
Rev. Mat. Iberoam. 32 (2016), no. 1, 275–376
doi 10.4171/rmi/887

c© European Mathematical Society

Fitting a Sobolev function to data I

Charles Fefferman, Arie Israel, and Garving Luli

Abstract. In this paper and two companion papers, we produce efficient
algorithms to solve the following interpolation problem: Let m ≥ 1 and
p > n ≥ 1. Given a finite set E ⊂ Rn and a function f : E → R, compute
an extension F of f belonging to the Sobolev space Wm,p(Rn) with norm
having the smallest possible order of magnitude; secondly, compute the
order of magnitude of the norm of F. The combined running time of our
algorithms is at most CN logN, where N denotes the cardinality of E,
and C depends only on m, n, and p.

1. Introduction

In this paper and [20], [21], we interpolate data by a function F : Rn → R whose
Sobolev norm has the least possible order of magnitude. Our computations con-
sist of efficient algorithms, to be implemented on an (idealized) von Neumann
computer.

Our results are the analogues for Sobolev spaces of some of the main results of
Fefferman–Klartag [15], [16], [17] on interpolation of data by functions in Cm(Rn).

Let us set up notation and definitions. Fix m,n ≥ 1 and 1 < p <∞. We work
in the Sobolev space

X = Lm,p(Rn) with seminorm ||F||X =
(∫

Rn

∑
|α|=m

|∂αF(x)|p dx
)1/p

(1.1)

or

X =Wm,p(Rn) with norm ||F||X =
(∫

Rn

∑
|α|≤m

|∂αF(x)|p dx
)1/p

.(1.2)

We make the assumption

p > n,(1.3)

Mathematics Subject Classification (2010): Primary 65D17; Secondary 65D05.
Keywords: Algorithm, interpolation, Sobolev spaces.

276 C. Fefferman, A. Israel, and G. K. Luli

so that the Sobolev theorem tells us that

X ⊂ Cm−1
loc (Rn).(1.4)

We write c, C,C ′, etc. to denote “universal constants”, i.e., constants deter-
mined by m,n, p in (1.1), (1.2). These symbols may denote different universal
constants in different occurrences.

Now let

(1.5) E = {z1, . . . , zN} ⊂ Rn.

Then X(E) denotes the vector space of all real-valued functions on E, equipped
with the norm (or seminorm)

||f||X(E) = inf
{
||F||X : F ∈ X, F = f on E

}
.

Let A ≥ 1 be a constant. An “A-optimal interpolant” for a function f ∈ X(E)
is a function F ∈ X that satisfies F = f on E and ||F||X ≤ A · ||f||X(E).

Our goal here is to solve the following

Problems:

(A) Compute a C-optimal interpolant for a given function f ∈ X(E).

(B) Given f ∈ X(E), compute a number |||f||| such that

c |||f||| ≤ ||f||X(E) ≤ C |||f|||.

We owe the reader an explanation of what it means to “compute a function”
in Problem (A). First of all, our computations are performed on a computer with
standard von Neumann architecture. We assume that each memory cell can store a
single integer or real number. We study two distinct models of computation. In the
first model (“infinite-precision”) we assume that our computer deals with exact
real numbers, without roundoff errors. Our second, more realistic model (“finite-
precision”) assumes that our machine handles only S-bit machine numbers for some
fixed, large S. To work with the finite-precision model, we make a rigorous study of
the roundoff errors arising in our algorithms. For simplicity, in this introduction,
we restrict attention to the infinite-precision model.

To “compute” a function F ∈ Cm−1
loc (Rn), the computer first performs “one-

time work”, then answers “queries.” A query consists of a point x ∈ Rn, and the
computer responds to a query x by computing ∂αF(x) for all |α| ≤ m− 1.

We want algorithms that make minimal use of the resources of our computer.
For the computation of a function F as in Problem (A), the relevant resources are

• the number of computer operations used for the one-time work,

• the number of memory cells used for all the work,

• and the number of computer operations used in responding to a query.

We refer to these as the “one-time work”, the “space” (or “storage”), and the
“query work”, respectively.

Fitting a Sobolev function to data I 277

For the computation of the single number |||f||| in Problem (B), the relevant
computer resources are the number of operations used, and the number of memory
cells required. We refer to these as, respectively, the “work” and “storage”.

We are concerned with algorithms that work for arbitrary f and E. If we
allowed ourselves favorable geometric assumptions on E, our problems would be
much easier.

We can now state our results in their simplest form. Recall that N denotes the
number of points in our finite set E.

Theorem 1. One can compute a C-optimal interpolant for a given function f ∈
X(E), with one-time work ≤ CN logN, storage ≤ CN, and query work ≤ C logN.

Theorem 2. Given f ∈ X(E), one can compute a number |||f||| such that

c |||f||| ≤ ||f||X(E) ≤ C |||f|||;

the computation uses work ≤ CN logN and storage ≤ CN.

Obviously, in Theorem 1, the one-time work must be at least N, since we have
to read the data; and the query work is at least 1, since we must at least read the
query. Similarly, in Theorem 2, the work must be at least N. Hence, for trivial
reasons, the work of our algorithms can be improved at most by a factor logN.

Very likely, the work and storage asserted above are best possible.
To prepare to state our results in their full strength, we recall the following

results from our previous paper [18].

Theorem 3 (Extension operators). There exists a linear map T : X(E) → X such
that Tf is a C-optimal interpolant of f for any f ∈ X(E).

Theorem 4 (Formula for the norm). There exist linear functionals ξl : X(E) → R

(l = 1, . . . , L) such that

• L ≤ CN,

• and the quantity

|||f||| =
(L∑

l=1

|ξl(f)|
p
)1/p

satisfies
c |||f||| ≤ ||f||X(E) ≤ C |||f||| for all f ∈ X(E).

To prove Theorems 1 and 2, we will compute the linear map T and the func-
tionals ξl in Theorems 3 and 4. To do so, we exploit a sparse structure for T
and ξl, established in [18].

We recall the relevant definitions.
Let Ω = {ω1, . . . ,ωνmax} be a finite list of linear functionals on X(E). Then we

say that Ω is a “set of assists” if each ων can be written as

(1.6) ων (f) =

Iν∑
i=1

μνi f (zνi) (f ∈ X(E));

278 C. Fefferman, A. Israel, and G. K. Luli

where Iν ≥ 1, μνi ∈ R, zνi ∈ E are independent of f, and

(1.7)

νmax∑
ν=1

Iν ≤ CN.

The point is that if (1.7) holds, then for a given f ∈ X(E) we can compute all
the assists ω1 (f) , . . . ,ωνmax (f), using at most CN computer operations. It will
be useful to precompute the ων (f), because each of these quantities may be used
many times in subsequent calculations.

Let Ω = {ω1, . . . ,ωνmax} be a set of assists.
A linear functional

ξ : X (E) → R

has “Ω-assisted bounded depth” if it can be written in the form

(1.8) ξ (f) =
I∑

i=1

λif (zi) +
J∑

j=1

βjωνj
(f) for all f ∈ X (E) ,

where I, J, λi, βj, νj and zi ∈ E are independent of f, and

(1.9) I+ J ≤ C.
If (1.8), (1.9) hold, and if we have precomputed ω1 (f) , . . . ,ωνmax (f), then we

can calculate ξ (f) using at most C computer operations.
We call (1.6) and (1.8) “short forms” of the assists ων and the functional ξ,

respectively. Note that a functional may be written in short form in more than
one way.

A linear map T : X (E) → Cm−1
loc (Rn) will be said to have “Ω-assisted bounded

depth” if for each x ∈ Rn and each multiindex α of order |α| ≤ m − 1, the linear
functional

(1.10) X(E) � f �−→ ∂αTf (x)

has Ω-assisted bounded depth.
In [18], we proved the following sharper version of Theorems 3 and 4.

Theorem 5. There exists a set of assists Ω = {ω1, . . . ,ωνmax} such that the linear
map T in Theorem 3, and the linear functionals ξ1, . . . , ξL in Theorem 4, may be
taken to have Ω-assisted bounded depth.

If we knew the assists ω1, . . . ,ωνmax and the functionals ξ1, . . . , ξL in their
short form, then we could easily compute |||f||| in Theorem 4 by first computing
the ων (f), then computing the ξl (f). The whole computation would require
only CN computer operations.

Similarly, suppose we knew the assists ων and the linear functionals (1.10) in
their short form.

Given f ∈ X (E), we could precompute ω1 (f) , . . . ,ωνmax (f) with at most CN
operations, after which we could answer queries: Given a query point x ∈ Rn, we
could compute ∂αTf (x) (all |α| ≤ m− 1) in at most C operations. Thus, we could
give highly efficient solutions to Problems (A) and (B) above.

Fitting a Sobolev function to data I 279

Unfortunately, the proof of Theorem 5 in [18] is not constructive. It does not
supply any formulas for the assists ων, the functionals ξl, or the operator T . Our
purpose here is to remedy this defect by proving the following result.

Theorem 6 (Main theorem). For suitable Ω = {ω1, . . . ,ωνmax }, T , ξ1, . . . , ξL as
in Theorems 3, 4, 5, the assists ων, and the functionals ξl can all be computed in
short form, using work ≤ CN logN and storage ≤ CN. Moreover, after one-time
work ≤ CN logN in space ≤ CN, we can answer queries as follows:

A query consists of a point x ∈ Rn. The response to a query x is
a short-form description of the functional (1.10) for each |α| ≤ m − 1.
The work to answer a query is ≤ C logN.

To prove Theorem 6, we modify the proofs of Theorems 3, 4, 5 in [18]. Let us
first review some of the ideas in [18], and then explain some of the modifications
needed for Theorem 6. Our discussion will be highly simplified, so that the basic
ideas are not obscured by technical details.

We introduce a bit more notation. If F ∈ Cm−1
loc (Rn) and x ∈ Rn, then we

write Jx (F) (the “jet” of F at x) to denote the (m− 1)
st

degree Taylor polynomial
of F at x. Thus, Jx (F) belongs to P , the vector space of all (real) polynomials of
degree at most (m− 1) on Rn.

We write Q,Q′, etc. to denote cubes in Rn with sides parallel to the coordinate
axes. We write δQ to denote the sidelength of a cube Q.

Our review of [18] starts with a local version of our present Problem (A). Let
Q ⊂ Rn be a cube, let x0 ∈ Q be a point, and let P0 ∈ P be a jet. We pose the
following Local Interpolation Problem:

LIP(Q,E, f, x0, P0): Find a function F ∈ Lm,p (Rn), depending linearly

on (f, P0), such that

F = f on E ∩Q,

Jx0
(F) = P0, and∫

Q

∑
|α|=m

|∂αF (x)|p dx is as small as possible up to a factor C.

If we can solve LIP (Q,E, f, x0, P0) whenever Q is the unit cube Q◦, then we
can easily find a linear extension operator T as in Theorem 3. Moreover, careful
inspection of our solution to LIP (Q◦, E, f, x0, P0) in [18] yields also Theorems 4
and 5. Thus, the heart of the matter is to solve LIP (Q◦, E, f, x0, P0).

To do so, we first associate to any point x ∈ Rn the crucial convex set

σ (x, E) = {Jx (F) : F ∈ X, ‖F‖
X
≤ 1, F = 0 on E} .

This set measures the ambiguity in Jx (F) when we seek functions F ∈ X satisfying
F = f on E, with control on ‖F‖

X
.

Using the geometry of the convex sets σ (x, E), we will attach “labels” A to
cubes Q ⊂ Rn. A label is simply a set of multiindices of order ≤ m − 1. Very
roughly speaking, we say that Q is “tagged” with A if either

280 C. Fefferman, A. Israel, and G. K. Luli

• Q consists of at most one point in E, or

• the scaled monomial y �→ δ
power
Q · (y− x)

α
belongs to σ (x, E) for all α ∈ A

and x ∈ E ∩Q.

If Q is tagged with A, then we are relatively free to modify ∂αF (x) for α ∈
A and x ∈ E when we seek a solution F to our local interpolation problem
LIP (Q,E, f, x0, P0).

The notion of tagging gives rise to a Calderón–Zygmund decomposition CZ (A)
of the unit cube Q◦ for each label A. The cubes of CZ (A) are the maximal dyadic
subcubes of Q◦ that are tagged with A.

There is a natural order relation < on labels. If labels A, B satisfy A < B, then
the decomposition CZ (A) of Q◦ refines the decomposition CZ (B). The maximal
label under < is the empty set ∅, and the Calderón–Zygmund decomposition CZ (∅)
consists of a single cube Q◦. The minimal label under < is the set M of all
multiindices of order ≤ m − 1. The decomposition CZ (M) is so fine that each
Q ∈ CZ (M) contains at most one point of our finite set E.

We now use the decomposition CZ (A) to solve Local Interpolation Problems.
By induction on the label A (with respect to the order <), we solve the problem
LIP (Q,E, f, x0, P0) whenever Q ∈ CZ (A).

In the base case, A = M, the minimal label.
Since any Q ∈ CZ (M) contains at most one point of E, our local interpolation

problem LIP (Q,E, f, x0, P0) is trivial.

For the induction step, fix a label A �= M. Let A− be the label immediately
preceding A in the order <. We make the inductive assumption that we can
solve LIP (Q′, E, f, x′, P′) whenever Q′ ∈ CZ (A−). Using this assumption, we solve
LIP (Q,E, f, x0, P0) when Q ∈ CZ (A). To do so, we recall that CZ (A−) refines
CZ (A), hence our cube Q is partitioned into finitely many cubes Qν ∈ CZ (A−).
For each Qν, we carefully pick a point xν ∈ Qν and a jet Pν ∈ P . Our inductive
assumption allows us to solve the local problem

LIP (Qν, E, f, xν, Pν)

for each ν. Using a partition of unity, we patch together the solutions Fν to the
above local problems, and hope that the resulting function F solves our problem
LIP (Q,E, f, x0, P0). It works provided we do a good job of picking the jets Pν.
We refer the reader to the introduction of [18] for some of the ideas involved in
picking the Pν. (See especially the discussion in [18] of “keystone cubes”).

Thus, we can complete our induction on A, and solve LIP (Q,E, f, x0, P0) when-
ever Q ∈ CZ (A).

In particular, since CZ (∅) consists of the single cube Q◦, we have succeeded
in solving any local interpolation problem LIP (Q,E, f, x0, P0) with Q = Q◦. As
explained above, this allows us to deduce Theorems 3, 4, 5. That’s the good news.

The bad news is that we cannot tell whether a given cube Q is tagged with a
given label A, since that requires perfect knowledge of the convex sets σ(x, E)⊂P .
Therefore, our Calderón–Zygmund decomposition CZ (A) and our proofs of The-
orems 3, 4, and 5 in [18] are non-constructive.

Fitting a Sobolev function to data I 281

To overcome the obstacle, we introduce here a variant of our local interpolation
problem, a variant of the convex set σ (x, E), and a modified definition of tagging
of a cube Q with a label A. We still cannot tell whether a given Q is tagged with
a given A. However, using ideas from [18], we show how to test Q for tagging
with A. If Q passes the test, then it is tagged with A. If Q fails the test, then we
do not know whether Q is tagged with A, but we know that a somewhat larger
cube Q′ ⊃ Q cannot be tagged with A.

We show how to implement the above test by efficient algorithms. Moreover, if
we are given dyadic cubes Q1 ⊂ Q2 ⊂ · · · ⊂ Qν such that Q1 ∩ E = · · · = Qν ∩ E,
then we can test all the Qi simultaneously. This idea is useful if our set E involves
vastly different lengthscales. It provides a crucial speedup that allows us to bound
the work by N logN as promised in Theorem 6.

Using the above tests, we produce a decomposition CZ (A) analogous to the
decomposition defined in [18]. This allows a constructive proof of Theorems 3, 4,
and 5. To implement that proof by efficient algorithms and thus establish Theo-
rem 6 requires additional ideas not discussed in this introduction.

This concludes our sketch of the proof of Theorem 6. We again warn the reader
that it is highly oversimplified. The sections that follow, along with [20], [21], will
give the correct version. In the next section, we start from scratch.

We mention several open problems related to our work.

• In place of our standing assumption p > n, we may assume merely that p >
n/m. The Sobolev theorem would then tell us that Lm,p (Rn) ⊂ C0

loc (R
n).

Consequently, any F ∈ Lm,p (Rn) may be restricted to a finite set E, and
our Problems (A) and (B) still make sense. It would be very interesting to
understand the problems of interpolation and extension for Lm,p (Rn) and
Wm,p (Rn) when n/m < p ≤ n.

• Is it possible to dispense with the assists Ω = {ω1, . . . ,ωνmax } in Theorem 4,
and write each ξl in the form

ξl (f) =

I∑
i=1

βli f (zli)

with I, βli and zli ∈ E independent of f, and with |I| ≤ C? Shvartsman [37]
has proven this for X = L2,p

(
R2

)
(p > 2). Perhaps, it is true for general

Lm,p (Rn). The analogous result for interpolation by functions in Cm (Rn)
is contained in Fefferman–Klartag [17]. For the extension operators T in
Theorem 3, one cannot get away without assists; see [19].

These issues are connected with “sparsification”; see [2].
• We have constructed essentially optimal functions F ∈ X that agree perfectly

with a given function f on E. It would be natural to require instead that F
agree with f up to a given tolerance. More precisely, given f ∈ X (E) and a
positive function μ : E → (0,∞], we should compute a function F ∈ X that
minimizes

(1.11) ‖F‖p
X
+

∑
x∈E

μ (x) |F (x) − f (x)|
p
,

282 C. Fefferman, A. Israel, and G. K. Luli

up to a universal constant factor C. (When μ (x) = +∞, we demand that
F (x) = f (x) and delete the corresponding term from the above sum.) Com-
pare with Fefferman–Klartag [17].

It would be interesting to study the problem of optimizing (1.11) for general
Lm,p (Rn) and Wm,p (Rn) (p > n). The work of P. Shvartsman [36] on the
Banach space L1,p (Rn) + Lp (Rn, dμ) is surely relevant here.

• It would be very interesting to produce practical algorithms that (unlike our
present algorithms) compute C-optimal interpolants for a not-so-big universal
constant C.

This paper is a part of a literature on “Whitney’s extension problem”, going
back over 3/4 century and including contributions by many authors. See e.g.,
H. Whitney [40]–[42], G. Glaeser [22], Y. Brudnyi and P. Shvartsman [5]–[8],
P. Shvartsman [32]–[35], J. Wells [39], E. Le Gruyer [28], [29], M. Hirn and E. Le
Gruyer [23], C. Fefferman and B. Klartag [16], [17], N. Zobin [43], [44], E. Bier-
stone, P. Milman, and W. Paw�lucki [3], [4], as well as our own works [10]–[15], [25],
and [27].

We are grateful to Bernard Chazelle, Bo’az Klartag, Assaf Naor, Pavel Shvarts-
man, and Nahum Zobin for many enlightening conversations. We are grateful also
to the American Institute of Mathematics, the College of William and Mary, the
Fields Institute, and the Banff International Research Station for hosting work-
shops on Whitney’s problems. The support of the AFOSR and the NSF is grate-
fully acknowledged.

Let us now begin the work of interpolating data.

2. Preliminaries

2.1. Notation

Fix integers m,n ≥ 1 and a real number p > n. We work in Rn with the �∞

metric. Thus, given x = (x1, . . . , xn) ∈ Rn we denote

|x| := max
1≤i≤n

|xi|.

Given nonempty subsets S, S ′ ⊂ Rn, we denote

dist(S, S ′) := inf{|x− y| : x ∈ S, y ∈ S ′},
diam(S) := sup{|x− y| : x, y ∈ S}.

A cube takes the form

Q =
[
x1 − δ/2, x1 + δ/2

)× · · · × [
xn − δ/2, xn + δ/2

)
.

Let xQ := (x1, . . . , xn) and δQ := δ denote the center and sidelength of the cube Q,
respectively. Let A ·Q (A > 0) denote the A-dilate of Q about its center. Hence,
the cube A ·Q has center xQ and sidelength AδQ.

Fitting a Sobolev function to data I 283

A dyadic cube takes the form

Q =
[
j1 · 2k, (j1 + 1) · 2k

)× · · · × [
jn · 2k, (jn + 1) · 2k)

for j1, . . . , jn, k ∈ Z.
We say that two dyadic cubes Q and Q ′ touch either if Q = Q ′, or if Q is

disjoint from Q ′ but the boundaries ∂Q and ∂Q ′ have a nonempty intersection.
We write Q↔ Q ′ to indicate that Q touches Q ′.

We may bisect a dyadic cube Q into 2n dyadic subcubes of sidelength 1
2
δQ in

the natural way. We call these subcubes the children of Q. We write Q+ to denote
the parent of Q, i.e., the unique dyadic cube for which Q is a child of Q+.

We let P denote the vector space of real-valued (m− 1)-st degree polynomials
on Rn, and we set D := dimP . We identify P with RD, by identifying P ∈ P with
(∂αP(0))|α|≤m−1.

Given F ∈ Cm−1
loc (Rn) and a point x ∈ Rn, let JxF ∈ P (the “jet of F at x”)

denote the (m− 1)-st order Taylor polynomial

(JxF)(x) =
∑

|α|≤m−1

1

α!
∂αF(x) · (x− x)α.

Given P, R ∈ P , we define the product P
x R = Jx(P · R) ∈ P .

Sobolev spaces. We work with the Sobolev space X = Lm,p(Rn) with seminorm

‖F‖X =
(∫

Rn

∑
|α|=m

|∂αF(x)|pdx
)1/p

.

We assume throughout that p > n. Given a connected domain Ω ⊂ Rn with
piecewise smooth boundary, let X(Ω) = Lm,p(Ω) be the Sobolev space consisting
of functions F : Ω → R whose distributional derivatives ∂αF (for |α| = m) belong
to Lp(Ω). On this space we define the seminorm

‖F‖X(Ω) =
(∫

Ω

∑
|α|=m

|∂αF(x)|pdx
)1/p

.

We may restrict attention to domains that are given as the union of two intersecting
rectangular boxes. (A rectangular box is a Cartesian product of left-closed, right-
open intervals.)

Lists. A list Ξ is a collection of elements that can contain duplicates. Hence, for
a list

(2.1) Ξ = {ξ1, . . . , ξL}

we may have ξ� = ξ� ′ for distinct �, � ′. We define # [Ξ] = L for the list (2.1).

284 C. Fefferman, A. Israel, and G. K. Luli

Given a sequence (aξ) of real numbers, indexed by elements ξ in Ξ, we define

∑
ξ∈Ξ

aξ =

L∑
�=1

aξ�
.

Given a sequence Ξ1, . . . , ΞM of lists, where Ξm =
{
ξ
[m]
1 , . . . , ξ

[m]
Lm

}
for each

1 ≤ m ≤ M, we define the list Ξ1 ∪ · · · ∪ ΞM by taking all the elements in the
respective sublists together, namely

Ξ1 ∪ · · · ∪ ΞM :=
{
ξ
[1]
1 , . . . , ξ

[1]
L1
, . . . , ξ

[M]
1 , . . . , ξ

[M]
LM

}
.

We do not remove duplicate elements when forming the union of lists.

Convention on constants. A universal constant is a positive number deter-
mined by m,n, and p. We use letters C, c, C ′, etc, to denote universal constants.
Let t ∈ R. We use the symbol C(t) to denote a positive number that depends
only on m,n, p, and t. A single letter or symbol may be used to denote different
constants in separate occurrences.

We write A � B or A = O(B) to indicate the estimate A ≤ CB, and we write
A ∼ B to indicate the estimate C−1B ≤ A ≤ CB. Here, the constant C depends
only on m,n, and p.

Similarly, we write A �t B or A = Ot(B) to indicate the estimate A ≤ C(t) ·B,
and we write A ∼t B to indicate the estimate C(t)−1 · B ≤ A ≤ C(t) · B. Here, the
constant C(t) depends only on m,n, p, and t.

2.2. The infinite-precision model of computation

For infinite-precision, our model of computation consists of an idealized von Neu-
mann computer [38] able to work with exact real numbers. We assume that a single
memory cell is capable of storing an arbitrary real number with perfect precision.

We assume that each of the following operations can be carried out using one
unit of “work”.

• We read the real number stored at a given address, or entered from an input
device.

• We write a real number from a register to a given memory address or to an
output device.

• Given real numbers x and y, we return the numbers x + y, x − y, xy, x/y
(unless y = 0), exp(x), and ln(y) (if y > 0), and we decide whether x < y,
x > y or x = y.

• Given a real number x, we return the greatest integer less than or equal to x.

• Given dyadic intervals I = [x, y) and J = [a, b), both contained in [0,∞), we
return the smallest dyadic interval containing both I and J.

Fitting a Sobolev function to data I 285

The above model of computation is subject to serious criticism, even without
our assumption on the rapid processing of dyadic intervals. (See [17], [24], [31].)
Therefore, in [21], we will give a model of computation in finite-precision. We
believe that our finite-precision model faithfully reflects a subset of the capabilities
of an actual computer (e.g., we don’t assume any possibility of parallel processing).

Presumably, few readers will want to wade through the issues arising from
implementing our algorithms in finite-precision. Hence, we first present our results
assuming the above infinite-precision model of computation. We then explain how
to modify our algorithms in order to succeed in the finite-precision model. These
modifications are described in [21].

2.3. Basic estimates on Sobolev functions

Let P denote the vector space of (m − 1)st degree polynomials.
Given a point x ∈ Rn and a number δ > 0, we define

|P|x,δ := max
|β|≤m−1

|∂βP(x)| · δ|β|+n/p−m for P ∈ P .

Thus, |P|x,δ is a norm on P . The unit ball of this norm is B(x, δ) := {P ∈ P :
|P|x,δ ≤ 1}.

We next present a few basic properties of the objects defined above.

Lemma 7. Let Q ⊂ Rn be a cube and let K ≥ 1. For any polynomial P ∈ P, the
following estimates hold:

δ−m
Q ‖P‖Lp(Q) ∼

m−1∑
k=0

δk−m
Q ‖∇kP‖Lp(Q) ∼K |P|x,δ for x ∈ KQ, δ ∈ [K−1δQ, KδQ].

|P|x ′,δ ′ ≤ C(K) · |P|x,δ for |x− x ′| ≤ Kδ ′ and δ ≤ Kδ ′.
B(x, δ) ⊆ C(K) · B(x ′, δ ′) for |x − x ′| ≤ Kδ ′ and δ ≤ Kδ ′.

Here, C(K) depends only on m,n, p, and K.

We present a few useful estimates on functions in X(Q) = Lm,p(Q), where
Q ⊂ Rn is a cube. These estimates originate from the classical Sobolev inequality
(Proposition 8) and an interpolation inequality (Proposition 9).

Proposition 8 (Sobolev inequality). Let Q ⊂ Rn be a cube, and let F ∈ X(Q).
For any x, y ∈ Q, and any multiindex β with |β| ≤m − 1, we have

∣∣∂β(JxF− F)(y)∣∣ ≤ C · δm−|β|−n/p
Q ‖F‖X(Q).

Proof. The estimate is an easy consequence of the Sobolev embedding theorem
and Taylor’s theorem.

We first review the Sobolev embedding theorem. Let F ∈ X(Q) = Lm,p(Q).
Due to our standing assumption that p > n, we can use the Sobolev embedding the-

286 C. Fefferman, A. Israel, and G. K. Luli

orem (see [30]), which implies that F belongs to the Hölder space1 Cm−1,1−n
p (Q),

and moreover we have an estimate on the Hölder seminorm:

(2.2) ‖F‖Cm−1,1−n/p(Q) ≤ K · ‖F‖Lm,p(Q).

Here, K = K(m,n, p). In particular, K is independent of Q. We refer the reader
to [30] for a proof of the estimate (2.2) when Q = [0, 1)n. We can prove (2.2) for
the same choice of K and a general Q ⊂ Rn using a standard rescaling argument.
We provide details below.

Let Q ⊂ Rn, and let F ∈ Lm,p(Q). Let τ : Rn → Rn be a transformation of the
form τ(x) = R ·x+x0 (R > 0, x0 ∈ Rn) satisfying that τ maps Q◦ := [0, 1)n onto Q.

We define a transformed function F̃ = F ◦ τ : Q◦ �→ R. The Sobolev and Hölder
norms relevant to our discussion are transformed in a simple fashion. Indeed, by
a change of variables we have

‖F̃‖Lm,p(Q◦) =
(∫

Q◦
|∇m(F(R · x+ x0))|p dx

)1/p

= Rm−n/p
(∫

Q

|∇mF(x)|p dx
)1/p

= Rm−n/p‖F‖Lm,p(Q).

Similarly, we have ‖F̃‖Cm−1,1−n/p(Q◦) = R
m−n/p‖F‖Cm−1,1−n/p(Q).

We apply the known version of the estimate (2.2) to the function F̃. Thus, we

obtain ‖F̃‖Cm−1,1−n/p(Q◦) ≤ K · ‖F̃‖Lm,p(Q◦). From the above equations we thus
deduce that

‖F‖Cm−1,1−n/p(Q) ≤ K · ‖F‖Lm,p(Q).

This completes the proof of (2.2).
Recall that JxF is the (m − 1)st degree Taylor polyomial of F at x. Hence, by

definition,

(2.3) JxF(y) =
∑

|α|≤m−1

1

α!
∂αF(x) · (y− x)α (y ∈ Rn).

Taylor’s theorem states that∣∣∂β(JxF− F)(y)∣∣ ≤ C · |x − y|m−1+γ−|β| · ‖F‖Cm−1,γ(Q)

for any F ∈ Cm−1,γ(Q), any x, y ∈ Q, and any multiindex β with |β| ≤ m − 1.
Here, C = C(m,n, γ) depends only on m, n, and γ. We apply this estimate with
γ = 1− n/p and use (2.2) to see that∣∣∂β(JxF− F)(y)∣∣ ≤ CK · |x− y|m−n/p−|β| · ‖F‖Lm,p(Q)

for any F ∈ Lm,p(Q). We bound |x− y| ≤ δQ to prove the desired estimate and
complete the proof of Proposition 8. �

1Here, Cm−1,γ(Q) (γ ∈ (0, 1]) is the Hölder space consisting of all functions F : Q → R that
satisfy the estimate |∂αF(x) − ∂αF(y)| ≤ A · |x − y|γ for some A < ∞ and for all multiindices α
with |α| = m − 1 and all x, y ∈ Q. The Hölder seminorm of F in Cm−1,γ(Q) is defined to be the
infimum of all such constants A.

Fitting a Sobolev function to data I 287

We can formulate the Sobolev inequality as an estimate involving the norms |·|x,δ
introduced earlier. Indeed,

|JxF− JyF|y,δQ
≤ C ‖F‖X(Q) whenever x, y ∈ Q.

Proposition 9. Let Q ⊂ Rn be a cube, and let F ∈ X(Q). For any multiindex β
with |β| ≤m, we have

‖∂βF‖Lp(Q) ≤ C · [δ−|β|

Q ‖F‖Lp(Q) + δ
m−|β|

Q ‖F‖X(Q)

]
.

Proof. A standard scaling argument allows us to reduce to the case when Q =
[0, 1)n. For a proof of this estimate, see [30]. �

Lemma 10. Let Q ⊂ Rn be a cube, and let F ∈ X(Q). For any x ∈ Q, we have

δ−m
Q ‖F‖Lp(Q) ≤ C ·

[
‖F‖X(Q) +

∑
|β|≤m−1

|∂βF(x)|δ|β|+n/p−m
Q

]
(2.4)

≤ C ′ · [‖F‖X(Q) + δ
−m
Q ‖F‖Lp(Q)

]
.

For any cube Q ′ ⊂ Q, we have

(2.5) δ−m
Q ‖F‖Lp(Q) ≤ C ′′ · [δ−m

Q ′ ‖F‖Lp(Q ′) + ‖F‖X(Q)

]
.

Here, C,C ′, C ′′ denote constants depending only on m,n, and p.

Proof. Let Q ⊂ Rn, and let x, y ∈ Q.
From the Sobolev inequality and the definition (2.3) of the Taylor polyomial,

we have

|F(y)| ≤ |F(y) − JxF(y)| + |JxF(y)|
� δm−n/p

Q ‖F‖X(Q) +
∑

|β|≤m−1

|∂βF(x)| · |x− y||β|.

Hence,∫
Q

|F(y)|p dy � δmp−n
Q ‖F‖p

X(Q)
· Vol(Q) +

∑
|β|≤m−1

∣∣∂βF(x)∣∣p ·
∫
Q

|x− y||β|·p
dy

� δmp
Q ‖F‖p

X(Q) +
∑

|β|≤m−1

∣∣∂βF(x)∣∣p · δ|β|·p+n
Q

We raise each side to the power 1/p. This implies the first estimate in (2.4).
We now complete the proof of (2.4). Let |β| ≤ m − 1, and let x, y ∈ Q.

As before, from the Sobolev inequality and (2.3) we have∣∣∂βF(x)∣∣ ≤ ∣∣∂βF(x) − ∂β(JyF)(x)∣∣ + ∣∣∂β(JyF)(x)∣∣
� δm−|β|−n/p

Q ‖F‖X(Q) +
∑

|γ|≤m−1−|β|

∣∣∂β+γF(y)
∣∣ · |x− y||γ|

≤ δm−|β|−n/p
Q ‖F‖X(Q) +

∑
|γ|≤m−1−|β|

∣∣∂β+γF(y)
∣∣ · δ|γ|

Q .

288 C. Fefferman, A. Israel, and G. K. Luli

We raise this estimate to the power p and average over y ∈ Q. Hence,

|∂βF(x)| � δm−|β|−n/p
Q ‖F‖X(Q) +

∑
|γ|≤m−1−|β|

δ
|γ|−n/p
Q ‖∂β+γF‖Lp(Q).

We apply Proposition 9 to estimate the terms in the sum over γ. We see that

‖∂β+γF‖Lp(Q) is bounded by C · [δm−|β|−|γ|
Q · ‖F‖X(Q) + δ

−|β|−|γ|
Q · ‖F‖Lp(Q)

]
.

Thus, we conclude that∣∣∂βF(x)∣∣ � δm−|β|−n/p
Q ‖F‖X(Q) + δ

−|β|−n/p
Q ‖F‖Lp(Q).

We thus obtain the second estimate in (2.4).
We will finally prove the inequality (2.5). LetQ ′ ⊂ Q be given cubes. Then (2.4)

implies that

δ−m
Q ‖F‖Lp(Q) � ‖F‖X(Q) +

∑
|β|≤m−1

|∂βF(x)| · δ|β|+n/p−m
Q ′ for any x ∈ Q ′.

(Here, we use that δQ ′ ≤ δQ and |β| + n/p −m < 0.) By averaging p-th powers
in the above estimate, we see that

δ−m
Q ‖F‖Lp(Q) � ‖F‖X(Q) +

∑
|β|≤m−1

δ
|β|−m
Q ′ ‖∂βF‖Lp(Q ′).

Finally, we apply Proposition 9 to estimate the terms in the sum over β. Thus, we

see that δ
|β|−m
Q ′ ‖∂βF‖Lp(Q ′) (0 ≤ |β| ≤ m − 1) is bounded by C · [‖F‖X(Q) +

δ−m
Q ′ ‖F‖Lp(Q ′)

]
. This completes the proof of (2.5). This concludes the proof

of Lemma 10. �

Lemma 11. Let Q ′, Q ′′ ⊂ Rn be cubes with intersecting closures, and suppose
that 1

2
δQ ′′ ≤ δQ ′ ≤ 2δQ ′′ . Then for any R ′, R ′′ ∈ P and any H ∈ X, we have

δ−m
Q ′ ‖R ′ − R ′′‖Lp(Q ′) � δ−m

Q ′ ‖H− R ′‖Lp(65
64

Q ′) + δ
−m
Q ′′ ‖H− R ′′‖Lp(65

64
Q ′′)

+ ‖H‖
X(65

64
Q ′) + ‖H‖

X(65
64

Q ′′).

Proof. First we write

δ−m
Q ′ ‖R ′ − R ′′‖Lp(Q ′) ≤ δ−m

Q ′ ‖H− R ′‖Lp(65
64

Q ′) + δ
−m
Q ′ ‖H− R ′′‖Lp(65

64
Q ′).

For any fixed x ∈ 65
64
Q ′ ∩ 65

64
Q ′′, Lemma 10 gives that

δ−m
Q ′ ‖H− R ′′‖Lp(65

64
Q ′) � ‖H‖

X(65
64

Q ′) +
∑

|β|≤m−1

|∂β(H − R ′′)(x)|δ|β|+n
p
−m

Q ′

and also∑
|β|≤m−1

|∂β(H − R ′′)(x)|δ|β|+n
p
−m

Q ′ � ‖H‖
X(65

64
Q ′′) + δ

−m
Q ′′ ‖H− R ′′‖Lp(65

64
Q ′′).

This implies the conclusion of the lemma. �

Fitting a Sobolev function to data I 289

A rectangular box B ⊂ Rn is a Cartesian product of coordinate intervals that are
left-closed and right-open, where each interval has a nonempty interior. The length
of each interval is a sidelength of B. The aspect ratio of B is the ratio of the longest
to shortest sidelength of B.

Let K ≥ 1. Suppose that B is a rectangular box with aspect ratio at most K.
We can map a cube onto B by applying a transformation of the form τ : (x1, . . . , xn)
�→ (δ1x1, . . . , δnxn), with 1 ≤ |δj| ≤ K for j = 1, . . . , n. Let F ∈ X(B). By pre-
composing F with the transformation τ, and using Proposition 8 (the Sobolev
inequality), we see that

(2.6) |∂β(F − JyF)(x)| ≤ C(K) · ‖F‖X(B)|x− y|m−n/p−|β|

for all x, y ∈ B, |β| ≤ m− 1. We raise this estimate to the power p, and integrate
over x ∈ B to obtain

(2.7) ‖∂β(F − JyF)‖Lp(B) ≤ C(K) · ‖F‖X(B) diam(B)m−|β|.

Lemma 12. Let B1, B2 be rectangular boxes with aspect ratio at most K and with
B1 ∩ B2 �= ∅. Then for any F ∈ X(B1 ∪ B2), any x, y ∈ B1 ∪ B2, and any β with
|β| ≤ m− 1, we have

(2.8) |∂β(JxF− F)(y)| ≤ C(K) · |x− y|m−|β|−n/p · {‖F‖X(B1) + ‖F‖X(B2)

}
.

Proof. If either x, y ∈ B1 or x, y ∈ B2 then (2.8) follows from the estimate (2.6).
Otherwise, we may assume that x ∈ B1 and y ∈ B2. Pick z ∈ B1 ∩B2 with the

property that |x − z| ≤ |x− y| and |y− z|≤ |x − y|, and note that

|JxF− JyF|y,|x−y| ≤ |JxF− JzF|y,|x−y| + |JzF− JyF|y,|x−y|

� |JxF− JzF|z,|x−z| + |JzF− JyF|z,|y−z| (by Lemma 7).

Now, (2.6) implies that

|JxF− JyF|y,|x−y| ≤ C(K) ·
{‖F‖X(B1) + ‖F‖X(B2)

}
.

This completes the proof of the lemma. �

Our last result is a special case of the Jones extension theorem [26].

Proposition 13. Let Q be a cube in Rn. Then there exists a bounded linear
map T : X(Q) → X, such that T(F) = F on Q, and ‖T(F)‖X ≤ C‖F‖X(Q) for each
F ∈ X(Q). Here, the constant C depends only on the parameters of the function
space X, i.e., on the numbers m,n, p.

2.4. Trace norms

Given a finite subset E ⊂ Rn, let X(E) denote the space of all functions f : E→ R,
with the trace seminorm

‖f‖X(E) := inf{‖F‖X : F ∈ X, F = f on E}.

290 C. Fefferman, A. Israel, and G. K. Luli

Given a cube Q ⊆ Rn, and given (f, P) ∈ X(E)⊕ P , let
(2.9)

‖(f, P)‖Q := inf

{
M ≥ 0 : ∃ F ∈ X s.t.

F = f on E ∩Q
‖F‖X(Q) + δ

−m
Q ‖F− P‖Lp(Q) ≤M

}
.

Note that ‖(f, P)‖Q is a seminorm on the space X(E)⊕ P .
Let

(2.10) σ(Q) :=

{
P ∈ P : ∃ ϕ ∈ X s.t.

ϕ = 0 on E ∩Q
‖ϕ‖X(Q) + δ

−m
Q ‖ϕ− P‖Lp(Q) ≤ 1

}
.

Note that σ(Q) ⊂ P is convex and symmetric (P ∈ σ(Q) =⇒ −P ∈ σ(Q)).
As an easy consequence of our definitions, we have the following result.

Lemma 14. Given cubes Q1 ⊂ Q2 such that δQ2
≤ AδQ1

, we have ‖(f, P)‖Q1
≤

C(A) · ‖(f, P)‖Q2
and σ(Q2) ⊂ C(A) · σ(Q1). In fact, one can take C(A) = Am.

Our next result relates the convex sets σ(Q1) and σ(Q2), where Q1 ⊂ Q2 are
cubes that may have vastly different sizes.

Lemma 15. Given cubes Q1 ⊂ Q2, we have

(2.11) σ(Q2) ⊂ C · [σ(Q1) + B(xQ1
, δQ2

)] .

If additionally Q1 ∩ E = Q2 ∩ E, then also

(2.12) c · [σ(Q1) + B(xQ1
, δQ2

)] ⊂ σ(Q2).

Proof. Suppose that R ∈ σ(Q2). By definition, this means that there exists φ ∈ X

such that φ = 0 on Q2 ∩E, and ‖φ‖X(Q2)+δ
−m
Q2

‖φ−R‖Lp(Q2) ≤ 1. In particular,
we have φ = 0 on Q1 ∩ E. Also, the Sobolev inequality implies that

‖φ‖X(Q1) + δ
−m
Q1

‖φ− JxQ1
φ‖Lp(Q1) ≤ C ‖φ‖X(Q1) ≤ C ‖φ‖X(Q2) ≤ C.

Hence, JxQ1
φ ∈ Cσ(Q1). (Recall that xQ1

is the center of the cube Q1.)
Similarly, using the triangle inequality followed by the Sobolev inequality, we

have

δ−m
Q2

‖JxQ1
φ− R‖Lp(Q2) ≤ δ−m

Q2
‖φ− R‖Lp(Q2) + δ

−m
Q2

‖φ− JxQ1
φ‖Lp(Q2)

≤ δ−m
Q2

‖φ− R‖Lp(Q2) + C‖φ‖X(Q2) ≤ 1+ C.
Thus, JxQ1

φ− R ∈ C · B(xQ1
, δQ2

).

Hence, we have shown that R = JxQ1
φ+(R−JxQ1

φ) ∈ Cσ(Q1)+CB(xQ1
, δQ2

).
Since R ∈ σ(Q2) was arbitrary, this proves the first inclusion (2.11).

We now assume that Q1 ∩ E = Q2 ∩ E and prove the second inclusion (2.12).

Let R ∈ σ(Q1) + B(xQ1
, δQ2

), i.e., suppose that R = P + P# with P ∈ σ(Q1)
and P# ∈ B(xQ1

, δQ2
).

Fitting a Sobolev function to data I 291

By definition, P# ∈ B(xQ1
, δQ2

) implies that |P#|xQ1
,δQ2

≤ 1, hence

(2.13) δ−m
Q2

‖P#‖Lp(Q2) ≤ C (see Lemma 7).

By definition, P ∈ σ(Q1) implies that there exists ϕ ∈ X such that ϕ = 0

on Q1 ∩ E and ‖ϕ‖X(Q1) + δ
−m
Q1

‖ϕ − P‖Lp(Q1) ≤ 1. We now pick ϕ̃ ∈ X with
ϕ̃ = ϕ on Q1 and ‖ϕ̃‖X ≤ C‖ϕ‖X(Q1). (See Proposition 13.) Note that ϕ̃ = 0 on
Q1 ∩ E = Q2 ∩ E. Moreover,

δ−m
Q2

‖ϕ̃− R‖Lp(Q2) ≤ δ−m
Q2

‖ϕ̃− P‖Lp(Q2) + δ
−m
Q2

‖P#‖Lp(Q2)

≤ δ−m
Q2

‖ϕ̃− P‖Lp(Q2) + C (by (2.13))

≤ Cδ−m
Q1

‖ϕ̃− P‖Lp(Q1) + C‖ϕ̃‖X(Q2) + C (by Lemma 10)

≤ C ′δ−m
Q1

‖ϕ− P‖Lp(Q1) + C
′‖ϕ‖X(Q1) + C

′ ≤ C ′′.

Since we also have ‖ϕ̃‖X(Q2) ≤ C, it follows that R ∈ Cσ(Q2). Since R ∈ σ(Q1) +
B(xQ1

, δQ2
) was arbitrary, this proves (2.12) and completes the proof of the lemma.

�

2.5. The depth of linear maps

Let E = {z1, . . . , zN} ⊂ Rn. We fix this enumeration of E for the rest of the paper.
A linear functional ω : X(E) → R may be written as

(2.14) ω(f) =

N∑
j=1

μj · f(zj) for real coefficients μ1, . . . , μN.

That is the long form of ω. Let depth(ω) (“the depth of ω”) be the number of
nonzero coefficients μj in (2.14).

Suppose depth(ω) = d. Then let 1 ≤ j1 < j2 < · · · < jd ≤ N be the indices for
which μj �= 0 above. Also, let μ̃k = μjk for k = 1, . . . , d. Then we can write ω in
the form

ω(f) =

d∑
k=1

μ̃k · f(zjk).

That is the short form of ω.
To store ω in its long form, we store μ1, . . . , μN.
To store ω in its short form, we store d, μ̃1, . . . , μ̃d, and j1, . . . , jd.
LetΩ = {ω1, . . . ,ωK} be a list of linear functionals on X(E), each given in short

form. Recall that a list may contain duplicates. Hence, we can have ωk = ωk ′

with k �= k ′. We store the list Ω by storing a list of pointers to the functionals in
Ω. If we have stored two lists of functionals Ω and Ω ′, then we can compute and
store Ω ∪Ω ′ using work at most C · [#(Ω) + #(Ω ′)].

A functional ξ : X(E)⊕ P → R may be written in the form

(2.15) ξ(f, P) = λ(P) +

N∑
j=1

μjf(zj)

for coefficients μ1, . . . , μN and a functional λ : P → R. That’s the long form of ξ.

292 C. Fefferman, A. Israel, and G. K. Luli

Let d ∈ N. A functional ξ : X(E) ⊕ P → R has Ω-assisted depth d provided
that

(2.16) ξ(f, P) = λ(P) + η(f) +

νmax∑
ν=1

γνωkν
(f),

where η : X(E) → R is a linear functional, and depth(η) + νmax ≤ d. That is a
short form of ξ in terms of the assists Ω. Note that perhaps we can describe a
given ξ in many different ways in short form.

To store the long form of ξ, we store λ, μ1, . . . , μN. See (2.15).
To store a short form of ξ (in terms of the assists Ω), we store λ, νmax,

γ1, . . . , γνmax , k1, . . . , kνmax , and the short form of η. See (2.16).

A linear map S : X(E)⊕ P → P has Ω-assisted depth d provided that

(f, P) �→ ∂α [S(f, P)] (0) has Ω-assisted depth d, for each |α| ≤m − 1.

To store a short form of the map (f, P) �→ S(f, P), we store a short form of each of
the linear functionals (f, P) �→ ∂α [S(f, P)] (0) (for |α| ≤m − 1).

A linear map T : X(E)⊕ P → X has Ω-assisted depth d provided that

(f, P) �→ ∂α [T(f, P)] (x) has Ω-assisted depth d, for each x ∈ Rn, |α| ≤ m− 1.

We can represent the map T on a computer by giving an algorithm that accepts
queries: A query consists of a point x ∈ Rn. The response to a query is a short
form of each of the linear functionals (f, P) �→ ∂α

[
T(f, P)

]
(x) (for |α| ≤ m− 1).

When we say that a linear functional ω has bounded depth, we mean that its
depth is bounded by a universal constant C.

When we say that a linear map T (or linear functional ξ) hasΩ-assisted bounded
depth, we mean that T (or ξ) hasΩ-assisted depth d, where d is at most a universal
constant C.

2.6. Sets of multi-indices

Let M denote the collection of all multiindices α = (α1, . . . , αn) of order |α| =
α1 + · · ·+ αn ≤m − 1.

We define a total order relation < on M as follows: Given distinct α =
(α1, . . . , αn), β = (β1, . . . , βn) ∈ M, let k ∈ {1, . . . , n} be the maximal index such
that α1+· · ·+αk �= β1+· · ·+βk. Then we write α < β if α1+· · ·+αk < β1+· · ·+βk,
and we write α > β otherwise.

We also define a total order relation< on 2M. Given distinct subsets A,B ⊂ M,
pick the minimal element α ∈ AΔB (with respect to the order relation defined
above). Then we write A < B if α ∈ A, and we write B < A otherwise. Here,
AΔB denotes the symmetric difference (A \B)∪ (B \A). Note that M is minimal
and that the empty set ∅ is maximal with respect to this order relation on 2M.

Lemma 16. The following properties hold.

• If α,β ∈ M and |α| < |β| then α < β.
• If α,β ∈ M, α < β and |γ| ≤ m− 1− |β|, then α+ γ < β + γ.

Fitting a Sobolev function to data I 293

Given A ⊂ M, we say that A is monotonic if for every α ∈ A and γ ∈ M with
|γ| ≤m − 1− |α|, we have α + γ ∈ A.

Remark 17. Assume that A ⊂ M is monotonic, P ∈ P , x0 ∈ Rn, and ∂αP(x0) = 0
for all α ∈ A. Then, for x ∈ Rn and α ∈ A, we have

∂αP(x) =
∑

|γ|≤m−1−|α|

1

γ!
∂α+γP(x0) · (x− x0)γ = 0.

Hence, ∂αP ≡ 0 for any α ∈ A.

2.7. Bases for the space of polynomials

Let ε ∈ (0, 1) be a given real number. We assume throughout this section that

ε < small enough constant determined by m,n, p.

2.7.1. Bases. Suppose we are given the following.

• A set of multiindices A ⊂ M.

• A collection of polynomials (Pα)α∈A with each Pα ∈ P .

• A symmetric convex subset σ ⊂ P .

• A point x ∈ Rn, and real numbers Λ ≥ 1, δ > 0 (we call δ a “lengthscale”).

We say that (Pα)α∈A forms an (A, x, ε, δ)-basis for σ if the following conditions
are met.

(B1) Pα ∈ ε · δ|α|+n/p−m · σ for all α ∈ A.

(B2) ∂βPα(x) = δαβ for all α,β ∈ A.

(B3) |∂βPα(x)| ≤ ε · δ|α|−|β| for all α ∈ A, β ∈ M, β > α.

(Here, δαβ denotes the Kronecker delta: δαβ=1 if α=β; δαβ=0 if α �=β.) We say
that (Pα)α∈A forms an (A, x, ε, δ,Λ)-basis for σ if, in addition to (B1)–(B3), the
following condition is met.

(B4) |∂βPα(x)| ≤ Λ · δ|α|−|β| for all α ∈ A, β ∈ M.

Remark 18. An (A, x, ε, δ)-basis is automatically an (A, x, ε ′, δ ′)-basis, for ε ′ ≥ ε
and δ ′ ≤ δ. An (A, x, ε, δ,Λ)-basis is automatically an (A, x, ε ′, δ, Λ ′)-basis,
for ε ′ ≥ ε and Λ ′ ≥ Λ. However, there is no simple relationship between an
(A, x, ε, δ,Λ)-basis and an (A, x, ε, δ ′, Λ)-basis, due to the positive powers of δ
appearing in condition (B4).

Note that an (A, x, ε, δ)-basis is also an (A, x, Cmε,Cδ)-basis for any C ≥ 1.

Remark 19. The notion of bases admits a natural rescaling, described below.
Given P ∈ P define the polynomial τx,δ(P) ∈ P by

τx,δ(P)(z) = P(δ · (z − x) + x).

294 C. Fefferman, A. Israel, and G. K. Luli

Assume that (Pα)α∈A forms an (A, x, ε, δ)-basis for a symmetric convex set
σ ⊂ P . Define the rescaled polynomials Pα = δ−|α|τx,δ(Pα) for α ∈ A. Also define
the convex set of polynomials

σ = {δn/p−mτx,δ(P) : P ∈ σ}.

Then (B1)–(B3) imply that (Pα)α∈A forms an (A, x, ε, 1)-basis for σ.
Similarly, under the assumption that (Pα)α∈A forms an (A, x, ε, δ,Λ)-basis for

σ, we deduce that (Pα)α∈A forms an (A, x, ε, 1,Λ)-basis for σ.

2.7.2. Tagged cubes. Assume that we are given a subset E ⊂ Rn, a set of
multiindices A ⊂ M, and a cube Q ⊂ Rn.

We say that Q is tagged with (A, ε) provided that #(E∩Q) ≤ 1 or there exists
A ′ ≤ A such that

σ(Q) has an (A ′, xQ, ε, δQ)-basis (recall that xQ = center of Q).

Remark 20. Note that every cube is tagged with (A, ε) with A = ∅.

Let real numbers η ∈ (0, 1), Λ ≥ 1, and δ > 0 be given. Let A be a set of
multiindices of order ≤ m − 1, and let M = (Mαβ)α,β∈A be a matrix (with real
entries).

We say that M is (η,Λ, δ)-near triangular provided that

|Mαβ − δαβ| ≤
{
η · δ|α|−|β| if α,β ∈ A, β ≥ α,
Λ · δ|α|−|β| if α,β ∈ A.

Lemma 21. If the matrices M = (Mαβ)α,β∈A, M̃ = (M̃αβ)α,β∈A are (η,Λ, δ)-

near triangular and (η̃, Λ̃, δ)-near triangular, respectively, then MM̃ is (η̌, Λ̌, δ)-

near triangular if η̌ < 1, where η̌ = C · (ηΛ̃ + η̃Λ) and Λ̌ = CΛΛ̃ for a universal
constant C.

Proof. Suppose that α,β ∈ A and β > α. Then

(MM̃)αβ =
∑
γ∈A

Mαγ M̃γβ.

If γ ∈ A and γ > α, then the corresponding term in the above sum is bounded in
magnitude by ηΛ̃δ|α|−|γ|δ|γ|−|β| = ηΛ̃δ|α|−|β|. Alternatively, if γ ∈ A and γ < β
then the relevant term is bounded in magnitude by η̃Λδ|α|−|β|. The total number

of terms is at most D = dim(P), hence we see that |(MM̃)αβ| ≤ η̌δ|α|−|β| with η̌
as in the statement of the lemma.

Next, observe that

(MM̃)αα =
∑
γ∈A

Mαγ M̃γα.

Fitting a Sobolev function to data I 295

If γ ∈ A and either γ > α or γ < α, then the relevant term in the above sum is
bounded in magnitude either by ηΛ̃δ|α|−|γ|δ|γ|−|α| = ηΛ̃ or by η̃Λδ|α|−|γ|δ|γ|−|α| =
η̃Λ, respectively. If γ = α, then the relevant term in the sum is equal to

Mαα M̃αα = (1 +O(η))(1 +O(η̃)) = 1+O(η+ η̃).

Hence, we find that |(MM̃)αα − 1|| ≤ η̌.
Finally, we assume that α,β ∈ A and β < α. Then the estimates |Mαγ| ≤

Λδ|α|−|γ| and |M̃γβ| ≤ Λ̃δ|γ|−|β| imply that |(MM̃)αβ| ≤ Λ̌δ|α|−|β| with Λ̌ as in
the statement of the lemma.

This concludes the proof of Lemma 21. �

Lemma 22. Assume that ηΛD is less than a small enough constant depending
on m and n. Then the following holds.

• If the matrix M = (Mαβ)α,β∈A is (η,Λ, δ)-near triangular, then M is in-
vertible and the inverse matrix M−1 is (CηΛD, CΛD, δ)-near triangular.

Here, D = dim(P), and C depends only on m and n.

Proof. Let Y = (δij +Xij)i,j=1,...,K be a K×K matrix, where the Xij are variables.
Let (Y−1)ab be the entries of Y−1 (a, b = 1, . . . , K). Cramer’s rule gives

det Y = P(X) and (detY) · [(Y−1)ab − δab

]
= Pab(X),

where P(X), Pab(X) are K-th degree polynomials in X = (Xij)i,j=1,...,K. In P, Pab,
we separate the monomials containing only the variables Xij with i < j from the
monomials containing at least one variable Xij with i ≥ j. We write P = P0 + P1
and Pab = Pab,0 + Pab,1, where the monomials in P0, Pab,0 contain only Xij with
i < j, and the monomials in P1, Pab,1 contain at least one Xij with i ≥ j.

Suppose that Xij = 0 for i ≥ j. Then Y is upper triangular with 1’s on the main
diagonal, hence the same is true of Y−1. It follows that P0 ≡ 1, and Pab,0 ≡ 0 for
a ≥ b. Now we drop the assumption that Xij = 0 for i ≥ j, and assume instead
that |Xij| ≤ η for i ≥ j and |Xij| ≤ Λ for all i, j. (Here, 0 < η < 1 ≤ Λ.)

We write C,C ′, C ′′, etc. to denote constants depending only on K. By exam-
ining each monomial separately, we see that

|P1(X)|, |Pab,1(X)| ≤ CηΛK−1, and |Pab,0(X)| ≤ CΛK.

Combining these estimates with our knowledge of P0 and Pab,0 (a ≥ b), we con-
clude that

|detY − 1| ≤ CηΛK−1, and |(det Y) · ((Y−1)ab − δab)| ≤
{
CηΛK−1 if a ≥ b,
CΛK all a, b.

This immediately implies the following result:

(*) Let Y = (Yij) be a K× K matrix, satisfying

|Yij − δij| ≤ η for i ≥ j and |Yij| ≤ Λ (all i, j),

where ηΛK−1 is less than a small enough constant depending only on K.

296 C. Fefferman, A. Israel, and G. K. Luli

Then the inverse matrix Y−1 = ((Y−1)ab) satisfies

|(Y−1)ab − δab| ≤ CηΛK−1 for a ≥ b and |(Y−1)ab| ≤ CΛK (all a, b).

Let M = (Mαβ)α,β∈A be an (η,Λ, δ)-near triangular matrix. Let α1 < α2 <

· · · < αK be the elements of A. Applying (*) to the matrix Yij = δ
|αi|−|αj|Mαiαj

,
we find that M−1 is (CηΛK−1, CΛK, δ)-near triangular, as claimed in Lemma 22.

�

Lemma 23. Let x ∈ Rn. Suppose σ2 ⊂ C · [σ1 + B(x, δ)], and suppose σ2 has
an (A, x, ε, δ,Λ)-basis. Then σ1 has an (A, x, CεΛ, δ, CΛ)-basis. Here, C depends
only on m, n, and p.

Proof. By rescaling, we may assume without loss of generality that δ = 1. (See
Remark 19.)

Let (P̃α)α∈A be an (A, x, ε, 1,Λ)-basis for σ2. Then

• P̃α ∈ εσ2 ⊂ Cε [σ1 + B(x, 1)] (α ∈ A);

• ∂βP̃α(x) = δβα (β,α ∈ A);

• |∂βP̃α(x)| ≤ ε (α ∈ A, β ∈ M, β > α);

• |∂βP̃α(x)| ≤ Λ (α ∈ A, β ∈ M).

The first bullet point above gives P̃α = Pα + (P̃α − Pα) with Pα ∈ Cεσ1 (all

α ∈ A) and |∂β(P̃α − Pα)(x)| ≤ Cε (all α ∈ A, β ∈ M).

The four bullet point properties of the P̃α now yield the following properties of
the Pα.

• Pα ∈ Cεσ1 (α ∈ A);

• |∂βPα(x) − δβα| ≤ Cε (β,α ∈ A);

• |∂βPα(x)| ≤ Cε (α ∈ A, β ∈ M, β > α);

• |∂βPα(x)| ≤ CΛ (α ∈ A, β ∈ M).

Inverting the matrix (∂βPα(x))β,α∈A, we obtain a matrix (Mαγ)α,γ∈A such that∑
α∈A

∂βPα(x) ·Mαγ = δβγ (β, γ ∈ A) and |Mαγ − δαγ| ≤ Cε (α, γ ∈ A).

Set P#γ =
∑

α∈A PαMαγ for γ ∈ A. Then

• P
#
γ ∈ Cεσ1 (γ ∈ A);

• ∂βP
#
γ (x) = δβγ (β, γ ∈ A);

• |∂βP#γ (x)| ≤ CΛ (γ ∈ A, β ∈ M).

Fitting a Sobolev function to data I 297

For β > γ, we have

∂βP#γ (x) =
∑
α≤γ

∂βPα(x)Mαγ +
∑
α>γ

∂βPα(x)Mαγ.

For the sum over α ≤ γ, we note that β > γ ≥ α, hence

|∂βPα(x)| ≤ Cε, whereas |Mαγ| ≤ C.
For the sum over α > γ, we note that

|∂βPα(x)| ≤ Λ and |Mαγ| ≤ Cε.
Therefore,

• |∂βP#γ (x)| ≤ CεΛ (γ ∈ A, β ∈ M, β > γ).

Thus, the (P#γ)γ∈A form an (A, x, CεΛ, 1, CΛ)-basis for σ1, which is what we
asserted, since δ = 1. �

Lemma 24. Let x ∈ Rn, ε > 0, and 1 ≤ Z ≤ ε−1/2 be given. Suppose that Z
exceeds a large enough universal constant. Let (Pα)α∈A be an (A, x, ε, δ)-basis
for σ, with

(2.17) max
{|∂βPα(x)|δ|β|−|α| : α ∈ A, β ∈ M} ≥ Z.

Then σ has an (A ′, x, Z−κ, δ)-basis, with A ′ < A. Here, κ > 0 is a universal
constant.

Proof. By rescaling, we may assume without loss of generality that δ = 1. (See
Remark 19.)

Our hypothesis tells us that (Pα)α∈A is an (A, x, ε, 1)-basis for σ, meaning that

Pα ∈ ε · σ;(2.18)

∂βPα(x) = δαβ (α,β ∈ A); and(2.19)

|∂βPα(x)| ≤ ε (α ∈ A, β ∈ M, β > α).(2.20)

Pick the minimal multiindex α ∈ A with maxβ∈M |∂βPα(x)| ≥ Z. (See (2.17).)
Thus,

(2.21) |∂βPα(x)| < Z, for all β ∈ M, α ∈ A, α < α,
and there exists β0 ∈ M such that

(2.22) |∂β0Pα(x)| = max
β∈M

|∂βPα(x)| ≥ Z.

Note that β0 �= α by (2.19), and β0 ≤ α by (2.20). Thus, β0 < α.
Let the elements of M between β0 and α be ordered as follows:

β0 < β1 < · · · < βk = α.

Note that k+ 1 ≤ #M = D.

298 C. Fefferman, A. Israel, and G. K. Luli

Pick k ∈ {0, . . . , k} such that

|∂βkPα(x)|Z
k/(D+1) ≥ |∂β�Pα(x)|Z

�/(D+1) for all � ∈ {0, . . . , k}.

In particular, setting β = βk, we have

|∂βPα(x)| ≥ Z−D/(D+1)|∂β0Pα(x)|
(2.22)

≥ Z1/(D+1), and(2.23)

|∂βPα(x)| ≥ Z1/(D+1)|∂βlPα(x)| for � = k + 1, . . . , k.(2.24)

If β ∈ M, β > α, then (2.20) and (2.23) give

|∂βPα(x)| ≤ ε ≤ 1 ≤ Z−1/(D+1)|∂βPα(x)|.
Meanwhile, if β ∈ M, β < β ≤ α, then (2.24) states that

|∂βPα(x)| ≤ Z−1/(D+1)|∂βPα(x)|.

Thus,

(2.25) |∂βPα(x)| ≤ Z−1/(D+1)|∂βPα(x)| for any β ∈ M, β > β.

Note that |∂βPα(x)| > 1, thanks to (2.23). Hence, (2.19) and (2.20) show that

(2.26) β < α and β /∈ A.

Set Pβ = Pα/∂
βPα(x). Then

Pβ ∈ ε · σ, from (2.18) and |∂βPα(x)| > 1;(2.27)

|∂βPβ(x)| ≤ Z−1/(D+1) (β ∈ M, β > β), from (2.25);(2.28)

|∂βPβ(x)| ≤ ZD/(1+D) (β ∈ M), from (2.22) and (2.23); and(2.29)

∂βPβ(x) = 1.(2.30)

Now define
P
#

β
:= Pβ −

∑
γ∈A,γ<β

∂γPβ(x)Pγ.

We derive some estimates on P#
β

. From (2.19) we see that

∂αP
#

β
(x) = ∂αPβ(x) −

∑
γ∈A,γ<β

∂γPβ(x)δαγ = 0 (α ∈ A, α < β).

Thanks to (2.20), (2.29), and (2.30), we have

(2.31) |∂βP
#

β
(x) − 1| ≤

∑
γ∈A,γ<β

|∂γPβ(x)| · |∂βPγ(x)| ≤ CZD/(D+1)ε.

Fitting a Sobolev function to data I 299

Meanwhile, if β > β and γ < β, then β > γ. Hence, by (2.20), (2.28), and (2.29),
we have

|∂βP
#

β
(x)| ≤ |∂βPβ(x)| +

∑
γ∈A,γ<β

|∂γPβ(x)| · |∂βPγ(x)|

≤ Z− 1
D+1 + CZ

D
D+1 ε (β ∈ M, β > β).

From (2.18), (2.27), and (2.29), we have

P
#

β
∈ ε · σ+ C · ZD/(D+1)ε · σ ⊆ (

CZD/(D+1)ε
) · σ.

For each γ ∈ A, γ < β, (2.26) implies that γ < α. Hence, from (2.21) and (2.29)
we have

|∂βP#
β
(y)| ≤ C · Z(2D+1)/(D+1) (β ∈ M).

Since ε ≤ Z−1, if ε is sufficiently small then (2.31) implies that ∂βP#
β
(x) ∈

[1/2, 2]. Hence, we may define P̂β = P
#

β
/∂βP

#

β
(x). The estimates written above

show that

P̂β ∈
(
C · ZD/(D+1)ε

)
· σ;(2.32)

∂βP̂β(x) = δββ (β ∈ A, β < β or β = β);(2.33)

|∂βP̂β(x)| ≤ C · Z−1/(D+1) + C · ZD/(D+1)ε (β ∈ M, β > β); and(2.34)

|∂βP̂β(x)| ≤ C · Z(2D+1)/(D+1) (β ∈ M).(2.35)

For each α ∈ A, α < β, set P̂α = Pα−∂
βPα(x)P̂β. Note that |∂βPα(x)| ≤ ε ≤ 1,

thanks to (2.20). From (2.18) and (2.32), we have

(2.36) P̂α ∈ (
CZD/(D+1)ε

) · σ.
From (2.20) and (2.35), we have

|∂βP̂α(x)| ≤ |∂βPα(x)| + |∂βPα(x)| · |∂βP̂β(x)| ≤ ε + ε · CZ(2D+1)/(D+1)

≤ Cε · Z(2D+1)/(D+1) (β ∈ M, β > α).(2.37)

From (2.19) and (2.33), we have

∂βP̂α(x) = ∂
βPα(x) − ∂

βPα(x)∂
βP̂β(x)

=

{
δαβ − ∂βPα(x)δββ = δαβ : if β ∈ A, β < β

∂βPα(x) − ∂
βPα(x)δβ β = 0 : if β = β

= δαβ if either β < β and β ∈ A, or β = β.(2.38)

Set A = {α ∈ A : α < β} ∪ {β}. Then (2.26) shows that the minimal element of
AΔA is β. Therefore, A < A.

300 C. Fefferman, A. Israel, and G. K. Luli

From (2.32)–(2.34) and (2.36)–(2.38) we deduce that

(P̂α)α∈A is an (A, x, C · (Z− 1
D+1 + Z

2D+1
D+1 · ε), 1)-basis for σ.

Since ε ≤ Z−2 and δ = 1, this implies the conclusion of Lemma 24. �

Lemma 25. There exist constants κ1, κ2 ∈ (0, 1] depending only on m, n, and p
such that the following holds.

Let x ∈ Rn. Suppose that σ has an (A, x, ε, δ)-basis.
Then there exists a multiindex set A ′ ≤ A, and there exist numbers κ ′ ∈ [κ1, κ2]

and Λ ≥ 1 with εκ
′
Λ100D ≤ εκ ′/2, such that σ has an (A ′, x, εκ

′
, δ, Λ)-basis.

Here, D = dimP.

Proof. By rescaling, we may assume without loss of generality that δ = 1. (See
Remark 19.)

Let A0 = A and L = 2D, and let κ ∈ (0, 1) be as in Lemma 24. Set

ε0 = ε, ε� = ε
κ�/(200D)� and Z� = ε

−κ�−1/(200D)� for � = 1, . . . , L.

Note that (Z�)
−κ = ε� and Z� ≤ (ε�−1)

−1/2 for each � ≥ 1.
Let (P

(0)
α)α∈A be an (A0, x, ε0, 1)-basis for σ. We carry out the following iter-

ative procedure:

Stage 0. From Lemma 24, we have either

Case A: |∂βP(0)α (x)| ≤ Z1 for all α ∈ A0, β ∈ M,

or

Case B: There exist polynomials (P
(1)
α)α∈A1

, such that (P
(1)
α)α∈A1

is an
(A1, x, ε1, 1)-basis for σ, for some A1 < A0.

In Case A we terminate. In Case B, we pass to:

Stage 1. From Lemma 24, we have either

Case A: |∂βP(1)α (x)| ≤ Z2 for all α ∈ A1, β ∈ M,

or

Case B: There exist polynomials (P
(2)
α)α∈A2

, such that (P
(2)
α)α∈A2

is an
(A2, x, ε2, 1)-basis for σ, for some A2 < A1.

In Case A we terminate. In Case B, we pass to Stage 2, and so forth.

Since A0>A1>A2> · · · and #{A : A ⊆ M}=L, there exists �∈ {0, . . . , L− 1}
such that Case A occurs in Stage �. Thus,

(P(�)α)α∈A�
is an (A�, x, ε�, 1)-basis for σ, with

|∂βP(�)α (x)| ≤ Z�+1 for all α ∈ A�, β ∈ M.

Note that

ε� · Z100D
�+1 = ε

κ�

(200D)�
− κ�

(200D)�+1 100D
= ε

κ�

2(200D)� =
√
ε�.

Note that ε� = εκ
′

for κ ′ = κ�/(200D)�. We set Λ = Z�+1. Then the above
conditions imply the conclusion of Lemma 25, since δ = 1. �

Fitting a Sobolev function to data I 301

Lemma 26. Let x, y ∈ Rn; assume that |x − y| ≤ Cδ. Suppose σ has an
(A, x, ε, δ,Λ)-basis. Assume that εΛD is less than a small enough constant de-
pending on m, n, and p.

Then σ has an (A, y, CεΛ2D+1, δ, CΛ2D+1)-basis.

Proof. By rescaling, we may assume that δ = 1. (See Remark 19.) Let (Pα)α∈A
be an (A, x, ε, δ,Λ)-basis for σ. Thus,

• Pα ∈ εσ (α ∈ A);

• ∂βPα(x) = δβα (β,α ∈ A);

• |∂βPα(x)| ≤ ε (α ∈ A, β ∈ M, β > α);

• |∂βPα(x)| ≤ Λ (α ∈ A, β ∈ M).

For β ∈ M and α ∈ A with β > α, we have

|∂βPα(y)| =
∣∣∣∑

γ

1

γ!
∂β+γPα(x) · (y− x)γ

∣∣∣ ≤ Cε.
Also,

∂αPα(y) = ∂
αPα(x)+

∑
γ �=0

1

γ!
∂α+γPα(x)·(y−x)γ = 1+Error, where |Error| ≤ Cε.

On the other hand, for general β ∈ M and α ∈ A, we have

|∂βPα(y)| =
∣∣∣∑

γ

1

γ!
∂β+γPα(x) · (y− x)γ

∣∣∣ ≤ CΛ.
Thus, (∂βPα(y))β,α∈A is a (Cε,CΛ, 1)-near triangular matrix. Therefore,

(2.39)
the inverse (Mαγ)α,γ∈A of (∂βPα(y))β,α∈A

is (CεΛ2D, Λ2D)-near triangular.

For each γ ∈ A, we define P#γ =
∑

α∈A Pα ·Mαγ. From the properties of
the Pα, we read off the following.

• |∂βP#γ (y)| ≤ CΛ2D+1 (β ∈ M, γ ∈ A);

• ∂βP
#
γ (y) = δβγ (β, γ ∈ A);

• P
#
γ ∈ CεΛ2D+1σ (γ ∈ A).

Finally, for each β ∈ M and γ ∈ A with β > γ, we have

|∂βP#γ (y)| ≤
∑
α≤γ

|∂βPα(y)| · |Mαγ|+
∑
α>γ

|∂βPα(y)| · |Mαγ|

≤
∑
α≤γ

Cε · CΛ2D+1 +
∑
α>γ

CΛ · CεΛ2D (see (2.39))

≤ CεΛ2D+1.

Thus, (P#γ)γ∈A is an (A, y, CεΛ2D+1, 1, CΛ2D+1)-basis for σ. �

302 C. Fefferman, A. Israel, and G. K. Luli

Lemma 27. There exists κ > 0 depending only on m, n, and p, such that the
following holds. Let x, y ∈ Rn. Suppose that σ has an (A, x, ε, δ)-basis and that
|x− y| ≤ Cδ. Then, there exists A ′ ≤ A such that σ has an (A ′, y, εκ, δ)-basis.

Proof. By Lemma 25, there exist κ ′ ∈ [κ1, κ2], A ′ ≤ A, and Λ ≥ 1, such that

σ has an (A ′, x, εκ
′
, δ, Λ)-basis, and εκ

′
Λ100D ≤ εκ ′/2.

Here, κ1, κ2 > 0 are universal constants.

Thus, σ has an (A ′, y, Cεκ
′
Λ2D+1, δ, CΛ2D+1)-basis, due to Lemma 26.

Note that Cεκ
′
Λ2D+1 ≤ Cεκ

′/2 ≤ εκ1/4, if ε is less than a small enough
universal constant. Hence, σ has an (A ′, y, εκ1/4, δ)-basis. This completes the
proof of Lemma 27. �

Lemma 28. Suppose that Q ′ ⊂ Q and Q is tagged with (A, ε). Then Q ′ is tagged
with (A, εκ), where κ > 0 depends only on m, n, and p.

Proof. LetQ ′ ⊂ Q, and supposeQ is tagged with (A, ε). Then either #(Q∩E) ≤ 1
or σ(Q) has an (A ′, xQ, ε, δQ)-basis for some A ′ ≤ A. (Recall that xQ is the center
of Q.)

If #(Q ∩ E) ≤ 1 then #(Q ′ ∩ E) ≤ 1, hence Q ′ is tagged with (A, εκ) for any
κ > 0, which implies the conclusion of Lemma 28.

Suppose instead that

σ(Q) has an (A ′, xQ, ε, δQ)-basis with A ′ ≤ A.

Then Lemma 25 implies that there exist κ ′ ∈ [κ1, κ2], Λ ≥ 1, and A ′′ ≤ A ′, such
that

σ(Q) has an (A ′′, xQ, εκ
′
, δQ, Λ)-basis,

with εκ
′ ·Λ100D ≤ εκ ′/2. Here, κ1, κ2 > 0 are universal constants.

We have |xQ ′ −xQ| ≤ δQ, since xQ ′ ∈ Q ′ ⊂ Q and xQ ∈ Q. Hence, Lemma 26
implies that

σ(Q) has an (A ′′, xQ ′ , Cεκ
′
Λ2D+1, δQ, CΛ

2D+1)-basis.

Since Lemma 15 gives σ(Q) ⊂ C [σ(Q ′) + B(xQ ′, δQ)], Lemma 23 implies that

σ(Q ′) has an (A ′′, xQ ′ , Cεκ
′
Λ10D, δQ, CΛ

10D)-basis.

Since δQ ′ ≤ δQ and Cεκ
′
Λ100D ≤ Cεκ ′/2 ≤ εκ ′/4 ≤ εκ1/4, we see that

σ(Q ′) has an (A ′′, xQ ′ , εκ1/4, δQ ′)-basis.

Recall that A ′′ ≤ A ′ ≤ A. This completes the proof of Lemma 28. �

Fitting a Sobolev function to data I 303

2.7.3. Computing a basis. We fix x ∈ Rn and A ⊂ M.
Recall that P is the vector space of polynomials on Rn of degree at most m−1,

and D = dimP . We identify P with RD, by identifying P ∈ P with (∂αP(x))β∈M.
We define

|P|x =
∑
β

|∂βP(x)|.

Suppose we are given Λ ≥ 1. In this subsection, we write c(Λ), C(Λ), etc. to
denote constants determined by m, n, p, and Λ. We write c, C, etc. to denote
constants determined by m, n, and p.

Let q be a nonnegative quadratic form on P ; thus, q(P) ≥ 0 for all P ∈ P .
We are given a symmetric D x D matrix (qβγ)β,γ∈M, with

(2.40) q(P) =
∑

β,γ∈M
qβγ · ∂βP(x) · ∂γP(x) for P ∈ P .

Let σ ⊂ P be a symmetric convex set with

(2.41)
{
P ∈ P : q(P) ≤ Λ−1

} ⊂ σ ⊂ {P ∈ P : q(P) ≤ Λ} .
Given x ∈ Rn, (qβγ)β,γ∈M, δ ∈ (0,∞), and A ⊂ M, we want to compute

(approximately) the least η for which there exists a collection (Pα)α∈A of (m −1)-st
degree polynomials such that

Pα ∈ η1/2δ|α|+n/p−m · σ (α ∈ A),(2.42)

∂βPα(x) = δβα (β,α ∈ A),(2.43)

|∂βPα(x)| ≤ η1/2δ|α|−|β| (α ∈ A, β ∈ M, β > α).(2.44)

To compute such an η, we introduce the quadratic form

Mδ((Pα)α∈A) :=
∑
α∈A

q(δm−n/p−|α|Pα) +
∑

α∈A,β∈M
β>α

(δ|β|−|α|∂βPα(x))
2(2.45)

=
∑
α∈A

∑
β,γ∈M

δ2(m−n/p−|α|)qβγ · ∂βPα(x) · ∂γPα(x)

+
∑

α∈A,β∈M
β>α

(δ|β|−|α|∂βPα(x))
2,

which is defined on the affine subspace

(2.46) H :=
{
�P = (Pα)α∈A : ∂βPα(x) = δβα for α,β ∈ A}

.

For fixed q, A, x, we denote

ηmin(δ) = min
�P∈H

Mδ(�P),

which we regard as a function of δ ∈ (0,∞).

304 C. Fefferman, A. Israel, and G. K. Luli

The definition of ηmin(δ) shows that

(2.47)

{
we can satisfy (2.42), (2.43), (2.44) if η > C(Λ) · ηmin(δ), but

we cannot satisfy (2.42), (2.43), (2.44) if η < c(Λ) · ηmin(δ).

Hence,

(2.48) σ has an (A,x,η1/2, δ)-basis if η>C(Λ)·ηmin(δ), but not if η<c(Λ)·ηmin(δ).

Moreover,

(2.49) ηmin(δ1) ≤ ηmin(δ2) ≤
(δ2
δ1

)2m

ηmin(δ1) for δ1 ≤ δ2,

which follows at once from the definition of ηmin.
We now compute an expression that approximates the function ηmin(δ).
We identify the index set I = {(α,β) : α ∈ A, β ∈ M \ A} with {1, . . . , J}

(J = (#A) · (#M−#A)) by fixing an enumeration of I. We introduce coordinates
w = (wj)1≤j≤J = (wαβ)α∈A,β∈M\A ∈ RJ on the space H. We denote

(2.50) Pwα (z) :=
1

α!
(z− x)α +

∑
β∈M\A

1

β!
wαβ(z− x)

β for w ∈ RJ.

We identify

(2.51) �Pw = (Pwα)α∈A ∈ H with w = (wj)1≤j≤J = (wαβ)α∈A,β∈M\A ∈ RJ.

We wish to minimize the quadratic function M̃δ(w) := Mδ(�Pw) over w ∈ RJ.
We write

M̃δ(w) =

J∑
i,j=1

Aδ
ijwiwj − 2

J∑
j=1

bδjwj +m
δ(2.52)

= 〈Aδw,w〉 − 2〈bδ, w〉+mδ.

Here, we specify a symmetric matrix Aδ = (Aδ
ij), vector bδ = (bδj), and scalar mδ

– all functions of δ > 0. Here, we write 〈·, ·〉 to denote the standard Euclidean
inner product on RJ. We express

Aδ
ij =

∑
μ,ν

cijμν δ
μ+ν/p,(2.53)

bδj =
∑
μ,ν

cjμν δ
μ+ν/p,(2.54)

mδ =
∑
μ,ν

cμν δ
μ+ν/p,(2.55)

for computable coefficients cijμν, cjμν, and cμν; here, the sums on μ and ν are finite,

and μ and ν are integers. The coefficient matrix (cijμν) is symmetric with respect
to (i, j). We compute these expressions by writing equation (2.45) inw-coordinates.

The quadratic function M̃δ is nonnegative, hence Aδ ≥ 0.

Fitting a Sobolev function to data I 305

Let ε > 0. We eventually send ε to zero. We define

(2.56) M̃ε,δ(w) := 〈Aε,δw,w〉− 2〈bδ, w〉+mδ, where Aε,δ
ij := Aδ

ij + εδij.

Note that Aε,δ is invertible because Aδ ≥ 0 and ε > 0. Cramer’s rule shows that

(2.57) (Aε,δ)−1
ij =

[Aε,δ]ij
det(Aε,δ)

=

∑
k,k ′ a

ij
kk ′δ

λkεk
′∑

�,� ′ b�� ′δγ�ε�
′

for computable numbers aijkk ′ , b�� ′ , λk, and γ�; here, the sums on k,k ′,�,� ′ are
finite, and k,k ′,�,� ′ are nonnegative integers. We write [Aε,δ]ij to denote the (i, j)-
cofactor of the matrix Aε,δ.

The minimum of the quadratic function M̃ε,δ(w) is achieved when

∇M̃ε,δ(w) = 0,

namely, for w = wε,δ := (Aε,δ)−1bδ. From (2.56) we see that the minimum
value is

M̃ε,δ(wε,δ) =
〈
Aε,δ

(
Aε,δ

)−1
bδ,

(
Aε,δ

)−1
bδ

〉
− 2

〈
bδ,

(
Aε,δ

)−1
bδ

〉
+mδ

= −
〈
bδ,

(
Aε,δ

)−1
bδ

〉
+mδ.

Therefore, based on (2.57) and based on the form of the vector bδ and scalar mδ

written in (2.54), (2.55), we learn that

(2.58) min
w∈RJ

M̃ε,δ(w) =

∑
k,k ′ akk ′δλkεk

′∑
�,� ′ b�� ′δγ�ε�

′ .

for computable numbers akk ′ , bkk ′ , λk, and γ�. We abuse notation, since the
exponents λk in (2.58) might differ from the exponents λk in (2.57). However,
note that the denominator of (2.58) matches the expression in the denominator
of (2.57). Also note that all exponents in (2.58) have the form μ+ν/p for μ, ν ∈ Z.

The minimum value of M̃ε,δ(w) converges to the minimum value of M̃δ(w) as
ε→ 0+. Hence,

ηmin(δ) = min
w∈RJ

M̃δ(w) = lim
ε→0+

∑
k,k ′ akk ′δλkεk

′∑
�,� ′ b�� ′δγ�ε�

′ .

Canceling the smallest powers of ε from the numerator and denominator above,
we obtain the formula

(2.59) ηmin(δ) =

∑K
k=1 akδ

λk∑L
�=1 b�δ

γ�

for nonzero coefficients ak, b�. All the coefficients and exponents in (2.59) can be
computed using the numbers in (2.58). Both λk and γ� have the form μ + ν/p
with μ, ν ∈ Z. Here, we abuse notation, since λk and γ� may be different from
before. By collecting terms, we may assume that

(2.60) |λk − λk ′ | ≥ c and |γ� − γ� ′ | ≥ c for k �= k ′, � �= � ′.

306 C. Fefferman, A. Israel, and G. K. Luli

Here, both K and L are bounded by a universal constant, and c > 0 is a universal
constant.

We have thus obtained a computable expression for ηmin(δ).
We approximate ηmin(δ) with a piecewise-monomial function using the follow-

ing procedure.

Procedure: Approximate rational function

Given nonzero numbers ak, b� and numbers λk, γ� satisfying (2.60), let

ηmin(δ) =

∑K
k=1 akδ

λk∑L
�=1 b�δ

γ�

.

We assume that K, L are bounded by a universal constant, and ηmin(δ) ≥ 0 for
δ ∈ (0,∞). We further assume that ηmin(δ) satisfies (2.49).

We compute a collection of pairwise disjoint intervals Iν with (0,∞) = ∪νIν,
and we compute numbers cν, λν associated to each Iν, such that the function

η∗(δ) := cν · δλν for δ ∈ Iν
satisfies

c · ηmin(δ) ≤ η∗(δ) ≤ C · ηmin(δ) for all δ ∈ (0,∞).

The algorithm requires work and storage at most C. In particular, the number of
distinct intervals Iν is at most C.

Explanation. We will analyze separately the numerator and denominator in the
rational function ηmin(δ). We define

B :=
⋃

k�=k ′
Ikk ′ , with Ikk ′ :=

{
δ ∈ (0,∞) : 5−1 ·|akδλk | ≤ |ak ′δλk ′ | ≤ 5 · |akδλk |} ,

and similarly

C :=
⋃
��=� ′

J�� ′ , with J�� ′ :=
{
δ ∈ (0,∞) : 5−1 · |b�δγ�| ≤ |b� ′δγ� ′ | ≤ 5 · |b�δγ� |} .

Let I ⊂ (0,∞) \ B. For δ ∈ I, all elements in the set
{|akδλk | : 1 ≤ k ≤ K} are

nonzero and are separated by at least a factor of 5. We choose k such that |akδλk |
is maximized. By continuity, the same k must work for all δ ∈ I. By summing a
geometric series, we have∑

k ′ �=k

|ak ′δλk ′ | < 2−1 · |akδλk | for all δ ∈ I.

We obtain the analogous estimate for C using a similar argument. Hence, for any
interval I ⊂ (0,∞) \ (B ∪ C),

(2.61)

⎧⎨
⎩

there exist unique k = k(I) ∈ {1, . . . , K} and � = �(I) ∈ {1, . . . , L}

such that |akδλk|>2
∑
k ′ �=k

|ak ′δλk ′| and |b�δγ�|>2
∑
� ′ �=�

|b� ′δγ� ′| for all δ∈I.

The fact that k = k(I) and � = �(I) are unique is obvious from the above statement.

Fitting a Sobolev function to data I 307

The endpoints of each nonempty interval Ikk ′ = [h−
kk ′ , h

+
kk ′] are solutions of

the equations |ak ′δλk ′ | = 5 · |akδλk | and |ak ′δλk ′ | = 5−1 · |akδλk |, namely h−
kk ′

and h+
kk ′ are among the numbers

δ1 =
(
5

∣∣∣ ak
ak ′

∣∣∣)1/(λk ′−λk)

and δ2 =
(
5−1

∣∣∣ ak
ak ′

∣∣∣)1/(λk ′−λk)

.

Thus, the endpoints h−
kk ′ , h

+
kk ′ of the intervals Ikk ′ are computable. Moreover,

using (2.60) we see that∫
B

dt

t
≤

∑
k�=k ′

∫
Ikk ′

dt

t
=

∑
k�=k ′

log
(h+

kk ′

h−
kk ′

)

=
∑
k�=k ′

1

|λk ′ − λk| log(25) ≤ A, where A = A(m,n, p),

For a similar reason, the endpoints of the intervals J�� ′ are computable and∫
C

dt

t
≤ A.

We replace each pair of intersecting intervals among the Ikk ′ and J�� ′ with their
union. We continue until all the remaining intervals are pairwise disjoint. Thus,
we can compute pairwise disjoint closed intervals Ibadν and pairwise disjoint open
intervals Iμ such that

B ∪ C =

νmax⋃
ν=1

Ibadν , (0,∞) \ (B ∪ C) =
μmax⋃
μ=1

Iμ,

and

(2.62)

∫
Ibadν

dt

t
≤

∫
B∪C

dt

t
≤ 2A for each ν.

Note that νmax ≤ #{Ikk ′} + #{J�� ′ } ≤ K2 + L2 and μmax = νmax + 1, hence νmax

and μmax are bounded by a universal constant.
From (2.61), there exist indices k = k(μ) ∈ {1, . . . , K} and � = �(μ) ∈ {1, . . . , L}

for each μ such that

(2.63) |akδλk | > 2
∑
k ′ �=k

|ak ′δλk ′ | and |b�δγ�| > 2
∑
� ′ �=�

|b� ′δγ� ′ | for all δ ∈ Iμ.

We can compute k(μ) and �(μ) for μ = 1, . . . , μmax, using a brute-force search.

Let μ be given, and set k = k(μ) and � = �(μ). We have ηmin(δ) =
N(δ)
D(δ)

, with

N(δ) = akδ
λk +

∑
k ′ �=k

ak ′δλk ′ and D(δ) = b�δ
γ� +

∑
� ′ �=�

b� ′δγ� ′ .

308 C. Fefferman, A. Israel, and G. K. Luli

From (2.63), we have

1

2
≤ N(δ)

akδλk
≤ 3

2
and

1

2
≤ D(δ)

b�δγ�
≤ 3

2
for all δ ∈ Iμ.

Hence,

(1/4) · ηmin(δ) ≤ akδ
λk

b�δγ�
≤ (9/4) · ηmin(δ) for all δ ∈ Iμ.

We fix δν ∈ Ibadν for each ν. Note that e−2A ≤ δ/δν ≤ e2A for all δ ∈ Ibadν ,
by (2.62). Hence, (2.49) implies that

c · ηmin(δ) ≤ ηmin(δν) ≤ C · ηmin(δ) for all δ ∈ Ibadν .

We define

(2.64) η∗(δ) =

{
ak(μ)δ

λk(μ)

b�(μ)δ
γ�(μ)

if δ ∈ Iμ,
ηmin(δν) if δ ∈ Ibadν .

From the previous two paragraphs, we see that ηmin(δ) and η∗(δ) differ by at
most a universal constant factor for all δ ∈ (0,∞).

The above computations clearly require work at most C.
That completes our description of the procedure Approximate rational

function. �

We have computed a piecewise-monomial function η∗(δ) differing from ηmin(δ)
by at most a constant factor. Thus, we see that the properties (2.48) and (2.49)
of ηmin(δ) imply the first and second bullet points below.

Algorithm: Fit basis to convex body

Given a nonnegative quadratic form q on P , given a point x ∈ Rn, and given
a set A ⊂ M: We compute a partition of (0,∞) into at most C intervals Iν, and
for each Iν we compute real numbers λν, cν with cν ≥ 0, such that the function

η∗(δ) := cν · δλν for δ ∈ Iν
has the following properties.

• Let σ ⊂ P be a symmetric convex set that satisfies {q ≤ Λ−1} ⊂ σ ⊂ {q ≤ Λ}
for a real number Λ ≥ 1. Then, for any δ > 0, σ has an (A, x, η1/2, δ)-basis
if η > C(Λ) · η∗(δ), but not if η < c(Λ) · η∗(δ).

• Moreover, c · η∗(δ1) ≤ η∗(δ2) ≤ C · η∗(δ1) whenever 1
10
δ1 ≤ δ2 ≤ 10δ1.

• The components of the piecewise-monomial function η∗(δ), i.e., the inter-
vals Iν and the numbers λν, cν, can be computed using work and storage at
most C.

Here, c > 0 and C ≥ 1 are constants depending only onm,n, and p, while c(Λ) > 0
and C(Λ) ≥ 1 are constants depending only on m,n,p, and Λ.

Fitting a Sobolev function to data I 309

2.8. Algorithms for linear functionals

Algorithm: Compress norms

Fix 1 < p < ∞ and D ≥ 1. Given linear functionals μ1, . . . , μL : RD → R

(L ≥ 1), we produce linear functionals μ∗1, . . . , μ
∗
D : RD → R such that

c ·
D∑
i=1

|μ∗i (v)|p ≤
L∑

i=1

|μi(v)|p ≤ C ·
D∑
i=1

|μ∗i (v)|p for all v ∈ RD.

The work and storage used to do so are at most C ′L. Here, c, C,C ′ depend only
on D and p.

Explanation. In this explanation, c, C,C ′, etc., depend only on D and p.
We start with a few elementary estimates. Let (Ω,dμ) be a probability space.

Then, for f : Ω→ R measurable, the mean f =
∫
Ω
fdμ satisfies

|f| ≤
(∫

Ω

|f|pdμ
)1/p

,

hence

|f|p +

∫
Ω

|f− f|pdμ ≤ C
∫
Ω

|f|pdμ.

Also, ∫
Ω

|f|pdμ ≤ C|f|p + C

∫
Ω

|f − f|pdμ.

Applying the above to the function f− b for a constant b, we find that

(2.65) c
{
|f− b|p +

∫
Ω

|f− f|pdμ
}
≤

∫
Ω

|f− b|pdμ ≤ C
{
|f− b|p +

∫
Ω

|f− f|pdμ
}

with c, C > 0 depending only on p.

We now return to the task of constructing μ∗1, . . . , μ
∗
D.

We proceed by induction on D. In the base case D = 1, the construction
of μ∗1 is trivial. For the induction step, fix D ≥ 2, and assume we can carry out
Compress Norms in dimension D− 1. We show how to carry out that algorithm
in dimension D.

Let μ1, . . . , μL : RD → R be given linear functionals. We write

(2.66) μi(v1, . . . , vD) = ± [βivD − μ̃i(v1, . . . , vD−1)]

with βi ≥ 0, and we let I = {i : βi �= 0}. If I is empty, then we succeed simply by
setting μ∗D = 0 and invoking Compress norms in dimension D− 1. Suppose I is
non-empty. Let

B :=
∑
j∈I

β
p
j .

We view I as a probability space, with

Prob(i) := βp
i /B for i ∈ I.

310 C. Fefferman, A. Israel, and G. K. Luli

Then ∑
i∈I

|μi(v1, . . . , vD)|p = B ·
∑
i∈I

Prob(i) · ∣∣vD − β−1
i μ̃i(v1, . . . , vD−1)

∣∣p .
Invoking (2.65), with b = vD and f(i) = β−1

i μ̃i(v1, . . . , vD−1), we see that

c
∑
i∈I

|μi(v1, . . . , vD)|p

≤ B ·
{
|vD − μ(v1, . . . , vD−1)|p

+
∑
i∈I

Prob(i) · ∣∣μ(v1, . . . , vD−1) − β
−1
i μ̃i(v1, . . . , vD−1)

∣∣p }
≤ C

∑
i∈I

|μi(v1, . . . , vD)|p,

where

(2.67) μ(v1, . . . , vD−1) :=
∑
i∈I

Prob(i) · {β−1
i μ̃i(v1, . . . , vD−1)

}
.

Consequently,
∑L

i=1|μi(v1, . . . , vD)|p differs by at most a factor of C from

B · |vD − μ(v1, . . . , vD−1)|p

+
{
B ·

∑
i∈I

Prob(i) · |μ(v1, . . . , vD−1) − β
−1
i μ̃i(v1, . . . , vD−1)|p

+
∑
i/∈I

|μ̃i(v1, . . . , vD−1)|p
}

= B · |vD − μ(v1, . . . , vD−1)|p +
{ L∑

i=1

|βiμ(v1, . . . , vD−1) − μ̃i(v1, . . . , vD−1)|p
}
,

where

μ(v1, . . . , vD−1) := B−1 ·
L∑

i=1

β
p−1
i μ̃i(v1, . . . , vD−1).

Applying Compress norms in dimension D−1 to the expression in curly brackets
in the first box above, we obtain functionals μ∗1, . . . , μ

∗
D−1 : RD−1 → R such that∑D−1

i=1 |μ∗i (v1, . . . , vD−1)|p differs by at most a factor of C from that expression in
curly brackets.

Setting

(2.68) μ∗D(v1, . . . , vD) := B1/p · [vD − μ(v1, . . . , vD−1)],

we see that
∑D−1

i=1 |μ∗i (v1, . . . , vD−1)|p + |μ∗D(v1, . . . , vD)|p differs by at most a

factor of C from
∑L

i=1|μi(v1, . . . , vD)|p.
This completes our explanation of Compress norms; note that the work and

storage required are as promised. �

Fitting a Sobolev function to data I 311

Algorithm: Optimize via matrix

Given 1 < p < ∞ and given a matrix (a�j)1≤�≤L , 1≤j≤J, we compute a matrix
(bj�)1≤j≤J , 1≤�≤L for which the following holds.

Let y1, . . . , yL be real numbers. Define

x∗j =

L∑
�=1

bj�y� for j = 1, . . . , J.

Then, for any real numbers x1, . . . , xJ, we have

L∑
�=1

∣∣∣y� + J∑
j=1

a�jx
∗
j

∣∣∣p ≤ C1 ·
L∑

�=1

∣∣∣y� + J∑
j=1

a�jxj

∣∣∣p

with C1 depending only on J and p.
The work and storage used to compute (bj�)1≤j≤J , 1≤�≤L are at most CL,

where C depends only on J.

Explanation. We write c, C, C ′, etc. to denote constants depending only on J,
and c(p), C(p), etc. to denote constants depending only on J and p.

For the case J = 1 of our algorithm, we proceed as follows. Let (a�1)1≤�≤L be
a given matrix.

If (a�1)1≤�≤L is identically zero, then the conclusion holds for any choice of
(b1�)1≤�≤L if we take C1 = 1.

We suppose instead that (a�1) �= (0). Let

(2.69) b1� := −
(L∑

� ′=1

|a� ′1|p
)−1

· |a�1|p−1 sgn(a�1) for 1 ≤ � ≤ L,

where sgn denotes the signum function: sgn(η) := 1 for η ≥ 0, sgn(η) := −1 for
η < 0. We compute the matrix (b1�)1≤�≤L using work and storage at most CL.

For given real numbers y1, . . . , yL we set

x∗ =
L∑

�=1

b1�y� = −
∑

�:a�1 �=0

y� · |a�1|p
a�1 ·

∑
� ′ |a� ′1|p .

Define a probability measure dμ and function f on {1, . . . , L} by setting dμ(�) =
|a�1|p/

∑
k|ak1|p, and setting f(�) = y�/a�1 if a�1 �= 0 and f(�) = 0 otherwise. We

then have x∗ = −
∫
fdμ.

By applying (2.65) we see that
∫|f+ x∗|pdμ ≤ C(p) ∫|f+ x|pdμ for any x ∈ R.

Therefore,∑
�:a�1 �=0

|y�/a�1 + x∗|p|a�1|p ≤ C(p)
∑

�:a�1 �=0

|y�/a�1 + x|p|a�1|p for any x ∈ R.

This gives the desired conclusion in the case J = 1.

312 C. Fefferman, A. Israel, and G. K. Luli

For the general case, we use induction on J.

Let J ≥ 2, and let 1 < p <∞ and (a�j)1≤�≤L , 1≤j≤J be given. Then

(2.70)

L∑
�=1

∣∣∣y� + J∑
j=1

a�jxj

∣∣∣p =

L∑
�=1

∣∣∣ŷ� + J−1∑
j=1

a�jxj

∣∣∣p

with

(2.71) ŷ� = y� + a�J · xJ for � = 1, . . . , L.

Applying our algorithm Optimize via matrix recursively to 1 < p < ∞
and (a�j)1≤�≤L , 1≤j≤J−1, we produce a matrix (b̂j�)1≤j≤J−1 , 1≤�≤L, for which the
following holds.

• Let ŷ1, . . . , ŷL be real numbers, and set

(2.72) x̂j =

L∑
�=1

b̂j�ŷ� for j = 1, . . . , J− 1.

Then, for any real numbers x1, . . . , xJ−1, we have

(2.73)

L∑
�=1

∣∣∣ŷ� + J−1∑
j=1

a�jx̂j

∣∣∣p ≤ C(p)
L∑

�=1

∣∣∣ŷ� + J−1∑
j=1

a�jxj

∣∣∣p.
From (2.70)–(2.73), we draw the following conclusion.
Let real numbers y1, . . . , yL, and x1, . . . , xJ be given. Define ŷ1, . . . , ŷL by (2.71),

next define x̂1, . . . , x̂J−1 by (2.72), and finally set

(2.74) x̂J = xJ.

Then

(2.75)
L∑

�=1

∣∣∣y� + J∑
j=1

a�jx̂j

∣∣∣p ≤ C(p)
L∑

�=1

∣∣∣y� + J∑
j=1

a�jxj

∣∣∣p

and

(2.76) x̂j =

L∑
�=1

b̂j� · (y� + a�Jx̂J) for j = 1, . . . , J− 1.

Thus,

x̂j =

L∑
�=1

b̂j�y� + gjx̂J for j = 1, . . . , J− 1, where(2.77)

gj =

L∑
�=1

b̂j�a�J for j = 1, . . . , J− 1.(2.78)

Fitting a Sobolev function to data I 313

Next, note that

y� +
J∑

j=1

a�jx̂j = y� +
J−1∑
j=1

a�j

[L∑
� ′=1

b̂j� ′y� ′ + gjx̂J

]
+ a�Jx̂J

=
{
y� +

J−1∑
j=1

a�j

L∑
� ′=1

b̂j� ′y� ′
}
+
{
a�J +

J−1∑
j=1

a�jgj

}
x̂J.

We set

(2.79) youch

� = y� +

J−1∑
j=1

a�j

L∑
� ′=1

b̂j� ′y� ′ for � = 1, . . . , L

and

(2.80) h� = a�J +
J−1∑
j=1

a�jgj for � = 1, . . . , L.

Thus,

(2.81)

L∑
�=1

∣∣∣y� + J∑
j=1

a�jx̂j

∣∣∣p =

L∑
�=1

|youch

� + h�x̂J|p.

Here, (2.81) holds whenever x̂1, . . . , x̂J−1 are determined from x̂J via (2.77).
Note that it is too expensive to compute youch

� for all � (1 ≤ � ≤ L); that com-
putation would require ∼ L2J work. However, the youch

� are determined by (2.79);
they are independent of our choice of x̂J.

Applying the known case J = 1 of our algorithm Optimize via matrix, we
compute from the h� a vector of coefficients γ� (1 ≤ � ≤ L), for which the following
holds.

Let y̌1, . . . , y̌L be real numbers. Set x̌ =
∑L

�=1 γ�y̌�. Then

L∑
�=1

|y̌� + h�x̌|p ≤ C(p)
L∑

�=1

|y̌� + h�x̂|p

for any real number x̂.
Taking y̌� = y

ouch

� for � = 1, . . . , L, we learn the following. Let

(2.82) x̌J =

L∑
�=1

γ� y
ouch

� ,

and then define x̌1, . . . , x̌J−1 from x̌J via (2.77), i.e.,

(2.83) x̌j =

L∑
�=1

b̂j�y� + gjx̌J for j = 1, . . . , J− 1.

314 C. Fefferman, A. Israel, and G. K. Luli

Then

(2.84)
L∑

�=1

∣∣∣y� + J∑
j=1

a�jx̌j

∣∣∣p ≤ C(p)
L∑

�=1

∣∣∣y� + J∑
j=1

a�jx̂j

∣∣∣p.
(See (2.81).)

From (2.75) and (2.84), we see that

(2.85)
L∑

�=1

∣∣∣y� + J∑
j=1

a�jx̌j

∣∣∣p ≤ C(p)
L∑

�=1

∣∣∣y� + J∑
j=1

a�jxj

∣∣∣p.
Here, x̌1, . . . , x̌J are computed from (2.82),(2.83); and x1, . . . , xJ are arbitrary.

We produce efficient formulas for the x̌j. Putting (2.79) into (2.82), we find
that

x̌J =
L∑

�=1

γ� ·
{
y� +

J−1∑
j=1

a�j

L∑
� ′=1

b̂j� ′y� ′
}
=

L∑
�=1

γ� · y� +
L∑

� ′=1

J−1∑
j=1

[L∑
�=1

γ�a�j

]
b̂j� ′y� ′

=

L∑
�=1

{
γ� +

J−1∑
j=1

[L∑
� ′=1

γ� ′a� ′j

]
b̂j�

}
· y�.

Therefore, setting

(2.86) Δj =
L∑

�=1

γ�a�j for j = 1, . . . , J− 1

and

(2.87) b
##
J� = γ� +

J−1∑
j=1

Δjb̂j� for � = 1, . . . , L

we find that

(2.88) x̌J =

L∑
�=1

b
##
J� y�.

Substituting (2.88) into (2.83), we find that

x̌j =
L∑

�=1

{
b̂j� + gjb

##
J�

}
y� for j = 1, . . . , J− 1.

Thus, setting

(2.89) b
##
j� = b̂j� + gjb

##
J� for j = 1, . . . , J− 1,

Fitting a Sobolev function to data I 315

we have

(2.90) x̌j =

L∑
�=1

b
##
j� y� for j = 1, . . . , J− 1.

Recalling (2.88), we see that (2.90) holds for j = 1, . . . , J. Thus, with x̌1, . . . , x̌J
defined by (2.90), we have

L∑
�=1

∣∣∣y� + J∑
j=1

a�jx̌j

∣∣∣p ≤ C(p)
L∑

�=1

∣∣∣y� + J∑
j=1

a�jxj

∣∣∣p
for any real numbers x1, . . . , xJ. (See (2.85).)

So the matrix (b##
j�)1≤j≤J , 1≤�≤L is as promised in our algorithm.

Let us review the computation of (b##
j�).

• Recursively, we apply the algorithm Optimize via matrix to the arguments
(a�j)1≤�≤L , 1≤j≤J−1, and p; this yields (b̂j�)1≤j≤J−1 , 1≤�≤L.

• Next, we compute from (2.78) the quantities

gj =

L∑
�=1

b̂j� a�J for j = 1, . . . , J− 1.

• We then compute from (2.80) the numbers

h� = a�J +
J−1∑
j=1

a�j gj for � = 1, . . . , L.

• We apply the case J = 1 of Optimize via matrix to the L× 1 matrix (h�),
to produce the numbers γ� (� = 1, . . . , L).

• From (2.86) we then compute the numbers

Δj =
L∑

�=1

γ� a�j for j = 1, . . . , J− 1.

• We set

b
##
J� = γ� +

J−1∑
j=1

Δj b̂j� for � = 1, . . . , L.

(See (2.87).)

• Finally, we set

b
##
j� = b̂j� + gjb

##
J� for j = 1, . . . , J− 1 and � = 1, . . . , L.

(See (2.89).)

One can now check easily that our algorithm uses work and storage at most CL,
as promised.

This concludes our explanation of the algorithm Optimize via matrix. �

316 C. Fefferman, A. Israel, and G. K. Luli

3. Statement of the main technical results

Suppose that E ⊂ 1
32
Q◦ is finite, whereQ◦=[0, 1)n. We assume thatN = #(E)≥2.

If A � M, then let A− ⊂ M denote the maximal subset less than A. (See
Section 2.6 for the definition of the order relation < on 2M.)

For each A ⊂ M, we will define the following.

• A decomposition CZ(A) ofQ◦ into dyadic cubes. We guarantee the following.

(CZ1) If Q,Q ′ ∈ CZ(A) and Q↔ Q ′, then 1
2
δQ ≤ δQ ′ ≤ 2δQ (“good geome-

try”).

(CZ2) IfQ ∈ CZ(A) and δQ ≤ c∗(A) then S(A)Q is not tagged with (A, ε1(A)).
Moreover, S(A) = 9 for A = M.

(CZ3) In the case A �= M:

If Q ∈ CZ(A), Q ′ ∈ CZ(A−), Q ′ ⊂ Q and δQ ′ ≤ c∗(A)δQ then the
cube 3Q is tagged with (A, ε2(A)).

(CZ4) In the case A = M:

If Q ∈ CZ(M), then 3Q is tagged with (M, ε2(M)).

(CZ5) In the case A �= M:

CZ(A−) refines CZ(A).

(We do not exclude the possibility that CZ(A−) = CZ(A).)

Moreover, c∗(A), ε1(A), ε2(A) ∈ (0, 1) and S(A) ≥ 1.
• A collection CZmain(A) consisting of all cubes Q ∈ CZ(A) such that 65

64
Q ∩

E �= ∅.

• For each Q ∈ CZmain(A), a list of functionals in short form Ω(Q,A) ⊂[
X(65

64
Q ∩ E)]∗ (the “assists”) such that∑

Q∈CZmain(A)

∑
ω∈Ω(Q,A)

depth(ω) ≤ CN.

• For each Q ∈ CZmain(A), a list of functionals Ξ(Q,A) ⊂ [
X(65

64
Q ∩ E)⊕ P]∗

,
each having Ω(Q,A)-assisted depth at most C. We guarantee that∑

Q∈CZmain(A)

#
[
Ξ(Q,A)

] ≤ CN.
We set

M(Q,A)(f, P) =
(∑

ξ∈Ξ(Q,A)

|ξ(f, P)|p
)1/p

.

For each (f, P) ∈ X(65
64
Q ∩ E)⊕ P , we guarantee that

c · ‖(f, P)‖(1+a(A))Q ≤M(Q,A)(f, P) ≤ C · ‖(f, P)‖ 65
64

Q.

Here, 0 < a(A) ≤ 1/64.

Fitting a Sobolev function to data I 317

• For each Q ∈ CZmain(A), a linear map T(Q,A) : X(
65
64
Q ∩ E) ⊕ P → X with

the following properties.

(E1) T(Q,A)(f, P) = f on (1+ a(A))Q ∩ E for each (f, P).

(E2) ‖T(Q,A)(f, P)‖pX((1+a(A))Q) + δ
−mp
Q ‖T(Q,A)(f, P) − P‖pLp((1+a(A))Q) ≤

C
[
M(Q,A)(f, P)

]p
for each (f, P).

(E3) T(Q,A) has Ω(Q,A)-assisted depth at most C.

• The constants c∗(A), S(A), ε1(A), ε2(A), a(A), c, C depend only on m,n, p,
and A. The constant S(A) is a positive integer.

Remark 29. Note that both Ξ(Q,A) and Ω(Q,A) are lists, hence they may
contain more than one copy of the same linear functional. In the sums in the
third and fourth bullet points, we include separate summands for each occurrence
of a given functional ξ ∈ Ξ(Q,A) or ω ∈ Ω(Q,A). See Section 2.1 for more
information on our notation concerning lists.

To compute the objects defined above, we will produce the following algorithms.

• Algorithm: CZ-Oracle. We perform one-time work at most CN logN in
space CN, after which we can answer queries. A query consists of a point
x ∈ Q◦. The response to the query x is the list of all cubes Q ∈ CZ(A)
such that x ∈ 65

64
Q. To answer the query requires work and storage at most

C logN.

• Algorithm: Compute main-cubes. With work at mostCN logN in space
CN, we compute the collection of cubes CZmain(A).

• Algorithm: Compute functionals. With work at most CN logN in
space CN, we compute the following.

– For each cube Q ∈ CZmain(A), the list of functionals Ω(Q,A), with
each functional written in short form.

– For each cube Q ∈ CZmain(A), the list of functionals Ξ(Q,A), with each
functional written in short form (in terms of the assists Ω(Q,A)).

• Algorithm: Compute extension operator.We perform one-time work
at most CN logN in space CN, after which we can answer queries. A query
consists of a cube Q ∈ CZmain(A) and a point x ∈ Q◦. The response to
the query (Q, x) is a short form description of the Ω(Q,A)-assisted bounded
depth linear map

(f, P) ∈ X
(65
64
Q ∩ E

)
⊕ P �→ JxT(Q,A)(f, P).

To answer the query requires work and storage at most C logN.

318 C. Fefferman, A. Israel, and G. K. Luli

4. Data structures

4.1. Algorithms for dyadic cubes

4.1.1. Dyadic cuboids. We define a dyadic interval to be a subinterval [a, b) ⊂
[0,∞) where

a =

∞∑
ν=−∞

δν2
ν, b =

∞∑
ν=−∞

δ ′ν2
ν, each δν, δ

′
ν = 0 or 1,

only finitely many δν, δ
′
ν are nonzero, and for some μ,

δν = δ ′ν for ν > μ; δμ = 0, δ ′μ = 1; δν = δ ′ν = 0 for ν < μ.

The dyadic cuboids to be defined in a moment, will be Cartesian products of
dyadic intervals. Thus, by definition, a dyadic cuboid Q ⊂ Rn will be a subset
of [0,∞)n.

Fix a dimension n. A dyadic cuboid Q is a Cartesian product of the form

[a1, b1)× · · · × [an, bn) ⊂ Rn,

where each [ai, bi) is a dyadic interval, and one of the following holds:

(1) All the [ai, bi) have the same length,

or for some j (1 ≤ j < n),

(2) All the [ai, bi) (1 ≤ i ≤ j) have the same length, and each [ai, bi) (j < i ≤ n)
has length 1

2
(b1 − a1).

To bisect the cuboid Q means the following.

Case 1: Suppose Q is as in (1). Then we bisect [an, bn) into two dyadic
intervals I ′ = [an,

an+bn

2
) and I ′′ = [an+bn

2
, bn).

To bisect Q, we express Q as the disjoint union of the two dyadic cuboids

Q ′ = [a1, b1)× · · · × [an−1, bn−1)× I ′

and
Q ′′ = [a1, b1)× · · · × [an−1, bn−1)× I ′′

We call Q ′ the lesser dyadic child of Q, and we call Q ′′ the greater dyadic child
of Q.

Case 2: For some j (1 ≤ j < n), suppose Q is as in (2). Then we bisect [aj, bj)

into two dyadic intervals I ′ = [aj,
aj+bj

2
) and I ′′ = [

aj+bj

2
, bj).

To bisect Q is to express Q as a disjoint union of the dyadic cuboids

Q ′ = [a1, b1)× · · · × [aj−1, bj−1)× I ′ × [aj+1, bj+1)× · · · × [an, bn)

and

Q ′′ = [a1, b1)× · · · × [aj−1, bj−1)× I ′′ × [aj+1, bj+1)× · · · × [an, bn)

We call Q ′ the lesser dyadic child of Q, and we call Q ′′ the greater dyadic child
of Q.

Fitting a Sobolev function to data I 319

To understand dyadic cuboids and their dyadic children, it is convenient to
think of base 2 expansions of real numbers. Let DR (“dyadic rationals”) be the
set of all sums of the form

∑∞

ν=−∞ δ(ν)2
ν, where finitely many δ(ν) are equal to 1,

and all other δ(ν) are equal to zero.

We define a map ψ : DRn → DR as follows.
Let x = (x1, . . . , xn) ∈ DRn, with each xi =

∑∞

ν=−∞ δi(ν)2
ν as in the defini-

tion of DR. Then we define

ψ(x) =

∞∑
ν=−∞

n∑
i=1

δi(ν)2
νn+i ∈ DR.

Thus, ψ is a 1-1 correspondence between DRn and DR.
We define a 1-1 correspondence between dyadic cuboids in Rn and dyadic

intervals in R, by the following rule:
The dyadic cuboid Q ⊂ Rn corresponds to the dyadic interval I ⊂ R if and only

if DR∩ I = ψ((DR)n ∩Q). By thinking about base 2 expansions of numbers, one
sees easily that this is indeed a 1-1 correspondence between dyadic cuboids in Rn

and dyadic intervals in R. Let us denote this 1-1 correspondence by I = Ψ(Q).
Suppose that Q is a dyadic cuboid, with lesser dyadic child Q ′ and greater

dyadic child Q ′′. Then Ψ(Q ′) and Ψ(Q ′′) are the two dyadic children of the
dyadic interval Ψ(Q); and Ψ(Q ′) lies to the left of Ψ(Q ′′). Again, we leave to the
reader the verification of this fact.

We now define a binary relation on dyadic cuboids, and another binary relation
on dyadic intervals. We will see that these two relations are both order relations,
and moreover, the two order relations are equivalent via the 1-1 correspondence Ψ.

For cuboids: Let Q1, Q2 be distinct dyadic cuboids.

• If Q1 ⊂ Q2, then we say that Q2 < Q1.

• If Q2 ⊂ Q1, then we say that Q1 < Q2.

• Suppose Q1 and Q2 are disjoint. Let Q be the least common ancestor of Q1

and Q2 among dyadic cuboids. Let Q ′, Q ′′ be the lesser and greater dyadic
children of Q, respectively. Then one of Q1, Q2 is contained in Q ′, and the
other is contained in Q ′′.

– If Q1 ⊂ Q ′ and Q2 ⊂ Q ′′, then we say that Q1 < Q2.

– If Q2 ⊂ Q ′ and Q1 ⊂ Q ′′, then we say that Q2 < Q1.

For dyadic intervals: Let I1, I2 be distinct dyadic intervals.

• If I1 ⊂ I2, then we say that I2 < I1.

• If I2 ⊂ I1, then we say that I1 < I2.

• If I1 and I2 are disjoint, then let I be the smallest dyadic interval containing
I1 and I2. We bisect I into I ′ and I ′′, with I ′ lying to the left of I ′′. Then
one of I1, I2 is contained in I ′, and the other is contained in I ′′.

– If I1 ⊂ I ′ and I2 ⊂ I ′′, then we say that I1 < I2.

– If I2 ⊂ I ′ and I1 ⊂ I ′′, then we say that I2 < I1.

320 C. Fefferman, A. Israel, and G. K. Luli

Thus, we have defined binary relations < on dyadic cuboids, and on dyadic
intervals. It is clear that these two relations correspond to each other via the 1-1
correspondence Ψ between dyadic cuboids and dyadic intervals.

Next, we check that < is an order relation. To see this, it is most convenient
to work with dyadic intervals. By examining each case mentioned above, we see
that [a1, b1) < [a2, b2) if and only if either [a1 < a2] or [a1 = a2 and b2 < b1].

This makes it obvious that < is an order relation.
We will make use of the following.

Proposition 30.

(1) Let I1, I2 be dyadic intervals, and suppose I1 < I2. Then either I2 ⊂ I1, or
I1 ∩ I2 = ∅.

(2) Let I1, I2, I3 be dyadic intervals, and suppose I1 < I2 < I3. If I1 ∩ I2 = ∅
then I1 ∩ I3 = ∅.

Proof. (1) holds simply because we cannot have I1 ⊂ I2 when I1 < I2.
To check (2), let Ii = [ai, bi) for i = 1, 2, 3. We have a1 ≤ a2, and [a1, b1) ∩

[a2, b2) = ∅. Hence a2 ≥ b1. Since I2 < I3, we have also a3 ≥ a2. Therefore,
a3 ≥ b1, and thus [a1, b1) ∩ [a3, b3) = ∅, as claimed. �

Corollary 31. Let I1 < I2 < · · · < IN for dyadic intervals I1, . . . , IN (N ≥ 2).
Then one of the following holds:

• All of I2, · · · , IN are contained in I1.

• All of I2, . . . , IN are disjoint from I1.

• For some j (2 ≤ j < N), we find that I2, . . . , Ij ⊂ I1 and Ij+1, . . . , IN are
disjoint from I1.

Corollary 32. Let Q1, . . . , QN be dyadic cuboids (N ≥ 2), and suppose Q1 <

Q2 < · · · < QN. Then one of the following holds:

• All of Q2, · · · , QN are contained in Q1.

• All of Q2, . . . , QN are disjoint from Q1.

• For some j (2 ≤ j < N), we find that Q2, . . . , Qj ⊂ Q1 and Qj+1, . . . , QN

are disjoint from Q1.

We briefly discuss the computer implementation of dyadic cuboids. In our
infinite-precision model of computation (see Section 2.2), a dyadic cuboid Q can be
stored using at most C memory locations2. We can compute the lesser and greater
children of a given dyadic cuboid. We can determine whether two given dyadic
cuboids are disjoint, and if not, then we can determine which one contains the
other. We can also decide whether two given cuboids are equal. These operations

2In the finite-precision model of computation to be described in [21], we will deal only with

dyadic cuboids whose sides have length between 2−CS and 2+CS for an integer S ≥ 1. We will
assume that an S-bit word can be stored in a single memory location.

Fitting a Sobolev function to data I 321

require work and storage at most C. (In this paragraph C denotes a constant
depending only on the dimension n.) We note also that we can compute the least
common ancestor of two given dyadic cuboids using work and storage at most C.
(Recall that in our model of computation it takes a single operation to compute the
smallest dyadic interval containing two given dyadic intervals.) It follows that we
can compare two given cuboids under the order relation < using work and storage
at most C.

4.1.2. Preliminary definitions. A B-Tree is a rooted finite tree T such that
every node has zero, one or two children. We write root(T) to denote the root of T .

Let x ∈ T be a node. Then Descendants(x, T) denotes the set of descendants
of x in the tree T , and Nondescendants(x, T) denotes the set T \Descendants(x, T).

If x = root(T), then of course Nondescendants(x, T) is empty.
If x �= root(T), then Nondescendants(x, T) is again a B-Tree, with the same

root as T .
In any case, Descendants(x, T) is a BTree with root x.
(Here, we adopt the convention that each node is a descendant of itself.)
For any BTree T , we write #(T) for the number of nodes in T .
When we implement a BTree T in the computer, we store the nodes of T , a

pointer to the root of T , and a pointer from each node of T (except the root) to its
parent. Also, we mark each node to indicate whether it is a leaf (recall that a leaf
is a node with no children); and we mark each internal node (i.e. each non-leaf)
with pointers to each of its children.

A binary tree is a BTree such that each node has either zero or two children.

DTrees and ADTrees

Fix 1 < p <∞, n ≥ 1, D ≥ 1.
A DTree is a BTree T each of whose nodes x is identified with a dyadic cuboid

Qx ⊂ Rn, such that the following hold.

• Let y be a child of x in T . Then Qy is a proper sub-cuboid of Qx.

• Let y, z be distinct children of x in T . Then Qy and Qz are disjoint.

An ADTree is a DTree T each of whose nodes x is marked with D linear func-
tionals μx1, . . . , μ

x
D on RD.

(“D” in “DTree” stands for “dyadic”; “AD” in “ADTree” stands for “aug-
mented dyadic”.)

Algorithm: BTree1

Given a BTree T with #(T) ≥ 2, we produce a node xsplit ∈ T , other than the
root of T , such that

#[Descendants(xsplit(T), T)] ≤ 9

10
#(T)

and

#[Nondescendants(xsplit(T), T))] ≤ 9

10
#(T).

The work and storage used to do so are at most C ·#(T) for a universal constant C.

322 C. Fefferman, A. Israel, and G. K. Luli

Explanation. We first mark each node of T with the number of its descendants.
We then start with x̃ = root(T). Initially, #[Descendants(x̃, T)] = #(T) > 9

10
#(T).

While
(
#[Descendants(x̃, T)] > 9

10
#(T)

)
{

/* Note that x̃ cannot be a leaf of T , hence there are one or two children
of x̃. */

We let ỹ be a child of x̃ having as many descendants as possible (among
the children of x̃). We then set x̃ := ỹ.

}
The above loop will terminate, since otherwise we would obtain an infinite

descending sequence in the finite tree T .

When the loop terminates, we have

(4.1) #[Descendants(x̃, T)] ≤ 9

10
#(T).

We will check also that x̃ is not the root of T , and that

(4.2) #[Nondescendants(x̃, T)] ≤ 9

10
#(T).

Since the work and storage of the above procedures are at most C · #(T), we can
return xsplit(T) = x̃, and our algorithm will perform as promised.

Thus, it remains only to check that x̃ is not the root of T , and that (4.2) holds.

That x̃ is not the root of T follows at once from (4.1).

To check (4.2), we note that x̃ arose from its parent x̃+ by executing our loop
for the last time. We have #[Descendants(x̃+, T)] > 9

10
#(T) since we executed the

loop to produce x̃ from x̃+.

Also,

#[Descendants(x̃+, T)] = 1+
∑

y children of x̃+

#[Descendants(y, T)]

≤ 1+ 2 · max{#[Descendants(y, T)] : y children of x̃+}

= 1+ 2 · #[Descendants(x̃, T)]},

since x̃+ has at most 2 children, and since x̃ has at least as many descendants as
any child of x̃+.

Therefore, 1+2·#[Descendants(x̃, T)] > 9
10

#(T), hence #[Descendants(x̃, T)] >
9
20

#(T) − 1
2

. Since #(T) ≥ 2, we find that

#[Descendants(x̃, T)] >
2

20
#(T) +

(7
20

#(T) −
1

2

)
>
1

10
#(T).

Thus, #[Descendants(x̃, T)] > 1
10

#(T), from which (4.2) follows at once.

This completes our explanation of the algorithm BTree1. �

Fitting a Sobolev function to data I 323

4.1.3. Control trees. Let T be a BTree. If x, y ∈ T , then we write x ≤ y if and
only if x is a descendant of y in T .

Let T̃ be a BTree. We call T̃ a sub-tree of T if T̃ consists of nodes in T and if
the following condition holds: for any nodes x ≤ y ≤ z in T , if x, z ∈ T̃ then y ∈ T̃ .

A control tree candidate for T is a finite binary tree T (i.e., each internal node
of T has exactly two children), whose nodes are marked as follows.

• Let ξ be any node of T. Then ξ is marked by a pointer to a BTree called
BT(ξ), which is a sub-tree of T . We mark ξ with a pointer to a node
xroot(ξ) ∈ T which is the root of BT(ξ).

• Let ξ be any internal node of T. Then the two children of ξ in T are marked
separately as gochild(ξ) and staychild(ξ); and the node ξ is marked by a
node xsplit(ξ) ∈ BT(ξ).

• Let ξ be any leaf of T. Then ξ is marked by a node xindicated(ξ) ∈ T .

Let T be a BTree. By induction on #(T), we define a particular control tree
candidate for T , called the control tree for T , to be denoted CT(T). The inductive
definition of CT(T) proceeds as follows.

Base case: Suppose #(T) = 1. Thus, T consists of a single node x0. We then
take CT(T) to consist of a single node ξ0, marked with the nodes xindicated(ξ0) = x0
and xroot(ξ0) = x0, and also marked with a pointer to the BTree BT(ξ0) = T . Note
that CT(T) is a control tree candidate for T . Thus we have defined CT(T) in the
base case.

Induction step: Suppose #(T) ≥ 2, and suppose we have already defined
CT(T ′) for any BTree T ′ with fewer nodes than T . We define CT(T) as follows.

We apply to the BTree T the algorithm BTree1, to produce a node xsplit(T) ∈ T .
We know that xsplit(T) is not the root of T ; and that

#[Descendants(xsplit(T), T)] ≤ 9

10
#(T), and

#[Nondescendants(xsplit(T), T)] ≤ 9

10
#(T).

Let Tgo := Descendants(xsplit(T), T) and Tstay := Nondescendants(xsplit(T), T).
Then Tgo, Tstay are BTrees, with fewer nodes than T . By induction hypothesis, we
have already defined the control trees CT(Tgo), CT(Tstay).

We define the tree T to consist of a root ξ0, together with the two trees CT(Tgo),
CT(Tstay), where we take the two children of ξ0 to be the roots of CT(Tgo) and of
CT(Tstay). Thus, T is a binary tree. We mark the nodes of T to form a control tree
candidate for T , as follows:

• We keep the markings of the nodes of CT(Tgo) and CT(Tstay), without change.

• We mark the root of CT(Tgo) as gochild(ξ0), and we mark the root of
CT(Tstay) as staychild(ξ0).

• We mark the root ξ0 with the node xsplit(ξ0) = xsplit(T).

• We mark the root ξ0 with a pointer to the tree T , i.e., we take BT(ξ0) = T
and xroot(ξ0) = the root of T .

324 C. Fefferman, A. Israel, and G. K. Luli

We define CT(T) to be the marked tree T. This concludes our inductive defini-
tion of CT(T). To show that CT(T) is a control-tree candidate for T , we just need
to establish the following lemma.

Lemma 33. Let T be a BTree. Then BT(ξ) is a sub-tree of T for each ξ ∈ CT(T).

Proof. The proof is by induction on #(T).
If #(T) = 1 then BT(ξ) = T for the single node ξ in CT(T). The result is

immediate.
Suppose that #(T) ≥ 2, and suppose that lemma holds for all trees with fewer

nodes than T .
If ξ is the root ξ0 of CT(T), then BT(ξ) = T by definition, hence the conclusion

of the lemma is obvious.
If ξ is not the root of CT(T) then ξ is a node in either CT(Tgo) or CT(Tstay).
Thus, by the inductive hypothesis, BT(ξ) is a sub-tree of either Tgo or Tstay.

Since Tgo and Tstay are sub-trees of T , we conclude that BT(ξ) is a sub-tree of T .
This concludes the proof of the lemma by induction. �

Lemma 34. The following properties of CT(T) hold.

(A) The number of nodes of CT(T) is 2#(T) − 1.

(B) Moreover, any descending sequence in CT(T) has length at most 1+C log(#(T))
for a universal constant C.

(C) Finally, ∑
ξ∈CT(T)

(BT(ξ)) ≤ C · #(T) · {log2(#(T)) + 1}

for a universal constant C.

Proof. We prove (A) by induction on #(T). If #(T) = 1, then by definition
#(CT(T)) = 1, so (A) holds in this case.

For the induction step, suppose we know (A) for all trees with fewer nodes
than T (#(T) ≥ 2). We establish (A) for T . Indeed, with xsplit(T) as in the
definition of CT(T), we know that CT(T) consists of the root ξ0, the control tree
CT(Descendants(xsplit(T),T)), and the control tree CT(Nondescendants(xsplit(T),T)).
Hence,

CT(T) = 1+ # CT(Descendants(xsplit(T), T))

+ # CT(Nondescendants(xsplit(T), T)),

whereas

#T = # Descendants(xsplit(T), T) + # Nondescendants(xsplit(T), T).

Since # Descendants(xsplit(T), T), # Nondescendants(xsplit(T), T) are strictly less
than #(T), the induction hypothesis gives

CT(Descendants(xsplit(T), T)) = 2 · # Descendants(xsplit(T), T) − 1

and

CT(Nondescendants(xsplit(T), T)) = 2 · # Nondescendants(xsplit(T), T) − 1.

Fitting a Sobolev function to data I 325

Adding the above, we find that # CT(T) − 1 = 2 · #T − 2, proving (A) for the
BTree T . This completes our induction and proves (A).

To prove (B), we check that #BT(ξ ′) ≤ 9
10

· # BT(ξ) whenever ξ ′ is a child
of ξ in CT(T). Indeed, this follows from the definition of BT(ξ) and the defining
property of xsplit(T) by an obvious induction on #(T).

For a descending chain ξ0, ξ1, ξ2, . . . , ξ� in CT(T), we therefore have

1 ≤ # BT(ξ�) ≤ (9/10)�# BT(ξ0) ≤ (9/10)� · #[T].

Thus, � ≤ log(#T)
log(10/9) , proving (B).

To prove (C), we prove by induction on #(T) that

(∗)
∑

ξ∈CT(T)

BT(ξ) ≤ #T · {log10/9(#T) + 1
}
.

For #(T) = 1, this holds because BT(ξ0) = T where ξ0 is the one and only node
of CT(T).

Assume (∗) holds for all BTrees with fewer nodes than T , where T is a given
BTree with #(T) ≥ 2. Then by our induction hypothesis we have

(†)
∑

ξ∈CT(T)

BT(ξ) = # BT(root(CT(T))) +
∑

ξ∈CT(Descendants(xsplit(T),T))

BT(ξ)

+
∑

ξ∈CT(Nondescendants(xsplit(T),T))

BT(ξ)

≤ #(T) + # Descendants(xsplit(T),T) ·
{
1+ log10/9[# Descendants(xsplit(T),T)]

}
+ # Nondescendants(xsplit(T),T) ·

{
1+ log10/9[# Nondescendants(xsplit(T),T)]

}
.

We know that

1+ log10/9 [# Descendants(xsplit(T), T)] ≤ log10/9 #T and that

1+ log10/9 [# Nondescendants(xsplit(T), T)] ≤ log10/9 #T.

Hence, (†) yields the estimate∑
ξ∈CT(T)

BT(ξ) ≤ #T + log10/9(#T) · # Descendants(xsplit(T), T)

+ log10/9(#T) · # Nondescendants(xsplit(T), T),

thus proving (∗). The proof of our lemma is complete. �

Algorithm: Make control tree (Deluxe edition)

Given a BTree T , we produce the control tree CT(T). The work and storage
used to do so are at most C · #(T) · (1+ log #(T)) for a universal constant C.

Explanation. We simply follow the definition in the obvious way. Where the def-
inition proceeds by induction, the algorithm calls itself recursively. The assertion
about the work and storage follows from Lemma 34, assertion (C), and also the
bound on the running time of the algorithm BTree1, which is used as a sub-
routine. �

326 C. Fefferman, A. Israel, and G. K. Luli

We will not use the Deluxe edition explained above, because it uses too much
storage.

Algorithm: Make control tree (Paperback edition)

Given a BTree T , we produce the tree CT(T) with all its markings except for
the BTrees BT(ξ) (ξ ∈ CT(T)). For each ξ ∈ CT(T) we indicate whether BT(ξ)
is a singleton.

The work used to do so is at most C · #(T) · (1 + log #(T)), and the storage
used is at most C · #(T). Here, C is a universal constant.

Explanation. We proceed as in the deluxe edition of the algorithm Make con-

trol tree, except that we delete T when we are finished using it.

We spell out the details.

If #(T) = 1, then we take CT(T) to consist of a single node ξ0, marked
with xindicated(ξ0) = xroot(ξ0) = the one and only node of T . We indicate
that the BTree BT(ξ0) is a singleton.

If #(T) > 1, then we execute the algorithm BTree1 to produce the node
xsplit(T).

/* In a later variant of this algorithm, we insert code here */

We compute the trees T ′ = Descendants(xsplit(T), T) with root xsplit(T), and
T ′′ = Nondescendants(xsplit(T), T) with root = root(T).

To produce the trees T ′, T ′′ efficiently, we can simply erase the marking
indicating xsplit(T) as a child of its parent in T , and then produce pointers to
the roots of T ′, T ′′. This destroys the tree T after we no longer need it.

Recursively, we apply the paperback edition of Make control tree to T ′

and T ′′. Thus, we obtain CT(T ′) and CT(T ′′) with all their markings, except
for the markings BT(ξ ′) (ξ ′ ∈ CT(T ′)) and BT(ξ ′′) (ξ ′′ ∈ CT(T ′′)). These
latter markings have not been computed (or rather, they were computed and
then deleted).

The tree CT(T) then consists of the two trees CT(T ′) and CT(T ′′), together
with a root ξ0. The children of ξ0 are the roots of the two trees CT(T ′),
CT(T ′′). We mark the root of CT(T ′) as gochild(ξ0), and we mark the root
of CT(T ′′) as staychild(ξ0). Also, we mark the root ξ0 of CT(T) with the
node xsplit(ξ0) = xsplit(T) ∈ T .

We mark the root ξ0 of CT(T) with the node xroot(ξ0) = the root of T .
(Recall that BT(ξ0) = T .) We indicate that the BTree BT(ξ0) is not a
singleton. We do not mark the root ξ0 with anything else to tell us what the
tree T was before we destroyed it.

This completes our description of the algorithm.

Let us check how much time and space are used.

Fitting a Sobolev function to data I 327

Let Time(T) be the number of operations needed to execute the paperback
algorithm for the tree T . Recalling that the algorithm BTree1 uses work C#(T)
to produce xsplit(T), we see that

Time(T) ≤ C#(T) + Time(T ′) + Time(T ′′),

and we recall that #(T ′),#(T ′′) ≤ 9
10

#(T) and that #(T ′) + #(T ′′) = #(T).
Hence, it follows by induction on #(T) that

Time(T) ≤ C#(T) · [1+ log10/9 #T].

Thus, the work required to execute our paperback algorithm is as promised.
Next, we study the storage used by our paperback algorithm, which we denote

by S(T).
Since we erase T , we see easily that

S(T) ≤ max{C · #(T),S(T ′) + S(T ′′) + C},

i.e.,
[S(T) + C] ≤ max{C ′#(T), [S(T ′) + C] + [S(T ′′) + C].

Since #(T) = #(T ′) + #(T ′′), it follows by induction on #(T) that

[S(T) + C] ≤ C ′′#(T).

This proves that the storage used by our paperback algorithm is as promised. �

Algorithm: Make control tree (Hybrid version)

Given an ADTree T , with each node x ∈ T marked by functionals μx1, . . . , μ
x
D :

RD → R, we produce the control tree CT(T) with all its markings except for the
trees BT(ξ) (ξ ∈ CT(T)). For each node ξ ∈ CT(T), we produce functionals
μξ1 , . . . , μ

ξ
D : RD → R such that

∑
x∈BT(ξ)

D∑
i=1

|μxi (v)|p and
D∑
i=1

|μξi (v)|p

differ by at most a factor C(D,p) for any v ∈ RD. (This makes sense because
BT(ξ) is a sub-tree of T for each ξ.)

We mark each node ξ ∈ CT(T) with such functionals μξ1 , . . . , μ
ξ
D.

We mark each node ξ ∈ CT(T) to indicate whether BT(ξ) is a singleton.
The work and storage needed to execute this algorithm are at most C#(T) ·

[log(#T) + 1] and C#(T), respectively.

Explanation. We proceed as in the explanation of the paperback edition of Make

control tree, with the following changes.

If #(T) = 1, then the tree CT(T) contains only the root node ξ0. We set
μ
ξ0

i = μxi for i = 1, . . . , D, for the one and only one node x ∈ T .

If #(T) ≥ 2, then we proceed as follows. Where we wrote

/* In a later variant of this algorithm, we insert code here */

328 C. Fefferman, A. Israel, and G. K. Luli

we now insert a call to Compress norms (Section 2.8). Thus, with work and
storage at most C#(T), we produce functionals μ∗1, . . . , μ

∗
D : RD → R such that

∑
x∈T

D∑
i=1

|μxi (v)|p and
D∑
i=1

|μ∗i (v)|p

differ by at most a factor C(D,p) for any v ∈ RD.
Instead of recursively applying the paperback edition of Make control tree,

we now recursively apply the hybrid version.
Just before the sentence “This completes the description of the algorithm” we

set μξ0

i = μ∗i for i = 1, . . . , D.

Since BT(ξ0) = T , our μξ0

i behave as we ask.
The work and storage needed to execute this algorithm are as promised. �

4.1.4. Encapsulations. Let T be a DTree, and let CT(T) be its control tree.
Recall that each node ξ ∈ CT(T) is marked with a BTree BT(ξ) consisting of
nodes of T . Also, each node x ∈ T is marked with a dyadic cuboid Qx.

Let Q be a dyadic cuboid. An encapsulation of Q is a set S of nodes of CT(T),
such that {x ∈ T : Qx ⊂ Q} is the disjoint union of the sets BT(ξ) as ξ varies
over S.

Algorithm: Encapsulate

Let T be a DTree withN nodes. After CN(1+logN) one-time work in space CN,
we can answer queries as follows:

A query consists of a dyadic cuboid Q.
The response to a query Q is an encapsulation S of Q, consisting of at most

C+ C logN nodes of CT(T).
The work and storage used to answer a query are at most C+C logN. Here, C

denotes a constant depending only on the dimension n.

Explanation. Suppose T is not a singleton.
Let xsplit(T) be the node produced by the algorithm BTree1.
Write T ′ = Descendants(xsplit(T), T) and T ′′ = Nondescendants(xsplit(T), T).
We ask: For which nodes x ∈ T do we have Qx ⊂ Q ? To answer this question,

we compare the dyadic cuboids Q and Qxsplit(T). There are three cases:

Case 1: Q ⊂ Qxsplit(T). In this case, we never have Qx ⊂ Q for an x ∈ T ′′.
Hence, in this case, {x ∈ T : Qx ⊂ Q} = {x ∈ T ′ : Qx ⊂ Q}. Thus, we have

reduced matters from T to T ′.
Case 2: Qxsplit(T) � Q. In this case, all x ∈ T ′ satisfy Qx ⊂ Q.
Therefore, in this case,

{x ∈ T : Qx ⊂ Q} = {x ∈ T ′′ : Qx ⊂ Q} ∪ T ′

= {x ∈ T ′′ : Qx ⊂ Q} ∪ BT(gochild(root of CT(T))).

Thus, we have reduced matters from T to T ′′.
Case 3: Qxsplit(T) ∩ Q = ∅. In this case, no x ∈ T ′ satisfy Qx ⊂ Q, hence

{x∈T : Qx⊂Q} = {x∈T ′′ : Qx⊂Q}. Again, we have reduced matters from T to T ′′.

Fitting a Sobolev function to data I 329

Cases 1, 2, 3 are the only possibilities, sinceQ andQxsplit(T) are dyadic cuboids.
Thanks to the above remarks, the following procedure produces an encapsula-

tion, when applied to ξ̂ = root(CT(T)).

• One-time work: Paperback edition of Make control tree.

• Procedure Encap(Q, ξ̂):

/* Produces an encapsulation S of Q for the BTree BT(ξ̂). */

– If ξ̂ is a leaf of CT(T), then Encap(Q, ξ̂) returns {ξ̂} if Q
xindicated(̂ξ)

⊂ Q,

and returns ∅ otherwise.

– If ξ̂ is an internal node of CT(T), then let x̂ = xsplit(ξ̂), ξ
′ = gochild(ξ̂),

ξ ′′ = staychild(ξ̂).

∗ If Q ⊂ Qx̂, then return the set produced by (recursively) executing

Encap(Q, ξ ′).
∗ If Qx̂ � Q, then return the union of {ξ ′} with the set produced by

(recursively) executing Encap(Q, ξ ′′).
∗ If Qx̂ ∩ Q = ∅, then return the set produced by (recursively) exe-

cuting Encap(Q, ξ ′′).

Note that the one-time work here is simply that of the paperback edition of
Make control tree; hence, we perform one-time work at most CN(1 + logN)
in space CN.

Regarding the query work, note that the “depth” of the recursion (i.e., the
number of recursive calls to Encap(·, ·)) is at most 1 + C logN, since #(BT(ξ))
decreases by at least a factor of 9

10
each time we pass from a node ξ to gochild(ξ)

or staychild(ξ).
Therefore, the work and storage used to answer a query are at most C+C logN.

In particular, #(S) ≤ C+C logN, since it takes work at most C+C logN to write
down S.

This completes our explanation of the algorithm Encapsulate. �

Algorithm: ADProcess

Given an ADTree T , (recall that each node x ∈ T is marked with a dyadic
cuboid Qx and with linear functionals μx1, . . . , μ

x
D : RD → R) with N nodes, we

perform one-time work at most CN(1 + logN) in space CN, after which we can
answer queries as follows:

A query consists of a dyadic cuboid Q.
The response to a query consists of linear functionals μQ1 , . . . , μ

Q
D : RD → R

such that
D∑
i=1

|μQi (v)|p and
∑

x∈T, Qx⊂Q

D∑
i=1

|μxi (v)|p

differ by at most a factor C for any v ∈ RD.
The work and storage needed to respond to a query are at most C · (logN+ 1).

Here, C depends only on p, n,D (n = dimension of the cuboids).

330 C. Fefferman, A. Israel, and G. K. Luli

Explanation. We perform the one-time work for the algorithm Encapsulate,
and we perform the hybrid version of the algorithm Make control tree. Thus,
we produce the control tree CT(T); each node ξ is marked with linear functionals
μξ1 , . . . , μ

ξ
D : RD → R such that

D∑
i=1

|μξi (v)|p and
∑

x∈BT(ξ)

D∑
i=1

|μxi (v)|p

differ by at most a factor of C for any v ∈ RD.
Moreover, thanks to the query algorithm in Encapsulate, we can answer

queries as follows.
A query consists of a dyadic cuboid Q. The response to a query Q consists of

a set S of at most C + C logN nodes in CT(T) such that {x ∈ T : Qx ⊂ Q} is the
disjoint union over ξ ∈ S of BT(ξ) ⊂ T .

Given v ∈ RD, we have therefore

∑
x∈T :Qx⊂Q

D∑
i=1

|μxi (v)|p =
∑
ξ∈S

{ ∑
x∈BT(ξ)

D∑
i=1

|μxi (v)|p
}

which differs by at most a factor of C from

(∗)
∑
ξ∈S

D∑
i=1

|μξi (v)|p.

Applying the algorithm Compress norms (Section 2.8) to the linear functionals

μξi (ξ ∈ S; i = 1, . . . , D), we obtain linear functionals μQ1 , . . . , μ
Q
D, such that for

any v ∈ RD, the quantity (∗) differs from
∑D

i=1|μQi (v)|p by at most a factor of C.

Thus, μQ1 , . . . , μ
Q
D satisfy the desired condition.

The one-time work of the above algorithm is at most CN(1 + logN), in space
CN, thanks to our estimates of the one-time work of Encapsulate, and the work
and storage of the hybrid version of Make control tree.

The query work of our algorithm is at most that of the algorithm Encapsu-

late, together with the work of applying Compress norms to the μξi (ξ ∈ S;
i = 1, . . . , D).

Since #(S) ≤ C(logN+ 1), the work of applying Compress norms is at most
C(logN+ 1). The query work of Encapsulate is also at most C(logN+ 1).

Therefore, the total query work of our present algorithm is as promised.
This completes our explanation of the algorithm ADProcess. �

4.1.5. Making a tree from a list of cuboids. Fix a dimension n, and let
Q1, . . . , QN be a sequence of distinct dyadic cuboids in Rn. We assume that

(4.3) Q1 < Q2 < · · · < QN.

(See Section 4.1.1 for the definition of the order relation < .)

Fitting a Sobolev function to data I 331

Algorithm: Make forest

Given 1 ≤ istart ≤ iend ≤ N, we produce the following:

• A sorted list i1 < i2 < · · · < iL consisting precisely of all the i such that
istart ≤ i ≤ iend, and such that there exists no i ′ with istart ≤ i ′ ≤ iend and
Qi � Qi ′ . The list is computed as a linked list: We do not compute an array
i1, i2, . . . , iL. Rather, we compute the initial entry i1, and we mark each iν
with a pointer to its successor iν+1 (1 ≤ ν < L). The last entry iL is marked
with a NULL pointer.

• For each i (istart ≤ i ≤ iend) we produce a pointer which is NULL if i appears
in the list i1, . . . , iL, and otherwise indicates i ′′ such that among all i ′ such
that istart ≤ i ′ ≤ iend and Qi � Qi ′ , the cuboid Qi ′′ is the smallest with
respect to inclusion.

To do so requires at most C · (iend − istart + 1) · (1 + logN) work and at most
C · (iend − istart + 1) storage, aside from that used to hold the list (4.3). Here, C
depends only on the dimension n.

Explanation. We proceed recursively, by induction on iend − istart.

In the base case: iend = istart. Then our task is trivial, and it takes work and
storage at most C.

The induction step: Suppose iend > istart. Then, by Corollary 32, we have one
of the following cases.

Case 1: Qistart+1, . . . , Qiend ⊂ Qistart .

Case 2: Qistart+1, . . . , Qiend are all disjoint from Qistart .

Case 3: For some j (istart + 1 ≤ j < iend), we have Qistart+1, . . . , Qj ⊂ Qistart ,
and Qj+1, . . . , Qiend are disjoint from Qistart .

We can determine which of these cases holds, simply by checking Qistart+1 ∩
Qistart and Qiend ∩Qistart . Moreover, if Case 3 holds, then we can find j by doing
a binary search. This requires work at most C · (1+ logN) and storage at most C,
aside from the storage used to hold the given cuboids (4.3).

We describe how to proceed in Case 3. Later, we explain the modifications
needed for Cases 1 and 2.

Suppose we are in Case 3, with j known. Recursively, we apply the algorithm
Make forest to indices istart + 1 and j (in place of istart and iend) and also to
indices j+ 1 and iend (in place of istart and iend).

Thus we obtain the following:

ĩ1 < ĩ2 < · · · < ĩ
˜L
, a linked list of all ĩ ∈ {istart + 1, . . . , j}(4.4)

such that Q
˜i

is maximal (under inclusion) among Qistart+1, . . . , Qj.

For each ĩ ∈ {istart + 1, . . . , j}, either a NULL pointer indicating that(4.5)

Q
˜i

is maximal as in (4.4), or else a pointer to the ĩ+ ∈ {istart + 1, . . . , j}

such that Q
˜i+

� Q
˜i

with Q
˜i+

as small as possible under inclusion.

332 C. Fefferman, A. Israel, and G. K. Luli

i
#
1 < i

#
2 < · · · < i#

L# , a linked list of all i# ∈ {j+ 1, . . . , iend}(4.6)

such that Qi# is maximal (under inclusion) among Qj+1, . . . , Qiend .

For each i# ∈ {j+ 1, . . . , iend}, either a NULL pointer indicating that(4.7)

i# appears in the list (4.6), or else a pointer to the i#+ ∈ {j+ 1, . . . , iend}

such that Q
i
#
+
� Qi# with Q

i
#
+

as small as possible under inclusion.

We now produce the desired output for istart, iend.

• Our linked list i1 < i2 < · · · < iL consists of the list i#1 < i
#
2 < · · · < i#

L# ,

with i#0 := istart added to the beginning of the list. (Since the lists in question

are implemented here as linked lists, it takes work at most C to add i#0 to
the list.)

• Our pointers are as follows.

For i ∈ {j+ 1, . . . , iend}, the pointers are precisely those produced in (4.7).

For i ∈ {istart + 1, . . . , j}, we take the pointers produced in (4.5). However,

for each ĩ� in the linked list (4.4), we set the pointer associated to ĩ� (which
was NULL in (4.5)) so that it indicates istart.

For i = istart, we take a NULL pointer.

The work needed to implement the above bullet points is at most

C+ C · #{Maximal cuboids under inclusion among Qistart+1, . . . , Qj}.

This concludes our description of the algorithm in Case 3. It produces the
desired information thanks to the inclusions and disjointness conditions that hold
in Case 3.

Cases 1 and 2 are similar to Case 3, but easier.
In Case 1, there are no {j+1, . . . , iend} to deal with, so we omit all steps relevant

to {j+ 1, . . . , iend}.
Similarly, in Case 2, there are no {istart + 1, . . . , j} to deal with, so we omit all

steps relevant to {istart + 1, . . . , j}.
Thus, in all cases, our recursive algorithm works as promised, except that we

have not yet estimated the work and storage needed to carry it out.
Regarding the work, which we call W(istart, iend), we note that (in Case 3) we

have

W(istart, iend) ≤ C · (1+ logN) +W(istart + 1, j) +W(j+ 1, iend)

+ C · #
{

Maximal Qi (under inclusion) among Qistart+1, . . . , Qj

}
.(4.8)

In Case 1 we have instead

W(istart, iend) ≤ C · (1+ logN) +W(istart + 1, iend)

+ C · #
{

Maximal Qi (under inclusion) among Qistart+1, . . . , Qiend

}
.(4.9)

Fitting a Sobolev function to data I 333

In Case 2 we have

W(istart, iend) ≤ C · (1+ logN) +W(istart + 1, iend)(4.10)

since there are no pointers to modify in Case 2.

To analyze (4.8),(4.9),(4.10), we introduce NR(istart, iend) := the number of
cuboids Qi amongQistart , . . . , Qiend that are not contained in any other Qi ′ among
Qistart , . . . , Qiend . (“NR” stands for “Number of Roots”.)

Then (4.8),(4.9),(4.10) together with the known inclusions that follow from
Corollary 32 tell us the following.

In Case 3, with j as given in that case, we have

W(istart, iend) ≤ C · (1+ logN) +W(istart + 1, j)(4.11)

+W(j+ 1, iend) + C · NR(istart + 1, j)

and

(4.12) NR(istart, iend) = 1+ NR(j+ 1, iend).

In Case 1, we have instead

(4.13) W(istart, iend) ≤ C · (1+ logN) +W(istart + 1, iend) + C · NR(istart + 1, iend)

and

(4.14) NR(istart, iend) = 1.

In Case 2, we have

(4.15) W(istart, iend) ≤ C · (1+ logN) +W(istart + 1, iend)

and

(4.16) NR(istart, iend) = 1+ NR(istart + 1, iend).

Consequently, in Case 3 we have[
W(istart, iend) + C

′ NR(istart, iend)
] ≤ C ′′ · (1 + logN)

+
[
W(istart + 1, j) + C

′ NR(istart + 1, j)
]

+
[
W(j+ 1, iend) + C

′ NR(j+ 1, iend)
]
.(4.17)

(Here, we pick C ′ big, and then pick C ′′ much bigger.)
In Cases 1 and 2, we have instead[

W(istart, iend) + C
′ NR(istart, iend)

] ≤ C ′′ · (1+ logN)

+
[
W(istart + 1, iend) + C

′ NR(istart + 1, iend)
]
.(4.18)

334 C. Fefferman, A. Israel, and G. K. Luli

Also, when istart = iend we have

(4.19) W(istart, iend) + C
′ NR(istart, iend) ≤ C ′′.

Thanks to (4.17)· · · (4.19), induction on iend − istart yields the estimate

W(istart, iend) + C
′ NR(istart, iend) ≤ C ′′′ · (1+ logN) · (iend − istart + 1).

In particular,

W(istart, iend) ≤ C · (1+ logN) · (iend − istart + 1)
as promised in the statement of Make forest.

Next, we analyze the storage needed to execute Make forest.
We implement the pointers as global data (see the second bullet point in the

statement of the algorithm); this requires space at most C · (iend − istart + 1). Let
S(istart, iend) be the space in which we can execute our algorithm Make for-

est(istart, iend), not counting the space needed for the pointers, but including the
space needed to compute and display the linked list; see the first bullet point in
the statement of the algorithm.

In Case 3, we see that

S(istart, iend) ≤ C+S(istart + 1, j) + S(j, iend).

In Case 1 and in Case 2 we have instead

S(istart, iend) ≤ C+S(istart + 1, iend).

Since also S(istart, istart) ≤ C, it follows by induction that S(istart, iend) ≤
C(iend − istart + 1).

Thus, the storage used in executing Make forest(istart, iend) is as promised.
This completes our explanation of that algorithm. �

Algorithm: Fill in gaps

Suppose we are given a cuboid Q̂ and a list Qistart , . . . , Qiend of pairwise disjoint

cuboids, sorted so thatQistart < Qistart+1 < · · · < Qiend . Assume that eachQi⊂Q̂.

We produce a DTree T consisting of cuboids, with root Q̂, and with leaves
Qistart , . . . , Qiend (and with no other leaves). Each node of T is either a leaf, the
parent of a leaf, or has precisely two children.

The work and storage used to do so are at most C · (iend − istart + 1) · log(iend −
istart + 2) and C · (iend − istart + 1), respectively. Here, C depends only on the
dimension n.

Explanation. If any Qi = Q̂, then there is only one Qi, so we take our DTree to
consist only of Q̂. Suppose otherwise.

If iend− istart+1 ≤ 2, then we can take our DTree to have root Q̂, and take Q̂ to
have children Qistart , . . . , Qiend . Thus, our present algorithm is trivial in this case.

Suppose instead iend − istart + 1 ≥ 3. We take Q# to be the least dyadic cuboid
(under inclusion) that contains Qistart and Qiend . Let Q ′, Q ′′ be, respectively, the
lesser and greater child of Q# (as dyadic cuboids).

Since Qistart < · · · < Qiend and the Qj are pairwise disjoint, it follows that

Fitting a Sobolev function to data I 335

• Q# ⊂ Q̂.

• Qi ⊂ Q# for each i = istart, . . . , iend.

• There exists j (istart ≤ j < iend) such that

Qistart , . . . , Qj ⊂ Q ′ and Qj+1, . . . , Qiend ⊂ Q ′′.

(These properties are obvious for dyadic cuboids, since they are obvious for dyadic
intervals; see our discussion of the 1-1 correspondence Ψ in Section 4.1.1.)

We can recursively apply the present algorithm to produce DTrees T ′,T ′′ with
roots Q ′,Q ′′, respectively. The leaves of T ′ are precisely Qistart , . . . , Qj; and the
leaves of T ′′ are precisely Qj+1, . . . , Qiend .

Our DTree T will consist of a root Q̂, together with T ′ and T ′′. The two children
of Q̂ will be Q ′ and Q ′′. This T is obviously as promised.

Aside from recursively calling on itself, the above algorithm uses work at most
C log(#(T) + 1) and storage at most C (not counting the storage used to hold
Qistart , . . . , Qiend). The factor of log(#(T)+ 1) comes from a binary search used to
find j.

Therefore, altogether, our algorithm uses work and storage at most
C ·#(T) log(#(T)+1) and C ·#(T), respectively, where T is the DTree arising from
the algorithm. Since the leaves of T are precisely Qistart , . . . , Qiend , and since each
node of T (other than the leaves and parents of leaves) has 2 children, we see that

#(T) ≤ C · #(leaves of T) = C · (iend − istart + 1).
Thus, the work and storage of the algorithm are as promised. �

Algorithm: Make DTree

Suppose we are given a list of distinct cuboids Q1, . . . , QN. With work ≤
CN(1+ logN) in space CN we produce a DTree T with the following properties.

• Each of the Qj is a node of T .

• Each node of T is marked as original if and only if it is one of the Qj.

• Furthermore, we mark each nodeQ of T to indicate either the smallest (under
inclusion) original node containingQ, or else to indicate that no such original
node exists.

• The number of nodes of T is at most CN.

Explanation. We pick a cuboid Q00 that strictly contains the cuboidsQ1, . . . , QN.
Applying the algorithm Make forest, we make a tree T (1) with nodes

Q00, Q1, . . . , QN, such that Q is a descendant of Q ′ in T (1) if and only if Q ⊂ Q ′.
Note that Q00 is the root of T (1).
Recall that each non-root node in T (1) is marked with a pointer to its parent.

We mark each internal node in T (1) with pointers to its children, using an obvious
algorithm. We also mark each non-root node in T (1) to indicate that it is original.

By repeatedly applying the algorithm Fill in gaps to a nodeQ of T (1) together
with a list of its children (sorted under <), we imbed the tree T (1) in a DTree T (2)

336 C. Fefferman, A. Israel, and G. K. Luli

that has at most CN nodes. The nodes in T (1) retain their markings in T (2).
At each stage, we indicate the smallest original node containing each of the newly
generated nodes (if such an original node exists). Indeed, if Q = Q00, then we
mark each of the new nodes Q ′ generated by Fill in gaps to indicate that Q ′ is
not contained in any original node. If Q �= Q00, then we mark each of the new
nodes Q ′ generated by Fill in gaps to indicate that the smallest original node
containing Q ′ is the node Q.

This completes the construction of the marked DTree T (2).
One can easily check that the algorithm satisfies the desired work and storage

bounds. �

Algorithm: Compute norms from marked cuboids

Suppose we are given a list Q1, . . . , QN of distinct dyadic cuboids in Rn, with
each cuboid Qi marked with linear functionals μQi

1 , . . . , μ
Qi

Li
: RD → R. Let

N̂ =
∑N

i=1(Li + 1).

Given 1 < p < ∞, we perform one-time work at most CN̂(1 + log N̂) in space

CN̂, after which we can answer queries as follows:
A query consists of a dyadic cuboid Q in Rn.
The response to the queryQ is a list of linear functionals μ̂Q1 , . . . , μ̂

Q
D : RD → R,

for which we guarantee the estimate

c ·
D∑
j=1

|μ̂Qj (v)|p ≤
∑

Qi⊂Q

Li∑
j=1

|μQi

j (v)|p ≤ C
D∑
j=1

|μ̂Qj (v)|p for all v ∈ RD.

The work and storage used to answer a query are at most C · (1+ logN). Here, c
and C depend only on n, p, and D.

Explanation. For each i = 1, . . . , N, we apply Compress norms (see Section 2.8)

to the functionals μQi

j (1 ≤ j ≤ Li). We obtain linear functionals μQi

1 , . . . , μ
Qi

D :

RD → R such that

(4.20) c ·
D∑
j=1

|μQi

j (v)|p ≤
Li∑
j=1

|μQi

j (v)|p ≤ C ·
D∑
j=1

|μQi

j (v)|p for all v ∈ RD.

We then construct a Dtree T such that each cuboid Qj is a node of T . This
requires an application of the algorithm Make DTree. We guarantee that T has
at most CN nodes.

We mark each nodeQi of T (1≤ i≤N) with the linear functionals μQi

1 , . . . , μ
Qi

D :

RD → R. We mark each node Q̃ of T that is not among Q1, . . . , QN with linear

functionals μ
˜Q
1 , . . . , μ

˜Q
D : RD → R, all of which are simply zero.

Equipped with these markings, T becomes an ADTree. (See Section 4.1.2 for
the definition of an ADTree.)

Applying the algorithm ADProcess to the ADTree T , we perform one-time
work, after which we can answer queries. A query consists of a dyadic cuboid Q

Fitting a Sobolev function to data I 337

in Rn. The response to the query Q is a set of linear functionals μ̂Q1 , . . . , μ̂
Q
D :

RD → R such that

c

D∑
j=1

|μ̂Qj (v)|p ≤
∑

Qi⊂Q

D∑
j=1

|μQi

j (v)|p ≤ C
D∑
j=1

|μ̂Qj (v)|p for all v ∈ RD.

This estimate and (4.20) show that the functionals μ̂Q1 , . . . , μ̂
Q
D satisfy the conclu-

sion of the present algorithm. The work and storage used are easily seen to be as
promised. �

Algorithm: Placing a point inside target cuboids

Given a list of dyadic cuboids Q1, . . . , QN ⊂ Q◦ (not necessarily pairwise
disjoint), we perform one-time work ≤ CN(1 + logN) in space ≤ CN, after which
we can answer queries as follows:

A query consists of a point x ∈ Rn.
The response to a query x is either one of the Qi containing x, or else a promise

that no such Qi exists.
The work to answer a query is at most C · (1+ logN).
Here, C depends only on the dimension n.

Explanation. We construct a DTree T and its control tree T = CT(T) with at
most CN nodes (using the paperback edition of Make control tree), such that
each of the Qj is a node of T . We mark each node of T as original if and only if
it is one of the Qj. Furthermore, we mark each node Q of T to indicate either the
smallest (under inclusion) original node containing Q, or else to indicate that no
such original node exists. (See Make DTree.)

Recall that each internal node ξ ∈ T has two children, marked as gochild(ξ) and
staychild(ξ). Each internal node ξ ∈ T is also marked with a node Qsplit(ξ) ∈ T .
Each node ξ ∈ T is marked with a node Qroot(ξ) = the root of the DTree BT(ξ).

Recall that we’ve marked each ξ to say whether BT(ξ) is a singleton.
Recall that BT(root(T)) = T . Also recall that

BT(gochild(ξ)) = Descendants(Qsplit(ξ),BT(ξ)), and

BT(staychild(ξ)) = Nondescendants(Qsplit(ξ),BT(ξ))

for each internal node ξ ∈ T.
Let x ∈ Rn and ξ ∈ T be given. We consider the following procedure.

Procedure find-original-node (x, ξ)

We determine whether x is contained in an original node in BT(ξ). If such an
original node exists, then we exhibit one.

The above procedure answers our query when applied to ξ = root(T).
We now assume that ξ ∈ T is arbitrary. We ask whether x is contained in an

original node in BT(ξ).
To study our question, we compare x with the root Qroot(ξ) of BT(ξ). If

x /∈ Qroot(ξ), the answer is obviously NO.
(No original node Q ∈ BT(ξ) contains x.)

338 C. Fefferman, A. Israel, and G. K. Luli

Suppose x ∈ Qroot(ξ). If Qroot(ξ) is original, the answer is obviously YES, and
we exhibit Qroot(ξ) as an original node containing x.

Suppose Qroot(ξ) is not original. If Qroot(ξ) is a leaf of BT(ξ) (i.e., BT(ξ) is a
singleton), then the answer is obviously NO.

Suppose Qroot(ξ) is not a leaf of BT(ξ) (i.e., BT(ξ) is not a singleton). We
then compare x with Qsplit(ξ) ∈ BT(ξ).

If x /∈ Qsplit(ξ), then all the descendants of Qsplit(ξ) in BT(ξ) are irrelevant
for our discussion, i.e., they can’t possibly contain x. Therefore, in this case it’s
enough to ask whether x is contained in an original cuboid of
Nondescendants(Qsplit(ξ),BT(ξ)).

Thus, in this case, we can pass from the root ξ to ξ+ = staychild(ξ) ∈ T, and
we can answer our question by recursion.

On the other hand, suppose x ∈ Qsplit(ξ). We examine the following two
situations.

• Suppose Qsplit(ξ) is contained in an original node of T . Furthermore, suppose
that the smallest original node Q ∈ T containing Qsplit(ξ) is contained in
Qroot(ξ). Note thatQsplit(ξ) andQroot(ξ) are nodes in BT(ξ), andQsplit(ξ) ≤
Q ≤ Qroot(ξ) (inclusion), hence Q is a node of BT(ξ) because BT(ξ) is a
sub-tree of T (see Lemma 33). Thus, the answer to our question is YES. We
exhibit the original node Q ∈ BT(ξ) containing x.

• Suppose that either Qsplit(ξ) is not contained in an original node of T , or that
the smallest original node containing Qsplit(ξ) is not contained in Qroot(ξ).
This means that none of the original nodes in BT(ξ) contain Qsplit(ξ). Then
any original node in BT(ξ) that contains x must be a descendant of Qsplit(ξ).

Therefore, we may pass from ξ to ξ− = gochild(ξ) ∈ T, and we can answer
our question by recursion.

So, in all cases, we can answer our question.
The one-time work is at most CN(1 + logN). The query work, apart from

recursing, is at most C. We recurse at most C · (1+ logN) times, since T has depth
at most C · (1+ logN). So, the query work is at most C · (1+ logN), as desired.

This completes the description of the procedure Find-original-node. As
mentioned before, this yields the algorithm Placing a point inside target

cuboids. �

4.2. The Callahan–Kosaraju decomposition

Let E ⊂ Rn with #(E) = N ≥ 2. A well-separated pairs decomposition (WSPD)
of E is a finite sequence of Cartesian products E ′

1 × E ′′
1 , . . . , E

′
L × E ′′

L contained in
E× E, with the following properties.

(WSPD1) Each pair (x ′, x ′′) ∈ E × E with x ′ �= x ′′ belongs to exactly one of the
sets E ′

� × E ′′
� (for � = 1, . . . , L). Moreover, E ′

� ∩ E ′′
� = ∅ for � = 1, . . . , L.

(WSPD2) For each � = 1, . . . , L, we have diam(E ′
�)+diam(E ′′

�) ≤ 10−10 dist(E ′
�, E

′′
�).

(WSPD3) We have L ≤ CN, for some constant C depending only on the dimen-
sion n.

Fitting a Sobolev function to data I 339

The next algorithm arises in the work of Callahan and Kosaraju in [9] (see
also [17]).

Algorithm: Make WSPD

With work at most CN logN in space at most CN, we compute a WSPD for E
and we compute representative pairs (x ′

�, x
′′
�) ∈ E ′

� × E ′′
� for � = 1, . . . , L.

We do not explain here what it means to “compute” a WSPD. This does not
matter, however, since we will only need the representative pairs (x ′

�, x
′′
�).

4.3. The BBD tree

We recall a few of the results of Arya, Mount, Netanyahu, Silverman and Wu in [1].
Given E ⊂ Rn such that #(E) = N ≥ 2, and given x ∈ Rn, we can enumerate

the points of E as y1, . . . , yN so that

|x− y1| ≤ |x− y2| ≤ · · · ≤ |x− yN|.

We define dk(x, E) = |x− yk|. The definition of dk(x, E) is clearly independent of
the chosen enumeration.

The following result is contained in [1] (see also [17]).

Theorem 35. There exists an algorithm with the following properties:

• The algorithm receives as input a subset E with #(E) = N ≥ 2. The algorithm
performs one-time work at most CN logN using storage CN, after which the
algorithm is prepared to answer queries.

• A query consists of a point x ∈ Rn.

• The answer to a query x consists of two distinct points x̃1, x̃2 ∈ E with
|x− x̃1| ≤ 2d1(x, E) and |x− x̃2| ≤ 2d2(x, E).

• The work required to answer a query is at most C logN.

• Here, C depends only on the dimension n.

The proof of Theorem 35 relies on a data structure called a BBD Tree, which
is associated to E. As another application of the BBD Tree, we have the following
algorithm (see [17]).

Algorithm RCZ

Given real numbers λ(x) (x ∈ E), we perform one-time work at most CN logN
in space CN, after which we can do the following.

Given a dyadic cuboid Q, we can compute the following numbers and points.

• #(E ∩Q).

• min{λ(x) : x ∈ E ∩Q} (or a promise that E ∩Q is empty).

• A representative point x(Q) ∈ E ∩Q (if E ∩Q �= ∅).

• diam(Q ∩ E).
This computation requires work at most C logN.

340 C. Fefferman, A. Israel, and G. K. Luli

Explanation. The computation follows directly from Algorithm RCZ1 in Sec-
tion 25 of [17] and Algorithm REP1 in Section 27 of [17]. These algorithms
explain how to compute the quantities min {δ(x,A) : x ∈ E ∩Q} and #(E ∩ Q),
and how to compute a representative point x(Q) ∈ E ∩ Q when E ∩ Q �= ∅. The
numbers δ(x,A) (x ∈ E) in Section 25 of [17] are treated as arbitrary given real
numbers (except in Lemma 1 in Section 25 of [17], which is not used elsewhere in
the relevant algorithms). See Section 4.6 of this paper for a related discussion.

For each 1 ≤ i ≤ n we define coordinate functions λi(x) = xi for x =
(x1, . . . , xn) ∈ E. Applying the computation in the first bullet point, we com-
pute the quantities

ri := min{xi : x = (x1, . . . , xn) ∈ E ∩Q}, and

si := max{xi : x = (x1, . . . , xn) ∈ E ∩Q} (1 ≤ i ≤ n).
Thus, we can compute diam(E ∩ Q) = max {|si − ri| : i = 1, . . . , n}. (Recall that
diameters are measured using the �∞ norm.) �

Remark 36. Let Q be a dyadic cube. We can decide whether 3Q∩E is nonempty,
and if so we compute min {λ(x) : x ∈ E ∩ 3Q} and #(E∩ 3Q). We use a divide and
conquer strategy. We write 3Q as the disjoint union of 3n dyadic cubes Qν of
sidelength δQ. We apply Algorithm RCZ to each Qν. We can tell whether
E ∩ 3Q is nonempty by checking whether E ∩ Qν is nonempty for some ν. We
complete the computation using the formulas

min {λ(x) : x ∈ E ∩ 3Q} = min
ν

min {λ(x) : x ∈ E ∩Qν}

#(E ∩ 3Q) =
∑
ν

#(E ∩Qν).

Similarly, we can compute min
{
λ(x) : x∈E∩ 65

64
Q
}

and #(E∩65
64
Q) (if E∩ 65

64
Q �= ∅).

Here, we use the fact that 65
64
Q is the disjoint union of 130n dyadic cubes of

sidelength 1
128
δQ.

Hence, by replicating the argument in Algorithm RCZ, we can compute
diam(E ∩ 3Q) and diam(E ∩ 65

64
Q).

All the above computations requires work at most C logN after the one-time
work of Algorithm RCZ has been carried out.

4.4. Clusters

Suppose we are given E ⊂ Rn with #(E) = N ≥ 2.
Suppose we are given A ≥ 1. Assume A exceeds a large enough constant

determined by n. Assume also that A is an integer power of 2.
In this section, let C, c, C ′, etc. denote constants determined by n, and

let C(A), c(A), C ′(A), etc. denote constants determined by A and n.
These symbols may denote different constants in different occurrences.
Recall that we use the l∞-norm and l∞-metric on Rn: for x=(x1, . . . , xn)∈Rn,

we have |x| = max1≤i≤n |xi|.

Fitting a Sobolev function to data I 341

A subset S ⊂ E is called a cluster if

#(S) ≥ 2 and dist(S, E \ S) ≥ A3 · diam(S),

where dist(S, E \ S) = ∞ if E \ S = ∅.
A cluster S is called a strong cluster if

dist(S, E \ S) ≥ A5 · diam(S),

where dist(S, E \ S) = ∞ if E \ S = ∅.
A cluster that is not a strong cluster is called a weak cluster.

Let S be any finite non-empty subset of Rn. The lower left corner of S, denoted
by LLC(S), is defined by

LLC(S) = (x1, . . . , xn) ∈ Rn,

where xi = min {yi : y = (y1, . . . , yn) ∈ S} for 1 ≤ i ≤ n.
The upper right corner of S, denoted by URC(S), is defined by

URC(S) = (x1, . . . , xn) ∈ Rn,

where xi = max {yi : y = (y1, . . . , yn) ∈ S} for 1 ≤ i ≤ n.
Note that diam(S) = |LLC(S) − URC(S)|, since we are using the l∞ metric

on Rn.
If S ⊂ Rn is finite and #(S) ≥ 2, then we define the descriptor cube of S to be

the smallest dyadic cube Q such thatQ contains LLC(S) and 3Q contains URC(S).
We note that S has one and only one descriptor cube.

We write DC(S) for the descriptor cube of S.

If LLC(S)=(x↓1, . . . , x
↓
n) and URC(S)=(x↑1, . . . , x

↑
n), then every (x1, . . . , xn)∈S

satisfies x↓i ≤ xi ≤ x↑i for 1 ≤ i ≤ n.

Hence, if Q = I1 × · · · × In is the descriptor cube of S, we have x↓i , x
↑
i ∈ 3Ii for

1 ≤ i ≤ n, consequently, we have xi ∈ 3Ii for 1 ≤ i ≤ n. It follows that x ∈ 3Q.
Thus, if Q = DC(S), then S ⊂ 3Q. Moreover, diam(S) ≥ cδQ, by the minimal

property of Q.

Algorithm: Find descriptor cube

We perform one-time work ≤ CN logN in space CN, after which we answer
queries as follows. A query consists of a dyadic cube Q. The response to a query
is as follows:

Either we guarantee that #(3Q ∩ E) ≤ 1, or we guarantee that
#(3Q∩E) ≥ 2 and we compute the descriptor cube DC(3Q∩E) together
with the points LLC(3Q∩ E) and URC(3Q ∩ E). The query work is at
most C logN.

Explanation. We perform the one-time work of the BBD tree, after which we can
do the following:

We compute #(3Q ∩ E) using Algorithm RCZ (see Remark 36). If #(3Q ∩
E) ≤ 1 then we indicate as such and terminate the computation. Otherwise, we
guarantee that #(3Q ∩ E) ≥ 2 and proceed as follows.

342 C. Fefferman, A. Israel, and G. K. Luli

Suppose we assign to each x ∈ E a label λ(x) ∈ R. After one-time work at most
CN log(N) we can answer queries, as follows.

A query is a dyadic cube Q and a response to a query is maxx∈E∩3Q λ(x) and

minx∈E∩3Q λ(x). The query work is at most C logN. (See Remark 36.)

Taking λ(x) to be the ith coordinate of x for each x ∈ E and looping over all i,
we see that we can perform one-time work at most CN log(N), after which, given
any dyadic query cube Q, we can compute LLC(3Q ∩ E) and URC(3Q ∩ E) with
work at most C logN.

After we obtain LLC(3Q∩ E) and URC(3Q∩ E), we can compute DC(3Q∩ E)
with work at most C.

This completes the explanation of the algorithm Find descriptor cube. �

Algorithm: Make cluster descriptors

We produce a list of dyadic cubes QCD
1 , . . . , QCD

L , with the following properties:

• For each l, the set Sl = 3Q
CD
l ∩ E is a cluster.

• Every strong cluster is one of the the Sl above.

• For each l, the cube QCD
l is the descriptor cube of Sl.

• L ≤ CN.

• The cubes QCD
1 , . . . , QCD

L are all distinct.

The algorithm uses work at most CN logN in space CN.

Explanation. We perform the one-time work to make representatives (x′ν, x
′′
ν) (1 ≤

ν ≤ νmax) of the well-separated pairs decomposition of E. Thus, νmax ≤ CN and
for any x′, x′′ ∈ E with x′ �= x′′, there exists ν such that

|x′ − x′ν|+ |x′′ − x′′ν| ≤ 10−10 |x′ − x′′| and

|x′ − x′ν|+ |x′′ − x′′ν| ≤ 10−10 |x′ν − x′′ν| .

(See Section 4.2.)
We perform the one-time work of the algorithm Find descriptor cube.
We perform the one-time work of the BBD tree. After that, given a dyadic

cube Q, we can compute #(E ∩ 3Q) in time C logN. (See the algorithm RCZ in
Section 4.3.)

For each ν, we let Scandν =3Qcand
ν ∩E, whereQcand

ν is a dyadic cube containing x ′
ν

with 2 |x′ν − x′′ν| ≤ δQcand
ν

≤ 8 |x′ν − x′′ν|.
Instead of computing Scandν (which will take too much work), we computeQcand

ν .
To test whether we “like” Scandν , we test whether

(4.21) #(E ∩ 3Qcand
ν) = #(E ∩ 3Q̂cand

ν),

where Q̂cand
ν ⊃ Qcand

ν is a dyadic cube with sidelength A4δQcand
ν

. (This test takes
work C logN after we perform the one-time work of the BBD tree. Recall that A
is a power of 2.)

Fitting a Sobolev function to data I 343

If we like Scandν (i.e., (4.21) holds), then we apply the query algorithm within
the algorithm Find descriptor cube to find

DC(Scandν) = DC(3Qcand
ν ∩ E).

We then add DC(Scandν) to the list of the cubes
{
QCD

l

}
.

If (4.21) does not hold, we do nothing further regarding Qcand
ν .

Thus, we produce a list of cubes

QCD
1 , . . . , QCD

L .

Note that L≤νmax≤CN, since each QCD
� arises from Qcand

ν for some 1≤ν≤νmax.

If we like Scandν , then Scandν = 3Qcand
ν ∩ E is a cluster. Indeed, since

#(E ∩ 3Qcand
ν) = #(E ∩ 3Q̂cand

ν),

we have

dist(Scandν , E \ Scandν) ≥ dist(3Qcand
ν ,Rn \ 3Q̂cand

ν)(4.22)

≥ cA4δQcand
ν

≥ c′A4 · diam(Scandν);

in obtaining inequality (4.22), we used Scandν = 3Qcand
ν ∩ E ⊂ 3Qcand

ν and

(4.23) #
{
(E \ Scandν) ∩ 3Q̂cand

ν

}
= #

{
(E ∩ 3Q̂cand

ν) \ (E ∩ 3Qcand
ν)

}
= 0.

This completes the proof that Scandν is a cluster whenever (4.21) holds.

Next, we show that whenever we like Scandν = 3Qcand
ν ∩ E (i.e., (4.21) holds),

then {
QCD

l := DC(Scandν), Sl := S
cand
ν

}
satisfies

(4.24) Sl = 3Q
CD
l ∩ E.

Indeed, since QCD
l = DC(Scandν), we have

(4.25) Sl = S
cand
ν ⊂ 3QCD

l ∩ E.
On the other hand, δQCD

l
and δQcand

ν
are both comparable to |x′ν − x′′ν|. Indeed,

for Qcand
ν , this follows from the defining condition. For QCD

l , we have x′ν,x′′ν ∈
3Qcand

ν ∩ E = Scandν ⊂ 3QCD
l , hence

|x′ν − x′′ν| ≤ CδQCD
l
.

Also, since Scandν = 3Q cand
ν ∩ E, we have

diam(Scandν) ≤ 3δQcand
ν

≤ C |x′ν − x′′ν| ,

hence QCD
l = DC(Scandν) satisfies

δQCD
l

≤ C · diam(Scandν) ≤ C′ |x′ν − x′′ν| .

Thus, as claimed, δQcand
ν

and δQCD
l

are comparable to |x′ν − x′′ν|.

344 C. Fefferman, A. Israel, and G. K. Luli

Furthermore, since x′ν ∈ 3Qcand
ν ∩ 3QCD

l , it follows that

3QCD
l ∩ E ⊂ AQcand

ν ∩ E = 3Qcand
ν ∩ E;

the last equality holds since we like Scandν .
Therefore,

(4.26) 3QCD
l ∩ E ⊂ 3Qcand

ν ∩ E = Scandν = Sl.

From (4.25) and (4.26), we obtain (4.24).
Since QCD

l =DC(Scandν), it now follows that QCD
l =DC(Sl), and Sl=3Q

CD
l ∩ E.

Since Sl = S
cand
ν and Scandν is a cluster, we have shown that Sl is a cluster.

We have now proven the first, third, and fourth bullet points asserted in the
specification of our algorithm Make cluster descriptors.

Next, we show the second bullet point: every strong cluster is one of the Sl.
Indeed, let S be a strong cluster. Thus, #(S) ≥ 2 and

dist(S, E \ S) ≥ A5 · diam(S).

Fix x′, x′′ ∈ S such that |x′ − x′′| = diam(S). Then we can find ν such that

|x′ν − x′|+ |x′′ν − x′′| ≤ 10−10 |x′ − x′′| = 10−10 diam(S).

We have

dist(x′ν, S) ≤ |x′ν − x′| ≤ 10−10 diam(S) and(4.27)

dist(x′′ν, S) ≤ |x′′ν − x′′| ≤ 10−10 diam(S).(4.28)

Since x′ν, x′′ν ∈ E and dist(S, E \ S) ≥ A5 · diam(S), from (4.27) and (4.28), we
conclude that x′ν, x

′′
ν ∈ S.

Next, we show that S = Scandν = 3Qcand
ν ∩ E.

By definition of Qcand
ν , we have x′ν ∈ Qcand

ν and

(4.29) 2 |x′ν − x′′ν| ≤ δQcand
ν

≤ 8 |x′ν − x′′ν| .

Therefore, every point z ∈ Rn such that |z − x′ν| ≤ 3
2
|x′ν − x′′ν| belongs to 3Qcand

ν .
On the other hand, since x′ν ∈ S, we know that every x ∈ S satisfies

|x− x′ν| ≤ diam(S) = |x′ − x′′| ≤ 3

2
|x′ν − x′′ν| .

Therefore, S ⊂ 3Qcand
ν . Since S is a cluster, S ⊂ E. Thus,

S ⊂ 3Qcand
ν ∩ E.

If S �= 3Qcand
ν ∩ E, then there would exist x̂ ∈ (3Qcand

ν ∩ E) \ S. We would then
have

dist(E \ S, S) ≤ |x̂− x′ν| ≤ CδQcand
ν

≤ C′ |x′ν − x′′ν| ≤ C′ diam(S),

contradicting our assumption that S is a strong cluster.

This completes the proof that S = Scandν = 3Qcand
ν ∩ E, where the last equality

follows by definition.

Fitting a Sobolev function to data I 345

Next, we check that we like Scandν , i.e., that

#(3Qcand
ν ∩ E) = #(3Q̂cand

ν ∩ E),
where Q̂cand

ν ⊃ Qν is a dyadic cube with δQ̂cand
ν

= A4δQν
.

Indeed, suppose not. Then there would exist x̂ ∈ (3Q̂cand
ν ∩E) \ (3Qcand

ν ∩E) ⊂
E \ S, where the last inclusion holds because S = 3Qcand

ν ∩ E. We have

dist(E \ S, S) ≤ |x̂− x′ν| ≤ CδQ̂cand
ν

= CA4δQcand
ν

≤ C ′A4 |x′ν − x′′ν| (see (4.29))

≤ C ′A4 · diam(S) (since x′ν, x
′′
ν ∈ S),

contradicting our assumption that S is a strong cluster. This completes the proof
that we like Scandν .

We now know that DC(Scandν) is one of the QCD
l , and that (for the same l), we

have Sl = S
cand
ν = S.

This proves the second bullet point asserted in our specification of the algorithm
Make cluster descriptors.

It remains to verify the last bullet point of the algorithm Make cluster

descriptors, i.e., the cubes QCD
1 , · · · , QCD

L are all distinct. Since L ≤ CN, we
can sort the QCD

l ’s and remove the duplicates with work CN logN.
Now all bullet points asserted in the specification of our algorithm hold.
The reader can easily check that the work and storage of our algorithm are as

promised. �

Remark 37. Note that the clusters Sl produced (implicitly) by the above algo-
rithm are all distinct, since their descriptor cubes QCD

l are all distinct, and any
cluster has one and only one descriptor cube.

Algorithm: Locate relevant cluster

After performing the algorithm Make cluster descriptors and other one-
time work, we can answer queries as follows: A query consists of a point x ∈ Rn,
for which there exist a strong cluster S and a point x(S) ∈ S such that

(4.30) A diam(S) ≤ |x− x(S)| ≤ A−1 dist(E \ S, S).

We do not assume that S or x(S) is known.
The response to a query x is one of the descriptor cubes QCD

l produced by
the algorithm Make cluster descriptors such that (4.30) holds for S = Sl :=
3QCD

l ∩ E and for some x(S) ∈ S.
The one-time work is at most CN logN in space CN; the query work is at most

C logN.

Explanation. Suppose (4.30) holds for some S and for some x(S) ∈ S.
Assume that x ∈ S. Then A · diam(S) ≤ |x− x(S)| ≤ diam(S). This gives a

contradiction if A > 1. Hence, we have shown that x /∈ S.
Assume next that x ∈ E\S. Then dist(E\S, S) ≤ |x − x(S)| ≤ A−1 dist(E\S, S).

This gives a contradiction if A > 1. Hence, we have shown that x /∈ E \ S.

346 C. Fefferman, A. Israel, and G. K. Luli

We have proven that x /∈ E. Now,

dist(x, S) ≤ |x− x(S)| ≤ A−1 dist(E \ S, S),

and if E \ S �= ∅ then

dist(x, E \ S) ≥ dist(E \ S, S) − dist(x, S) ≥ dist(E \ S, S) − |x− x(S)|

≥ dist(E \ S, S) −A−1 dist(E \ S, S) ≥ (1/2)dist(E \ S, S).

If E \ S = ∅, then by definition dist(x, E \ S) = ∞.
Therefore,

dist(x, E \ S) ≥ cA · dist(x, S),

which yields
dist(x, S) = dist(x, E).

Using the BBD tree, we compute a number Δ > 0 such that

8 · dist(x, E) ≤ Δ ≤ 32 · dist(x, E),

and such that Δ is a power of 2.
We then produce the dyadic cube Q# of sidelength Δ containing x.
We claim that S = 3Q# ∩ E.
To see this, note that dist(x, E \ S) ≥ cA·dist(x, S) = cA · dist(x, E) ≥ c′AΔ.

On the other hand, x ∈ Q# and δQ# = Δ.
Therefore, 3Q#∩E ⊂ S. If 3Q#∩E �= S, then there exists x̂ ∈ S\(3Q#∩E) ⊂ S.

On the other hand, since x ∈ Q# and δQ# = Δ ≥ 8dist(x, E), we know that 3
2
Q#

contains a point of E; say x̌ ∈ 3
2
Q# ∩ E. Note that x̌ ∈ 3Q# ∩ E ⊂ S.

Thus, x̂, x̌ ∈ S, with x̌ ∈ 3
2
Q# and x̂ �∈ 3Q#. Therefore,

diam(S) ≥ |x̂− x̌| ≥ cδQ# = cΔ ≥ c · dist(x, E) = c · dist(x, S)

≥ c [|x− x(S)|− diam(S)] , since x(S) ∈ S,

≥ c [A diam(S) − diam(S)] , by (4.30).

Thus, diam(S) ≥ c · (A−1) ·diam(S). Since S contains at least two points (because
it is a cluster), we have reached a contradiction. This completes the proof of our
claim that S = 3Q# ∩ E.

Since S is a strong cluster, its descriptor cube DC(S) is among the cubes QCD
l

produced by the algorithm Make cluster descriptors.
We can compute DC(S) by applying the algorithm Find descriptor cube to

the query cube Q#; this produces DC(S) because S = 3Q# ∩ E.
Accordingly, our algorithm proceeds as follows:

• Compute Δ, a power of 2, such that 8dist(x, E) ≤ Δ ≤ 32dist(x, E), using
the BBD tree.

• Produce the dyadic cube Q# of sidelength Δ, containing x.

• Apply the query algorithm in Find descriptor cube to the query cubeQ#.
This produces the cube DC(S).

Fitting a Sobolev function to data I 347

• By a binary search, locate DC(S) among the cubes QCD
1 , . . . , QCD

L produced
previously by the algorithm Make cluster descriptors. This produces
one of the QCD

l , which is the descriptor cube for the cluster S in (4.30); in
particular S = Sl = 3Q

CD
l ∩ E satisfies (4.30), for some x(S) ∈ S.

Thus, our algorithm does what we promised. The work and storage of the
algorithm are easily seen to be as promised also. �

Algorithm: Make cluster representatives

For each of the cubes QCD
1 , . . . , QCD

L produced by the algorithm Make clus-

ter descriptors, we compute a point

x(Sl) ∈ Sl = 3QCD
l ∩ E.

The algorithm uses work ≤ CN logN in space CN.

Explanation. For each QCD
l (a dyadic cube), we use the BBD tree to compute a

point x(Sl) ∈ 3QCD
l ∩ E (which we know to be non-empty, since it is a cluster).

We use the fact than 3QCD
l is the union of 3n dyadic cubes; the required algorithm

can be found in Section 4.3.
The work and storage are as promised. �

Since every strong cluster is one of the Sl, we have computed a representative
point of every strong cluster and possibly also of some weak clusters.

For each of the clusters S = Sl := 3Q
CD
l ∩ E we define the halo H(S) by

(4.31) H(S) =
{
y ∈ Rn : A · diam(S) < |y− x(S)| < A−1 · dist(E \ S, S)

}
where x(S) is the cluster representative produced by the algorithm Make cluster

representative.
Finally, we recall Lemma 6.7 from [18].

Lemma 38. Fix a cluster S = 3QCD
l ∩ E. Suppose that x ∈ H(S) and x ′ ∈ H(S)

satisfy |x − x(S)| ≥ |x ′ − x(S)|. Assume furthermore that x and x ′ belong to the
same connected component of H(S). Then there exist a finite sequence of points
x1, . . . , xL ∈ H(S), and a positive integer L∗, with the following properties:

• x1 = x and xL = x ′.
• |x�+1 − x(S)| ≤ |x� − x(S)| for � = 1, . . . , L− 1.
• |x� − x�+1| ≤ A−2|x� − x(S)| for � = 1, . . . , L− 1.
• |x�+L∗ − x(S)| ≤ (1 −A−3)|x� − x(S)| for 1 ≤ � ≤ L− L∗.
• L∗ ≤ A3.

Remark 39. Lemma 6.7 in [18] was stated incorrectly in dimension n = 1. Here,
we include the minor yet necessary modifications. The additional assumption
that x and x ′ belong to the same connected component of H(S) is required, since
in dimension n = 1 the halo H(S) consists of two connected components. Clearly,
if x and x ′ belong to distinct connected components there can be no finite sequence

348 C. Fefferman, A. Israel, and G. K. Luli

as in the statement of the lemma, and so this extra hypothesis is necessary. We shall
not prove this lemma in the case n = 1, as the argument is quite obvious. The proof
of Lemma 6.7 in [18] remains valid when n ≥ 2, since then the halos are connected.

4.5. Paths to keystone cubes

We assume we are given a finite subset E ⊂ Rn, with N = #(E) ≥ 2.
We are also given constants K ≥ 10, A ≥ 10. We assume that A is greater than

a large enough constant determined by n. We further assume that A is a power
of 2 and that K is an odd integer.

We write c, C,C′, etc. to denote constants that depend only on the dimension n;
we write c(K), C(K), and C′(K), etc. to denote constants that depend only on K
and n; we write c(A), c(A), C′(A), etc. to denote constants that depend only
on A,K, n. These symbols may denote different constants in different occurrences.

We suppose we are given a locally finite collection CZ consisting of dyadic cubes
that form a partition of Rn. We do not assume that any list of CZ cubes is given;
in fact, there are infinitely many CZ cubes. Rather, we assume that we have access
to a CZ-Oracle. Given a query point x ∈ Rn, the CZ-Oracle returns the one
and only Q ∈ CZ that contains x. We do not count any calls to the CZ-Oracle

in the one-time work or the query work of any of the algorithms presented here;
we will instead keep track of the number of calls to the CZ-Oracle.

We make the following assumptions on the decomposition CZ.

• (Good geometry) If Q,Q′ ∈ CZ and Q↔ Q′, then 1
64
δQ ≤ δQ′ ≤ 64δQ.

• (E is nearby) For each Q ∈ CZ, we have #(9Q ∩ E) ≥ 2.
Due to good geometry, we see that there exists a constant cG > 0, which

is an integer power of 2 depending only on the dimension n, such that, for any
Q,Q ′ ∈ CZ we have

(4.32) (1+ 8cG)Q ∩ (1+ 8cG)Q
′ �= ∅ =⇒ Q↔ Q ′.

We next make a few definitions.
A finite sequence S = (Q1, Q2, . . . , QL) consisting of CZ cubes is called a path

provided that any two consecutive cubes in the sequence touch. This property may
be equivalently written as

Q1 ↔ Q2 ↔ Q3 ↔ · · · ↔ QL.

We sometimes say that the path S joins Q1 to QL.
A path S = (Q1, . . . , QL) is called exponentially decreasing if there exist con-

stants 0 < c(A) < 1 and C(A) ≥ 1 such that

δQ� ′ ≤ C(A) · (1 − c(A))�
′−�δQ�

for 1 ≤ � ≤ � ′ ≤ L.
In particular, the constants c(A) and C(A) are assumed to be independent of the
length L of the sequence S.

A cube Q ∈ CZ is called keystone provided δQ′ ≥ δQ for each Q′ ∈ CZ that
meets KQ. (Obviously, this definition depends on the choice of K, which will always
be clear from the context.)

Fitting a Sobolev function to data I 349

Recall that a subset S ⊂ E is called a cluster if #(S) ≥ 2 and dist(S, E \ S) ≥
A3 · diam(S).

There is a special collection of clusters S = 3QCD
l ∩ E (1 ≤ � ≤ L) arising

in the algorithm Make cluster descriptors. We compute the representative
point x(S) ∈ S associated to each such cluster S using the algorithm Make clus-

ter representative. For each such cluster, we let the halo H(S) be defined as
in (4.31).

From this point onward in the section, until further notice, we shall assume that
n ≥ 2. We make use of this assumption in several of the results that follow. Toward
the end of this section we sketch the modifications required in dimension n = 1.

Now suppose we are given x ∈ (1 + cG)Q ∩ H(S), where Q ∈ CZ and S =
3QCD

l ∩ E for some fixed 1 ≤ � ≤ L.
If δQ < ĉ |x− x(S)| for a small enough constant ĉ, then since also x ∈ (1+cG)Q,

we have

dist(10Q, x(S)) ≥ |x− x(S)| − 10δQ ≥ (1/2) · |x− x(S)| ≥ (A/2) · diam(S),

hence
dist(10Q, S) ≥ dist(10Q, x(S)) − diam(S) ≥ (A/4) · diam(S),

which implies 10Q ∩ S = ∅.
Additionally, note that

(4.33) 10Q ⊂ B(x(S), |x− x(S)| + 10δQ) ⊂ B(x(S), 2 |x− x(S)|),

since we assume δQ < ĉ |x− x(S)|.
On the other hand,

dist(x(S), E \ S) ≥ dist(S, E \ S) ≥ A |x− x(S)|

since we assume that x ∈ H(S).
Together with (4.33), the above estimate tells us that 10Q ∩ (E \ S) = ∅.
Since also 10Q ∩ S = ∅, we now know that 10Q ∩ E = ∅, contradicting our

assumption “E is nearby” for the cube Q ∈ CZ.
Thus, our assumption δQ < ĉ |x− x(S)| must be false. We have proven the

following.

(4.34)

[
Suppose Q ∈ CZ , x ∈ (1+ cG)Q ∩H(S), where S = 3QCD

l ∩ E.
Then δQ ≥ c |x − x(S)| .

]

Remark 40. SupposeQ,Q′ ∈ CZ and x ∈ (1+cG)Q, x
′ ∈ (1+cG)Q

′. From (4.32)
and the good geometry of CZ we see that

δQ′ ≤ C · [δQ + |x− x′|] .

This estimate and its analogue with Q and Q′ interchanged tell us that

(4.35) c · [δQ + |x− x′|] ≤ [
δQ′ + |x− x′|

] ≤ C · [δQ′ + |x− x′|
]
.

350 C. Fefferman, A. Israel, and G. K. Luli

Lemma 41. Let S = 3QCD
l ∩ E be a cluster produced by the algorithm Make

cluster descriptors, and let x(S) ∈ S be its associated representative. Recall
that

(4.36) H(S) =
{
y ∈ Rn : A · diam(S) < |y− x(S)| < A−1 · dist(E \ S, S)

}
.

Let x ∈ (1 + cG)Q ∩ H(S), with Q ∈ CZ. Finally let QCZ(S) be the CZ cube
containing x(S). Then δQ and δQCZ(S) + |x− x(S)| differ by at most a factor C.

Proof. From (4.35) we deduce that δQCZ(S) + |x− x(S)| and δQ + |x− x(S)| differ
by at most a factor of C. From (4.34), we have δQ ≥ c|x− x(S)|. Combining these
two estimates, we obtain the conclusion of the lemma. �

Lemma 42. Let S = 3QCD
l ∩ E be a cluster produced by the algorithm Make

cluster descriptors. Let x, x ′ ∈ H(S), and let Q,Q ′ ∈ CZ, with x ∈ Q and
x ′ ∈ Q ′. If |x− x ′| ≤ A−2|x− x(S)|, then Q↔ Q ′.

Proof. By Lemma 41, we have

|x ′ − x| ≤ A−2
[|x− x(S)| + δQCZ(S)

] ≤ CA−2δQ.

Since x ∈ Q, we have x ′ ∈ (1 + cG)Q. Also x ′ ∈ Q ′ ⊂ (1 + cG)Q
′. Thus

(1+ cG)Q∩ (1+ cG)Q
′ �= ∅, which implies that Q↔ Q ′. Here, we use (4.32). �

We assume that we have done all the one-time work for the algorithms in
Section 4.4. Thus, the query algorithms from Section 4.4 are at our disposal in the
present section. Recall that the one-time work just mentioned consists of work at
most CN logN in space at most CN.

Algorithm: Keystone-or-not

Given a cube Q ∈ CZ, we produce one of the following outcomes:

(KEY 1) We guarantee that Q is a keystone cube.

(KEY 2) We produce a cube Q′ ∈ CZ such that

δQ′ ≤ 1

2
δQ and Q′ ∩ KQ �= ∅,

and such that there exists an exponentially decreasing path of CZ cubes

Q = Q1 ↔ Q2 ↔ · · · ↔ QL = Q′,

with L ≤ C(K), and

(4.37) δQl
≤ C(K) · (1− c(K))l−l′ · δQl′ for 1 ≤ l′ ≤ l ≤ L.

The work, space and number of calls to the CZ-Oracle required by the algo-
rithm are bounded by a constant C(K).

Explanation. Since K is an odd integer, we can partition KQ into Kn many dyadic
cubes Q̃ν, each of sidelength δQ. For each Q̃ν, we apply the CZ-Oracle to

determine QCZ
ν , the CZ cube containing the center of Q̃ν.

Fitting a Sobolev function to data I 351

The cube Q is keystone if and only if QCZ
ν ⊇ Q̃ν for each ν. Thus, we can test

whether Q is a keystone, using work at most C(K) and using at most C(K) calls
to the CZ-Oracle. If Q is a keystone, then we are done.

SupposeQ is not a keystone cube. We claim that there exists a path Q = Q1 ↔
Q2 ↔ · · · ↔ QL as in (KEY 2). This claim was essentially proven in Lemma 6.12
of [18]. The main difference is that the keystone cubes in [18] are defined with
K = 100, whereas here K is an odd integer of size at least 10 (to be fixed later). By
making superficial modifications to the argument in Lemma 6.12 of [18] we prove
our claim in the present setting.

To find an exponentially decreasing path as in (KEY 2), we first enumerate
all the paths of CZ cubes Q = Q1 ↔ Q2 ↔ · · · ↔ QL with L ≤ C(K), and we
then “test” each path to see whether it satisfies the necessary conditions: δQL

≤
(1/2)δQ, QL ∩ KQ �= ∅, and (4.37).

There are at most C(K) such paths, and we can generate them using work,

space and calls to the CZ-Oracle at most C(K), because, given a cube Q̃ ∈ CZ,

we can determine all the cubes Q̃′ ∈ CZ such that Q̃ ↔ Q̃′, by using at most C
calls to the CZ-Oracle. (Just query the CZ-Oracle using as x the center of each

dyadic cube Q̃′ such that Q̃↔ Q̃′ and 1
64
δ
˜Q
≤ δ

˜Q′ ≤ 64δ˜Q
.)

We can “test” a given path using work and storage at most C(K), and using
no calls to the CZ-Oracle.

This concludes the explanation of the algorithm Keystone-or-not. �

Algorithm: List all keystone cubes

We produce a list Q#
1 , . . . , Q

#
L# , consisting of all the keystone cubes in CZ.

Each keystone cube appears once and only once in our list. We have L# ≤ C(K)N.
The algorithm uses work at most C(K)N logN in space C(K)N, and at most C(K)N
calls to the CZ-Oracle.

Explanation. Let Q# ∈ CZ be a keystone cube. Since Q# ∈ CZ, there exists
a point x ∈ 9Q# ∩ E due to our assumption that “E is nearby”. Let Qx be
the CZ cube containing x. Then δQx

≥ δQ# because Q# is keystone; moreover,
δQx

≤ CδQ# because of good geometry. Hence, for each keystone cube Q# there
exists x ∈ E such that

(4.38) x ∈ 9Q# and cδQx
≤ δQ# ≤ δQx

.

To generate all the keystone cubes we may therefore proceed as follows.

We loop over all x ∈ E. For each x ∈ E, we produce the unique CZ cube Qx

containing x, using the CZ-Oracle. We then list all the dyadic cubes Q# satis-
fying (4.38) (there are at most C such Q# for a fixed x). Finally, we apply the
algorithm Keystone-or-not to test each Q# to see whether it is a keystone
cube. We discard the cubes Q# that are not keystone and retain the remaining
cubes. Clearly, a single iteration of the loop requires at most C(K) calls to the
CZ-Oracle and additional work at most C(K).

352 C. Fefferman, A. Israel, and G. K. Luli

Thus, with work and storage at most C(K)N, and with at most C(K)N calls to

the CZ-Oracle, we produce a list Q#
1 , . . . , Q

#
L# , with L# ≤ C(K)N, consisting of

all the keystone cubes, but possibly containing multiple copies of the same cube.
With work at most C(K)N logN in space C(K)N, we can sort the listQ#

1 , . . . ,Q
#
L#

and remove duplicates. This completes our explanation of the algorithm List all

keystone cubes. �

Algorithm: Make auxiliary cubes

For each QCD
l , Sl = 3QCD

l ∩ E, produced by the algorithm Make cluster

descriptors, we compute a point xextral ∈ H(Sl) such that

(4.39) 2A · diam(Sl) ≤
∣∣xextral − x(Sl)

∣∣ ≤ 8A · diam(Sl)

and we compute Qextra
l , the CZ cube containing xextral .

The algorithm uses work ≤ C(A)N logN in space C(A)N, and makes at most
C(A)N calls to the CZ-Oracle.

Explanation. For each 1 ≤ l ≤ L we compute diam(Sl); see Remark 36. We choose
x ∈ Rn satisfying

2A · diam(Sl) ≤ |x− x(Sl)| ≤ 8A · diam(Sl).

Note that we necessarily have x ∈ H(Sl). After picking such a point x = xextral , we
call the CZ-Oracle to determine Qextra

l .
Recall that there are at most CN distinct indices l; see the algorithm Make

cluster descriptors. Thus, in the present algorithm, the work, storage and
number of calls to the CZ-Oracle are bounded as required. �

From Lemma 41 and the definition of Qextra
l (1 ≤ l ≤ L), we obtain the

following:

Lemma 43. Assume that n ≥ 2. Let Q ∈ CZ and l ∈ {1, . . . , L}, and suppose that

(4.40) cA10 ·diam(Sl)< |x− x(Sl)|<CA
−10 ·dist(Sl, E\Sl) for all x∈(1+ cG)Q.

Then there exists an exponentially decreasing path S = (Q1, . . . , Q
J
) joining Q

to Qextra
l .

Proof. Denote the point xextra = xextral , the cube Qextra = Qextra
l , and the cluster

S = Sl. By the conditions in the algorithm Make auxiliary cubes, we have
xextra ∈ Qextra ∩H(S).

We will construct an exponentially decreasing path S = (Q̂1, . . . , Q̂
J
) that joins

Q to Qextra.
Let x ∈ Q. From (4.40), we see that x ∈ Q ∩H(S). From (4.39) and (4.40) we

see that

|xextra − x(S)| ≤ 8A diam(S) ≤ cA10 diam(S) ≤ |x− x(S)|.
Lemma 38 implies that there exists a sequence of points x1, . . . , xJ ∈ H(S) and

an integer J∗ ≥ 1, satisfying the following bullet points.

• x1 = x and xJ = x
extra.

Fitting a Sobolev function to data I 353

• |xj+1 − x(S)| ≤ |xj − x(S)| for j = 1, . . . , J− 1.

• |xj − xj+1| ≤ A−2|xj − x(S)| for j = 1, . . . , J− 1.

• |xj+J∗ − x(S)| ≤ (1 −A−3)|xj − x(S)| for 1 ≤ j ≤ J− J∗.

• J∗ ≤ A3.

(Our assumption that n ≥ 2 implies that the halo H(Sl) has a single connected
component. When n = 1 we cannot use Lemma 38, hence we will have to modify
our approach.)

Since |xj − x(S)| is a non-increasing sequence, (4.39) and (4.40) imply that

2A diam(S) ≤ |xextra − x(S)| = |xJ − x(S)| ≤ |xj − x(S)| ≤ |x1 − x(S)|
= |x− x(S)| ≤ CA−10 dist(S, E \ S) ≤ A−1 dist(S, E \ S) for 1 ≤ j ≤ J.

Hence, xj ∈ H(S) for each j = 1, . . . , J.
Let Qj (1 ≤ j ≤ J) denote the CZ cube containing xj. Thus Q1 = Q and

QJ = Q
extra. (Recall that x1 = x ∈ Q and xJ = x

extra ∈ Qextra.)
By the third bullet point and by Lemma 42 we have

(4.41) Qj ↔ Qj+1 for j = 1, . . . , J− 1.

Hence, δQj+1
and δQj

differ by at most a factor of 64, thanks to good geometry.
Recall that cG > 0 is a universal constant satisfying (4.32). We now prove the

following:

Claim. If 1 ≤ J0 ≤ J satisfies

(4.42) |xJ0 − x(S)| ≥ cG · δQCZ(S),

then

(4.43) δQj ′ ≤ C(A) · (1 − c(A))j
′−jδQj

for all 1 ≤ j ≤ j ′ ≤ J0.
Proof of Claim. Since the sequence |xj − x(S)| (1 ≤ j ≤ J) is non-increasing, (4.42)
implies that |xj − x(S)| ≥ cG · δQCZ(S) for all 1 ≤ j ≤ J0. Thus, Lemma 41 implies
that

c · |xj − x(S)| ≤ δQj
≤ C · |xj − x(S)| for 1 ≤ j ≤ J0.

This estimate and the fourth bullet point written above imply that

δQJ∗k
≤ C · (1−A−3)k−� · δQJ∗�

for 1 ≤ J∗� ≤ J∗k ≤ J0.
Since δQj+1

and δQj
differ by at most a factor of 64, and since 1 ≤ J∗ ≤ A3, we

obtain (4.43). This completes the proof of the claim. �

Since |xj−x(S)| (1 ≤ j ≤ J) is non-increasing, the following cases are exhaustive.

Case 1. |xJ − x(S)| ≥ cG · δQCZ(S).

Case 2. There exists 1 ≤ J ≤ J− 1 such that

• |xJ+1 − x(S)| < cG · δQCZ(S), and

• |xJ − x(S)| ≥ cG · δQCZ(S).

Case 3. |x1 − x(S)| < cG · δQCZ(S).

354 C. Fefferman, A. Israel, and G. K. Luli

First, we consider Case 1. In this case, (4.42) holds with J0 = J. Hence, (4.43)
implies that

δQj ′ ≤ C(A) · (1 − c(A))j
′−jδQj

for 1 ≤ j ≤ j ′ ≤ J.
We define the sequence S := (Q1, . . . , QJ). The above estimate and (4.41) show
that S is an exponentially decreasing path joining Q to Qextra.

Next, we consider Case 2. In this case, (4.42) holds with J0 = J. Hence, (4.43)
implies that

(4.44) δQj ′ ≤ C(A) · (1 − c(A))j
′−jδQj

for 1 ≤ j ≤ j ′ ≤ J.
Recall that x(S) ∈ QCZ(S), and |xJ+1 − x(S)| < cG · δQCZ(S). Hence, xJ+1 ∈
(1 + 8cG)Q

CZ(S). Since also xJ+1 ∈ QJ+1 we see that (1 + 8cG)QJ+1 ∩ (1 +

8cG)Q
CZ(S) �= ∅, hence QJ+1 ↔ QCZ(S) thanks to (4.32).

Moreover, since |xj − x(S)| is non-increasing, we have

|xextra − x(S)| = |xJ − x(S)| ≤ |xJ+1 − x(S)| ≤ cG · δQCZ(S).

Recall that x(S) ∈ QCZ(S). Hence, the above estimate shows that xextra ∈
(1 + 8cG)Q

CZ(S). Since also xextra ∈ Qextra we see that (1 + 8cG)Q
CZ(S) ∩

(1+ 8cG)Q
extra �= ∅, hence QCZ(S) ↔ Qextra thanks to (4.32).

We define the sequence

S := (Q̂1, Q̂2, . . . , Q̂
J
) := (Q1, Q2, . . . , QJ, QJ+1, Q

CZ(S), Qextra).

From (4.41), we see that Q̂j ↔ Q̂j+1 (1 ≤ j ≤ J − 1), hence δ
̂Qj

and δ
̂Qj+1

differ

by at most a factor of 64, thanks to good geometry. Combined with (4.44), this
shows that S is an exponentially decreasing path joining Q to Qextra.

Lastly, we consider Case 3. In this case, Q1 ↔ QCZ(S) and QCZ(S) ↔ Qextra

as in the discussion of Case 2. Hence, the exponentially decreasing path S :=
(Q1, Q

CZ(S), Qextra) joins Q to Qextra.
This completes the proof of Lemma 43. �

A cube Q ∈ CZ is called interstellar provided that

(1+ 3cG)Q ∩ E = ∅ and diam(A10Q ∩ E) ≤ A−10δQ.

Any cube Q ∈ CZ that is not interstellar will be called non-interstellar.

Algorithm: Test an interstellar cube

We perform one-time work at most C(A)N logN in space C(A)N, after which
we can answer queries.

A query consists of a cube Q ∈ CZ.
The response to the query Q is as follows. We first determine whether Q is

interstellar. If it is, then we find an index 1 ≤ l ≤ L such that S = Sl = 3Q
CD
l ∩ E

satisfies

(4.45) cA10 · diam(S) < |x− x(S)| < CA−10 · dist(S, E \ S),

for all x ∈ (1+ cG)Q. The query work is at most C(A) logN.

Fitting a Sobolev function to data I 355

Explanation.We determine whetherQ is interstellar by computing diam(A10Q ∩ E)
and by testing whether (1 + 3cG)Q ∩ E = ∅ using the BBD tree. We compute
diam(A10Q ∩ E) using the algorithm RCZ in Section 4.3. We use that A10Q can
be expressed as the disjoint union of finitely many dyadic cubes of sidelength δQ/2;
see Remark 36. Similarly, we test whether (1 + 3cG)Q ∩ E = ∅ using the BBD
tree and the fact that (1+ 3cG)Q can be expressed as the disjoint union of finitely
many dyadic cubes of sidelength cGδQ/2; again, see Remark 36. This computation
requires work and storage at most C(A) logN.

The proof of Lemma 6.3 in [18] shows that if Q is interstellar, then for some
cluster S we have (4.45) for all x ∈ (1+ cG)Q.

It follows that S is a strong cluster and therefore S is among the clusters Sl
produced by the algorithm Make cluster descriptors. Hence, for any
x ∈ (1+ cG)Q we have S = 3Q̂ ∩ E, where Q̂ is a dyadic cube such that δ

̂Q
∈

[8 · dist(x, E), 64 · dist(x, E)] and x ∈ Q̂.
Therefore, given an interstellar Q, we can learn which Sl satisfies (4.45) as

follows:

• Let x be the center of Q.

• Compute dist(x, E) up to a factor of 2, using the BBD tree.

• Compute a dyadic cube Q̂ with x ∈ Q̂ and 8dist(x, E) ≤ δQ̂ ≤ 64dist(x, E).

• Using the algorithm Find descriptor cube, compute the descriptor cube
QCD = DC(3Q̂ ∩ E).

• We know that QCD will be one of our cubes QCD
l produced by the algorithm

Make cluster descriptors. By a binary search, we find l such that
QCD = QCD

l .

• Thus, we find the l for which S = Sl = 3Q
CD
l ∩ E satisfies (4.45).

This process takes work ≤ C(A) logN and uses at most C(A) calls to the CZ-
Oracle. �

Algorithm: List all non-interstellar cubes

Using work at most C(A)N logN in space C(A)N and making at most C(A)N
calls to the CZ-Oracle, we produce all the non-interstellar cubes Q ∈ CZ.

Explanation. We compute representatives (x ′
ν, x

′′
ν) ∈ E × E (ν = 1, . . . , νmax)

arising in the WSPD. These representatives have the property that, for each
(x ′, x ′′) ∈ E× E \ {(x, x) : x ∈ E}, there exists ν such that

|x ′
ν − x ′| + |x ′′

ν − x ′′| ≤ 1

100
|x ′ − x ′′|,

and νmax ≤ CN.
Let Q ∈ CZ be non-interstellar. Then either (1 + 3cG)Q ∩ E �= ∅ or

diam(A10Q ∩ E) > A−10δQ. In the second case, there exist two points x ′, x ′′ ∈
A10Q∩ E with |x ′ − x ′′| > A−10δQ. Hence, in the second case there exists ν such
that x ′

ν, x
′′
ν ∈ A11Q ∩ E and |x ′

ν − x ′′
ν | > A−11δQ.

356 C. Fefferman, A. Israel, and G. K. Luli

We have shown the following: If Q ∈ CZ is non-interstellar, then

∃ x ∈ E such that x ∈ (1+ 3cG)Q, or

∃ν such that x ′
ν, x

′′
ν ∈ A11Q ∩ E and |x ′

ν − x ′′
ν | > A−11δQ.

Thus, to list all the non-interstellar cubes we can proceed as follows:
For each x ∈ E, find all the cubes Q ∈ CZ such that (1 + 3cG)Q contains x.

There are at most C such cubes for each fixed x. We produce these cubes by
making at most C calls to the CZ-Oracle.

For each ν = 1, . . . , νmax, find all the dyadic cubes Q such that x ′
ν, x

′′
ν ∈

A11Q ∩ E and δQ ≤ A11|x ′
ν − x ′′

ν |. There are at most C(A) such cubes for each
fixed ν.

We have produced a list that contains all the non-interstellar cubes, and con-
sists of at most C(A)N dyadic cubes. We now pass through this list and remove
any cubes that are interstellar. We then sort the remaining cubes and remove
duplicates.

Thus we have computed the list of all non-interstellar cubes.
The reader may easily check that our algorithm performs as promised in terms

of work, storage, and calls to the CZ-Oracle. �

We now create a list usual-suspects, consisting of all keystone cubes and
all non-interstellar CZ cubes, and all the cubes Qextra

l produced by the algorithm
Make auxiliary cubes.

There are at most C(A)N cubes in the list usual-suspects, and we can pro-
duce the list using work ≤ C(A)N logN, storage ≤ C(A)N, and at most C(A)N
calls to the CZ-Oracle.

We assume that our list usual-suspects is sorted so that Q,Q′ ∈ usual-

suspects and δQ < δQ′ ⇒ Q precedes Q′ in the list usual-suspects. Thus, all
the smallest cubes are located at the beginning of the list. We may also assume
that the list usual-suspects contains no duplicates.

This can be achieved by doing extra work at most C(A)N logN in space C(A)N.

In preparation for the next two algorithms, we prove a small lemma.

Lemma 44. Fix constants A# ≥ 1 and 0 < a# < 1. Suppose we are given finite
sequences

S[1] : δ
[1]
1 , δ

[1]
2 , . . . , δ

[1]

L[1]

...

S[M] : δ
[M]
1 , δ

[M]
2 , . . . , δ

[M]

L[M]

of positive real numbers. Assume

• δ
[k]
� ≤ A# · (1 − a#)�−�′δ

[k]
�′ for 1 ≤ k ≤M and 1 ≤ �′ ≤ � ≤ L[k].

• δ
[k]

L[k] ≤ (1− a#)L
[k]−1δ

[k]
1 for 1 ≤ k ≤M.

• δ
[k+1]
1 = δ

[k]

L[k] for 1 ≤ k ≤M− 1.

Fitting a Sobolev function to data I 357

Then the sequence(
δ
[1]
1 , . . . , δ

[1]

L[1] , δ
[2]
2 , . . . , δ

[2]

L[2] , δ
[3]
2 , . . . , δ

[3]

L[3] , . . . , δ
[M−1]

L[M−1] , δ
[M]
2 , . . . , δ

[M]

L[M]

)
≡ (δ1, δ2, . . . , δJ)

satisfies
δj ≤ (A#)2 · (1 − a#)j−j′δj′ for 1 ≤ j′ ≤ j ≤ J.

Proof. Let 1 ≤ j ′ ≤ j ≤ J.
First, suppose that δj = δ

[k]
� and δj ′ = δ

[k]
� ′ with 1 ≤ k ≤M and 1 ≤ � ′ ≤ � ≤

L[k]. Then we have

δj = δ
[k]
� ≤ A# · (1− a#)�−�′δ

[k]
�′ = A# · (1 − a#)j−j′δj′ .

We consider the remaining case. Namely, suppose that δj = δ
[k]
� and δj ′ = δ

[k ′]
� ′

with 1 ≤ k ′ < k ≤M, 1 ≤ � ≤ L[k], and 1 ≤ � ′ ≤ L[k ′]. Then we have

δj = δ
[k]
� ≤ A# · (1− a#)�−1δ

[k]
1 = A# · (1− a#)�−1δ

[k−1]

L[K−1]

≤ A# · (1− a#)�−1(1− a#)L
[k−1]−1

δ
[k−1]
1 .

Now, iterating the above reasoning we obtain

δj = δ
[k]
� ≤ A# · (1− a#)�−1(1− a#)L

[k−1]−1 · · · (1− a#)L[k ′+1]−1δ
[k ′+1]
1

= A# · (1− a#)�−1(1− a#)L
[k−1]−1 · · · (1− a#)L[k ′+1]−1δ

[k ′]
L[k

′]

≤ (A#)2(1− a#)�−1(1− a#)L
[k−1]−1 · · · (1− a#)L[k ′+1]−1(1− a#)L

[k ′]−� ′
δ
[k ′]
� ′

= (A#)2 · (1− a#)j−j ′δj ′ .

This completes the proof of the lemma. �

Algorithm: Mark usual suspects

We mark each cube Q appearing in the list usual-suspects with a keystone
cube K(Q) such that Q is joined to K(Q) by an exponentially decreasing path.
That is, there exists a finite sequence of CZ cubes

Q = Q1 ↔ Q2 ↔ · · · ↔ QL(Q) = K(Q)

such that

δQ� ′ ≤ C(A) · (1 − c(A))�
′−�δQ�

for 1 ≤ � ≤ � ′ ≤ L(Q).

We do not compute Q1, . . . , QL(Q)−1, but we guarantee that they exist.
If Q is keystone, then we guarantee that K(Q) = Q.
The algorithm does work at most C(A)N logN in space C(A)N, and it makes

at most C(A)N calls to the CZ-Oracle.

358 C. Fefferman, A. Israel, and G. K. Luli

Explanation. For each Q in the list usual-suspects we will compute a keystone
cube K(Q) ∈ CZ such that we guarantee that there exists a list of sequences of CZ
cubes

S1 =
(
Q

[1]
1 , . . . , Q

[1]

L[1]

)
,

S2 =
(
Q

[2]
1 , . . . , Q

[2]

L[2]

)
,

...

SM =
(
Q

[M]
1 , . . . , Q

[M]

L[M]

)
,

with the following properties.

• The initial cube of S1 is Q and the terminal cube of SM is K(Q), i.e.,

Q
[1]
1 = Q and Q

[M]

L[M] = K(Q).

• The terminal cube of a sequence matches the initial cube of its successor:

Q
[k]

L[k] = Q
[k+1]
1 for 1 ≤ k ≤M− 1.

• Each sequence is connected and exponentially decreasing:

Q
[k]
1 ↔ Q

[k]
2 ↔ · · · ↔ Q

[k]

L[k]

and
δ
Q

[k]
�

≤ C# · (1− c#)�−�′δ
Q

[k]

� ′
for 1 ≤ �′ ≤ � ≤ L[k].

Moreover, we guarantee that

δ
Q

[k]

L[k]

≤ (1− c#)
L[k]−1 · δ

Q
[k]
1

.

Here, c# ∈ (0, 1) and C# ≥ 1 are controlled constants. In this discussion, a
“controlled constant” is a constant that depends only on A, K, and n.

If these conditions hold, then we say that Q and K(Q) are connected by a chain
S1, . . . ,SM with constants c# and C#.

By concatenating the sequences S1, . . . ,SM we obtain a sequence of CZ cubes
as in the algorithm Mark usual suspects, with C(A) = (C#)2 and c(A) = c#.
See Lemma 44. Thus it suffices to compute a keystone cube K(Q) and verify the
existence of a suitable chain for each Q in the list usual-suspects.

Recall that the cubes in usual-suspects are sorted according to their size.
We loop through all the Q in usual-suspects, starting with the smallest cubes
at the beginning of the list. We will compute K(Q) in the body of the loop, which
is presented below.

We fix Q in usual-suspects. By induction, we may assume that for each Q ′

in usual-suspects with δQ ′ < δQ we have computed a keystone cube K(Q ′) to
which Q ′ is connected by a chain with constants c# and C#.

We assume that c# is less than a small enough controlled constant, and that C#

is greater than a large enough controlled constant. We will later pick c# and C#

to be controlled constants, but not yet.

Fitting a Sobolev function to data I 359

We perform the following procedure.

Main procedure

• We initialize Q[1] = Q.

• Let Mmax be a large enough integer determined by A, K, and n, to be picked
later.

• We perform the following loop: for (k = 1, . . . ,Mmax − 1)
{

– We execute the algorithm Keystone-or-not to produce one of two
outcomes.
(Outcome A) We guarantee that Q[k] is a keystone cube. We then
return the cube Qout = Q

[k], indicating that it is a keystone cube, and
terminate the loop.
(Outcome B) We witness that Q[k] fails to be a keystone cube: We
compute a cube Q[k+1] ∈ CZ with δQ[k+1] ≤ 1

2
δQ[k] and Q[k+1] ∩

KQ[k] �= ∅, such that there exists a sequence Sk = (Q
[k]
1 , . . . , Q

[k]

L[k]) of

CZ cubes, with L[k] ≤ C(K) and

Q[k] = Q
[k]
1 ↔ Q

[k]
2 ↔ · · · ↔ Q

[k]

L[k] = Q
[k+1]

such that

δ
Q

[k]
�

≤ C(A) · (1− c(A))�−�′δ
Q

[k]

� ′
for 1 ≤ �′ ≤ � ≤ L[k].

Combining the estimate δ
Q

[k]

L[k]

≤ 1
2
δ
Q

[k]
1

with our bound on L[k], we

see that
δ
Q

[k]

L[k]

≤ (1− c(A))L
[k]−1 · δ

Q
[k]
1

.

Here, c(A) and C(A) are controlled constants.

– If k = Mmax − 1 then we return the cube Qout = Q[Mmax]. Using the
algorithm Keystone-or-not, we determine whetherQout is a keystone
cube, and after indicating the result to the user we terminate the loop.

}

We will now analyze the output of the Main procedure.
Suppose that the Main procedure returns Qout = Q[M0] with 1 ≤ M0 ≤

Mmax. Recall that the Main procedure indicates whether Q[M0] is keystone.
According to the construction in the Main procedure, the following Main

condition holds: there exists a chain connecting Q = Q[1] to Q[M0] with con-
stants c(A) and C(A).

(If M0 = 1 then a trivial chain connects Q to Q[1] = Q.)

The construction proceeds in three cases below.

Case 1. Suppose thatQ[M0] is keystone. According to the Main condition,Q
is connected to the keystone cube Q[M0] by a chain with constants c# and C#.

360 C. Fefferman, A. Israel, and G. K. Luli

Here, we assume that c# ≤ c(A) and C# ≥ C(A). Therefore, we can define
K(Q) := Q[M0] and the requisite properties listed in the bullet points at the
beginning of the explanation will be satisfied. This concludes the analysis in Case 1.

Note that, if Q is keystone, then M0 = 1 and Q[1] = Q. To see this, just
examine the Main procedure. Hence, K(Q) = Q when Q is keystone. This
proves one of the conditions in the algorithm.

In the remaining cases, Q[M0] is not a keystone cube. We then have M0 =
Mmax because the loop on k cannot terminate early. Hence, by construction,
Q[Mmax] is not a keystone cube, and

(4.46) δQ[Mmax] ≤ 2−1 · δQ[Mmax−1] ≤ · · · ≤ 2−Mmax+1 · δQ[1] = 2−Mmax+1 · δQ.
We can determine whether Q[Mmax] appears in the list usual-suspects using

a binary search. This takes work at most C(A) logN.

Case 2. Suppose that Q[Mmax] is in the list usual-suspects. From (4.46)
and since Mmax ≥ 2, we have δQ[Mmax] ≤ 1

2
δQ, hence Q[Mmax] precedes Q in

the list usual-suspects. By induction hypothesis, we have computed a keystone
cube K(Q[Mmax]) to which Q[Mmax] is connected by a chain with constants c#
and C#. Moreover, another chain connects Q to Q[Mmax] (by the Main Condition).
By concatenating these chains, we see thatQ is connected to K(Q[Mmax]) by a chain
with constants c# and C#. Here, we require that c# ≤ c(A) and C# ≥ C(A).
We may thus define K(Q) := K(Q[Mmax]) and the requisite properties are satisfied.
This concludes the analysis in Case 2.

Case 3. Suppose that Q[Mmax] is not in the list usual-suspects. Then
Q[Mmax] is interstellar, since all non-interstellar CZ cubes appear in the list usual-

suspects. Using the algorithm Test an interstellar cube, we determine a
value of l such that

cA10 ·diam(Sl) < |x− x(Sl)| < CA
−10 ·dist(Sl, E\Sl) for all x ∈ (1+ cG)Q

[Mmax].

By definition, the cube Qfin := Qextra
l appears in the list usual-suspects.

By Lemma 43 there exists a sequence of CZ cubes Q1 ↔ · · · ↔ QL such that
Q1 = Q[Mmax], QL = Qfin, and

δQ�
≤ C(A) · (1− c(A))�−�′δQ�′ for 1 ≤ �′ ≤ � ≤ L,

for controlled constants c(A) and C(A).
Hence, δQfin ≤ C(A)δQ[Mmax] ≤ C(A)2−MmaxδQ. We pick

Mmax ≥ log2(C(A)) + 1,

and thus we obtain the estimate δQfin ≤ 1
2
δQ.

Now, there exists a sequence of CZ cubes Q̃1 ↔ · · · ↔ Q̃
˜L

such that Q̃1 =

Q, Q̃
˜L

= Q[Mmax], and L̃ ≤ C(A) for a controlled constant C(A). This is a
consequence of the construction in the Main procedure. We concatenate the
sequences (Q̃�)1≤�≤˜L

and (Q�)1≤�≤L. The resulting sequence (Q̂1, . . . , Q̂̂L
) satisfies

• Q̂1 = Q, and Q̂
̂L
= Qfin.

• Q̂� ↔ Q̂�+1 for 1 ≤ � ≤ L̂.

Fitting a Sobolev function to data I 361

• δ
̂Q�

≤ C ′(A) · (1− c ′(A))�−� ′ · δQ� ′ for 1 ≤ � ′ ≤ � ≤ L̂.

• δ
̂Q

̂L

≤ 1
2
δ
̂Q1

.

Here, c ′(A) and C ′(A) are controlled constants. The last two bullet points imply
that

δ
̂Q

̂L
≤ (1− c ′′(A))̂L−1δQ1

for a controlled constant c ′′(A) ≤ c ′(A). Hence, Q is connected to Qfin by a chain
(in fact, the chain consists of a single sequence) with constants c ′′(A) and C ′(A).

Moreover, since δQfin ≤ 1
2
δQ, we know that Qfin precedes Q in the list usual-

suspects.
By induction hypothesis, we have computed a keystone cube K(Qfin) to which

Qfin is connected by a chain with constants c# and C#. Moreover, as shown
above, Q connects to Qfin by a chain with constants c ′′(A) and C ′(A). Hence, Q
connects to K(Qfin) by a chain with constants c# and C#. Here, we assume that
c# ≤ c ′′(A) and C# ≥ C ′(A). We may thus define K(Q) := K(Qfin) and the
requisite properties are satisfied. This concludes the analysis in Case 3.

We review what we have achieved. By looping over all the cubes Q in the
list usual-suspects (sorted by size), we have computed for each Q a keystone
cube K(Q), and we have verified that Q is connected to K(Q) by a chain with
constants c# and C#. We may choose c# and C# to be controlled constants.
As mentioned before, by Lemma 44, there thus exists an exponentially decreasing
path connecting Q to K(Q).

The reader may easily check that our algorithm performs as promised in terms
of the work, storage, and number of calls to the CZ-Oracle

This concludes the explanation of the algorithm Mark usual suspects. �

Main keystone cube algorithm

We perform one-time work, after which we can answer queries.
A query consists of a cube Q ∈ CZ. The response to a query is a keystone

cube K(Q).
We guarantee the following:

• For each Q ∈ CZ there is a finite sequence of CZ cubes

Q = Q1 ↔ Q2 ↔ · · · ↔ QL = K(Q)

such that

δQ�
≤ C(A) · (1− c(A))�−�′δQ�′ for 1 ≤ �′ ≤ � ≤ L.

• If Q is keystone, then K(Q) = Q.

• As part of the one-time work we compute a list called border-disputes,
consisting of pairs (Q,Q′) with Q,Q ′ ∈ CZ. A pair of CZ cubes (Q,Q′)
belongs to border-disputes if and only if K(Q) �= K(Q′) and Q↔ Q ′. We
guarantee that the list border-disputes consists of at most C(A) ·N pairs
of CZ cubes.

362 C. Fefferman, A. Israel, and G. K. Luli

• The query work is at most C(A) logN. The query work makes at most C(A)
additional calls to the CZ-Oracle.

• The one-time work is at most C(A)N logN in space C(A)N. The one-time
work makes at most C(A)N additional calls to the CZ-Oracle.

Explanation. As part of the one-time work, we execute the algorithm Mark

usual suspects. Hence, each cube Q from the list usual-suspects is marked
with a keystone cube K(Q), and we guarantee that there exists an exponentially
decreasing path connecting Q and K(Q). Furthermore, if Q is keystone, then we
guarantee that K(Q) = Q.

We now explain the query algorithm.
Let Q be a CZ cube. By a binary search, we can check whether Q belongs to

the list usual-suspects. This requires work at most C(A) logN.
If Q ∈ usual-suspects, then we have precomputed K(Q) satisfying the first

bullet point.
Note that all the keystone cubes are among this list of usual-suspects. Hence,

the second bullet point will always hold.
If Q /∈ usual-suspects, then Q is interstellar, since all non-interstellar CZ

cubes are among the usual-suspects.
Applying the algorithm Test an interstellar cube, we compute an index l

for which

cA10 · diam(Sl) < |x − x(Sl)| < CA
−10 · dist(Sl, E \ Sl) for all x ∈ (1+ cG)Q,

where Sl = 3Q
CD
l ∩ E. Hence, for this index l we have

(4.47) (1+ cG)Q ⊂ H(Sl).

(See the definition of the halo H(Sl) in (4.36).) This computation requires work
at most C(A) logN and uses at most C(A) calls to the CZ-Oracle.

By Lemma 43, there exists an exponentially decreasing path of CZ cubes join-
ing Q to Qextra

l ; moreover, Qextra
l is among the usual-suspects. Therefore, we

have precomputed a keystone cube K(Qextra
l), to which Qextra

l may be joined by
an exponentially decreasing path.

We set K(Q) := K(Qextra
l). Note thatQ is joined by an exponentially decreasing

path to Qextra
l and that Qextra

l is joined by an exponentially decreasing path to
K(Qextra

l). Hence, there exists an exponentially decreasing path as in the first
bullet point. The second bullet point holds vacuously. Indeed, all the keystone
cubes are among the usual-suspects, and Q is not among the usual-suspects,
hence Q is not keystone.

Thus, we have succeeded in responding to the query Q.

We see that the work and the number of calls to the CZ-Oracle in the query
work are controlled as required.

This concludes our explanation of the query algorithm.

Next, we explain how to generate the list border-disputes.

Fitting a Sobolev function to data I 363

Suppose that Q, Q̃ ∈ CZ, with Q↔ Q̃. Assume that neither Q nor Q̃ appears
on the list of usual-suspects. Then our query algorithm sets K(Q) := K(Qextra

l)

and K(Q̃) := K(Qextra
l̃

), where (1 + cG)Q ⊂ H(Sl) and (1 + cG)Q̃ ⊂ H(Sl̃), with

the usual definitions Sl = 3Q
CD
l ∩ E and Sl̃ = 3Q

CD
l̃

∩ E. See (4.47).

We recall Lemma 6.5 in Section 6 of [18], which states that the halos H(S) are
pairwise disjoint as S varies over all the clusters.

Since (1+ cG)Q∩ (1+ cG)Q̃ �= ∅, it follows that Sl = Sl̃, hence Ql = DC(Sl) =

DC(Sl̃) = Ql̃, hence l = l̃.

Therefore, K(Q) = K(Qextra
l) = K(Qextra

l̃
) = K(Q̃).

Consequently, wheneverQ,Q′ ∈ CZ with Q↔ Q′ and K(Q) �= K(Q′), either Q
or Q′ is among the usual-suspects.

Using our list usual-suspects and the CZ-Oracle, we can easily generate a
list of all pairs of CZ cubes

(4.48)
[
(Q,Q′) such that Q↔ Q′ andQ or Q′ ∈ usual-suspects.

]
There are at most C(A)N such pairs, and we can generate them, sort them

and remove duplicates with work ≤ C(A)N logN in space C(A)N, making at most
C(A)N calls to the CZ-Oracle.

Using our query algorithm, we can simply test each pair (Q,Q′) satisfying (4.48)
to determine whether K(Q) = K(Q′).

This produces the list border-disputes, satisfying the third bullet point of
our algorithm. Since the are at most C(A)N pairs satisfying (4.48), the fourth
bullet point holds as well.

Note that we perform work ≤ C (A)N logN in space C(A)N, and make at
most C(A)N calls to the CZ-Oracle, in pruning the list (4.48) to make the list
border-disputes.

This concludes our explanation of the Main keystone cube algorithm. �

The one-dimensional case. We now assume that n=1. As noted before, Lemma 43
does not apply in this case. The cause of this failure is the fact that in one
dimension the halo H(S) has multiple connected components. Indeed,

H(S) = {y ∈ Rn : A · diam(S) < |y− x(S)| < A−1 · dist(E \ S, S)}

is the union of two disjoint intervals.
We start by modifying the construction of xextral and Qextra

l from the algorithm
Make auxiliary cubes. Instead of the points xextral , we define

xextra,±l = x(Sl)± 4A · diam(Sl).

This definition yields the following result, just as before.

• Algorithm: Make auxiliary cubes (version II). For each QCD
l , Sl =

3QCD
l ∩ E, produced by the algorithm Make cluster descriptors, we

compute two points xextra,−l , xextra,+l ∈ H(Sl) such that

2A · diam(Sl) ≤
∣∣xextra,jl − x(Sl)

∣∣ ≤ 8A · diam(Sl) for j ∈ {+,−}.

364 C. Fefferman, A. Israel, and G. K. Luli

We guarantee that each of the connected components of H(Sl) contains one
of the points xextra,−l , xextra,+l . We also compute Qextra,−

l and Qextra,+
l , the

CZ cubes containing xextra,−l and xextra,+l , respectively. The algorithm uses
work at most C(A)N logN in space C(A)N, and makes at most C(A)N calls
to the CZ-Oracle.

We require the following result, which is a modified version of Lemma 43.

Lemma 45. Assume that n = 1. Let Q ∈ CZ, and suppose that, for some
x ∈ (1+ cG)Q,

(4.49) cA10 · diam(Sl) < |x− x(Sl)| < CA
−10 · dist(Sl, E \ Sl).

Assume that j ∈ {+,−} is chosen so that xextra,jl and x belong to the same connected
component of H(Sl).

Then there exists an exponentially decreasing path S = (Q1, . . . , Q
J
) joining Q

to Qextra,j
l .

To prove this lemma we mimic the proof of Lemma 43. Let x and xextra,jl be

as above. We apply Lemma 38 to the points x and xextra,jl , which belong to the
same connected component of H(Sl) according to hypothesis. Thus there exists a

sequence x1, . . . , xJ ∈ H(Sl) such that x1 = x and x1 = xextra,jl , which satisfies the
remaining conditions described in the proof of Lemma 43. The remainder of the
argument follows the proof of Lemma 43 in an obvious way.

The remaining modifications necessary for the case n = 1 are described below.

• (Following algorithm List all non-interstellar cubes, in the definition
of usual-suspects.)

The list usual-suspects consists of all keystone cubes and all non-interstellar
cubes, and all the cubes Qextra,+

l , Qextra,−
l produced by the algorithm Make

auxiliary cubes (version II).

• (The explanation of the algorithm Mark usual suspects, in the analysis
of Case 2.)

We know that (1+cG)Q
′ ⊂ H(Sl). We determine j ∈ {+,−} such that xextra,jl

belongs to the connected component of H(Sl) that contains (1+ cG)Q
′. For

that l and that j, the cubeQ ′′ = Qextra,j
l appears in the list usual-suspects,

and by Lemma 45 there exists a sequence of CZ cubes Q ′ = Q1 ↔ Q2 ↔
· · · ↔ QL = Q ′′ such that. . .

We set K(Q) := K(Q ′′).

• (The explanation of the Main keystone cube algorithm, in the analysis
of the case in which Q is not interstellar.)

We know that (1+cG)Q ⊂ H(Sl). We determine j ∈ {+,−} such that xextra,jl

belongs to the same connected component of H(Sl) which contains (1+cG)Q.
We know that Q can be joined by an exponentially decreasing path of CZ

Fitting a Sobolev function to data I 365

cubes toQextra,j
l , and thatQextra,j

l is among the usual-suspects. Therefore,

we have precomputed a keystone cube K(Qextra,j
l), to which Qextra,j

l may be
joined by an exponentially decreasing path.

We set K(Q) := K(Qextra,j
l).

• (The explanation of the Main keystone cube algorithm, in the defini-
tion of border-disputes.)

Then our query algorithm sets K(Q) = K(Qextra,j
l) and K(Q̃) = K(Qextra,̃j

l̃
),

where (1 + cG)Q and xextra,jl are contained in the same connected compo-

nent of H(Sl), and where (1 + cG)Q̃ and xextra,̃j
l̃

are contained in the same

connected component of H(Sl̃).

Since (1+ cG)Q ∩ (1+ cG)Q̃ �= ∅, while the halos H(S) are pairwise disjoint
as S varies over all clusters, it follows that Sl = Sl̃. Moreover, (1+cG)Q and

(1+cG)Q̃ are contained in the same connected component of H(Sl) = H(Sl̃),

hence xextra,jl = xextra,̃j
l̃

. Thus we have l = l̃ and j = j̃.

Therefore, K(Q) = K(Qextra,j
l) = K(Qextra,̃j

l̃
) = K(Q̃).

This concludes the list of modifications required to treat the case n = 1.

4.6. CZ decompositions

4.6.1. Preliminaries.

Lemma 46. Let 0 < γ < 1 with γ an integer power of two. Let CZ be a col-
lection of pairwise disjoint dyadic cubes. We assume either that CZ is a dyadic
decomposition of a unit cube Q◦ or that CZ is a dyadic decomposition of Rn.

Assume that for all Q,Q ′ ∈ CZ with Q↔ Q ′, we have γδQ ′ ≤ δQ ≤ γ−1δQ ′ .

Then, for any Q,Q ′ ∈ CZ with (1+γ/2)Q∩(1+γ/2)Q ′ �= ∅, we have Q↔ Q ′.

Proof. We assume that CZ is a dyadic decomposition of Q◦, where Q◦ is a unit
cube. The case in which CZ is a dyadic decomposition of Rn is treated similarly.

Let Q,Q ′ ∈ CZ satisfy (1 + γ/2)Q ∩ (1 + γ/2)Q ′ �= ∅ and δQ ≥ δQ ′ . For the
sake of contradiction suppose that Q and Q ′ do not meet. That is, we assume
that the closure of Q is disjoint from the closure of Q ′.

Fix a point z ∈ (1+ γ/2)Q ∩ (1 + γ/2)Q ′. Now,

d(Q,Q ′) = inf
x∈Q
x ′∈Q ′

|x− x ′| ≤ inf
x∈Q
x ′∈Q ′

|x− z|+ |x ′ − z| ≤ (γ/4)δQ + (γ/4)δQ ′ ,

where in the last inequality we use that z ∈ (1 + γ/2)Q and z ∈ (1 + γ/2)Q ′.
(Recall that we use the �∞ norm on Rn.) Since δQ ′ ≤ δQ, we conclude that
d(Q,Q ′) ≤ (γ/2)δQ.

Consider the subset

DQ =
⋃ {

Q : Q ∈ CZ, Q↔ Q
} ⊂ Q◦.

366 C. Fefferman, A. Israel, and G. K. Luli

According to good geometry, each of the above Q satisfies δQ ≥ γδQ. Thus,
because the cubes in CZ are a partition of Q◦, we have{

y ∈ Q◦ : d(y,Q) ≤ (3γ/4) · δQ
} ⊂ DQ.

Hence, since d(Q,Q ′) ≤ (γ/2)δQ, we know that DQ intersects Q ′. Therefore,
there exists Q ∈ CZ with Q↔ Q and Q∩Q ′ �= ∅. Hence, because the cubes in CZ
are pairwise disjoint, we must have Q = Q ′. Thus, Q ′ ↔ Q, which contradicts our
assumption that Q and Q ′ do not meet. This completes the proof of the lemma
by contradiction. �

4.6.2. Review of known results. We review several results from Sections 20-26
in [17]. In those sections, we are given the following data (see Section 20 in [17]):

• A finite subset E ⊂ Rn, with #(E) = N, N ≥ 2.
• A real number A2 ≥ 1, assumed to be an integer power of 2.

• For each x ∈ E and A ⊂ M, a positive real number δ(x,A). 3

These data define a family of Calderón–Zygmund decompositions of Rn, called
CZ(A), indexed by subsets A ⊂ M.

Here, CZ(A) consists of the maximal dyadic cubes Q ⊂ Rn of sidelength δQ ≤
A−1

2 such that either

(a) #(5Q ∩ E) ≤ 1, or

(b) for some A ′ ≤ A we have δ(x,A ′) ≥ A2δQ for all x ∈ E ∩ 5Q.

The following algorithm is presented in Section 26 of [17].

Given A2, E, (δ(x,A))A⊂M , x∈E, we perform one-time work at most CN logN
in space CN, after which we can answer queries as follows.

A query consists of a subset A ⊂ M and a point x ∈ Rn. The response to the
query (A, x) is the one and only one cube Q ∈ CZ(A) containing x. The work to
answer a query is at most C logN. Here, C depends only on m and n.

We will make a slight change here by replacing 5Q by 3Q in the definition
of CZ(A) (see (a) and (b) above). This change affects nothing significant in the
relevant discussion in [17].

The only point worth mentioning is the proof of good geometry. Lemma 2 in
Section 21 of [17] asserts that if (1+2cG)Q∩(1+2cG)Q

′ �= ∅ with Q,Q ′ ∈ CZ(A),
then 1

2
δQ ≤ δQ ′ ≤ 2δQ. Here, cG > 0 is a small constant depending only on the

dimension n.
The proof of that lemma requires slight changes; the argument given in [17]

shows that 1
2
δQ ≤ δQ ′ ≤ 2δQ for any Q,Q ′ ∈ CZ(A) with Q ↔ Q ′. Thus,

applying Lemma 46 (with γ = 1/2), we see that

[
Q,Q ′ ∈ CZ(A), (1 + 2cG)Q ∩ (1+ 2cG)Q

′ �= ∅] =⇒ 1

2
δQ ≤ δQ ′ ≤ 2δQ.

This proves the “good geometry” of the cubes in CZ(A).

3We recall from [17] that Lemma 5 in Section 20 there makes use of a particular choice of the
δ(x,A), but that lemma has no effect on anything else in Sections 20-26 of [17]. Again, see the
remarks in the first few paragraphs of Section 20 in [17].

Fitting a Sobolev function to data I 367

4.6.3. A Calderón–Zygmund oracle. Assume we are given the following data.

• We are given a finite set E ⊂ Q◦, with Q◦ ⊂ Rn a dyadic cube of unit
sidelength; we assume that #(E) = N, N ≥ 2.

• We are given a number Δ(x) ∈ (0, 1] for each x ∈ E. We denote �Δ =
(Δ(x))x∈E.

Given the data above, we define a Calderón–Zygmund decomposition CZ(�Δ)

of Q◦ as follows: CZ(�Δ) consists of the maximal dyadic cubes Q ⊂ Q◦ such that
either #(E ∩ 3Q) ≤ 1 or Δ(x) ≥ δQ for all x ∈ E ∩ 3Q.

Algorithm: Plain vanilla CZ-oracle

Given E, �Δ as above, we perform one-time work at most CN logN in space CN,
after which we can answer queries.

A query consists of a point x ∈ Q◦. The response to the query x is the one and
only one cube Q ∈ CZ(�Δ) containing x.

The work to answer a query is at most C logN. Here, C depends only on the
dimension n.

Explanation. We take A2 = 1 and δ(x,A) = Δ(x) for each x ∈ E, A ⊂ M, and
we apply the query algorithm given in the previous section. �

Remark 47. As a special case, we can apply the Plain vanilla CZ-Oracle to
the “classic Whitney decomposition” of Q◦, which consists of the maximal dyadic
subcubes Q ⊂ Q◦ such that #(E ∩ 3Q) ≤ 1. In fact, we need only pick δsmall with
0 < δsmall <

1
100

min{|x − y| : x, y ∈ E, x �= y}, and then take Δ(x) = δsmall for
all x ∈ E.

Such a number δsmall may be computed with one-time work ≤ CN once we have
the well-separated pairs decomposition available. The classic Whitney decompo-
sition coincides with CZ(�Δ). We will use the Oracle for this decomposition in a
later section.

We close this section with an easy generalization of the Plain vanilla CZ-

Oracle. We assume we have already defined a decomposition CZold of Q◦ con-
sisting of pairwise disjoint dyadic subcubes. We make the following assumptions:

• If Q ⊂ Q◦ is a dyadic subcube and #(E ∩ 3Q) ≤ 1, then Q is contained in a
cube of CZold.

• Good geometry: If Q,Q ′ ∈ CZold and Q↔ Q ′ then 1
2
δQ ≤ δQ ′ ≤ 2δQ.

• We have available a CZold-Oracle: Given a query point x ∈ Q◦, the CZold-
Oracle returns the one and only one cube Q ∈ CZold containing x.

We define a decomposition CZnew of Q◦ to consist of the maximal dyadic cubes
Q ⊂ Q◦ such that either Q ∈ CZold or Δ(x) ≥ δQ for all x ∈ E ∩ 3Q.

We clearly see that the decomposition CZnew has good geometry, namely

If Q,Q ′ ∈ CZnew and Q↔ Q ′ then
1

2
δQ ≤ δQ ′ ≤ 2δQ.

368 C. Fefferman, A. Israel, and G. K. Luli

Applying Lemma 46 with γ = 1/2, we obtain
(4.50)

If Q,Q ′ ∈ CZnew and
65

64
Q ∩ 65

64
Q ′ �= ∅, then Q↔ Q ′ and

1

2
δQ ≤ δQ ′ ≤ 2δQ.

We finish this section with the following algorithm.

Algorithm: Glorified CZ-oracle

Given E and �Δ as above, we perform one-time work at most CN logN in
space CN, after which we can answer queries.

A query consists of a point x ∈ Q◦. The response to the query x is a list
containing all the cubes Q ∈ CZnew such that x ∈ 65

64
Q.

We answer the query using at most C logN computer operations as well as at
most C calls to the CZold-Oracle.

Explanation. First, given x ∈ Q◦, we show how to compute the unique cube
Qx ∈ CZnew containing x. In fact, Qx is simply the larger of the following two
cubes:

• The cube returned by the CZold-Oracle in response to the query x.

• The cube returned by the Plain Vanilla CZ-Oracle applied to �Δ =
(Δ(x))x∈E in response to the query x.

The above computation requires work at most C logN and one call to the CZold-
Oracle.

Next, given x ∈ Q◦, we show how to compute a list of all Q ∈ CZnew such
that x ∈ 65

64
Q. To do so, we first compute the cube Qx ∈ CZnew containing x.

By (4.50), our desired list of cubes consists only of dyadic cubes Q ⊂ Q◦ such that[
x ∈ 65

64
Q and

1

2
δQx

≤ δQ ≤ 2δQx

]
.

There are at most C such cubes, and we can easily list them all.
Now, we test each such Q to see whether Q ∈ CZnew. To do that, we just

compute the one and only one cube Q̂ ∈ CZnew containing the center of Q, and
we check whether Q̂ = Q.

This completes our description of the Glorified CZ-Oracle. It is trivial
to check that the algorithm works, and that the one-time work, query work, the
storage, and the number of calls to the CZold-Oracle are as promised. �

4.6.4. Basic algorithms. In the present section and in the next section (Sec-
tion 4.6.5), we assume that we are given the following.

• A finite set E ⊂ 1
32
Q◦, with Q◦ a dyadic cube of unit sidelength in Rn, such

that N := #(E) ≥ 2.
• A collection CZ consisting of dyadic cubes Q ⊂ Rn. We assume that CZ is

locally finite, i.e., any given compact set S ⊂ Rn intersects a finite number
of cubes Q ∈ CZ. Furthermore, we assume

(Good geometry): if Q↔ Q ′ and Q,Q ′ ∈ CZ, then
1

8
δQ ≤ δQ ′ ≤ 8δQ.

Fitting a Sobolev function to data I 369

• We assume we are either in
Setting 1: The cubes in CZ partition Q◦, or
Setting 2: The cubes in CZ partition Rn.

• We assume that a CZ-Oracle is available. The CZ-Oracle accepts queries.
In Setting 1, a query consists of a point x ∈ Q◦; in Setting 2, a query
consists of a point x ∈ Rn. Given a query x, the CZ-Oracle produces a
list of the cubes Q ∈ CZ such that x ∈ 65

64
Q. This requires work at most

C · logN.

We see that CZ satisfies the hypotheses of Lemma 46 with γ = 1/8. Thus,

(4.51) If
65

64
Q∩65

64
Q ′ �= ∅ and Q,Q ′ ∈ CZ, then Q↔ Q ′ and

1

8
δQ ≤ δQ ′ ≤ 8δQ.

Let Q ∈ CZ and Q ∈ CZ \{Q} be given. Let xQ be the center of Q. Suppose
that 65

64
Q ∩ B(xQ, δ) �= ∅ for some 0 < δ < 1

64
min{δQ, δQ}. Then 65

64
Q ∩ 65

64
Q �= ∅.

From (4.51), we see that δQ and δQ differ by at most a factor of 16. Thus,

because Q and Q are disjoint dyadic cubes, we have

d(xQ, Q) ≥ 1

2
δQ ≥ 1

32
δQ.

(Recall, distances are measured using the �∞ metric.)

However, our assumption that 65
64
Q ∩ B(xQ, δ) �= ∅ implies that d(xQ, Q) ≤

δ+ 1
64
δQ <

1
32
δQ. This contradiction establishes

(4.52) if Q,Q ∈ CZ and Q �= Q, then B(xQ, δ) ∩ 65
64
Q = ∅ for δ <

1

64
min{δQ, δQ}.

Under the above assumptions, we give the following algorithms.

Algorithm: Find neighbors

We can answer queries as follows. A query consists of a cube Q ∈ CZ. The
response to the query Q is the list of all cubes Q ′ ∈ CZ such that Q ′ ↔ Q. To
answer the query requires work at most C logN.

Explanation. We first explain how to test whether a given dyadic cube Q ′ ⊂ Rn

belongs to the collection CZ. In Setting 1, it is necessary thatQ ′ ⊂ Q◦. Assuming
that this is the case, we examine the center xQ ′ of Q ′. We query the CZ-Oracle

on xQ ′ to produce the list of all cubes Q ∈ CZ with xQ ′ ∈ 65
64
Q. This list contains

at most C cubes, thanks to Good Geometry. Note that Q ′ belongs to this list if
and only if Q ′ belongs to CZ. We can check the former condition using work at
most C.

Let Q ∈ CZ be given. We wish to list all the Q ′ ∈ CZ such that Q ′ ↔ Q.
According to good geometry, each suchQ ′ also satisfies 1

8
δQ ≤ δQ ′ ≤ 8δQ. We can

list all the dyadic cubes Q ′ with Q ′ ↔ Q and 1
8
δQ ≤ δQ ′ ≤ 8δQ. We remove from

this list those cubes that do not belong to CZ. We return a list of the remaining
cubes.

370 C. Fefferman, A. Israel, and G. K. Luli

This completes our description of the algorithm Find neighbors. It is easy
to check that the algorithm operates as promised, and that the amount of work is
as promised. �

Algorithm: Find main-cubes

After one-time work at most CN logN in space CN, we produce the collection
of cubes CZmain := {Q ∈ CZ : 65

64
Q∩ E �= ∅}. We mark each cube Q ∈ CZmain with

a point x(Q) ∈ 65
64
Q ∩ E.

Explanation. We loop over x ∈ E. For each point x ∈ E, we list all the cubes
Q ∈ CZ such that x ∈ 65

64
Q. This requires N calls to the CZ-Oracle. For each Q

obtained above, we set x(Q) := x for the relevant x. Thus, we produce a list of all
the cubes in CZmain, possibly containing duplicates. After sorting this list, we can
find and remove duplicates, and obtain our desired list of the cubes Q ∈ CZmain

marked by points x(Q). �

4.6.5. Partitions of unity. Aside from a decomposition CZ satisfying the con-
ditions laid out in Section 4.6.4, we assume that we are given a cube Q̂ ⊂ Rn, and
real numbers 0 < r ≤ 1/64 and A ≥ 1. We are also given a finite subcollection
Q ⊂ CZ with the following properties:

For each x ∈ Q̂ we have x ∈ (1+ r/2)Q for some Q ∈ Q.(4.53)

δQ ≤ Aδ
̂Q

for each Q ∈ Q.(4.54)

(We do not assume here that Q̂ is dyadic.)
By (4.51), we see that the collection {65

64
Q : Q ∈ Q} has bounded overlap,

meaning that for each Q ∈ Q there are at most C cubes Q ′ ∈ Q such that
65
64
Q ∩ 65

64
Q ′ �= ∅. Here, C depends only on the dimension n.

For each Q ∈ CZ we choose a cutoff function θ̃Q ∈ Cm(Rn) such that

• supp(θ̃Q) ⊂ (1+ 3r
4
)Q .

• θ̃Q ≥ 0 on Rn.

• θ̃Q ≥ 1/2 on
(
1+ r

2

)
Q.

• |∂αθ̃Q(x)| ≤ C(r) · δ−|α|

Q for x ∈ Rn, |α| ≤m.
We choose θ̃Q to depend only on Q and r.

We assume the existence of a query algorithm for θ̃Q. For instance, we can

take θ̃Q to be a tensor product of univariate splines, in which case the next algo-
rithm is trivial.

Algorithm: Compute cutoff function

Given a cube Q ∈ CZ, a point x ∈ Q◦, and 0 < r ≤ 1/64, we compute the jet

Jx(θ̃Q) using work and storage at most C.

In the next lemma we use the cutoff functions θ̃Q to construct a partition of
unity. Recall that xQ denotes the center of a cube Q.

Fitting a Sobolev function to data I 371

Lemma 48. There exists θ
̂Q
Q ∈ Cm(Rn) for each Q ∈ Q, such that

supp θ
̂Q
Q ⊂

(
1+

3r

4

)
Q,(4.55)

|∂αθ̂Q
Q(x)| ≤ C(r) · δ−|α|

Q for x ∈ Rn, |α| ≤ m,(4.56)

1 =
∑
Q∈Q

θ
̂Q
Q on Q̂.(4.57)

Moreover, θ
̂Q
Q = 1 near xQ and θ

̂Q
Q = 0 near xQ ′ for all Q ′ ∈ Q \ {Q}.

Here, the constant C(r) depends only on r, m and n.

Proof. We set

Ψ(x) =
∑
Q∈Q

θ̃Q(x) for x ∈ Rn.

Because θ̃Q ≥ 1/2 on (1+ r/2)Q, the condition (4.53) implies that Ψ ≥ 1/2 on Q̂.
We can easily see that

|∂αΨ(x)| ≤ C(r)δ−|α|

Q for x ∈ 65

64
Q,Q ∈ Q, |α| ≤ m.(4.58)

More precisely, since supp(θ̃Q) ⊂ 65
64
Q, any cube Q ∈ Q that contributes to

the sum defining Ψ(x) must satisfy 65
64
Q ∩ 65

64
Q �= ∅. (Recall that x ∈ 65

64
Q.)

Moreover, δQ and δQ differ by at most a factor of 16 for any such Q; see (4.51).
Hence, (4.58) follows from (4.56) and from the fact that the sum defining Ψ(x) has
at most C nonzero terms for each fixed x, a consequence of the bounded overlap
of the cubes in Q.

Let η ∈ Cm([0,∞)) be a function with η(t) ≥ 1/4 for t ∈ [0, 1/2), and η(t) = t
for t ≥ 1/2. Let Q ∈ Q. We define

θ
̂Q
Q(x) :=

θ̃Q(x)

η ◦ Ψ(x) , a function in Cm(Rn).

Clearly, supp θ
̂Q
Q ⊂ supp θ̃Q ⊂ (1 + 3r/4)Q. Moreover, (4.58) implies that

|∂α [η ◦ Ψ] (x)| ≤ C(r)δ−|α|

Q for x ∈ 65
64
Q, |α| ≤ m.

Using that η ◦ Ψ(x) ≥ 1/4, we obtain

|∂αθ̂Q
Q(x)| =

∣∣∣∂α[θ̃Q
η ◦ Ψ

]
(x)

∣∣∣ ≤ C(r)δ−|α|

Q for x ∈ 65

64
Q, |α| ≤m.

Finally, note that

(4.59)
∑
Q∈Q

θ
̂Q
Q(x) =

∑
Q∈Q

θ̃Q(x)

η ◦ Ψ(x) =
∑
Q∈Q

θ̃Q(x)

Ψ(x)
= 1 for x ∈ Q̂.

(Here, we use the fact that η ◦ Ψ(x) = Ψ(x), since Ψ ≥ 1/2 on Q̂.)

372 C. Fefferman, A. Israel, and G. K. Luli

Recall that θ
̂Q

Q
≥0 and that supp(θ

̂Q

Q
) ⊂ 65

64
Q for each Q∈Q. Thus, from (4.52)

and (4.59) we deduce that there exists δ > 0 such that θ
̂Q
Q = 1 on B(xQ, δ) and

θ
̂Q
Q = 0 on B(xQ ′ , δ) for every Q ′ ∈ Q \ {Q}.

This completes the proof of the lemma. �

Lemma 49. Given a function FQ ∈ X((1+ r)Q ∩ Q̂) for each Q ∈ Q, we define

F :=
∑
Q∈Q

FQθ
̂Q
Q on Q̂, with θ

̂Q
Q as in Lemma 48.

Then, given a polynomial PQ ∈ P and a point yQ ∈ Q for each Q ∈ Q, we have

‖F‖p
X(̂Q)

≤ C(A, r) ·
[∑

Q∈Q

[‖FQ‖p
X((1+r)Q∩̂Q)

+ δ−mp
Q ‖FQ − PQ‖p

Lp((1+r)Q∩̂Q)

]
+

∑
Q,Q ′∈Q

(1+r)Q∩(1+r)Q ′ �=∅

∑
|β|≤m−1

δ
(|β|−m)p+n
Q |∂β(PQ − PQ ′)(yQ)|p

]
.(4.60)

Here, the constant C(A, r) depends only on r, A, m, n, and p.

Proof. Let Q ′ ∈ Q be given, with Q̂ ∩ (1+ r
2
)Q ′ �= ∅.

Let x ∈ Q̂ ∩ (1+ r
2
)Q ′. Recall that

∑
Q∈Q θ

̂Q
Q = 1 on Q̂, hence

F = FQ ′ +
∑
Q∈Q

θ
̂Q
Q · (FQ − FQ ′) on Q̂.

Differentiating the above equation, for |α| = m we have

∂αF(x) = ∂αFQ ′(x) +
∑
Q∈Q

(1+ 3r
4
)Q�x

∑
β+γ=α

coeff(β, γ) · ∂β(FQ − FQ ′)(x) · ∂γθ̂Q
Q(x).

There are at most C nonzero terms in the above sum, thanks to bounded overlap
of {(1+ r)Q : Q ∈ Q}.

Let Q ∈ Q be such that (1 + 3r/4)Q � x. Note that x ∈ Q̂ ∩ (1 + r)Q and

x ∈ Q̂ ∩ (1+ r)Q ′.
In the above sum, if |β| = m then β = α and γ = 0. These terms are bounded

in magnitude by |∂αFQ(x)|+ |∂αFQ ′(x)|.
In the above sum, if |β| ≤ m− 1 then we have

|∂β(FQ − FQ ′)(x)| ≤ |∂β(FQ − PQ)(x)| + |∂β(PQ − PQ ′)(x)|+ |∂β(FQ ′ − PQ ′)(x)|.

Since Q̂ ∩ (1 + 3r/4)Q �= ∅ and δQ ≤ Aδ
̂Q

(see (4.54)), the sidelengths of the

rectangular box Q̂ ∩ (1 + r)Q are comparable to δQ (up to a constant factor

depending on r, A and n). Similarly, the sidelengths of the rectangular box Q̂ ∩

Fitting a Sobolev function to data I 373

(1+ r)Q ′ are comparable to δQ ′ . Thus, by an easy rescaling argument, Lemma 10
shows that

|∂β(FQ − PQ)(x)|
≤ C(A, r) ·

(
δ
−|β|−n

p

Q ‖FQ − PQ‖
Lp((1+r)Q∩̂Q)

+ δ
m−|β|−n

p

Q ‖FQ‖
X((1+r)Q∩̂Q)

)
.

|∂β(FQ ′ − PQ ′)(x)|
≤ C(A, r) ·

(
δ
−|β|−n

p

Q ′ ‖FQ ′ − PQ ′‖
Lp((1+r)Q ′∩̂Q)

+ δ
m−|β|−n

p

Q ′ ‖FQ ′‖
X((1+r)Q ′∩̂Q)

)
.

If β+ γ = α then |γ| = m − |β|, hence

|∂γθ
̂Q
Q| ≤ C(A, r) · δ−|γ|

Q = C(A, r) · δ|β|−m
Q .

Hence,

|∂αF(x)| ≤ C(A, r)
∑
Q∈Q

(1+r)Q�x

[
|∂αFQ(x)|+ δ

−m−n
p

Q ‖FQ − PQ‖
Lp((1+r)Q∩̂Q)

+ δ
−n

p

Q ‖FQ‖
X((1+r)Q∩̂Q)

+
∑

|β|≤m−1

|∂β(PQ − PQ ′)(x)| · δ|β|−m
Q

]
(note that the cube Q ′ enters into the above sum)

≤ C(A, r)
∑
Q∈Q

(1+r)Q�x

[
|∂αFQ(x)|+ δ

−m−n
p

Q ‖FQ − PQ‖
Lp((1+r)Q∩̂Q)

+ δ
−n

p

Q ‖FQ‖
X((1+r)Q∩̂Q) +

∑
|β|≤m−1

|∂β(PQ − PQ ′)(yQ)| · δ|β|−m
Q

]

(note that yQ ∈ Q and x ∈ (1 + r)Q, hence |yQ − x| ≤ CδQ; thus, the above
inequality follows from Lemma 7).

We now raise each side to the power p, integrate over Q̂∩ (1+ r
2
)Q ′, and sum

over |α| = m. Thus we obtain

‖F‖p
X(̂Q∩(1+ r

2
)Q ′)

≤ C(A, r)
∑
Q∈Q

(1+r)Q ′∩(1+r)Q�=∅

[
‖FQ‖p

X((1+r)Q∩̂Q)

+ δ−mp
Q ‖FQ − PQ‖p

Lp((1+r)Q∩̂Q)
+

∑
|β|≤m−1

|∂β(PQ − PQ ′)(yQ)|p · δ(|β|−m)p+n
Q

]
.

Finally, summing over Q ′ ∈ Q, we obtain the conclusion of the lemma, thanks
to (4.53) and the bounded overlap and good geometry of Q. �

We resume our discussion in [20].

374 C. Fefferman, A. Israel, and G. K. Luli

References

[1] Arya, S., Mount, D., Netanyahu, N., Silverman, R. and Wu, A.: An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM
45 (1998), no. 6, 891–923.

[2] Batson, J., Spielman, D. and Srivastava, N.: Twice-Ramanujan sparsifiers. In
STOC’09 – Proceedings of the 2009 ACM International Symposium on Theory of
Computing, 255–262. ACM, New York, 2009.

[3] Bierstone, E., Milman, P. and Paw�lucki, W.: Differentiable functions defined
in closed sets. A problem of Whitney. Invent. Math. 151 (2003), no. 2, 329–352.

[4] Bierstone, E., Milman, P. and Paw�lucki, W.: Higher-order tangents and Fef-
ferman’s paper on Whitney’s extension problem. Annals of Math. (2) 164 (2006),
no. 1, 361–370.

[5] Brudnyi, Y. and Shvartsman, P.: A linear extension operator for a space of
smooth functions defined on a closed subset of Rn. Soviet Math. Dokl 31 (1985),
no. 1, 48–51.

[6] Brudnyi, Y. and Shvartsman, P.: Generalizations of Whitney’s extension theo-
rem. Internat. Math. Res. Notices 1994, no. 3, 129–139.

[7] Brudnyi, Y. and Shvartsman, P.: The Whitney problem of existence of a linear
extension operator. J. Geom. Anal. 7 (1997), no. 4, 515–574.

[8] Brudnyi, Y. and Shvartsman, P.: Whitney’s extension problem for multivariate
C1,ω functions. Trans. Amer. Math. Soc. 353 (2001), no. 6, 2487–2512.

[9] Callahan, P. B. and Kosaraju, S. R.: A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc.
Comput. Mach. 42 (1995), no. 1, 67–90.

[10] Fefferman, C.: A sharp form of Whitney’s extension theorem. Ann. of Math. (2)
161 (2005), no. 1, 509–577.

[11] Fefferman, C.: Interpolation and extrapolation of smooth functions by linear
operators. Rev. Mat. Iberoamericana 21 (2009), no. 1, 313–348.

[12] Fefferman, C.: Whitney’s extension problem for Cm. Ann. of Math. (2) 164
(2006), no. 1, 313–359.

[13] Fefferman, C.: Cm extension by linear operators. Ann. of Math. (2) 166 (2007),
no. 3, 779–835.

[14] Fefferman, C.: Extension of Cm,ω-smooth functions by linear operators. Rev.
Mat. Iberoam. 25 (2009), no. 1, 1–48.

[15] Fefferman, C.: Fitting a Cm-smooth function to data. III. Ann. of Math. (2) 170
(2009), no. 1, 427–441.

[16] Fefferman, C. and Klartag, B.: Fitting a Cm-smooth function to data. I. Ann.
of Math. (2) 169 (2009), no. 1, 315–346.

[17] Fefferman, C. and Klartag, B.: Fitting a Cm-smooth function to data. II. Rev.
Mat. Iberoam. 25 (2009), no. 1, 49–273.

[18] Fefferman, C., Israel, A. and Luli, G. K.: Sobolev extension by linear opera-
tors. J. Amer. Math. Soc. 27 (2014), 69–145.

[19] Fefferman, C., Israel, A. and Luli, G. K.: The structure of Sobolev extension
operators. Rev. Mat. Iberoam. 30 (2014), no. 2, 419–429.

Fitting a Sobolev function to data I 375

[20] Fefferman, C., Israel, A. and Luli, G. K.: Fitting a Sobolev function to data II.
Rev. Mat. Iberoam. (to appear).

[21] Fefferman, C., Israel, A. and Luli, G. K.: Fitting a Sobolev function to
data III. Rev. Mat. Iberoam. (to appear).

[22] Glaeser, G.: Étude de quelques algèbres tayloriennes. J. Analyse Math. 6 (1958),
1–124; erratum, insert to 6 (1958), no. 1.

[23] Hirn, M. and Le Gruyer, E.: A general theorem of existence of quasi absolutely
minimal Lipschitz extensions. Math. Ann. 359 (2014), no. 3-4, 595–628.

[24] Hartmanis, J. and Simon, J.: On the power of multiplication in random-access
machines. In 15th Annual Symposium on Switching and Automata Theory (1974)
13–23. IEEE Comput. Soc., Long Beach, Calif., 1974.

[25] Israel, A.: A bounded linear extension operator for L2,p(R2). Ann. of Math. (2)
178 (2013), no. 1, 183–230.

[26] Jones, P. W.: Quasiconformal mappings and extendability of functions in Sobolev
spaces. Acta Math. 147 (1981), no. 1-2, 71–88.

[27] Luli, G. K.: Cm,ω extension by bounded-depth linear operators. Adv. Math. 224
(2010), no. 5, 1927–2021.

[28] Le Gruyer, E.: On absolutely minimizing Lipschitz extensions and PDE Δ∞(u)=0.
NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 1-2, 29–55.

[29] Le Gruyer, E.: Minimal Lipschitz extensions to differentiable functions defined on
a Hilbert space. Geom. Funct. Anal. 19 (2009), no. 4, 1101–1118.

[30] Gilbarg, D. and Trudinger, N. S.: Elliptic partial differential equations of second
order. Springer, 1998.

[31] Schönhage, A.: On the power of random access machines. In Automata, languages
and programming (Sixth Colloq., Graz, 1979), 520–529. Lecture Notes Comput. Sci.
71, Springer, Berlin, 1979.

[32] Shvartsman, P.: Lipschitz sections of set-valued mappings and traces of functions
from the Zygmund class on an arbitrary compactum. Soviet Math. Dokl. 29 (1984),
no. 3, 565–568.

[33] Shvartsman, P.: Traces of functions of Zygmund class. Siberian Math. J. 28 (1987),
853–863.

[34] Shvartsman, P.: Lipschitz selections of set-valued mappings and Helly’s theorem.
J. Geom. Anal. 12 (2002), no. 2, 289–324.

[35] Shvartsman, P.: Sobolev W1
p-spaces on closed subsets of Rn. Adv. Math. 220

(2009), no. 6, 1842–1922.

[36] Shvartsman, P.: On the sum of a Sobolev space and a weighted Lp-space. Adv.
Math. 248 (2013), 155–228.

[37] Shvartsman, P.: Sobolev L2p-functions on closed subsets of R2. Adv. Math. 252
(2014), 22–113.

[38] von Neumann, J.: First draft of a report on the EDVAC. Contract No. W-670-
ORD-492, Moore School of Electrical Engineering, Univ. of Penn., Philadelphia,
1945. Reprinted in IEEE Ann. Hist. Comput. 15 (1993), no. 4, 27–75.

[39] Wells, J.: Differentiable functions on Banach spaces with Lipschitz derivatives.
J. Differential Geometry 8 (1973), 135–152.

[40] Whitney, H.: Analytic extensions of differentiable functions defined in closed sets.
Trans. Amer. Math. Soc. 36 (1934), 63–89.

376 C. Fefferman, A. Israel, and G. K. Luli

[41] Whitney, H.: Differentiable functions defined in closed sets. I. Trans. Amer. Math.
Soc. 36 (1934), no. 2, 369–387.

[42] Whitney, H.: Functions differentiable on the boundaries of regions. Ann. of
Math. (2) 35 (1934), no. 3, 482–485.

[43] Zobin, N.: Whitney’s problem on extendability of functions and an intrinsic metric.
Adv. Math. 133 (1998), no. 1, 96–132.

[44] Zobin, N.: Extension of smooth functions from finitely connected planar domains.
J. Geom. Anal. 9 (1999), no. 3, 491–511.

Received November 19, 2014.

Charles Fefferman: Department of Mathematics, Princeton University, Fine Hall,
Washington Road, Princeton, NJ 08544, USA.

E-mail: cf@math.princeton.edu

Arie Israel: Department of Mathematics, University of Texas at Austin, RLM Hall,
2515 Speedway, Austin, TX 78712, USA.

E-mail: arie@math.utexas.edu

Garving Luli: Department of Mathematics, University of California at Davis, One
Shields Avenue, Davis, CA 95616, USA.

E-mail: kluli@math.ucdavis.edu

Charles Fefferman is supported by NSF grant DMS-1265524 and AFOSR grant FA9550-12-
1-0425. Arie Israel is supported by an NSF postdoctoral fellowship, DMS-1103978. Garving Luli
is supported by NSF grant DMS-1355968.

mailto:cf@math.princeton.edu
mailto:arie@math.utexas.edu
mailto:kluli@math.ucdavis.edu

	Introduction
	Preliminaries
	Notation
	The infinite-precision model of computation
	Basic estimates on Sobolev functions
	Trace norms
	The depth of linear maps
	Sets of multi-indices
	Bases for the space of polynomials
	Bases
	Tagged cubes
	Computing a basis

	Algorithms for linear functionals

	Statement of the main technical results
	Data structures
	Algorithms for dyadic cubes
	Dyadic cuboids
	Preliminary definitions
	Control trees
	Encapsulations
	Making a tree from a list of cuboids

	The Callahan–Kosaraju decomposition
	The BBD tree
	Clusters
	Paths to keystone cubes
	CZ decompositions
	Preliminaries
	Review of known results
	A Calderón–Zygmund oracle
	Basic algorithms
	Partitions of unity

