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Bi-Lipschitz pieces between manifolds

Guy C. David

Abstract. A well-known class of questions asks the following: if X and Y
are metric measure spaces and f : X → Y is a Lipschitz mapping whose
image has positive measure, then must f have large pieces on which it is
bi-Lipschitz? Building on methods of David and Semmes, we answer this
question in the affirmative for Lipschitz mappings between certain types
of Ahlfors s-regular, topological d-manifolds. In general, these manifolds
need not be bi-Lipschitz embeddable in any Euclidean space. To prove
the result, we use some facts on the Gromov–Hausdorff convergence of
manifolds and a topological theorem of Bonk and Kleiner. This also yields
a new proof of the uniform rectifiability of some metric manifolds.

1. Introduction

There are nowadays many different theorems of the following general form: let
(X, d, μ) and (Y, ρ, ν) be metric measure spaces (satisfying some assumptions), and
let f : X → Y be a Lipschitz map whose image has positive ν-measure. Then f
must be bi-Lipschitz on a subset of large measure, in a quantitative way.

This class of theorems is not true in general, and later on in Section 8 we will
mention some interesting cases where it fails. However, there are a number of
situations in which results of this form can be proven.

The idea started with [7], where David1 examined the case in which (X, d, μ)
is Ahlfors d-regular and Y is Rd with the standard metric and Lebesgue measure.
David showed that if, in addition to these assumptions, f satisfies a certain techni-
cal condition that we will discuss below, then it is quantitatively bi-Lipschitz on a
set of large measure. By verifying his technical condition, David then applied this
theorem to show that if an L-Lipschitz map f from the unit cube [0, 1]d into R

d

has an image of Lebesgue measure at least δ > 0, then f is M -bi-Lipschitz on a
set of Lebesgue measure θ in the cube, where θ and M depend only on L and δ.

Mathematics Subject Classification (2010): Primary 28A75; Secondary 51F99, 30L10.
Keywords: Lipschitz, bi-Lipschitz, metric space, uniform rectifiability.

1The Guy David mentioned here and in the references is a professor at Université Paris-Sud
and has no relation to the author of this paper, who is a postdoc at NYU. The author wishes to
apologize for any confusion generated by this amusing coincidence.



176 G.C. David

Quite different methods were then invented by Jones [17] and David [8] to
show the result in the case X = [0, 1]d and Y = R

D equipped with d-dimensional
Hausdorff measure, where D ≥ d. In 2009, Schul [26] showed the result in the
case where X = [0, 1]d and Y is an arbitrary metric space, again equipped with
d-dimensional Hausdorff measure. In addition, Meyerson [23] used techniques of
Jones and David to show the result when X and Y are Carnot groups.

Here we do not use the later methods of [17], [8], and [26], but rather the
original method of David, which required verifying a certain technical condition
on the Lipschitz map and the spaces in question. Originally, this applied only in
the case Y = Rd, but later Semmes [30] generalized David’s theorem to the case
of arbitrary target spaces Y .

In this paper, we apply this theorem of Semmes and adapt David’s original
argument to show the “Lipschitz implies bi-Lipschitz” result for Lipschitz maps
between certain types of abstract manifolds. Our main result is the following
theorem.

Theorem 1.1. Let X and Y be Ahlfors s-regular, linearly locally contractible,
complete, oriented, topological d-manifolds, for s > 0, d ∈ N. Suppose in addition
that Y has d-manifold weak tangents.

Suppose I0 is a dyadic 0-cube in X and z : I0 → Y is a Lipschitz map. Then
for every ε > 0, there are measurable subsets E1, . . . , El ⊂ I0, such that z|Ei is
M -bi-Lipschitz, and

∣∣∣z(I0 \ l⋃
i=1

Ei

)∣∣∣ < ε |I0| .

Here l and M depend only on ε, the Lipschitz constant of z, the data of X, and
the space Y .

All the relevant definitions will be given in Subsections 1.1 and 1.2 below.

In fact, in Theorem 1.1, the condition that Y is Ahlfors s-regular can be relaxed
to the condition that Y is doubling and satisfies the upper mass bound

Hs(BY (x, r)) ≤ C0 r
s .

It is only this half of the Ahlfors regularity of Y that is used in the proof.

For more information regarding the dependence of Theorem 1.1 on the space Y
(and not just its data), see Remark 1.10.

Note that Theorem 1.1 implies in particular the type of result mentioned at
the beginning of this paper: if the image of z has positive measure in Y , then z is
bi-Lipschitz on a set of definite size in I0. This stronger conclusion, in which the
domain of the mapping admits a decomposition into pieces on which the mapping
is bi-Lipschitz and a “garbage” piece of small image, is typical and appears in the
works [17], [8], [30], [26], and [23] mentioned above.
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1.1. Definitions

Recall that if (X, d) and (Y, ρ) are metric spaces, then a map f : X → Y is called
Lipschitz if there is a constant C such that

ρ(f(x), f(y)) ≤ C d(x, y) .

The map f is called bi-Lipschitz, if there is a constant C such that

C−1d(x, y) ≤ ρ(f(x), f(y)) ≤ C d(x, y) .

If we wish to emphasize the constant, we will call such mappings C-Lipschitz or
C-bi-Lipschitz.

The following definition makes sense for general measures, but, following [30],
we will consider only Hausdorff measure Hs.

Definition 1.2. A metric space (X, d) is Ahlfors s-regular if there is a constant C0

such that for all x ∈ X and r ≤ diamX , we have

C−1
0 rs ≤ Hs(B(x, r)) ≤ C0 r

s .

From now on, whenever we speak of a measure we will speak of s-dimensional
Hausdorff measure in an Ahlfors s-regular space. To simplify notation, we there-
fore always write |A| or, to avoid confusion, |A|X for the s-dimensional Hausdorff
measure of a set A in a space X .

Definition 1.3. A metric space (X, d) is called linearly locally contractible if there
are constants L, r0 > 0 such that every open ball B ⊂ X of radius r < r0 is
contractible inside a ball with the same center of radius Lr. We may abbreviate
the condition as LLC or (L, r0)-LLC to emphasize the constants.

Remark 1.4. In some contexts, the abbreviation LLC refers to the weaker con-
dition of “linear local connectivity”. We do not use this condition in this paper.

The class of source and target spaces we consider in this paper are complete,
oriented topological d-manifolds that are Ahlfors s-regular and LLC. If X is such
a space, the phrase “the data of X” refers to the collection of constants associated
to X : the dimensions d and s, the constant C0 appearing in the Ahlfors regularity
of X , and the constants L and r0 appearing in the LLC property of X .

There is also an additional constraint on the class of target spaces for which our
theorem applies. This requires the notion of convergence of a sequence of pointed
metric spaces, which we introduce in Definition 2.3 below.

Definition 1.5. We say a complete metric space (Y, ρ) has d-manifold weak tan-
gents if the following holds: Whenever ri is a sequence of positive real numbers
that is bounded above, pi are points in Y , and (Y, 1

ri
ρ, pi) converges (as in Defini-

tion 2.3) to a space (Y∞, ρ∞, p∞), then Y∞ is a topological d-manifold.

Remark 1.6. Note that Definition 1.5 includes the assumption that Y itself is a
topological d-manifold, by taking ri = 1 and pi = p for all i.
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Remark 1.7. While Definitions 1.2 and 1.3 are rather standard, Definition 1.5 is
more unusual, and somewhat restrictive. Here are some examples of spaces that
satisfy it:

• The simplest example is Rd, for d ≥ 1. Indeed, if Y = Rd, then all the
pointed metric spaces (Y, 1

ri
ρ, pi) are isometric to (Rd, | · |, 0) by rescaling and

translating. Therefore, the limiting space of this sequence is also Rd, which
is a topological d-manifold.

• For the same reasons, every Carnot group G, equipped with its Carnot–
Carathéodory metric, has d-manifold weak tangents, where d is the topolog-
ical dimension of G.

• If X is a compact, doubling metric space with d-manifold weak tangents,
and Y is quasisymmetric to X , then Y has d-manifold weak tangents. This
follows, e.g., from [19], Lemmas 2.4.3 and 2.4.7. (For the definition and
properties of quasisymmetric mappings, see [13].)

• Similarly, if G is a topologically d-dimensional Carnot group, and Y is qua-
sisymmetric to G, then Y has d-manifold weak tangents (even if Y has larger
Hausdorff dimension than G). This includes all “snowflaked” Carnot groups,
i.e., metric spaces of the form (G, ρα), where 0 < α ≤ 1 and (G, ρ) is a Carnot
group.

• The Cartesian product of two spaces (X, dX), (Y, dY ) with n- andm-manifold
weak tangents, respectively, (equipped, e.g., with the metric d((x, y), (x′, y′))
= dX(x, x′) + dY (y, y

′)) has (n+m)-manifold weak tangents.

• Any complete, doubling, linearly locally contractible topological 2-manifold
has 2-manifold weak tangents. Indeed, by Proposition 2.19 below, every
weak tangent of such a space is a homology 2-manifold (see Definition 2.18),
and the only homology 2-manifolds are topological 2-manifolds. (See [4],
Theorem V.16.32.)

• Suppose a compact metric space Z has the property that every triple of
points can be blown up to a uniformly separated triple by a uniformly quasi-
Möbius map. (This condition was studied by Bonk and Kleiner in [2] and
is satisfied by boundaries of hyperbolic groups equipped with their visual
metrics.) Then Z has d-manifold weak tangents if and only if Z is itself
a topological d-manifold. This follows from [2], Lemma 5.3. (Note that
the definition of a weak tangent given in [2] is different than ours, in that
it requires the sequence of scales 1/ri tend to infinity. However, the proof
of Lemma 5.3 in [2] works the same way without this restriction.)

1.2. Dyadic cubes

If X is a complete metric space that is Ahlfors s-regular with constant C0, we
can equip X with a type of “dyadic decomposition”. The formulation in [30],
Section 2.3, is the easiest to apply here. It says that there exists j0 ∈ N ∪ {∞}
(with 2j0 ≤ diamX < 2j0+1 if X is bounded) such that for each j < j0, there
exists a partition Δj of X into measurable subsets Q ∈ Δj such that
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• Q ∩Q′ = ∅ if Q,Q′ ∈ Δj and Q �= Q′.
• If j ≤ k < j0 and Q ∈ Δj , Q

′ ∈ Δk, then either Q ⊆ Q′ or Q ∩Q′ = ∅.
• C−1

0 2j ≤ diamQ ≤ C0 2
j and C−1

0 2sj ≤ |Q| ≤ C0 2
sj .

• For every j < j0, Q ∈ Δj , and τ > 0, we have∣∣{x ∈ Q : dist(x,X \Q) ≤ τ 2j}∣∣ ≤ C0 τ
1/C0 |Q| ,∣∣{x ∈ X \Q : dist(x,Q) ≤ τ 2j}∣∣ ≤ C0 τ
1/C0 |Q| .

We call an element of Δj a (dyadic) cube, or a (dyadic) j-cube if we wish to
emphasize the scale.

Note that these dyadic cubes are not necessarily closed or open, but merely
measurable. They are also disjoint, and do not merely have disjoint interiors.
In Rd, one should think of these as analogous to “half-open” cubes of the form

[n12
j, (n1 + 1)2j)× [n22

j , (n2 + 1)2j))× · · · × [nd2
j, (nd + 1)2j)) ,

where ni ∈ Z.
It follows from the third and fourth conditions that for every j < j0 andQ ∈ Δj ,

there exists x ∈ Q such that

B(x, c02
j) ⊆ Q ⊆ B(x,C02

j) .

All the constants in the cube decomposition depend only on s and the Ahlfors-
regularity constant of the space, and so we have denoted the larger cube constant
also by C0.

We remark here that the full force of Ahlfors regularity is not required to con-
struct dyadic cubes with nice properties in metric measure spaces: a construction
of Christ [6] provides similar cubes in all doubling metric measure spaces.

1.3. Background and results

In [7], condition (9), David introduced the following condition for a Lipschitz map
defined on a dyadic cube in an Ahlfors-regular space. Though David gave the
condition for maps into Rd, in [30], Condition 9.1, Semmes re-formulated David’s
condition for arbitrary target spaces. This is the formulation we give here. Recall
that | · | denotes s-dimensional Hausdorff measure.

Definition 1.8. Let (X, d) be an Ahlfors s-regular metric space with a system of
dyadic cubes as above. Let (Y, ρ) be a metric space. Let I0 be a 0-cube in X , and
z : I0 → Y be a Lipschitz map. We will say that z satisfies David’s condition on I0
if the following holds:

For every λ, γ>0, there exist Λ, η>0 such that, for every x∈I0 and j < j0, if T
is the union of all j-cubes intersecting B(x,Λ2j), and if T ⊆ I0 and |z(T )| ≥ γ|T |,
then either:

(i) z(T ) ⊇ B(z(x), λ2j), or
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(ii) there is a j-cube R ⊂ T such that

|z(R)|
|R| ≥ (1 + 2η)

|z(T )|
|T | .

As in Theorem 1.1, it is convenient to phrase David’s condition for 0-cubes
because that is how we will use it, although it makes sense for cubes of all sizes.
Note that, given the definition of our cubes in Subsection 1.2, a space may contain
no 0-cubes at all, but one can always create some by rescaling the space and
relabeling the levels of the cubes.

In essence, David’s condition says the following. At every location and scale
within I0, if the map z does not collapse the measure of a ball too much, then
one of two things must happen: either (i) the image of this ball contains a ball of
definite size (centered at the image of its center), or (ii) some sub-cube of this ball
is expanded by a larger factor than the ball itself. The upshot of (i) is that the
map z does not “fold” at this location and scale.

To take a concrete example, suppose I0 = [0, 1]2 ⊂ R2 and z is the map

z(x, y) =
(|x− 1

2 |, y
)
,

which folds the square in half along its central vertical axis. If T is well away
from the folding line {x = 1/2}, then z essentially acts isometrically on T and so
condition (i) of David’s condition holds. If T is centered on the folding line, then
|z(T )|/|T | = 1/2 and (i) fails, but some sub-square R of T to the left or right of
the folding line satisfies |z(R)|/|R| = 1, so (ii) holds.

Theorem 10.1 of [30], which is a generalization of Theorem 1 of [7], says the
following.

Theorem 1.9 ([30], Theorem 10.1). Let (X, d) be an Ahlfors s-regular metric
space with a system of dyadic cubes as above. Let (Y, ρ) be an arbitrary metric
space. Let I0 be a 0-cube in X, and z : I0 → Y be a Lipschitz map. Suppose that z
satisfies David’s condition on I0.

Then for every ε > 0, there are measurable subsets E1, . . . , El ⊂ I0, such that
z|Ei is M -bi-Lipschitz, and

∣∣∣z(I0 \ l⋃
i=1

Ei

)∣∣∣ < ε |I0| .

The constants l andM depend only on ε, the constants associated to the Ahlfors-
regularity of the space X, the Lipschitz constant of z, and the numbers Λ and η
from David’s condition (for λ = 1 and γ depending only on ε and the Lipschitz
constant of z.)

We will apply Theorem 1.9 and a modification of the proof of Theorem 2 of [7]
to prove Theorem 1.1.

On the other hand, the fact that X and Y are have the same topological dimen-
sion d is crucial in the setting of Theorem 1.1. In Proposition 8.1 below, we will give
a counterexample to Theorem 1.1 in which X and Y satisfy all the assumptions of
the theorem, except that they are manifolds of different topological dimensions.
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A few further remarks on the statement of Theorem 1.1 are in order.

Remark 1.10. That Theorem 1.1 gives dependence of constants on the space Y
(and not just its data) is a consequence of our compactness style of proof. However,
the proof of Theorem 1.1 can be modified slightly to reduce the dependence on Y
in the following manner. Let Y be a complete, oriented d-manifold that is LLC,
Ahlfors s-regular, and has d-manifold weak tangents. Suppose that Y ′ is LLC,
Ahlfors s-regular, and is η-quasisymmetric to Y , by a quasisymmetry that maps
balls in Y ′ of radius 1 to sets of uniformly bounded diameter. Then Theorem 1.1
holds for maps z : X → Y ′ with constants depending only on the space Y , the data
of Y ′, and the quasisymmetry function η (as well as the data of z and X).

In particular, if ξ ≥ ξ0 > 0, then the theorem holds for target space Y ′ = (Y, ξρ)
with l,M depending only on Y and ξ0 (as well as on ε and the data of X and z),
and not on ξ itself. That is because this rescaling is quasisymmetric (with η(t) = t)
and does not alter the data of Y , other than changing the contractibility radius r0
to r0/ξ0.

Remark 1.11. We have phrased Theorem 1.1 for 0-cubes to parallel Theorem 2
of [7]. However, it is easy to see that the following statement also holds:

Suppose j1 ≤ j0, Q0 is a dyadic j-cube in X , j ≤ j1, and z : Q0 → Y is
Lipschitz. Then the conclusion of Theorem 1.1 holds for z on Q0, i.e., for every
ε > 0, there are measurable subsets E1, . . . , El ⊂ Q0, such that z|Ei is M -bi-
Lipschitz, and ∣∣∣z(I0 \ l⋃

i=1

Ei

)∣∣∣ < ε |I0| .

Here l and M depend only on ε, the Lipschitz constant of z, j1, the space Y , and
the data of X .

Indeed, if Q0 is an j-cube for j ≤ j1, one need only apply Theorem 1.1 to the
rescaled spaces (X, 2−jd) and (Y, 2−jρ), and the same Lipschitz map z, relabeling
the cubes so that Q0 is a 0-cube. The rescaled spaces (X, 2−jd) and (Y, 2−jρ)
have the same data as X and Y , except that their LLC radii r0 must be replaced
by 2−j1r0. So we can apply Theorem 1.1 and Remark 1.10 to obtain this result.

David proved Theorem 1.1 in the case X = Y = Rd (see [7], Theorem 2).
In doing so, he used a compactness argument to verify a modified version of what
we have called David’s condition. The general idea is the following: Consider a
sequence of counterexample maps zk, which in the case of Rd may all be defined
on the unit cube, that fail both conditions of Definition 1.8 with increasingly
worse constants as k → ∞. Extract a sub-limit z, and by a careful argument
show that z has constant Jacobian. Because z is in addition Lipschitz, it is a
quasi-regular mapping, and a theorem of Reshetnyak implies that it is an open
mapping. A degree argument then shows that, for k large, the image of the maps zk
must contain a fixed size ball around zk(0), with radius independent of k. For k
large, this contradicts the assumption that the maps zk fail the first condition
of Definition 1.8.
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In our setting, we follow a similar approach. The compactness argument of [7]
is modified to be a Gromov–Hausdorff compactness argument; to make the degree
theory work in this setting we require some results on the Gromov–Hausdorff limits
of locally contractible manifolds: see Section 2 below. In addition, the theory of
quasi-regular mappings and the result of Reshetnyak are not available to us. They
are replaced by a topological theorem of Bonk and Kleiner (Theorem 2.29 below)
on mappings of bounded multiplicity.

A completely different method for verifying David’s condition in some situations
is a type of detailed homotopy argument, as in [11], Chapter 9. This approach
allows for much weaker topological assumptions on X , but it seems to rely on
having s = d, Y = Rd, and X embedded in some Euclidean space.

Even under the assumptions s = d and Y = Rd, Theorem 1.1 appears to be new
if X is not a subset of some Euclidean space. This observation has a consequence
for the geometry of the space X . The following concept has many definitions, but
the one we give is most natural for abstract metric spaces.

Definition 1.12. An Ahlfors d-regular space X is called uniformly rectifiable
if there exist constants α > 1 and 0 < β ≤ 1 such that for every open ball B in X ,
there is a subset E ⊂ B with |E| ≥ β|B| and an α-bi-Lipschitz map f : E → Rd.

We will call X locally uniformly rectifiable if for every r > 0, there exist con-
stants α and β, depending on r, such that for every open ball B in X of radius
less than r, there is a subset E ⊂ B with |E| ≥ β|B| and an α-bi-Lipschitz map
f : E → Rd.

We can apply Theorem 1.1 and a theorem of Semmes [27] to show that some
abstract manifolds are uniformly rectifiable. Note that in this case we require
that the Ahlfors regularity dimension and the topological dimension of X coin-
cide. Snowflaked metric spaces such as (Rn, | · |1/2) provide counterexamples in the
absence of this assumption.

Theorem 1.13. An Ahlfors d-regular, LLC, complete, oriented topological
d-manifold is locally uniformly rectifiable. The local uniform rectifiability con-
stants α and β depend on the scale r and otherwise only on the data of the space.

In particular, a compact, Ahlfors d-regular, LLC, oriented topological d-manifold
is uniformly rectifiable, with constants depending only on d, C0, L, and r0/diam(X).

If X admits a bi-Lipschitz embedding into some Euclidean space, then Theo-
rem 1.13 follows from work of David and Semmes in [11]. However, examples of
Semmes [28] and Laakso [21] show that such an embedding need not always exist.

Acknowledgments. The author wishes to thank Mario Bonk for a vast number
of illuminating conversations, on the contents of this paper and on mathematics
in general. He is also grateful for helpful discussions with Peter Petersen, Raanan
Schul, and Matthew Badger. This research was based on the author’s Ph.D. dis-
sertation at UCLA.
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2. The main tools

In this section, we introduce the main concepts and results used in the proof of
Theorem 1.1.

2.1. Convergence of metric spaces

We will use the notion of convergence of “mapping packages”, a version of Gromov–
Hausdorff convergence, that is described in Chapter 8 of [10]. All material in this
sub-section is from that source. A brief exposition of this material is also given
in [18].

While the notation in this set-up is a bit more cumbersome than for other defi-
nitions of Gromov–Hausdorff convergence, the detailed results of [10] make it very
flexible for discussing simultaneous convergence of metric spaces and mappings.

Definition 2.1. We say that a sequence {Fj} of non-empty closed subsets of some
Euclidean space RN converges to a non-empty closed set F ⊆ R

N if, for all R > 0,

lim
j→∞

sup
x∈Fj∩B(0,R)

dist(x, F ) = 0

and
lim
j→∞

sup
y∈F∩B(0,R)

dist(y, Fj) = 0.

This convergence is stable under taking products, in the sense that if {Fj}
converges to F in RN and {Gj} converges to G in RM , then {Fj ×Gj} converges
to F ×G in RN+M .

Definition 2.2. Suppose {Fj} is a sequence of closed sets converging to a closed
set F in RN as in the previous definition. Let Y be a metric space and φj : Fj → Y ,
φ : F → Y be mappings. We say that {φj} converges to φ if for each sequence {xj}
in RN such that xj ∈ Fj for all j and xj → x ∈ F , we have that

lim
j→∞

φj(xj) = φ(x) .

A pointed metric space is a triple (X, d, p), where (X, d) is a metric space and p
is a point in X . All metric spaces that we consider are complete and doubling.

Definition 2.3. A sequence of pointed metric spaces {(Xj, dj , pj)} converges
to a pointed metric space (X, d, p) if the following conditions hold. There exist
α ∈ (0, 1], N ∈ N, and L-bi-Lipschitz embeddings fj : (Xj , d

α
j ) → RN , f : (X, dα)

→ RN , with fj(pj) = f(p) = 0 for all j. Furthermore, we require that fj(Xj)
converge to f(X) in the sense of Definition 2.1, and that the real-valued functions
dj(f

−1
j (x), f−1

j (y)) defined on fj(Xj) × fj(Xj) converge to d(f−1(x), f−1(y)) on
f(X)× f(X) in the sense of Definition 2.2.

We only use Definition 2.3 when the metric spaces {(Xj , dj)} and (X, d) are
uniformly doubling. In that case, the embeddings fj and f can always be found,
by Assouad’s embedding theorem (see [13], Theorem 12.2).
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Definition 2.4. A mapping package consists of a pair of pointed metric spaces
(M,dM , p) and (N, dN , q) as well as a mapping g :M → N such that g(p) = q.

Definition 2.5. A sequence of mapping packages {((Xj , dj , pj), (Yj , ρj , qj), hj)} is
said to converge to another mapping package ((X, d, p), (Y, ρ, q), h) if the following
conditions hold. The sequences {(Xj, dj , pj)} and {(Yj , ρj , qj} converge to (X, d, p)
and (Y, ρ, q), respectively, in the sense of Definition 2.3. Furthermore, the maps
gj ◦ hj ◦ f−1

j converge to g ◦ h ◦ f−1 in the sense of Definition 2.2, where fj, gj , f, g
are the embeddings of Definition 2.3.

The following proposition is a special case of Lemma 8.22 of [10].

Proposition 2.6. Let {((Xj , dj , pj), (Yj , ρj, qj), hj)} be a sequence of mapping
packages, in which all the metric spaces are complete and uniformly doubling, and
in which the maps hj are uniformly Lipschitz and satisfy hj(pj) = qj. Then there
exists a mapping package ((X, d, p), (Y, ρ, q), h) that is the limit of a subsequence
of {((Xj , dj , pj), (Yj , ρj , qj), hj)}.

We will now describe some consequences of the convergence of a sequence of
mapping packages, which are Lemmas 8.11 and 8.19 of [10].

Proposition 2.7. Suppose a sequence of pointed metric spaces {(Xk, dk, pk)} con-
verges to the pointed metric space (X, d, p), in the sense of Definition 2.3.

Then there exist (not necessarily continuous) mappings φk : X → Xk and
ψk : Xk → X such that:

• For all k, φk(p) = pk and ψk(pk) = p.

• For all R > 0,

lim
k→∞

sup{dX(ψk(φk(x), x) : x ∈ BX(p,R)} = 0

and
lim
k→∞

sup{dXk
(φk(ψk(x), x) : x ∈ BXk

(pk, R)} = 0.

• For all R > 0,

lim
k→∞

sup{|dXk
(φk(x), φk(y))− dX(x, y)| : x, y ∈ BX(p,R)} = 0

and

lim
k→∞

sup{|dX(ψk(x), ψk(y))− dXk
(x, y)| : x, y ∈ BXk

(p,R)} = 0.

Proposition 2.8. Suppose a sequence of mapping packages

{((Xk, dk, pk), (Yk, ρk, qk), hk)}
converges to a mapping package

((X, d, p), (Y, ρ, q), h),

where the mappings hk are uniformly Lipschitz and satisfy hk(pk) = qk.
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Then there exist (not necessarily continuous) mappings φk : X → Xk and
ψk : Xk → X satisfying exactly the conditions of Proposition 2.7, and mappings
σk : Y → Yk and τk : Yk → Y satisfying the analogous properties of Proposition 2.7,
such that in addition we have the following: for all x ∈ X,

lim
k→∞

τk(hk(φk(x))) = h(x) ,

and this convergence is uniform on bounded subsets of X.

We will be interested in mapping packages in which the mappings hk are defined
only on subsets of the source spaces Xk. For this, we need the following fact, which
is Lemma 8.32 of [10].

Lemma 2.9. Suppose that {(Xk, dk, pk)} is a sequence of pointed metric spaces
that converges to the pointed metric space {(X, d, p)} in the sense of Definition 2.3.
Let {Fk} be a sequence of nonempty closed sets with Fk ⊂ Xk for each k. Suppose
that

sup
k
dk(Fk, pk) <∞ .

Then we can pass to a subsequence to get convergence to a nonempty closed sub-
set F of X.

We make one final remark in this Subsection, which is Lemma 8.29 of [10].

Lemma 2.10. Let the pointed metric spaces (Xj , dj , pj) converge to (X, d, p) in
the sense of Definition 2.3. Suppose that (Xj , dj) are Ahlfors s-regular, with Ahlfors
regularity constant uniformly bounded (see Definition 1.2). Then (X, d) is Ahlfors
s-regular, with constant controlled by the Ahlfors regularity constants of the spaces
(Xj , dj).

2.2. Convergence of LLC spaces

Here we state some results that apply to the convergence of metric spaces (in the
sense of the previous section) when those metric spaces also happen to be linearly
locally contractible. The main goals are to show that a convergent sequence of
uniformly LLC spaces has an LLC limit (essentially a result of Borsuk [3]), and to
describe a result that improves Proposition 2.8 in this context.

The following basic fact about LLC spaces will be used a number of times.

Lemma 2.11. Let X be a (L, r0)-LLC space. Fix x ∈ X and r < r0. Then there
is a connected open set U satisfying

B(x, r/(2L)) ⊂ U ⊂ B(x, r) .

Proof. Consider a point y ∈ X and radius 0 < r < r0. Let H : B(y, r/(2L)) ×
[0, 1] → B(x, r/2) be a homotopy contracting B(y, r/(2L)) to a point. Define

E(y, r) = H(B(y, r/(2L))× [0, 1]).

Then E(y, r) is a connected subset of B(y, r/2) containing B(y, r/(2L)).
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Let E0 = E(x, r). For i ∈ N, inductively define sets

Ei =
⋃

y∈Ei−1

E(y, 2−ir).

By induction, each set Ei is connected. In addition, for each i we have the relation

(2.1) Ei ⊂ intEi+1.

Now let

U =

∞⋃
i=1

Ei .

Then, as the union of connected sets that all contain the point x, U is connected.
In addition, by (2.1) U is open: if x ∈ U , then, for some i,

x ∈ Ei ⊂ intEi+1 ⊂ intU .

Finally, if y ∈ Ei ⊂ U , then

d(x, y) ≤ (2−(i+1) + 2−i + · · ·+ 2−1) r < r.

Thus, U is a connected open set, U ⊂ B(x, r), and U ⊇ E0 ⊇ B(x, r/(2L)). �

The following is our main lemma about convergence of uniformly LLC sets.

Lemma 2.12. Let Fk be a sequence of closed sets in some Euclidean space RN

that are each (L, r0)-LLC (as spaces equipped with the induced Euclidean metric).
Suppose that Fk → F in the sense of Definition 2.1. Then F is LLC, with constants
depending only on L and r0.

In the case of compact sets converging in the usual Hausdorff metric, Lem-
ma 2.12 is due to Borsuk [3]. A similar localized version of the result was noted
in [14]. Here we provide a proof, following the method of Borsuk.

The proof is somewhat technical, though the main idea is not difficult: For
subsets of Euclidean space, the LLC property for a set E implies the existence of a
retraction to E, from an open neighborhood of E of fixed size, that moves points
by an amount proportional to their distance from E. We use the existence of these
retractions on the limiting sets Fk to construct a retraction onto the limit F . This
retraction can then be used to show that F is LLC. Because the convergence is
local, there are some minor technical complications.

Proof of Lemma 2.12. Let BR = B(0, R) ⊂ RN . For a set E ⊆ RN , let Uε(E)
denote the open ε-neighborhood of E.

We note first that the LLC property implies that there exist constants c < 1 and
C = c−1 > 1 such that each Fk admits a continuous retraction rk : Uc(Fk) → Fk

satisfying

(2.2) |rk(x) − x| ≤ C dist(x, Fk)

for x ∈ Uc(Fk). The proof of this can be found in Section 13 of [3] (and does not
require compactness of the sets).
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Fix a ball B = B(p, r) ∩ F for p ∈ F and r < r0/4. Fix R > max{4Lr, 12C}
large enough so that B ⊂ BR.

By passing to a subsequence, we may without loss of generality assume that,
for all k,

sup{dist(x, Fk) : x ∈ F ∩B10R} < c/4 ,

sup{dist(x, F ) : x ∈ Fk ∩B10R} < c/4 .

It follows that

U :=

∞⋂
k=1

Uc(Fk)

contains a c/2-neighborhood of B9R ∩ F as well as of
⋃∞

k=1(B9R ∩ Fk).

For k ∈ N, fix decreasing sequences

ηk = c2 4−k ,(2.3)

η′k = c2 4−k/3.(2.4)

We may now pass to a further subsequence of our sets on which we assume that

sup{dist(x, Fk) : x ∈ F ∩B9R} < η′k/8 ,(2.5)

sup{dist(x, F ) : x ∈ Fk ∩B9R} < η′k/8 .(2.6)

Let Uk = Uηk
(Fk) and Vk = Uη′

k
(Fk). Then, if x ∈ Uk+1 ∩ B7R, we have,

by (2.3), (2.4), (2.5), and (2.6), that

dist(x, Fk ∩B8R) < η′k .

Therefore, for every R′ ≤ 7R,

(2.7) (Uk+1 ∩BR′) ⊂ (Vk ∩BR′) ⊂ (V k ∩BR′) ⊂ (Uk ∩BR′) ⊂ (U ∩BR′) .

We will now inductively construct a new sequence of retractions sk : U∩B5R →
Fk by modifying the maps rk.

Let s1 = r1. Suppose that sk has already been defined and in addition satisfies
sk = rk on Vk ∩B5R. Let f : U → R be a continuous function that is 0 on U \Uk+1

and 1 on Vk+1. For x ∈ U ∩B5R, define

sk+1(x) = rk+1((1 − f(x))sk(x) + f(x)x) .

We first check that sk+1 is well-defined, i.e., that for x ∈ U ∩ B5R, the point
(1− f(x))sk(x) + f(x)x is in U . If x ∈ U \ Uk+1, then (1 − f(x))sk(x) + f(x)x =
sk(x) ∈ Fk ∈ U , so sk+1 is well-defined. In the case x ∈ Uk+1, we have by (2.7)
that x ∈ Vk. By our inductive assumption that sk = rk on Vk ∩B5r, we get

|x− sk(x)| = |x− rk(x)| ≤ C η′k < c .

Thus, every point on the line segment from x to sk(x) is in the c-neighborhood
of Fk and so is in U .

That sk+1 is the identity on points of Fk+1 follows from the fact that, by
definition, sk+1 = rk+1 on Fk+1.
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We now make the following claim: if x ∈ U ∩B5R and sk(x) ∈ B6R, then

(2.8) |sk+1(x) − sk(x)| < 3C 4−k.

To prove this, we consider three cases.

(i) The case x ∈ Vk+1.

In this case, using (2.2) and the definitions of sk, sk+1, we get

|sk+1(x) − sk(x)| = |rk+1(x)− rk(x)| ≤ |rk+1(x)− x|+ |x− rk(x)|
≤ C(η′k+1 + η′k) < 3C 4−k .

(ii) The case x ∈ U \ Uk+1.

In this case, sk+1(x) = rk+1(sk(x)). By assumption, sk(x) ∈ Fk ∩ B6R and
therefore dist(sk(x), Fk+1) < η′k/4 by (2.6). Therefore, by (2.2),

|sk+1(x) − sk(x)| = |rk+1(sk(x)) − sk(x)| ≤ C η′k/4 < 3C 4−k .

(iii) The case x ∈ Uk+1 \ Vk+1.

Note that x ∈ Uk+1 ∩B5R ⊂ Vk ∩B5R, so sk(x) = rk(x). Let

y = (1− f(x)) sk(x) + f(x)x,

which is on the line segment L joining x to sk(x) = rk(x). The diameter of L
is therefore |x− rk(x)| ≤ Cη′k, by (2.2) and the fact that x ∈ Vk.

In addition, because x ∈ Uk+1, we have dist(x, Fk+1) < ηk.

From these calculations, it follows that

dist(y, Fk+1) ≤ dist(x, Fk+1) + diam(L) ≤ ηk + C η′k ,

and therefore, by (2.2), that

|sk+1(x)− x| = |rk+1(y)− x| ≤ |rk+1(y)− y|+ |y − x|
≤ C (ηk + Cη′k) + C η′k ≤ 2C 4−k.

From this, we see that

|sk+1(x) − sk(x)| ≤ |sk+1(x) − x|+ |x− rk(x)| < 2C 4−k + ηk < 3C 4−k .

This concludes the proof of the claim that |sk+1(x) − sk(x)| < 3C4−k if x ∈
U ∩B5R and sk(x) ∈ B6R.

Now note that
|s1(x)− x| = |r1(x) − x| ≤ Cc = 1.

Therefore r1(x) ∈ B5.5R. Because
∑∞

k=0(3C4
−k) ≤ 6C < R/2, it follows from the

above claim that sk(x) ∈ B6R for all k, and therefore that

|sk+1(x)− sk(x)| < 3C4−k

for all k.
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It follows immediately from this and from (2.2) that sk|U∩B5R converge uni-
formly to a map

s : U ∩B5R → F ∩B6R

that is the identity on F ∩B5R.
Note that the map s is indeed the identity on F : if x ∈ F ∩B5R, then by (2.5)

and the definition of sk we see that sk(x) = rk(x). It follows that

|s(x)− x| = lim
k→∞

|sk(x) − x| = lim
k→∞

|rk(x) − x| ≤ C lim
k→∞

dist(x, Fk) = 0 .

To finish the proof of the lemma, recall our fixed ball B = B(p, r)∩F in F ∩BR.
The map s, when restricted to F∩B4R, is the identity. Therefore, for every positive
number η < r sufficiently small, there is a neighborhood V ⊂ (U ∩B5R) of F ∩B4R

such that
x ∈ V ⇒ |s(x)− x| < η.

We may now choose k large so that |sk(x)− s(x)| < η for all x ∈ U ∩B5R (by
uniform convergence) and in addition so that

Fk ∩B3R ⊂ V .

Now we contract B in the following manner. First, consider the homotopy

h(x, t) = (1− t)x+ tsk(x)

for x ∈ B and t ∈ [0, 1]. Because |sk(x) − x| = |sk(x) − s(x)| < η, we have
h(B× [0, 1]) ⊂ B3R. In addition, h deforms B onto a set E ⊂ Fk∩B3R of diameter
no more than 2r+2η. By our choices of r and η, 2r+2η < 4r < r0, and therefore E
is contractible inside a set E′ ⊂ Fk ∩B3R of diameter L(2r + 2η).

Let g : B × [0, 1] → E′ ⊂ (Fk ∩ B3R) denote the homotopy of B onto a
point that first deforms by h and then by the contraction in Fk. Then s ◦ g is a
contraction of B to a point within the set s(E′) ⊂ F , which has diameter no more
than L(2r + 2η) + 2η.

In summary, if we recall that η < r, we have shown that the ball B = B(p, r)∩F
is contractible within the ball B′ = B(p, (4L+ 2)r) ∩ F whenever r < r0/4. This
completes the proof. �

Lemma 2.13. Suppose the pointed metric spaces (Xk, dk, vk) are (L, r0)-LLC and
converge to the pointed metric space (X, d, v) in the sense of Definition 2.3. Then
(X, d) is LLC, with constants depending only on L and r0.

Proof. This follows immediately from Lemma 2.12 and Definition 2.3, as the “snow-
flake” transformations of Definition 2.3 distort the LLC constants in a quantitative
way. �

To conclude this section, we give two lemmas which improve Propositions 2.7
and 2.8 in the setting of LLC spaces. They say that if a sequence of mapping
packages converges, then the “almost-isometries” φk and ψk between the limiting
spaces and the limit space can be taken to be continuous.
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Definition 2.14. For η > 0, we say that continuous maps f, g : M → N between
metric spaces are η-homotopic if they are homotopic by a homotopy H : M ×
[0, 1] → N such that, for all x ∈M and t ∈ [0, 1], we have

dN (f(x), H(x, t)) < η .

Note in particular that if f and g are η-homotopic, then dN (f(x), g(x)) < η for
all x.

The following is an immediate consequence of Proposition 2.8 above, combined
with Propositions 5.4 and 5.8 of [27]. (See also [24], Section 3, for a cleaner
statement in the compact case.) Note that all our spaces are Ahlfors s-regular and
thus have topological dimension bounded above by s, so those results apply.

Lemma 2.15. Suppose the pointed metric spaces (Xk, dk, vk) are (L, r0)-LLC,
uniformly Ahlfors s-regular, and converge to the pointed metric space (X, d, v) in
the sense of Definition 2.3.

Fix a point x ∈ X and radius R > 0. Then there exist continuous mappings fk :
BX(x,R) → Xk and gk : BXk

(fk(x), R) → X satisfying the following conditions:

(i) They almost preserve distances, in the sense that

lim
k→∞

sup{|dXk
(fk(p), fk(q)) − dX(p, q)| : p, q ∈ BX(x,R)} = 0

and

lim
k→∞

sup{|dX(gk(p), gk(q))− dXk
(p, q)| : p, q ∈ BXk

(fk(x), R)} = 0.

(ii) For every 0 < r < R, we have

lim
k→∞

inf{η : gk ◦ fk|B(x,r) is η-homotopic to the inclusion of

B(x, r) into B(x,R)} = 0

and

lim
k→∞

inf{η : fk ◦ gk|B(fk(x),r)
is η-homotopic to the inclusion of

B(fk(x), r) into B(fk(x), R)} = 0 .

(iii) If x is the basepoint v ∈ X, then in addition we have

lim
k→∞

dk(fk(v), vk) = 0 .

Proof. Take η > 0. We will find, for all k sufficiently large, continuous mappings fk
and gk as above that preserve distances up to additive error η and such that fk ◦gk
and gk ◦ fk are η-homotopic to the appropriate inclusion maps.

Fix numbers η′′, η′ sufficiently small, with 0 < η′′ < η′ < η. They will depend
only on η and the (uniform) data of the spaces X , {Xk}.
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By Proposition 2.7, there is an index k0 ∈ N such that, for all k ≥ k0,
the maps φk : X → Xk and ψk : Xk → X preserve distances up to additive
error η′′ on B(x,R) and B(fk(x), R), respectively. By [27], Proposition 5.4, if η′′

was chosen sufficiently small compared to η′, then there exist continuous maps
fk : B(x,R) → Xk and gk : B(fk(x), R) → X such that

(2.9) dk(fk(z), φk(z)) < η′ and d(gk(y), ψk(y)) < η′

on their respective domains. Part (i) of the lemma follows immediately from this
by taking η′ < η/10. Part (iii) also follows, because φk(v) = vk.

Now fix 0 < r < R. By Proposition 2.7 we may also assume that, for all k ≥ k0,
we have

d(φk(ψk(x)), x) < η′ and d(ψk(φk(x)), x) < η′,

in addition to the properties above.
If η′ was chosen sufficiently small, then fk(B(x, r)) ⊂ B(fk(x), R) and so the

composition gk ◦ fk is defined on B(x, r). Similarly, the composition fk ◦ gk is
defined on B(fk(x), r). By choosing η′′ < η′/10 and using equation (2.9) and the
properties of φk and ψk, we also see that

d(fk(gk(x)), x) < 2η′ and d(gk(fk(x)), x) < 2η′.

Therefore, if η′ was chosen sufficiently small, depending on η and the data of the
spaces X , {Xk}, Proposition 5.8 of [27] implies that

gk ◦ fk|B(x,r) and fk ◦ gk|B(fk(x),r)

are η-homotopic to the inclusions

B(x, r) → B(x,R) and B(fk(x), r) → B(fk(x), R).

This proves part (ii) of the lemma. �

Propositions 5.4 and 5.8 of [27], on which the proof of the previous lemma is
based, are important consequences of the linear local contractibility of the spacesX
and {Xk}. Roughly speaking, they say that if a mapping into an LLC space is
“roughly continuous” (as the maps φk and ψk are), then it is close to a continuous
mapping, and if two continuous mappings into an LLC space are close, then they
are η-homotopic. The proofs of these facts use polyhedral approximations of the
source space and an induction on the skeleta of the polyhedra. We encourage the
reader to look at Semmes’ paper [27] or Petersen’s work [24] for the details.

The following additional fact is an immediate consequence of Proposition 2.8
and equation (2.9) above.

Lemma 2.16. Suppose we have convergence of a sequence of mapping packages

((Xk, dk, pk), (Yk, ρk, qk), hk) → ((X, d, p), (Y, ρ, q), h)

in the sense of Definition 2.5. Suppose that all the spaces involved are uniformly
Ahlfors s-regular and uniformly LLC, and that the mappings {hk} and h are uni-
formly C-Lipschitz and satisfy hk(pk) = qk, h(p) = q.
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Then for all R > 0, there exist continuous mappings

fk : BX(p,R) → Xk and gk : BXk
(pk, R) → X

satisfying exactly the conditions of Lemma 2.15, and continuous mappings

f̃k : BY (q, R) → Yk and g̃k : BYk
(qk, R) → Y

satisfying the analogous properties of Lemma 2.15, such that in addition we have
that for all x ∈ X,

lim
k→∞

g̃k(hk(fk(x))) = h(x)

uniformly on BX(p,R/2C).

2.3. Convergence of manifolds

Here we state some facts on the convergence of metric spaces that are LLC topolog-
ical manifolds. Our main goal is to give a proof of Proposition 2.19 below, which
says that the limit of a sequence of uniformly Ahlfors regular, uniformly LLC,
topological d-manifolds is a homology d-manifold (see Definition 2.18). This result
essentially goes back to Begle [1] (see also [12]) and appears to be well-known, but
we did not find a modern proof in the literature in the generality necessary here.

Below, H∗ denotes singular homology with integer coefficients.

Lemma 2.17. LetM be an (L, r0)-LLC oriented topological d-manifold. Let v∈M
and let K1 ⊂ K2 be compact sets satisfying v ∈ K1 ⊂ B(v, r) ⊂ B(v, 2Lr) ⊂ K2 ⊂
B(v, r0). Then the following facts hold.

(i) The map j∗ : Hp(M,M \ K2) → Hp(M,M \ K1), induced by inclusion, is
trivial if p �= d.

(ii) The map i∗ : Hd(M,M \K2) → Hd(M,M \ {v}) ∼= Z, induced by inclusion,
is surjective.

(iii) With this notation, we also have ker i∗ ⊆ ker j∗ in the top degree d.

Proof. By use of the natural duality isomorphisms ([31], Theorem 6.2.17) we obtain
the following commutative diagram. Here H denotes Čech cohomology, and all
maps in the diagram are the natural maps induced by inclusion.

(2.10)

Hp(M,M \K2)
j∗−−−−→ Hp(M,M \K1)

k∗−−−−→ Hp(M,M \ {v})
∼=
⏐⏐� ∼=

⏐⏐� ∼=
⏐⏐�

H
d−p

(K2)
j∗−−−−→ H

d−p
(K1)

k∗−−−−→ H
d−p

({v})
If p �= d, then j∗ is trivial because K1 is contractible in K2, which proves (i).

Now let p = d. The map i∗ = k∗j∗ : H
0
(K2) → H

0
({v}) is surjective, as

v ∈ K2, which proves (ii).
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Finally, by Lemma 2.11, K1 is entirely contained in a connected component E
of K2. Therefore, every connected component E′ of K2 that does not contain {v}
is in fact disjoint from K1. It follows that if i∗φ = k∗j∗φ is trivial in H

0
({v}),

then j∗φ is already trivial in H
0
(K1). This proves claim (iii). �

We now set up some definitions for the main result of this sub-section. A Eu-
clidean neighborhood retract (ENR) is a space X which, for every N ∈ N and every
topological embedding e : X → RN , has the property that e(X) is a retract of
some open neighborhood of e(X) in RN . Every LLC space with finite topological
dimension is a Euclidean neighborhood retract (see [16], Theorem V.7.1).

Definition 2.18. A space M that is an ENR and that satisfies the condition

H∗(M,M \ {x}) = H∗(Rd,Rd \ {0}) ,
for all x ∈M , is called a homology d-manifold.

Proposition 2.19. Suppose the metric spaces (Xk, dk) are uniformly Ahlfors
s-regular, (L, r0)-LLC, oriented topological d-manifolds, vk ∈ Xk, and the sequence
of pointed metric spaces (Xk, dk, vk) converges to (X, d, v) in the sense of Defini-
tion 2.3. Then (X, d) is an LLC homology d-manifold.

Proof. The fact that (X, d) is LLC is Lemma 2.13 above. As this statement is
quantitative, we will denote the LLC constants of (X, d) also by (L, r0).

The fact that X is a homology d-manifold can be proven by the methods of
Begle [1], again as remarked in [14]. For convenience, we provide a proof using the
tools introduced in this section.

We know that X is Ahlfors s-regular, and therefore it has finite Hausdorff
dimension and thus finite topological dimension. Because X is also LLC, it is
an ENR, as noted above. It now suffices to show that for every x ∈ X , the local
integer (singular) homology groups Hp(X,X \ {x}) are isomorphic to Z if p = d
and trivial otherwise.

To set up the proof we need some notation.
Let L′ = 4L. Fix an integer p ≥ 0, a point x ∈ X , and a radius R > 0. In

addition, for each k ∈ N, fix continuous maps

fk : BX(x,R) → Xk and gk : BXk
(fk(x), R) → X ,

as in Lemma 2.15. These maps have the property that, up to arbitrarily small
additive error (decreasing to zero with k), they preserve distances and are inverses
of each other.

For n ∈ N, let
Fn = Hp(X,X \B(x, (L′)−nr0))

and
Gk

n = Hp(Xk, Xk \B(fk(x), (L
′)−nr0))

(Of course these groups depend on p, but we will make it clear from context which
value of p we take.)
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Note that for m ≥ n there are natural maps (in,m)∗ : Fn → Fm and (jkn,m)∗ :

Gk
n → Gk

m induced by inclusion.

Claim 2.20. We have the direct limits

F∞ := lim−→Fn
∼= Hp(X,X \ {x})

and

Gk
∞ := lim−→Gk

n
∼= Hp(Xk, Xk \ {fk(x)}) ∼=

{
Z, if p = d ,

0, if p �= d .

Proof of Claim 2.20. We will show the first direct limit; the proof of the second is
identical. The proof follows from standard properties of direct limits and singular
homology. There are natural maps φn : Fn → Hp(X,X\{x}) induced by inclusion.
To show that F∞ ∼= Hp(X,X \ {x}), we must show two things (see, e.g., [22],
Proposition A.4):

1. For every a ∈ Hp(X,X \ {x}), there exists n ∈ N and b ∈ Fn such that
φn(b) = a.

2. If b ∈ Fn and φn(b) = 0, then (in,m)∗(b) = 0 for some m ≥ n.

To show (1), consider a ∈ Hp(X,X\{x}). By excision and the fact that singular
homology has compact support (see [31], 4.8.11), a = j∗(c), where c ∈ Hp(X,X\U)
for some open set U containing x, and

j∗ : Hp(X,X \ U) → Hp(X,X \ {x})
is the mapping induced by inclusion.

We now choose n ∈ N large enough so that B(x, (L′)−nr0) ⊂ U . There is a
mapping

k∗ : Hp(X,X \ U) → Hp(X,X \B(x, (L′)−nr0))

induced by inclusion.
Because all mappings are induced by inclusion, we have φnk∗ = j∗. Thus, if we

let b = k∗(c) ∈ Hp(X,X\B(x, (L′)−nr0)), we see that φn(b) = φnk∗(c) = j∗(c) = a.
This proves part (1) of Claim 2.20.

To show part (2), suppose that b ∈ Fn is such that φn(b) = 0 ∈ Hp(X,X \{x}).
As before, using the fact that singular homology has compact support, we can write
b = l∗(c), where c ∈ Hp(X,X \ U) for some open set U containing x, and

l∗ : Hp(X,X \ U) → Fn

is the mapping induced by inclusion.
By excision and [31], Theorem 4.8.13, we see that i∗(c) = 0 ∈ Hp(X,X \ V ),

where V ⊂ U is an open set containing x and

i∗ : Hp(X,X \ U) → Hp(X,X \ V )

is the mapping induced by inclusion.
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We now choose m ∈ N large enough so that B(x, (L′)−nr0) ⊂ V . Let

h∗ : Hp(X,X \ V ) → Fm

be induced by inclusion. Again because all mappings are compatible, we have

(in,m)∗(b) = (in,m)∗l∗(c) = h∗i∗(c) = h∗(0) = 0 ∈ Fm.

This completes the proof of Claim 2.20. �

Let (in)∗ : Fn → F∞ and (jkn)∗ : Gk
n → Gk∞ denote the natural inclusion maps.

The excision property of homology and the properties of fk and gk allow us to
conclude the following: For all n0 ∈ N, there exists k0 ∈ N such that for all k ≥ k0
and n ≤ n0, there are group homomorphisms akn : Fn → Gk

n+1 and bkn : Gk
n → Fn+1

that commute with the inclusion maps above, and that satisfy

bkn+1a
k
n = in,n+2 and akn+1b

k
n = jkn,n+2 .

Indeed, akn and bkn are simply the maps on homology induced by fk and gk, and
so these properties follow from Lemma 2.15. The fact that akn maps into Gk

n+1 if
n ≤ n0 k is sufficiently large follows from the fact that fk preserves distances up
to a small additive error, by Lemma 2.15.

In summary, for each n0 there exists a k so that we have the following commu-
tative diagram, in which the diagonal arrows do not exist past column n0:

(2.11)

F1 F2 F3 · · · Fn0 · · ·F∞

Gk
1 Gk

2 Gk
3 · · · Gk

n0
· · ·Gk

∞

i1,2

ak
1

i2,3

ak
2

i3,4

ak
3

in0−1,n0

ak
n0−1

in0,n0+1

jk1,2

bk1

jk2,3

bk2

jk3,4

bk3 bkn0−1

jkn0−1,n0
jkn0,n0+1

Note that Lemma 2.17 translates to the following information in this setting:

(i) If p �= d, then for each k and for each m > n, the map jkn,m : Gk
n → Gk

m is
trivial.

(ii) If p = d, then for each k, n the map jkn : Gk
n → Gk

∞ is surjective.

(iii) If p = d, then for each k, n, we have ker jkn ⊆ ker jkn,n+1.

We wish to show that F∞ is isomorphic to Z if p = d and is trivial if p �= d,
just as each of the spaces Gk

∞ are.
Consider first the case p �= d. By (i), we have that for all k and for all m > n,

the maps jkn,m are trivial. It follows by the diagram that the maps in,n+3 are all

trivial (as they factor through jkn,n+1 for some k) and therefore that F∞ is trivial
when p �= d.

Now we consider the case p = d.

Claim 2.21. In degree p = d, i2 : F2 → F∞ is surjective.
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Proof of Claim 2.21. This is just diagram-chasing. We will freely use the three
properties of the diagram (2.11) described above, and we encourage the reader to
simply trace the proof in that diagram.

Fix x ∈ F∞. Then x = im(xm) for some m ∈ N, by the definition of the direct
limit. Fix k large so that diagram (2.11) has diagonal arrows al := akl and bl := bkl
up to l = m+ 3. (We will suppress all superscripts k in the proof of this claim.)

Let ym+1 = am(xm) ∈ Gm+1. Then some y1 ∈ G1 satisfies

j1(y1) = jm+1(ym+1),

by (ii), and so
jm+1(ym+1) = jm+1 j1,m+1(y1).

It follows, by (iii), that

jm+1,m+2(ym+1) = j1,m+2(y1) .

Denote this element by ym+2 ∈ Gm+2.
Let xm+3 = bm+2(ym+2) ∈ Fm+3. We have

i2,m+3 b1(y1) = bm+2 j1,m+2(y1) = bm+2 (ym+2) = xm+3 .

In addition,

xm+3 = bm+2(ym+2) = bm+2 jm+1,m+2(ym+1)

= bm+2 jm+1,m+2 am(xm) = im,m+3(xm)

It follows that im+3(xm+3) = im(xm) = x, and so

i2 b1(y1) = im+3 i2,m+3 b1(y1) = im+3(xm+3) = x ,

and so i2 is surjective. �

The following claim is also proven by a similar diagram chase.

Claim 2.22. In dimension p = d, ker in ⊂ ker in,n+3.

Proof of Claim 2.22. Suppose that for some xn ∈ Fn, in(xn) = 0. Then for some
m ≥ n, in,m(xn) = 0. As in the previous claim, we now fix k large so that
diagram (2.11) has diagonal arrows al := akl and bl := bkl up to column l = m.
We then see that

jn+1,m+1 an(xn) = am in,m(xn) = am(0) = 0 .

By (ii) above, it follows that jn+1,n+2an(xn) = 0. Thus,

in,n+3(xn) = bn+2 jn+1,n+2 an(xn) = bn+2(0) = 0.

This completes the proof of Claim 2.22. �
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Now fix k so that the diagonal arrows in diagram (2.11) exist up to n = 10. Let
G∞ = Gk

∞ ∼= Z. (Now that k is fixed we will again suppress the superscripts k.)
We now define homomorphisms ψn : Fn → G∞ ∼= Z by

ψn(xn) = j3 a2 i
−1
2 in(xn) .

Note that i2 is surjective but not necessarily injective; nonetheless we have the
following fact:

Claim 2.23. The maps ψn are well-defined homomorphisms (i.e., independent
of the choice of i−1

2 in(xn)), and are compatible, in the sense that ψm in,m(xn) =
ψn(xn) for m ≥ n.

Proof of Claim 2.23. Suppose first that i2(x2) = i2(x
′
2) for some x2, x

′
2 ∈ F2. To

show that ψn is well-defined we must show that

j3 a2(x2) = j3 a2(x
′
2) .

By Claim 2.22, i2,3(x2) = i2,3(x
′
2). Thus,

j3 a2(x2) = j4 j3,4(x2) = j4 a3 i2,3(x2) = j4 a3 i2,3(x
′
2) = j3 a2(x

′
2).

This shows that ψn is well-defined. That ψn is a homomorphism is clear.
To see that ψm(in,m(xn)) = ψn(xn), we note that if i2(x2) = in(xn), then

i2(x2) = imin,m(xm). Thus,

ψm(in,m(xn)) = j3 a2(x2) = ψn(xn) . �

It follows that the maps ψn induce a homomorphism h : F∞ → G∞ ∼= Z satis-
fying h ◦ in = ψn for all n. We will show that h is injective and surjective.

Suppose h(x) = 0 for x ∈ F∞. By Claim 2.21, we can write x = i2x2, for
x2 ∈ F2. Therefore,

0 = h i2(x2) = ψ2(x2) = j3 a2(x2) .

Because ker j3 ⊆ ker j3,4, we have

j3,4 a2(x2) = 0 ∈ G4 .

It follows that
i2,5(x2) = b4 j3,4 a2(x2) = 0 ∈ F5

and therefore that x = i5 i2,5(x2) = 0 ∈ F∞. This shows that h is injective.
To show that h is surjective, it suffices to show that ψ2 = j3a2 is surjective.

Consider y ∈ G∞. Because j1 is surjective, y = j1(y1) for some y1 ∈ G1. Letting
x2 = b1(y1), we see that

ψ2(x2) = j3 a2(x2) = j3 a2 b1(y1) = j1(y1) = y.

This shows that h is surjective and is therefore an isomorphism F∞ → G∞.
We have therefore shown that F∞ ∼= Hp(X,X \ {x}) is isomorphic to G∞ ∼=

Hp(Xk, Xk \ {xk}), which completes the proof of Proposition 2.19. �
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2.4. Some basic degree theory

In this section, we give a degree-type lemma for close mapping packages. The
idea here is quite simple, though the notation is cumbersome: If the limit of a
suitable sequence of mappings is a homeomorphism, then sufficiently close limiting
mappings should have images which contain a ball of fixed radius.

We now fix a set-up and some notation.
Let {(Xk, pk)} and {(Yk, qk)} be two sequences of pointed metric spaces con-

verging to (X, p) and (Y, q), respectively. Suppose that all the spaces are uniformly
Ahlfors s-regular, (L, r0)-LLC, homology d-manifolds, and furthermore that {Yk}
and Y are topological d-manifolds.

For some fixed R > 0, let Fk = B(pk, R) and assume also that the sequence
of pointed metric spaces {(Fk, pk)} converge to the pointed metric space (F, p),
where F ⊂ X and F ⊃ B(p,R) in X .

Finally, assume that wk : Fk → Yk are uniformly C-Lipschitz and that we have
convergence of the sequence of mapping packages:

{(Fk, pk), (Yk, qk), wk} → {(F, p), (Y, q), w}

By Lemma 2.15, there are continuous mappings

fk : F → Xk,

gk : Fk → X,

f̃k : BY (q, 3CR) → Yk,

g̃k : BYk
(qk, 3CR) → Y,

that almost preserve distances and are almost inverses, up to additive error that
decreases to zero with k.

Fix an open set A ⊆ F such that the set w(A) lies within a single chart of Y
homeomorphic to an open subset of Rd.

Lemma 2.24. Suppose that, for some r, r′ ∈ (0, r0), the ball BX(z, 4Lr) is con-
tained in A, the map w|A is a homeomorphism, and w(BX(z, r)) ⊇ BY (w(z), r

′).
Then for all k sufficiently large, wk(BXk

(fk(z), 2r)) ⊇ BYk
(wk(fk(z)), r

′/2).

Proof. First of all, it is clear that in the proof we may assume without loss of
generality that Y is an orientable d-manifold, because all arguments can be carried
out in the orientable chart of Y containing w(A). This will allow us to apply
Lemma 2.17 to subsets of w(A).

Now let 0 < η < r′/(100L). For all k sufficiently large, the maps fk, gk, f̃k, g̃k
preserve distances up to additive error η. In addition, again by Lemma 2.15, we
may assume that, for all k large and for all r < 2CR, the map

g̃k ◦ f̃k|B(p,r)

is η-homotopic to the inclusion map of B(p, r) into B(p,R).
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Fix k ∈ N large enough for this to hold; from now on, this k will be fixed, so
we drop the subscript and denote the above maps by f , g, f̃ , g̃. By Lemma 2.16
and Proposition 5.8 in [27], we can also arrange that the maps f̃ ◦ w and wk ◦ f ,
when restricted to A, are η-homotopic on F .

Let B = BX(z, r). Fix y ∈ BYk
(wk(fk(z)), r

′/2).
First, because w is a homeomorphism on A, the induced mapping on relative

homology,
w∗ : Hd(A,A \B) → Hd(Y, Y \ w(B))

is an isomorphism. (Here we use excision for singular homology, see [31], Corol-
lary 4.6.5.) Note that Hd(Y, Y \ w(B)) is non-trivial, by duality (e.g. [31], Theo-
rem 6.2.17).

Let V = BY (q, 2CR). The map f̃ induces a non-trivial map

f̃∗ : Hd(V, V \ w(B)) → Hd(Yk, Yk \B′′) ,

where B′′ = B(y, r′′), r′′ = r′/(10L). Indeed, if this map were trivial, then the
map

g̃∗f̃∗ : Hd(V, V \ w(B)) → Hd(Y, Y \ {a}),
factoring as it does through the previous map, would be trivial for some a ∈ w(B).
But this map on homology is the same as that induced by inclusion, so this cannot
be the case by the duality argument of Lemma 2.17 (ii).

It follows that the map

(f̃ ◦ w)∗ = f̃∗w∗ : Hd(A,A \B) → Hd(Yk, Yk \B′′)

is non-trivial.
Because f̃ ◦ w and wk ◦ f are η-homotopic, the map

(wk ◦ f)∗ : Hd(A,A \B) → Hd(Yk, Yk \B′′)

is non-trivial.
This implies that

(wk ◦ f)∗ : Hd(A,A \B) → Hd(Yk, Yk \ {y})
is non-trivial. Indeed, if not, then by Lemma 2.17 (iii),

(wk ◦ f)∗ : Hd(A,A \B) → Hd(Yk, Yk \B′′)

would be trivial, but we just showed that it is not.
So we have shown that

(wk ◦ f)∗ : Hd(A,A \B) → Hd(Yk, Yk \ {y})
is non-trivial. It follows from this that y ∈ (wk ◦ f)(B), otherwise this map would
factor through the trivial Hd(Yk \ {y}, Yk \ {y}).

Because f(B) ⊂ B(fk(z), 2r), we get that

y ∈ wk(f(B)) ⊂ wk(B(fk(z), 2r)). �

Later on, it will be convenient to work with a cohomological notion of local
degree, which we introduce now. The following material is taken from [15]. For
proofs, see [25].
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Let H∗
c denote the Alexander–Spanier cohomology groups with compact sup-

ports and coefficients in Z. (For the definition and properties of Alexander–Spanier
cohomology, see [22].) The following definition is taken from [15], I.1.

Definition 2.25. A locally compact, Hausdorff, connected, and locally connected
space M is called a generalized d-manifold if

• Hp
c (U) = 0 whenever U ⊆M is open and p ≥ d+ 1;

• for every x ∈M and every open neighborhood U of x, there is another open
neighborhood V of x contained in U such that

Hp
c (V ) =

{
Z if p = d

0 if p = d− 1

and the standard homomorphism Hn
c (W ) → Hn

c (V ) is surjective whenever
W is an open neighborhood of x contained in V ;

• X has finite topological dimension.

A generalized d-manifold X is called orientable if Hd
c (X) = Z, and oriented if

we fix a choice of generator in Hd
c (X).

Remark 2.26. Any homology d-manifold is a generalized d-manifold, as noted
in [15], Example 1.4 (c).

A generalized d-manifold X is said to be oriented ifHd
c (X) = Z. In this case we

can simultaneously orient all connected open subsets U of X via the isomorphism
between Hd

c (U) and Hd
c (X).

We will not use any sophisticated facts about cohomology below, but only the
following object and its basic properties: Let X and Y be oriented generalized
d-manifolds, and let f : X → Y be continuous. For any relatively compact do-
main D in X , and for every y ∈ Y \ f(∂D), we can associate an integer called the
local degree μ(y,D, f). In the following lemma, we collect the only properties of μ
we will need.

Lemma 2.27. For continuous maps f and g between oriented generalized d-ma-
nifolds X and Y , and a relatively compact domain D ⊆ X, the local degree μ has
the following properties.

• The function y → μ(y,D, f) is constant on each connected component of
Y \ f(∂D).

• If y /∈ f(D), then μ(y,D, f) = 0.

• If f : D → f(D) is a homeomorphism, then μ(y,D, f) = ±1 for each y∈f(D).

• If y ∈ Y \ f(∂D) and if f−1(y) ⊂ D′, where D′ is a domain contained in D
such that y ∈ Y \ f(∂D′), then

μ(y,D, f) = μ(y,D′, f) .

Proof. These facts can all be found in [15], 2.3 or [25], II.2. �
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2.5. The Bonk–Kleiner theorem on mappings of bounded multiplicity

This material is taken from [2].

Definition 2.28. A map f between spaces X and Y is of bounded multiplicity if
there is a constant N ∈ N such that #f−1(y) ≤ N for all y ∈ Y .

The following result of Bonk and Kleiner provides a partial substitute, in our
setting, for Reshetnyak’s theorem on quasi-regular mappings. (See the discussion
of David’s proof in Subsection 1.3.)

Theorem 2.29 ([2], Theorem 3.4). Suppose X is a compact metric space, every
non-empty open subset of X has topological dimension at least d, and f : X → Rd is
a continuous map of bounded multiplicity. Then there is an open subset V ⊆ f(X)
with V = f(X) such that U = f−1(V ) is dense in X and f |U : U → V is a
covering map.

3. Warm-up: getting bi-Lipschitz weak tangents

In this section, we prove a result that is much weaker than Theorem 1.1, but
whose proof illustrates some of the techniques used in the proof of Theorem 1.1.
Nothing in this section is needed in the proof of Theorem 1.1, so a reader who
is solely interested in that proof can skip this section without missing anything
needed later in the paper.

Let (X, d) and (Y, ρ) be metric spaces and f : X → Y be Lipschitz. Define a
weak tangent of f to be a mapping package

((X∞, d∞, x∞), (Y∞, ρ∞, y∞), f∞)

for which there is a sequence of positive real numbers λn, bounded above, and a
sequence xn ∈ X such that, in the sense of Definition 2.5, we have

((X,λ−1
n d, xn), (Y, λ

−1
n ρ, f(xn)), f) → ((X∞, d∞, x∞), (Y∞, ρ∞, y∞), f∞)

as n→ ∞.
Note that the spaces X∞ and Y∞ here are “weak tangents” of the spaces X

and Y , as in Definition 1.5.
We will say that f has a bi-Lipschitz weak tangent at x if, for one of its weak

tangent mapping packages, the mapping f∞ which arises is bi-Lipschitz.
Suppose that f is Lipschitz and that X and Y are doubling metric spaces.

Suppose also that X is equipped with a doubling measure, and that x is a point
of density of a set E ⊂ X such that f |E is bi-Lipschitz. Consider any sequence
λn → 0. Then every weak tangent of f along the sequence of scales {λn} and the
sequence of points {xn = x} yields a mapping f∞ that is bi-Lipschitz. This is a
standard fact, and its proof is very similar to that given in Proposition 8.1 below.

Thus, a mapping having a positive-measure set on which it is bi-Lipschitz is a
much stronger condition than a map merely having a bi-Lipschitz weak tangent.
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In the setting of Theorem 1.1, one can give a simpler argument which shows that
the mapping has a bi-Lipschitz weak tangent. This argument is really contained
in [2], though our context is slightly different.

In the proof, we will need one definition that we have not yet introduced,
coming from Chapter 12 of [10]. (This will not be used in the proof of the main
Theorem 1.1.)

Definition 3.1. A Lipschitz mapping f : M → N between two metric spaces is
said to be David–Semmes regular if there is a constant C > 0 such that, for every
ball B ⊆ N of radius r, the set f−1(B) can be covered by at most C balls of
radius Cr.

In particular, David–Semmes regular maps always have bounded multiplicity.

Proposition 3.2. Let X and Y be Ahlfors s-regular, linearly locally contractible,
complete, oriented, topological d-manifolds, for s, d ≥ 1. Suppose in addition that Y
has d-manifold weak tangents.

Suppose that f : X → Y has |f(X)| > 0. Then, for some x ∈ X, f has a
bi-Lipschitz weak tangent.

Proof. The first step is to apply Proposition 12.8 of [10]. This says that, for some
x ∈ X , we can find a weak tangent

((X∞, d∞, x∞), (Y∞, ρ∞, y∞), f∞)

of f such that f∞ is a David–Semmes regular map. In particular, this means
that f∞ is a mapping of bounded multiplicity, in the sense of Definition 2.28.

The next step is to examine the spaces X∞ and Y∞. By Proposition 2.19 and
the assumption that Y has d-manifold weak tangents, we see thatX∞ is a homology
d-manifold and Y∞ is a topological d-manifold. We also have, by Proposition 2.13,
that Y∞ is (L, r0)-LLC, for some constants L and r0.

We would now like to apply Theorem 2.29 to f∞. Fix a small open ball
B ⊂ X∞. We can choose B so small that f∞(B) lies in a set V ⊂ Y∞ which
is homeomorphic to an open set in Rd, and which has diameter less than the
contractibility radius r0 of Y∞.

Let K = B. Then every open subset of K contains an open subset of the
homology d-manifold X∞ and thus has topological dimension at least d. Because
we also know that f∞ has bounded multiplicity on K, we can apply Theorem 2.29.

In particular, we obtain an open set U ⊂ K ⊂ X such that f∞, when restricted
to U , is a homeomorphism. Let V ′ ⊂ f∞(U) be a small open set such that

dist(V ′, Y∞ \ f∞(U)) > L diamV ′

and let U ′ = f−1
∞ (V ′) ∩ U .

We claim that f∞ is in fact bi-Lipschitz on U ′. We already know it to be
Lipschitz, so it suffices to establish the other bound. Fix x, y ∈ U ′ and consider
f(x), f(y) ∈ V ′ ⊂ Y∞. Let r = ρ∞(f(x), f(y)); note that r < r0 by our assump-
tions.
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First of all, there is a compact connected set S ⊂ f(U) containing f(x) and f(y)
such that diamS ≤ Lr. Indeed, by our assumptions, the compact set B(f(x), r) is
contractible within B(f(x), Lr). If H is the homotopy realizing this contractibility,
then

S = H(B(f(x), r) × [0, 1])

contains f(x) and f(y) and is compact, connected, and contained in B(f(x), Lr) ⊂
f∞(U).

Now consider E = f−1
∞ (S) ∩ U . Because f∞ is a homeomorphism on U , we

have that E is a compact, connected set in U that contains x and y. Because f∞
is David–Semmes regular, E is contained in the union of C balls of radius CLr
in X∞. It follows that diamE ≤ 2C2Lr.

Thus,
d∞(x, y) ≤ diamE ≤ 2C2Lr = 2C2Lρ∞(f(x), f(y)) ,

and so f∞ is bi-Lipschitz on U ′.
To complete the proof of the Proposition, we take another weak tangent of f∞

along a sequence of scales {λn} tending to zero and a fixed base-point sequence
{xn = x ∈ U ′}. This yields a weak weak tangent of f∞ which is globally bi-
Lipschitz. That this is also a weak tangent of f itself is a standard fact (see [10],
Lemma 9.22). �

4. Setting up the proof of Theorem 1.1

We first introduce the following notation:

B̃n(x, r) =
⋃

{Q ∈ Δn : Q ∩B(x, r) �= ∅}
By Theorem 1.9, to prove Theorem 1.1 it suffices to show the following proposi-

tion, which is just a restatement of David’s condition, formulated in Definition 1.8.

Proposition 4.1. Let d ∈ N and s > 0. Suppose (Y, ρ) is LLC, Ahlfors s-regular,
and has d-manifold weak tangents. For all C0, L, r0, M and for all λ, γ ≥ 0, there
exist Λ, η > 0 such that the following holds.

Let X be a complete, oriented, topological d-manifold which is Ahlfors s-regular
with constant C0 and (L, r0)-LLC. Let I0 be a 0-cube and z : I0 → Y an M -
Lipschitz map. If x ∈ X, n ∈ Z, and T = B̃n(x,Λ2

n) ⊆ I0 satisfies |z(T )|/|T | ≥ γ,
then one of the following holds:

(i) z(T ) ⊇ B(z(x), λ2n), or

(ii) there is an n-cube R ⊂ T such that

|z(R)|
|R| ≥ (1 + 2η)

|z(T )|
|T | .

We emphasize that in Proposition 4.1 the constants Λ and η depend only on
the “input” constants λ and γ, as well as the “data” d, s, C0, L, r0,M , and the
space Y .
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We will actually prove the following similar statement, which implies Proposi-
tion 4.1. (This is analogous to Lemma 4 of [7].) For r > 0, define nr to be the
largest integer n such that

(4.1) 10C0 2
n ≤ r.

Proposition 4.2. Let d ∈ N and s > 0. Suppose (Y, ρ) is LLC, Ahlfors s-regular,
and has d-manifold weak tangents. For all C0, L, r0 and for all γ > 0, there exist
τ, σ > 0 such that the following holds:

Let X be a complete, oriented, topological d-manifold which is Ahlfors s-regular
with constant C0 and (L, r0)-LLC. If v ∈ X, 0 < r ≤ C0, T = B̃nr(v, r), and
z : T → Y is 1-Lipschitz satisfying |z(T )|/|T | ≥ γ, then one of the following holds:

(i) z(T ) ⊇ B(z(v), τr), or

(ii) there is a dyadic cube R ⊂ T of diameter at least τ r such that

|z(R)|
|R| ≥ (1 + σ)

|z(T )|
|T | .

As before, the constants τ and σ in Proposition 4.2 depend only on d, s, C0,
L, r0, and γ, as well as the space Y .

Lemma 4.3. Proposition 4.2 implies Proposition 4.1.

Proof. Suppose that Proposition 4.2 is true but that Proposition 4.1 fails. The
failure of Proposition 4.1, first of all, implies the existence of dimensions d ∈ N,
s > 0, and a space (Y, ρ). It also implies that for some data C0, L, r0,M , some
constants λ, γ > 0 and every Λ, η > 0, there exists an Ahlfors s-regular, LLC,
complete oriented topological d-manifoldX (with data given by C0, L, r0), a 0-cube
I0 ⊂ X , and

T = B̃n(x,Λ2
n) ⊂ I0 ,

as well as an M -Lipschitz z : T → Y with |z(T )|/|T | ≥ γ such that

• z(T ) �⊃ B(z(x), λ2n), and

• for every n-cube R ⊂ T ,

|z(R)|
|R| ≤ (1 + 2η)

|z(T )|
|T | .

In the proof, our goal is to choose Λ large enough and η small enough to reach a
contradiction.

We now reduce to the 1-Lipschitz case by letting z̃ : T → (Y, 1
M ρ). Then

z̃ : T → (Y, 1
M ρ) satisfies

• |z̃(T )|/|T | ≥ γ̃ = γ/M s

• z̃(T ) �⊃ B 1
M Y (z(x), λ2

n/M), and
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• for every n-cube R ⊂ T ,

|z̃(R)|
|R| ≤ (1 + 2η)

|z̃(T )|
|T | .

Let T ′ = B̃nr (x, r) for r = Λ2n/10. Note that, as T ⊂ I0, we have diamT ≤
diam I0 and so r ≤ C0.

Note also that T ′ ⊆ T , by a simple triangle inequality argument. On the other
hand, as we may choose Λ > C0, we have

B(x,Λ2n/10) ⊂ T ′ ⊂ T ⊂ B(x, (Λ + C0)2
n) ⊂ B(x, 2Λ2n) ,

and so the relative measure |T ′|/|T | is bounded below by a constant depending
only on s and C0.

If Λ > 200C0, then T
′, and therefore also T \T ′, is a disjoint union of n-cubes.

Indeed, in this case nr ≥ n, and T is a disjoint union of nr-cubes, each of which is
a disjoint union of n-cubes.

It follows from the second property of z̃ above that

|z̃(T ′)|
|T ′| ≤ (1 + 2η)

|z̃(T )|
|T | and

|z̃(T \ T ′)|
|T \ T ′| ≤ (1 + 2η)

|z̃(T )|
|T | .

Therefore,

|z̃(T ′)| ≥ |z̃(T )| − |z̃(T \ T ′)| ≥ |z̃(T )| − (1 + 2η)
|z̃(T )|
|T | |T \ T ′|

=
(|T | − (1 + 2η) |T \ T ′| ) |z̃(T )||T | =

(
(1 + 2η) |T ′| − 2η |T | ) |z̃(T )||T |

≥ (
(1 + 2η)|T ′| − 2η C|T ′| ) |z̃(T )||T | ≥ (1− C′η) |T ′| |z̃(T )||T | ≥ γ̃

3
|T ′|

if η is small depending on γ. (Here C and C′ depend only on the Ahlfors regularity
constants s and C0.)

Now, apply Proposition 4.2 to z̃ : T ′ → (Y, 1
M ρ) with γ as γ̃/3. We obtain τ

and σ. Note that τ and σ depend only on the data d, s, C0, L, r0,M , the space Y ,
and the constant γ.

If Λ > max{ 10λ
Mτ ,

10C0

τ } and η is sufficiently small relative to σ, we get that
either

• z̃(T ) ⊇ z̃(T ′) ⊇ B 1
M Y (z̃(x), τΛ2

n/10) ⊃ B 1
M Y (z̃(x), λ2

n/M), or

• there is a dyadic cube R ⊂ T ′ of diameter at least τΛ2n such that

|z̃(R)|
|R| ≥ (1 + σ)

|z̃(T ′)|
|T ′|

≥ (1 + σ)(1 − C′η)
|z̃(T )|
|T | ≥ (1 + 3η)

|z̃(T )|
|T | .
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In the first case we contradict the assumption that the first conclusion in Propo-
sition 4.1 fails. In the second case, note that R is a cube at scale larger than n
(because τΛ2n > C02

n) and therefore a disjoint union of n-cubes. At least one of
those n-cubes R′ must then also satisfy

|z̃(R′)|
|R′| ≥ (1 + 3η)

|z̃(T )|
|T | ,

which contradicts the assumption that the second conclusion of Proposition 4.1
fails. �

5. Proof of Proposition 4.2

We will use the notation of the previous section; recall especially the definition
of nr from (4.1).

Suppose now that Proposition 4.2 is false. Then there exists constants d, s,
C0, L, r0, γ, and a space (Y, ρ) that is LLC, Ahlfors s-regular and has d-manifold
weak tangents, such that the following holds:

For every k ∈ N, there are spaces Zk that are Ahlfors s-regular with constant C0

and that are (L, r0)-LLC, complete oriented topological d-manifolds. In addition,
there are radii 0 < rk ≤ C0, subsets Tk = B̃nrk

(vk, rk) ⊂ Zk and 1-Lipschitz maps
zk : Zk → Y satisfying |zk(Tk)|Y ≥ γ|Tk|Zk

and such that:

(i) zk(Tk) �⊇ B(zk(vk),
1
krk), and

(ii) for every dyadic cube R ⊆ Tk of diameter at least rk/k, we have

|zk(R)|
|R| ≤

(
1 +

1

k

) |zk(Tk)|
|Tk| .

Let Xk be the metric space (
Zk,

1

rk
dZk

)
.

Let Sk ⊂ Xk denote the corresponding rescaled version of Tk. Then

B(vk, 1) ⊆ Sk ⊆ B(vk, 2) and C0 ≤ |Sk|Xk
≤ 2sC0 .

Note that Sk has a dyadic cube decomposition given by the rescaled versions
of cubes in Tk. The following additional technical fact about this decomposition
of Sk is obvious but useful.

Lemma 5.1. For every 0 < r < 1/20 and every k ∈ N, the set Sk can be written
as a disjoint union of measurable sets Rj satisfying

• (2C2
0 )

−1r ≤ diamRj ≤ r, and

• (2C2
0 )

−srs ≤ |Rj |Xk
≤ rs
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Proof. Choose n such that

C0 2
n ≤ r rk ≤ 2C0 2

n .

If r < 1/20, then
2C0 2

n ≤ 2r rk < rk/10 ≤ 2C0 2
nrk

and so n ≤ nrk .
Therefore, we can write Tk as a disjoint union of dyadic cubes in Δn. The

rescaled versions of these cubes in Sk are now immediately seen to satisfy the
required properties. �

For each k, we also consider the rescaled target spaces

Yk = (Y, ρk) =
(
Y,

( γ|Tk|
|zk(Tk)|

)1/s 1

rk
ρ
)
.

Let wk : Sk → Yk be the map zk (making the natural identification between
points of Zk and points of Xk). Then each wk is Lipschitz with constant( γ|Tk|

|zk(Tk)|
)1/s

≤ 1 .

In addition, the maps wk satisfy

|wk(Sk)| = γ|Sk|
for all k. (The extra rescaling factor (γ|Tk|/|zk(Tk)|)1/s in the target Y is to ensure
this last convenient fact.)

Finally, the two important properties of zk pass to wk in the following way:

(5.1) wk(Sk) �⊇ B
(
wk(vk),

1

k

)
and for every dyadic cube R ⊆ Sk of diameter at least 1/k, we have

(5.2)
|wk(R)|
|R| ≤

(
1 +

1

k

) |wk(Sk)|
|Sk| =

(
1 +

1

k

)
γ .

Let Fk = B(vk, 1/2) ⊂ Sk ⊂ Xk. We may now consider the following sequence
of mapping packages (see Definition 2.4):{(

(Fk, dXk
, vk),

(
Y,

1

rk
ρk, wk(vk)

)
, wk

)}
.

Note that all the spaces in the above mapping packages are complete and uni-
formly doubling, and the mappings wk are uniformly 1-Lipschitz. By applying
Proposition 2.6, we obtain a subsequence of this mapping package that converges
to a limit {(F, d, v), (M,d′, q)), w)}. In addition, by Lemma 2.9 we may assume
that along this subsequence we also have the convergence of the sequence of am-
bient source spaces (Xk, dXk

, vk) to a space (X, d, v) that contains F as a subset.
(We continue to index this sequence by the original parameter k.)
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The following diagram may be useful for keeping track of this convergence. The
dotted arrows represent convergence of spaces in the sense of Definition 2.3.

(5.3)

Xk ⊃ Sk ⊃ Fk Yk

X ⊃ F M

wk

w

We now know, by Proposition 2.19, that the space X is an LLC, Ahlfors s-
regular, homology d-manifold. In addition, by Lemmas 2.10 and 2.13 and the
assumption that Y has d-manifold weak tangents, the space M is an Ahlfors
s-regular, LLC, topological d-manifold. Finally, it is clear that the set F ⊂ X
contains the open ball B(v, 1/2).

The space X is a generalized d-manifold (see Definition 2.25), so we may now
fix an open subset of B(v, 1/2) ⊂ F which has Hd

c isomorphic to Z, i.e., is itself
an oriented generalized d-manifold. We will only work in this oriented subset of X
from now on.

Let A be a small open ball inX (of diameter smaller than half the contractibility
radius of X) centered at v and compactly contained in this oriented open subset.
Because M is a manifold and w is Lipschitz, by making A small enough, we may
assume that w(A) lies in a single chart of M . Let K = A, which is compact.

We now investigate the limit map w.

Lemma 5.2. The map w|K is of bounded multiplicity on K. In other words, there
exists N ∈ N such that for every x ∈M , there are at most N points in w−1(x)∩K.

Proof. We will show that there exists N such that for all r < 1/20 and every
y ∈ M , w−1(B(y, r)) ∩ K is contained in the union of N balls of radius r in X .
This clearly suffices to prove the lemma. (This essentially shows the stronger
statement that w is a David–Semmes regular mapping, as in Definition 3.1, but
we do not need this here.)

Recall from Propositions 2.7 and 2.8 that there are “almost-isometries” φk :
F → Fk ⊂ Xk and σk : Y → Yk, which, on some fixed ball, preserve distances
up to an additive error that tends to zero as k approaches infinity. In addition, it
follows immediately from those propositions that

lim
k→∞

ρk(wk(φk(x)), σk(w(x))) = 0

locally uniformly on F ⊂ X .
Fix a ball B(y, r) in M . Let E = w−1(B(y, r)) ∩K. Let Ek = φk(E) ⊆ Xk.

Note that if k is sufficiently large, we have both that Ek ⊂ Sk and wk(Ek) ⊂
B(σk(y), 2r). By Lemma 5.1 we may write Sk as a disjoint union of cubes Q, each
satisfying

(2C2
0 )

−1 r ≤ diamQ ≤ r and (2C2
0 )

−d rs ≤ |Q| ≤ rs .

We will call these cubes “r-sized”.
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Let Q denote the collection of r-sized cubes in Sk that intersect Ek, and let
Nk = #{Q ∈ Q}. Because wk is 1-Lipschitz on Sk,

wk(Q) ⊂ B
(
σk(y), (2 + 2C0)r

) ⊂ Yk

for all Q ∈ Q.
Therefore, dividing Sk into those r-sized cubes that are in Q and those that

are not (and taking all Hausdorff measures with respect to Xk and Yk) we see that

γ|Sk| = |wk(Sk)| ≤
∣∣∣ ⋃
Q∈Q

wk(Q)
∣∣∣+ ∣∣∣ ⋃

Q/∈Q
wk(Q)

∣∣∣
≤ |B(

σk(y), (2 + 2C0)r
)|+ γ (1 + 1/k)

∑
Q⊂Sk,Q∈Δnr\Q

|Q|

= |B(
σk(y), (2 + 2C0)r

)|+ γ (1 + 1/k)
(
|Sk| −

∑
Q∈Q

|Q|
)

≤ C1r
s + γ (1 + 1/k)(|Sk| −NkC2r

s)

where C1 depends only on C0 and the Ahlfors-regularity constant of Y , and C2 =
(2C2

0 )
−s.

Rearranging this inequality yields

Nk ≤ C1r
s + 1

k |Sk|
γ (1 + 1

k )C2rs
.

Because the measures |Sk| are uniformly bounded, we see that for all k suffi-
ciently large (depending on r, but that is fine), we have

Nk ≤ 2C1

C2 γ
.

Since each cube in Q is contained in a ball of radius 2C0r in Xk, and each Xk

is doubling with constant depending only on C0 and d, we get that Ek is contained
in a union of N balls of radius r, where N depends only on s, C0 and γ. (This
holds for all k sufficiently large.)

It immediately follows that the same holds for E (with a possibly larger N)
by using the distance-preserving properties of ψk and φk for k large, and the fact
that X is doubling. This proves the lemma. �

Remark 5.3. In the proof of Lemma 5.2, we used the fact that w is a limit of
mappings wk, each of which does not multiply the measure of cubes of size at
least 1/k by much more than the factor γ. The proof would be a bit simpler
if we knew that w itself does not expand the measure of any cube by more than a
factor γ, because then the computations above could all be carried out in the limit
w : X → M , rather than in the limiting objects wk : Xk → Yk. However, it is not
clear (and not necessary for us) that this “non-expanding” property of the maps wk

passes directly to the limit map w, especially since there is no obvious relationship
between cubes in Xk and cubes in X . The same issue arises in Lemma 5.4 below.
For an interesting and somewhat related example, see Theorem2 in [5].
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Note now that the set K is a compact set that is the closure of an open set
in the homology d-manifold X . It follows that every relatively open subset of K
contains an open subset ofX and thus has topological dimension at least d (see [15],
Remark 1.3(b)). Recall our assumption that w(K) lies in a single chart of M . As
w has bounded multiplicity on K, we can apply Theorem 2.29 to obtain a dense
open subset V in w(K) such that U = w−1(V ) ∩ K is dense in K and w|U is a
covering map.

Lemma 5.4. Every point in V has exactly one pre-image in K under w.

Proof. In other words, what we must show is that if x ∈ U and x′ ∈ K with x′ �= x,
then w(x) �= w(x′). Suppose to the contrary that w(x) = w(x′) = y ∈ V . As x ∈ U
and w is a covering map when restricted to U , we obtain a ball B(x, r) ⊂ U such
that w|B(x,r) is a homeomorphism and w(B(x, r)) contains a ball B(y, r′) ⊂ M .
Without loss of generality, we may take r < d(x, x′)/10C0 and r < 1/20.

Recall the the continuous “almost isometries” fk : K → X from Lemma 2.15.
By Lemma 2.24, for all k sufficiently large, we obtain xk = fk(x) ∈ Sk such
that wk(B(xk, 2r)) contains the ball B(yk, r

′/2) ⊂ Yk, where yk = wk(xk). Also
let x′k = fk(x

′). For all k large, we have ρk(wk(xk), wk(x
′
k)) < r/10, because

w(x) = w(x′).
Let r1 = min{r, r′}. By Lemma 5.1, we may write Sk as the disjoint union of

sets Q such that
(2C2

0 )
−1r1/10 ≤ diamQ ≤ r1/10

and
(2C2

0 )
−d(r1/10)

s ≤ |Q| ≤ (r1/10)
s .

One of these sets Q contains the point x′k; let Q0 denote that set. In addition,
let T be the union of all these sets Q that intersect B(xk, 2r). Note that Q0 is not
in T by our choice of r and r1. Then

wk(Q0) ⊂ B(yk, r
′/2) ⊂ wk(T ).

We now sum over all the sets Q in Sk as above that are not Q0. Because
wk(Q0) ⊆

⋃
Q
=Q0

wk(Q), we have that

γ|Sk| = |wk(Sk)| ≤
∑

Q
=Q0

|wk(Q)| ≤ γ (1 + 1/k)
∑

Q
=Q0

|Q| ≤ γ (1 + 1/k)(|Sk| − C3r
s
1)

where C3 = (2C2
0 )

−s.
Rearranging and recalling that |Sk| ≤ C02

s = C4, we get

γ C3r
s
1 ≤ γ

k
(C4 − C3r

s
1) ,

which is a contradiction for k large. �

Lemma 5.5. The map w|A : A→M is an open mapping.
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Proof. We use the notion of local degree defined in Subsection 2.4, which we may
apply to the oriented generalized d-manifold containing A.

Suppose w is not an open mapping on A. Then there is a point x ∈ A and an
open set G ⊆ A containing x such that y = w(x) is not an interior point of w(G).
Since w has bounded multiplicity, we can find a closed ball in G containing x and no
other pre-images of y. Let B be a connected open subset of this ball containing x.
Then B ∩ w−1(y) = {x}.

We now claim that the local degree μ(y,B,w) is 0. Suppose to the contrary
that μ(y,B,w) �= 0. Choose a small connected neighborhood N of y that does
not intersect the compact set w(∂B). Then μ(y′, B, w) �= 0 for all y′ ∈ N . It
follows (by Lemma 2.27) that N ⊆ w(B), which contradicts our assumption that
y /∈ int(w(G)). So μ(y,B,w) = 0.

On the other hand, we can choose x′ ∈ B ∩ U so that y′ = w(x′) ∈ V is arbi-
trarily close to y. By Lemma 5.4, x′ is the only pre-image of y′. As before, choose a
small connected neighborhood B′ ⊂ B around x′ so that w|B′ is a homeomorphism
and ∂B′ avoids the (finitely many) pre-images of y. Remember that B′ contains
the only pre-image x′ of y′ in B. It follows from Lemma 2.27 that

μ(y′, B, w) = μ(y′, B′, w) = ±1 .

Now, if y′ is sufficiently close to y, then y′ is in the same connected component
of M \w(∂B) as y. Because the local degree is locally constant (Lemma 2.27), we
see that

μ(y,B,w) = μ(y′, B, w) .

But the left-hand side is 0 while the right-hand side is not. This completes the
proof that w is an open mapping. �

From the previous two lemmas it immediately follows that w is a homeomor-
phism on A. Indeed, we only need show it is injective. Suppose w(x) = w(x′).
Choose small disjoint balls B and B′ containing x and x′, respectively. Then
w(B) ∩ w(B′) is an open set in w(A) and therefore contains a point of V . This
contradicts Lemma 5.4.

Because w is a homeomorphism, there are radii r, r′ > 0 such that w(B(v, r)) ⊇
B(w(v), r′). It follows by Lemmas 2.24 and 2.15 that for all k sufficiently large,

wk(Sk) ⊇ wk(B(fk(v), 2r)) ⊇ B(wk(fk(v)), r
′/2) ⊇ B(wk(vk), r

′/3).

This contradicts property (5.1) of wk if k is large enough.
This completes the proof of Proposition 4.2 and thus of Theorem 1.1.

6. Proof of Theorem 1.13

Let X be an Ahlfors d-regular, LLC, oriented topological d-manifold. (We re-
emphasize the fact that here the Ahlfors regularity dimension and the topological
dimension of X must coincide.) We will apply Theorem 1.1 (in the case Y = Rd)
to a class of maps on X provided by a theorem of Semmes. These are given in the
following result, which is a slightly weakened version of Theorem 1.29(a) of [27].



212 G.C. David

Theorem 6.1 ([27], Theorem 1.29 (a)). Let B be an open ball in X of radius r > 0.
Then there is a surjective Lipschitz map f from X onto the standard d-dimensional
unit sphere Sd with Lipschitz constant ≤ C r−1 that is constant on X \ B. The
constant C depends only on the data of X.

Remark 6.2. In Theorem 6.1, it makes no difference whether one endows Sd with
the standard Riemannian metric of diameter π or with the “chordal” metric arising
from writing Sd = {x ∈ Rd+1 : |x| = 1} and letting d(x, y) = |x−y|. These metrics
are bi-Lipschitz equivalent. For convenience, we will use the latter.

Proof of Theorem 1.13. As above, write Sd = {x ∈ Rd+1 : |x| = 1}. Consider the
projection p from Sd onto the first d coordinates in Rd+1. Then p is 1-Lipschitz
and |p(Sd)| = σd, the d-dimensional Hausdorff measure of the unit ball in Rd.

Therefore, by post-composing the maps of Theorem 6.1 with p, we see that
for every ball B(x, r) ⊆ X there is a Cr−1-Lipschitz map gB : B → Rd with
|gB(B)| = σd.

To show X is locally uniformly rectifiable, we must show that for all R > 0
there exists constants α, β such that for every ball B of radius at most R, there is
a set E ⊆ B and a map f : E → R

d such that |E| ≥ β|B| and f is α-bi-Lipschitz.
Fix a ball B = B(x, r), where r < R. Let n be such that C02

n < r ≤ C02
n+1.

Then B contains a dyadic cube Q ∈ Δn.
As c02

n ≥ c0
2C0

r, Q contains a ball B′ of radius c0
2C0

r. Let g = gB′ be a map
as above associated to B′. Then g is Lipschitz with Lipschitz constant bounded
by 2CC0

c0r
.

Therefore, the map h = c0r
2CC0

g is 1-Lipschitz and |h(B′)| ≥ c5r
d, for c5 =

σd(c0/2CC0)
d.

Thus, |h(Q)| ≥ δ|Q| for some constant δ depending only on the data of X . By
choosing ε > 0 sufficiently small in Theorem 1.1 (see Remark 1.11) we get that h
is α-bi-Lipschitz on a set E ⊂ Q ⊂ B of measure at least θ|Q| ≥ β|B|, where α
and β depend only on R and the data of X . This proves Theorem 1.13. �

7. Consequences of Theorem 1.13

It is now possible to derive many corollaries which result immediately from applying
deep theorems of David and Semmes on uniformly rectifiable sets to the conclusion
of Theorem 1.13. We state two geometric examples below.

First of all, Theorem 1.13, in combination with a result of Semmes in [29],
provides a quasisymmetric embedding result for suitable compact metric mani-
folds. For the definition and basic properties of quasisymmetric homeomorphisms,
see [13].

Corollary 7.1. Let X be an Ahlfors d-regular, LLC, compact, oriented topological
d-manifold. Then X is quasisymmetrically equivalent to a space X ′ that is also
an Ahlfors d-regular, LLC, compact, oriented topological d-manifold and that is a
subset of some R

N .
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Both the dimension N and the quasisymmetry function of the homeomorphism
between X and X ′ depend only on the data of X.

Proof. By Theorem 1.13, the space X is uniformly rectifiable. Proposition 2.10
of [29], combined with equation (3.27) in that paper, shows that X can be qua-
sisymmetrically deformed by a weight (with quantitative control) so that the re-
sulting space admits a bi-Lipschitz embedding into some RN .

Both the deformation and the bi-Lipschitz embedding quantitatively preserve
the Ahlfors s-regularity of X . For the former, this is explained in the discussion
following the proof of Lemma 4.4 in [29]; the latter is a general fact about bi-
Lipschitz mappings.

Thus, if we let X ′ be the image of the deformed X under the bi-Lipschitz
embedding, then X ′ is Ahlfors s-regular. Because it is quasisymmetrically home-
omorphic to X , it is also a compact, LLC, oriented topological d-manifold. �

Remark 7.2. Every doubling metric space quasisymmetrically embeds in some
Euclidean space by Assouad’s theorem (see [13], Theorem 12.2), but in general
this embedding first “snowflakes” the metric, increasing the Hausdorff dimension
and destroying the rectifiability properties of the space. Corollary 7.1 is false if
one replaces “quasisymmetrically” by “bi-Lipschitz”, as examples of Semmes [28]
and Laakso [21] show.

Once there is a nice embedding of the abstract metric space X as a uniformly
rectifiable subset of Euclidean space, all the theory of these sets developed by
David and Semmes can be applied. Here we merely mention one further example,
which says that the image of the embedding in Corollary 7.1 can be taken to lie in
a particularly nice subset of RN .

Recall the definition of David–Semmes regular maps, introduced in Defini-
tion 3.1. We define the following class of subsets of Euclidean space.

Definition 7.3. Let E be an Ahlfors d-regular subset of Rn. We say that E is
quasisymmetrically d-regular if E = g(f(Rd)), where f : Rd → Y is a quasisym-
metric homeomorphism of Rd onto an Ahlfors d-regular space Y , and g : Y → RN

is a David–Semmes regular mapping.

A set that is quasisymmetrically d-regular admits a bounded-multiplicity pa-
rametrization by Rd in a controlled way.

The following corollary follows from a weakened version of the implication
(C6)⇒ (C7) in the main result of [9]. (The full version of the result should discuss
deformations by A1-weights, which we have not mentioned.)

Corollary 7.4. Let X be an Ahlfors d-regular, LLC, compact, oriented topological
d-manifold. Let X ′ be a quasisymmetrically equivalent subset of RN provided by
Corollary 7.1. Assume N ≥ 2d. Then X ′ is a contained in a quasisymmetrically
d-regular set E ⊂ RN .

Proof. This follows from Corollary 7.1, Theorem 1.13, and the main result of [9]
(specifically, the implication (C6)⇒ (C7)). �
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In general, it is not possible to find good (e.g. quasisymmetric or bi-Lipschitz)
parametrizations of metric spaces such as those in Corollary 7.4 by standard spaces
such as Sd or Rd. Corollary 7.4 provides a weaker form of “parametrization”,
in that it yields a mapping onto but not into the space, and that is bounded-
multiplicity rather than injective.

8. Counterexamples

To conclude, we wish to briefly describe some counterexamples regarding the class
of “Lipschitz implies bi-Lipschitz” theorems mentioned at the beginning of this
paper. By this we mean the class of theorems that say that if f : X → Y is a
Lipschitz mapping with positive-measure image, then f is bi-Lipschitz on a set of
positive measure, quantitatively. None of these counterexamples are new, but they
are scattered in a few different places in the literature and it may be convenient to
collect them in one place. The first two can be found in Meyerson’s paper [23], the
third is due to David and Semmes [10], and the fourth is an example of Laakso [20].

The first counterexample shows that, in the setting of Theorem 1.1, the require-
ment that the two spaces have the same topological dimension is necessary. This
proposition is proven by Meyerson in [23], Theorem 4.1. Here we give a slightly
different argument.

Proposition 8.1. There is an Ahlfors 2-regular, linearly locally contractible, com-
plete oriented topological 1-manifold X and a Lipschitz map f : X → R

2 with
positive measure image that is not bi-Lipschitz on any subset of positive measure.

Proof. The metric space X will be the “snowflaked” space (R, | · |1/2), equipped
with two-dimensional Hausdorff measure (which is the same as one-dimensional
Hausdorff measure on (R, |·|)). It is clear thatX satisfies all the required properties.

It is well-known (see, e.g., [32], Theorem 7.3.1) that there is a space-filling
curve f : (R, | · |) → R

2 that is Hölder continuous with exponent 1/2 and whose
image contains the unit square in R2. Therefore, when considered as a mapping
f : X → R2, f is Lipschitz, and it has positive-measure image.

However, no Lipschitz map fromX to R
2 can be bi-Lipschitz on a set of positive

measure. Indeed, suppose that f is bi-Lipschitz on a set of positive measure E
in X , with f(0) = 0. Let E′ = f(E) ⊆ R2. Without loss of generality, we may
assume that E is compact, that 0 ∈ R is a point of density of E in X , and that
f(0) = 0 ∈ R2 is a point of density of E′ in R2. (We can always find such points.)

We now consider the sequences of mapping packages

(8.1)
{((

E,
1

n
dX , 0

)
,
(
E′,

1

n
| · |, 0

)
, f

)}
.

Because 0 ∈ X is a point of density of E and 0 ∈ R2 is a point of density of E′,
we have by [10], Lemmas 9.12 and 9.13, that, in the sense of pointed metric spaces,(

E,
1

n
dX , 0

)
→ (X, dX , 0) and

(
E′,

1

n
| · |, 0

)
→ (R2, | · |, 0) .
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Therefore, some subsequence of the sequence of mapping packages in (8.1)
converges to a mapping package(

(X, dX , 0), (R
2, | · |, 0), g) .

The mapping g is bi-Lipschitz, because f |E is bi-Lipschitz. In addition, the
map g is surjective. We may see this by passing to another subsequence along
which the sequence of inverse mapping packages{((

E′,
1

n
| · |, 0

)
,
(
E,

1

n
dX , 0

)
, (f |E)−1

)}
converges to a mapping package(

(R2, | · |, 0), (X, dX , 0), h
)
.

It is then easy to see that g(h(y)) = y for all y ∈ R2 and therefore that g is
surjective.

So g is a bi-Lipschitz homeomorphism of X onto R2. But this is impossible,
as X is homeomorphic to R. �

The two spaces in Proposition 8.1 satisfy all the conditions of Theorem 1.1,
except that they are manifolds of different topological dimensions.

For the remaining three counterexamples that we mention here, we merely
indicate the statements and refer the reader to the original sources for the proofs.

The second example is Theorem 4.2 of [23]. Let us first note that, as a con-
sequence of Theorem 1.1, we know the following: Let X and Y be spaces as in
Theorem 1.1. Let U ⊂ X be an open set, and let f : U → Y be Lipschitz and
satisfy |f(U)| > 0. Then there is a countable collection of measurable sets Ei ⊂ U
such that f |Ei is bi-Lipschitz for each i and |f(U \ ∪Ei)| = 0. (Here the sets Ei

are not necessarily disjoint.) On the other hand, we have the following fact:

Proposition 8.2 ([23], Theorem 4.2). There is a doubling, LLC, complete, ori-
ented topological 2-manifold X of Hausdorff dimension 2, an open set U ⊂ X, and
a Lipschitz map f : U → R2 that cannot be represented in the above manner. In
other words, there is no countable collection of measurable sets Ei ⊂ U such that
f |Ei is bi-Lipschitz for each i and |f(U \ ∪Ei)| = 0.

In particular, the conclusion of Theorem 1.1 does not hold for this choice of X
and Y = R2. In this result, the space X can be chosen to be the sub-Riemannian
manifold known as the Grushin plane. The source and target spaces in Propo-
sition 8.2 satisfy all the conditions of Theorem 1.1, except that the source X is
not Ahlfors 2-regular. The idea behind Proposition 8.2 is to reduce to Proposi-
tion 8.1, because the Grushin plane X contains a bi-Lipschitz equivalent copy of
the snowflaked line (R, | · |1/2) as a positive-measure subset.

If one completely relaxes the strong topological conditions imposed in Theo-
rem 1.1, then one can find Lipschitz mappings between metric spaces with large
images but no bi-Lipschitz pieces, even in the presence of very strong analytic
assumptions on the spaces and mappings.
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Proposition 8.3 ([10], Proposition 14.5). There is a compact, Ahlfors regular met-
ric space X and a Lipschitz mapping f : X → X which is not bi-Lipschitz on any
positive-measure subset. Furthermore, the mapping f can be taken to be a home-
omorphism which is in addition David–Semmes regular and preserves measure, in
the sense that |f(K)| = |K| for all compact K ⊆ X.

The space X in Proposition 8.3 is a totally disconnected Cantor set. See Chap-
ter 14 of [10] for the proof and some other related constructions.

In both the positive result Theorem 1.1 and the counterexample Proposi-
tions 8.1 and 8.3, the spaces in question may have no “good calculus”, i.e., they
may have no rectifiable curves and therefore no Poincaré inequality. (For the
definition of Poincaré inequalities on metric measure spaces, see [13].) It is not
known to what extent this type of calculus is helpful in proving “Lipschitz implies
bi-Lipschitz” theorems, but in closing we wish to note the following theorem of
Laakso [20], which shows that Ahlfors regular spaces with Poincaré inequalities
may still fail to have such results.

Proposition 8.4 ([20]). There exists an Ahlfors regular space X admitting a
Poincaré inequality and a Lipschitz map f : X → X with positive-measure image
such that there is no positive-measure subset of X on which f is bi-Lipschitz.

In fact, in Laakso’s example the mapping f does not even have any bi-Lipschitz
tangents, in the sense of Section 3.
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