
Rev. Mat. Iberoam. 32 (2016), no. 2, 495–510
doi 10.4171/rmi/892

c© European Mathematical Society

On a sharp estimate for Hankel operators
and Putnam’s inequality

Jan-Fredrik Olsen and Maŕıa Carmen Reguera

Abstract. We obtain a sharp norm estimate for Hankel operators with
anti-analytic symbol for weighted Bergman spaces. For the classical Berg-
man space, the estimate improves the corresponding classical Putnam in-
equality for commutators of Toeplitz operators with analytic symbol by a
factor of 1/2, answering a recent conjecture by Bell, Ferguson and Lund-
berg. As an application, this yields a new proof of the de Saint-Venant
inequality, which relates the torsional rigidity of a domain with its area.

1. Introduction

Guided by applications to classical isoperimetric inequalities, we are concerned
with finding sharp estimates for certain Hankel operators acting on the Bergman
space A2(D). More precisely, we are looking for sharp estimates in terms of the
derivative of the symbol, which we assume to be anti-analytic.

We recall that A2(Ω) denotes the Bergman space on Ω, i.e., the closed subspace
of holomorphic functions in L2(Ω, dA), where dA = dxdy/π. We let E2(Ω) denote
the Smirnov–Hardy space on Ω. It is the closure of rational functions with poles
outside of Ω̄ in the space L2(∂Ω, |dz|/2π). When Ω = D, this is simply the classical
Hardy space. We caution the reader that over general domains, the Hardy and
Smirnov–Hardy spaces do not necessarily coincide (see [2]).

These spaces are part of a scale of weighted Hilbert spaces of analytic functions
on Ω which we denote by A2

α(Ω). See Section 2 for details. Here, we restrict
ourselves to mentioning that the Bergman space corresponds to α = 0 while the
Smirnov–Hardy space is obtained in the limit as α → −1. For convenience of
notation, we set A2

−1(Ω) = E2(Ω) and let L2
α denote the corresponding L2 spaces.

For each of these spaces, we denote by P : L2
α → A2

α the orthogonal projection.
For the A2(D) this is the classical Bergman projection, while for E2(D), this is the
Szegő projection.
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The Hankel operator on A2
α, for some suitable symbol ψ, is defined as

Hψ(f) := (I − P )(ψf), f ∈ A2
α,

where I denotes the identity map. We will also need the Toeplitz operator on A2
α,

with symbol ψ, which is defined by

Tψ(f) := P (ψf), f ∈ A2
α.

We note that the Hankel operator sends A2
α into its orthogonal complement in L2

α,
and that Hψ + Tψ = Mψ, the multiplication operator on L2

α with symbol ψ. For
more background on the theory of Hankel operators on Bergman spaces, we refer
the reader to [4].

Our main result is as follows.

Theorem 1. Let α ≥ −1 and ψ be a holomorphic function on D such that ψ′ ∈
A2
α(D). Then

(1.1) ‖Hψ‖A2
α(D)→L2

α(D)
≤ ‖ψ′‖A2(D)√

2 + α
.

Moreover, this inequality is sharp.

The estimate in (1.1) can be used to obtain a Putnam type inequality on spaces
defined on simply connected domains Ω. We recall that Putnam’s inequality [7]
asserts the following: let H be a Hilbert space and let T : H �→ H be a bounded
linear operator whose spectrum is denoted by σ(T ). If T is hyponormal, that is,
〈T ∗T − TT ∗f, f〉 ≥ 0 for all f ∈ H , then

(1.2) ‖T ∗T − TT ∗‖ ≤ Area(σ(T ))

π
.

As an application of Putnam’s inequality to the Smirnov–Hardy space E2(Ω),
where we suppose that Ω is a reasonable domain, Khavinson [5] deduced the clas-
sical isoperimetric inequality. Indeed, he obtained the lower bound

(1.3) ‖T ∗
z Tz − TzT

∗
z ‖E2(Ω)→E2(Ω) ≥ 4Area(Ω)2

Per(Ω)2
,

where Per(Ω) denotes the perimeter of the region Ω, and noted that when combined
with Putnam’s inequality, this lower bound immediately yields the isoperimetric
inequality of the region Ω.

Bell, Ferguson and Lundberg [1] considered the problem of obtaining a lower
bound for the commutators of Toeplitz operators on the Bergman space A2(Ω). In
particular, they obtained the inequality

(1.4) ‖T ∗
z Tz − TzT

∗
z ‖A2(Ω)→A2(Ω) ≥ ρΩ

Area(Ω)
.
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Here, ρΩ is a constant from mechanics known as the torsional rigidity. It is geo-
metric in the sense that it only depends on the shape of the domain Ω, and can be
said to measure the resistance an object with cross-section Ω has to twisting (see
Section 5 for a precise definition).

As was observed in [1], when combined with Putnam’s inequality, this yields

ρ(Ω) ≤ Area(Ω)2

π
.

This is close to the classical de Saint-Venant inequality

ρ(Ω) ≤ Area(Ω)2

2π
.

Consequently, Bell, Ferguson and Lundberg conjectured that in this setting it
should be possible to improve Putnam’s inequality by a factor of 1/2. This con-
jecture is answered in the positive by Theorem 1. To be precise, we obtain the
following corollary.

Corollary 1. Let α ≥ −1, Ω ⊂ C be a simply connected domain and ψ an analytic
function. Then

‖T ∗
ψTψ − TψT

∗
ψ‖A2

α(Ω)→A2
α(Ω) ≤

‖ψ′‖2A2(Ω)

2 + α
.

We explain how to deduce this corollary in Section 2.
Hence, by choosing ψ = z, we immediately get the following improvement of

Putnam’s inequality for the shift operators T = Tz on Ω. Indeed, in this case

‖T ∗T − TT ∗‖A2(Ω)→A2(Ω) ≤
‖1‖2A2(Ω)

2
=

Area(Ω)

2π
.

(Recall that the planar measure dA is normalized on D, whence the factor 1/π.) By
the arguments of Bell, Ferguson and Lundberg, a new proof of the de Saint-Venant
inequality now follows.

We also record the following consequence of Theorem 1. It is simply the ob-
servation that for analytic functions h on Ω, u = Hz̄h satisfies ∂̄u = h. Here
∂̄ = (∂x + i∂y)/2 is the classical d-bar operator.

Corollary 2. Let h be an analytic function on a simply connected domain Ω.
Then there exists a function u ∈ L2(Ω, dAα) such that ∂̄u = h with

‖u‖2L2(Ω,dAα)
≤ Area(Ω)

(2 + α)π
‖h‖2A2

α(Ω).

Finally, a natural question is to find a formula that interpolates the lower
bounds of Khavinson, one the one hand, and Bell, Ferguson and Lundberg on the
other. Unfortunately we are not able to do this, but we make several remarks on
the question of a lower bound in Section 5. In particular, we obtain an inequality

‖[T ∗
z , Tz]‖A2

α(Ω) ≥ ρΩ,α∫
Ωwα dxdy

,
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where ρΩ,α is a quantity analogous to the torsional rigidity associated with the
spaces L2

α(Ω). For α = 0, this coincides exactly with the Bell, Ferguson and
Lundberg lower bound. However, for the case of the Smirnov–Hardy space E2(Ω),
which corresponds to α = −1, we observe that this lower bound is larger than the
one due to Khavinson, and that they do not, in general, coincide.

Problem 1. Find a one parameter formula for a lower bound of ‖[T ∗
z , Tz]‖A2

α(Ω)

that interpolates (1.3) and (1.4).

Problem 2. Extend Theorem 1 to multiply connected domains.

The structure of the paper is as follows. In Section 2, the relation between the
norm of the commutator and the norm of a Hankel operator on the disc D is shown,
as well as the proof of Corollary 1 using Theorem 1. Section 3 is dedicated to the
proof of the Theorem 1 in the unweighted Bergman case, α = 0, while Section 4
explains how to extend the proof to the general case. Finally, Section 5 is dedicated
to the proof of the lower bounds for the commutators of Toeplitz operators with
symbol z̄ in the weighted Bergman spaces in terms of torsional rigidities.

2. The relation to Hankel operators and a proof of Corollary 1

We begin by explicitly defining the spaces A2
α(Ω) mentioned above. Let Ω be a

simply connected domain in C and suppose that φ : Ω → D is the corresponding
univalent and analytic Riemann mapping. For α > −1, we define A2

α(Ω) to be the
closure of holomorphic functions on Ω in the norm given by

‖f‖2α =

∫
Ω

|f(z)|2 dAα(z),

where

dAα(z) = (1 + α)
(1− |φ(z)|2)α

|φ′(z)|α
dxdy

π
.

For α = −1, we set A2
α(Ω) to be the Smirnov–Hardy space E2(Ω), defined to be

the closure of the rational functions with poles outside of Ω̄ in the norm given by

‖f‖2E2(Ω) =

∫
∂Ω

|f(z)|2 |dz|
2π

.

A standard reference for Smirnov–Hardy spaces is [2], Chapter 10.
We remark that with these definitions, it follows that

lim
α→−1+

‖f‖2α = ‖f‖2E2(Ω).

Moreover, recall that we set L2
α(Ω) = L2(Ω, dAα) for α > −1 and L2

α(Ω) =
L2(∂Ω, |dz|/2π) for α = −1.



On a sharp estimate for Hankel operators and Putnam’s inequality 499

For α > −1 the orthogonal projection from L2
α to A2

α is given by

(2.1) Pg(z) =

∫
Ω

g(w)
φ′(w)1+α/2φ′(z)1+α/2

(1− φ(z)φ(w))2+α
dAα(w),

while for α = −1 it is given by

Pg(z) =

∫
∂Ω

g(w)
φ′(w)1/2φ′(z)1/2

1− φ(z)φ(w)

|dw|
2π

.

With this, one can now write down explicit expressions for both the Toeplitz
operators Tψ : f �−→ P (ψf) and the Hankel operators Hψ : f �−→ (I − P )(ψf) on
these spaces.

The following lemma is useful.

Lemma 1. Let α ≥ −1 and Ω a simply connected domain in C. If φ : Ω → D is
a Riemann mapping, then

‖Hψ‖A2
α(Ω) = ‖Hψ◦φ−1‖A2

α(D)
,

where the operators Hψ and Hψ◦φ−1 are Hankel for the spaces A2
α(Ω) and A

2
α(D),

respectively.

Proof. We verify the formula for α = 0, the other cases follow an identical argu-
ment. By the above, we have the formula

Hψ̄f(z) =

∫
Ω

φ′(z)φ′(w)(
1− φ(z)φ(w)

)2 (
ψ(z)− ψ(w)

)
f(w) dA(w).

We now make the change of variables ζ = φ(z) and ω = φ(w). Passing the inte-
gration from Ω to D, we get the Jacobian |(φ−1)′(ω)|2. Thus, the above expression
is equal to∫
D

φ′(φ−1(ζ))φ′(φ−1(ω))(
1− ζω

)2 (
ψ ◦ φ−1(ζ)− ψ ◦ φ−1(ω)

)
(f ◦ φ−1(ω))|(φ−1)′(ω)|2dA(ω)

=

∫
D

ψ ◦ φ−1(ζ)− ψ ◦ φ−1(ω)(
1− zω

)2 (φ−1)′(ω)
(φ−1)′(ζ)

(
f ◦ φ−1(ω)

)
dA(ω).

Changing notations, this yields the formula

(φ−1)′(ζ)
(
(Hψf) ◦ φ−1

)
(ζ) = H

ψ◦φ−1 g(ζ),

where g(ζ) = (φ−1)′(ω) (f ◦φ−1)(ω) and H
ψ◦φ−1 is a Hankel operator on the disk.

Taking norms, it is clear that

‖Hψ‖A2(Ω)→L2(Ω) = ‖H
ψ◦φ−1‖A2(D)→L2(D). �
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Proof of Corollary 1. Let T = Tψ, where ψ is an analytic map on Ω. The strategy
is first to relate the commutator to a Hankel operator on A2

α(Ω) and then to pass
to the unit disk using Lemma 1. There, we apply Theorem 1 which yields the
result. Indeed, by a straight-forward computation, we get

‖T ∗T − TT ∗‖A2
α(Ω)→A2

α(Ω) = sup
h∈A2

α(Ω)
‖h‖A2

α
=1

〈(T ∗T − TT ∗)h, h〉

= sup
h∈A2

α(Ω)
‖h‖A2

α
=1

(
‖Th‖2A2

α(Ω) − ‖T ∗h‖2A2
α(Ω)

)
= sup

h∈A2
α(Ω)

‖h‖A2
α
=1

(
‖ψh‖2A2

α(Ω) − ‖P (ψh)‖2A2
α(Ω)

)

= sup
h∈A2

α(Ω)
‖h‖A2

α
=1

(
‖ψh‖2L2

α(Ω) − ‖P (ψh)‖2A2
α(Ω)

)
= ‖Hψ‖2A2

α(Ω)→L2
α(Ω).

Applying Lemma 1 followed by Theorem 1, we get

‖Hψ◦φ−1‖2A2
α(D)→L2

α(D)
≤

‖(ψ ◦ φ−1)′‖2A2(D)

2 + α
=

‖ψ′‖2A2(Ω)

2 + α
.

This proves Corollary 1. �

3. Proof of Theorem 1 in the case α = 0

In this section we prove our main theorem for α = 0. This gives essentially the
idea of the proof in the general case, without the notation getting too much in
the way. In the next section, we explain in detail how to extend this proof to the
general case.

The strategy of the proof is as follows. For f ∈ A2(D), write f(z) =
∑
n≥0 anz

n,

and set ψ(z) =
∑
k≥1 ckz

k (note that we can assume ψ(0) = 0 without loss of
generality). We then express the function Hψf in terms of these Taylor coefficients,
and obtain the desired norm estimate by working directly with the coefficients.
Essentially, the only inequality we use is ab ≤ (1/2)(a2 + b2).

As a first step, we observe that

P (z̄kzn) =

∫
D

w̄kwn

(1− w̄z)2
dA(w) =

∑
�≥0

(�+ 1)z�
∫
D

w̄k+� wn dA(w)

=

⎧⎨
⎩

n− k + 1

n+ 1
zn−k, if 0 ≤ k ≤ n,

0, if n < k.

From the previous computation, for n ≥ 1, it follows that

P (ψzn) =
∑
k≥1

c̄k P (z
kzn) =

n∑
k=1

n− k + 1

n+ 1
c̄k z

n−k =

n−1∑
k=0

k + 1

n+ 1
c̄n−k zk,
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whence we get the expression

H(ψf)(z) = ψ(z)f(z)− P (ψf)(z)

=
∑
�≥1

∑
n≥0

c̄� an z̄
� zn −

∑
n≥1

n−1∑
k=0

k + 1

n+ 1
an c̄n−k zk.

Our next objective is to integrate with respect to
∫ 2π

0 dθ/π. Before we do this, we
rewrite this expression in order to more easily use the orthogonal structure. First,
we rewrite the above expression as

(3.1)
∑
l≥1

a0 c̄l z̄
l +

∑
n≥1

an

(∑
l≥1

c̄l z̄
l zn −

∑
0≤k≤n−1

k + 1

n+ 1
c̄n−k zk

︸ ︷︷ ︸
(�)

)
.

Now,

() =
∑

1≤�≤n
c̄� |z|2l zn−� +

∑
�≥n+1

c̄� |z|2n z̄�−n −
∑

0≤k≤n−1

k + 1

n+ 1
c̄n−k zk

=
∑

1≤k≤n
c̄n−k |z|2(n−k) zk +

∑
k≥1

c̄k+n |z|2n z̄k −
∑

0≤k≤n−1

k + 1

n+ 1
c̄n−k zk.

Plugging this back in to equation (3.1), we get

∑
k≥1

z̄k
(
a0 c̄k +

∑
n≥1

an c̄k+n |z|2n
)
+

∑
n≥1

an
∑

0≤k≤n−1

c̄n−k zk
(
|z|2(n−k) − k + 1

n+ 1

)

=
∑
k≥1

z̄k
(∑
n≥0

an c̄k+n |z|2n
)
+

∑
k≥0

zk
∑

n≥k+1

an c̄n−k
(
|z|2(n−k) − k + 1

n+ 1

)
.

Taking the modulus squared of this at z = reiθ and integrating with respect to∫ 2π

0 dθ/π yields

2
∑
k≥1

r2k
∣∣∣∑
n≥0

an c̄k+n r
2n
∣∣∣2

︸ ︷︷ ︸
(I)

+2
∑
k≥0

r2k
∣∣∣ ∑
n≥k+1

an c̄n−k
(
r2(n−k) − k + 1

n+ 1

)∣∣∣2
︸ ︷︷ ︸

(II)

.

Before integrating with respect to the radial part of the measure dA = rdrdθ/π,
we multiply out and rewrite these expressions slightly:

(I) = 2
∑
n,m≥0

k≥1

an ām ck+m c̄k+n r
2n+2m+2k,
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and

(II) = 2
∑
k≥0

∑
n,m≥k+1

an ām cm−k c̄n−k
(
r2n+2m−2k − r2n

k + 1

m+ 1

− r2m
k + 1

n+ 1
+ r2k

(k + 1)2

(n+ 1)(m+ 1)

)
.

Integration against
∫ 1

0 rdr now yields

(I) =
∑
n,m≥0

k≥1

an ām ck+m c̄k+n
n+m+ k + 1

,

(II) =
∑
k≥0

∑
n,m≥k+1

an ām cm−k c̄n−k(m− k)(n− k)

(n+ 1)(m+ 1)(n+m− k + 1)
.

At this point, we make a change of coefficients by setting an = bn+1(n+ 1). With
this notation,

(I) =
∑
n,m≥0

k≥1

bn+1 b̄m+1 ck+m c̄k+n
(n+ 1)(m+ 1)

n+m+ k + 1
,

(II) =
∑
k≥0

∑
n,m≥k+1

bn+1 b̄m+1 cm−k c̄n−k
(m− k)(n− k)

n+m− k + 1
.

Adjusting the indices of summation slightly,

(I) =
∑
n,m≥1

k≥0

bn b̄m ck+m c̄k+n
nm

n+m+ k
,

(II) =
∑
n,m≥1

k≥1

bn+k b̄m+k cm c̄n
mn

n+m+ k
.

By the symmetry in m,n we may interpret each term as being half that of its
real part, so that the inequality 2Re(ab) ≤ |a|2 + |b|2 applied to each of these
expression, yields

(I) ≤
∑
n,m≥1

k≥0

(
|bn ck+m|2 + |bm ck+n|2

) nm

2(n+m+ k)

=
∑
n,m≥1

k≥0

|bn ck+m|2 nm

n+m+ k
=: (I∗),

(II) ≤
∑
n,m≥1

k≥1

(
|bn+k cm|2 + |bm+k cn|2

) mn

2(n+m+ k)

=
∑
n,m≥1

k≥1

|bn+k cm|2 mn

n+m+ k
=: (II∗).



On a sharp estimate for Hankel operators and Putnam’s inequality 503

Here, we again used the symmetry in m,n. The next step is to isolate all unique
pairs of indices. We change the order of summation as follows,

(I∗) =
∑
n≥1

∑
m≥1

∑
k≥m

|bn ck|2 nm

n+ k
=

∑
n,k≥1

|bn ck|2
k∑

m=1

nm

n+ k

=
∑
n,k≥1

|bn ck|2 nk(k + 1)

2(n+ k)
,

(II∗) =
∑
m≥1

∑
n≥1

∑
k≥n+1

|bk cm|2 nm

m+ k
=

∑
m≥1
k≥2

|bk cm|2
k−1∑
n=1

nm

m+ k

=
∑
m≥1
k≥2

|bk cm|2 mk(k − 1)

2(m+ k)
.

We notice that we can add the index k = 1 to the second sum without changing
its value. Finally, taking this into account, we add these terms together to get

(I∗) + (II∗) =
∑
n,m≥1

|bn|2 |cm|2
(nm(m+ 1)

2(n+m)
+
mn(n− 1)

2(m+ n)

)
=

∑
n,m≥1

|bn|2 |cm|2 nm
2
.

Replacing an = bn+1(n+ 1), we now see that the right-hand side exactly equals

1

2

∑
n≥0
m≥1

|bn|2|cm|2 m

n+ 1
=

1

2

(∑
n≥0

|an|2
n+ 1

)( ∑
m≥1

|cm|2m
)
=

1

2
‖f‖2A2(D)‖ψ′‖2A2(D),

which was to be shown.

4. Proof of Theorem 1 for α ≥ −1

We now explain how to prove Theorem 1 for the spaces A2
α(D). Actually, we

restrict us to the case α > −1, leaving the simplest case, α = −1, to the interested
reader.

We begin by recalling some additional facts about these spaces. These can
be checked by consulting the introductory chapter of the reference [4]. First, the
monomials zn form an orthogonal base for the space and have norm

‖zn‖2α =
n! Γ(α+ 2)

Γ(n+ α+ 2)
,

where Γ(z) is the usual gamma-function satisfying the functional relation Γ(z+1) =
zΓ(z). To keep the notation simple, we introduce the coefficients

Dα
n :=

n! Γ(α+ 2)

Γ(n+ α+ 2)
.
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In particular, we have

D0
n =

n! Γ(2)

Γ(n+ 2)
=

n!

(n+ 1)!
=

1

n+ 1
and D−1

n =
n! Γ(1)

Γ(n+ 1)
= 1.

Furthermore, it is well-known that∑
n≥0

(zw)n

Dα
n

=
1

(1− wz)2+α
.

From this, and the orthogonality of monomials, it follows that the orthogonal
projection from L2(D, dAα) to Aα(D) is given by

f �−→ Pαf(z) =

∫
D

f(w)

(1− w̄z)2+α
dAα(w),

and so we have an explicit expression for the associated Hankel operator

Hψf(z) = ψ(z)f − Pα(ψf)(z).

Repeating the same type of arguments as above, we get an expression in terms of
the Taylor coefficients of f =

∑
n≥0 anz

n and ψ =
∑

k≥1 ckz
k:

H(ψ̄f)(z) =
∑
�≥1

∑
n≥0

c̄� an z̄
� zn −

∑
n≥1

n−1∑
k=0

Dα
n

Dα
k

an c̄n−k zk.

As before, the next steps consist of reorganizing this sum and taking its norm.
Doing this, we get

(4.1) ‖Hψf‖2α =
∑
n,m≥0

k≥1

an ām ck+m c̄k+nD
α
n+m+k

︸ ︷︷ ︸
(I)

+
∑
k≥0

∑
n,m≥k+1

an ām cm−k c̄n−k
(
Dα
n+m−k −

Dα
nD

α
m

Dα
k

)
︸ ︷︷ ︸

(II)

.

Here, the choice of labels (I) and (II) is a direct generalization of the previous case.
After this, we make the change of coefficients Dα

nan = bn+1. Some algebra then
yields

(I) + (II) =
∑
n,m≥1

k≥0

bn b̄m ck+m c̄k+n
Dα
n+m+k−1

Dα
n−1D

α
m−1

+
∑
n,m≥1

k≥1

bn+k b̄m+k cm c̄n

( Dα
n+m+k−1

Dα
n+k−1D

α
m+k−1

− 1

Dα
k−1

)
.
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Using the symmetry in the indicesm,n, we apply the inequality 2Re ab ≤ |a|2+|b|2
in the same way as in the unweighted case, to obtain

(I) + (II) ≤
∑
n,m≥1

k≥0

|bn ck+m|2 D
α
n+m+k−1

Dα
n−1D

α
m−1

+
∑
n,m≥1

k≥1

|bn+k cm|2
( Dα

n+m+k−1

Dα
n+k−1D

α
m+k−1

− 1

Dα
k−1

)
.

The next step is to isolate all unique pairs of indices. Changing the indices and
the order of summation, in exactly the same way as before, we get that the above
expression is equal to

(4.2)
∑
n,m≥1

|bn cm|2
m−1∑
�=0

Dα
n+m−1

Dα
n−1D

α
�

+
∑
m≥1
n≥2

|bn cm|2
n+m−2∑
�=m

(Dα
n+m−1

Dα
n−1D

α
�

− 1

Dα
�−m

)
.

The proof of the desired inequality is complete once we show that this expression
is smaller than

‖f‖2α ‖ψ′‖2α
2 + α

=
1

2 + α

∑
m≥1
n≥0

|cm|2 |bn|2m
Dα
n−1

.

This follows exactly by applying the following lemma to the sums in the expres-
sion (4.2).

Lemma 2. Suppose v ∈ N. Then,

v∑
�=0

1

Dα
�

=
v + 1

2 + α

1

Dα
v+1

.

Proof. The relation holds for v = 0. Indeed,

Dα
1 =

1! Γ(2 + α)

Γ(3 + α)
=

Γ(2 + α)

(2 + α)Γ(2 + α)
=

1

2 + α
Dα

0 .

The induction step is easily verified from the observation

Dα
v =

v! Γ(2 + α)

Γ(v + α+ 2)
=

v

v + α+ 1
Dα
v−1. �

Finally, we note that the sharpness is seen from formula (4.1) by choosing ψ = z
and f ≡ 1. This ends the proof.
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5. Torsional rigidity and lower bounds

Let Ω be a bounded and simply connected domain in C. In this section we consider
the problem of obtaining a lower bound for the commutator of Tψ on A2

α(Ω) in the
case that ψ = z. By the proof of Corollary 1, it is the same as obtaining a lower
bound for ‖Hz̄‖2A2

α(Ω)→L2
α(Ω).

As above, for α > −1, we denote by A2
α(Ω) the weighted Bergman spaces, while

we set A2
−1 := E2(Ω), the Smirnov–Hardy space on Ω.

With this notation, for α ≥ −1, and in light of the computation in Corollary 1,
we get

‖[Tz, T ∗
z ]‖α = sup

h∈A2
α

‖Hz̄h‖2α
‖h‖2α

= sup
h∈A2

α

‖z̄h‖2α − ‖P (z̄h)‖2α
‖h‖2α

= sup
h∈A2

α

dist(z̄h, A2
α)

‖h‖2α
= sup

h∈A2
α

inf
f∈A2

α

‖z̄h− f‖2α
‖h‖2α

= sup
h∈A2

α

inf
f∈A2

α

sup
g∈L2

α

| 〈z̄h− f |g〉α |2
‖g‖2α‖h‖2α

.

We turn our attention to the formulation in terms of the supremums. By
restricting the innermost supremum to (A2

α)
⊥, this yields the apparent inequality

‖Hz̄h‖2α ≥ sup
g∈(A2

α)⊥

| 〈z̄h|g〉α |2
‖g‖2α

.

However, one can check that this extremum is attained by g = Hz̄h in (A2
α)

⊥.
Hence, we get the identity

(5.1) ‖Hz̄h‖2α = sup
g∈(A2

α)⊥

| 〈z̄h|g〉α |2
‖g‖2α

.

It is now easy to explain how Khavinson [5] used essentially this relation for
α = −1 to deduce the isoperimetric inequality. The key observation is that by
Cauchy’s integral formula, the function g = dz/|dz| is seen to be in E2(Ω)⊥.
Indeed, combined with the choice h = 1 and Green’s formula, this yields

‖[T ∗
z , Tz]‖α ≥ ‖Hz̄1‖2α

‖1‖α ≥ | 〈z̄|g〉α |2
‖1‖α‖g‖2α

=
1

Per(Ω)2

∣∣∣ ∫
∂Ω

z̄ dz
∣∣∣2

=
1

Per(Ω)2

∣∣∣2i ∫
Ω

(∂̄z̄) dz
∣∣∣2 =

4Area(Ω)2

Per(Ω)2
.

Applying either Putnam or our Theorem 1, the isoperimetric inequality

Area(Ω) ≤ Per(Ω)2

4π

immediately follows.
As stated above, Bell, Ferguson and Lundberg mimicked more or less the same

approach to get a lower bound for the case α = 0. More specifically, they used the
relation (5.1) and noted that A2(Ω)⊥ may be expressed as

clos{∂ψ : ψ ∈ C∞
0 (Ω̄)}.
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Here ψ ∈ C∞
0 (Ω) if it is smooth on Ω, continuous up to and including on the

boundary where it also vanishes. That this holds can be seen by using Green’s
formula in combination with the Hahn–Banach theorem. So, for the Bergman
space, they observed that

(5.2)

‖[T ∗
z , Tz]‖ ≥ ‖Hz̄1‖2

‖1‖ = sup
g∈(A2)⊥

| 〈z̄|g〉 |2
‖g‖2‖1‖2 = sup

ψ∈C∞
0 (Ω̄)

| 〈z̄|∂ψ〉 |2
‖∂ψ‖2‖1‖2

= sup
ψ∈C∞

0 (Ω̄)

4| 〈1|ψ〉 |2
‖∇ψ‖2‖1‖2 =

ρΩ
Area(Ω)

.

Here, the quantity ρΩ on the left-hand side is what is known in elasticity theory
as the torsional rigidity of the domain Ω. In fact, classically

(5.3) ρΩ = sup
ψ∈C∞

0 (Ω̄)

4
( ∫

Ω ψ dxdy
)2∫

Ω
(∂xψ2 + ∂yψ2) dxdy

,

where the supremum is only over real valued functions ψ.
As we noted in the introduction, the torsional rigidity is a constant from me-

chanics which quantifies the resistance to twisting of a cylindrical object, imagined
as being perpendicular to the complex plane, with cross-section equal to Ω at all
heights. We refer the reader to [6], page 2, for a more accurate physical descrip-
tion. Mathematically, this quantity has several equivalent definitions. See, e.g. [6],
pages 87–89, for a discussion of this. Observe, in particular, that

‖Hz̄1‖2A2(Ω) = ρΩ.

In order to take a closer look at the case α ∈ (−1, 0), we look at yet another way
of expressing the torsional rigidity of a simply connected domain Ω (see, e.g., [6]).
Namely if v is the solution of the Dirichlet problem{

Δv = −2,

v|∂Ω = 0,

then

(5.4) ρΩ = 2

∫
Ω

v dxdy.

To see that this is equivalent to (5.3), first observe that, assuming all function are
real valued, by the Cauchy–Schwarz inequality we have∫

Ω

2ψ dxdy = −
∫
Ω

Δv ψ dxdy =

∫
Ω

∇v · ∇ψ dxdy

≤
(∫

Ω

|∇v|2 dxdy
∫
Ω

|∇ψ|2 dxdy
)1/2

.

Since

2

∫
Ω

v dxdy = −
∫
Ω

vΔv dxdy =

∫
Ω

|∇v|2 dxdy,
this implies that 2

∫
v dxdy ≥ ρΩ. On the other hand, simply setting ψ = v in (5.3),

one obtains the identity (5.4).
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Elaborating on the above discussion, we observe that if we set u = −2∂v,
then ∂̄u = 1. That is u solves the same d-bar problem as z̄−P+(z̄). Indeed, these
functions are the same. More generally, if h is analytic on Ω and vh solves{

Δvh = h,

v|∂Ω = 0,

then uh = 4∂vh solves ∂̄uh = v. Since uh is seen, by Green’s formula, to be
orthogonal to A2(Ω), it follows that

uh = Hz̄h.

Returning to the case α ∈ (−1, 0), we pose the following Dirichlet problem:{
Δαv = −2,

v|∂Ω = 0,

where

Δα = 4∂̄
1

wα
∂

and wα is the weight so that dAα(z) = wα(z)dA(z), the measure defining the
weighted Bergman spaces A2

α(Ω). With this, we define a weighted torsional rigidity
as follows:

ρΩ,α = 2

∫
Ω

v dxdy.

By repeating the steps of (5.2) above, using now that, by Green’s formula,
u := −2w−1

α ∂v is in (A2
α)

⊥ and it is also a solution to the d-bar problem ∂̄u = 1,
therefore u = Hz̄1 , it is now straight-forward to obtain the following result.

Proposition 1. Let Ω be a simply connected domain in C. For α ∈ (−1, 0), we
have

‖[T ∗
z , Tz]‖A2

α(Ω) ≥ ρΩ,α∫
Ω
wα dxdy

.

The above result does not immediately make sense for α = −1, since we are
no longer dealing with a norm given by an area measure, but rather one given by
the arc length measure of the boundary. Even though, in this case, we could give
a similar formulation in terms of laplacians, it is more convenient to note that we
actually have

ρΩ,α = ‖Hz̄1‖2α = sup
g∈(A2

α)⊥

| 〈z̄|g〉α |2
‖g‖2α

,

which is a more straight-forward relation that holds for all α ∈ [−1, 0]. With this,
the above proposition also extends to the Smirnov–Hardy space.

The question now is whether ‖Hz̄1‖2α/‖1‖2α is identical to Khavinson’s lower
bound? While, the answer is yes for discs, in general, it is no, as is seen by the
following example.
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Figure 1. The domain Ω of Example 1.

Example 1. We consider the map φ(z) = (1 + z)2 − 1. This is a univalent
conformal and analytic map from D onto the domain Ω shown in Figure 1.

It is a basic calculus exercise to calculate

Per(Ω) =

∫
∂D

|φ′(z)| |dz| = 2

∫ 2π

0

|1 + eiθ| dθ = 23/2
∫ 2π

0

√
1− sin θ dθ = 16,

and

Area(Ω) =

∫
D

|φ′(z)|2 dxdy = 6π.

The Khavinson lower bound is now

‖[T ∗
z , Tz]‖ ≥ 4

Area(Ω)2

Per(Ω)2
= 4

(6π)2

162
=

9π2

16
.

As may be calculated explicitly, the torsional rigidity lower bound becomes

‖Hz̄1‖2E2(Ω)

‖1‖2E2(Ω)

=
‖Hφ̄

√
φ′(z)‖2L2(dD)

‖1‖2E(Ω)

=
2π

Per(Ω)

∑
k≥1

∣∣∣∑
�≥k

γ�−k c̄�
∣∣∣2,

where φ(z) =
∑

k≥1 ckz
k and

√
φ′(z) =

∑
k≥0 γkz

k. Calculating this, we get

‖Hz̄1‖2E2(Ω)

‖1‖2E2(Ω)

=
1

16
2π · 29

2
=

29π

16
.

Since
29π

16
>

9π2

16
,

this shows that the two lower bounds are in general different.
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Note added in proof. By studying a preprint of the current paper, it was
observed by M. Fleeman and D. Khavinson that the unit disc is the unique domain
that provides equality in our improved Putnam inequality [3]. The same remark
has been independently communicated to us by professors K. Seip and Joaquim
Ortega-Cerdà.
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