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A note on repelling periodic points for

meromorphic functions with a bounded set
of singular values

Anna Miriam Benini

Abstract. Let f be a meromorphic function with a bounded set of singu-
lar values and for which infinity is a logarithmic singularity. Then we show
that f has infinitely many repelling periodic points for any minimal pe-
riod n ≥ 1, using a much simpler argument than the corresponding results
for arbitrary entire transcendental functions.

1. Introduction

An entire transcendental function f is a function which is holomorphic on all of the
complex plane C and for which infinity is an essential singularity. A meromorphic
function is the quotient of two entire (not necessarily transcendental) functions
and can have poles, that is points whose image equals to infinity and whose orbits
are no further defined. The set of singular values S(f) is the set of values near
which not all branches of the inverse are well defined and univalent. S(f) includes
critical values, asymptotic values and any of their accumulation points. Then the
function f : C \ f−1(S(f)) → C \ S(f) is an unbranched covering. In general we
have that S(fn) = S(f) ∪ f(S(f)) ∪ · · · ∪ fn(S), where fn := f ◦ · · · ◦ f is defined
to be the composition of f with itself n times.

A repelling periodic point of period n for f is a point such that fn(z) = z
and |(fn)′(z)| > 1. The period n is called minimal if there is no j < n such
that f j(z) = z. The problem of the existence of periodic points of any minimal
period for any entire function f goes back to the dawn of holomorphic dynamics
to Fatou ([15]) and later to Baker ([2]). A stronger conjecture was whether for
any entire transcendental function there are repelling periodic points of any given
period (except possibly period 1) and whether there are always infinitely many such
repelling periodic points for any minimal period. One of the reasons why Baker
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was interested in the problem of existence of repelling periodic points for entire
functions is because he could show that if f is entire with at least one repelling
periodic point, then the centralizer of f is countable (see [1]). For an extensive
bibliography on the subject one can consult [7] (See also [8]).

The most general result available is the following theorem:

Theorem 1.1 (Theorem 1 in [7]). Let f be an entire transcendental function and
let n ≥ 2. Then f has infinitely many repelling periodic points of minimal period n.

The proof in [7] uses results from Wiman–Valiron theory and a version of
Ahlfors three islands theorem due to Hayman. Observe that the function ez + z
has no fixed points, so that Theorem 1.1 is optimal in this sense.

By restricting the class of entire transcendental functions under consideration
to entire transcendental functions with a bounded set of singular values, we can
show that there must also be infinitely many repelling points of period n = 1
and we do so with a considerably more elementary proof, using only logarithmic
coordinates as in [14] and some considerations on the hyperbolic metric. Our proof
also works for a wide class of meromorphic functions. This proof although simple
is new to the author’s knowledge, and has the advantage of proving the existence
of both repelling fixed points and repelling periodic points at once. Our proof
also implicitly shows that there is exactly one repelling periodic point for each
(allowable) periodic itinerary with respect to a specific dynamically meaningful
partition.

Main Theorem. Let f be an entire transcendental function or a meromorphic
function with a bounded set of singular values. If f is meromorphic but not entire
assume also that infinity is a logarithmic singularity. Then f has infinitely many
repelling periodic points of any given minimal period n ≥ 1.

Observe that the class of functions under consideration is not invariant under
composition, since if f is meromorphic there could be a sequence of singular values
accumulating on a pole P whose image is hence unbounded. For an entire func-
tion f , on the other hand, if S(f) is bounded also S(fn) is bounded for any n. For
more on the classification of singularities and a precise definition of logarithmic
singularity see [9].

The existence of repelling fixed points for entire transcendental functions with
finitely many singular values can be found in [13]:

Proposition 1.2 ([13]). Let f be an entire transcendental function with finitely
many singular values. Then f has infinitely many repelling fixed points.

In fact, the proof of Proposition 1.2 in [13] (which is different from ours) can be
applied also to show the existence of infinitely many repelling fixed points for entire
transcendental functions with a bounded set of singular values, while an additional
argument is needed to say that there are infinitely many repelling periodic points
for any minimal period ([12]). The proof also generalizes to meromorphic func-
tions belonging to the class considered in the Main Theorem, but only proves the
existence of fixed points and does not show that the points in question are repelling.
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Finally, the proof of existence of infinitely many repelling fixed points for entire
transcendental functions and meromorphic functions with order different from zero
(always with a bounded set of singular values) can be found in [17] (see Theorems 2
and 3 there), with some additional information on the multipliers of these points.
Their proof is quite different from the one presented in this paper. In [18] one
can find additional results for periodic points for some classes of transcendental
functions, phrased in the language of Nevanlinna theory.

Acknowledgments. This work was inspired by the proof in [10]. The author is
thankful to Carsten Petersen, Filippo Bracci, Núria Fagella and Pavel Gumenyuk
for useful discussions on this topic. The author would also like to thank Alexandre
Eremenko and Jian-Hua Zheng for pointing out the references [13], [17], and [18].
I thank the referee for his/her comments and for the celerity in revising this paper.

2. Proof of the Main Theorem

The proof is based on the tool of logarithmic coordinates introduced by Eremenko
and Lyubich in [14], slightly modified for meromorphic functions. The next lemma
is a basic fact in algebraic topology, see for example [16] for the general theory
about coverings. Let H denote the right half plane H := {z ∈ C; Re z > 0}.

Lemma 2.1 (Coverings of D∗). Let U ⊂ ̂C, D be the unit disk and D∗ = D \ {0}.
If f is a holomorphic covering from U → D∗, then

(a) either U is biholomorphic to D∗ and f is equivalent to zd – that is, there
exists a biholomorphic map ϕ : U → D∗ such that f = zd ◦ ϕ;

(b) or U is simply connected and f is a universal covering, hence equivalent to
the exponential map – that is, there exists a biholomorphic map ϕ : U → H

such that f = exp ◦ϕ.

If S(f) is bounded there exists a disk D such that Ω := C \ D contains no
singular values. In particular for any connected component U of f−1(Ω), f is
an (unbranched) covering from U to Ω. Since Ω ∼ D∗, by Lemma 2.1, for any
connected component U of f−1(Ω) either U is bounded and f : U → Ω is equivalent
to zd, or U is unbounded, simply connected, and f : U → Ω is equivalent to ez. In
the first case, U contains exactly one pole P , and f : U \ {P} → Ω is a covering
of degree d where d is the order of the pole. These bounded components are of no
interest to us.

In the second case U is called a tract. If infinity is a logarithmic singularity there
is always at least one such tract. If f is entire transcendental, all connected com-
ponents of the preimage of Ω are tracts. Tracts are simply connected unbounded
sets. Moreover, tracts have disjoint closures and accumulate only at infinity; that
is, if zn is a sequence of points all belonging to different tracts, then zn → ∞
(see [14]). Let T denote the union of all tracts. The following lemma can be found
in [5], Lemma 2.1.
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Lemma 2.2. There exists a simple (analytic) curve δ ⊂ Ω \ T connecting D to
infinity.

The preimages of δ partition each tract into countably many fundamental do-
mains Fi such that f : Fi → Ω \ δ is univalent for any i. The Fi also do not
accumulate on any compact set so only finitely many of them intersect D.

Each tract T , each fundamental domain F , and the set Ω \ δ are all simply
connected open sets admitting a hyperbolic metric. For any set U admitting a
hyperbolic metric we denote its density by λU , and the hyperbolic distance in U
by dU .

We now show that in a neighborhood of infinity the hyperbolic density of any
fundamental domain F is much larger than the hyperbolic density of the tract that
contains it, and hence it is much larger than the hyperbolic density of Ω \ δ.

Lemma 2.3. For any fundamental domain F there exists κF < 1 and a neighbor-
hood UF of infinity in ̂C such that

(2.1)
λΩ\δ(z)
λF (z)

≤ κF < 1 for all z ∈ F ∩ UF .

In fact, by restricting UF , κF can be taken to be arbitrarily small.

Proof. Let T be the tract containing F . Since f : T → Ω ∼ D
∗ is a universal

covering, there exists a conformal isomorphism ϕ : T → H where H := {z ∈ C :
Re z > 0} and such that f |T = exp ◦ϕ (see Lemma 2.1 part (b) and Figure 1).
Using this equation, the fact that the exponential is 2πi periodic and the fact that
the Fi are fundamental domains for f we obtain the following: for any fundamental
domain F̃ �= F contained in T we have that ϕ(F̃ ) = ϕ(F ) + 2πik for some k ∈ Z.
In particular ϕ(F ) contains no vertical segments of diameter bigger than 2π, so
for any z ∈ ϕ(F ), the Euclidean distance dist(z, ∂F ) is less than or equal to π.
Since ϕ(F ) is simply connected, by standard estimates on the hyperbolic metric
(see e.g. Theorem 8.6 in [4]) we have that

λϕ(F )(z) ≥
1

2π
for all z ∈ ϕ(F ).

Since ϕ is a conformal isomorphism it is an isometry for the hyperbolic metric
(see e.g. Theorem 6.3 in [4]), hence using the fact that λH(z) =

1
2Re z we have that

(2.2)
λT (z)

λF (z)
=
λϕ(T )(ϕ(z))

λϕ(F )(ϕ(z))
=

λH(ϕ(z))

λϕ(F )(ϕ(z))
≤ π

Re ϕ(z)
for all z ∈ F.

In particular λT (z)/λF (z) can be made arbitrarily small by letting Re ϕ(z) be
arbitrarily large, that is the same as saying, |z| be arbitrarily large.

Now choose κF < 1, let UF ⊂ ̂C be a neighborhood of infinity small enough such
that λΩ\δ(z)/λT (z) ≤ 1in UF (this can be done using the comparison principle for
the hyperbolic metric because T ⊂ Ω\δ in a neighborhood of infinity) and such that
Re ϕ(z) ≥ π/κF for UF ∩F (this can be done because Re ϕ(z) → ∞ as |z| → ∞).
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It follows using (2.2) that

λΩ\δ(z)
λF (z)

≤ λT (z)

λF (z)
≤ π

Re ϕ(z)
≤ κF for all z ∈ F ∩ UF ,

as required. �

∞
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Figure 1. The construction used in the proof of Lemma 2.3. For simplicity only one
tract and three fundamental domains within are drawn, and the possible spiralling near
infinity is not noticeable on the left-hand side.

Corollary 2.4. For any fundamental domain F not intersecting D, there exists
κF < 1 such that

(2.3)
λΩ\δ(z)
λF (z)

≤ κF < 1 for all z ∈ F.

Proof. Since F is compactly contained in Ω\δ except in a neighborhood of infinity,
the inequality follows from the comparison principle except in a neighborhood of
infinity, where it follows from Lemma 2.3. Observe that in this case, in order
for (2.3) to hold for all z ∈ F , κF can no longer be chosen to be arbitrarily
small. �
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Proof of the Main Theorem. Let us first show that f has infinitely many repelling
fixed points. Since there are infinitely many fundamental domains, only finitely
many of which intersect the disk D, it is enough to show that for each non-
intersecting fundamental domain F there exists a repelling fixed point wF in F .
Since f : F → Ω \ δ is univalent and surjective, there exists a unique univalent
inverse branch ψF : Ω \ δ → F . In view of the Banach fixed point theorem, it is
enough to show that ψF strictly contracts the hyperbolic metric in F and to show
that the fixed point wF given by the Banach theorem is not on the boundary of F .
By Corollary 2.4 there exists κF < 1 such that λΩ\δ(z) ≤ κFλF (z). Since ψF

is univalent hence an isometry between the hyperbolic metric of Ω \ δ and the
hyperbolic metric of F , we have that for any w, z ∈ F

dF (ψF (w), ψF (z)) = dΩ\δ(w, z) ≤ κF dF (w, z).

By the Banach fixed point theorem, there exists wF ∈ F such that ψn
F converges

to wF uniformly on compact subsets of F . Since ψF strictly contracts the hyper-
bolic metric, for any x ∈ F the points {ψn

F (x)}n∈N form a Cauchy sequence and
the distance dF (x,wF ) is finite. Since by completeness of the hyperbolic metric
for any x ∈ F the hyperbolic distance to the boundary is infinite, we have that wF

is not on the boundary hence that it belongs to F . Since wF is an attracting fixed
point for an inverse of f , it is a repelling fixed point for f .

Let us now fix n ∈ N, and consider any sequence s of fundamental domains
s = F1 . . . Fn such that Fi ∩ D = ∅ for all i = 1, . . . , n. It is clear that there are
infinitely many different such choices for any n. For any i = 1, . . . , n, let ψFi be
the univalent inverse branch from Ω to Fi. Define

ψs := ψF1 ◦ ψF2 ◦ · · · ◦ ψFn .

Since none of the Fi intersects D, ψs : Ω → F1 is univalent and well defined and
it is a strict contraction by Corollary 2.4, hence by the previous argument it has a
attracting fixed point ws ∈ F1, which is by definition a repelling fixed point for fn.
By choosing for example Fi �= Fj for i �= j, since by construction f i−1(zs) ∈ Fi

for i = 1, . . . , n, we can ensure that ws has minimal period n. Since the initial
fundamental domain F1 can be chosen in infinitely many different ways, there are
infinitely many such periodic points of minimal period n. In fact, more can be said:
if s and 	 are two different sequences of fundamental domains of the same length n,
and zs and z� are the corresponding repelling periodic points constructed for ψs

and ψ�, since s �= 	 we have that f i(zs) �= f i(z�) for some i ≤ n, hence zs �= z�. In
particular any two different sequences s and 	 of fundamental domains give rise to
different repelling periodic points for f . �

Remark 2.5. While proving the Main Theorem we constructed repelling periodic
points with any prescribed periodic itinerary with respect to the fundamental do-
mains not intersecting the disk D, and we showed that for any given itinerary such
a periodic point is unique. There may certainly be other periodic points, corre-
sponding to fundamental domains which do intersect D (see [5]). It is also possible
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to show that there are also repelling periodic points associated to poles far enough
from D (see [6]), and to classify the remaining periodic points for f . The idea of
constructing points in the Julia set using their symbolic itineraries is reminiscent
of techniques used by several authors in complex dynamics, see for example [11]
and [3].
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