ)/|J |1/n. The deep energy condition
suffices for all arguments in the proof except for bounding the two testing con-
ditions for the Poisson operator P, in which case we also use the refined energy
condition – see Lemma 10.5 below.

2.6. Statement of the theorem

We can now state our main two weight theorem. Let Qn denote the collection of
all cubes in Rn, and denote by Dn a dyadic grid in Rn.

Theorem 2.6. Suppose that Tα is a standard α-fractional Calderón–Zygmund
operator on Rn, and that ω and σ are positive Borel measures on Rn without
common point masses. Set Tα

σ f = Tα(fσ) for any smooth truncation of Tα
σ .

(1) Suppose 0 ≤ α < n and that γ ≥ 2 is given. Then the operator Tα
σ is bounded

from L2(σ) to L2(ω), i.e.,

(2.9) ‖Tα
σ f‖L2(ω) ≤ NTα

σ
‖f‖L2(σ),

uniformly in smooth truncations of Tα, and moreover

NTα
σ
≤ Cα

(√
Aα

2 +Aα,∗
2 + TTα + T∗

Tα + Eα + E∗
α +WBPTα

)
,

provided that the two dual Aα
2 conditions hold, and the two dual testing con-

ditions for Tα hold, the weak boundedness property for Tα holds for a suf-
ficiently large constant C depending on the goodness parameter r, and pro-
vided that the two dual energy conditions Eα + E∗

α < ∞ hold uniformly over
all dyadic grids Dn, and where the goodness parameters r and ε implicit in
the definition of M�

r-deep(K) are fixed sufficiently large and small respectively
depending on n, α and γ.

(2) Conversely, suppose 0 ≤ α < n and that Tα = {Tα
j }Jj=1 is a vector of

Calderón–Zygmund operators with standard kernels {Kα
j }Jj=1. In the range
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0 ≤ α < n/2, we assume the following ellipticity condition: there is c > 0
such that for each unit vector u there is j satisfying

(2.10) |Kα
j (x, x+ tu)| ≥ c tα−n, t ∈ R.

For the range n/2 ≤ α < n, we asume the following strong ellipticity condi-
tion: for each m ∈ {1,−1}n, there is a sequence of coefficients {λmj }Jj=1 such
that

(2.11)
∣∣∣ J∑
j=1

λmj Kα
j (x, x+ tu)

∣∣∣ ≥ c tα−n, t ∈ R

holds for all unit vectors u in the n-ant

Vm = {x ∈ Rn : mi xi > 0 for 1 ≤ i ≤ n}, m ∈ {1,−1}n.
Furthermore, assume that each operator Tα

j is bounded from L2(σ) to L2(ω),∥∥(Tα
j )σf

∥∥
L2(ω)

≤ NTα
j
‖f‖L2(σ).

Then the fractional Aα
2 condition holds, and moreover,√

Aα
2 +Aα,∗

2 ≤ CNTα .

Problem 2.7. Given any strongly elliptic vector Tα of classical α-fractional Cal-
derón–Zygmund operators, it is an open question whether or not the energy condi-
tions are necessary for boundedness of Tα. See [19] for a failure of energy reversal
in higher dimensions – such an energy reversal was used in dimension n = 1 to
prove the necessity of the energy condition for the Hilbert transform.

Remark 2.8. The boundedness of an individual operator Tα cannot in general
imply the finiteness of either Aα

2 or Eα. For a trivial example, if σ and ω are
supported on the x-axis in the plane, then the second Riesz transformR2 is the zero
operator from L2(σ) to L2(ω), simply because the kernel K2(x, y) of R2 satisfies
K2((x1, 0), (y1, 0)) =

0−0
|x1−y1|3−α = 0.

Remark 2.9. In [8], M. Lacey and B. Wick use the NTV technique of surgery
to show that the weak boundedness property for the Riesz transform vector Rα,n

is implied by the Aα
2 and cube testing conditions, and this has the consequence

of eliminating the weak boundedness property as a condition. Their proof of this
implication extends to the more general operators Tα considered here, and so the
weak boundedness property can be dropped from the statement of Theorem 2.6.

3. Proof of Theorem 2.6

We now give the proof of Theorem 2.6 in the following 8 sections. Using the good
random grids of Nazarov, Treil and Volberg, a standard argument of NTV, see
e.g. [23], reduces the two weight inequality (1.1) for Tα to proving boundedness of
a bilinear form T α(f, g) with uniform constants over dyadic grids, and where the
Haar supports of the functions f and g are contained in good cubes, whose children
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are all good as well, with goodness parameters r <∞ and ε > 0 chosen sufficiently
large and small respectively. Here the Haar support of f is Haarsupp f̂ = {I ∈ D :

σ

I f �= 0}, and similarly for g.
In fact we can assume even more, namely that the Haar supports of f and g

are contained in the collection of τ -good cubes

Dτ
(r,ε)-good ≡ {K ∈ D : CK ⊂ D(r,ε)-good(3.1)

and π�
DK are in D(r,ε)-good for all 0 ≤ � ≤ τ},

that are (r, ε)-good, whose children are also (r, ε)-good, and whose �-parents up
to level τ are also (r, ε)-good. Here τ > r is a parameter to be fixed in Defini-
tion 8.6 below. We may assume this restriction on the Haar supports of f and g
by choosing (r, ε) appropriately and using the following lemma.

Lemma 3.1. Given s ≥ 1, t ≥ 2 and 0 < ε < 1, we have

Ds
(s+t,ε)-good ⊂ D(t,δ)-good ,

provided

s ε < t (1− ε)− 2 and δ = ε+
s ε+ 1

t
.

Proof. Fix goodness parameters r = s+ t and ε, and suppose that s < r(1−ε)−2.
Choose a good cube I and a supercube K with |I|1/n ≤ 2−r|K|1/n. Set J ≡ πsI.
Then we have

J = πsI ⊂ K and |J |1/n ≤ 2−t |K|1/n.
Because I is good we have

dist(I,Kc) ≥ 1

2
|I|ε/n |K|(1−ε)/n,

and hence also

dist(J,Kc) ≥ dist(I,Kc)− |J |1/n ≥ 1

2
|I|ε/n |K|(1−ε)/n − 2s |I|1/n

=
1

2
|I|ε/n |K|(1−ε)/n

{
1− 21+s

( |I|1/n
|K|1/n

)1−ε}
≥ 1

4
|I|ε/n |K|(1−ε)/n,

which follows from |I|1/n ≤ 2−r|K|1/n provided we take 21+s 2−r(1−ε) ≤ 1/2, i.e.,

s < r(1 − ε)− 2.

Finally we choose δ > ε so that

1

4
|I|ε/n |K|(1−ε)/n = 2−sε−2 |J |ε/n |K|(1−ε)/n ≥ 1

2
|J |δ/n |K|(1−δ)/n

when |J |1/n ≤ 2−t |K|1/n, which follows if we choose δ to satisfy

2−sε−2 (2−t |K|1/n)ε|K|(1−ε)/n =
1

2
(2−t |K|1/n)δ |K|(1−δ)/n;

2−sε−2 =
1

2
(2−t)δ−ε; −sε− 1 = −t(δ − ε); δ = ε+

sε+ 1

t
.

�
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For convenience in notation we will sometimes suppress the dependence on α
in our nonlinear forms, but will retain it in the operators, Poisson integrals and
constants. More precisely, let Dσ = Dω be an (r, ε)-good grid on Rn, and let

{hσ,aI }I∈Dσ, a∈Γn and {hω,b
J }J∈Dω, b∈Γn be corresponding Haar bases as described

below, so that

f =
∑
I∈Dσ


σ
I f =

∑
I∈Dσ, a∈Γn

〈
f, hσ,aI

〉
hσ,aI =

∑
I∈Dσ, a∈Γn

f̂(I; a) hσ,aI ,

g =
∑

J∈Dω


ω
Jg =

∑
J∈Dω, b∈Γn

〈
g, hω,b

J

〉
hω,b
J =

∑
J∈Dω, b∈Γn

ĝ(J ; b) hω,b
J ,

where the appropriate measure is understood in the notation f̂(I; a) and ĝ(J ; b),

and where these Haar coefficients f̂(I; a) and ĝ(J ; b) vanish if the cubes I and J
are not good. Inequality (2.9) is equivalent to boundedness of the bilinear form

T α(f, g) ≡ 〈Tα
σ (f), g〉ω =

∑
I∈Dσ and J∈Dω

〈Tα
σ (
σ

I f),
ω
Jg〉ω

on L2(σ) × L2(ω), i.e.,

|T α(f, g)| ≤ NTα
σ
‖f‖L2(σ) ‖g‖L2(ω).

We may assume the two grids Dσ and Dω are equal here, and this we will do
throughout the paper, although we sometimes continue to use the measure as
a superscript on D for clarity of exposition. Roughly speaking, we analyze the
form T α(f, g) by splitting it in a nonlinear way into three main pieces, following
in part the approach in [5] and [6]. The first piece consists of cubes I and J that
are either disjoint or of comparable side length, and this piece is handled using
the section on preliminaries of NTV type. The second piece consists of cubes I
and J that overlap, but are ‘far apart’ in a nonlinear way, and this piece is handled
using the sections on the intertwining proposition and the control of the functional
energy condition by the energy condition. Finally, the remaining local piece where
the overlapping cubes are ‘close’ is handled by generalizing methods of NTV as
in [4], and then splitting the stopping form into two sublinear stopping forms, one
of which is handled using techniques of [3], and the other using the stopping time
and recursion of M. Lacey [1]. See the schematic diagram in Subsection 8.4 below.

4. Necessity of the Aα
2 conditions

Here we prove in particular the necessity of the fractional Aα
2 condition when

0 ≤ α < n, for the α-fractional Riesz vector transform Rα defined by

Rα(fσ)(x) =

∫
Rn

Kα
j (x, y) f(y) dσ(y), Kα

j (x, y) =
xj − yj

|x− y|n+1−α
,

whose kernelKα
j (x, y) satisfies (2.1) for 0 ≤ α < n. Parts of the following argument

are taken from unpublished material obtained in joint work with M. Lacey. Note
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also that the necessity of the classical Aα
2 condition, for many singular integral op-

erators, including among others the vector Riesz transforms, the Cauchy transform
and the Beurling transform was obtained previously by Liaw and Treil [9].

Lemma 4.1. Suppose 0 ≤ α < n. Let Tα be any collection of operators with
α-standard fractional kernel satisfying the ellipticity condition (2.10), and in the
case n/2 ≤ α < n, we also assume the more restrictive condition (2.11). Then for
0 ≤ α < n we have √

Aα
2 � Nα(T

α).

Remark 4.2. Cancellation properties of Tα play no role in the proof below. Indeed
the proof shows that Aα

2 is dominated by the best constant C in the restricted
inequality

‖χE T
α(fσ)‖L2,∞(ω) ≤ C ‖f‖L2(σ), E = Rn \ supp f.

Proof. First we give the proof for the case when Tα is the α-fractional Riesz trans-
form Rα, whose kernel is Kα(x, y) = x−y

|x−y|n+1−α . Define the 2n generalized n-ants

Qm for m ∈ {−1, 1}n, and their translates Qm(w) for w ∈ Rn by

Qm = {(x1, . . . , xn) : mkxk > 0},
Qm(w) = {z : z − w ∈ Qm}, w ∈ Rn.

Fix m ∈ {−1, 1}n and a cube I. For a ∈ Rn and r > 0 let

sI(x) =
�(I)

�(I) + |x− ζI |
, and fa,r(y) = 1Q−m(a)∩B(0,r)(y)sI(y)

n−α,

where ζI is the center of the cube I. Now

�(I) |x− y| ≤ �(I) |x− ζI |+ �(I) |ζI − y| ≤ [ �(I) + |x− ζI | ] [ �(I) + |ζI − y| ]

implies
1

|x− y| ≥
1

�(I)
sI(x) sI(y), x, y ∈ Rn.

Now the key observation is that with Lζ ≡ m · ζ, we have

L(x− y) = m · (x− y) ≥ |x− y|, x ∈ Qm(y),

which yields

L(Kα(x, y)) =
L(x− y)

|x− y|n+1−α
(4.1)

≥ 1

|x− y|n−α
≥ �(I)α−n sI(x)

n−α sI(y)
n−α,

provided x ∈ Q+,+(y).
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Now we note that x ∈ Qm(y) when x ∈ Qm(a) and y ∈ Q−m(a) to obtain that
for x ∈ Qm(a),

L(Tα(fa,rσ)(x)) =

∫
Q−m(a)∩B(0,r)

L(x− y)

|x− y|n+1−α
sI(y) dσ(y)

≥ �(I)α−nsI(x)
n−α

∫
Q−m(a)∩B(0,r)

sI(y)
2n−2α dσ(y).

Applying |Lζ| ≤
√
n |ζ| and our assumed two weight inequality for the fractional

Riesz transform, we see that for r > 0 large,

�(I)2α−2n

∫
Qm(a)

sI(x)
2n−2α

( ∫
Q−m(a)∩B(0,r)

sI(y)
2n−2αdσ(y)

)2
dω(x)

≤ ‖LT (σfa,r)‖2L2(ω) � Nα(R
α)2‖fa,r‖2L2(σ)

= Nα(R
α)2
∫
Q−m(a)∩B(0,r)

sI(y)
2n−2αdσ(y).

Rearranging the last inequality, we obtain

�(I)2α−2n

∫
Qm(a)

sI(x)
2n−2α dω(x)

∫
Q−m(a)∩B(0,r)

sI(y)
2n−2α dσ(y) � Nα(R

α)2,

and upon letting r → ∞,∫
Qm(a)

�(I)2−α

(�(I) + |x− ζI |)4−2α
dω(x)

∫
Q−m(a)

�(I)2−α

(�(I) + |y − ζI |)4−2α
dσ(y) � Nα(R

α)2.

Note that the ranges of integration above are pairs of opposing n-ants.

Fix a cube Q, which without loss of generality can be taken to be centered at
the origin, ζQ = 0. Then choose a = (2�(Q), 2�(Q)) and I = Q so that we have( ∫

Qm(a)

�(Q)n−α

(�(Q) + |x|)2n−2α
dω(x)

)(
�(Q)α−n

∫
Q

dσ
)

≤ Cα

∫
Qm(a)

�(Q)n−α

(�(Q) + |x|)2n−2α
dω(x)

∫
Q−m(a)

�(Q)n−α

(�(Q) + |y|)2n−2α
dσ(y)

� Nα(R
α)2.

Now fixm = (1, 1, . . . , 1) and note that there is a fixedN (independent of �(Q)) and
a fixed collection of rotations {ρk}Nk=1, such that the rotates ρkQm(a), 1 ≤ k ≤ N ,
of the n-ant Qm(a) cover the complement of the ball B(0, 4

√
n �(Q)):

B(0, 4
√
n �(Q))c ⊂

N⋃
k=1

ρk Qm(a).
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Then we obtain, upon applying the same argument to these rotated pairs of n-ants,

(4.2)
(∫

B(0,4
√
n �(Q))c

�(Q)n−α

(�(Q) + |x|)2n−2α
dω(x)

)(
�(Q)α−n

∫
Q

dσ
)
� Nα(R

α)2.

Now we assume for the moment the tailless Aα
2 condition

�(Q′)2(α−n)
( ∫

Q′
dω
)( ∫

Q′
dσ
)
≤ Aα

2 .

If we use this with Q′ = 4
√
nQ, together with (4.2), we obtain( ∫ �(Q)n−α

(�(Q) + |x|)2n−2α
dω(x)

)1/2 (
�(Q)α−n

∫
Q

dσ
)1/2

� Nα(R
α)

or

�(Q)α
( 1

|Q|

∫
1(

1 +
|x−ζQ|
�(Q)

)2n−2α dω(x)
)1/2 ( 1

|Q|

∫
Q

dσ
)1/2

� Nα(R
α).

Clearly we can reverse the roles of the measures ω and σ and obtain√
Aα

2 � Nα(R
α) +

√
Aα

2

for the kernels Kα, 0 ≤ α < n.

More generally, to obtain the case when Tα is elliptic and the tailless Aα
2

condition holds, we note that the key estimate (4.1) above extends to the kernel∑J
j=1 λ

m
j K

α
j of

∑J
j=1 λ

m
j T

α
j in (2.11) if the n-ants above are replaced by thin cones

of sufficiently small aperture, and there is in addition sufficient separation between
opposing cones, which in turn may require a larger constant than 4

√
n in the choice

of Q′ above.
Finally, we turn to showing that the tailless Aα

2 condition is implied by the
norm inequality, i.e.,√

Aα
2 ≡ sup

Q′
�(Q′)α

( 1

|Q′|

∫
Q′
dω
)1/2 ( 1

|Q′|

∫
Q′
dσ
)1/2

� Nα(R
α);

i.e.,
(∫

Q′
dω
)(∫

Q′
dσ
)
� Nγ(R

γ)2 |Q′|2−2α/n.

In the range 0 ≤ α < n/2 where we only assume (2.10), we invoke the corresponding
argument in [2]. Indeed, with notation as in that proof, and suppressing some of
the initial work there, then A2(ω, σ;Q) = |Q|ω×σ where ω × σ denotes product
measure on Rn × Rn, and we have

A2(ω, σ;Q0) =
∑
ζ

A2(ω, σ;Qζ) +
∑
β

A2(ω, σ;Pβ).

Now we have∑
ζ

A2(ω, σ;Qζ) =
∑
ζ

|Qζ |ω×σ ≤
∑
ζ

Nα(R
α)2 |Qζ |1−α/n,
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and∑
ζ

|Qζ |1−α/n =
∑

k∈Z : 2k≤�(Q0)

∑
ζ : �(Qζ)=2k

(22nk)1−α/n

≈
∑

k∈Z : 2k≤�(Q0)

( 2k

�(Q0)

)−n

(22nk)1−α/n (Whitney)

= �(Q0)
n

∑
k∈Z : 2k≤�(Q0)

2nk(−1+2−2α/n)

≤ Cα �(Q0)
n �(Q0)

n(1−2α/n) = Cα|Q0 ×Q0|2−2α/n = Cα |Q0|1−α/n,

provided 0 ≤ α < n/2. Since ω and σ have no point masses in common, it
is not hard to show, using that the side length of Pβ = Pβ × P ′

β is 2−N and

dist(Pβ ,D) ≤ C2−N , that we have the following limit:∑
β

A2(ω, σ;Pβ) → 0 as N → ∞.

Indeed, if σ has no point masses at all, then∑
β

A2(ω, σ;Pβ) =
∑
β

|Pβ |ω |P ′
β |σ ≤

(∑
β

|Pβ |ω
)
sup
β

|P ′
β |σ

≤ C |Q0|ω sup
β

|P ′
β |σ → 0 as N → ∞,

while if σ contains a point mass cδx, then∑
β:x∈P ′

β

A2(ω, σ;Pβ) ≤
( ∑

β:x∈P ′
β

|Pβ |ω
)

sup
β:x∈P ′

β

|P ′
β |σ

≤ C
( ∑

β:x∈P ′
β

|Pβ |ω
)
→ 0 as N → ∞,

since ω has no point mass at x. This continues to hold if σ contains finitely many
point masses disjoint from those of ω, and a limiting argument finally applies. This
completes the proof that

√
Aα

2 � Nα(R
α) for the range 0 ≤ α < n/2.

Now we turn to proving
√
Aα

2 � Nα(R
α) for the range n/2 ≤ α < n, where we

assume the stronger ellipticity condition (2.11). So fix a cube Q =
∏n

i=1Qi, where
Qi = [ai, bi]. Choose θ1 ∈ [a1, b1] so that both∣∣∣[a1, θ1]× n∏

i=2

Qi

∣∣∣
ω

and
∣∣∣[θ1, b1]× n∏

i=2

Qi

∣∣∣
ω
≥ 1

2
|Q|ω.

Now denote the two intervals [a1, θ1] and [θ1, b1] by [a∗1, b
∗
1] and [a∗∗1 , b

∗∗
1 ] where the

order is chosen so that∣∣∣[a∗1, b∗1]× n∏
i=2

Qi

∣∣∣
σ
≤
∣∣∣[a∗∗1 , b∗∗1 ]×

n∏
i=2

Qi

∣∣∣
σ
.
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Then we have both∣∣∣[a∗1, b∗1]× n∏
i=2

Qi

∣∣∣
ω
≥ 1

2
|Q|ω and

∣∣∣[a∗∗1 , b∗∗1 ]×
n∏

i=2

Qi

∣∣∣
σ
≥ 1

2
|Q|σ .

Now choose θ2 ∈ [a2, b2] so that both∣∣∣[a∗1, b∗1]× [a2, θ2]×
n∏

i=3

Qi

∣∣∣
ω

and
∣∣∣[a∗1, b∗1]× [θ2, b2]×

n∏
i=3

Qi

∣∣∣
ω
≥ 1

4
|Q|ω,

and denote the two intervals [a2, θ2] and [θ2, b2] by [a∗2, b
∗
2] and [a∗∗2 , b

∗∗
2 ] where the

order is chosen so that∣∣∣[a∗∗1 , b∗∗1 ]× [a∗2, b
∗
2]×

n∏
i=2

Qi

∣∣∣
σ
≤
∣∣∣[a∗∗1 , b∗∗1 ]× [a∗∗2 , b

∗∗
2 ]×

n∏
i=2

Qi

∣∣∣
σ
.

Then we have both ∣∣∣[a∗1, b∗1]× [a∗2, b
∗
2]×

n∏
i=3

Qi

∣∣∣
ω
≥ 1

4
|Q|ω ,

∣∣∣[a∗∗1 , b∗∗1 ]× [a∗∗2 , b
∗∗
2 ]×

n∏
i=3

Qi

∣∣∣
σ
≥ 1

4
|Q|σ .

Then we choose θ3 ∈ [a3, b3] so that both∣∣∣[a∗1, b∗1]× [a∗2, b
∗
2]× [a3, θ3]×

n∏
i=4

Qi

∣∣∣
ω
≥ 1

8
|Q|ω,

∣∣∣[a∗1, b∗1]× [a∗2, b
∗
2]× [θ3, b3]×

n∏
i=4

Qi

∣∣∣
ω
≥ 1

8
|Q|ω,

and continuing in this way we end up with two rectangles,

G ≡ [a∗1, b
∗
1]× [a∗2, b

∗
2]× · · · × [a∗n, b

∗
n],

H ≡ [a∗∗1 , b
∗∗
1 ]× [a∗∗2 , b

∗∗
2 ]× · · · × [a∗∗n , b

∗∗
n ],

that satisfy

|G|ω =
∣∣[a∗1, b∗1]× [a∗2, b

∗
2]× · · · × [a∗n, b

∗
n]
∣∣
ω
≥ 1

2n
|Q|ω,

|H |σ =
∣∣[a∗∗1 , b∗∗1 ]× [a∗∗2 , b

∗∗
2 ]× · · · × [a∗∗n , b

∗∗
n ]
∣∣
σ
≥ 1

2n
|Q|σ.

However, the rectangles G and H lie in opposing n-ants at the vertex θ =
(θ1, θ2, . . . , θn), and so we can apply (2.11) to obtain that for x ∈ G,∣∣∣ J∑

j=1

λmj Tα
j (1Hσ)(x)

∣∣∣ = ∣∣∣ ∫
H

J∑
j=1

λmj Kα
j (x, y) dσ(y)

∣∣∣
�
∫
H

|x− y|α−n dσ(y) � |Q|α/n−1|H |σ.
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Then from the norm inequality we get

|G|ω(|Q|α/n−1 |H |σ)2 �
∫
G

∣∣∣ J∑
j=1

λmj Tα
j (1Hσ)

∣∣∣2 dω
� N2∑J

j=1 λm
j Tα

j

∫
12
H dσ = N2∑J

j=1 λm
j Tα

j
|H |σ,

from which we deduce that

|Q|2(α/n−1) |Q|ω |Q|σ � 22n |Q|2(α/n−1) |G|ω |H |σ � 22nN2∑J
j=1 λm

j Tα
j
,

and hence
Aα

2 � 22n N2∑J
j=1 λm

j Tα
j
.

This completes the proof of Lemma 4.1. �

5. A weighted Haar basis

We will use a construction of the Haar basis in Rn that is adapted to a measure μ
(cf. [12]). Given a dyadic cube Q ∈ D let 
μ

Q denote orthogonal projection onto

the finite dimensional subspace L2
Q(μ) of L

2(μ) that consists of linear combinations
of the indicators of the children C(Q) of Q that have μ-mean zero over Q:

L2
Q(μ) ≡

{
f =

∑
Q′∈C(Q)

aQ′1Q′ : aQ′ ∈ R,
∫
Q

f dμ = 0
}
.

Then we have the important telescoping property for dyadic cubes Q1 ⊂ Q2:
(5.1)

1Q0(x)
( ∑

Q∈[Q1,Q2]


μ
Qf(x)

)
= 1Q0(x)

(
Eμ
Q0
f − Eμ

Q2
f
)
, Q0 ∈ C(Q1), f ∈ L2(μ).

We will at times find it convenient to use a fixed orthonormal basis
{
hμ,aQ

}
a∈Γn

of

L2
Q(μ) where Γn ≡

{
0, 1
}n \ {1} is a convenient index set with 1 = (1, 1, . . . , 1).

Then
{
hμ,aQ

}
a∈Γn and Q∈D is an orthonormal basis for L2(μ), with the understand-

ing that we add the constant function 1 if μ is a finite measure. In particular we
have

‖f‖2L2(μ) =
∑
Q

∥∥
μ
Q f
∥∥2
L2(μ)

=
∑
Q

∑
a∈Γn

∣∣f̂(Q)
∣∣2,

where
|f̂(Q)|2 ≡

∑
a∈Γn

∣∣〈f, hμ,aQ

〉
μ

∣∣2,
and the measure is suppressed in the notation. We also record the following useful
estimate. If I ′ is any of the 2n D-children of I, and a ∈ Γn, then

(5.2) |Eμ
I′h

μ,a
I | ≤

√
Eμ
I′(h

μ,a
I )2 ≤ 1√

|I ′|μ
.
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6. Monotonicity lemma and energy lemma

The monotonicity lemma below will be used to prove the energy lemma, which is
then used in several places in the proof of Theorem 2.6. The formulation of the
monotonicity lemma with m = 2 is due to M. Lacey and B. Wick [8], and corrects
that used in previous versions of this paper.

6.1. The monotonicity lemma

For 0 ≤ α < n and m ∈ R+, we recall the m-weighted fractional Poisson integral

Pα
m(J, μ) ≡

∫
Rn

|J |m/n

(|J |1/n + |y − cJ |)n+m−α
dμ(y),

where Pα
1 (J, μ) = Pα(J, μ) is the standard Poisson integral.

Lemma 6.1 (Monotonicity). Suppose that I, J and J∗ are cubes in Rn such that
J ⊂ J∗ ⊂ 2J∗ ⊂ I, and that μ is a signed measure on Rn supported outside I.
Finally suppose that Tα is a standard fractional singular integral on Rn as defined
in Definition 2.1 with 0 < α < n. Then we have the estimate

(6.1) ‖ 
ω
J T

αμ‖L2(ω) � Φα(J, |μ|),

where for a positive measure ν,

Φα(J, ν)2 ≡
(Pα(J, ν)

|J |1/n
)2

‖ 
ω
J x‖2L2(ω) +

(Pα
1+δ(J, ν)

|J |1/n
)2

‖x−mJ‖2L2(1Jω) ,

mJ ≡ Eω
Jx =

1

|J |ω

∫
J

x dω .

Proof. The general case follows easily from the case J∗ = J , so we assume this
restriction.

Let {hω,a
J }a∈Γ be an orthonormal basis of L2

J(μ) as in the previous section.
Now we use the smoothness estimate (2.1), together with Taylor’s formula and
the vanishing mean of the Haar functions hω,a

J and mJ ≡ 1
|J|μ

∫
J x dμ(x) ∈ J , to

obtain

|〈Tαμ, hω,a
J 〉ω| =

∣∣∣ ∫ {∫ Kα(x, y)hω,a
J (x)dω(x)

}
dμ(y)

∣∣∣ = ∣∣∣ ∫ 〈Kα
y , h

ω,a
J 〉ω dμ(y)

∣∣∣
=
∣∣∣ ∫ 〈Kα

y (x) −Kα
y (mJ ), h

ω,a
J 〉ω dμ(y)

∣∣∣
≤
∣∣∣〈[ ∫ ∇Kα

y (mJ)dμ(y)
]
(x−mJ), h

ω,a
J

〉
ω

∣∣∣
+
〈[ ∫

sup
θJ∈J

|∇Kα
y (θJ)−∇Kα

y (mJ)| dμ(y)
]
|x−mJ |, |hω,a

J |
〉
ω

� CCZ
Pα(J, |μ|)
|J |1/n ‖ 
ω

J x‖L2(ω) + CCZ

Pα
1+δ(J, |μ|)
|J |1/n ‖x−mJ‖L2(1Jω).

�
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6.2. The energy lemma

Suppose now we are given a subset H of the dyadic grid Dω . Let Pω
H =

∑
J∈H 
ω

J

be the ω-Haar projection onto H. For μ, ω positive locally finite Borel measures
on Rn, and H a subset of the dyadic grid Dω , we define

H∗ ≡
⋃
J∈H

{J ′ ∈ Dω : J ′ ⊂ J}.

Lemma 6.2 (Energy lemma). Let J be a cube in Dω. Let ΨJ be an L2(ω) function
supported in J and with ω-integral zero, and denote its Haar support by H =
supp Ψ̂J . Let ν be a positive measure supported in Rn \ γJ with γ ≥ 2, and for
each J ′ ∈ H, let dνJ′ = ϕJ′ dν with |ϕJ′ | ≤ 1. Let Tα be a standard α-fractional
Calderón–Zygmund operator with 0 ≤ α < n. Then with δ′ = δ/2 we have∣∣∣ ∑

J′∈H
〈Tα(νJ′),
ω

J′ΨJ〉ω
∣∣∣ � ‖ΨJ‖L2(ω)

(Pα(J, ν)

|J |1/n
)
‖Pω

Hx‖L2(ω)

+ ‖ΨJ‖L2(ω)
1

γδ′

(Pα
1+δ′(J, ν)

|J |1/n
)
‖Pω

H∗x‖L2(ω)

� ‖ΨJ‖L2(ω)

(Pα(J, ν)

|J |1/n
)
‖Pω

H∗x‖L2(ω),

and in particular the ‘pivotal’ bound

|〈Tα(ν),ΨJ 〉ω| ≤ C ‖ΨJ‖L2(ω) P
α(J, |ν|)

√
|J |ω .

Remark 6.3. The first term on the right side of the energy inequality above is
the ‘big’ Poisson integral Pα times the ‘small’ energy term ‖Pω

Hx‖2L2(ω) that is
additive in H, while the second term on the right is the ‘small’ Poisson integral
Pα
1+δ′ times the ‘big’ energy term ‖Pω

H∗x‖L2(ω) that is no longer additive in H. The
first term presents no problems in subsequent analysis due solely to the additivity
of the ‘small’ energy term. It is the second term that must be handled by special
methods. For example, in the intertwining proposition below, the interaction of
the singular integral occurs with a pair of cubes J ⊂ I at highly separated levels,
where the goodness of J can exploit the decay δ′ in the kernel of the ‘small’
Poisson integral Pα

1+δ′ relative to the ‘big’ Poisson integral Pα, and results in a
bound directly by the energy condition. On the other hand, in the local recursion
of M. Lacey at the end of the paper, the separation of levels in the pairs J ⊂ I can
be as little as a fixed parameter ρ, and here we must first separate the stopping
form into two sublinear forms that involve the two estimates respectively. The form
corresponding to the smaller Poisson integral Pα

1+δ′ is again handled using goodness
and the decay δ′ in the kernel, while the form corresponding to the larger Poisson
integral Pα requires the full force of the stopping time and recursion argument of
M. Lacey.

Proof. Using the monotonicity Lemma 6.1, followed by |νJ′ | ≤ ν and the Poisson
equivalence

(6.2)
Pα
m(J ′, ν)
|J ′|m/n

≈ Pα
m(J, ν)

|J |m/n
, J ′ ⊂ J ⊂ 2J, supp ν ∩ 2J = ∅,
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we have∣∣∣ ∑
J′∈H

〈Tα(νJ′),
ω
J′ΨJ〉ω

∣∣∣ = ∣∣∣ ∑
J′∈H

〈
ω
J′Tα(νJ′),
ω

J′ΨJ〉ω
∣∣∣

�
∣∣∣ ∑
J′∈H

Φα(J ′, |νJ′ |)‖ 
ω
J′ ΨJ‖L2(ω)

∣∣∣
�
( ∑

J′∈H

(Pα(J ′, ν)
|J ′|1/n

)2
‖ 
ω

J′ x‖2L2(ω)

)1/2( ∑
J′∈H

‖ 
ω
J′ ΨJ‖2L2(ω)

)1/2
+
( ∑

J′∈H

(Pα
1+δ(J

′, ν)
|J ′|1/n

)2 ∑
J′′⊂J′

‖ 
ω
J′′ x‖2L2(ω)

)1/2( ∑
J′∈H

‖ 
ω
J′ ΨJ‖2L2(ω)

)1/2
�
(Pα(J, ν)

|J |1/n
)
‖Pω

Hx‖L2(ω)‖ΨJ‖L2(ω)+
1

γδ′

(Pα
1+δ′(J, ν)

|J |1/n
)
‖Pω

H∗x‖L2(ω)‖ΨJ‖L2(ω) .

The last inequality follows from

∑
J′∈H

(Pα
1+δ(J

′, ν)
|J ′|1/n

)2 ∑
J′′⊂J′

‖ 
ω
J′′ x‖2L2(ω)

=
∑
J′′⊂J

{ ∑
J′: J′′⊂J′⊂J

(Pα
1+δ(J

′, ν)
|J ′|1/n

)2}
‖ 
ω

J′′ x‖2L2(ω)

� 1

γ2δ′
∑

J′′∈H∗

(Pα
1+δ′(J

′′, ν)
|J ′′|1/n

)2
‖ 
ω

J′′ x‖2L2(ω) ,

which in turn follows from (recalling δ = 2δ′)

∑
J′: J′′⊂J′⊂J

(Pα
1+δ(J

′, ν)
|J ′|1/n

)2
=

∑
J′: J′′⊂J′⊂J

|J ′|2δ/n
( ∫

Rn\γJ

1

(|J ′|1/n + |y − cJ′ |)n+1+δ−α
dν(y)

)2
�

∑
J′: J′′⊂J′⊂J

1

γ2δ′
|J ′|2δ/n
|J |2δ/n

(∫
Rn\γJ

|J |δ′/n(
|J |1/n + |y − cJ |

)n+1+δ′−α
dν(y)

)2
=

1

γ2δ′

( ∑
J′: J′′⊂J′⊂J

|J ′|2δ/n
|J |2δ/n

)(Pα
1+δ′(J, ν)

|J |1/n
)2

� 1

γ2δ′

(Pα
1+δ′(J, ν)

|J |1/n
)2
.

Finally we have the ‘pivotal’ bound from (6.2) and∑
J′′⊂J

‖ 
ω
J′′ x‖2L2(ω) = ‖x−mJ‖2L2(1Jω) ≤ |J |2/n |J |ω . �
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7. Preliminaries of NTV type

An important reduction of our theorem is delivered by the following two lemmas,
that in the case of one dimension are due to Nazarov, Treil and Volberg (see [13]
and [23]). The proofs given there do not extend in standard ways to higher dimen-
sions, and we use the weak boundedness property to handle the case of touching
cubes, and an application of Schur’s lemma to handle the case of separated cubes.
The first lemma below is Lemmas 8.1 and 8.7 in [8] but with the larger constantAα

2

there in place of Aα
2 .

Lemma 7.1. Suppose Tα is a standard fractional singular integral with 0 ≤ α < n,
and that all of the cubes I ∈ Dσ, J ∈ Dω below are good with goodness parameters ε
and r. Fix a positive integer ρ > r. For f ∈ L2(σ) and g ∈ L2(ω) we have

∑
(I,J)∈Dσ×Dω

2−ρ|I|1/n≤|J|1/n≤2ρ|I|1/n

|〈Tα
σ (
σ

I f),
ω
Jg〉ω|

�
(
Tα + T∗

α +WBPTα +
√
Aα

2

)
‖f‖L2(σ)‖g‖L2(ω)(7.1)

and

(7.2)
∑

(I,J)∈Dσ×Dω

I∩J=∅ and |J|1/n
|I|1/n /∈[2−ρ,2ρ]

|〈Tα
σ (
σ

I f),
ω
Jg〉ω| �

√
Aα

2 ‖f‖L2(σ)‖g‖L2(ω).

Lemma 7.2. Suppose Tα is a standard fractional singular integral with 0 ≤ α < n,
that all of the cubes I ∈ Dσ, J ∈ Dω below are good, that ρ > r, that f ∈ L2(σ) and
g ∈ L2(ω), that F ⊂ Dσ and G ⊂ Dω are σ-Carleson and ω-Carleson collections
respectively, i.e.,

∑
F ′∈F :F ′⊂F

|F ′|σ � |F |σ, F ∈ F , and
∑

G′∈G:G′⊂G

|G′|ω � |G|ω, G ∈ G,

that there are numerical sequences {αF(F )}F∈F and {βG(G)}G∈G such that

(7.3)
∑
F∈F

αF (F )2 |F |σ ≤ ‖f‖2L2(σ) and
∑
G∈G

βG(G)2 |G|σ ≤ ‖g‖2L2(σ) ,

and finally that for each pair of cubes (I, J) ∈ Dσ×Dω, there are bounded functions
βI,J and γI,J supported in I \ 2J and J \ 2I respectively, satisfying

‖βI,J‖∞, ‖γI,J‖∞ ≤ 1.
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Then ∑
(F,J)∈F×Dω

F∩J=∅ and |J|1/n≤2−ρ|F |1/n

|〈Tα
σ (βF,J1FαF (F )),
ω

Jg〉ω|

+
∑

(I,G)∈Dσ×G
I∩G=∅ and |I|1/n≤2−ρ|G|1/n

|〈Tα
σ (
σ

I f), γI,G1GβG(G)〉ω |

�
√
Aα

2 ‖f‖L2(σ)‖g‖L2(ω).(7.4)

Remark 7.3. If F and G are σ-Carleson and ω-Carleson collections respectively,
and if αF(F ) = Eσ

F |f | and βG(G) = Eω
G|g|, then the quasiorthogonality condi-

tion (7.3) holds, and this special case of Lemma 7.2 serves as a basic example.

Remark 7.4. Lemmas 7.1 and 7.2 differ mainly in that an orthogonal collec-
tion of Haar projections is replaced by a quasiorthogonal collection of indicators
{1FαF (F )}F∈F . More precisely, the main difference between (7.2) and (7.4) is that
a Haar projection 
σ

I f or 
ω
Jg has been replaced with a constant multiple of an

indicator 1FαF(F ) or 1GβG(G), and in addition, a bounded function is permitted
to multiply the indicator of the cube having larger sidelength.

Proof. Note that in (7.1) we have used the parameter ρ in the exponent rather
than r, and this is possible because the arguments we use here only require that
there are finitely many levels of scale separating I and J . To handle this term we
first decompose it into{ ∑

(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|1/n≤|J|1/n≤2ρ|I|1/n

+
∑

(I,J)∈Dσ×Dω: I⊂3J

2−ρ|I|1/n≤|J|1/n≤2ρ|I|1/n

+
∑

(I,J)∈Dσ×Dω

2−ρ|I|1/n≤|J|1/n≤2ρ|I|1/n
J ⊂3I and I ⊂3J

}
|〈Tα

σ (
σ
I f),
ω

Jg〉ω|

≡ A1 +A2 +A3.

The proof of the bound for term A3 is similar to that of the bound for the left side
of (7.2), and so we will defer the bound for A3 until after (7.2) has been proved.

We now consider term A1 as term A2 is symmetric. To handle this term we will
write the Haar functions hσI and hωJ as linear combinations of the indicators of the
children of their supporting cubes, denoted Iθ and Jθ′ respectively. Then we use
the testing condition on Iθ and Jθ′ when they overlap, i.e. their interiors intersect;
we use the weak boundedness property on Iθ and Jθ′ when they touch, i.e., their
interiors are disjoint but their closures intersect (even in just a point); and finally
we use the Aα

2 condition when Iθ and Jθ′ are separated, i.e., their closures are
disjoint. We will suppose initially that the side length of J is at most the side
length I, i.e., |J |1/n ≤ |I|1/n, the proof for J = πI being similar but for one point
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mentioned below. So suppose that Iθ is a child of I and that Jθ′ is a child of J .
If Jθ′ ⊂ Iθ we have from (5.2) that

|〈Tα
σ (1Iθ 
σ

I f),1Jθ′ 
ω
J g〉ω| � sup

a,a′∈Γn

|〈f, hσ,aI 〉σ|√
|Iθ|σ

|〈Tα
σ (1Iθ ),1Jθ′ 〉ω|

|〈g, hω,a′
J 〉ω|√
|Jθ′ |ω

� sup
a,a′∈Γn

|〈f, hσ,aI 〉σ|√
|Iθ|σ

(∫
Jθ′

|Tα
σ (1Iθ )|2dω

)1/2
|〈g, hω,a′

J 〉ω |

� sup
a,a′∈Γn

|〈f, hσ,aI 〉σ|√
|Iθ|σ

TTα |Iθ|1/2σ |〈g, hω,a′
J 〉ω|

� sup
a,a′∈Γn

TTα |〈f, h
σ,a
I 〉σ| |〈g, hω,a′

J 〉ω| .

The point referred to above is that when J = πI we write 〈Tα
σ (1Iθ ),1Jθ′ 〉ω =

〈1Iθ , T
α,∗
ω (1Jθ′ )〉σ and get the dual testing constant T∗

Tα
. If Jθ′ and Iθ touch, then

|Jθ′ |1/n ≤ |Iθ|1/n and we have Jθ′ ⊂ 3Iθ \ Iθ, and so

|〈Tα
σ (1Iθ 
σ

I f),1Jθ′ 
ω
J g〉ω| � sup

a,a′∈Γn

|〈f, hσ,aI 〉σ|√
|Iθ|σ

|〈Tα
σ (1Iθ ),1Jθ′ 〉ω|

|〈g, hω,a′
J 〉ω|√
|Jθ′ |ω

� sup
a,a′∈Γn

|〈f, hσ,aI 〉σ|√
|Iθ|σ

WBPTα

√
|Iθ|σ|Jθ′ |ω

|〈g, hω,a′
J 〉ω |√
|Jθ′ |ω

= sup
a,a′∈Γn

WBPTα |〈f, hσ,aI 〉σ| |〈g, hω,a′
J 〉ω| .

Finally, if Jθ′ and Iθ are separated, and if K is the smallest (not necessarily dyadic)
cube containing both Jθ′ and Iθ, then dist(Iθ, Jθ′) ≈ |K|1/n and we have

|〈Tα
σ (1Iθ 
σ

I f),1Jθ′ 
ω
J g〉ω| � sup

a,a′∈Γn

|〈f, hσ,aI 〉σ|√
|Iθ |σ

|〈Tα
σ (1Iθ ),1Jθ′ 〉ω|

|〈g, hω,a′
J 〉ω |√
|Jθ′ |ω

� sup
a,a′∈Γn

|〈f, hσ,aI 〉σ|√
|Iθ|σ

1

dist(Iθ, Jθ′)n−α
|Iθ|σ |Jθ′ |ω

|〈g, hω,a′
J 〉ω|√
|Jθ′ |ω

= sup
a,a′∈Γn

√
|Iθ|σ|Jθ′ |ω

dist(Iθ, Jθ′)n−α
|〈f, hσ,aI 〉σ| |〈g, hω,a′

J 〉ω |

� sup
a,a′∈Γn

√
|K|σ|K|ω

|K| 1n (n−α)
|〈f, hσ,aI 〉σ| |〈g, hω,a′

J 〉ω |

�
√
Aα

2 sup
a,a′∈Γn

|〈f, hσ,aI 〉σ| |〈g, hω,a′
J 〉ω| .

Now we sum over all the children of J and I satisfying 2−ρ|I|1/n ≤ |J |1/n ≤
2ρ|I|1/n for which J ⊂ 3I to obtain that

A1�
(
TTα+T∗

Tα
+WBPTα+

√
Aα

2

)
sup

a,a′∈Γn

∑
(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|1/n≤|J|1/n≤2ρ|I|1/n

|〈f, hσ,aI 〉σ||〈g, hω,a′
J 〉ω| .
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Now Cauchy–Schwarz gives the estimate∑
a,a′∈Γn

∑
(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|1/n≤|J|1/n≤2ρ|I|1/n

|〈f, hσI 〉σ||〈g, hωI 〉ω|

≤ sup
a,a′∈Γn

( ∑
(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|1/n≤|J|1/n≤2ρ|I|1/n

|〈f, hσI 〉σ|2
)1/2( ∑

(I,J)∈Dσ×Dω: J⊂3I

2−ρ|I|1/n≤|J|1/n≤2ρ|I|1/n

|〈g, hωJ 〉ω|2
)1/2

� ‖f‖L2(σ) ‖g‖L2(ω) ,

This completes our proof of (7.1) save for the deferral of term A3, which we bound
below.

Now we turn to the sum of separated cubes in (7.2) and (7.4). In each of
these inequalities we have either orthogonality or quasiorthogonality, due either to
the presence of a Haar projection such as 
σ

I f , or the presence of an appropriate
Carleson indicator such as βF,J1FαF (F ). We will prove below the estimate for
the separated sum corresponding to (7.2). The corresponding estimates for (7.4)
are handled in a similar way, the only difference being that the quasiorthogonality
of Carleson indicators such as βF,J1FαF(F ) is used in place of the orthogonality of
Haar functions such as 
σ

I f . The bounded functions βF,J are replaced with con-
stants after an application of the energy lemma, and then the arguments proceed
as below.

We split the pairs (I, J) ∈ Dσ × Dω occurring in (7.2) into two groups, those
with side length of J smaller than side length of I, and those with side length
of I smaller than side length of J , treating only the former case, the latter being
symmetric. Thus we prove the following bound:

A(f, g) ≡
∑

(I,J)∈Dσ×Dω

I∩J=∅ and |J|1/n≤2−ρ|I|1/n

|〈Tα
σ (
σ

I f),
ω
Jg〉ω| �

√
Aα

2 ‖f‖L2(σ) ‖g‖L2(ω) .

We apply the ‘pivotal’ bound from the energy Lemma 6.2 to estimate the inner
product 〈Tα

σ (
σ
I f),
ω

Jg〉ω and obtain,

|〈Tα
σ (
σ

I f),
ω
Jg〉ω| � ‖ 
ω

J g‖L2(ω) P
α(J, | 
σ

I f |σ)
√
|J |ω ,

Denote by dist the �∞ distance in Rn: dist(x, y) = max1≤j≤n |xj − yj|. We now
estimate separately the long-range and mid-range cases where dist(J, I) ≥ |I|1/n
holds or not, and we decompose A accordingly:

A(f, g) ≡ Along(f, g) +Amid(f, g).

The long-range case. We begin with the case where dist(J, I) is at least |I|1/n,
i.e., J ∩ 3I = ∅. Since J and I are separated by at least max{|J |1/n, |I|1/n}, we
have the inequality

Pα(J, |
σ
I f |σ) ≈

∫
I

|J |1/n
|y − cJ |n+1−α

|
σ
I f(y)| dσ(y) ≤ ‖
σ

I f‖L2(σ)
|J |1/n

√
|I|σ

dist(I, J)n+1−α
,
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since ∫
I

| 
σ
I f(y)| dσ(y) ≤ ‖
σ

I f‖L2(σ)

√
|I|σ.

Thus with A(f, g) = Along(f, g) we have

A(f, g) ≤
∑
I∈D

∑
J : |J|1/n≤|I|1/n: dist(I,J)≥|I|1/n

‖ 
σ
I f‖L2(σ)‖ 
ω

J g‖L2(ω)

× |J |1/n
dist(I, J)n+1−α

√
|I|σ

√
|J |ω

≡
∑

(I,J)∈P
‖ 
σ

I f‖L2(σ)‖ 
ω
J g‖L2(ω)A(I, J);

with A(I, J) ≡ |J |1/n
dist(I, J)n+1−α

√
|I|σ

√
|J |ω;

and P ≡
{
(I, J) ∈ D ×D : |J |1/n ≤ |I|1/n and dist(I, J) ≥ |I|1/n

}
.

Now let DN ≡ {K ∈ D : |K|1/n = 2N} for each N ∈ Z. For N ∈ Z and s ∈ Z+,
we further decompose A(f, g) by pigeonholing the side lengths of I and J by 2N

and 2N−s respectively:

A(f, g) =

∞∑
s=0

∑
N∈Z

As
N (f, g);

As
N (f, g) ≡

∑
(I,J)∈Ps

N

‖ 
σ
I f‖L2(σ)‖ 
ω

J g‖L2(ω)A(I, J),

where Ps
N ≡

{
(I, J) ∈ DN ×DN−s : dist(I, J) ≥ |I|1/n

}
.

Now As
N (f, g) = As

N (Pσ
Nf,P

ω
N−sg) where Pμ

M =
∑

K∈DM

μ

K denotes Haar pro-
jection onto Span{hμ,aK }K∈DM ,a∈Γn , and so by orthogonality of the projections
{Pμ

M}M∈Z we have∣∣∣ ∑
N∈Z

As
N (f, g)

∣∣∣ = ∑
N∈Z

|As
N (Pσ

Nf,P
ω
N−sg)| ≤

∑
N∈Z

‖As
N‖‖Pσ

Nf‖L2(σ)‖Pω
N−sg‖L2(ω)

≤
{
sup
N∈Z

‖As
N‖
}(∑

N∈Z

‖Pσ
Nf‖2L2(σ)

)1/2( ∑
N∈Z

‖Pω
N−sg‖2L2(ω)

)1/2
≤
{
sup
N∈Z

‖As
N‖
}
‖f‖L2(σ)‖g‖L2(ω).

Thus it suffices to show an estimate uniform in N with geometric decay in s, and
we will show

(7.5) |As
N (f, g)| ≤ C 2−s

√
Aα

2 ‖f‖L2(σ) ‖g‖L2(ω), for s ≥ 0 and N ∈ Z.
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We now pigeonhole the distance between I and J :

As
N (f, g) =

∞∑
�=0

As
N,�(f, g);

As
N,�(f, g) ≡

∑
(I,J)∈Ps

N,�

‖ 
σ
I f‖L2(σ)‖ 
ω

J g‖L2(ω)A(I, J),

where Ps
N,� ≡

{
(I, J) ∈ DN ×DN−s : dist(I, J) ≈ 2N+�

}
.

If we defineH(As
N,�) to be the bilinear form on �2×�2 with matrix [A(I,J)](I,J)∈Ps

N,�
,

then it remains to show that the norm ‖H(As
N,�)‖�2→�2 of H(As

N,�) on the sequence

space �2 is bounded by C2−s−�
√
Aα

2 . In turn, this is equivalent to showing that
the norm ‖H(Bs

N,�)‖�2→�2 of the bilinear form H(Bs
N,�) ≡ H(As

N,�)
trH(As

N,�) on

the sequence space �2 is bounded by C22−2s−2�Aα
2 . Here H(Bs

N,�) is the quadratic
form with matrix kernel [Bs

N,�(J, J
′)]J,J′∈DN−s having entries:

Bs
N,�(J, J

′) ≡
∑

I∈DN : dist(I,J)≈ dist(I,J′)≈ 2N+�

A(I, J)A(I, J ′), for J, J ′ ∈ DN−s .

We are reduced to showing

‖H(Bs
N,�)‖�2→�2 ≤ C 2−2s−2�Aα

2 for s ≥ 0, � ≥ 0 and N ∈ Z .

For this we begin by computing Bs
N,�(J, J

′):

Bs
N,�(J, J

′) =
∑

I∈DN

dist(I,J)≈ dist(I,J′)≈ 2N+�

|J |1/n
dist(I, J)n+1−α

√
|I|σ

√
|J |ω

× |J ′|1/n
dist(I, J ′)n+1−α

√
|I|σ

√
|J ′|ω

=

{ ∑
I∈DN

dist(I,J)≈ dist(I,J′)≈ 2N+�

|I|σ
1

dist(I, J)n+1−α dist(I, J ′)n+1−α

}

× |J |1/n |J ′|1/n
√
|J |ω

√
|J ′|ω .

Now we show that

(7.6) ‖Bs
N,�‖�2→�2 � 2−2s−2�Aα

2 ,

by applying the proof of Schur’s lemma. Fix � ≥ 0 and s ≥ 0. Choose the Schur
function β(K) = 1/

√
|K|ω. Fix J ∈ DN−s. We have∑

J′∈DN−s

β(J)

β(J ′)
Bs

N,�(J, J
′) �

∑
J′∈DN−s

dist(J,J′)≤2N+�+2

{ ∑
I∈DN

dist(I,J)≈2N+�

|I|σ
}

22(N−s)

22(�+N)(n+1−α)
|J ′|ω

� 2−2s−2� |210+�+sJ |σ
2(�+N)(n−α)

|212+�+sJ |ω
2(�+N)(n−α)

� 2−2s−2�Aα
2 ,
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since I ∈ DN and dist(I, J) ≈ 2N+� imply that I ⊂ 210+�+sJ which has side
length comparable to 2(�+N), and similarly J ′ ⊂ 212+�+sJ . Thus we can now
apply Schur’s argument with

∑
J (aJ)

2 =
∑

J′(bJ′)2 = 1 to obtain∑
J,J′∈DN−s

aJbJ′Bs
N,�(J, J

′) =
∑

J,J′∈DN−s

aJβ(J)bJ′β(J ′)
Bs

N,�(J, J
′)

β(J)β(J ′)

≤
∑
J

(aJβ(J))
2
∑
J′

Bs
N,�(J, J

′)
β(J)β(J ′)

+
∑
J′

(bJ′β(J ′))2
Bs

N,�(J, J
′)

β(J)β(J ′)

=
∑
J

(aJ )
2
{∑

J′

β(J)

β(J ′)
Bs

N,�(J, J
′)
}
+
∑
J′

(bJ′)2
{∑

J

β(J ′)
β(J)

Bs
N,�(J, J

′)
}

� 2−2s−2�Aα
2

(∑
J

(aJ )
2 +

∑
J′

(bJ′)2
)
= 21−2s−2�Aα

2 .

This completes the proof of (7.6). We can now sum in � to get (7.5) and we are
done. This completes our proof of the long-range estimate

Along(f, g) �
√
Aα

2 ‖f‖L2(σ) ‖g‖L2(ω) .

At this point we pause to complete the proof of (7.1). Indeed, the deferred
term A3 can be handled using the above argument since 3J ∩ I = ∅ = J ∩ 3I
implies that we can use the energy Lemma 6.2 as we did above.

The mid range case. Let

P ≡
{
(I, J) ∈ D ×D : J is good, |J |1/n ≤ 2−ρ|I|1/n, J ⊂ 3I \ I

}
.

For (I, J) ∈ P , the ‘pivotal’ estimate from the energy Lemma 6.2 gives

|〈Tα
σ (
σ

I f),
ω
Jg〉ω| � ‖ 
ω

J g‖L2(ω) P
α(J, | 
σ

I f |σ)
√
|J |ω .

Now we pigeonhole the lengths of I and J and the distance between them by
defining

Ps
N,d ≡

{
(I, J) ∈ D ×D : J is good, |I|1/n = 2N , |J |1/n = 2N−s,

J ⊂ 3I \ I, 2d−1 ≤ dist(I, J) ≤ 2d
}
.

Note that the closest a good cube J can come to I is determined by the goodness
inequality, which gives this bound for 2d ≥ dist(I, J):

2d≥ 1

2
|I|

1−ε
n |J |ε/n= 1

2
2N(1−ε)2(N−s)ε =

1

2
2N−εs; which implies N−εs−1≤d≤N,

where the last inequality holds because we are in the case of the mid-range term.
Thus we have∑

(I,J)∈P
|〈Tα

σ (
σ
I f),
ω

Jg〉ω| �
∑

(I,J)∈P
‖ 
ω

J g‖L2(ω) P
α(J, | 
σ

I f |σ)
√

|J |ω

=

∞∑
s=ρ

∑
N∈Z

N∑
d=N−εs−1

∑
(I,J)∈Ps

N,d

‖ 
ω
J g‖L2(ω) P

α(J, | 
σ
I f |σ)

√
|J |ω .
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Now we use

Pα(J, | 
σ
I f |σ) =

∫
I

|J |1/n(
|J |1/n + |y − cJ |

)n+1−α |
σ
I f(y)| dσ(y)

� 2N−s

2d(n+1−α)
‖ 
σ

I f‖L2(σ)

√
|I|σ

and apply Cauchy–Schwarz in J and use J ⊂ 3I to get∑
(I,J)∈P

|〈Tα
σ (
σ

I f),
ω
Jg〉ω|

�
∞∑
s=ρ

∑
N∈Z

N∑
d=N−εs−1

∑
I∈DN

2N−s2N(n−α)

2d(n+1−α)
‖ 
σ

I f‖L2(σ)

√
|I|σ
√
|3I|ω

2N(n−α)

×
( ∑

J∈DN−s

J⊂3I\I and dist(I,J)≈ 2d

‖ 
ω
J g‖L2(ω)

)1/2

�
∞∑
s=ρ

∑
N∈Z

2N−s 2N(n−α)

2(N−εs)(n+1−α)

√
Aα

2

∑
I∈DN

‖ 
σ
I f‖L2(σ)

( ∑
J∈DN−s

J⊂3I\I

‖ 
ω
J g‖2L2(ω)

)1/2

�
∞∑
s=ρ

2−s[1−ε(n+1−α)]
√
Aα

2 ‖f‖L2(σ) ‖g‖L2(ω) �
√
Aα

2 ‖f‖L2(σ) ‖g‖L2(ω) ,

where in the third line above we have used
∑N

d=N−εs−1
1

2d(n+1−α) ≈ 1
2(N−εs)(n+1−α) ,

and in the last line 2N−s2N(n−α)

2(N−εs)(n+1−α) = 2−s[1−ε(n+1−α)] followed by Cauchy–Schwarz
in I and N , using that we have bounded overlap in the triples of I for I ∈ DN .
More precisely, if we define fk ≡

∑
I∈Dk


σ
I fh

σ
I and gk ≡

∑
I∈Dk


ω
Jgh

ω
J , then we

have the orthogonality inequality∑
N∈Z

‖fN‖L2(σ) ‖gN−s‖L2(ω) ≤
(∑

N∈Z

‖fN‖2L2(σ)

)1/2(∑
N∈Z

‖gN−s‖2L2(ω)

)1/2
= ‖f‖L2(σ) ‖g‖L2(ω) .

We have assumed that 0 < ε < 1/(n+ 1− α) in the calculations above, and this
completes the proof of Lemma 7.1. �

8. Corona decompositions and splittings

We will use two different corona constructions to reduce matters to the stopping
form, the main part of which is handled by Lacey’s recursion argument, namely
a Calderón–Zygmund decomposition and an energy decomposition of NTV type.
We will then iterate these coronas into a double corona. We first recall our basic
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setup. For convenience in notation we will sometimes suppress the dependence
on α in our nonlinear forms, but will retain it in the operators, Poisson integrals
and constants. We will assume that the good/bad cube machinery of Nazarov,
Treil and Volberg [23] is in force here. Let Dσ = Dω be an (r, ε)-good grid on Rn,

and let {hσ,aI }I∈Dσ, a∈Γn and {hω,b
J }J∈Dω, b∈Γn be corresponding Haar bases as

described above, so that

f =
∑
I∈Dσ


σ
I f and g =

∑
J∈Dω


ω
Jg ,

where the Haar projections 
σ
I f and 
ω

Jg vanish if the cubes I and J are not
good. Inequality (2.9) is equivalent to boundedness of the bilinear form

T α(f, g) ≡ 〈Tα
σ (f), g〉ω =

∑
I∈Dσ and J∈Dω

〈Tα
σ (
σ

I f),
ω
Jg〉ω

on L2(σ) × L2(ω), i.e.,

|T α(f, g)| ≤ NTα‖f‖L2(σ) ‖g‖L2(ω).

8.1. The Calderón–Zygmund corona

We now introduce a stopping tree F for the function f ∈ L2(σ). Let F be a
collection of Calderón–Zygmund stopping cubes for f , and let Dσ =

⋃
F∈F CF be

the associated corona decomposition of the dyadic grid Dσ .
For a cube I ∈ Dσ let πDσI be the Dσ-parent of I in the grid Dσ, and let πFI

be the smallest member of F that contains I. For F, F ′ ∈ F , we say that F ′ is
an F -child of F if πF (πDσF ′) = F (it could be that F = πDσF ′), and we denote
by CF(F ) the set of F -children of F . For F ∈ F , define the projection Pσ

CF
onto

the linear span of the Haar functions {hσ,aI }I∈CF , a∈Γn by

Pσ
CF
f =

∑
I∈CF


σ
I f =

∑
I∈CF , a∈Γn

〈f, hσ,aI 〉σ hσ,aI .

The standard properties of these projections are

f =
∑
F∈F

Pσ
CF
f ,

∫
(Pσ

CF
f)σ = 0 , ‖f‖2L2(σ) =

∑
F∈F

‖Pσ
CF
f‖2L2(σ) .

8.2. The energy corona

We must also impose an energy corona decomposition as in [13] and [3].

Definition 8.1. Given a cube S0, define S(S0) to be the maximal subcubes I ⊂ S0

such that
(8.1)∑
J∈Mτ-deep(I)

(Pα(J,1S0\γJσ)
|J |1/n

)2∥∥Psubgood,ω
J x

∥∥2
L2(ω)

≥ Cenergy

[
(Edeep

α )2 +Aα
2

]
|I|σ,
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where Edeep
α is the constant in the deep energy condition defined in Definition 2.4,

and Cenergy is a sufficiently large positive constant depending only on τ , r, n and α.
Then define the σ-energy stopping cubes of S0 to be the collection S = {S0}

⋃⋃∞
n=0 Sn, where S0 = S(S0) and Sn+1 =

⋃
S∈Sn

S(S) for n ≥ 0.

From the energy condition in Definition 2.4 we obtain the σ-Carleson estimate

(8.2)
∑

S∈S:S⊂I

|S|σ ≤ 2 |I|σ, I ∈ Dσ.

Indeed, using the deep energy condition, the first generation satisfies

(8.3)
∑
S∈S1

|S|σ

≤ 1

Cenergy[(Edeep
α )2 +Aα

2 ]

∑
S∈S1

∑
J∈Mτ-deep(S)

(Pα(J,1S0\γJσ)
|J |1/n

)2
‖Psubgood,ω

J x‖2L2(ω)

≤ 1

Cenergy[(Edeep
α )2 +Aα

2 ]

∑
S∈S1

∑
J∈Mτ-deep(S)

(Pα(J,1S0σ)

|J |1/n
)2

‖Psubgood,ω
J x‖2L2(ω)

≤ Cτ ,r,n,α

Cenergy[(Edeep
α )2 +Aα

2 ]

∑
S∈S1

∑
J∈Mr-deep(S)

(Pα(J,1S0σ)

|J |1/n
)2

‖Psubgood,ω
J x‖2L2(ω)

≤ Cτ ,r,n,α

Cenergy[(Edeep
α )2 +Aα

2 ]
(Edeepplug

α )2 |S0|σ =
1

2
|S0|σ ,

provided we take Cenergy = 2Cτ ,r,n,α
(Edeepplug

α )2

(Edeep
α )2+Aα

2

. The third inequality above, in

which τ is replaced by r (but the goodness parameter ε > 0 is unchanged), follows
because if J1 ∈ Mτ -deep(S), then J1 ⊂ J2 for a unique J2 ∈ Mr-deep(S) and we

have |J2|1/n ≤ 2τ−r|J1|1/n, hence Pα(J1,1S0σ)

|J1|1/n ≤ Cτ ,r,n,α
Pα(J2,1S0σ)

|J2|1/n . Subsequent

generations satisfy a similar estimate, which then easily gives (8.2). We emphasize
that this collection of stopping times depends only on S0 and the weight pair (σ, ω),
and not on any functions at hand.

Finally, we record the reason for introducing energy stopping times. If

(8.4) Xα(CS)2 ≡ sup
I∈CS

1

|I|σ
∑

J∈Mτ-deep(I)

(Pα(J,1S\γJσ)
|J |1/n

)2∥∥Psubgood,ω
J x

∥∥2
L2(ω)

is (the square of) the α-stopping energy of the weight pair (σ, ω) with respect to
the corona CS , then we have the stopping energy bounds

(8.5) Xα(CS) ≤
√
Cenergy

√
(Edeep

α )2 +Aα
2 , S ∈ S,

where the deep energy constant Edeep
α is controlled by assumption.
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8.3. General stopping data

It is useful to extend our notion of corona decomposition to more general stopping
data. Our general definition of stopping data will use a positive constant C0 ≥ 4.

Definition 8.2. Suppose we are given a positive constant C0 ≥ 4, a subset F
of the dyadic grid Dσ (called the stopping times), and a corresponding sequence
αF ≡ {αF (F )}F∈F of nonnegative numbers αF (F ) ≥ 0 (called the stopping data).
Let (F ,≺, πF ) be the tree structure on F inherited from Dσ, and for each F ∈ F
denote by CF = {I ∈ Dσ : πFI = F} the corona associated with F :

CF = {I ∈ Dσ : I ⊂ F and I �⊂ F ′ for any F ′ ≺ F}.

We say the triple (C0,F , αF ) constitutes stopping data for a function f ∈L1
loc(σ) if

(1) Eσ
I |f | ≤ αF (F ) for all I ∈ CF and F ∈ F ,

(2)
∑

F ′�F |F ′|σ ≤ C0 |F |σ for all F ∈ F ,

(3)
∑

F∈F αF (F )2|F |σ ≤ C2
0 ‖f‖2L2(σ),

(4) αF(F ) ≤ αF(F ′) whenever F ′, F ∈ F with F ′ ⊂ F .

Definition 8.3. If (C0,F , αF) constitutes (general) stopping data for a function
f ∈ L1

loc(σ), we refer to the orthogonal decomposition

f =
∑
F∈F

Pσ
CF
f ; Pσ

CF
f ≡

∑
I∈CF


σ
I f,

as the (general) corona decomposition of f associated with the stopping times F .

Property (1) says that αF (F ) bounds the averages of f in the corona CF , and
property (2) says that the cubes at the tops of the coronas satisfy a Carleson
condition relative to the weight σ. Note that a standard ‘maximal cube’ argument
extends the Carleson condition in property (2) to the inequality∑

F ′∈F :F ′⊂A

|F ′|σ ≤ C0 |A|σ for all open sets A ⊂ R .

Property (3) is the quasiorthogonality condition that says the sequence of func-
tions {αF(F )1F }F∈F is in the vector-valued space L2(�2;σ), and property (4) says
that the control on averages is nondecreasing on the stopping tree F . We empha-
size that we are not assuming in this definition the stronger property that there
is C > 1 such that αF (F ′) > CαF (F ) whenever F ′, F ∈ F with F ′ � F . Instead,
the properties (2) and (3) substitute for this lack. Of course the stronger property
does hold for the familiar Calderón–Zygmund stopping data determined by the
following requirements for C > 1,

Eσ
F ′ |f | > C Eσ

F |f | whenever F ′, F ∈ F with F ′ � F ,

Eσ
I |f | ≤ C Eσ

F |f | for I ∈ CF ,

which are themselves sufficiently strong to automatically force properties (2)
and (3) with αF (F ) = Eσ

F |f |.
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We have the following useful consequence of (2) and (3) that says the sequence
{αF(F )1F }F∈F has a quasiorthogonal property relative to f with a constant C′

0

depending only on C0:

(8.6)
∥∥∥ ∑

F∈F
αF (F )1F

∥∥∥2
L2(σ)

≤ C′
0 ‖f‖2L2(σ) .

Indeed, the Carleson condition (2) implies a geometric decay in levels of the tree F ,
namely that there are positive constants C1 and ε, depending on C0, such that

if C
(n)
F (F ) denotes the set of nth generation children of F in F ,∑

F ′∈C
(n)
F (F ):

|F ′|σ ≤ (C12
−εn)2 |F |σ, for all n ≥ 0 and F ∈ F .

From this we obtain that

∞∑
n=0

∑
F ′∈C

(n)
F (F ):

αF(F ′)|F ′|σ ≤
∞∑
n=0

( ∑
F ′∈C

(n)
F (F )

αF(F ′)2|F ′|σ
)1/2

C12
−εn
√
|F |σ

≤ C1

√
|F |σ Cε

( ∞∑
n=0

2−εn
∑

F ′∈C
(n)
F (F )

αF (F ′)2|F ′|σ
)1/2

,

and hence that

∑
F∈F

αF (F )
{ ∞∑

n=0

∑
F ′∈C

(n)
F (F )

αF(F ′)|F ′|σ
}

�
∑
F∈F

αF (F )
√
|F |σ

( ∞∑
n=0

2−εn
∑

F ′∈C
(n)
F (F )

αF(F ′)2|F ′|σ
)1/2

�
( ∑

F∈F
αF(F )2|F |σ

)1/2( ∞∑
n=0

2−εn
∑
F∈F

∑
F ′∈C

(n)
F (F )

αF (F ′)2|F ′|σ
)1/2

� ‖f‖L2(σ)

( ∑
F ′∈F

αF (F ′)2|F ′|σ
)1/2

� ‖f‖2L2(σ) .

This proves (8.6) since ‖
∑

F∈F αF(F )1F ‖2L2(σ) is dominated by twice the left hand
side above.

We will use a construction that permits iteration of general corona decomposi-
tions.

Lemma 8.4. Suppose that (C0,F , αF) constitutes stopping data for a function
f ∈ L1

loc(σ), and that for each F ∈ F , (C0,K(F ), αK(F )) constitutes stopping data
for the corona projection Pσ

CF
f , where, in addition, F ∈ K(F ). There is a positive



Two weight boundedness 113

constant C1, depending only on C0, such that if

K∗(F ) ≡
{
K ∈ K(F ) ∩ CF : αK(F )(K) ≥ αF(F )

}
K ≡

⋃
F∈F

K∗(F ) ∪ {F} ,

αK(K) ≡
{αK(F )(K) for K ∈ K∗(F ) \ {F}
max{αF(F ), αK(F )(F )} for K = F

, for F ∈ F ,

the triple (C1,K, αK) constitutes stopping data for f . We refer to the collection
of cubes K as the iterated stopping times, and to the orthogonal decomposition
f =

∑
K∈K PCK

K
f as the iterated corona decomposition of f , where

CK
K ≡ {I ∈ D : I ⊂ K and I �⊂ K ′ for K ′ ≺K K} .

Note that in our definition of (C1,K, αK) we have ‘discarded’ from K(F ) all of
those K ∈ K(F ) that are not in the corona CF , and also all of those K ∈ K(F )
for which αK(F )(K) is strictly less than αF (F ). Then the union of over F of what
remains is our new collection of stopping times. We then define stopping data
αK(K) according to whether or not K ∈ F : if K /∈ F but K ∈ CF then αK(K)
equals αK(F )(K), while ifK ∈ F , then αK(K) is the larger of αK(F )(F ) and αF (K).

Proof. The monotonicity property (4) for the triple (C1,K, αK) is obvious from
the construction of K and αK(K). To establish property (1), we must distin-

guish between the various coronas CK
K , CK(F )

K and CF
K that could be associated

with K ∈ K, when K belongs to any of the stopping trees K, K(F ) or F . Sup-
pose now that I ∈ CK

K for some K ∈ K. Then there is a unique F ∈ F such

that CK
K ⊂ CK(F )

K ⊂ CF
F , and so Eσ

I |f | ≤ αF (F ) by property (1) for the triple
(C0,F , αF). Then αF (F ) ≤ αK(K) follows from the definition of αK(K), and
we have property (1) for the triple (C1,K, αK). Property (2) holds for the triple
(C1,K, αK) since if K ∈ CF

F , then∑
K′�KK

|K ′|σ =
∑

K′∈K(F ):K′⊂K

|K ′|σ +
∑

F ′≺FF :F ′⊂K

∑
K′∈K(F ′)

|K ′|σ

≤ C0 |K|σ +
∑

F ′≺FF :F ′⊂K

C0 |F ′|σ ≤ 2C2
0 |K|σ .

Finally, property (3) holds for the triple (C1,K, αK) since∑
K∈K

αK(K)2|K|σ =
∑
F∈F

∑
K∈K(F )

αK(F )(K)2 |K|σ +
∑
F∈F

αF (F )2 |F |σ

≤
∑
F∈F

C2
0 ‖Pσ

CF
f‖2L2(σ) + C2

0 ‖f‖2L2(σ) ≤ 2C2
0 ‖f‖2L2(σ).

�
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8.4. Doubly iterated coronas and the NTV cube size splitting

Here is a brief schematic diagram of the decompositions, with bounds in , used
in this subsection:

〈Tα
σ f, g〉ω
↓

B�ρ(f, g) + B
ρ�(f, g) + B∩(f, g) + B�(f, g)

↓ dual NT Vα NT Vα

↓
Tdiagonal(f, g) + Tfarbelow(f, g) + Tfarabove(f, g) +Tdisjoint(f, g)

↓ ↓ ∅ ∅
↓ ↓

BA
�ρ

(f, g) T1
farbelow(f, g) + T2

farbelow(f, g)

↓ NT Vα + Eα NT Vα

↓
BA
stop(f, g) +BA

paraproduct(f, g)+BA
neighbour(f, g)

Edeep
α +

√
Aα

2 TTα

√
Aα

2

We begin with the NTV cube size splitting of the inner product 〈Tα
σ f, g〉ω – and

later apply the iterated corona construction– that splits the pairs of cubes (I, J)
in a simultaneous Haar decomposition of f and g into four groups, namely those
pairs that:

1. are below the size diagonal and ρ-deeply embedded,

2. are above the size diagonal and ρ-deeply embedded,

3. are disjoint, and

4. are of ρ-comparable size.

More precisely we have

〈Tα
σ f, g 〉ω =

∑
I∈Dσ, J∈Dω

〈Tα
σ (
σ

I f), (
ω
I g)〉ω

=
∑

I∈Dσ, J∈Dω

J�ρI

〈Tα
σ (
σ

I f), (
ω
Jg)〉ω +

∑
I∈Dσ, J∈Dω

Jρ�I

〈Tα
σ (
σ

I f), (
ω
Jg)〉ω

+
∑

I∈Dσ, J∈Dω

J∩I=∅

〈Tα
σ (
σ

I f), (
ω
Jg)〉ω +

∑
I∈Dσ, J∈Dω

2−nρ≤|J|�|I|≤2nρ

〈Tα
σ (
σ

I f), (
ω
Jg)〉ω

= B�ρ(f, g) + Bρ�(f, g) + B∩(f, g) + B�(f, g) .

Lemma 7.1 in the section on NTV preliminaries show that the disjoint and com-
parable forms B∩(f, g) and B�(f, g) are both bounded by the Aα

2 , testing and
weak boundedness property constants. The below and above forms are clearly
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symmetric, so we need only consider the form B�ρ(f, g), to which we turn for the
remainder of the proof.

In order to bound the below form B�ρ(f, g), we will apply two different corona
decompositions in succession to the function f ∈ L2(σ), gaining structure with
each application; first to a boundedness property for f , and then to a regularizing
property of the weight σ. We first apply the Calderón–Zygmund corona decompo-
sition to the function f ∈ L2(σ) obtain

f =
∑
F∈F

Pσ
Cσ
F
f .

Then for each fixed F ∈ F , construct the energy corona decomposition {Cσ
S}S∈S(F )

corresponding to the weight pair (σ, ω) with top cube S0 = F , as given in Defini-
tion 8.1. At this point we apply Lemma 8.4 to obtain iterated stopping times S
and iterated stopping data {αS(F)(S)}S∈S(F). This gives us the following double
corona decomposition of f :

f =
∑
F∈F

Pσ
Cσ
F
f =

∑
F∈F

∑
S∈S∗(F )∪{F}

Pσ
Cσ
S
Pσ
Cσ
F
f =

∑
S∈S

Pσ
Cσ
S
f ≡

∑
A∈A

Pσ
CA
f ,(8.7)

where A ≡ S is the double stopping collection for f . We are relabeling the double
corona as A here so as to minimize confusion. We now record the main facts proved
above for the double corona.

Lemma 8.5. The data A and {αA(A)}A∈A satisfy properties (1), (2), (3) and (4)
in Definition 8.2.

To bound B�ρ(f, g) we fix the stopping data A and {αA(A)}A∈A constructed
above with the double iterated corona. We now consider the following canoni-
cal splitting of the form B�ρ(f, g) that involves the Haar corona projections Pσ

CA

acting on f and the τ -shifted Haar corona projections Pω
Cτ-shift
B

acting on g. Here

the τ -shifted corona Cτ -shift
B is defined to include only those cubes J ∈ CB that are

not τ -nearby B, and to include also such cubes J which in addition are τ -nearby
in the children B′ of B.

Definition 8.6. The parameters τ and ρ are now fixed to satisfy

τ > r and ρ > r+ τ ,

where r is the goodness parameter already fixed.

Definition 8.7. For B ∈ A we define

Cτ -shift
B ={J ∈CB : J �τ B}

⋃ ⋃
B′∈CA(B)

{J ∈D : J�τ B and J is τ -nearby in B′} .

We will use repeatedly the fact that the τ -shifted coronas Cτ-shift
B have overlap

bounded by τ :

(8.8)
∑
B∈A

1Cτ-shift
B

(J) ≤ τ , J ∈ D.
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The forms B�ρ(f, g) are no longer linear in f and g as the ‘cut’ is determined
by the coronas CF and Cτ -shift

G , which depend on f as well as the measures σ and ω.
However, if the coronas are held fixed, then the forms can be considered bilinear
in f and g. It is convenient at this point to introduce the following shorthand
notation:〈

Tα
σ (P

σ
CA
f),Pω

Cτ-shift
B

g
〉�ρ

ω
≡

∑
I∈CA and J∈Cτ-shift

B
J�ρI

〈Tα
σ (
σ

I f), (
ω
Jg)〉ω .

We then have the canonical splitting

B�ρ(f, g) =
∑

A,B∈A

〈
Tα
σ (P

σ
CA
f),Pω

Cτ-shift
B

g
〉�ρ

ω

=
∑
A∈A

〈
Tα
σ (P

σ
CA
f),Pω

Cτ-shift
A

g
〉�ρ

ω
+
∑

A,B∈A
B�A

〈
Tα
σ (P

σ
CA
f),Pω

Cτ-shift
B

g
〉�ρ

ω

+
∑

A,B∈A
B�A

〈
Tα
σ (P

σ
CA
f),Pω

Cτ-shift
B

g
〉�ρ

ω
+

∑
A,B∈A
A∩B=∅

〈
Tα
σ (P

σ
CA
f),Pω

Cτ-shift
B

g
〉�ρ

ω

≡ Tdiagonal(f, g) + Tfarbelow(f, g) + Tfarabove(f, g) + Tdisjoint(f, g) .(8.9)

Now the final two terms Tfarabove(f, g) and Tdisjoint(f, g) each vanish since there
are no pairs (I, J) ∈ CA × Cτ -shift

B with both (i) J �ρ I and (ii) either B � A or
B ∩A = ∅.

The far below term Tfarbelow(f, g) is bounded using the intertwining proposition
and the control of functional energy condition by the energy condition given in the
next two sections. Indeed, assuming these two results, we have from τ < ρ that

Tfarbelow(f, g) =
∑

A,B∈A
B�A

∑
I∈CA and J∈Cτ−shift

B
J�ρI

〈Tα
σ (
σ

I f), (
ω
Jg)〉ω

=
∑
B∈A

∑
A∈A:B�A

∑
I∈CA and J∈Cτ-shift

B
J�ρI

〈Tα
σ (
σ

I f), (
ω
Jg)〉ω

=
∑
B∈A

∑
A∈A:B�A

∑
I∈CA and J∈Cτ−shift

B

〈Tα
σ (
σ

I f), (
ω
Jg)〉ω

−
∑
B∈A

∑
A∈A:B�A

∑
I∈CA and J∈Cτ-shift

B
J �ρI

〈Tα
σ (
σ

I f), (
ω
Jg)〉ω

= T1
farbelow(f, g)− T2

farbelow(f, g) .

Now T2
farbelow(f, g) is bounded byNT Vα by Lemma 7.1, since J is good if
ω

Jg �= 0.

The form T1
farbelow(f, g) can be written as

T1
farbelow(f, g) =

∑
B∈A

∑
I∈D:B�I

〈Tα
σ (
σ

I f), gB〉ω ; where gB ≡
∑

J∈Cτ-shift
B


ω
Jg .
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The intertwining Proposition 9.4 applies to this latter form and shows that it is
bounded by NT Vα +Fα. Then Proposition 10.1 shows that Fα � Aα

2 + Eα, which
completes the proof that

(8.10) |Tfarbelow(f, g)| � (NT Vα + Eα) ‖f‖L2(σ) ‖g‖L2(ω) .

The boundedness of the diagonal term Tdiagonal(f, g) will then be reduced to
the forms in the paraproduct/neighbour/stopping form decomposition of NTV.
The stopping form is then further split into two sublinear forms in (11.6) below,
where the boundedness of the more difficult of the two is treated by adapting
the stopping time and recuresion of M. Lacey [1]. More precisely, to handle the
diagonal term Tdiagonal(f, g), it is enough to consider the individual corona pieces

BA
�ρ

(f, g) ≡
〈
Tα
σ (P

σ
CA
f),Pω

Cτ-shift
A

g
〉�
ω
,

and to prove the following estimate:

|BA
�ρ

(f, g)| � (NT Vα + Eα)
(
αA(A)

√
|A|σ + ‖Pσ

CA
f‖L2(σ)

) ∥∥Pω
Cτ-shift
A

g
∥∥
L2(ω)

.

Indeed, we then have from Cauchy–Schwarz that∑
A∈A

|BA
�ρ

(f, g)| =
∑
A∈A

∣∣BA
�ρ

(Pσ
CA
f,Pω

Cτ-shift
A

g)
∣∣

� (NT Vα + Eα)
( ∑

A∈A
αA(A)2|A|σ + ‖Pσ

CA
f‖2L2(σ)

)1/2( ∑
A∈A

‖Pω
Cτ-shift
A

g‖2L2(ω)

)1/2
� (NT Vα + Eα) ‖f‖L2(σ) ‖g‖L2(ω) ,

where the last line uses quasiorthogonality in f and orthogonality in both f and g.

Following arguments in [13], [23] and [4], we now use the paraproduct/neigh-
bour/stopping splitting of NTV to reduce boundedness of BA

�ρ
(f, g) to boundedness

of the associated stopping form

(8.11) BA
stop(f, g) ≡

∑
I∈suppf̂

∑
J: J�ρI and IJ /∈A

(Eσ
IJ 
σ

I f) 〈Tα
σ 1A\IJ ,
ω

Jg〉ω ,

where f is supported in the cube A and its expectations Eσ
I |f | are bounded

by αA (A) for I ∈ Cσ
A, the Haar support of f is contained in the corona Cσ

A,
and the Haar support of g is contained in Cτ-shift

A , and where IJ is the D-child of I
that contains J . Indeed, to see this, we note that 
σ

I f = 1I 
σ
I f and write both

1I = 1IJ +
∑

θ(IJ )∈CD(I)\{IJ}
1θ(IJ ) , 1IJ = 1A − 1A\IJ ,

where θ(IJ ) ∈ CD(I) \ {IJ} ranges over the 2n − 1 D-children of I other than the
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child IJ that contains J . Then we obtain

〈Tα
σ 
σ

I f,
ω
Jg〉ω 〈Tα

σ (1IJ 
σ
I f),
ω

Jg〉ω +
∑

θ(IJ )∈CD(I)\{IJ}
〈Tα

σ (1θ(IJ ) 
σ
I f),
ω

Jg〉ω

= (Eσ
IJ 
σ

I f)〈Tα
σ (1IJ ),
ω

Jg〉ω +
∑

θ(IJ )∈CD(I)\{IJ}
〈Tα

σ (1θ(IJ ) 
σ
I f),
ω

Jg〉ω

= (Eσ
IJ 
σ

I f)〈Tα
σ 1A,
ω

Jg〉ω − (Eσ
IJ 
σ

I f)〈Tα
σ 1A\IJ ,
ω

Jg〉ω
+

∑
θ(IJ )∈CD(I)\{IJ}

〈Tα
σ (1θ(IJ ) 
σ

I f),
ω
Jg〉ω ,

and the corresponding NTV splitting of BA
�ρ

(f, g):

BA
�ρ

(f, g) =
〈
Tα
σ (P

σ
CA
f),Pω

Cτ-shift
A

g
〉�ρ

ω
=

∑
I∈CA and J∈Cτ-shift

A
J�ρI

〈Tα
σ (
σ

I f),
ω
Jg〉ω

=
∑

I∈CA and J∈Cτ-shift
A

J�ρI

(Eσ
IJ 
σ

I f)〈Tα
σ 1A,
ω

Jg〉ω

−
∑

I∈CA and J∈Cτ-shift
A

J�ρI

(Eσ
IJ 
σ

I f)〈Tα
σ 1A\IJ ,
ω

Jg〉ω

+
∑

I∈CA and J∈Cτ-shift
A

J�ρI

∑
θ(IJ )∈CD(I)\{IJ}

〈Tα
σ (1θ(IJ ) 
σ

I f),
ω
Jg〉ω

≡ BA
paraproduct(f, g)− BA

stop(f, g) + BA
neighbour(f, g) .

The paraproduct form BA
paraproduct(f, g) is easily controlled by the testing condition

for Tα. Indeed, we have

BA
paraproduct(f, g) =

∑
I∈CA and J∈Cτ-shift

A
J�I

(Eσ
IJ 
σ

I f)〈Tα
σ 1A,
ω

Jg〉ω

=
∑

J∈Cτ-shift
A

〈Tα
σ 1A,
ω

Jg〉ω
{ ∑

I∈CA: J�I

(Eσ
IJ 
σ

I f)
}

=
∑

J∈Cτ-shift
A

〈Tα
σ 1A,
ω

Jg〉ω{Eσ
I
(J)J

f − Eσ
Af}

=
〈
Tα
σ 1A,

∑
J∈Cτ-shift

A

{Eσ
I
(J)J

f − Eσ
Af} 
ω

J g
〉
ω
,

where I(J) denotes the smallest cube I ∈ CA such that J�ρ I, and of course I(J)J
denotes its child containing J . We claim that, by construction of the corona, we
have I(J)J /∈ A, and so

∣∣Eσ
I
(J)J

f
∣∣ � Eσ

A|f | ≤ αA(A). Indeed, in our application

of the stopping form we have f = Pσ
CA
f and g = Pω

Cτ-shift
A

g, and the definitions
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of the coronas CA and Cτ -shift
A together with r < τ < ρ imply that I(J)J /∈ A

for J ∈ Cτ -shift
A .

Thus from the orthogonality of the Haar projections 
ω
Jg and the bound on

the coefficients
∣∣Eσ

I
(J)J
f − Eσ

Af
∣∣ � αA(A) we have

|BA
paraproduct(f, g)| =

∣∣∣〈Tα
σ 1A,

∑
J∈Cτ-shift

A

{Eσ
I
(J)J

f − Eσ
Af} 
ω

J g
〉
ω

∣∣∣
� αA(A) ‖1AT

α
σ 1A‖L2(ω)

∥∥Pω
Cτ-shift
A

g
∥∥
L2(ω)

≤ TTα αA(A)
√
|A|σ

∥∥Pω
Cτ-shift
A

g
∥∥
L2(ω)

,

because ∥∥∥ ∑
J∈Cτ-shift

A

λJ 
ω
J g
∥∥∥
L2(ω)

≤
(
sup
J

|λJ |
) ∥∥∥ ∑

J∈Cτ-shift
A


ω
Jg
∥∥∥
L2(ω)

.

Next, the neighbour form BA
neighbour(f, g) is easily controlled by the Aα

2

condition using the Energy Lemma 6.2 and the fact that the cubes J are good.
In particular, the information encoded in the stopping tree A plays no role here.
We have

BA
neighbour(f, g) =

∑
I∈CA and J∈Cτ-shift

A
J�ρI

∑
θ(IJ )∈CD(I)\{IJ}

〈Tα
σ (1θ(IJ ) 
σ

I f),
ω
Jg〉ω.

Recall that IJ is the child of I that contains J . Fix θ(IJ ) ∈ CD(I) \ {IJ} momen-
tarily, and an integer s ≥ r. The inner product to be estimated is

〈Tα
σ (1θ(IJ )σΔ

σ
I f),Δ

ω
Jg〉ω,

i.e.,
〈Tα

σ (1θ(IJ ) 
σ
I f),
ω

Jg〉ω = Eσ
θ(IJ )

Δσ
I f · 〈Tα

σ (1θ(IJ )),
ω
Jg〉ω.

Thus we can write

BA
neighbour(f, g)

=
∑

I∈CA and J∈Cτ-shift
A

J�ρI

∑
θ(IJ )∈CD(I)\{IJ}

(
Eσ
θ(IJ )

Δσ
I f
)
〈Tα

σ (1θ(IJ )σ),Δ
ω
J g〉ω.(8.12)

Now we will use the following fractional analogue of the Poisson inequality
in [23].

Lemma 8.8. Suppose that J ⊂ I ⊂ K and that dist(J, ∂I) > 1
2 |J |ε/n|I|(1−ε)/n.

Then

(8.13) Pα(J, σ1K\I) �
( |J |1/n
|I|1/n

)1−ε(n+1−α)

Pα(I, σ1K\I).
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Proof. We have

Pα(J, σχK\I) ≈
∞∑
k=0

2−k 1

|2kJ |1−α/n

∫
(2kJ)∩(K\I)

dσ,

and (2kJ) ∩ (K \ I) �= ∅ requires dist(J,K \ I) ≤ c 2k �(J) for some dimensional
constant c > 0.

Let k0 be the smallest such k. By our distance assumption we must then have

1

2
|J |ε/n |I|(1−ε)/n ≤ dist(J, ∂I) ≤ c 2k0 |J |1/n,

or

2−k0−1 ≤ c
( |J |1/n
|I|1/n

)1−ε

.

Now let k1 be defined by 2k1 ≡ |I|1/n/|J |1/n. Then assuming k1 > k0 (the case
k1 ≤ k0 is similar) we have

Pα(J, σχK\I) ≈
{ k1∑

k=k0

+

∞∑
k=k1

}
2−k 1

|2kJ |1−α/n

∫
(2kJ)∩(K\I)

dσ

� 2−k0
|I|1−α/n

|2k0J |1−α/n

( 1

|I|1−α/n

∫
(2k1J)∩(K\I)

dσ
)
+ 2−k1Pα(I, σχK\I)

�
( |J |1/n
|I|1/n

)(1−ε)(n+1−α)( |I|1/n
|J |1/n

)n−α

Pα(I, σχK\I) +
|J |1/n
|I|1/n Pα(I, σχK\I) ,

which is the inequality (8.13). �

Now fix I0, Iθ ∈ CD(I) with I0 �= Iθ and assume that J�r I0. Let |J |1/n/|I0|1/n
= 2−s in the pivotal estimate in the energy Lemma 6.2 with J ⊂ I0 ⊂ I to obtain

|〈Tα
σ (1Iθσ),Δ

ω
J g〉ω| � ‖Δω

Jg‖L2(ω)

√
|J |ω Pα(J,1Iθσ)

� ‖Δω
Jg‖L2(ω)

√
|J |ω · 2−(1−ε(n+1−α))s Pα(I0,1Iθσ) .

Here we are using (8.13), which applies since J ⊂ I0.
In the sum below, we keep the side length of the cubes J fixed, and of course

J ⊂ I0. We estimate

A(I, I0, Iθ, s) ≡
∑

J : 2s �(J)=�(I):J⊂I0

|〈Tα
σ (1IθσΔ

σ
I f),Δ

ω
Jg〉ω|

≤ 2−(1−ε(n+1−α))s |Eσ
IθΔ

σ
I f |Pα(I0,1Iθσ)

∑
J : 2s �(J)=�(I): J⊂I0

‖Δω
Jg‖L2(ω)

√
|J |ω

≤ 2−(1−ε(n+1−α))s |Eσ
IθΔ

σ
I f | Pα(I0,1Iθσ)

√
|I0|ω Λ(I, I0, Iθ, s) ,

Λ(I, I0, Iθ, s)
2 ≡

∑
J∈Cτ-shift

A : 2s �(J)=�(I):J⊂I0

‖Δω
Jg‖2L2(ω) .
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The last line follows upon using the Cauchy–Schwarz inequality and the fact that
Δω

Jg = 0 if J /∈ Cτ -shift
A . We also note that since 2s+1� (J) = � (I),

∑
I0∈CD(I)

Λ(I, I0, Iθ, s)
2 ≡

∑
J∈Cτ-shift

A : 2s+1 �(J)=�(I): J⊂I

‖Δω
J g‖

2
L2(ω) ;(8.14)

∑
I∈CA

∑
I0∈CD(I)

Λ(I, I0, Iθ, s)
2 ≤

∥∥Pω
Cτ-shift
A

g
∥∥2
L2(ω)

.

Using

(8.15) |Eσ
Iθ
Δσ

I f | ≤
√
Eσ
Iθ
|Δσ

I f |2 ≤ ‖Δσ
I f‖L2(σ) |Iθ|−1/2

σ ,

we can thus estimate A(I, I0, Iθ, s) as follows, in which we use the Aα
2 hypothesis

supI
|I|σ|I|ω

|I|2(1−α/n) = Aα
2 <∞:

A(I, I0, Iθ, s)

� 2−(1−ε(n+1−α))s ‖Δσ
I f‖L2(σ) Λ(I, I0, Iθ, s) · |Iθ|−1/2

σ Pα(I0,1Iθσ)
√
|I0|ω

�
√
Aα

2 2−(1−ε(n+1−α))s ‖Δσ
I f‖L2(σ) Λ(I, I0, Iθ, s) ,

since Pα(I0,1Iθσ) � |Iθ|σ/|Iθ|1−α/n shows that

|Iθ |−1/2
σ Pα(I0,1Iθσ)

√
|I0|ω �

√
|Iθ |σ

√
|I0|ω

|I|1−α/n
�
√
Aα

2 .

An application of Cauchy–Schwarz in the sum over I using (8.14) then shows that

∑
I∈CA

∑
I0,Iθ∈CD(I)

I0 =Iθ

A(I, I0, Iθ, s)

�
√
Aα

2 2−(1−ε(n+1−α))s
( ∑

I∈CA

‖Δσ
I f‖

2
L2(σ)

)1/2
×
( ∑

I∈CA

( ∑
I0,Iθ∈CD(I)

I0 =Iθ

Λ(I, I0, Iθ, s)

)2)1/2

�
√
Aα

2 2−(1−ε(n+1−α))s ‖Pσ
CA
f‖L2(σ)

√
2n
( ∑

I∈CA

( ∑
I0∈CD(I)
I0 =Iθ

Λ(I, I0, Iθ, s)

)2)1/2

�
√
Aα

2 2−(1−ε(n+1−α))s ‖Pσ
CA
f‖L2(σ)

∥∥Pω
Cτ-shift
A

g
∥∥
L2(ω)

.
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This estimate is summable in s ≥ r, and so the proof of∣∣BA
neighbour(f, g)

∣∣ = ∣∣∣∣ ∑
I∈CA and J∈Cτ-shift

A
J�ρI

∑
θ(IJ )∈CD(I)\{IJ}

〈
Tα
σ

(
1θ(IJ ) 
σ

I f
)
,
ω

Jg
〉
ω

∣∣∣∣
=

∣∣∣∣ ∑
I∈CA

∑
I0,Iθ∈CD(I)

I0 =Iθ

∞∑
s=r

A(I, I0, Iθ, s)

∣∣∣∣ �√Aα
2

∥∥Pσ
CA
f
∥∥
L2(σ)

∥∥Pω
Cτ-shift
A

g
∥∥
L2(ω)

is complete.
It is to the sublinear form on the left side of (11.7) below, derived from the

stopping form BA
stop(f, g), that the argument of M. Lacey in [1] will be adapted.

This will result in the inequality

(8.16) |BA
stop(f, g)| �

(
Edeep
α +

√
Aα

2

)(
αA(A)

√
|A|σ + ‖f‖L2(σ)

)
‖g‖L2(ω) , A ∈ A ,

where the bounded averages of f in BA
stop(f, g) will prove crucial. But first we turn

to completing the proof of the bound (8.10) for the far below form Tfarbelow(f, g)
using the intertwining proposition and the control of functional energy by the Aα

2

condition and the energy condition Eα.

9. Intertwining proposition

Here we generalize the intertwining proposition (see e.g. [15]) to higher dimen-
sions. The main principle here says that, modulo terms that are controlled by the
functional energy constant Fα and the NTV constant NT Vα (see below), we can
pass the shifted ω-corona projection Pω

Cτ-shift
B

through the operator Tα to become

the shifted corona projection σ-corona projection Pσ
Cτ-shift
B

.

More precisely, the idea is that with Tα
σ f ≡ Tα(fσ), the intertwining operator

Pω
Cτ-shift
B

[
Pω
Cτ-shift
B

Tα
σ − Tα

σ P
σ
Cτ-shift
B

]
Pσ
CA

is bounded with constant Fα + NT Vα. In those cases where the coronas Cτ -shift
B

and CA are (almost) disjoint, the intertwining operator reduces (essentially) to
Pω
Cτ-shift
B

Tα
σ P

σ
CA

, and then combined with the control of the functional energy con-

stant Fα by the energy condition constant Eα and Aα
2+Aα,∗

2 , we obtain the required
bound (8.10) for Tfarbelow(f, g) above.

To describe the quantities we use to bound these forms, we need to adapt to
higher dimensions three definitions used for the Hilbert transform that are relevant
to functional energy.

Definition 9.1. A collection F of dyadic cubes is σ-Carleson if∑
F∈F :F⊂S

|F |σ ≤ CF |S|σ, S ∈ F .

The constant CF is referred to as the Carleson norm of F .
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Definition 9.2. Let F be a collection of dyadic cubes. The good τ -shifted corona
corresponding to F is defined by

Cgood,τ -shift
F ≡

{
J ∈ Dω

good : J �τ F and J ��τ F
′ for any F ′ ∈ CF(F )

}
.

Note that Cgood,τ -shift
F = Cτ -shift

F ∩ Dω
good and the collections Cgood,τ -shift

F have
bounded overlap τ since, for fixed J , there are at most τ cubes F ∈ F with the
property that J is good, J �τ F and J ��τ F

′ for any F ′ ∈ CF (F ). Here CF(F )
denotes the set of F -children of F . Given any collection H ⊂ D of cubes, and a
dyadic cube J , we define the corresponding Haar projection Pω

H and its localiza-
tion Pω

H;J to J by

(9.1) Pω
H =

∑
H∈H


ω
H and Pω

H;J =
∑

H∈H:H⊂J


ω
H .

Definition 9.3. Let Fα be the smallest constant in the ‘functional energy’ inequal-
ity below, holding for all h ∈ L2(σ), g ∈ L2(ω) and all σ-Carleson collections F
with Carleson norm CF bounded by a fixed constant C:

(9.2)
∑
F∈F

∑
J∈Mr-deep(F )

(Pα(J, hσ)

|J |1/n
)2∥∥Pω

Cgood,τ-shift
F ;J

x
∥∥2
L2(ω)

≤ Fα‖h‖L2(σ) .

This definition of Fα depends on the choice of the fixed constant C, but it
will be clear from the arguments below that C may be taken to depend only on n
and α, and we do not compute its value here.

There is a similar definition of the dual constant F∗
α.

We now show that the functional energy inequality (9.2) suffices to prove an
α-fractional n-dimensional analogue of the intertwining proposition (see e.g. [15]).
Let F be any subset of D. For any J ∈ D, we define π0

FJ to be the smallest F ∈ F
that contains J . Then for s ≥ 1, we recursively define πs

FJ to be the smallest
F ∈ F that strictly contains πs−1

F J . This definition satisfies πs+t
F J = πs

Fπ
t
FJ for

all s, t ≥ 0 and J ∈ D. In particular πs
FJ = πs

FF where F = π0
FJ . In the special

case F = D we often suppress the subscript F and simply write πs for πs
D. Finally,

for F ∈ F , we write CF(F ) ≡ {F ′ ∈ F : π1
FF

′ = F} for the collection of F -children
of F . Let

NT Vα ≡
√
Aα

2 + Tα +WBPα .

Proposition 9.4 (The intertwining proposition). Suppose that F is σ-Carleson.
Then∣∣∣∣ ∑

F∈F

∑
I: I�F

〈
Tα
σ 
σ

I f,P
ω
Cgood,τ-shift
F

g
〉
ω

∣∣∣∣ � (Fα + Eα +NT Vα) ‖f‖L2(σ)‖g‖L2(ω).

Proof. We let gF = Pω
Cgood,τ-shift
F

g, which is supported in F , and write the left-hand

side of the display above as∑
F∈F

∑
I: I�F

〈Tα
σ 
σ

I f, gF 〉ω =
∑
F∈F

〈
Tα
σ

( ∑
I: I�F


σ
I f
)
, gF

〉
ω
≡
∑
F∈F

〈Tα
σ fF , gF 〉ω ,
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where
fF ≡

∑
I: I�F


σ
I f .

Here, fF is constant on F . We note that the cubes I occurring in this sum are
linearly and consecutively ordered by inclusion, along with the cubes F ′ ∈ F that
contain F . More precisely, we can write

F ≡ F0 � F1 � F2 � · · · � Fn � Fn+1 � · · · � FN ,

where Fm = πm
F F for all m ≥ 1. We can also write

F = F0 � I1 � I2 � · · · � Ik � Ik+1 � · · · � IK = FN ,

where Ik = πk
DF for all k ≥ 1. There is a (unique) subsequence {km}Nm=1 such

that
Fm = Ikm , 1 ≤ m ≤ N .

Define

fF (x) =

∞∑
�=1


σ
I�
f(x) .

Assume now that km ≤ k < km+1. We denote the 2n − 1 siblings of I by θ(I),
θ ∈ Θ, i.e., {θ(I)}θ∈Θ = CD(πDI) \ {I}. There are two cases to consider here:

θ(Ik) /∈ F and θ(Ik) ∈ F .

Suppose first that θ(Ik) /∈ F . Then θ(Ik) ∈ Cσ
Fm+1

and using a telescoping sum,
we compute that for

x ∈ θ(Ik) ⊂ Ik+1 \ Ik ⊂ Fm+1 \ Fm ,

we have

|fF (x)| =
∣∣∣ ∞∑
�=k


σ
I�f(x)

∣∣∣ = |Eσ
θ(Ik)

f − Eσ
IKf | � Eσ

Fm+1
|f | .

On the other hand, if θ(Ik) ∈ F , then Ik+1 ∈ Cσ
Fm+1

and we have

|fF (x) −
σ
θ(Ik)

f(x)| =
∣∣∣ ∞∑
�=k+1


σ
I�
f(x)

∣∣∣ = |Eσ
Ik+1

f − Eσ
IKf | � Eσ

Fm+1
|f | .

Now we write

fF = ϕF + ψF ,

ϕF ≡
∞∑

k,θ: θ(Ik)∈F
1θ(Ik) 
σ

Ik
f and ψF = fF − ϕF ;

∑
F∈F

〈Tα
σ fF , gF 〉ω =

∑
F∈F

〈Tα
σ ϕF , gF 〉ω +

∑
F∈F

〈Tα
σ ψF , gF 〉ω ,
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and note that both ϕF and ψF are constant on F . We can apply (7.4), using
θ(Ik) ∈ F , to the first sum here to obtain

∣∣∣ ∑
F∈F

〈Tα
σ ϕF , gF 〉ω

∣∣∣ � NT Vα

∥∥∥ ∑
F∈F

ϕF

∥∥∥
L2(σ)

∥∥∥ ∑
F∈F

gF

∥∥∥2
L2(ω)

� NT Vα ‖f‖L2(σ)

[ ∑
F∈F

‖gF ‖2L2(ω)

]1/2
.

Turning to the second sum we note that

|ψF | ≤
N∑

m=0

(
Eσ
Fm+1

|f |
)
1Fm+1\Fm

= (Eσ
F |f |) 1F +

N∑
m=0

(
Eσ
πm+1
F F

|f |
)
1πm+1

F F\πm
F F

= (Eσ
F |f |) 1F +

∑
F ′∈F :F⊂F ′

(Eσ
πFF ′ |f |) 1πFF ′\F ′

≤ αF (F ) 1F +
∑

F ′∈F :F⊂F ′
αF(πFF ′) 1πFF ′\F ′

≤ αF (F ) 1F +
∑

F ′∈F :F⊂F ′
αF(πFF ′) 1πFF ′ 1F c

= αF (F ) 1F +Φ 1F c , for all F ∈ F ,

where

Φ ≡
∑

F ′′∈F
αF(F ′′) 1F ′′ .

Now we write∑
F∈F

〈Tα
σ ψF , gF 〉ω =

∑
F∈F

〈Tα
σ (1FψF ), gF 〉ω +

∑
F∈F

〈Tα
σ (1F cψF ), gF 〉ω ≡ I + II.

Then cube testing |〈Tα
σ 1F , gF 〉ω| = |〈1FT

α
σ 1F , gF 〉ω| ≤ TTα

√
|F |σ ‖gF ‖L2(ω) and

‘quasi’ orthogonality, together with the fact that ψF is a constant on F bounded
by αF (F ), give

| I | ≤
∑
F∈F

|〈Tα
σ 1F ψF , gF 〉ω| �

∑
F∈F

αF(F ) |〈Tα
σ 1F , gF 〉ω|

�
∑
F∈F

αF (F )NT Vα

√
|F |σ‖gF‖L2(ω) � NT Vα‖f‖L2(σ)

[ ∑
F∈F

‖gF‖2L2(ω)

]1/2
.

Now 1F cψF is supported outside F , and each J in the Haar support of gF is
r-deeply embedded in F , i.e., J �r F . Thus we can apply the energy Lemma 6.2
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to obtain

| II | =
∣∣∣ ∑
F∈F

〈Tα
σ (1F cψF ), gF 〉ω

∣∣∣
�
∑
F∈F

∑
J∈Mr-deep(F )

Pα(J,1F cΦσ)

|J |1/n
∥∥Pω

Cgood,τ-shift
F ;J

x
∥∥
L2(ω)

‖Pω
JgF ‖L2(ω)

+
∑
F∈F

∑
J∈Mr-deep(F )

Pα
1+δ′(J,1F cΦσ)

|J |1/n
∥∥∥Pω

(Cgood,τ-shift
F )∗;Jx

∥∥∥
L2(ω)

‖Pω
JgF ‖L2(ω)

≡ IIG + IIB .

Then from Cauchy–Schwarz, the functional energy condition, and ‖Φ‖L2(σ) �
‖f‖L2(σ) we obtain

| IIG| ≤
( ∑

F∈F

∑
J∈Mr-deep(F )

(Pα(J,1F cΦσ)

|J |1/n
)2

‖Pω
Cgood,τ-shift
F ;J

x‖2L2(ω)

)1/2
×
( ∑

F∈F

∑
J∈Mr-deep(F )

‖Pω
JgF ‖2L2(ω)

)1/2
� Fα‖Φ‖L2(σ)

[ ∑
F∈F

‖gF ‖2L2(ω)

]1/2
� Fα‖f‖L2(σ)‖g‖L2(ω),

by the bounded overlap by τ of the shifted coronas Cgood,τ -shift
F .

In term IIB the projections Pω
(Cgood,τ-shift

F )∗;J
are no longer almost orthogonal,

and we must instead exploit the decay in the Poisson integral Pα
1+δ′ along with

goodness of the cubes J . This idea was already used by M. Lacey and B. Wick
in [8] in a similar situation. As a consequence of this decay we will be able to
bound IIB directly by the energy condition, without having to invoke the more
difficult functional energy condition. For the decay we compute

Pα
1+δ′(J,Φσ)

|J |1/n =

∫
F c

|J |δ′/n
|y − cJ |n+1+δ−α

Φ(y) dσ(y)

≤
∞∑
t=0

∫
πt+1
F F\πt

FF

( |J |1/n
dist(cJ , (πt

FF )c)

)δ′ 1

|y − cJ |n+1−α
Φ(y) dσ(y)

≤
∞∑
t=0

( |J |1/n
dist(cJ , (πt

FF )c)

)δ′ Pα(J,1πt+1
F F\πt

FFΦσ)

|J |1/n ,

and then use the goodness inequality

dist(cJ , (π
t
FF )

c) ≥ 1

2
|πt

FF |(1−ε)/n |J |ε/n ≥ 1

2
2t(1−ε)|F |

1−ε
n |J |ε/n ≥ 2t(1−ε)−1|J |1/n,
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to conclude that

(Pα
1+δ′(J,1F cΦσ)

|J |1/n
)2

�
( ∞∑

t=0

2−tδ′(1−ε)
Pα(J,1πt+1

F F\πt
FFΦσ)

|J |1/n
)2

(9.3)

�
∞∑
t=0

2−tδ′(1−ε)
(Pα(J,1πt+1

F F\πt
FFΦσ)

|J |1/n
)2
.

Now we apply Cauchy–Schwarz to obtain

IIB =
∑
F∈F

∑
J∈Mr-deep(F )

Pα
1+δ′(J,1F cΦσ)

|J |1/n
∥∥∥Pω

(Cgood,τ-shift
F )∗;J x

∥∥∥
L2(ω)

‖Pω
JgF ‖L2(ω)

≤
( ∑

F∈F

∑
J∈Mr-deep(F )

(Pα
1+δ′(J,1F cΦσ)

|J |1/n
)2∥∥∥Pω

(Cgood,τ-shift
F )∗;J x

∥∥∥2
L2(ω)

)1/2
×
[∑

F

‖gF‖2L2(ω)

]1/2
≡
√
II energy

[∑
F

‖gF‖2L2(ω)

]1/2
,

and it remains to estimate II energy. From (9.3) and the deep plugged energy
condition we have

II energy

≤
∑
F∈F

∑
J∈Mr-deep(F )

∞∑
t=0

2−tδ′(1−ε)

(Pα
(
J,1πt+1

F F\πt
FFΦσ

)
|J |1/n

)2

×
∥∥Pω

(Cgood,τ-shift
F )∗;Jx

∥∥2
L2(ω)

=

∞∑
t=0

2−tδ′(1−ε)
∑
G∈F

∑
F∈C

(t+1)
F (G)

∑
J∈Mr-deep(F )

(
Pα
(
J,1G\πt

FFΦσ
)

|J |1/n

)2

×
∥∥Pω

(Cgood,τ-shift
F )∗;Jx

∥∥2
L2(ω)

�
∞∑
t=0

2−tδ′(1−ε)
∑
G∈F

αF (G)2
∑

F∈C
(t+1)
F (G)

∑
J∈Mr-deep(F )

(
Pα
(
J,1G\πt

FFσ
)

|J |1/n

)2

× ‖Psubgood,ω
J x‖2L2(ω)

�
∞∑
t=0

2−tδ′(1−ε)
∑
G∈F

αF (G)2 (E2
α +Aα

2 ) |G|σ � (E2
α +Aα

2 ) ‖f‖2L2(σ) .

This completes the proof of the intertwining Proposition 9.4. �
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10. Control of functional energy by energy modulo Aα
2

Now we show that the functional energy constants Fα are controlled by Aα
2 and

both the deep and refined energy constants Edeep
α and Erefined

α defined in Defini-
tion 2.4. Recall (Eα)2 = (Edeep

α )2 + (Erefined
α )2.

Proposition 10.1.

Fα � Eα +
√
Aα

2 +
√
Aα,∗

2 and F∗
α � E∗

α +
√
Aα

2 +
√
Aα,∗

2 .

To prove this proposition, we fix F as in (9.2) and set

(10.1) μ ≡
∑
F∈F

∑
J∈Mr-deep(F )

∥∥∥Pω
F,J

x

|J |1/n
∥∥∥2
L2(ω)

· δ(c(J),|J|1/n) ,

where Mr-deep(F ) consists of the maximal r-deeply embedded subcubes of F . For
convenience in notation, we denote for any dyadic cube J the localized projection
Pω
Cgood,τ-shift
F ;J

given in (9.1) by

Pω
F,J ≡ Pω

Cgood,τ-shift
F ;J

=
∑

J′⊂J: J′∈Cgood,τ-shift
F


ω
J′ .

We emphasize that the cubes J ∈ Mr-deep(F ) are not necessarily good, but that
the subcubes J ′ ⊂ J arising in the projection Pω

F,J are good. We can replace x by
x−c inside the projection for any choice of c we wish; the projection is unchanged.
Here δq denotes a Dirac unit mass at a point q in the upper half plane R2

+.
We prove the two-weight inequality

(10.2) ‖Pα(fσ)‖L2(Rn+1
+ , μ) �

(
Eα +

√
Aα

2 +
√
Aα,∗

2

)
‖f‖L2(σ) ,

for all nonnegative f in L2(σ), noting that F and f are not related here. Above,
Pα(·) denotes the α-fractional Poisson extension to the upper half-space Rn+1

+ ,

Pαν(x, t) ≡
∫
Rn

t(
t2 + |x− y|2

)n+1−α
2

dν(y) ,

so that in particular

‖Pα(fσ)‖2
L2(Rn+1

+ , μ)
=
∑
F∈F

∑
J∈Mr-deep(F )

Pα(fσ)(c(J), |J |1/n)2
∥∥∥Pω

F,J

x

|J |1/n
∥∥∥2
L2(ω)

,

and so (10.2) proves the first line in Proposition 10.1 upon inspecting (9.2).
By the two-weight inequality for the Poisson operator in [14], inequality (10.2)

requires checking these two inequalities∫
Rn+1

+

Pα(1Iσ)(x, t)
2 dμ(x, t) ≡ ‖Pα(1Iσ)‖2L2(Î,μ)

� (Aα,∗
2 + E2

α)σ(I) ,(10.3) ∫
R
[Pα∗(t1Î μ)]

2 dσ(x) � (Aα
2 + Eα

√
Aα

2 )

∫
Î

t2 dμ(x, t) ,(10.4)



Two weight boundedness 129

for all dyadic cubes I ∈ D, where Î = I × [0, |I|] is the box over I in the upper
half-space, and

Pα∗(t1Î μ)(x) =

∫
Î

t2

(t2 + |x− y|2)n+1−α
2

dμ(y, t) .

It is important to note that we can choose for D any fixed dyadic grid, the com-
pensating point being that the integrations on the left sides of (10.3) and (10.4)
are taken over the entire spaces Rn

+ and Rn respectively.

Remark 10.2. There is a gap in the proof of the Poisson inequality at the top of
page 542 in [14]. However, this gap can be fixed as in [22] or [2].

The following elementary Poisson inequalities will be used extensively.

Lemma 10.3. Suppose that J,K, I are cubes satisfying J ⊂ K ⊂ 2K ⊂ I, and
thatμ is a positive measure supported in Rn \ I. Then

Pα(J, μ)

|J |1 /n
� Pα(K,μ)

|K|1/n � Pα(J, μ)

|J |1/n .

Proof. We have

Pα(J, μ)

|J |1/n =
1

|J |1/n
∫ |J |1/n

(|J |1/n + |x− cJ |)n+1−α
dμ(x) ,

where J ⊂ K ⊂ 2K ⊂ I implies that

|J |1/n + |x− cJ | ≈ |K|1/n + |x− cK |, x ∈ Rn \ I. �

Now we record the bounded overlap of the projections Pω
F,J .

Lemma 10.4. Suppose Pω
F,J is as above and fix any I0 ∈ D. If J ∈ Mr-deep(F )

for some F ∈ F with F � I0 and Pω
F,J �= 0, then

F = π
(�)
F I0 for some 0 ≤ � ≤ τ .

As a consequence we have the bounded overlap,

#{F ∈ F : J ⊂ I0 � F for some J ∈ Mr-deep(F ) with Pω
F,J �= 0} ≤ τ .

Proof. Indeed, if J ′ ∈ Cgood,τ -shift

π
(�)
F I0

for some � > τ , then either J ′ ∩ π(0)
F I0 = ∅ or

J ′ ⊃ π
(0)
F I0. Since J ⊂ I0 ⊂ π

(0)
F I0, we cannot have J ′ contained in J , and this

shows that Pω

π
(�)
F I0,J

= 0. �

Finally we record the only place in the proof where the refined energy condition
is used. This lemma will be used in bounding both of the Poisson testing conditions.
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Lemma 10.5. Let F and {Pω
F,J}F∈F , J∈Mr-deep(F ) be as above. For any shifted

D-dyadic cube I0, define

(10.5) B(I0) ≡
∑

F∈F :F�I0

∑
J∈Mr-deep(F ): J⊂I0

(Pα(J,1I0σ)

|J |1/n
)2

‖Pω
F,Jx‖2L2(ω) .

Then

(10.6) B(I0) � τ
(
(Erefinedplug

α )2 + (Edeepplug
α )2

)
|I0|σ � τ

(
(Eα)2 + βAα

2

)
|I0|σ .

Proof. Define, for I0 a dyadic cube,

Λ(I0) ≡ {J ⊂ I0 : J ∈ Mr-deep(F ) for some F � I0 with Pω
F,J �= 0}.

By Lemma 10.4 we may pigeonhole the cubes J in Λ(I0) as follows:

Λ(I0) =

τ⋃
�=0

Λ�(I0); Λ�(I0) ≡
{
J ⊂ I0 : J ∈ Mr-deep

(
π
(�)
F I0

)}
.

Now fix �, and for each J in the pairwise disjoint decomposition Λ�(I0) of I0,
note that either J must contain some K ∈ Mr-deep(I0) or J ⊂ K for some K ∈
Mr-deep(I0);

Λ�(I0) = Λbig
� (I0) ∪ Λsmall

� (I0) ;

Λsmall
� (I0) ≡ {J ∈ Λ�(I0) : J ⊂ K for some K ∈ Mr-deep(I0)} ,

and we make the corresponding decomposition B(I0) = Bbig(I0) + Bsmall(I0),
where

Bbig/small(I0)

≡
τ∑

�=0

∑
J∈Λ

big/small
� (I0)

(Pα(J,1I0σ)

|J |1/n
)2 ∑

F∈F :F�I0 andJ∈Mr-deep(F )

∥∥Pω
F,Jx

∥∥2
L2(ω)

.

Turning first to Bsmall(I0), we use the τ -overlap of the projections Pω
F,J , to-

gether with Lemma 10.3, to obtain

Bsmall(I0) ≤ τ

τ∑
�=0

∑
J∈Λsmall

� (I0)

(Pα(J,1I0σ)

|J |1/n
)2

‖Pω
Jx‖2L2(ω)(10.7)

� τ 2 (Erefinedplug
α )2 |I0|σ � τ 2 [(Eα)2 + βAα

2 ] |I0|σ ,

where the final estimate follows from (2.8), and this, for both I0 D-dyadic and I0
shifted D-dyadic, is the only point in the proof of Theorem 2.6 that the refined

energy condition is used. Indeed, each cube π
(�)
F I0 equals π

(�′)
D I0 for some �′, and

it is with this �′ that we apply the plugged refined energy condition.
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Turning now to the more delicate term Bbig(I0), we write for J ∈ Λbig
� (I0),∥∥Pgood,ω

J x
∥∥2
L2(ω)

=
∑

J′⊂J: J′ good

‖
ω
J′x‖2L2(ω)

=
∑

J′∈Nr(I): J′⊂J

‖
ω
J′x‖2L2(ω) +

∑
K∈Mr-deep(I0): K⊂J

∥∥Pgood,ω
K x

∥∥2
L2(ω)

,

where Nr(I) ≡ {J ′ ⊂ I : �(J ′) ≥ 2−r�(I)} denotes the set of r-near cubes in I,
and then using the τ -overlap of the projections Pω

F,J , we estimate

Bbig (I0) =

τ∑
�=0

∑
J∈Λbig

� (I0)

(Pα(J,1I0σ)

|J |1/n
)2 ∑

F∈F :F�I0 and J∈Mr-deep(F )

∥∥Pω
F,Jx

∥∥2
L2(ω)

≤ τ

τ∑
�=0

∑
J∈Λbig

�
(I0)

(Pα(J,1I0σ)

|J |1/n
)2

‖Pgood,ω
J x‖2L2(ω)

= τ

τ∑
�=0

∑
J∈Λbig

� (I0)

(Pα(J,1I0σ)

|J |1/n
)2 ∑

J′∈Nr(I0): J′⊂J

‖ 
ω
J′ x‖2L2(ω)

+ τ

τ∑
�=0

∑
J∈Λbig

� (I0)

(Pα(J,1I0σ)

|J |1/n
)2 ∑
K∈Mr-deep(I0):K⊂J

‖Psubgood,ω
K x‖2L2(ω)L2(ω)

≡ τ
(
Bbig

1 (I0) +Bbig
2 (I0)

)
.

Now we have, using that the J ∈ Λbig
l (I0) are pairwise disjoint,

Bbig
1 (I0) ≈

τ∑
�=0

(Pα(I0,1I0σ)

|I0|1/n
)2 ∑

J′∈Nr(I0)

‖ 
ω
J x‖2L2(ω)

�
τ∑

�=0

(#N (I0))
(Pα(I0,1I0σ)

|I0|1/n
)2

|I0|2/n |I0|ω � τ 2nrAα
2 |I0|σ .

Using Pα(J,1I0σ) = Pα(J,1Jσ) + Pα(J,1I0\Jσ), we have

Bbig
2 (I0) ≈

τ∑
�=0

∑
J∈Λbig

� (I0)

(Pα(J,1Jσ)

|J |1/n
)2 ∑

K∈Mr-deep(I0): K⊂J

‖Psubgood,ω
K x‖2L2(ω)

+

τ∑
�=0

∑
J∈Λbig

� (I0)

(Pα(J,1I0\Jσ)
|J |1/n

)2 ∑
K∈Mr-deep(I0):K⊂J

‖Psubgood,ω
K x‖2L2(ω)

≡ Bbig
3 (I0) +Bbig

4 (I0) .

Now, since the J ∈ Λbig
l (I0) are pairwise disjoint,

Bbig
3 (I0) �

τ∑
�=0

∑
J∈Λbig

� (I0)

( |J |σ
|J |1/n

)2
|J |2/n |J |ω � τ Aα

2 |I0|σ ,
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and since, for K ⊂ J ,

Pα(J,1I0\Jσ)
|J |1/n �

Pα(K,1I0\Jσ)
|K|1/n ,

we have

Bbig
4 (I0) =

τ∑
�=0

∑
J∈Λbig

� (I0)

∑
K∈Mr-deep(I0):K⊂J

(Pα(J,1I0\Jσ)
|J |1/n

)2
‖Psubgood,ω

K x‖2L2(ω)

�
τ∑

�=0

∑
J∈Λbig

� (I0)

∑
K∈Mr-deep(I0):K⊂J

(Pα(K,1I0\Jσ)
|K|1/n

)2
‖Psubgood,ω

K x‖2L2(ω)

≤
τ∑

�=0

∑
J∈Λbig

� (I0)

∑
K∈Mr-deep(I0):K⊂J

(Pα(K,1I0\Kσ)
|K|1/n

)2
‖Psubgood,ω

K x‖2L2(ω)

≤
τ∑

�=0

∑
K∈Mr-deep(I0)

(Pα(K,1I0\Kσ)
|K|1/n

)2
‖Psubgood,ω

K x‖2L2(ω)

� τ (Edeepplug
α )2 |I0|σ � τ ((Edeep

α )2 + βAα
2 ) |I0|σ ,

where the final line follows from (2.7). Finally, the case when I0 is a shifted
D-dyadic cube is easy and left for the reader. �

10.1. The Poisson testing inequality

Fix I ∈ D. We split the integration on the left side of (10.3) into a local and global
piece: ∫

Rn+1
+

Pα(1Iσ)
2 dμ =

∫
Î

Pα(1Iσ)
2 dμ+

∫
Rn+1

+ \Î
Pα(1Iσ)

2 dμ

≡ Local(I) +Global(I).

Here is a brief schematic diagram of the decompositions, with bounds in , used
in this subsection:

Local(I)
↓

Localplug(I) + Localhole(I)

↓ (Edeep
α )2

↓
A + B

(Edeep
α )2 +Aα

2 (Eα)2 +Aα
2

and

Global(I)
↓
A + B + C + D

Aα
2 Aα

2 Aα,∗
2 Aα,∗

2

.

We turn first to estimating the local term Local(I).
An important consequence of the fact that I and J lie in the same grid D = Dω,

is that (c(J), |J |) ∈ Î if and only if J ⊂ I.
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Thus we have∫
Î

Pα(1Iσ)(x, t)
2 dμ(x, t)

=
∑
F∈F

∑
J∈Mr-deep(F ): J⊂I

Pα(1Iσ)(cJ , |J |1/n)2
∥∥∥Pω

F,J

x

|J |1/n
∥∥∥2
L2(ω)

=
∑
F∈F

∑
J∈Mr-deep(F ): J⊂I

Pα(J,1Iσ)
2
∥∥∥Pω

F,J

x

|J |1/n
∥∥∥2
L2(ω)

.

In the first stage of the proof, we ‘create some holes’ by restricting the support
of σ to the cube F in the ‘plugged’ local sum below:

Localplug(I) ≡
∑
F∈F

∑
J∈Mr-deep(F ): J⊂I

(Pα(J,1F∩Iσ)

|J |1/n
)2

‖Pω
F,Jx‖2L2(ω)

=
{ ∑

F∈F :F⊂I

+
∑

F∈F : F�I

} ∑
J∈Mr-deep(F ): J⊂I

(Pα(J,1F∩Iσ)

|J |1/n
)2

‖Pω
F,Jx‖2L2(ω)

= A+B.

Then a trivial application of the deep energy condition (where ‘trivial’ means that
the outer decomposition is just a single cube) gives

A ≤
∑

F∈F :F⊂I

∑
J∈Mr-deep(F )

(Pα(J,1Fσ)

|J |1/n
)2

‖Pω
F,Jx‖2L2(ω)

≤
∑

F∈F :F⊂I

(Edeepplug
α )2 |F |σ � (E2

α +Aα
2 ) |I|σ ,

since ‖Pω
F,Jx‖2L2(ω)≤‖Pω

Jx‖2L2(ω), where we recall that the energy constant Edeepplug
α

is defined in (2.6). We also used that the stopping cubes F satisfy a σ-Carleson
measure estimate, ∑

F∈F :F⊂F0

|F |σ � |F0|σ.

Lemma 10.5 applies with I0 = I to the remaining term B to obtain the bound

B ≤ τ ((Eα)2 + βAα
2 ) |I|σ .

It remains then to show the inequality with ‘holes’, where the support of σ is
restricted to the complement of the cube F . For I ∈ D we define

FI ≡ {F ∈ F : F � I} ∪ {I} ,
so that the term Localhole(I) is the left-hand side of (10.8) below.

Lemma 10.6. We have

Localhole(I)

=
∑
F∈FI

∑
J∈Mr-deep(F )

(Pα(J,1I\Fσ)
|J |1/n

)2 ∥∥Pω
F,Jx

∥∥2
L2(ω)

� (Edeep
α )2 |I|σ .(10.8)
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Proof. We estimate

S ≡
∑
F∈FI

∑
J∈Mr-deep(F )

(Pα(J,1I\Fσ)
|J |1/n

)2 ∥∥Pω
F,Jx

∥∥2
L2(ω)

by

S =
∑
F∈FI

∑
J∈Mr-deep(F )

∑
F ′∈F : F⊂F ′�I

(Pα
(
J,1πFI

F ′\F ′σ
)

|J |1/n
)2 ∥∥Pω

F,Jx
∥∥2
L2(ω)

=
∑

F ′∈FI

∑
F∈F : F⊂F ′

∑
J∈Mr-deep(F )

(Pα
(
J,1πFI

F ′\F ′σ
)

|J |1/n
)2 ∥∥Pω

F,Jx
∥∥2
L2(ω)

=
∑

F ′∈FI

∑
K∈Mr-deep(F ′)

∑
F∈F : F⊂F ′

∑
J∈Mr-deep(F ): J⊂K

(Pα
(
J,1πFI

F ′\F ′σ
)

|J |1/n
)2

×
∥∥Pω

F,Jx
∥∥2
L2(ω)

�
∑

F ′∈FI

∑
K∈Mr-deep(F ′)

(Pα
(
K,1πFI

F ′\F ′σ
)

|K|1/n
)2

×
∑

F∈F : F⊂F ′

∑
J∈Mr-deep(F ): J⊂K

∥∥Pω
F,Jx

∥∥2
L2(ω)

,

by the Poisson inequalities in Lemma 10.3. We now invoke∑
F∈F : F⊂F ′

∑
J∈Mr-deep(F ): J⊂K

∥∥Pω
F,Jx

∥∥2
L2(ω)

�
∥∥P̂ω

F ′,Kx
∥∥2
L2(ω)

,

where the implied constant depends on τ and for K ∈ Mr-deep (F
′),

P̂ω
F ′,K ≡

∑
F∈F : F⊂F ′

∑
J∈Mr-deep(F ): J⊂K

Pω
F,J .

Now denote by d (F ) ≡ dFI (F, I) the distance from F to I in the tree FI .
Since the collection F satisfies a Carleson condition, we have geometric decay in
generations: ∑

F∈FI : d(F )=k

|F |σ � 2−δk |I|σ , k ≥ 0.

Thus we can write

|S| �
∑

F ′∈FI

∑
K∈Mr-deep(F ′)

(Pα
(
K,1πFI

F ′\F ′σ
)

|K|1/n
)2 ∥∥P̂ω

F ′,Kx
∥∥2
L2(ω)

=

∞∑
k=0

∑
F ′∈FI : d(F ′)=k

∑
K∈Mr-deep(F ′)

(Pα
(
K,1πFI

F ′\F ′σ
)

|K|1/n
)2 ∥∥P̂ω

F ′,Kx
∥∥2
L2(ω)

≡
∞∑
k=0

Ak,
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where by the deep energy condition,

Ak =
∑

F ′∈FI : d(F ′)=k

∑
K∈Mr-deep(F ′)

(Pα
(
K,1πFI

F ′\F ′σ
)

|K|1/n
)2∥∥P̂ω

F ′,Kx
∥∥2
L2(ω)

�
(
Edeep
α

)2 ∑
F ′′∈FI : d(F ′′)=k−1

|F ′′|σ �
(
Edeep
α

)2
2−δk |I|σ ,

and we finally obtain

|S| �
∞∑
k=0

(
Edeep
α

)2
2−δk |I|σ �

(
Edeep
α

)2 |I|σ ,
which is (10.8). �

Altogether, then, we have proved that Local(I0) � ((Eα)2 +Aα
2 ) |I0|σ when I0

is a D-dyadic cube. We leave the straightforward extension of this inequality to
shifted D-dyadic cubes I0 for the reader.

Now we turn to proving the following estimate for the global part of the first
testing condition (10.3): ∫

Rn+1
+ \Î

Pα(1Iσ)
2 dμ � Aα,∗

2 |I|σ .

We begin by decomposing the integral on the left into four pieces where we use
F ∼ J to denote the sum over those F ∈ F such that J ∈ Mr-deep(F ). Note that
given J , there are at most a fixed number C of F ∈ F such that F ∼ J . We have:∫

Rn+1
+ \Î

Pα(1Iσ)
2dμ

=
∑

J: (cJ ,|J|1/n)∈Rn+1
+ \Î

Pα(1Iσ)(cJ , |J |1/n)2
∑
F∈F :

J∈Mr-deep(F )

∥∥∥Pω
F,J

x

|J |1/n
∥∥∥2
L2(ω)

=

{ ∑
J∩3I=∅

|J|1/n≤|I|1/n

+
∑

J⊂3I\I
+

∑
J∩I=∅

|J|1/n>|I|1/n

+
∑
J�I

}
Pα(1Iσ)(cJ , |J |1/n)2

×
∑
F∈F :

J∈Mr-deep(F )

∥∥∥Pω
F,J

x

|J |1/n
∥∥∥2
L2(ω)

= A+B + C +D .

We further decompose term A according to the length of J and its distance



136 E.T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero

from I, and then use Lemma 10.4, with I0 = J , to obtain:

A �
∞∑

m=0

∞∑
k=1

∑
J⊂3k+1I\3kI

|J|1/n=2−m|I|1/n

( 2−m|I|1/n
dist(J, I)n+1−α

|I|σ
)2

τ |J |ω

�
∞∑

m=0

2−2m
∞∑
k=1

|I|2/n |I|σ |3k+1I \ 3kI|ω
|3kI|2(1+1/n−α/n)

|I|σ

�
∞∑

m=0

2−2m
∞∑
k=1

3−2k
{ |3k+1I|σ |3k+1I|ω

|3kI|2(1−α/n)

}
|I|σ � Aα

2 |I|σ .

For term B we let

J ∗ ≡
⋃
F∈F

⋃
J∈Mr-deep(F )

{K ∈ Cgood,τ -shift
F : K ⊂ J},

which is the union of allK occurring in the projections Pω
F,J . We further decompose

term B according to the length of J and use the fractional version of the Poisson
inequality (8.13) in Lemma 8.8 on the neighbour I ′ of I containing K (essentially
in [23]),

Pα(K,1Iσ)
2 �

( |K|1/n
|I|1/n

)2−2(n+1−α)ε

Pα(I,1Iσ)
2, K ∈ J ∗,K ⊂ 3I \ I,

where we have used that Pα(I ′,1Iσ) ≈ Pα(I,1Iσ) and that the cubes K ∈ J ∗

are good.

We then obtain from Lemma 10.4, with I0 = J ,

B =
∑

J⊂3I\I

(Pα(J,1Iσ)

|J |1/n
)2 ∑

F∈F :
J∈Mr-deep(F )

‖Pω
F,Jx‖2L2(ω)

�
∞∑

m=0

∑
K⊂3I\I

|K|1/n=2−m|I|1/n

(2−m)2−2(n+1−α)ε
( |I|σ
|I|1−α/n

)2
τ |K|ω

� τ

∞∑
m=0

(2−m)2−2(n+1−α)ε |3I|σ |3I|ω
|3I|2(1−α/n)

|I|σ � τ Aα
2 |I|σ .

For term C we will have to group the cubes J into blocks Bi, and then exploit
Lemma 10.4. We first split the sum according to whether or not I intersects the
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triple of J :

C ≈
{ ∑

J: I∩3J=∅
|J|1/n>|I|1/n

+
∑

J: I⊂3J\J
|J|1/n>|I|1/n

}( |J |1/n
(|J |1/n + dist(J, I))n+1−α

|I|σ
)2

×
∑
F∈F :

J∈Mr-deep(F )

∥∥∥Pω
F,J

x

|J |1/n
∥∥∥2
L2(ω)

= C1 + C2 .

We first consider C1. Let M be the maximal dyadic cubes in {Q : 3Q ∩ I = ∅},
and then let {Bi}∞i=1 be an enumeration of those Q ∈ M whose side length is at
least |I|1/n. Now we further decompose the sum in C1 by grouping the cubes J
into the Whitney cubes Bi, and then using Lemma 10.4, with I0 = J ,

C1 ≤
∞∑
i=1

∑
J: J⊂Bi

( 1

(|J |1/n + dist(J, I))n+1−α
|I|σ

)2 ∑
F∈F :

J∈Mr-deep(F )

‖Pω
F,Jx‖2L2(ω)

�
∞∑
i=1

( 1

(|Bi|1/n + dist(Bi, I))n+1−α
|I|σ

)2 ∑
J: J⊂Bi

∑
F∈F :

J∈Mr-deep(F )

‖Pω
F,Jx‖2L2(ω)

�
∞∑
i=1

( 1

(|Bi|1/n + dist(Bi, I))n+1−α
|I|σ

)2 ∑
J: J⊂Bi

τ |J |2/n |J |ω

�
∞∑
i=1

( 1

(|Bi|1/n + dist(Bi, I))n+1−α
|I|σ

)2
τ |Bi|2/n |Bi|ω

� τ
{ ∞∑

i=1

|Bi|ω |I|σ
|Bi|2(1−α/n)

}
|I|σ ,

and
∞∑
i=1

|Bi|ω |I|σ
|Bi|2(1−α/n)

=
|I|σ

|I|1−α/n

∞∑
i=1

|I|1−α/n

|Bi|2(1−α/n)
|Bi|ω

≈ |I|σ
|I|1−α/n

∞∑
i=1

∫
Bi

|I|1−α/n

dist(x, I)2(n−α)
dω(x)

≈ |I|σ
|I|1−α/n

∞∑
i=1

∫
Bi

(
|I|1/n[

|I|1/n + dist(x, I)
]2)n−α

dω(x)

≤ |I|σ
|I|1−α/n

Pα(I, ω) ≤ Aα,∗
2 .

We obtain C1 � τ Aα,∗
2 |I|σ.

Next we turn to estimating term C2 where the triple of J contains I but J
itself does not. Note that there are at most 2n such cubes J of a given side length,



138 E.T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero

one in each ‘generalized octant’ relative to I. So with this in mind we sum over
the cubes J according to their lengths to obtain

C2 =
∞∑

m=0

∑
J: I⊂3J\J

|J|1/n=2m|I|1/n

( |J |1/n
(|J |1/n + dist(J, I))n+1−α

|I|σ
)2 ∑

F∈F :
J∈Mr-deep(F )

∥∥∥Pω
F,J

x

|J |1/n
∥∥∥2
L2(ω)

�
∞∑

m=0

( |I|σ
|2mI|1−α/n

)2
τ |3 · 2mI|ω = τ

{ |I|σ
|I|1−α/n

∞∑
m=0

|I|1−α/n |3 · 2mI|ω
|2mI|2(1−α/n)

}
|I|σ

� τ
{ |I|σ
|I|1−α/n

Pα(I, ω)
}
|I|σ ≤ τ Aα,∗

2 |I|σ,

since, in analogy with the corresponding estimate above,

∞∑
m=0

|I|1−α/n |3 · 2nI|ω
|2mI|2(1−α/n)

=

∫ ∞∑
m=0

|I|1−α/n

|2mI|2(1−α/n)
13·2mI(x) dω(x) � Pα(I, ω) .

Finally, we turn to term D, which is handled in the same way as term C2.

The cubes J occurring here are included in the set of ancestors Ak ≡ π
(k)
D I of I,

1 ≤ k <∞. We thus have from Lemma 10.4 again,

D =

∞∑
k=1

Pα(1Iσ)(c(Ak), |Ak|1/n)2
∑
F∈F :

Ak∈Mr-deep(F )

∥∥∥Pω
F,Ak

x

|Ak|1/n
∥∥∥2
L2(ω)

�
∞∑
k=1

( |I|σ |Ak|1/n
|Ak|1+(1−α)/n

)2
τ |Ak|ω = τ

{ |I|σ
|I|1−α/n

∞∑
k=1

|I|1−α/n

|Ak|2(1−α/n)
|Ak|ω

}
|I|σ

�
{ |I|σ
|I|1−α/n

Pα(I, ω)
}
|I|σ � Aα,∗

2 |I|σ,

since

∞∑
k=1

|I|1−α/n

|Ak|2(1−α/n)
|Ak|ω =

∫ ∞∑
k=1

|I|1−α/n

|Ak|2(1−α/n)
1Ak(x) dω(x)

=

∫ ∞∑
k=1

1

22(1−α/n)k

|I|1−α/n

|I|2(1−α/n)
1Ak(x) dω(x)

�
∫ ( |I|1/n

(|I|1/n + dist(x, I))2

)n−α

dω(x) = Pα(I, ω) .

10.2. The dual Poisson testing inequality

Again we split the integration on the left side of (10.4) into local and global parts:∫
R
[Pα∗(t1Î μ) ]

2 σ =

∫
I

[Pα∗(t1Î μ) ]
2 σ +

∫
R\I

[Pα∗(t1Î μ) ]
2 σ

≡ Local(I) +Global(I).(10.9)
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Here is a brief schematic diagram of the decompositions, with bounds in , used
in this subsection:

Local(I)
↓
Us

↓
T proximal
s + V remote

s

Aα
2 +Eα

√
Aα

2 +A
α
2 ↓

↓
T difference
s +T intersection

s

Aα
2 +Eα

√
Aα

2 +A
α
2 Eα

√
Aα

2

and

Global(I)
↓
A + B

Aα
2 Aα

2

We begin with the local part Local(I). Note that the right hand side of (10.4) is

(10.10)

∫
Î

t2 dμ =
∑
F∈F

∑
J∈Mr-deep(F )

J⊂I

‖Pω
F,Jx‖2L2(ω) .

We now compute

(10.11) Pα∗(t1Î μ)(y) =
∑
F∈F

∑
J∈Mr-deep(F )

J⊂I

‖Pω
F,Jx‖2L2(ω)

(|J |1/n + |y − cJ |)n+1−α
,

and then expand the square and integrate to obtain that the local term Local is

∑
F∈F

J∈Mr−deep(F )
J⊂I

∑
F ′∈F

J′∈Mr-deep(F
′)

J′⊂I

∫
I

‖Pω
F,Jx‖2L2(ω)

(|J |1/n+|y−cJ |)n+1−α

‖Pω
F ′,J′x‖2L2(ω)

(|J ′|1/n+|y−cJ′|)n+1−α
dσ(y) .

By symmetry we may assume that |J ′|1/n ≤ |J |1/n. We fix an integer s, and
consider those cubes J and J ′ with |J ′|1/n = 2−s|J |1/n. For fixed s we will control
the expression

Us ≡
∑

F,F ′∈F

∑
J∈Mr-deep(F ), J′∈Mr-deep(F

′)
J,J′⊂I, |J′|1/n=2−s|J|1/n

×
∫
I

‖Pω
F,Jx‖2L2(ω)

(|J |1/n + |y − cJ |)n+1−α

‖Pω
F ′,J′x‖2L2(ω)

(|J ′|1/n + |y − cJ′ |)n+1−α
dσ(y) ,

by proving that

(10.12) Us � 2−εs (Aα
2 + Eα

√
Aα

2 ) .

With this accomplished, we can sum in s ≥ 0 to control the local term Local.
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Our first decomposition is to write

(10.13) Us = T proximal
s + V remote

s ,

where we fix ε > 0 to be chosen later (ε = 1
2n works), and in the ‘proximal’

term T proximal
s we restrict the summation over pairs of cubes J, J ′ to those sat-

isfying |c(J) − c(J ′)| < 2sε|J |1/n; while in the ‘remote’ term V remote
s we restrict

the summation over pairs of cubes J, J ′ to those satisfying the opposite inequality
|c(J)− c(J ′)| ≥ 2sε|J |1/n. Then we further decompose

V remote
s = T difference

s + T intersection
s ,

where in the ‘difference’ term T difference
s we restrict integration in y to the difference

I \B(J, J ′) of I and

B(J, J ′) ≡ B
(
cJ ,

1
2 |cJ − cJ′ |

)
,

the ball centered at cJ with radius 1
2 |cJ − cJ′ |; while in the ‘intersection’ term

T intersection
s we restrict integration in y to the intersection I ∩ B(J, J ′) of I with

the ball B(J, J ′); i.e.,

T intersection
s ≡

∑
F,F ′∈F

∑
J∈Mr-deep(F ), J′∈Mr-deep(F

′)
J,J′⊂I, |J′|1/n=2−s|J|1/n
|c(J)−c(J′)|≥2s(1+ε)|J′|1/n

×
∫
I∩B(J,J′)

‖Pω
F,Jx‖2L2(ω)

(|J |1/n + |y − cJ |)n+1−α

‖Pω
F ′,J′x‖2L2(ω)

(|J ′|1/n + |y − cJ′ |)n+1−α
dσ(y),

We will exploit the restriction of integration to I ∩ B(J, J ′), together with the
condition

|cJ − cJ′ | ≥ 2s(1+ε)|J ′|1/n = 2sε|J |1/n,

in establishing (10.17) below, which will then give an estimate for the term
T intersection
s using an argument dual to that used for the other terms T proximal

s

and T difference
s . We now turn to estimating the proximal and difference terms.

10.2.1. The proximal and difference terms. We have, using (10.10), that

T proximal
s ≡

∑
F,F ′∈F

∑
J∈Mr-deep(F ), J′∈Mr-deep(F

′)
J,J′⊂I, |J′|1/n=2−s|J|1/n and |cJ−cJ′ |<2sε|J|1/n

×
∫
I

‖Pω
F,Jx‖2L2(ω)

(|J |1/n + |y − cJ |)n+1−α

‖Pω
F ′,J′x‖2L2(ω)

(|J ′|1/n + |y − cJ′ |)n+1−α
dσ(y)

≤Mproximal
s

∑
F∈F

∑
Mr-deep(F )

J⊂I

‖Pω
F,Jz‖2ω =Mproximal

s

∫
Î

t2 dμ ,
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where

Mproximal
s ≡ sup

F∈F
sup

J∈Mr-deep(F )

Aproximal
s (J);

Aproximal
s (J) ≡

∑
F ′∈F

∑
J′∈Mr−deep(F

′)
J′⊂I, |J′|1/n=2−s|J|1/n and |cJ−cJ′ |<2sε|J|1/n

∫
I

SF ′
(J′,J)(y) dσ(y) ;

SF ′
(J′,J)(x) ≡

1

(|J |1/n + |y − cJ |)n+1−α

‖Pω
F ′,J′x‖2L2(ω)

(|J ′|1/n + |y − cJ′ |)n+1−α
,

and similarly

T difference
s ≡

∑
F,F ′∈F

∑
J∈Mr-deep(F ), J′∈Mr-deep(F

′)
J,J′⊂I, |J′|1/n=2−s|J|1/n and |cJ−cJ′ |≥2sε|J|1/n

×
∫
I\B(J,J′)

‖Pω
F,Jx‖2L2(ω)

(|J |1/n + |y − cJ |)n+1−α

‖Pω
F ′,J′x‖2L2(ω)

(|J ′|1/n + |y − cJ′ |)n+1−α
dσ(y)

≤Mdifference
s

∑
F∈F

∑
Mr-deep(F )

J⊂I

‖Pω
F,Jz‖2ω =Mdifference

s

∫
Î

t2 dμ;

where

Mdifference
s ≡ sup

F∈F
sup

J∈Mr-deep(F )

Aremote
s (J)

and

Adifference
s (J)

≡
∑
F ′∈F

∑
J′∈Mr-deep(F

′)
J′⊂I, |J′|1/n=2−s|J|1/n and |cJ−cJ′ |≥2sε|J|1/n

∫
I\B(J,J′)

SF ′
(J′,J)(y) dσ(y) .

The restriction of integration in Adifference
s to I \ B(J, J ′) will be used to estab-

lish (10.15) below.

Notation. Since the cubes F , J , F ′ and J ′ that arise in all of the sums here
satisfy

J ∈ Mr-deep (F ) , J
′ ∈ Mr-deep (F

′) and � (J ′) = 2−s� (J) ,

we will often employ the notation
∗∑
to remind the reader that, as applicable, these

three conditions are in force even when they are not explicitly mentioned.

Now fix J as in Mproximal
s respectively Mdifference

s , and decompose the sum
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over J ′ in Aproximal
s (J) respectively Adifference

s (J) by

Aproximal
s (J) =

∑
F ′∈F

∑
J′∈Mr-deep(F

′)
J′⊂I, |J′|1/n=2−s|J|1/n and |cJ−cJ′ |<2sε|J|1/n

∫
I

SF ′
(J′,J)(y) dσ(y)

=
∑
F ′∈F

∗∑
cJ′∈2J

|cJ−cJ′ |<2sε|J|1/n

∫
I

SF ′
(J′,J)(y) dσ(y)

+
∑
F ′∈F

∞∑
�=1

∗∑
cJ′∈2�+1J\2�J

|cJ−cJ′ |<2sε|J|1/n

∫
I

SF ′
(J′,J)(y) dσ(y)

≡
∞∑
�=0

Aproximal,�
s (J) ,

respectively,

Adifference
s (J) =

∑
F ′∈F

∑
J′∈Mr-deep(F

′)
J′⊂I, |J′|1/n=2−s|J|1/n
and |cJ−cJ′ |≥2sε|J|1/n

∫
I\B(J,J′)

SF ′
(J′,J)(y) dσ(y)

=
∑
F ′∈F

∗∑
cJ′∈2J

|cJ−cJ′ |≥2sε|J|1/n

∫
I\B(J,J′)

SF ′
(J′,J)(y) dσ(y)

+
∞∑
�=1

∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

|cJ−cJ′ |≥2sε|J|1/n

∫
I\B(J,J′)

SF ′
(J′,J)(y) dσ(y)

≡
∞∑
�=0

Adifference,�
s (J) .

Let m be the smallest integer for which

(10.14) 2−m√
n ≤ 1

3
.

Now decompose the integrals over I in Aproximal,�
s (J) by

Aproximal,0
s (J) =

∑
F ′∈F

∗∑
cJ′∈2J

|cJ−cJ′ |<2sε|J|1/n

∫
I\4J

SF ′
(J′,J)(y) dσ(y)

+
∑
F ′∈F

∗∑
cJ′∈2J

|cJ−cJ′ |<2sε|J|1/n

∫
I∩4J

SF ′
(J′,J)(y) dσ(y)

≡ Aproximal,0
s,far (J) +Aproximal,0

s,near (J),
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and

Aproximal,�
s (J) =

∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

|cJ−cJ′ |<2sε|J|1/n

∫
I\2�+2J

SF ′
(J′,J)(y) dσ(y)

+
∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

|cJ−cJ′ |<2sε|J|1/n

∫
I∩(2�+2J\2�−mJ)

SF ′
(J′,J)(y) dσ(y)

+
∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

|cJ−cJ′ |<2sε|J|1/n

∫
I∩2�−mJ

SF ′
(J′,J)(y) dσ(y)

≡ Aproximal,�
s,far (J) +Aproximal,�

s,near (J) + Aproximal,�
s,close (J), � ≥ 1.

Similarly we decompose the integrals over I∗ ≡ I \B(J, J ′) in Adifference,�
s (J) by

Adifference,0
s (J) =

∑
F ′∈F

∗∑
cJ′∈2J

|cJ−cJ′ |≥2sε|J|1/n

∫
I∗\4J

SF ′
(J′,J)(y) dσ(y)

+
∑
F ′∈F

∗∑
cJ′∈2J

|cJ−cJ′ |≥2sε|J|1/n

∫
I∗∩4J

SF ′
(J′,J)(y) dσ(y)

≡ Adifference,0
s,far (J) +Adifference,0

s,near (J),

and

Adifference,�
s (J) =

∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

|cJ−cJ′ |≥2sε|J|1/n

∫
I∗\2�+2J

SF ′
(J′,J)(y) dσ(y)

+
∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

|cJ−cJ′ |≥2sε|J|1/n

∫
I∗∩(2�+2J\2�−mJ)

SF ′
(J′,J)(y) dσ(y)

+
∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

|cJ−cJ′ |≥2sε|J|1/n

∫
I∗∩2�−mJ

SF ′
(J′,J)(y) dσ(y)

≡ Adifference,�
s,far (J) +Adifference,�

s,near (J) +Adifference,�
s,close (J), � ≥ 1.

We now note the important point that the close terms Aproximal,�
s,close (J) and

Adifference,�
s,close (J) both vanish for � > εs because of the decomposition (10.13):

(10.15) Aproximal,�
s,close (J) = Adifference,�

s,close (J) = 0, � > 1 + εs .
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Indeed, if cJ′ ∈ 2�+1J \ 2�J , then we have

(10.16)
1

2
2� |J |1/n ≤ |cJ − cJ′ | ,

and if � > 1 + εs, then

|cJ − cJ′ | ≥ 2εs|J |1/n = 2(1+ε)s|J ′|1/n.

It now follows from the definition of Vs and Ts in (10.13), that Aproximal,�
s,close (J) = 0,

and so we are left to consider the term Adifference,�
s,close (J), where the integration is

taken over the set I \ B(J, J ′). But we are also restricted in Adifference,�
s,close (J) to

integrating over the cube 2�−mJ , which is contained in B(J, J ′) by (10.16). Indeed,
the smallest ball centered at c(J) that contains 2�−mJ has radius

√
n 1

22
�−m|J |1/n,

which by (10.14) and (10.16) is at most

1

4
2� |J |1/n ≤ 1

2
|cJ − cJ′ |,

the radius of B(J, J ′). Thus the range of integration in the term Adifference,�
s,close (J)

is the empty set, and so Adifference,�
s,close (J) = 0 as well as Aproximal,�

s,close (J) = 0. This
proves (10.15).

Thus from now on in this subsection we may replace I \B(J, J ′) by I since all
the terms are positive, and we treat T proximal

s and T difference
s in the same way now

that the terms Aproximal,�
s,close (J) and Adifference,�

s,close (J) both vanish for � > 1 + εs. Thus
we will suppress the superscripts proximal and difference in the far, near and close
decomposition of Aproximal,�

s,close (J) and Adifference,�
s,close (J), and we will also suppress the

conditions |cJ − cJ′ | < 2εs|J |1/n and |cJ − cJ′ | ≥ 2εs|J |1/n in the proximal and
difference terms since they no longer play a role. Using the bounded overlap of the
shifted coronas Cgood,τ -shift

F , we have∑
F ′∈F

‖Pω
F ′,J′x‖2L2(ω) � τ |J ′|2/n|J ′|ω ,

and so

A0
s,far(J) =

∑
F ′∈F

∗∑
cJ′∈2J

∫
I\(3J)

SF ′
(J′,J)(y) dσ(y)

� τ

∗∑
cJ′∈2J

∫
I\(3J)

|J ′|2/n |J ′|ω
(|J |1/n + |y − cJ |)2(n+1−α)

dσ(y)

= τ 2−2s
( ∗∑

cJ′∈2J

|J ′|ω
)∫

I\(3J)

|J |2/n
(|J |1/n + |y − cJ |)2(n+1−α)

dσ(y),
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which is dominated by

τ 2−2s |3J |ω
∫
I\(3J)

1

(|J |1/n + |y − cJ |)2(n−α)
dσ(y)

≈ τ 2−2s |3J |ω
|4J |1−α/n

∫
I\(3J)

( |J |1/n
(|J |1/n + |y − cJ |)2

)n−α

dσ(y)

� τ 2−2s |3J |ω
|3J |1−α/n

Pα(3J, σ) � τ 2−2s Aα
2 .

To estimate the near term A0
s,near(J), we initially keep the energy ‖Pω

F ′,J′z‖2L2(ω)

and write

A0
s,near(J) =

∑
F ′∈F

∗∑
cJ′∈2J

∫
I∩(3J)

SF ′
(J′,J)(y)dσ(y)

≈
∑
F ′∈F

∗∑
cJ′∈2J

∫
I∩(3J)

1

|J | 1
n (n+1−α)

‖Pω
F ′,J′x‖2L2(ω)

(|J ′|1/n + |y − cJ′ |)n+1−α
dσ(y)

=
∑
F ′∈F

1

|J | 1
n (n+1−α)

∗∑
cJ′∈2J

‖Pω
F ′,J′x‖2L2(ω)

∫
I∩(3J)

1

(|J ′|1/n + |y − cJ′ |)n+1−α
dσ(y)

=
∑
F ′∈F

1

|J | 1
n (n+1−α)

∗∑
cJ′∈2J

‖Pω
F ′,J′x‖2L2(ω)

Pα(J ′,1I∩(3J)σ)

|J ′|1/n .

Now by Cauchy–Schwarz and Lemma 10.5, this is dominated by

1

|J | 1
n (n+1−α)

( ∑
F ′∈F

∗∑
c(J′)∈2J and J′⊂I

‖Pω
F ′,J′x‖2L2(ω)

)1/2
×
( ∑

F ′∈F

∗∑
cJ′∈2J and J′⊂I

‖Pω
F ′,J′x‖2L2(ω)

(Pα(J ′,1I∩(4J)σ)

|J ′|1/n
)2)1/2

� 1

|J | 1
n (n+1−α)

(τ
∗∑

cJ′∈2J

|J ′|2/n|J ′|ω)1/2 Eα
√
τ |4J |σ

� τ
2−s |J |1/n

|J | 1
n (n+1−α)

√
|3J |ω Eα

√
|4J |σ

� τ 2−s Eα

√
|4J |ω

|J | 1
n (n−α)

|4J |σ
|J | 1

n (n−α)

� τ 2−s Eα
√
Aα

2 .

Here the estimate for Local(I0) applies to the expression

∑
F ′∈F

∗∑
cJ′∈2J and J′⊂I

‖Pω
F ′,J′x‖2L2(ω)

(Pα(J ′,1I∩(4J)σ)

|J ′|1/n
)2
,
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with I0 = Ĵ , and where Ĵ is a shifted D-dyadic cube satisfying
⋃

cJ′∈2J J
′ ⊂ Ĵ and

|Ĵ |1/n ≤ C |J |1/n.
Similarly, for � ≥ 1, we can estimate the far term

A�
s,far(J) =

∑
F ′∈F

∗∑
cJ′∈(2�+1J)\(2�J)

∫
I\(2�+2J)

SF ′
(J′,J)(y) dσ(y)

� τ

∗∑
cJ′∈(2�+1J)\(2�J)

∫
I\(2�+2J)

|J ′|2/n|J ′|ω
(|J |1/n + |y − cJ |)2(n+1−α)

dσ(y)

= τ 2−2s
( ∗∑

cJ′∈(2�+1J)

|J ′|ω
)∫

I\(2�+2J)

|J |2/n
(|J |1/n + |y − cJ |)2(n+1−α)

dσ(y)

≈ τ 2−2s 2−2�/n
( ∗∑

cJ′∈(2�+1J)

|J ′|ω
)∫

I\(2�+2J)

|2�J |2/n
(|2�J |1/n + |y − c2�J |)2(n+1−α)

dσ(y),

which is at most

τ 2−2s 2−2�/n |2�+2J |ω
∫
I\(2�+2J)

1

(|2�J |1/n + |y − c2�J |)2(n−α)
dσ(y)

≈ τ 2−2s 2−2�/n |3�+2J |ω
|3�J |1−α/n

∫
I\(3�+2J)

( |2�J |1/n
(|2�J |1/n + |y − c2�J |)2

)n−α

dσ(y)

� τ 2−2s 2−2�/n
{ |2�+2J |ω
|2�J |1−α/n

Pα(2�+2J, σ)
}
� τ 2−2s 2−2�/nAα

2 .

The near term A�
s,near(J) is

∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

∫
I∩(2�+2J\2�−mJ)

SF ′
(J′,J)(y) dσ(y)

≈
∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

∫
I∩(2�+2J\2�−mJ)

1

|2�(1−ε)J | 1
n (n+1−α)

×
‖Pω

F ′,J′x‖2L2(ω)

(|J ′|1/n + |y − cJ′ |)n+1−α
dσ(y)

=
1

|2�−1J | 1
n (n+1−α)

∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

‖Pω
F ′,J′x‖2L2(ω)

×
∫
I∩(2�+2J\2�−mJ)

1

(|J ′|1/n + |y − cJ′ |)n+1−α
dσ(y),
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and is dominated by

1

|2�−mJ | 1
n (n+1−α)

∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

‖Pω
F ′,J′x‖2L2(ω)

Pα(J ′,1I∩(2�+2J)σ)

|J ′|1/n

≤ 1

|2�−mJ | 1
n (n+1−α)

( ∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

‖Pω
F ′,J′x‖2L2(ω)

)1/2
×
( ∑

F ′∈F

∗∑
cJ′∈2�+1J\2�J

‖Pω
F ′,J′x‖2L2(ω)

(Pα(J ′,1I∩(2�+2J)σ)

|J ′|1/n
)2)1/2

.

This can now be estimated by Eα using
∑

F ′∈F ‖Pω
F ′,J′z‖2L2(ω) ≤ τ |J ′|2/n|J ′|ω and

the estimate for Local(I0) to get

A�
s,near(J) � 2−s 2−�/n |2�J |1/n

|2�−mJ | 1
n (n+1−α)

√
|2�+3J |ω Eα

√
|2�+2J |σ

� 2−s 2−�/n Eα

√
|2�+3J |ω

|2�+3J |1−α/n

|2�+3J |σ
|2�+3J |1−α/n

� 2−s 2−�/n Eα
√
Aα

2 ,

where I0 = Ĵ is a shifted D-dyadic cube satisfying
⋃

cJ′∈2�+1J\2�J J
′ ⊂ Ĵ and

|Ĵ |1/n ≤ 3 · 2�+1|J |1/n. We are also using here that m ≈ 1 + 1
2 log2 n is harmless.

These estimates are summable in both s and �.

Now we turn to the terms A�
s,close(J), and recall from (10.15) that A�

s,close(J)=0
if � > 1 + εs. So we now suppose that � ≤ 1 + εs. We have, with m as in (10.14),

A�
s,close(J) =

∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

∫
I∩(2�−mJ)

S(J′,J)(y) dσ(y)

≈
∑
F ′∈F

∗∑
cJ′∈2�+1J\2�J

∫
I∩(2�−mJ)

1

(|J |1/n + |y − cJ |)n+1−α

‖Pω
F ′,J′x‖2L2(ω)

|2�J | 1
n (n+1−α)

dσ(y)

≈
( ∑

F ′∈F

∗∑
cJ′∈2�+1J\2�J

‖Pω
F ′,J′x‖2L2(ω)

) 1

|2�J | 1
n (n+1−α)

×
∫
I∩(2�−mJ)

1

(|J |1/n + |y − cJ |)n+1−α
dσ(y).

Now we use the inequality
∑

F ′∈F ‖Pω
F ′,J′z‖2L2(ω) ≤ τ |J ′|2/n |J ′|ω to get the rela-
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tively crude estimate

A�
s,close(J)

� τ 2−2s |J |2/n |2�+1J |ω
1

|2�J | 1
n (n+1−α)

∫
I∩(2�−mJ)

1

(|J |1/n + |y − cJ |)n+1−α
dσ(y)

� τ 2−2s |J |2/n |2�+1J |ω
|2�J | 1

n (n+1−α)

|2�−mJ |σ
|J | 1

n (n+1−α)

� τ 2−2s |2�+1J |ω
|2�+1J |1−α/n

|2�+1J |σ
|2�+1J |1−α/n

2�(n−1−α) � τ 2−2s 2�(n−1−α)Aα
2 � τ 2−sAα

2

provided that � ≤ s/n. But we are assuming � ≤ 1 + εs here and so we obtain a
suitable estimate for A�

s,close(J) provided we choose 0 < ε < 1/n.

Remark 10.7. We cannot simply sum the estimate

A�
s,close(J) � 2−2s |J |2/n |2�+1J |ω

1

|2�J | 1
n (n+1−α)

Pα(J,12�−1Jσ)

|J |1/n

over all � ≥ 1 to get

∑
�

A�
s,close(J) � 2−2sPα(J, σ)

∑
�

|J |1/n |2�+1J |ω
|2�J | 1

n (n+1−α)
� 2−2s Pα(J, σ) Pα(J, ω),

since we only have control of the product P(J, σ)P(J, ω) in dimension n = 1, where
the two Poisson kernels P and P coincide, and the two-tailedA2 condition is known
to hold.

The above estimates prove

T proximal
s + T difference

s � 2−s(Aα
2 + Eα

√
Aα

2 +Aα
2 ) � 2−s(Aα

2 + Eα
√
Aα

2 ).

10.2.2. The intersection term. Now we return to the term

T intersection
s ≡

∑
F,F ′∈F

∑
J∈Mr-deep(F ), J′∈Mr-deep(F

′)
J,J′⊂I, |J′|1/n=2−s|J|1/n
|c(J)−c(J′)|≥2s(1+ε)|J′|1/n

×
∫
I∩B(J,J′)

‖Pω
F,Jx‖2L2(ω)

(|J |1/n + |y − cJ |)n+1−α

‖Pω
F ′,J′x‖2L2(ω)

(|J ′|1/n + |y − cJ′ |)n+1−α
dσ(y) .

It will suffice to show that T intersection
s satisfies the estimate

T intersection
s � 2−sε Eα

√
Aα

2

∑
F∈F

∑
J∈Mr-deep(F )

J⊂I

‖Pω
F,Jx‖2L2(ω) = 2−sε Eα

√
Aα

2

∫
Î

t2 dμ .
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Using B(J, J ′) = B(cJ ,
1
2 |cJ − cJ′ |), we can write (suppressing some notation for

clarity),

T intersection
s

=
∑
F,F ′

∑
J,J′

∫
I∩B(J,J′)

‖Pω
F,Jx‖2L2(ω)

(|J |1/n+|y − cJ |)n+1−α

‖Pω
F ′,J′x‖2L2(ω)

(|J ′|1/n+|y−cJ′|)n+1−α
dσ(y)

≈
∑
F,F ′

∑
J,J′

‖Pω
F,Jx‖2L2(ω)‖Pω

F ′,J′x‖2L2(ω)

1

|cJ − cJ′ |n+1−α

×
∫
I∩B(J,J′)

1

(|J |1/n + |y − cJ |)n+1−α
dσ(y)

≈
∑
F,F ′

∑
J,J′

‖Pω
F,Jx‖2L2(ω) ‖Pω

F ′,J′x‖2L2(ω)

1

|cJ − cJ′ |n+1−α

Pα(J,1I∩B(J,J′)σ)

|J |1/n

≤
∑
F ′

∑
J′

‖Pω
F ′,J′x‖2L2(ω)

∑
F

∑
J

1

|cJ−cJ′ |n+1−α
‖Pω

F,Jx‖2L2(ω)

Pα(J,1I∩B(J,J′)σ)

|J |1/n ,

and it remains to show that for each J ′,

Ss(J
′) ≡

∑
F

∗∑
J: |c(J)−c(J′)|≥2s(1+ε)|J′|1/n

‖Pω
F,Jx‖2L2(ω)

|cJ − cJ′ |n+1−α

Pα(J,1I∩B(J,J′)σ)

|J |1/n

� 2−εs Eα
√
Aα

2 .

We write

Ss(J
′) ≈

∑
k≥s(1+ε)−m

1

(2k |J ′|1/n)n+1−α

×
∑
F

∗∑
J: |cJ−cJ′ |≈2k|J′|1/n

‖Pω
F,Jx‖2L2(ω)

Pα(J,1I∩B(J,J′)σ)

|J |1/n

≡
∑

k≥s(1+ε)−m

1

(2k|J ′|1/n)n+1−α
Sk
s (J

′) ,

where by |cJ − cJ′ | ≈ 2k|J ′|1/n we mean 2k|J ′|1/n ≤ |cJ − cJ′ | ≤ 2k+1|J ′|1/n.
Here m is as in (10.14), and we are using the inequality,

(10.17) k +m ≥ (1 + ε)s.

Indeed, in the term Vs we have |cJ − cJ′ | ≥ 2(1+ε)s|J ′|1/n, and combined with
|cJ − cJ′ | ≤

√
n 2k|J ′|1/n, we obtain (10.17).
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Now we apply Cauchy–Schwarz and Lemma 10.5 to get

Sk
s (J

′) ≤
(∑

F

∗∑
J: |cJ−cJ′ |≈2k|J′|1/n

‖Pω
F,Jx‖2L2(ω)

)1/2
×
(∑

F

∗∑
J: |cJ−cJ′ |≈2k|J′|1/n

‖Pω
F,Jx‖2L2(ω)

(Pα(J,1I∩B(J,J′)σ)

|J |1/n
)2)1/2

�
(
τ

∗∑
J: |cJ−cJ′ |≈2k|J′|1/n

|J |2/n |J |ω
)1/2

(τ E2
α |2kJ ′|σ)1/2

� τ Eα 2s |J ′|1/n
√
|C2kJ ′|ω

√
|2kJ ′|σ � τ Eα

√
Aα

2 2s |J ′|1/n |2kJ ′|1−α/n

= τ Eα
√
Aα

2 2s 2k(n−α) |J ′| 1
n (n+1−α),

provided

B(J, J ′) ⊂ C 2k J ′.

But this follows from |cJ − cJ′ | ≈ 2k|J ′|1/n and (10.17), which shows in particular
that k ≥ s+ c.

Then we have

Ss(J
′) =

∑
k≥(1+ε)s−m

1

(2k|J ′|1/n)n+1−α
Sk
s (J

′)

� τ Eα
√
Aα

2

∑
k≥(1+ε)s−m

1

(2k|J ′|1/n)n+1−α
2s 2k(n−α) |J ′| 1

n (n+1−α)

� τ Eα
√
Aα

2

∑
k≥(1+ε)s−m

2s−k � τ 2−εs Eα
√
Aα

2 ,

which is summable in s. This completes the proof of (10.12), and hence of the
estimate for the local part Local(I) in (10.9) of the second testing condition (10.4).

10.2.3. The global estimate. It remains to prove the following estimate for the
global part Global(I) in (10.9) of the second testing condition (10.4):∫

R\I
[Pα∗(t1Î μ) ]

2 σ � Aα
2 |I|σ.

We decompose the integral on the left into two pieces:∫
R\I

[Pα∗(t1Î μ) ]
2 σ =

∫
R\3I

[Pα∗(t1Î μ) ]
2 σ +

∫
3I\I

[Pα∗(t1Î μ)]
2 σ = A+B.
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We further decompose term A in annuli and use (10.11) to obtain

A =

∞∑
m=1

∫
3m+1I\3mI

[Pα∗(t1Î μ)]
2 σ

=

∞∑
m=1

∫
3m+1I\3mI

[ ∑
F∈F

∑
J∈Mr-deep(F )

J⊂I

‖Pω
F,Jx‖2L2(ω)

(|J |+ |y − cJ |)n+1−α

]2
dσ(y)

�
∞∑

m=1

∫
3m+1I\3mI

[ ∑
F∈F

∑
J∈Mr-deep(F )

J⊂I

‖Pω
F,Jx‖2L2(ω)

]2
1

(3m|I|1/n)2(n+1−α)
dσ(y) .

Now use (10.10) to get∫
Î

t2 dμ =
∑
F∈F

∑
J∈Mr-deep(F )

J⊂I

‖Pω
F,Jx‖2L2(ω) � τ ‖1I(x− cI)‖2L2(ω) � |I|2/n |I|ω,

and to obtain that

A �
∞∑

m=1

∫
3m+1I\3mI

[ ∫
Î

t2 dμ
]
[ |I|2/n |I|ω]

1

(3m|I|1/n)2(n+1−α)
dσ(y)

�
{ ∞∑

m=1

3−2m |3m+1I|ω |3m+1I|σ
|3m+1I|2(1−α/n)

}[∫
Î

t2 dμ
]
� Aα

2

∫
Î

t2 dμ .

Finally, we estimate term B by using (10.11) to write

B =

∫
3I\I

[ ∑
F∈F

∑
J∈Mr-deep(F )

J⊂I

‖Pω
F,Jx‖2L2(ω)

(|J |1/n + |y − cJ |)n+1−α

]2
dσ(y) ,

and then expanding the square and calculating as in the proof of the local part
given earlier to obtain the bound Aα

2 . The details are similar, but easier in that
the energy condition is not needed, and they are left to the reader.

11. The stopping form

In this section we adapt the argument of M. Lacey in [1] to apply in the setting
of a general α-fractional Calderón–Zygmund operator Tα in Rn using the mono-
tonicity Lemma 6.1 and our energy condition in Definition 2.4. We will prove the
bound (8.16) for the stopping form

BA
stop(f, g) ≡

∑
I∈CA and J∈Cτ-shift

A
J�ρIJ

(Eσ
IJ 
σ

I f)〈Tα
σ 1A\IJ ,
ω

Jg〉ω(11.1)

=
∑

I:πI∈CA and J∈Cτ-shift
A

J�ρI

(Eσ
I 
σ

πI f)〈Tα
σ 1A\I ,
ω

Jg〉ω ,
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where we have made the ‘change of dummy variable’ IJ → I for convenience in
notation (recall that the child of I that contains J is denoted IJ ).

However, the monotonicity lemma of Lacey and Wick has an additional term
on the right hand side, and our energy condition is not a direct generalization of
the one-dimensional energy condition. These differences in higher dimension result
in changes and complications that must be tracked throughout the argument. In
particular, we find it necessary to separate the interaction of the two terms on the
right side of the monotonicity lemma by splitting the stopping form into the two
corresponding sublinear forms in (11.6) below. Recall that for A ∈ A the shifted
corona is given in Definition 8.7 by

Cτ -shift
A = {J ∈ CA : J �τ A}

⋃ ⋃
A′∈CA(A)

{J ∈ D : J �τ A and J is τ -nearby in A′} ,

and in particular the 1-shifted corona is given by C1-shift
A = (CA \ {A}) ∪ CA(A).

Definition 11.1. Suppose that A ∈ A and that P ⊂ C1-shift
A × Cτ -shift

A . We say
that the collection of pairs P is A-admissible if

• (good and (ρ − 1)-deeply embedded) J is good and J �ρ−1 I � A for
every (I, J) ∈ P ,

• (tree-connected in the first component) if I1 ⊂ I2 and both (I1, J) ∈ P and
(I2, J) ∈ P , then (I, J) ∈ P for every I in the geodesic [I1, I2] = {I ∈ D :
I1 ⊂ I ⊂ I2}.

However, since (I, J) ∈ P implies both J ∈ Cτ -shift
A and J �ρ−1 I, the assump-

tion ρ > τ in Definition 8.6 shows that I is in the corona CA, and hence we may
replace C1-shift

A with the restricted corona C′
A ≡ CA \ {A} in the above definition of

A-admissible. The basic example of an admissible collection of pairs is obtained
from the pairs of cubes summed in the stopping form BA

stop(f, g) in (11.1), which
occurs in (8.16) above:

(11.2) PA≡{(I, J) : I∈C′
A and J ∈Cτ -shift

A where J is τ -good,J�ρ−1 I and I /∈A}.

Recall that J is τ -good if J ∈ Dτ
(r,ε)-good as in (3.1), i.e., if J and its �-parents up

to level τ are all good. Recall also that the Haar support of g is contained in the
collection of τ -good cubes.

Definition 11.2. Suppose that A ∈ A and that P is an A-admissible collection
of pairs. Define the associated stopping form BA,P

stop by

BA,P
stop(f, g) ≡

∑
(I,J)∈P

(Eσ
I 
σ

πI f) 〈Tα
σ 1A\I ,
ω

Jg〉ω ,

where we may of course further restrict I to πI ∈ supp f̂ if we wish.



Two weight boundedness 153

Given an A-admissible collection P of pairs define the reduced collection Pred

as follows. For each fixed J let IredJ be the largest good cube I such that (I, J) ∈ P .
Then set

Pred ≡ {(I, J) ∈ P : I ⊂ IredJ } .

Clearly Pred is A-admissible. Now recall our assumption that the Haar support
of f is contained in the set of τ -good cubes, which in particular requires that their
children are all good as well. This assumption has the important implication that

BA,P
stop(f, g) = BA,Pred

stop (f, g).

Indeed, if (I, J) ∈ P \ Pred then πI �∈ Haarsuppf and so Eσ
I 
σ

πI f = 0. Thus
for the purpose of bounding the stopping form, we may assume that the following
additional property holds for any A-admissible collection of pairs P :

• if (I, J) ∈P is maximal in the sense that I ⊃ I ′ for all I ′ satisfying (I ′, J)∈ P ,
then I is good.

Note that there is an asymmetry in our definition of Pred here, namely that the
second components J are required to be τ -good, while the maximal first compo-
nents I are required to be good. Of course the treatment of the dual stopping forms
will use the reversed requirements, and this accounts for our symmetric restrictions
imposed on the Haar supports of f and g at the outset of the proof.

Definition 11.3. We say that an admissible collection P is reduced if P = Pred,
so that the additional property above holds.

Note that

BA,P
stop(f, g) = BA,P

stop(P
σ
CA
f,Pω

Cτ-shift
A

g).

Recall that the deep energy condition constant Edeep
α is given by

(Edeep
α )2 ≡ sup

I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
J∈Mr-deep(Ir)

(Pα(J,1I\γJσ)
|J |1/n

)2
‖Psubgood,ω

J x‖2L2(ω) .

Proposition 11.4. Suppose that A ∈ A and that P is an A-admissible collection
of pairs. Then the stopping form BA,P

stop satisfies the bound

(11.3) |BA,P
stop(f, g)| � (Edeep

α +
√
Aα

2 )
(
‖f‖L2(σ) + αA(f)

√
|A|σ

)
‖g‖L2(ω) .

With this proposition in hand, we can complete the proof of (8.16), and hence
of Theorem 2.6, by summing over the stopping cubes A ∈ A with the choice PA
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of A-admissible pairs for each A:∑
A∈A

∣∣BA,PA

stop (f, g)
∣∣

�
∑
A∈A

(Edeep
α +

√
Aα

2 )
(
‖PCAf‖L2(σ) + αA(f)

√
|A|σ

) ∥∥PCτ−shift
A

g
∥∥
L2(ω)

� (Edeep
α +

√
Aα

2 )
( ∑

A∈A

(
‖PCAf‖

2
L2(σ) + αA (f)

2 |A|σ
))1/2

×
( ∑

A∈A

∥∥PCτ-shift
A

g
∥∥2
L2(ω)

)1/2
� (Edeep

α +
√
Aα

2 ) ‖f‖L2(σ) ‖g‖L2(ω) ,

by orthogonality
∑

A∈A ‖PCAf‖2L2(σ) ≤ ‖f‖2L2(σ) in corona projections Cσ
A, ‘quasi’

orthogonality
∑

A∈A αA(f)2|A|σ � ‖f‖2L2(σ) in the stopping cubes A, and by the

bounded overlap of the shifted coronas Cτ -shift
A :∑

A∈A
1Cτ-shift

A
≤ τ 1D .

To prove Proposition 11.4, we begin by letting Π2P consist of the second com-
ponents of the pairs in P and writing

BA,P
stop(f, g) =

∑
J∈Π2P

〈Tα
σ ϕ

P
J ,
ω

Jg〉ω ; where ϕP
J ≡

∑
I∈C′

A: (I,J)∈P
Eσ
I (
σ

πIf) 1A\I .

By the tree-connected property of P , and the telescoping property of martingale
differences, together with the bound αA(A) on the averages of f in the corona CA,
we have

(11.4) |ϕP
J | � αA(A)1A\IP (J) ,

where IP(J) ≡ ∩{I : (I, J) ∈ P} is the smallest cube I for which (I, J) ∈ P .
Another important property of these functions is the sublinearity:

(11.5) |ϕP
J | ≤ |ϕP1

J |+ |ϕP2

J | , P = P1 ∪̇ P2 .

Now apply the monotonicity Lemma 6.1 to the inner product 〈Tα
σ ϕJ ,
ω

Jg〉ω to
obtain

|〈Tα
σ ϕJ ,
ω

Jg〉ω| �
Pα(J, |ϕJ |1A\IP(J)σ)

|J |1/n ‖ 
ω
J x‖L2(ω) ‖ 
ω

J g‖L2(ω)

+
Pα
1+δ(J, |ϕJ |1A\IP(J)σ)

|J |1/n ‖Pω
Jx‖L2(ω) ‖ 
ω

J g‖L2(ω) .
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Thus we have

|BA,P
stop(f, g)| ≤

∑
J∈Π2P

Pα
1 (J, |ϕJ |1A\IP(J)σ)

|J |1/n ‖ 
ω
J x‖L2(ω)‖ 
ω

J g‖L2(ω)(11.6)

+
∑

J∈Π2P

Pα
1+δ(J, |ϕJ |1A\IP(J)σ)

|J |1/n ‖Pω
Jx‖L2(ω)‖ 
ω

J g‖L2(ω)

≡ |B|A,P
stop,1,�ω(f, g) + |B|A,P

stop,1+δ,Pω(f, g) ,

where we have dominated the stopping form by two sublinear stopping forms that
involve the Poisson integrals of order 1 and 1 + δ respectively, and where the
smaller Poisson integral Pα

1+δ is multiplied by the larger projection ‖Pω
Jx‖L2(ω).

This splitting turns out to be successful in separating the two energy terms from
the right hand side of the energy lemma, because of the two properties (11.4)
and (11.5) above. It remains to show the two inequalities:

(11.7) |B|A,P
stop,1,�ω(f, g) �

(
Edeep
α +

√
Aα

2

)
αA(A)

√
|A|σ ‖g‖L2(ω) ,

for f ∈ L2(σ) satisfying where Eσ
I |f | ≤ αA(A) for all I ∈ CA; and

(11.8) |B|A,P
stop,1+δ,Pω (f, g) �

(
Edeep
α +

√
Aα

2

)
‖f‖L2(σ) ‖g‖L2(ω) ,

where we only need the case P = PA in this latter inequality as there is no recur-
sion involved in treating this second sublinear form. We consider first the easier
inequality (11.8) that does not require recursion. In the subsequent subsections
we will control the more difficult inequality (11.7) by adapting the stopping time

and recursion of M. Lacey to the sublinear form |B|A,P
stop,1,�ω(f, g).

11.1. The second inequality

Now we turn to proving (11.8), i.e.,

|B|A,P
stop,1+δ,Pω (f, g) �

(
Edeep
α +

√
Aα

2

)
‖f‖L2(σ) ‖g‖L2(ω) ,

where since

|ϕJ | =
∣∣∣ ∑
I∈C′

A: (I,J)∈P
Eσ
I (
σ

πIf)1A\I
∣∣∣ ≤ ∑

I∈C′
A: (I,J)∈P

|Eσ
I (
σ

πIf)1A\I | ,

the sublinear form |B|A,P
stop,1+δ,Pω can be dominated and then decomposed by pi-

geonholing the ratio of side lengths of J and I:

|B|A,P
stop,1+δ,Pω(f, g) =

∑
J∈Π2P

Pα
1+δ(J, |ϕJ |1A\IP(J)σ)

|J |1/n ‖Pω
Jx‖L2(ω)‖ 
ω

J g‖L2(ω)

≤
∑

(I,J)∈P

Pα
1+δ(J, |Eσ

I (
σ
πIf)|1A\Iσ)

|J |1/n ‖Pω
Jx‖L2(ω)‖ 
ω

J g‖L2(ω)

≡
∞∑
s=0

|B|A,P;s
stop,1+δ,Pω (f, g) ;
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and

|B|A,P;s
stop,1+δ,Pω(f, g) ≡

∑
(I,J)∈P

|J|1/n=2−s|I|1/n

Pα
1+δ(J, |Eσ

I (
σ
πIf)|1A\Iσ)

|J |1/n ‖Pω
Jx‖L2(ω)‖
ω

Jg‖L2(ω) .

Here we have the entire projection Pω
Jx onto all of the dyadic subintervals of J ,

but this is offset by the smaller Poisson integral Pα
1+δ. We will now adapt the

argument for the stopping term starting on page 42 of [3], where the geometric
gain from the assumed energy hypothesis there will be replaced by a geometric
gain from the smaller Poisson integral Pα

1+δ used here.
First, we exploit the additional decay in the Poisson integral Pα

1+δ as follows.

Suppose that (I, J) ∈ P with |J |1/n = 2−s|I|1/n. We then compute

Pα
1+δ(J,1A\Iσ)

|J |1/n ≈
∫
A\I

|J |δ/n
|y − cJ |n+1+δ−α

dσ(y)

≤
∫
A\I

( |J |1/n
dist(cJ , Ic)

)δ 1

|y − cJ |n+1−α
dσ(y) �

( |J |1/n
dist(cJ , Ic)

)δ Pα(J,1A\Iσ)
|J |1/n ,

and use the goodness inequality,

dist(cJ , I
c) ≥ 1

2
|I|(1−ε)/n |J |ε/n ≥ 1

2
2s(1−ε) |J |1/n,

to conclude that

(11.9)
(Pα

1+δ(J,1A\Iσ)
|J |1/n

)
� 2−sδ(1−ε) P

α(J,1A\Iσ)
|J |1/n .

We next claim that for s ≥ 0 an integer,

|B|A,P;s
stop,1+δ,Pω(f, g) =

∑
(I,J)∈P

|J|1/n=2−s|I|1/n

Pα
1+δ(J, |Eσ

I (
σ
πIf)|1A\Iσ)

|J |1/n ‖Pω
Jx‖L2(ω)‖ 
ω

J g‖L2(ω)

� 2−sδ(1−ε)
(
Edeep
α +

√
Aα

2

)
‖f‖L2(σ) ‖g‖L2(ω) ,

from which (11.8) follows upon summing in s ≥ 0. Now using both

|Eσ
I (
σ

πIf)| =
1

|I|σ

∫
I

| 
σ
πI f | dσ ≤ ‖
σ

πI f‖L2(σ)
1√
|I|σ

,

2n‖f‖2L2(σ) =
∑
I∈D

‖ 
σ
πI f‖2L2(σ) ,

we apply Cauchy–Schwarz in the I variable above to see that[
|B|A,P;s

stop,1+δ,Pω(f, g)
]2

� ‖f‖2L2(σ)

[ ∑
I∈C′

A

(
1√
|I|σ

∑
J: (I,J)∈P

|J|1/n=2−s|I|1/n

Pα
1+δ(J,1A\Iσ)

|J |1/n ‖Pω
Jx‖L2(ω)‖ 
ω

J g‖L2(ω))
2

]1/2
.
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We can then estimate the sum inside the square brackets by∑
I∈C′

A

{ ∑
J: (I,J)∈P

|J|1/n=2−s|I|1/n

‖ 
ω
J g‖2L2(ω)

}

×
∑

J: (I,J)∈P
|J|1/n=2−s|I|1/n

1

|I|σ

(Pα
1+δ(J,1A\Iσ)

|J |1/n
)2

‖Pω
Jx‖2L2(ω) � ‖g‖2L2(ω)A(s)

2,

where

A(s)2 ≡ sup
I∈C′

A

∑
J: (I,J)∈P

|J|1/n=2−s|I|1/n

1

|I|σ

(Pα
1+δ(J,1A\Iσ)

|J |1/n
)2

‖Pω
Jx‖2L2(ω) .

Finally then we turn to the analysis of the supremum in last display. From the
Poisson decay (11.9) we have

A(s)2 � sup
I∈C′

A

1

|I|σ
2−2sδ(1−ε)

∑
J: (I,J)∈P

�(J)=2−s�(I)

(Pα(J,1A\Iσ)
|J |1/n

)2
‖Pω

Jx‖2L2(ω)

� sup
I∈C′

A

1

|I|σ
2−2sδ(1−ε)

∑
K∈Mr-deep(I)

(Pα(K,1A\Iσ)
|K|1/n

)2 ∑
J⊂K: (I,J)∈P
�(J)=2−s�(I)

‖Pω
Jx‖2L2(ω)

� 2−2sδ(1−ε) [(Edeep
α )2 +Aα

2 ] ,

where the last inequality is the one for which the definition of energy stopping
cubes was designed. Indeed, from Definition 8.1, as (I, J) ∈ P , we have that I is
not a stopping cube in A, and hence that (8.1) fails to hold, delivering the estimate
above since J �ρ−1 I good must be contained in some K ∈ Mr-deep(I), and since
Pα(J,1A\Iσ)/|J |1/n ≈ Pα(K,1A\Iσ)/|K|1/n. The terms ‖Pω

Jx‖2L2(ω) are additive

since the J ′s are pigeonholed by |J |1/n = 2−s|I|1/n.

11.2. The first inequality and the recursion of M. Lacey

Now we turn to proving the more difficult inequality (11.7). Recall that in dimen-
sion n = 1 the energy condition

·∞∑
n=1

|Jn|ω E(Jn, ω)
2 P(Jn,1Iσ)

2 � (NT V) |I|σ,
⋃∞

n=1
Jn ⊂ I,

could not be used in the NTV argument, because the set functional J→|J |ωE(J, ω)2
failed to be superadditive. On the other hand, the pivotal condition of NTV,

·∞∑
n=1

|Jn|ω P(Jn,1Iσ)
2 � |I|σ,

⋃∞
n=1

Jn ⊂ I,
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succeeded in the NTV argument because the set functional J → |J |ω is trivially
superadditive, indeed additive. The final piece of the argument needed to prove
the NTV conjecture was found by M. Lacey in [1], and amounts to first replacing
the additivity of the functional J → |J |ω with the additivity of the projection
functional H → ‖Pω

Hx‖2L2(ω) defined on subsets H of the dyadic grid D. Then a
stopping time argument relative to this more subtle functional, together with a
clever recursion, constitute the main new ingredients in Lacey’s argument [1].

To begin the extension to a more general Calderón–Zygmund operator Tα, we
also recall the stopping energy generalized to higher dimensions by

Xα(CA)2 ≡ sup
I∈CA

1

|I|σ
∑

J∈Mr-deep(I)

(Pα(J,1A\γJσ)
|J |1/n

)2
‖Psubgood,ω

J x‖2L2(ω) ,

where Mr-deep(I) is the set of maximal r-deeply embedded subcubes of I where r
is the goodness parameter. What now follows is an adaptation to our deep energy
condition and the sublinear form |B|A,P

stop,1,�ω of the arguments of M. Lacey in [1].
We have the following Poisson inequality for cubes B ⊂ A ⊂ I:

Pα(A,1I\Aσ)
|A|1/n ≈

∫
I\A

1

(|y − cA|)n+1−α
dσ(y)(11.10)

�
∫
I\A

1

(|y − cB|)n+1−α
dσ(y) ≈

Pα(B,1I\Aσ)
|B|1/n .

11.3. The stopping energy

Fix A ∈ A. We will use a ‘decoupled’ modification of the stopping energy X(CA).
Suppose that P is an A-admissible collection of pairs of cubes in the product set
D × Dgood of pairs of dyadic cubes in Rn with second component good. For an
admissible collection P let Π1P and Π2P be the cubes in the first and second
components of the pairs in P respectively, let ΠP ≡ Π1P ∪Π2P , and for K ∈ ΠP
define the τ -deep projection of P relative to K by

ΠK,τ -deep
2 P ≡ {J ∈ Π2P : J �τ K} .

Now the cubes J in Π2P are of course always good, but this is not the case for
cubes I in Π1P . Indeed, the collection P is tree-connected in the first component,
and it is clear that there can be many bad cubes in a connected geodesic in the
tree D. But the Haar support of f is contained in good cubes I, and we have
also assumed that the children of these cubes I are good. As a consequence we
may always assume that our A-admissible collections P are reduced in the sense
of Definition 11.3. Thus we will use as our ‘size testing collection’ of cubes for P
the collection

ΠgoodbelowP ≡ {K ′ ∈ D : K ′ is good and K ′ ⊂ K for some K ∈ ΠP} ,

which consists of all the good subcubes of any cube in ΠP . Note that the maximal
cubes in ΠP = ΠPred are already good themselves, and so we have the important
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property that

(11.11) (I, J) ∈ P = Pred implies I ⊂ K for some cube K ∈ ΠgoodbelowP .

Now define the ‘size functional’ Sα,A
size (P) of P as follows. Recall that a projec-

tion Pω
H on x satisfies

‖Pω
Hx‖2L2(ω) =

∑
J∈H

‖ 
ω
J x‖2L2(ω) .

Definition 11.5. If P is A-admissible, define

(11.12) Sα,A
size (P)2 ≡ sup

K∈ΠgoodbelowP

1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2
‖Pω

ΠK,τ-deep
2 Px‖

2
L2(ω) .

We should remark that that the cubes K in ΠgoodbelowP that fail to contain
any τ -parents of cubes from Π2P will not contribute to the size functional since
ΠK,τ -deep

2 P is empty in this case. We note three essential properties of this defini-
tion of size functional:

1. Monotonicity of size: Sα,A
size (P) ≤ Sα,A

size (Q) if P ⊂ Q,

2. Goodness of testing cubes: ΠgoodbelowP ⊂ Dgood,

3. Control by deep energy condition: Sα,A
size (P) � Edeep

α +
√
Aα

2 .

The monotonicity property follows from ΠgoodbelowP ⊂ ΠgoodbelowQ and
ΠK,τ -deep

2 P ⊂ ΠK,τ -deep
2 Q, and the goodness property follows from the definition

of ΠgoodbelowP . The control property is contained in the next lemma, which uses
the stopping energy control for the form BA

stop(f, g) associated with A.

Lemma 11.6. If PA is as in (11.2) and P ⊂ PA, then

Sα,A
size (P) ≤ Xα(CA) � Edeep

α +
√
Aα

2 .

Proof. Suppose that K ∈ ΠgoodbelowP . To prove the first inequality in the state-
ment we note that

1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2∥∥∥Pω
(ΠK,τ -deep

2 P)∗x
∥∥∥2
L2(ω)

≤ 1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2 ∑
J∈Mr-deep(K)

∥∥∥Psubgood,ω
J x

∥∥∥2
L2(ω)

� 1

|K|σ
∑

J∈Mr-deep(K)

(Pα(J,1A\Kσ)
|J |1/n

)2∥∥∥Psubgood,ω
J x

∥∥∥2
L2(ω)

� 1

|K|σ
∑

J∈Mr-deep(K)

(Pα(J,1A\γJσ)
|J |1/n

)2∥∥∥Psubgood,ω
J x

∥∥∥2
L2(ω)

≤ Xα(CA) ,
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where the first inequality above follows since every J ′ ∈ ΠK,τ -deep
2 P is contained in

some J ∈ Mr-deep(I), the second inequality follows from (11.10) with J ⊂ K ⊂ A,
and then the third inequality follows since J �r I implies γJ ⊂ I by (2.4), and

finally since ΠK,τ -deep
2 P = ∅ if K ⊂ A and K /∈ CA by (11.13) below. The second

inequality in the statement of the lemma follows from (8.5). �

The following useful fact is needed above and will be used later as well:

(11.13) K ⊂ A and K /∈ CA =⇒ ΠK,τ -deep
2 P = ∅ .

To see this, suppose that K ∈ Cτ -shift
A \ CA. Then K ⊂ A′ for some A′ ∈ CA(A),

and so if there is J ∈ ΠK,τ -deep
2 P , then |J |1/n ≤ 2−τ |K|1/n ≤ 2−τ |A′|1/n, which

implies that J /∈ Cτ -shift
A , which contradicts ΠK,τ -deep

2 P ⊂ Cτ -shift
A .

Now define an atomic measure ωP in the upper half space Rn+1
+ by

ωP ≡
∑

J∈Π2P
‖ 
ω

J x‖2L2(ω) δ(cJ ,|J|1/n).

Define the tent T(K) over a cube K to be the convex hull of the n-cube K × {0}
and the point (cK , |K|1/n) ∈ Rn+1

+ . Define the τ -deep tent Tτ -deep(K) over a
cube K to be the restriction of the tent T(K) to those points at depth τ or more
below K:

Tτ -deep(K) ≡ {(y, t) ∈ T(K) : t ≤ 2−τ |K|1/n} .
We can now rewrite the size functional (11.12) of P as

(11.14) Sα,A
size (P)2 ≡ sup

K∈ΠgoodbelowP

1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2
ωP(Tτ−deep(K)) .

It will be convenient to write

Ψα(K;P)2 ≡
(Pα(K,1A\Kσ)

|K|1/n
)2
ωP(Tτ -deep(K)) ,

so that we have simply

Sα,A
size (P)2 = sup

K∈ΠgoodbelowP

Ψα(K;P)2

|K|σ
.

Remark 11.7. The functional ωP(Tτ -deep(K)) is increasing in K, while the func-
tional Pα(K,1A\Kσ)/|K|1/n is ‘almost decreasing’ in K: if K0 ⊂ K then

Pα(K,1A\Kσ)
|K|1/n =

∫
A\K

dσ(y)

(|K|1/n + |y − cK |)n+1−α

�
∫
A\K

(
√
n)n+1−α dσ(y)

(|K0|1/n + |y − cK0 |)n+1−α

≤ Cn,α

∫
A\K0

dσ(y)

(|K0|1/n + |y − cK0 |)n+1−α
= Cn,α

Pα(K0,1A\K0
σ)

|K0|1/n
,

since |K0|1/n + |y − cK0 | ≤ |K|1/n + |y − cK |+ 1
2diam(K) for y ∈ A \K.
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11.4. The recursion

Recall that if P is an admissible collection for a dyadic cube A, the corresponding
sublinear form in (11.7) is given in (11.6) by

|B|A,P
stop,1,�ω(f, g) ≡

∑
J∈Π2P

Pα(J, |ϕP
J |1A\IP(J)σ)

|J |1/n ‖ 
ω
J x‖L2(ω) ‖ 
ω

J g‖L2(ω) ;

where ϕP
J ≡

∑
I∈C′

A: (I,J)∈P
Eσ
I (
σ

πIf) 1A\I .

In the notation for |B|A,P
stop,1,�ω , we are omitting dependence on the parameter α,

and to avoid clutter, we will often do so from now on when the dependence on α
is inconsequential. Following Lacey [1], we now claim the following proposition,
from which we obtain (11.7) as a corollary below. Motivated by the conclusion

of Proposition 11.4, we define the restricted norm NA,P
stop,1,� of the sublinear form

|B|A,P
stop,1,�ω to be the best constant NA,P

stop,1,� in the inequality

|B|A,P
stop,1,�ω(f, g) ≤ NA,P

stop,1,�
(
αA(A)

√
|A|σ + ‖f‖L2(σ)

)
‖g‖L2(ω) ,

where f ∈ L2(σ) satisfies Eσ
I |f | ≤ αA(A) for all I ∈ Cgood

A .

Proposition 11.8. (This is a variant for sublinear forms of the size lemma in
Lacey [1]) Suppose ε > 0. Let P be an admissible collection of pairs for a dyadic
cube A. Then we can decompose P into two disjoint collections P = Pbig ∪̇ Psmall,
and further decompose Psmall into pairwise disjoint collections Psmall

1 ,Psmall
2 , . . . ,

Psmall
� , . . . , i.e., ·

P = Pbig
⋃̇ (⋃∞

�=1
Psmall
�

)
,

such that the collections Pbig and Psmall
� are admissible and satisfy

(11.15) sup
�≥1

Sα,A
size (Psmall

� )2 ≤ εSα,A
size (P)2,

and

(11.16) NA,P
stop,1,� ≤ Cε Sα,A

size (P) +
√
nτ sup

�≥1
N

A,Psmall
�

stop,1,� .

Corollary 11.9. The sublinear stopping form inequality (11.7) holds.

Proof of Corollary 11.9. Set Q0 = PA. Apply Proposition 11.8 to obtain a subde-
composition {Q1

�}∞�=1 of Q0 such that

NA,Q0

stop,1,� ≤ Cε Sα,A
size (Q0) +

√
nτ sup

�≥1
N

A,Q1
�

stop,1,� ,

sup
�≥1

Sα,A
size (Q1

�) ≤ εSα,A
size (Q0) .
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Now apply Proposition 11.8 to each Q1
� to obtain a subdecomposition {Q2

�,k}∞k=1

of Q1
� such that

N
A,Q1

�

stop,1,� ≤ Cε Sα,A
size (Q1

�) +
√
nτ sup

k≥1
N

A,Q2
�,k

stop,1,� ,

sup
k≥1

Sα,A
size (Q2

�,k) ≤ εSα,A
size (Q1

� ) .

Altogether we have

NA,Q0

stop,1,� ≤ Cε Sα,A
size (Q0) +

√
nτ sup

�≥1

{
Cε Sα,A

size (Q1
�) +

√
nτ sup

k≥1
N

A,Q2
�,k

stop,1,�
}

= Cε

{
Sα,A
size (Q0) +

√
nτεSα,A

size (Q0)
}
+ (nτ ) sup

�,k≥1
N

A,Q2
�,k

stop,1,� .

Then with ζ ≡
√
nτ , we obtain by induction for every N ∈ N,

NA,Q0

stop,1,� ≤ Cε

{
Sα,A
size (Q0) + ζ εSα,A

size (Q0) + · · ·+ ζNεNSα,A
size (Q0)

}
+ ζN+1 sup

m∈NN+1

N
A,QN+1

m

stop,1,� .

Now we may assume the collection Q0 = PA of pairs is finite (simply trun-
cate the corona CA and obtain bounds independent of the truncation) and so

supm∈NN+1 N
A,QN+1

m

stop,1,� = 0 for N large enough.

Then we obtain (11.7) if we choose 0 < ε < 1/(1 + ζ) and apply Lemma 11.6.
�

Proof of Proposition 11.8. We first recall that the ‘size testing collection’ of cubes
ΠgoodbelowP is the collection of all good subcubes of a cube in ΠP . We may assume
that P is a finite collection. Begin by defining the collection L0 to consist of the
minimal dyadic cubes K in ΠgoodbelowP such that

Ψα(K;P)2

|K|σ
≥ εSα,A

size (P)2 .

where we recall that

Ψα(K;P)2 ≡
(Pα(K,1A\Kσ)

|K|1/n
)2
ωP(Tτ -deep(K)) .

Note that such minimal cubes exist when 0 < ε < 1 because Sα,A
size (P)2 is the

supremum over K ∈ ΠgoodbelowP of Ψα(K;P)2/|K|σ. A key property of the the
minimality requirement is that

(11.17)
Ψα(K ′;P)2

|K ′|σ
< εSα,A

size (P)2 ,

for all K ′ ∈ ΠgoodbelowP with K ′ � K and K ∈ L0.
We now perform a stopping time argument ‘from the bottom up’ with respect

to the atomic measure ωP in the upper half space. This construction of a stopping
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time ‘from the bottom up’ is one of two key innovations in Lacey’s argument [1],
the other being the recursion described in Proposition 11.8.

We refer to L0 as the initial or level 0 generation of stopping times. Choose
ρ = 1 + ε. We then recursively define a sequence of generations {Lm}∞m=0 by
letting Lm consist of the minimal dyadic cubes L in ΠgoodbelowP that contain a
cube from some previous level L�, � < m, such that

(11.18) ωP(Tτ -deep(L)) ≥ ρωP

( ⋃

L′∈⋃m−1
�=0 L�:L′⊂L

Tτ -deep(L′)
)
.

Since P is finite this recursion stops at some level M . We then let LM+1 consist of
all the maximal cubes in ΠgoodbelowP that are not already in some Lm. Thus LM+1

will contain either none, some, or all of the maximal cubes in ΠgoodbelowP . We do
not of course have (11.18) for A′ ∈ LM+1 in this case, but we do have that (11.18)
fails for subcubes K of A′ ∈ LM+1 that are not contained in any other L ∈ Lm,
and this is sufficient for the arguments below.

We now define the collections Psmall and Pbig. The collection Pbig will consist
of those pairs (I, J) ∈ P for which there is L ∈

⋃M+1
m=0 Lm, with J �τ L ⊂ I,

and Psmall will consist of the remaining pairs. But a considerable amount of
further analysis is required to prove the conclusion of the proposition. First, let L ≡⋃M+1

m=0 Lm be the tree of stopping energy cubes defined above. By our construction
above, the maximal elements in L are the maximal cubes in ΠgoodbelowP . For
L ∈ L, denote by CL the corona associated with L in the tree L,

CL ≡ {K ∈ D : K ⊂ L and there is no L′ ∈ L with K ⊂ L′ � L} ,

and define the shifted corona by

Cτ -shift
L ≡{K∈CL : K�τ L}

⋃ ⋃

L′∈CL(L)

{K∈D : K�τ L and K is τ -nearby in L′} .

Now the parameter m in Lm refers to the level at which the stopping construction
was performed, but for L ∈ Lm, the corona children L′ of L are not all necessarily
in Lm−1, but may be in Lm−t for t large. Thus we need to introduce the notion
of geometric depth d in the tree L by defining

G0 ≡ {L ∈ L : L is maximal} ,
G1 ≡ {L ∈ L : L is maximal with respect to L � L0 for some L0 ∈ G0} ,

...

Gd+1 ≡ {L ∈ L : L is maximal with respect to L � Ld for some Ld ∈ Gd} ,
...

We refer to Gd as the dth generation of cubes in the tree L, and say that the cubes
in Gd are at depth d in the tree L. Thus the cubes in Gd are the stopping cubes
in L that are d levels in the geometric sense below the top level.
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Then for L ∈ Gd and t ≥ 0 define

PL,t ≡ {(I, J) ∈ P : I ∈ CL and J ∈ Cτ -shift
L′ for some L′ ∈ Gd+t with L

′ ⊂ L} .

In particular, (I, J) ∈ PL,t implies that I is in the corona CL, and that J is in a
shifted corona Cτ -shift

L′ that is t levels of generation below CL. We emphasize the
distinction ‘generation’ as this refers to the depth rather than the level of stopping
construction. For t = 0 we further decompose PL,0 as

PL,0 = Psmall
L,0 ∪̇ Pbig

L,0 ;

Psmall
L,0 ≡ {(I, J) ∈ PL,0 : I �= L} ,
Pbig
L,0 ≡ {(I, J) ∈ PL,0 : I = L} ,

with one exeption: if L ∈ LM+1 we set Psmall
L,0 ≡ PL,0 since in this case L fails to

satisfy (11.18) as pointed out above. Then we set

Pbig ≡
{ ⋃

L∈L
Pbig
L,0

} ⋃ { ⋃

t≥1

⋃

L∈L
PL,t

}
;

{Psmall
� }∞�=0 ≡ {Psmall

L,0 }L∈L, after relabelling.

It is important to note that by (11.11), every pair (I, J) ∈ P will be included in
either Psmall or Pbig. Now we turn to proving the inequalities (11.15) and (11.16).

To prove the inequality (11.15), it suffices with the above relabelling to prove
the following claim:

(11.19) Sα,A
size (Psmall

L,0 )2 ≤ (ρ− 1)Sα,A
size (P)2, L ∈ L .

To see (11.19), suppose first that L /∈ LM+1. In the case that L ∈ L0 is an initial
generation cube, then from (11.17) we obtain that

Sα,A
size (Psmall

L,0 )2 ≤ sup
K′∈ΠgoodbelowP: K′�L

1

|K ′|σ

(Pα(K ′,1A\K′σ)

|K ′|1/n
)2
ωP(Tτ -deep(K ′))

≤ εSα,A
size (P)2.

Now suppose that L �∈ L0 and also that L /∈ LM+1. Pick a pair (I, J) ∈ Psmall
L,0 .

Then I is in the strict corona C′
L and J is in the τ -shifted corona Cτ -shift

L . Since

Psmall
L,0 is a finite collection, the definition of Sα,A

size (Psmall
L,0 ) shows that there is a

cube K ∈ ΠgoodbelowPsmall
L,0 so that

Sα,A
size (Psmall

L,0 )2 =
1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2
ωP(Tτ -deep(K)) .

Now define

t′ = t′(K) ≡ max{s : there is L′ ∈ Ls with L′ ⊂ K} .
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First, suppose that t′ = 0 so that K does not contain any L′ ∈ L. Then it follows
from our construction at level � = 0 that

1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2
ωP(Tτ -deep(K)) < εSα,A

size (P)2,

and hence from ρ = 1 + ε we obtain

Sα,A
size (Psmall

L,0 )2 < εSα,A
size (P)2 = (ρ− 1)Sα,A

size (P)2.

Now suppose that t′ ≥ 1. Then K fails the stopping condition (11.18) with m =
t′ + 1, and so

ωP(Tτ -deep(K)) < ρωP

( ⋃

L′∈⋃t′
�=0 L�:L′⊂K

Tτ -deep(L′)
)
.

Now we use the crucial fact that ωP is additive and finite to obtain from this that

ωP
(
Tτ -deep(K) \

⋃

L′∈⋃
t′
�=0 L�:L′⊂K

Tτ -deep(L′)
)

(11.20)

= ωP(Tτ -deep(K))− ωP
( ⋃

L′∈⋃t′
�=0 L�:L′⊂K

Tτ -deep(L′)
)

≤ (ρ− 1)ωP
( ⋃

L′∈⋃t′
�=0 L�:L′⊂K

Tτ -deep(L′)
)
.

Thus using

ωPsmall
L,0

(Tτ -deep(K)) ≤ ωP
(
Tτ -deep(K) \

⋃

L′∈⋃
t′
�=0 L�:L′⊂K

Tτ -deep(L′)
)
,

and (11.20) we have

Sα,A
size (Psmall

L,0 )2 ≤ sup
K∈ΠgoodbelowPsmall

L,0

1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2
× ωP

(
Tτ -deep(K) \

⋃

L′∈⋃t′
�=0 L�:L′⊂K

Tτ -deep(L′)
)

≤ (ρ− 1) sup
K∈ΠgoodbelowPsmall

L,0

1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2
× ωP

( ⋃

L′∈⋃t′
�=0 L�:L′⊂K

Tτ -deep(L′)
)
.

and we can continue with

Sα,A
size (Psmall

L,0 ) ≤ (ρ− 1) sup
K∈ΠgoodbelowP

1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2
ωP(Tτ -deep(K))

≤ (ρ− 1)Sα,A
size (P)2.
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In the remaining case where L ∈ LM+1 we can include L as a testing cube K
and the same reasoning applies. This completes the proof of (11.19).

To prove the other inequality (11.16), we need a lemma to bound the norm of

certain ‘straddled’ stopping forms by the size functional Sα,A
size , and another lemma

to bound sums of ‘mutually orthogonal’ stopping forms. We interrupt the proof to
turn to these matters. �

11.4.1. The straddling lemma. Given an admissible collection of pairsQ for A,
and a subpartition S ⊂ ΠgoodbelowQ of pairwise disjoint cubes in A, we say that Q
τ -straddles S if for every pair (I, J) ∈ Q there is S ∈ S ∩ [J, I] where [J, I]
denotes the geodesic in the dyadic tree D that connects J to I, and moreover that
J �τ S. Denote by N good

ρ−1−τ (S) the finite collection of cubes that are both good
and (ρ − 1 − τ )-nearby in S. For any good dyadic cube S ∈ Dgood, we will also
need the collection Wgood(S) of maximal good subcubes I of S whose triples 3I
are contained in S.

Lemma 11.10. Let S be a subpartition of A, and suppose that Q is an admissible
collection of pairs for A such that S ⊂ ΠgoodbelowQ, and such that Q τ -straddles S.
Then we have the sublinear form bound

NA,Q
stop,1,� ≤ Cr,τ ,ρ sup

S∈S
Sα,A;S
size (Q) ≤ Cr,τ ,ρ Sα,A

size (Q) ,

where Sα,A;S
size is an S-localized version of Sα,A

size with an S-hole given by

(11.21) Sα,A;S
size (Q)2 ≡ sup

K∈N good
ρ−1−τ (S)∪Wgood(S)

1

|K|σ

(Pα(K,1A\Sσ)
|K|1/n

)2
ωQ(Tτ -deep(K)).

Proof. For S ∈ S let QS ≡ {(I, J) ∈ Q : J �τ S ⊂ I}. We begin by using that Q
τ -straddles S, together with the sublinearity property (11.5) of ϕQ

J , to write

|B|A,Q
stop,1,�(f, g) =

∑
J∈Π2P

Pα(J, |ϕQ
J |1A\IQ(J)σ)

|J |1/n ‖ 
ω
J x‖L2(ω) ‖ 
ω

J g‖L2(ω)

≤
∑
S∈S

∑
J∈ΠS,τ-deep

2 Q

Pα(J, |ϕQS

J |1A\IQ(J)σ)

|J |1/n ‖ 
ω
J x‖L2(ω) ‖ 
ω

J g‖L2(ω) ;

where
ϕQS

J ≡
∑

I∈Π1QS : (I,J)∈QS

Eσ
I (
σ

πIf) 1A\I .

At this point, with S fixed for the moment, we consider separately the finitely
many cases |J |1/n = 2−s|S|1/n where s ≥ ρ − 1 and where τ ≤ s < ρ− 1. More

precisely, we pigeonhole the side length of J ∈ Π2QS = ΠS,τ -deep
2 Q by

QS
∗ ≡

{
(I, J) ∈ QS : J ∈ Π2QS and |J |1/n ≤ 2−ρ|S|1/n

}
,

QS
s ≡

{
(I, J) ∈ QS : J ∈ Π2QS and |J |1/n = 2−s|S|1/n

}
, τ ≤ s < ρ− 1 .
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Then we have

Π2QS
∗ ≡

{
J ∈ Π2QS : |J |1/n ≤ 2−ρ|S|1/n

}
,

Π2QS
s ≡

{
J ∈ Π2QS : |J |1/n = 2−s|S|1/n

}
, τ ≤ s < ρ− 1 ,

and we make the corresponding decomposition for the sublinear form

|B|A,Q
stop,1,�(f, g) = |B|A,Q∗

stop,1,�(f, g) +
∑

τ≤s<ρ

|B|A,Qs

stop,1,�(f, g)

≡
∑
S∈S

∑
J∈Π2QS∗

Pα(J, |ϕQS
∗

J |1A\IQ∗ (J)σ)

|J |1/n ‖ 
ω
J x‖L2(ω)‖ 
ω

J g‖L2(ω)

+
∑

τ≤s<ρ−1

∑
S∈S

∑
J∈Π2QS

s

Pα(J, |ϕQS
s

J |1A\IQS
(J)σ)

|J |1/n ‖ 
ω
J x‖L2(ω)‖ 
ω

J g‖L2(ω) .

By the tree-connected property of Q, and the telescoping property of martingale
differences, together with the bound αA(A) on the averages of f in the corona CA,
we have

(11.22) |ϕQS
∗

J |, |ϕQS
s

J | � αA(A)1A\IQS (J) ,

where IQS (J) ≡
⋂
{I : (I, J) ∈ QS} is the smallest cube I for which (I, J) ∈ QS .

Case for |B|A,QS
s

stop,1,�(f, g) when τ ≤ s ≤ ρ− 1. Now is a crucial definition that
permits us to bound the form by the size functional with a large hole. Let

CS
s ≡ πτ (Π2QS

s )

be the collection of τ -parents of cubes in Π2QS
s , and denote by MS

s the set of
maximal cubes in the collection CS

s . We have that the cubes in MS
s are good by

our assumption that the Haar support of g is contained in the τ -good grid grid
Dτ

(r,ε)-good, and so MS
s ⊂ Nρ−τ (S). Here is the first of two key inclusions:

(11.23) J �τ K ⊂ S if K ∈ MS
s is the unique cube containing J.

Let Is ≡ πρ−1−sS, so that for each J in Π2QS
s we have the second key inclusion:

(11.24) πρ−1J = Is ⊂ IQS (J).

Now each K ∈ MS
s is also (ρ − 1 − τ )-deeply embedded in Is if ρ − 1 ≥ r + τ ,

so that in particular, 3K ⊂ Is. This and (11.24) have the consequence that the
following Poisson inequalities hold:

Pα(J,1A\IQS (J)σ)

|J |m/n
�

Pα(J,1A\Isσ)
|J |m/n

�
Pα(K,1A\Isσ)

|K|m/n
�

Pα(K,1A\Sσ)
|K|m/n

.

Let
Π2QS

s (K) ≡ {J ∈ Π2QS
s : J ⊂ K},
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and let [
Π2QS

s

]
�
≡
{
J ∈ Π2QS

s : |J ′|1/n = 2−�|K|1/n
}
,[

Π2QS
s

]∗
�
≡
{
J ′ : J ′ ⊂ J ∈ Π2QS

s : |J ′|1/n = 2−�|K|1/n
}
.

Now set Qs ≡
⋃

S∈S QS
s . We apply (11.22) and Cauchy–Schwarz in J to bound

|B|A,Qs

stop,1,�(f, g) by

αA(A)
∑
S∈S

∑
K∈MS

s

(Pα(K,1A\Sσ)
|K|1/n

)∥∥Pω
ΠS,τ-deep

2 Qs;K
x
∥∥
L2(ω)

∥∥Pω
ΠS,τ-deep

2 Qs;K
g
∥∥
L2(ω)

,

where the localized projections Pω
ΠS,τ-deep

2 Qs;K
are defined in (9.1) above.

Thus using Cauchy–Schwarz in K we have that |BA,Qs

stop,1,�(f, g)| is bounded by

αA(A)
∑
S∈S

∑
K∈MS

s

√
|K|σ

× 1√
|K|σ

(Pα(K,1A\Sσ)
|K|1/n

)∥∥Pω
Π2QS

s (K)x
∥∥
L2(ω)

∥∥Pω
Π2QS

s (K)g
∥∥
L2(ω)

≤ αA(A) sup
S∈S

Sα,A;S
size (Q)

(∑
S∈S

∑
K∈Nρ−τ (S)

|K|σ
)1/2

‖g‖L2(ω)

≤ sup
S∈S

Sα,A;S
size (Q)αA(A)

√
|A|σ ‖g‖L2(ω) ,

since J �τ M ⊂ K by (11.23), since MS
s ⊂ Nρ−1−τ (S), and since the collection

of cubes
⋃

S∈S MS
s is pairwise disjoint in A.

Case for |B|A,Q∗
stop,1,�(f, g). This time we let CS

∗ ≡ πτ (Π2QS
∗ ) and denote by MS

∗
the set of maximal cubes in the collection CS∗ . We have the two key inclusions:

J �τ M �ρ−1−τ S if M ∈ MS
∗ is the unique cube containing J,

and

πρJ ⊂ S ⊂ IQ(J) .

Moreover there is K ∈ Wgood(S) that contains M . Thus 3K ⊂ S and we have

Pα(J,1A\Sσ)
|J |1/n �

Pα(K,1A\Sσ)
|K|1/n ,

and

|ϕJ | � αA(A)1A\S .
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Now set Q∗ ≡
⋃

S∈S QS∗ . Arguing as above, but with Wgood(S) in place of

Nρ−1−τ (S), and using J�ρ−1 IQ(J), we can bound |B|A,Q∗
stop,1,�(f, g) by

αA(A)
∑
S∈S

∑
K∈Wgood(S)

√
|K|σ

× 1√
|K|σ

(Pα(K,1A\Sσ)
|K|1/n

) ∥∥Pω
Π2QS

s (K)x
∥∥
L2(ω)

‖Pω
Π2QS∗ (K)g‖L2(ω)

≤ αA(A) sup
S∈S

Sα,A;S
size (Q)

(∑
S∈S

∑
K∈Wgood(S)

|K|σ
)1/2

‖g‖L2(ω)

≤ sup
S∈S

Sα,A;S
size (Q)αA(A)

√
|A|σ ‖g‖L2(ω) .

We now sum these bounds in s and ∗ and use supS∈S Sα,A;S
size (Q) ≤ Sα,A

size (Q) to
complete the proof of Lemma 11.10. �

11.4.2. The orthogonality lemma. Given a set {Qm}∞m=0 of admissible col-
lections for A, we say that the collections Qm are mutually orthogonal, if each
collection Qm satisfies

Qm ⊂
∞⋃
j=0

{Am,j × Bm,j} ,

where the sets {Am,j}m,j and {Bm,j}m,j each have bounded overlap on the dyadic
grid D:

∞∑
m,j=0

1Am,j ≤ A1D and
∞∑

m,j=0

1Bm,j ≤ B 1D .

Lemma 11.11. Suppose that {Qm}∞m=0 is a set of admissible collections for A
that are mutually orthogonal. Then if Q ≡

⋃∞
m=0 Qm, the sublinear stopping form

|B|A,Q
stop,1,�(f, g) has its restricted norm NA,Q

stop,1,� controlled by the supremum of

the restricted norms NA,Qm

stop,1,� :

NA,Q
stop,1,� ≤

√
nAB sup

m≥0
NA,Qm

stop,1,� .

Proof. If Pσ
m =

∑
j≥0

∑
I∈Am,j


σ
πI (note the parent πI in the projection 
σ

πI

because of our ‘change of dummy variable’ in (11.1)) and Pω
m =

∑
j≥0

∑
J∈Bm,j


ω
J ,

then we have
BA,Qm

stop (f, g) = BA,Qm

stop (Pσ
mf,P

ω
mg) ,

and ∑
m≥0

‖Pσ
mf‖2L2(σ) ≤

∑
m≥0

∑
j≥0

‖Pσ
Am,j

f‖2L2(σ) ≤ An ‖f‖2L2(σ),∑
m≥0

‖Pω
mg‖2L2(σ) ≤

∑
m≥0

∑
j≥0

‖Pω
Bm,j

g‖2L2(ω) ≤ B ‖g‖2L2(ω) .



170 E.T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero

The sublinear inequality (11.5) and Cauchy–Schwarz now give

|B|A,Q
stop,1,�(f, g) ≤

∑
m≥0

|B|A,Qm

stop,1,�(f, g) ≤
∑
m≥0

NA,Qm

stop ‖Pσ
mf‖L2(σ)‖Pω

mg‖L2(σ)

≤
(
sup
m≥0

NA,Qm

stop,1,�
) ( ∑

m≥0

‖Pσ
mf‖2L2(σ)

)1/2 ( ∑
m≥0

‖Pω
mg‖2L2(σ)

)1/2
≤
(
sup
m≥0

NA,Qm

stop,1,�
)√

nAB
√
n ‖f‖L2(σ) ‖g‖L2(ω) .

�

11.4.3. Completion of the proof. Now we return to the proof of inequal-
ity (11.16) in Proposition 11.8.

Proof of (11.16). Recall that

Pbig =
{ ⋃

L∈L
Pbig
L,0

}⋃{⋃
t≥1

⋃
L∈L

PL,t

}
≡ Qbig

0

⋃
Qbig

1 ;

Qbig
0 ≡

⋃
L∈L

Pbig
L,0 , Qbig

1 ≡
⋃
t≥1

Pbig
t , Pbig

t ≡
⋃
L∈L

PL,t .

We first consider the collection Qbig
0 =

⋃
L∈L

Pbig
L,0, and claim that

(11.25) N
A,Pbig

L,0

stop,1,� ≤ C Sα,A
size (P

big
L,0) ≤ C Sα,A

size (P), L ∈ L .

To see this we note that Pbig
L,0 τ -straddles the trivial collection {L} consisting of a

single cube, since the pairs (I, J) that arise in Pbig
L,0 have I = L and J in the shifted

corona Cτ -shift
I . Thus we can apply Lemma 11.10 with Q = Pbig

L,0 and S = {L} to
obtain (11.25).

Next, we observe that the collections Pbig
L,0 are mutually orthogonal, namely

Pbig
L,0 ⊂ CL × Cτ -shift

L ,
∑
L∈L

1CL ≤ 1 and
∑
L∈L

1Cτ-shift
L

≤ τ .

Thus the orthogonality Lemma 11.11 shows that

N
A,Qbig

0

stop,1,� ≤
√
nτ sup

L∈L
N

A,Pbig
L,0

stop,1,� ≤
√
nτ C Sα,A

size (P) .

Now we turn to the collection

Qbig
1 =

⋃
t≥1

⋃
L∈L

PL,t =
⋃
t≥1

Pbig
t ; Pbig

t ≡
⋃
L∈L

PL,t , t ≥ 0 .

We claim that

(11.26) N
A,Pbig

t

stop,1,� ≤ C ρ−t/2 Sα,A
size (P), t ≥ 1 .
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Note that with this claim established, we have

NA,Pbig

stop,1,� ≤ N
A,Qbig

0

stop,1,� +N
A,Qbig

1

stop,1,� ≤ N
A,Qbig

0

stop,1,� +
∞∑
t=1

N
A,Pbig

t

stop,1,� ≤ Cρ Sα,A
size (P) ,

which proves (11.16) if we apply the orthogonal Lemma 11.11 to the set of collec-
tions {Psmall

L,0 }L∈L, which is mutually orthogonal since Psmall
L,0 ⊂ C′

L×Cτ-shift
L . With

this the proof of Proposition 11.8 is now complete since ρ = 1+ ε. Thus it remains
only to show that (11.26) holds.

The cases 1 ≤ t ≤ r + 1 can be handled with relative ease since decay in t is
not needed there. Indeed, PL,t τ -straddles the collection CL(L) of L-children of L,
and so the straddling lemma applies to give

N
A,PL,t

stop,1,� ≤ C Sα,A
size (PL,t) ≤ C Sα,A

size (P) ,

and then the orthogonality Lemma 11.11 applies to give

N
A,Pbig

t

stop,1,� ≤
√
nτ sup

L∈L
N

A,PL,t

stop,1,� ≤ C
√
nτ Sα,A

size (P) ,

since {PL,t}L∈L is mutually orthogonal as PL,t ⊂ CL × Cτ -shift
L′ with L ∈ Gd and

L′ ∈ Gd+t for depth d = d(L).

Now we consider the case t ≥ r + 2, where it is essential to obtain decay in t.
We again apply Lemma 11.10 to PL,t with S = CL(L), but this time we must use

the stronger localized bounds Sα,A;S
size with an S-hole, that give

(11.27) N
A,PL,t

stop,1,� ≤ C sup
S∈CL(L)

Sα,A;S
size (PL,t), t ≥ 0 .

Fix L ∈ Gd. Now we note that if J ∈ ΠL,τ -deep
2 PL,t then J belongs to the τ -shifted

corona Cτ -shift
Ld+t for some cube Ld+t ∈ Gd+t. Then πτJ is τ levels above J , hence

in the corona CLd+t. This cube Ld+t lies in some child S ∈ S = CL(L). So fix
S ∈ S and a cube Ld+t ∈ Gd+t that is contained in S with t ≥ r + 2. Now the
cubes K that arise in the supremum defining Sα,A;S

size (PL,t) in (11.21) belong to
either Nρ−τ (S) or Wgood(S). We will consider these two cases separately.

So first suppose that K ∈ Nρ−1−τ (S). A simple induction on levels yields

ωPL,t(T
τ -deep(K)) =

∑
J∈ΠS,τ-deep

2 PL,t

J⊂K

‖ 
ω
J x‖2L2(ω)

≤ ωP
( ⋃

Ld+t∈Gd+t:Ld+t⊂K

Tτ -deep(Ld+t)
)

≤ 1

ρ
ωP
( ⋃

Ld+t−1∈Gd+t−1:Ld+t−1⊂K

Tτ -deep(Ld+t−1)
)

...

� ρ−(t−ρ−τ) ωP(Tτ -deep(K)), t ≥ ρ− 1− τ + 2 .
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Thus we have

1

|K|σ

(Pα(K,1A\Sσ)
|K|1/n

)2
ωPL,t(T

τ -deep(K))

� ρ−t 1

|K|σ

(Pα(K,1A\Sσ)
|K|1/n

)2
ωP(Tτ -deep(K)) � ρ−t Sα,A

size (P)2 .

Now suppose that K ∈ Wgood(S) and that J ∈ ΠS,τ-deep
2 PL,t and J ⊂ K.

There is a unique cube Ld+r+1 ∈ Gd+r+1 such that J ⊂ Ld+r+1 ⊂ S. Now Ld+r+1

is good so Ld+r+1 �r S. Thus in particular 3Ld+r+1 ⊂ S so that Ld+r+1 ⊂ K.
The above simple induction applies here to give∑

J∈ΠS,τ-deep
2 PL,t

J⊂Ld+r+1

‖ 
ω
J x‖2L2(ω) ≤ ωP

( ⋃
Ld+t∈Gd+t:Lm−t⊂Ld+r+1

Tτ -deep(Ld+t)
)

� ρ−(t−1−r) ωP
(
Tτ -deep(Ld+r+1)

)
, t ≥ r+ 2 .

Thus we have(Pα(K,1A\Sσ)
|K|1/n

)2 ∑
J∈ΠK,τ-deep

2 PL,t

J⊂K

‖ 
ω
J x‖2L2(ω)

≤ C
(Pα(K,1A\Sσ)

|K|1/n
)2

ρ−(t−1−r)
∑

Ld+r+1∈Gd+r+1

Ld+r+1⊂K

ωP(Tτ -deep(Ld+r+1))

≤ C ρ−(t−1−r)
(Pα(K,1A\Sσ)

|K|1/n
)2
ωP (Tτ -deep(K)) ≤ C ρ−(t−1−r)Sα,A

size (P)2.

So altogether we conclude that

sup
S∈CL(L)

Sα,A;S
size (PL,t)

2

= sup
S∈CL(L)

sup
K∈Nρ−τ (S)∪Wgood(S)

1

|K|σ

(Pα(K,1A\Kσ)
|K|1/n

)2 ∑
J∈ΠK,τ-deep

2 PL,t

J⊂K

‖Pω
Jx‖2L2(ω)

≤ Cr,τ ,ρ ρ
−tSα,A

size (P)2 ,

and combined with (11.27) this gives (11.26). As we pointed out above, this
completes the proof of Proposition 11.8, hence of Proposition 11.4, and finally of
Theorem 2.6. �
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