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An upper bound for the length of a traveling

salesman path in the Heisenberg group

Sean Li and Raanan Schul

Abstract. We show that a sufficient condition for a subset E in the
Heisenberg group (endowed with the Carnot–Carathéodory metric) to be
contained in a rectifiable curve is that it satisfies a modified analogue
of Peter Jones’s geometric lemma. Our estimates improve on those of [6],
allowing for any power r < 4 to replace the power 2 of the Jones-β-number.
This complements in an open ended way our work in [13], where we showed
that such an estimate was necessary, however with the power r = 4.

1. Introduction

Let H denote the Heisenberg group, endowed with the Carnot–Carathéodory dis-
tance and E ⊆ H be any subset. Let B(x, t) be the (closed) ball of radius t around
x. Then we denote

βE,H(B) = inf
L

sup
x∈E∩B

d(x, L)

diam(B)
,

with the infimum is taken over all horizontal lines L (to be defined in the next
section). If it is clear from the context which set E we are referring to, we will
omit it from the notation and write βH(B).

In this paper we prove the following theorem.

Theorem A. Let r < 4 be fixed. There is a constant C = C(r) > 0 such that, for
any set E ⊆ H, if

diam(E) +

∫
H

∫ +∞

0

βE,H(B(x, t))r
dt

t4
dH4(x) < ∞,

then there exists a rectifiable curve Γ ⊃ E such that

H1(Γ) ≤ C
(
diam(E) +

∫
H

∫ +∞

0

βE,H(B(x, t))r
dt

t4
dH4(x)

)
.(1.1)
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We do not know if Theorem A is still true when r = 4, but we do know that it
is almost optimal: in [13] we showed the following.

Theorem B. There is a constant C > 0 such that, for any rectifiable curve Γ, the
following holds: ∫

H

∫ +∞

0

βΓ,H(B(x, t))4
dt

t4
dH4(x) ≤ CH1(Γ).(1.2)

The use of Hausdorff measure of dimension 4 directly corresponds to the Haus-
dorff dimension of H and the power of t. However, it does not correspond to the
power 4 of β. That 4 comes from the modulus of curvature coming directly from
the Heisenberg geometry. In an n-dimensional Euclidean space, the analogous the-
orems hold with the same power r = 2 for both Theorem A and B, and the power
of t as well as the Hausdorff measure dimension are n ([9], [15]). If one discretizes
the integral to a sum in an appropriate way, the same holds for an infinite dimen-
sional Hilbert space [18], again, with r = 2. In a general metric space, with no
assumptions on the set E, there is an analogue of Theorem A [7]; however, the
analogue of Theorem B is false in that setting [19]. If one adds the assumption
that E is 1-Ahlfors-regular (i.e., it supports a measure with linear upper and lower
bounds on its growth) then, in this general metric setting analogues of both The-
orem A and B hold ([8], [17]). Finally we note that extensive work has been done
on the Euclidean case, where one approximates with k-planes instead of lines.

In Euclidean space, there is a very deep connection between how well k-dimen-
sional sets are approximated by k-planes (in a sense analogous to the right-hand
side of Theorem B, with r = 2 and appropriately scaled) and singular integral
operators. See for example [16], [5], [4], and [20], and references therein. The
heuristic point (that has rigorous meaning as well) is that the multi-scale approxi-
mations by k-planes are analogous to a multi-scale decomposition of a function (or
its derivative) into a wavelet basis and is a measurement of how fast one approaches
a tangent. In a ball, one approximates a singular integral against a measure sup-
ported on a set by a similar singular integral, against a measure supported on an
appropriate k-dimensional hyperplane, and sums over balls at all scales and loca-
tions. It would be interesting to explore the connection between our results and
singular integrals on one dimensional subsets of the Heisenberg group.

Naturally, the case k = 1 allows more results in Euclidean space, and this is
the case which makes sense in the Heisenberg group due to the lack of rectifiable
surfaces. One may view our results as answering the question ‘Give necessary and
sufficient conditions for a collection of sites to be visited by a curve of finite length
in the Heisenberg group’. Once can ask further questions like ‘Can you connect
the sites by a finite length curve such that movement between the different sites
is efficient’ as was done in [1], where it was shown that any rectifiable curve Γ
is contained inside a quasiconvex rectifiable curve Γ̃ of comparable length. Such
questions, if generalized appropriately, could end up having applications.

The curve in Theorem A may be constructed in an algorithmic way. In fact,
up to a natural modification of the constants used (and the metric), this curve is
constructed in [6]. The authors there get the estimate (1.1) for r ≤ 2. Several years
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after [6] was published, an example was constructed of a finite length curve such
that the right hand side of (1.1), with r ≤ 2, is infinite [10]. With a minor
modification (taking the parameters of the construction to be θk = c/kp for p > 1/2
instead of p = 1), this example remains a valid counterexample for all r < 4 and
so suggests that one may be able to improve on [6]. Indeed our contribution in
this note is to improve upon the estimates of [6] in a non-trivial fashion, and as a
consequence to extend the range of valid r by adding the range (2, 4). The fact that
one may improve upon the power r = 2 came from [11], which gave a parametric
version of Theorem B with power different from 2. In the same paper, it was also
shown that the parametric analogue of r is related to the Markov convexity of H,
which was recently calculated to be 4 in [12].

Previous proofs of statements like Theorem A used the farthest insertion algo-
rithm along with a curvature inequality of the form

(1.3) d(a, b) + d(b, c)− d(a, c) ≤ C β(B)p diam(B),

where B is some ball of radius r and a, b, c ⊂ E ∩ B are points whose mutual
distances are all comparable to r. Here, β(B) depends on the context of the
problem.

The curve is then built in an iterative fashion as in [9]. Letting Δk be a 2−k-net
of E that was connected by a polygonal curve Γk, one builds Γk+1 by adding and
deleting segments of Γk in a clever way to include Δk+1. The inequality (1.3)
enables one to bound the sum of the telescoping series �(Γk+1) − �(Γk) to be
bounded by the Carleson sum of the β-numbers. The curve Γ is the limit (along a
subsequence) of the curves Γj , ensured by Arzelà–Ascoli. For a detailed account of
this see the appendix of [6], which also explains why we freely confuse a connected
set of finite length with a parametrized curve.

In [6], the authors showed that the r = 2 version of Theorem A is true by
proving the inequality

(1.4) d(a, b) + d(b, c)− d(a, c) ≤ C βH(B)2 diam(B),

and then applying the farthest insertion algorithm with (1.4). Here, a, b, c are
points in E ∩ B that are spread out far enough. Thus, the first obvious attempt
would be to improve this inequality to get a higher power of the βH(B). However,
this is impossible. We discuss the geometry of the Heisenberg group in the next
section, so it may be useful to review that before reading on.

Consider the points a = (−1, 0, 0), b = (0, 0, ε), c = (1, 0, 0). It is straightfor-
ward to calculate that there exists some absolute constant c1 > 0 so that

d(a, b) + d(b, c)− d(a, c) ≥ c1 ε
2.

However, one can see that if we let L =
{
((1−ε/2) t, εt/2, 0): t ∈ R

}
be a horizontal

line, then there exists some absolute constant c2 > 0 so that

max{d(a, L), d(b, L), d(c, L)} ≤ c2 ε.

This is because if we set a′ = (1− ε/2, ε/2, 0), c′ = (ε/2− 1,−ε/2, 0) to be points
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in L, then
max{d(a, a′), d(c, c′)} < c2 ε.

Thus, by taking ε → 0, we see that the power 2 in (1.4) cannot be improved, at
least in this generality.

What we will show is that for any p < 4, ball B ⊂ H, and points a, b, c ∈ E ∩B
that are well spread out, if E ∩B is sufficiently connected (the exact condition is
given in the assumptions of Proposition 4.2), there is some other ball F1(B) ⊂ H

for which

d(a, b) + d(b, c)− d(a, c) ≤ Cp βH(F1(B))p diam(F1(B)).(1.5)

This ball F1(B) may be smaller than B and may not actually be contained in B,
but it cannot be too much smaller and cannot be too far away from B. In fact,
the radius of F1(B) is controlled from below by a function of βH(B) (times that
of B), and its distance from B is a multiple of the diameter of B. Thus, we can
control how many times each ball B′ is used as a F1(B). In the case when E is
not sufficiently connected enough to use (1.5), then the disconnection will enable
us to use an accounting trick to show that (1.4) is sufficient to handle this case.
This search for balls with better β properties deviates from the proofs of previous
versions of Theorem A and is what enables us to improve on the r = 2 power
despite not being able to improve upon (1.4).

An obvious question is whether Theorem A is true for r = 4. The fact that r < 4
is crucially used in two parts of the construction of this paper. In finding F1(B),
one has to do iterative searches for balls with progressively better properties. That
r < 4 guarantees that we only need to do O(1) searches. This allows us to control
the constant in (1.5). The condition r < 4 is also used to control the number
of balls {B′ : F1(B

′) = B} for each ball B. We get that this number depends
(linearly) on the logarithm of βH(B). These logarithmic factors initially come
into the estimates as multiplicative factors, but having r < 4 allows us to remove
these log terms by first proving the statement for some power r′ ∈ (r, 4) and then
relaxing the power to r.

Thus, we leave unanswered the question: is there a constant C = C(4) so
that (1.1) holds for r = 4?

In the next section, we review some facts about the Heisenberg group and es-
tablish the notation for the rest of the paper. In section 3, we will prove the lemmas
needed for our main proposition, the proof of which will be given in section 4. In
section 5, we show how to adapt the construction of [6] to use the proposition of
section 4 to prove Theorem A.

2. Preliminaries

Following [6], we will say that the Heisenberg group is the 3-dimensional Lie group
H = (R3, ·) where the group multiplication is

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + 2(xy′ − x′y)) .

One sees then that (0, 0, 0) is still the identity and we will refer to it as 0.
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There is a natural path metric on H that we now describe. Using the fact
that group multiplication is smooth, we can define HH, a left-invariant subbundle
of the tangent bundle TH = TR3 so that H0H is the xy-plane in R

3 and HgH =
(Lg)∗H0H for g ∈ H where Lg is the smooth H → H map that is left multiplication
by g. We can similarly use Lg to endow HH with a left-invariant field of inner
products {〈·, ·〉g}g∈H. The normalization is usually that the x and y unit vectors
of H0H are orthogonal under 〈·, ·〉0, but this is not too important. Given x, y ∈ H,
we can now define the Carnot–Carathéodory distance between x and y to be

dcc(x, y)

:= inf
{∫ b

a

〈γ′(t), γ′(t)〉1/2γ(t) dt : γ ∈ C1([a, b];H), γ(a) = x, γ(b) = y, γ′(t) ∈ Δγ(t)

}
.

A natural question to ask is whether the set of curves in the definition of the
Carnot–Carathéodory metric is always nonempty given any two points a, b ∈ H. It
is known that such C1 curves always exist in H (see e.g. [14]). Continuous paths
that satisfy γ′(t) ∈ Δγ(t) (almost everywhere) are called horizontal paths. As we
are taking the Riemannian distance in a subclass of paths connecting two points,
this geometry is sometimes called subriemannian geometry.

It is well known that a horizontal curve γ = (γx, γy, γz) : I → H satisfies the
following identity, for all a, b ∈ I:

γz(b)− γz(a)− 2 (γx(a)γy(b)− γx(b)γy(a)) = 2

∫ b

a

(γx(t)γ
′
y(t)− γ′

x(t)γy(t)) dt.

Thus, the change in z-coordinate of a horizontal curve as viewed in the group
product is equal to four times the algebraic area swept by (γx, γy) when viewed as
a curve in R

2.

While the Carnot–Carathéodory metric is a well defined path metric, it is
not so easy to explicitly compute Carnot–Carathéodory distances between points.
Instead, we will work with the equivalent Koranyi metric (or Koranyi distance),
for which distances are easier to compute. We define the Koranyi norm as

N : H → R

(x, y, z) 
→ ((x2 + y2)2 + z2)1/4.

It then defines a left-invariant metric on H via d(g, h) = N(g−1h). It is well
known that this is a metric (i.e., satisfies the triangle inequality) and is biLipschitz
equivalent to the Carnot–Carathéodorymetric [3]. We have that d(x, y) ≤ dcc(x, y)
as d(x, y) = dcc(x, y) whenever x and y are on a horizontal line and so the Koranyi
norm does not decrease length in horizontal paths. For simplicity, we will assume
the non-sharp (see (1.4) in [2]) lower bound

(2.1) d(x, y) ≥ 1

2
dcc(x, y).



396 S. Li and R. Schul

An important property of H is that it admits a family of dilation automor-
phisms. Specifically, for each λ > 0, we can define the automorphism

δλ : H → H

(x, y, z) 
→ (λx, λy, λ2z).

These dilations scale the metric, that is, dcc(δλ(x), δλ(y)) = λdcc(x, y). This can
be verified by looking at the Jacobian of δλ and the remembering how the Carnot–
Carathéodory metric is defined. It is immediately verified by looking at the ex-
pression of the Koranyi norm that δλ also scales the Koranyi metric.

Rotations around the z-axis comprise a set of isometric automorphisms of H.
This follows from looking at the formulas of the Koranyi norm and group multi-
plication and seeing that xy′−x′y is just a cross product, which is invariant under
rotations.

The Heisenberg group is known to be geometrically doubling. That is, there
exists some M > 0 so that any ball B(x, r) ⊂ H can be covered by M balls of
radius r/2. The point is that M can be chosen uniformly for all x ∈ H and r > 0.
This follows from the fact that the Lebesgue measure on R

3 a Haar measure of H
and balls of H grow like r4. A standard volume packing argument then gives that H
is geometrically doubling. That the Lebesgue measure on R

3 is a Haar measure
for H can be seen from the fact that the linear parts of the affine transforms in R

3

that correspond to group translations in H are volume preserving. The growth of
balls comes from the anisotropic scaling of the dilations.

Another important feature of the Heisenberg group is the existence of a distin-
guished family of curves called horizontal lines. Before we define horizontal lines,
we first define horizontal elements of H. An element g ∈ H is said to be horizontal
if g lies on the xy-plane. For such horizontal elements, we can extend δλ to all
λ ∈ R to get δt(x, y, 0) = (tx, ty, 0). The horizontal lines are subsets of the form
{g · δt(h) : t ∈ R} where g, h ∈ H and h is horizontal. Horizontal lines essentially
amount to horizontal curves where the tangent vector stays the same. Note that
the set of horizontal lines going through a specified point in H spans two dimen-
sions instead of three as in R

3. This shows that most pairs of points in H cannot be
joined by a horizontal line, which reflects a crucial difference between Heisenberg
and Euclidean geometry.

We define the homomorphic projection

π : H → R
2

(x, y, z) 
→ (x, y).

It is immediately verifiable that this is 1-Lipschitz by looking at the Koranyi norm.
We also define the maps

π̃ : H → H

(x, y, z) 
→ (x, y, 0)
and

NH : H → H

g 
→ N(g−1π̃(g)).

Note that π̃ is not a homomorphism. The map NH gives a measurement of how
nonhorizontal an element g ∈ H is by computing the distance of g to the horizontal
element “below” it.



Upper bound for the length of TSP in the Heisenberg group 397

Given subsets K ⊆ L of any metric space (X, dX) and δ > 0, we say K is
δ-connected in L if for each x, y ∈ K, there exists a finite sequence {zi}ni=1 ⊂ L for
which z1 = x and zn = y so that dX(zi, zi+1) < δ.

Finally, we recall that a curve is a continuous map γ whose domain is an interval
I ⊂ R. If γ has finite arclength then its image is called a rectifiable curve. It is a
standard result that a connected set Γ in a doubling metric space, which satisfies
H1(Γ) < ∞ is a rectifiable curve. See for example the appendix of [6].

3. Lemmas: future balls

Given a point p ∈ H and a horizontal line L ⊂ H, if π(p) /∈ π(L), we let
pL ∈ H denote the point that is co-horizontal with p (i.e., NH(p−1

L p) = 0) so
that π(pL) ∈ π(L) and the line in R

2 spanned by π(p) and π(pL) is perpendicular
to π(L). If π(p) ∈ π(L), then pL = p. It is easy to see that d(pL, L) scales like the
square root of the z-distance from pL to L. We have the following lemma.

Lemma 3.1.

1

2

(
d(p, pL)

4 + d(pL, L)
4
)1/4 ≤ d(p, L) ≤ 2

(
d(p, pL)

4 + d(pL, L)
4
)1/4

.

Proof. The inequality on the right hand side is simply the triangle inequality along
with Jensen’s inequality.

By a rotation and translation, we may suppose that L is the x-axis and the x
coordinate of p is 0. Thus, p = (0, y, z) and pL = (0, 0, z). We have that

d(pL, L) = inf
t∈R

(t4 + z2)1/4 = |z|1/2.

As d(p, pL) = |y|, we see that we get the left hand inequality if we show for all
t ∈ R that

f(t) := d((t, 0, 0), (0, y, z))4 = (t2 + y2)2 + (z − 2ty)2 ≥ 1

16

(
y4 + z2

)
.

Note that f(t) ≥ y4 always.
We also have that

f(t) ≥ (z − 2ty)2

and so f(t) ≥ 1
4z

2 unless t ∈ (
z
4y ,

3z
4y

)
. But if t is in this regime, then

f(t) ≥ (y2 + t2)2 ≥ 2t2y2 ≥ 1

8
z2.

Thus, f(t) ≥ 1
8z

2 always and so

f(t) ≥ 1

2

(
y4 +

1

8
z2
)
≥ 1

16

(
d(p, pL)

4 + d(pL, L)
4
)
. �

We have made no effort to optimize constants in this lemma. It will not be
necessary to use optimal constants in this paper.
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Given a horizontal line L and a point p ∈ H, we let PL(p) denote the point
in L that is just a vertical translate of pL. Sometimes we will abuse notation and
treat PL(p) as a point in R corresponding to the linear isometry of L with R. It will
be clear by context whether we mean PL(p) as a point in H or a point in R ∼= L.

Note that if π(p) ∈ π(L), then d(p, L) = d(p, PL(p)). Indeed, we may assume
p = 0 in which case L is a horizontal line going through the z-axis. The statement
then follows as the metric balls of the Koranyi norm are convex bodies that are
symmetric about the z-axis. Thus, we get from Lemma 3.1 that

(3.1) d(p, PL(p)) ≤ d(p, pL)+d(pL, L) ≤ 23/4(d(p, pL)
4+d(pL, L)

4)1/4 ≤ 4 d(p, L).

Let a, b ∈ H. We let Σa,b denote the algebraic area of the closed path in R
2

that comes from the projection to R
2 of any horizontal path in H connecting a

to b (so in R
2 it goes from π(a) to π(b)) and then subsequently going back to π(a)

via a straight line. Note by Heisenberg geometry that the vertical coordinate of
a−1b is exactly Σa,b and so we get that Σa,b is in fact independent of the chosen
horizontal path in H. Thus, we also see that

NH(a−1b) = 2 |Σa,b|1/2.(3.2)

Given a horizontal line L ⊂ H, we let ΣL
a,b denote the algebraic area of the

following closed path in R
2 (with the specified orientation) that we describe. It

first goes from π(aL) to π(a) by a straight line. Then it follows the projection to R
2

of any horizontal path in H connecting a to b. It then goes from π(b) to π(bL) via a
straight line before finally going back to π(aL) via another straight line. We easily
see that ΣL

a,b = Σa,b +T , where T is the algebraic area of the trapezoid in R
2 that

starts at π(a) and goes to π(b), π(bL), π(aL), before finally going back to π(a).
Thus, we see that ΣL

a,b is also independent of the chosen horizontal curve in H.

Note that the path we constructed above for ΣL
a,b is the projection to R

2 of
a horizontal path in H that goes from aL to bL before going back to π(aL) via a
straight line in R

2. Thus, this path is a valid path for computing ΣaL,bL . We then
have that

NH(a−1
L bL)

(3.2)
= 2 |ΣaL,bL |1/2 = 2 |ΣL

a,b|1/2(3.3)

for any a, b ∈ H and horizontal line L ⊂ H. A very useful property of ΣL
a,b is that

it is additive. That is, for a, b, c ∈ H, we have

ΣL
a,c = ΣL

a,b + ΣL
b,c.

Lemma 3.2. If a, b ∈ H and L ⊂ H is a horizontal line, then

max{d(a, L), d(b, L)} ≥ 1

2
|ΣL

a,b|1/2.

Proof. Suppose that max{d(a, L), d(b, L)} ≤ ε. Then by Lemma 3.1, we have that

max{d(aL, L), d(bL, L)} ≤ 2ε.
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Then we can write aL = gy and bL = hz for some g, h ∈ L and y, z ∈ Z(H) for
which

max{d(y, 0), d(z, 0)} ≤ 2ε.

It follows that π̃(a−1b) = g−1h. As y, z commute with all elements of H, we get
from (3.3) that

|ΣL
a,b|1/2 =

1

2
NH(a−1

L bL) =
1

2
d(y−1g−1hz, g−1h)

= d(g−1hy−1z, g−1h) =
1

2
d(y, z) ≤ 2 ε.

�

Lemma 3.3. For every a, b ∈ H and every horizontal line L ⊂ H we have

max{d(a, L), d(b, L)} ≥ 1

16

NH(a−1b)2

d(a, b)
.

We make the observation that the right hand side above is independent of L.
Note that this says that sets of two points in H can have a nonnegative β quantity
for a ball containing them. This cannot happen in the Euclidean case.

Proof. We now fix a horizontal line L. By Lemma 3.1, we see that d(a, L) ≥
1
2d(a, aL) and d(b, L) ≥ 1

2d(b, bL). Thus, we are done unless ‖π(b) − π(bL)‖ =

d(b, bL) ≤ 1
8
NH(a−1b)2

d(a,b) and ‖π(a)−π(aL)‖ = d(a, aL) ≤ 1
8
NH(a−1b)2

d(a,b) . Now consider

the trapezoid T in R
2 defined by the points π(a), π(b), π(aL), π(bL). As π : H → R

2

is 1-Lipschitz, this trapezoid has area at most 1
8NH(a−1b)2. But

|ΣL
a,b| ≥ |Σa,b| − |T |

(3.2)

≥ 1

8
NH(a−1b)2.

Thus, Lemma 3.2 tells us that

max{d(a, L), d(b, L)} ≥ 1

16
NH(a−1b) ≥ 1

16

NH(a−1b)2

d(a, b)
.

In the last inequality, we used the fact that NH(a−1b) ≤ d(a, b). �

The next lemma says that a well connected set that goes from the center to
outside a ball and is close to a horizontal line L must have large diameter when
projected onto L.

Lemma 3.4. Let δ < 1/100. Let B ⊂ H be a ball and L ⊂ H be a horizontal line.
Suppose E = {pi}Ni=1 ⊂ H is a set such that

p1 = Center(B),

d(p1, pN ) > rad(B),

d(pi, pi+1) < δ diam(B)(3.4)

sup
z∈E∩B

d(z, L) ≤ 1

100
diam(B).(3.5)
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Then

sup
x,y∈E∩B

|PL(x)− PL(y)| > 1

4
diam(B).

Proof. Let pj be such that d(p1, pj) ≤ rad(B) and d(p1, pj+1) > rad(B). Then

d(p1, pj)
(3.4)

≥ d(p1, pj+1)− d(pj , pj+1) >
49

100
diam(B).

By (3.1), we have that

d(p1, PL(p1))
(3.1)∧(3.5)

<
4

100
diam(B), d(pj , PL(pj))

(3.1)∧(3.5)
<

4

100
diam(B).

Thus,

|PL(p1)− PL(pj)| = d(PL(p1), PL(pj)) ≥ d(p1, pj)− 8

100
diam(B) ≥ 41

100
diam(B).

�

The following lemma will be crucial for the proof of Lemma 3.6. It says the
following fact. Let E be a well connected and well spread out set and L be a
horizontal line. If the distance of π(E) to π(L) in R

2 is relatively large compared
to the distance of E to L in H, then either π(E) must curve towards π(L) or there
exists some subball that has a large β.

Lemma 3.5. Let p < 4, ε,M,M1, δ > 0 such that

1

100
> ε > M1 >

M

2
> 10δ > 0, ε > M.

Let L ⊂ H be a horizontal line. Suppose {pi}Ni=1 ⊂ H is a sequence such that

d(pi, pi+1) < δ, ∀i ∈ {1, . . . , N − 1}
max

i∈{1,...N}
d(pi, L) ≤ ε,(3.6)

‖π(p1)− π(L)‖ = max
i∈{1,...,N}

‖π(pi)− π(L)‖ = M1,(3.7)

|PL(p1)− PL(pN )| > 500ε2

M
.

Then either there exists j ∈ {1, . . . , N} so that

|PL(pj)− PL(p1)| < 500
ε2

M
and ‖π(pj)− π(L)‖ <

M1

2
,

or there exists a ball B′ ⊂ H for which diam(B′) ≥ M and

βE(B
′)p diam(B′) ≥ 10−50M.
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Proof. Suppose the first alternative is false, that is

‖π(pj)− π(L)‖ ≥ M1

2
,(3.8)

for all j such that |PL(pj)−PL(p1)| < 500ε2/M . We will fix an order on L so that
PL(p1)−PL(pN ) > 0. We may suppose by removing a tail end of the sequence {pi}
that N is the first index for which PL(p1) − PL(pN ) > M�400ε2/M2�. We then
let Γ denote the horizontal path connecting p1 to pN that goes from pi to pi+1 via
a subriemannian geodesic. As the Koranyi metric and the Carnot–Carathéodory
metric are biLipschitz equivalent and δ is small enough compared toM , we get that

inf
z∈π(Γ)

‖z − π(L)‖ (2.1)∧(3.8)
>

M1

4
.

We have by (3.6) and Lemma 3.2 that

|ΣL
p1,pN

| < 16 ε2.

Now let N ′ = �400ε2/(MM1)� and sequentially go through {pi} and choose a
subsequence {qi}N ′

i=1 such that q1 = p1, qN ′ = pN , and

PL(qj)− PL(q1) ∈ (jM1 + δ, jM1 − δ) .

This is possible because {pi} is a δ-connected set. Then we have that

ΣL
p1,pN

=

N ′∑
j=1

ΣL
qj−1,qj ,

and so there exists some j such that |ΣL
qj−1,qj | ≤ 1

N ′ |ΣL
p1,pN′ | < 16

N ′ ε
2. Consider the

trapezoid Ti in R
2 defined by the points π(qj−1), π((qj−1)L), π(qj), and π((qj)L).

We have that

|Ti| ≥ (M1 − 2δ)
M1

4
>

M2
1

5
.

Here, we have used the fact that δ < M1/10. Then,

|Σqj−1,qj | ≥ |Ti| − |ΣL
qj−1,qj | ≥

M2
1

5
− 16ε2

N ′ ≥ M2
1

10
.

Suppose first that d(qj−1, qj) < 10M1. If we set B′ ⊂ H to be the ball around
qj−1 of radius 10M1, then we get by Lemma 3.3 that

β{qj−1,qj}(B
′)p diam(B′) ≥

( M2
1 /10

25600M2
1

)p

10M1 ≥ 10−25M1.

Here, we have used the fact that p < 4. As M1 > M/2, we have found a ball B′

that satisfies the second alternative.
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Thus, we may suppose that d(qj−1, qj) ≥ 10M1. We have now two additional
cases: either ‖π(qj−1)− π(qj)‖ > 9M1 or ‖π(qj−1)− π(qj)‖ ≤ 9M1. Consider the
first subcase. As |PL(qj−1)−PL(qj)| ≤ M1+2δ < 2M1, we get that |PL⊥(π(qj−1))−
PL⊥(π(qj))| > 4M1 where L

⊥ is a line in R
2 that is perpendicular to L. This means

that

max{‖π(qj−1)− π(L)‖, ‖π(qj)− π(L)‖} ≥ 2M1,

a contradiction of (3.7).

Thus, we are now in the subcase when

‖π(qj−1)− π(qj)‖ ≤ 9M1 <
9

10
d(qj−1, qj).

As d(qj−1, qj)
4 = ‖π(qj−1)− π(qj)‖4 +NH(q−1

j−1qj)
4, we get that

NH(q−1
j−1qj) ≥

4

5
d(qj−1, qj).

Thus, if we set B′ ⊂ H to be the ball around qj−1 of radius 2d(qj−1, qj), we get
from Lemma 3.3 that

β{qj−1,qj}(B
′)p diam(B′) ≥ 25−p 20M1 ≥ 10−50M.

This finishes the proof of the lemma. �

Given a ball B ⊂ H, we let β̃E(B) denote βπ(E∩B),R2(π(B)), the regular Jones-
β-number [9] of the projection of E ∩B to R

2. The following lemma is our angle
improvement step, which says that there is either a subball B′ of large diameter
with large β̃E(B

′) (i.e., π(E) has a large angle) or there is some other subball B′′

of large diameter with large βE(B
′′).

Lemma 3.6. Let p < 4, ε,M, δ > 0, and D > 1 so that

ε > M > 1010ε2,(3.9)

M > 100δ.(3.10)

Let B ⊂ H be a ball and L ⊂ H be a horizontal line. Suppose E ⊂ H is a set such
that E∩B is δ diam(B)-connected in E∩DB and satisfies the following conditions:

sup
x,y∈E∩B

|PL(x) − PL(y)| ≥ 1

4
diam(B),(3.11)

sup
z∈E∩DB

d(z, L) ≤ ε diam(B),

sup
z∈E∩B

‖π(z)− π(L)‖ = M diam(B).
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Then either there exists a subball B′ ⊆ 2DB whose center is a point in E for which
if L′ is a horizontal line that realizes βE(B

′) such that

diam(B′) = 30000
ε2

M
diam(B),

β̃E(B
′) ≥ 10−10 M2

ε2
,

sup
x,y∈E∩B′

|PL′(x)− PL′(y)| ≥ 1

4
diam(B′),

or there exists some other subball B′′ ⊆ 2DB for which

diam(B′′) ≥ M diam(B),

βE(B
′′)p diam(B′′) ≥ 10−50M diam(B).

Proof. We may suppose that diam(B) = 1 by dilation. Let a ∈ E be a point such
that ‖π(a) − π(L)‖ > M/2. By (3.11), there exists some point b ∈ E so that
|PL(a) − PL(b)| ≥ 1/8. Let {pj}Nj=1 be a sequence in E ∩ DB such that p1 = a,
pN = b, and d(pj , pj+1) < δ for all j ∈ {1, . . . , N − 1}.

We choose an index i ∈ {1, . . . , N} such that

‖π(pi)− π(L)‖ = sup
j∈{1,...,N}

‖π(pj)− π(L)‖ =: M1 >
M

2
.

Note that we still have M1 ≤ ε.

If |PL(pi)−PL(pN )| ≥ |PL(pi)−PL(p1)|, then let {qj}N ′
j=1 denote the sequence

{pi+j−1}i+N+1
j=1 ; otherwise, let {qj}N ′

j=1 denote the sequence {pi−j+1}ij=1. That is,
{qj} is the subsequence of {pj} that starts from pi and goes to p1 or pN , whichever
is further along L.

By truncating a tail end of {qj}, we may now suppose that

5000
ε2

M
≤ |PL(q1)− PL(qN ′)| < 5000

ε2

M
+ δ,

|PL(q1)− PL(qj)| < 5000
ε2

M
, ∀i ∈ {1, . . . , N ′ − 1}.

Suppose first that there exists some j ∈ {1, . . . , N ′} so that

d(q1, qj) ≥ 25000
ε2

M
.

As d(q1, qj)
4 = ‖π(q1)− π(qj)‖4 +NH(q−1

1 qj)
4, we get that

NH(q−1
1 qj) ≥ 1

2
d(q1, qj).

Then if we set B′′ to be a ball around q1 of radius 2d(q1, qj) ≥ 50000 ε2

M ≥ 50000M ,
Lemma 3.3 gives that

β{q1,qj}(B
′′)p diam(B′′) ≥ 128−p 4 d(q1, qj) ≥ 10−10 ε2

M

(3.9)

≥ 10−10M.

This B′′ would be give the needed B′′ to finish the proof of the lemma.
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Thus, we may suppose that

d(q1, qj) < 25000
ε2

M
, ∀i ∈ {1, . . . , N}.

Then by applying Lemma 3.5 we get that either there exists an i ∈ {2, . . . , N ′}
such that

|PL(qi)− PL(q1)| < 500 ε2

M
and ‖π(qi)− π(L)‖ <

M1

2
,

or there exists a subball B′′ ⊆ B of diameter at least M for which

βE(B
′′)p diam(B′′) ≥ 10−50M.

We may assume the first alternative as the second alternative would give the
needed B′′ to finish the proof of the lemma.

Collecting everything together, we now have three points q1, qi, qN ′ so that

max{d(q1, qi), d(q1, qN ′)} < 25000
ε2

M
,

‖π(qN )− π(L)‖ ≤ ‖π(q1)− π(L)‖ = M1,(3.12)

‖π(qi)− π(L)‖ <
M1

2
,(3.13)

|PL(qi)− PL(q1)| < 500
ε2

M
,(3.14)

5000
ε2

M
≤ |PL(q1)− PL(qN )|,(3.15)

M1 ≥ M

2
.

It is then elementary, although tedious, to show that if L′ is a line in R
2 such that

max{‖π(qN )− L′‖, ‖π(q1)− L′‖} ≤ M ′

100
,

then ‖π(qi) − L′‖ ≥ M ′/100. This is because if a line L′ stays too close to π(q1)
and π(qN ), then as (3.13) is true, the slope of L′ must be too shallow to get close
to π(qi). Details are left to the reader. Thus, if we let B′ be a ball around q1 of
radius 30000ε2/M , then

β̃E(B
′) ≥ M ′/100

30000ε2/M
≥ 10−10M

2

ε2
.

Now suppose βE(B
′) ≥ 1/100. Then

βE(B
′)p diam(B′) = 30000 βE(B

′)p
ε2

M
diam(B) ≥ 10−4 ε2

M
diam(B)

(3.9)
> 10−4M diam(B).

Notice also that diam(B′) = 30000 ε2

M diam(B) > M diam(B). We would then get
the needed B′′ to finish the proof of the lemma if we set B′′ = B′.
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Thus, we may suppose βE(B
′) < 1/100. Note that

diam(B′) = 30000
ε2

M
diam(B)

(3.9)
<

1

16
diam(B).

As q1 was on a δ diam(B)-connected path from a to b for which d(a, b) ≥ 1
8 diam(B),

there exists a sequence {ri}N1

i=1 ⊂ E such that

r1 = q1 = Center(B′), d(ri, ri+1) < δ diam(B), and d(r1, rN1) >
1

2
diam(B′).

We also have the estimate that

δ diam(B) = δ
diam(B)

diam(B′)
diam(B′) =

1

30000
δ
M

ε2
diam(B′)

(3.9)∧(3.10)
<

1

100
diam(B′).

Thus, Lemma 3.4 tells us that if L′ is the horizontal line that realizes βE(B
′), then

sup
x,y∈E∩B′

|PL′(x) − PL′(y)| ≥ 1

4
diam(B′).

We then get the needed B′ to finish the proof of the lemma. �

The next lemma tells us that if the triangle inequality excess of three spread
out points in a ball B is large relative to βE(B), then β̃E(B) must also be large.
The D2 term is needed in its application. Below we abuse notation and allow
ourselves to write R for

{(x, 0, 0) ∈ H : x a is real number}
Lemma 3.7. Let p < 4, 0 < α1 < α2 < 1, D > 0, and D2 > 1. Then there
exist D0 = D0(α1, α2) > 0 and ε0 = ε0(α1, α2, p,D) ∈ (0, 1) so that the following
property holds. Let B ⊂ H a ball and E ⊆ H be a subset so that

sup
z∈E∩D2B

d(z,R) = ε diam(B),

for some ε < ε0. If p1, p2, p3 ∈ E∩B so that α1 diam(B) ≤ d(pi, pj) ≤ α2 diam(B)
and

d(p1, p2) + d(p2, p3)− d(p1, p3) = η diam(B) ≥ Dεp diam(B),(3.16)

then one of the y coordinates of pi has absolute value at least 1
D0

η1/2 diam(B).

Proof. Let D3 denote the minimal number such that

((x+ y)2 + z)1/4 ≤ x1/2 +D3(y + z),

when x, y, z ∈ R
+ satisfy the bounds α1/2 ≤ x ≤ α2, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1.

That such a D3 exists follows from repeated use of Taylor’s approximation and

clearly depends only on α1 and α2. Then we set D0 = max{150, 150D−1/2
3 }.
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Suppose the lemma is false, that is, we have (3.16) but the y coordinates for
all the pi have absolute value less than

1
D0

η1/2 diam(B). We can dilate the setting
so that diam(B) = 1 and translate so that the x coordinate of p2 is 0. We label
the points pi = (xi, yi, zi) so that x2 = 0. Then we have that

d(p1, p2) + d(p2, p3)− d(p1, p3) ≤
(
(x2

1 + (y1 − y2)
2)2 + (z1 − z2 + 2x1y2)

2
)1/4

+
(
(x2

3 + (y2 − y3)
2)2 + (z2 − z3 − 2x2y3)

2
)1/4 − |x1 − x3|.

As we are supposing that |yi| < 1
D0

η1/2, we must have that |y1 − y2| < 2
D0

η1/2.
We also claim that

|Σp1,p2 | =
1

4
|z1 − z2 + 2x1y2| < 2

D0
η1/2.

If not, as the y-coordinate of π(p1) and π(p2) are both less than 1
D0

η1/2 and the
x-coordinates differ by no more than 1, we get that the algebraic area of the trape-
zoid T with corners π(p1), π((p1)L), π(p2), and π((p2)L) is no more than 1

D0
η1/2.

Thus, we would have that

∣∣ΣL
p1,p2

∣∣ ≥ |Σp1,p2 | − T >
1

D0
η1/2

(3.16)

≥ D1/2

D0
εp/2.

As Lemma 3.2 then says that

max{d(p1, L), d(p2, L)} >
D1/4

2D
1/2
0

εp/4.

As p < 4, we see that we would contradict the fact that βE(B) = ε if ε ≤ ε0
for some ε0 that we can set to depend only on D0, D, and p.

Finally, as η ≤ 2, we have that both |y1 − y2| < 2
D0

η1/2 ≤ 1 and |z1 − z2 +

2x1y2| < 8
D0

η1/2 ≤ 1. Thus, we have by definition of D3 that

(
(x2

1 + (y1 − y2)
2)2 + (z1 − z2 + 2x1y2)

2
)1/4

≤ |x1|+D3

(|y1 − y2|2 + |z1 − z2 + 2x1y2|2
)
.

The same thing holds with d(p2, p3) and so we get by our choice of D0 that

d(p1, p2) + d(p2, p3)− d(p1, p3)

≤ D3

(
(y1 − y2)

2 + (z1 − z2 + 2x1y2)
2 + (y2 − y3)

2 + (z2 − z3 − 2x2y3)
2
)
< η,

a contradiction. �

4. Main proposition

Remark 4.1. In Proposition 4.2 below, we always have q ∈ [2, p) or

d(p1, p2) + d(p2, p3)− d(p1, p3) ≤ DFFPβH(B)2 diam(B)

The existence of the constant DFFP < ∞ follows from Theorem 2.14 of [6] (see
equation (2.51) there).
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Proposition 4.2. Let p < 4, 0 < α1 < α2 < 1 and D7 > 1 be given. Let
D = DFFP (α1/D7, α2/D7) > 0 be the constant from Remark 4.1. There exists
constants D1 = D1(α1, α2, p,D7) > 0 and ε1(α1, α2, p,D7) ∈ (0, 1) so that the
following holds. Let B ⊂ H be a ball and suppose E ⊆ H is such that

βE(D7B) =
ε

D7
≤ ε1(α1, α2, p).

If p1, p2, p3 ∈ E ∩B so that α1 diam(B) ≤ d(pi, pj) ≤ α2 diam(B),

d(p1, p2) + d(p2, p3)− d(p1, p3) = Dεq diam(B) > Dεp diam(B),(4.1)

for some q < p, and for every subball B′ ⊆ 4D7B of diameter at least εq/2

D1
diam(B),

E ∩ B′ is 1
D1

εq/2 diam(B)-connected inside E ∩ D7B
′, then there exists a subball

B′′ ⊆ 16D7B of diameter

diam(B′′) ≥ 1

D1
εq/2 diam(B)

so that

(4.2) d(p1, p2) + d(p2, p3)− d(p1, p3) ≤ D1 βE(D7B
′′)p diam(D7B

′′)

and

(4.3) βE(D7B
′′)p ≤ D1 ε

q/2 .

Proof. We first choose ε1 small enough so that ε1 ≤ ε0(α1, α2, p,D) where ε0 is
from Lemma 3.7. By rotation, we may assume that the horizontal line realizing
βE(D7B) projects to the x-axis. Then, as βE(D7B) = ε/D7, Lemma 3.7 says
there exists a constant D0 so that

M :=
1

diam(B)
sup

z∈E∩B
‖π(z)− π(L)‖ ≥ D1/2

D0
εq/2.(4.4)

As 2 ≤ q < 4, if we set ε1 smaller than some constant depending only on D and D0,
we then get that ε > M > 1010ε2. Thus, an application of Lemma 3.6 gives us
either a ball B′ ⊂ 2D7B for which

diam(B′) = 30000
ε2

M
diam(B) and β̃E(B

′) ≥ 10−10M
2

ε2
,

or some other ball B′′ ⊂ 2D7B such that

diam(B′′) ≥ M diam(B) and βE(B
′′)p diam(B′′) ≥ 10−50M diam(B).

If we have the latter case, then as M ≥ D1/2

D0
εq/2 ≥ D1/2

D0
εq, we get that B′′ is our

needed ball if we specify D1 large enough. Thus, we may suppose that we have a
ball that satisfies the conditions in the first case. Let us denote this ball B1.

We let L1 denote the horizontal line that realizes the infimum of βE(D7B1).
Then

M1 :=
1

diam(B1)
sup

z∈E∩B1

‖π(z)− π(L1)‖ ≥ β̃E(B1).(4.5)
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We then let α1 ∈ [0, 1] be such that

βE(D7B1) =
Mα1

1

D7
.(4.6)

Suppose α1 ≤ 2/p. Then as β̃E(B1) ≤ 1, we have that

βE(D7B1)
p diam(D7B1) =

Mpα1

1

Dp−1
7

diam(B1)
(4.5)

≥ 1

Dp−1
7

β̃E(B1)
2 diam(B1)

≥ D1−p
7 10−20M

3

ε2
diam(B)

(4.4)

≥ D3/2

1020Dp−1
7 D3

0

ε3q/2−2 diam(B)

≥ D3/2

1020Dp−1
7 D3

0

εq diam(B).

In the last inequality, we used the fact that q < p < 4. This would give that D7B1

is a ball that would satisfy the claim of the proposition for sufficiently large D1.
Thus, we may suppose that α1 > 2/p.

Now suppose M1 ≤ 1010M2α1
1 , that is,

M1 ≥ 10−10(1−2α1).

As p is some fixed number strictly less than 4 and α1 > 2/p, we get that there
exists some C > 0 depending only on p so that M1 > C. Thus,

βE(D7B1)
p diam(D7B1) =

Mα1p
1

Dp−1
7

30000
ε2

M
diam(B) ≥ 30000

Cα1p

Dp−1
7

M diam(B)

> 30000
Cα1pD1/2

Dp−1
7 D0

εq/2 diam(B) ≥ 30000
Cα1pD1/2

Dp−1
7 D0

εq diam(B).

Again, we would have that B1 is a ball that would satisfy the claim of the propo-
sition for sufficiently large D1. Thus, we may suppose M1 > 1010M2α1

1 .
We now have the following information about L1 and B1:

Mα1
1 > M1 > 1010M2α1

1 ,

sup
x,y∈E∩B1

|PL1(x)− PL1(y)| ≥
1

4
diam(B1),

sup
z∈E∩D7B1

d(z, L1) = Mα1
1 diam(B1),

sup
z∈E∩B1

‖π(z)− π(L1)‖ = M1 diam(B1),

diam(B1) = 30000
ε2

M
diam(B).

Suppose that we have a sequence of subballs B1, . . . , Bm with the following
properties. Each Bj is contained in 2D7Bj−1. If Lk is the horizontal line realiz-
ing βE(D7Bk), then

sup
x,y∈E∩Bk

|PLk
(x)− PLk

(y)| ≥ 1

4
diam(Bk).
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If

Mk :=
1

diam(B1)
sup

z∈E∩Bk

‖π(z)− π(Lk)‖ ≥ β̃E(Bk),

then

βE(D7Bk) =
Mαk

k

D7
,

for some αk ∈ (2/p, 1]. Furthermore we have the estimates

Mαk

k > Mk > 1010M2αk

k ,

Mk ≥ 10−10k
(M2

ε2

)2k−1(1−α1)···(1−αk−1)

,(4.7)

diam(Bk) = 30000k
(M2

ε2

)1−2k−1(1−α1)···(1−αk−1) ε2

M
diam(B).(4.8)

Here, the term 2k−1(1 − α1) · · · (1− αk−1) is understood to be 1 if k = 1. Then

1

D1
εq/2 diam(B) =

1

D1
εq/2

diam(B)

diam(Bm)
diam(Bm)

(4.8)
=

1

30000mD1
Mε

q
2−2

( ε2

M2

)1−2m−1(1−α1)···(1−αm−1)

diam(Bm) ≤ 1

100
Mm diam(Bm),

where in the last inequality we used the fact we can set D1 large enough and that

Mm

(4.7)

≥ 10−10m
( ε2

M2

)1−2m−1(1−α1)···(1−αm−1)M2

ε2

(4.4)

≥ 10−10mD1/2

D0

( ε2

M2

)1−2m−1(1−α1)···(1−αm−1)

Mεq/2−2.

Thus, we can apply Lemma 3.6 to Bm to give us, either a ball B′ ⊆ 2D7Bm

so that

diam(B′) = 30000
M2αm

m

Mm
diam(Bm)

(4.8)
= 30000m+1

(M2

ε2

)1−2m(1−α1)···(1−αm) ε2

M
diam(B),

and

β̃E(B
′) ≥ 10−10M2(1−αm)

m

(4.7)

≥ 10−10(m+1)
(M2

ε2

)2m(1−α1)···(1−αm)

,

or some other ball B′′ ⊆ 2D7Bm for which

diam(B′′) ≥ Mm diam(Bm)
(4.7)∧(4.8)

≥ 10−10k
(M2

ε2

) ε2

M
diam(B)

≥ 10−10kM diam(B),
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and

βE(B
′′)p diam(B′′) ≥ 10−50Mm diam(Bm) ≥ 10−10k−50M diam(B).

If we have the latter case, then as M ≥ D1/2

D0
εq/2 ≥ D1/2

D0
εq, we get that B′′ is

our needed ball if we specify that D1 is large enough. Thus, we can inductively
construct these Bk.

Like before, we let Lm+1 denote the horizontal line that realizes the infimum
of βE(D7Bm+1). Then

Mm+1 :=
1

diam(Bm+1)
sup

z∈E∩Bm+1

‖π(z)− π(Lm+1)‖ ≥ β̃E(Bm+1).

We then let αm+1 ∈ [0, 1] be such that

βE(D7Bm+1) =
M

αm+1

m+1

D7
.

As before, we may suppose that αm+1 > 2/p and that Mm+1 > 1010M
2αm+1

m+1 , as
otherwise we would be done if we specify that D1 is large enough. Thus, we have
exhibited a subball Bm+1 that allows us to apply Lemma 3.6 again.

Continuing inductively, we get that for each k > 0, if we specify D1 large
enough, then we can find subballs satisfying (4.7) and (4.8) (if such a ball does
not exist, then sometime during the induction, we would have found a ball that
satisfies the conclusion of the proposition). Note that D1 for now depends on the k
that we specify.

Let m be the smallest integer such that 2m−1(1 − 2/p)m−1 ≤ 1/2. Such a
number exists as p < 4 and so 1 − 2/p < 1/2. We then see that m is a constant
depending only on p. As αm p > 2, we get that

βE(D7Bm)p diam(D7Bm) ≥ M2
m

Dp−1
7

diam(Bm)

(4.7)∧(4.8)

≥ 1

1010mDp−1
7

(M2

ε2

)2m−1(1−α1)···(1−αm−1)

M diam(B) = (∗).

Note that

2m−1(1− α1) · · · (1− αm−1) ≤ 2m−1
(
1− 2

p

)m−1

≤ 1

2
,

where we again used the fact that αk > 2/p. As M ≤ ε, we get that

(∗) ≥ 1

1010mDp−1
7

M2

ε
diam(B)

(4.4)

≥ 1

1010mDp−1
7

D

D2
0

εq−1 diam(B)

≥ 1

1010mDp−1
7

D

D2
0

εq diam(B).



Upper bound for the length of TSP in the Heisenberg group 411

As m is some constant depending only on p, so is the needed D1 and so we get
that by choosing D1 even larger

d(p1, p2) + d(p2, p3)− d(p1, p3) ≤ D1βE(D7Bm)p diam(D7Bm).(4.9)

Note that Bm satisfies all the properties of B′′ except for possibly (4.3). In
order to accomplish this, we iteratively double Bm until we get a ball containing
4D7B or until one more doubling will give us that (4.9) will be violated. We note
that in each doubling, the right hand side of (4.9) goes down by at most a factor
of 2p−1. Call the resulting ball B′′. If we stopped because of the former condition,
then

βE(D7B
′′) ≤ 4 βE(16D7B) ≤ 1

4D7
ε .

If we stopped because of the latter condition, then

Dεq diam(B) ≥ 21−p D1 βE(D7B
′′)p diam(D7B

′′)

≥ 21−p D1 βE(D7B
′′)p

1

D1
εq/2 diam(B)

which gives
Dεq/2 ≥ 21−p βE(D7B

′′)p .

Combining the two estimates gives (4.3) by making D1 large enough. �

5. The construction and its length

Let E ⊂ H be a set and r ∈ (2, 4). We would like to construct Γ ⊃ E, a continuum,
such that we control the length of Γ by

(5.1) diam(E) +

∫
H

∫
t≥0

βH(B(x, r))r
dt

t4
dH4(x),

which we are assuming is bounded. To this end, we will use the algorithm from [9].
This had been done before in [6], where the estimates established (5.1) for r = 2.
We will follow the same notation and refer to the detailed work done in Section 3
of [6]. In fact, with some appropriate choices, we will only need to modify the
estimates for one of their cases in a non-trivial manner. In other words, the
construction in [6] works as is (but see Remark 5.1!). However, the estimate (5.1)
for r = 2 obtained in [6] can be improved to yield (5.1) for any r ∈ (2, 4), and that
is what we do below. We let

p =
r + 4

2
< 4 .

Remark 5.1. In [6] the Carnot–Carathéodory metric was used for the definitions
and construction. We will use a different (equivalent) metric, namely the Koranyi
metric. When we say we use the [6] construction, we mean we use the same
algorithm, but with respect to the Koranyi metric, i.e., all nets, balls etc. are with
respect to this metric.
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Remark 5.2. We will assume that the reader is very familiar with [6] and has
it on hand. In order to avoid confusion, in this section we use the exact same
notation as in [6]. We allow ourselves to reduce the value of the constant ε0 > 0
and increase the value of the constant C1 > 1. We will assume in particular that
ε0 < ε1 of Proposition 4.2.

Remark 5.3. We describe the dependency of constants below. All of them are
allowed to depend on r. When we will be invoking Proposition 4.2, we will always
do so with the constant

D7 = 2C1 .

The constant C1 needs to be large enough. The constant D1 depends on r, C1.
The constant D10 depends on C1, D7 and r. The constant R depends on C1, D1

and r. The constant ε0 depends on C1, R and r. The constant Cr depends on C1

and r. The constant ε0 is the only one that needs to be sufficiently small, the rest
of the dependancies are lower bounds.

The construction in [6] is inductive, and there are three hypotheses which hold
at every step of the process: (P1), (P2), and (P3). We will add two more, (P4)
and (P5), and claim that they hold as well.

(P4): For any P ∈ Δk, we have that B(P,C12
−k) ∩ Δk is connected via Γk ∩

B(P,C12
−k).

(P5): If βH(B(P,C12
−k)) < ε0 and I ∈ Γk ∩ B(P,C12

−k) is an interval, then I is
in the 2−kC1ε0 neighborhood of Γk+1. Furthermore, there is a map I → I1
which take the interval I to a polygonal curve I1 ⊂ Γk+1. This is the only
way in which an interval I may be deleted.

Suppose without loss of generality that E is closed. We now proceed precisely
as in the construction of [6]; however, we will replace the estimates of Case B1
with Case B1’, specifically, we will improve on equation (3.4), p. 465 of [6] via
improving on the estimates for the quantities S1 and S2. Case B2(i).2 will follow
similar changes. Let B = B(P,C12

−j).

Case B1’. Since βH(B) < ε0 (which we may, as we are not in Case A), there
exists an order on Δj ∩ B(P,C12

−j) = [P1, . . . , Pn]. We separate into two case,
based on the validity of the assumptions for Proposition 4.2.

Case B1’(i). For each triple of the form [p1, p2, p3] = . . . [Pi1 , Pi2 , Pi3 ], where
1 ≤ i1 < i2 < i3 ≤ n one of two things happens: either we may apply Proposi-
tion 4.2, or assumption (4.1) of Proposition 4.2 fails for all q < p.

Suppose Proposition 4.2 is applicable to B and the triple of points Pi1 , Pi2 , Pi3 .
Then it guaranties a ball B′′′ = B′′′[Pi1 , Pi2 , Pi3 ]. There is a ball which we denote
by F1(B, i1, i2, i3) with center z ∈ Δk and radius C12

−k for some k ∈ N, such that
1

1000B
′′′ ⊂ F1(B, i1, i2, i3) ⊂ 1000B′′′. By multiplying the constant D1 by a factor,

we may assume without loss of generality that the conclusion of Proposition 4.2
holds for F1(B, i1, i2, i3). Using this notation we proceed. As in [6] and using
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Proposition 4.2 as well as the fact that the numbers of tuples 1 ≤ i1 < i2 < i3 ≤ n
is bounded independently of B (or E), we have

S1 ≤ C

(
βH(B)p diam(B)

+
∑

1≤i1<i2<i3≤n

(∗)

D1βH(D7F1(B, i1, i2, i3))
p diam(D7F1(B, i1, i2, i3))

)
,

where
(*) Proposition 4.2 is applicable.

Because of the first term, this inequality holds even if assumption (4.1) fails for
all q < p. We have that when F1(B, i1, i2, i3) is defined, it satisfies (for q ∈ [2, 4)
depending on [Pi1 , Pi2 , Pi3 ])

diam(F1(B, i1, i2, i3)) ≥ 1

D1
βH(B)q/2 diam(B) .

which may be weakened to

diam(F1(B, i1, i2, i3)) ≥ 1

D1
βH(B)p/2 diam(B) .

Similarly for S2. This gives an improvement over equation (3.4) in [6] (changing
the value of C to incorporate D1):

l(Γj)− l(Γj−1) ≤ C

(
βH(B)p diam(B)

+
∑

1≤i1<i2<i3≤n

(∗)

βH(D7F1(B, i1, i2, i3))
p diam(D7F1(B, i1, i2, i3))

)
.

Let denote by BB1′i the collection of all balls which fall into Case B1’(i) and
satisfy (*). Using (4.3), the function B → F1(B, ·) is at most C log(1/βH(B)) to 1.
Thus,∑

B∈BB1′i

βH(D7F1(B, i1, i2, i3))
p diam(D7F1(B, i1, i2, i3))

≤
∞∑
t=0

∑
B∈B

B1′i
βH(B)∈[2−t,2−t+1)

βH(D7F1(B, i1, i2, i3))
p diam(D7F1(B, i1, i2, i3))

≤
∞∑
t=0

2−(t−1)(p−r)
∑

B∈B
B1′i

βH(B)∈[2−t,2−t+1)

βH(D7F1(B, i1, i2, i3))
r diam(D7F1(B, i1, i2, i3))

≤
∞∑
t=0

t 2−(t−1)(p−r)
∑
j∈N

∑
P∈Δj

βH(P,D102
−j)r 2−j

≤ Cr

∑
j∈N

∑
P∈Δj

βH(P,D102
−j)r 2−j ,
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where

Cr =
∞∑
t=0

t 2−(t−1)(p−r) < ∞,

as p = (r + 4)/2. We summarize this as

∑
B∈BB1′i

βH(D7F1(B, i1, i2, i3))
p diam(D7F1(B, i1, i2, i3))

≤ Cr

∑
j∈N

∑
P∈Δj

βH(P,D102
−j)r 2−j .(5.2)

Case B1’(ii): In this case there is at least one (ordered) triple [Pi1 , Pi2 , Pi3 ],
1 ≤ i1 < i2 < i3 ≤ n, where we cannot apply Proposition 4.2 and assumption (4.1)
holds for some q ∈ [2, p). Let us fix such an instance (i1, i2, i3). Since we are not
in Case A, we conclude the existence of a ball F2(B) = B′ ⊂ 4D7B of diame-
ter diam(F2(B)) ≥ 1

D1
εq/2 diam(B) which has E ∩ F2(B) is not 1

D1
εq/2 diam(B)-

connected inside E∩D7F2(B), where εq diam(B) = βH(B)q diam(B) = d(Pi1 , Pi2)+
d(Pi2 , Pi3)− d(Pi1 , Pi3). As stated in Remark 5.3, D7 = 2C1.

Let

α ∈
[ 1

D1
εq/2 diam(B), 4D7 diam(B)

]

be the largest number of the form 2−l such that E ∩ F2(B) is not α-connected
inside 2C1F2(B), but is 2α-connected inside 2C1F2(B), with F2(B) ⊂ 4D7B and
diam(F2(B)) ≥ α. Let x, y ∈ E ∩ F2(B) be two points of distance ∈ (α, 2α]
which witness to this (discrete) non-connectedness, and minimize d(x, y). Let
k be such that 2−k = α/128, and let x′, y′ ∈ Δk ∩ 11

10F2(B) minimize distance
to x and y, respectively. If C1 > 210, then B(x′, C12

−k) ⊃ B(x′, 3α) � y′, and
thus (from (P4)), the points x′, y′ are connected via Γk ∩ B(x′, C12

−k) with a
polygon Px,y of edges ≥ 2−k.

Since segments are only modified in cases other than Case A, we have by (P5)
that Px,y is in the 2αC2

1ε0 neighborhood of the limit curve Γ, and furthermore,
that there is an arc Γx,y ⊂ Γ which contains Px,y in its 2αC2

1ε0 neighborhood. If we
take ε0 small enough so that C2

1ε0 < 1/100, then x, y are in the α/10 neighborhood
of Γx,y. Furthermore, Γx,y ⊂ 2B(x′, C12

−k) ⊂ C1F2(B). Recall that x, y are not
α-connected inside 2C1F2(B) and that rad(F2(B)) ≥ α/2, which gives us the
following lemma.

Lemma 5.4. There is a connected set ΓB ⊂ Γx,y such that

ΓB ⊂ Γ,(5.3)

1

10
α ≤ diam(ΓB) ≤ 2

10
α,(5.4)

1

10
α ≤ d(ΓB , E) ≤ α.(5.5)

Proof. We proceed by contradiction. Suppose that any candidate connected set G
satisfying (5.3) and (5.4) fails α/10 ≤ d(G,E). This means that x′ and y′ are
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4
10α-connected in E ∩ (C1 + 1)F2(B), which is contradiction since x, y are not
α-connected inside 2C1F2(B) and d(x, x′), d(y, y′) < α/128. Thus we have a con-
nected G satisfying (5.3) and (5.4) and α/10 ≤ d(G,E). The connectedness of Γx,y

and the fact that x′ ∈ E then implies that there is also aG satisfying the right-hand
side of (5.5) in addition to the above properties. �

Let R be a large constant to be chosen, and recall that p = (r + 4)/2, that is,

(4−r)/8+p/2 < 2. Suppose also that ε0 is small enough so that ε
(4−r)/8+p/2
0 > Rε20.

Since we have q < p < 4 and βH(B) < ε0, this improves (5.4) above to

(5.6) H1(ΓB)βH(B)(4−r)/8 ≥ R
1

2D1
βH(B)2 diam(B) .

which means that the cost of the [6] algorithm in this case is dominated by
H1(ΓB)βH(B)(4−r)/8.

Lemma 5.5. Let x0 ∈ Γ and t ∈ N. Then

(5.7) #{B = B(z, C12
−j) : j ∈ N; z ∈ Δj ; ΓB � x0; βH(B) ∈ [2−t, 2−t+1)} < Ct.

Equation (5.7) will be used in conjunction with (5.6) above later on.

Proof. First note that since H is doubling, only a fixed number of balls of any fixed
scale may intersect at a point. This, together with the fact that

ΓB ⊂ Γx,y ⊂ 2D7B

gives us a uniform bound for the number of balls on the left hand side of (5.7) of a
single scale. We now address the question of how many scales can come into play.

The answer will follow from (5.4), (5.5) above. Let B1 = B(z1, C12
−j1) be a

ball, and suppose x0 ∈ ΓB1 . Now we have that if B is a ball on the left hand side
of (5.7), then

diam(B) ≤ 10D1 2
2td(ΓB , E) ≤ 10D1 2

2t
(
d(ΓB ,ΓB1) + diam(ΓB1) + d(ΓB1 , E)

)
≤ 10D1 2

2t
(
8D7 diam(B1)

)
= C22t diam(B1)(5.8)

and in the same way, diam(B1) ≤ C22t diam(B). Thus, only O(t) of scales need
to be considered, giving the lemma. �

Let denote by BB1′ii the collection of all balls which fall into Case B1’(ii). We
sum as follows, using (5.6) and Lemma 5.5.

∑
B∈BB1′ii

βH(B)2 diam(B) ≤
∑

B∈BB1′ii

2D1

R
H1(ΓB)βH(B)(4−r)/8

≤
∞∑
t=0

∑
B∈B

B1′ii
βH(B)∈[2−t,2−t+1)

4D1

R
H1(ΓB)2

−t (4−r)/8

≤ 4D1

R

∞∑
t=0

tH1(Γ)2−t (4−r)/8 =
4D1

R
C(r)H1(Γ) .(5.9)
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Finally, we note that increasing R (which forces us to decrease ε0 accordingly),
reduces 4D1

R C(r) to being arbitrarily close to 0.

Case B2(i).2 appeals to the estimates in Case B1. The estimates for Case B1’
work to give Case B2(i).2’.

The rest of the cases follow with the same estimates as those in Section 3
of [6]. This allows us to improve the estimate at the top of page 468 of [6] to
give (5.1) (increasing their value of C1, and allowing C to change form line to
line). Specifically, we use equations (5.2), (5.9) to get:

H1(Γ) ≤ C diam(E) + C
∑
j∈N

∑
P∈Δj

βH(P,C12
−j)p 2−j +

1

106
H1(Γ) +

1

103
H1(Γ)

+ C
∑
j∈N

∑
P∈Δj

βH(D7F1(B(P,C12
−j)))p 2−j +

4D1

R
CrH

1(Γ)

≤ C diam(E) + Cr

∑
j∈N

∑
P∈Δj

βH(P,D102
−j)r 2−j +

1

10
H1(Γ) ,

where we made R and D10 large enough. Note R is independent of C above, which
is important since C above grows as ε0 → 0, and ε0 depends on R. Hence

H1(Γ) ≤ C diam(E) + Cr

∑
j∈N

∑
P∈Δj

βH(P,D102
−j)r 2−j ,

which is bounded in turn by a constant multiple (dependent on r) of (5.1).
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