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Whitney extension operators

without loss of derivatives

Leonhard Frerick, Enrique Jordá and Jochen Wengenroth

Abstract. For a compact set K ⊆ R
d we characterize the existence of a

linear extension operator E : E (K) → C∞(Rd) for the space of Whitney
jets E (K) without loss of derivatives, that is, it satisfies the best possible
continuity estimates

sup{|∂αE(f)(x)| : |α| ≤ n, x ∈ R
d} ≤ Cn‖f‖n,

where ‖ · ‖n denotes the n-th Whitney norm. The characterization is by
a surprisingly simple purely geometric condition introduced by Jonsson,
Sjögren, and Wallis: there is � ∈ (0, 1) such that, for every x0 ∈ K
and ε ∈ (0, 1), there are d points x1 . . . , xd in K ∩ B(x0, ε) satisfying
dist(xn+1, affine hull{x0, . . . , xn}) ≥ �ε for all n ∈ {0, . . . , d− 1}.

1. Introduction

The problem that compact sets K ⊆ Rd are often too small to determine all deriva-
tives of differentiable functions on it was overcome by Whitney’s [19] ingenious
invention of spaces E n(K) and E (K) = E ∞(K) of jets (of finite and infinite order,
respectively), which he proved to be exactly the spaces of restrictions (∂αf |K)α
for f ∈ C n(Rd), n ∈ N ∪ {∞}. In the finite order case, the extension can be even
done by a continuous linear operator, and the last eighty years have seen count-
less results about the notoriously difficult problem to characterize the existence
of continuous linear extension operators E (K) → C ∞(Rd) in the infinite order
case if both spaces are endowed with their natural families of semi-norms, namely
|f |n = sup{|∂αf(x)| : x ∈ Rd, |α| ≤ m} (which we will use only for functions with
compact support so that the supremum is finite) on C ∞(Rd) and the Whitney
norms introduced below for E (K).

In the present article we characterize the existence of operators which, simulta-
neously for all n ∈ N0∪{∞}, are extensions E n(K) → C n(Rd). This is a situation
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where a naive approach to solve certain problems (like partial differential equa-
tions) on E (K) works perfectly: extend the jet to R

d, apply methods for smooth
functions on Rd, and restrict back to K.

Till now, only very few cases were understood, the most prominent result being
Stein’s [17] extension operator for sets with Lipschitz boundary. In view of the
apparent difficulty of the unrestricted case and to our own surprise the final answer
for the case of extension operators without loss of derivatives is the strikingly simple
condition given in the abstract. Before stating this explicitly we provide the precise
definitions and some background information.

1.1. Whitney jets and extension operators

For a compact set K ⊆ Rd we denote by E n(K) and E (K) = E ∞(K) the spaces
of Whitney jets of finite and infinite order, respectively, that is, families f =(
f (α)

)
|α|<n+1

of continuous (real or complex valued) functions whose formal Taylor

polynomials (for finite n)

T n
y (f)(x) =

∑
|α|≤n

f (α)(y)

α!
(x− y)α

give the “correct” approximation as if f (α) were the partial derivatives of order α,
namely, the local “approximation errors”

qn,t(f) = sup
{ |f (α)(x) − ∂αT n

y (f)(x)|
|x− y|n−|α| : |α| ≤ n, x, y ∈ K, 0 < |x− y| ≤ t

}

tend to 0 for t → 0 (and all n in the case of E (K)). The n-th Whitney norm is
then

‖f‖n = sup{|f (α)(x)| : x ∈ K, |α| ≤ n} + sup{qn,t(f) : t > 0}.
Clearly, Taylor’s theorem implies that for any n ∈ N0 ∪ {∞} and g ∈ C n(Ω)

with an open set Ω ⊇ K the restrictions R(g) = (∂αg|K)|α|<n+1 are jets of order n.

A celebrated result of Whitney [19] says that each jet f ∈ E n(K) has such an
extension. He even proved that one can extend jets of finite order by a continuous
linear operator. Whitney’s methods yield that E (K) is always a Fréchet space
isomorphic to a quotient of C∞(Rd) where the restriction operator R is the quotient
map. Moreover, the n-th Whitney norm on K is equivalent to the n-th quotient
semi-norm inf{|g|n : R(g) = f} (which follows from from Whitney’s work or, e.g.,
the method to prove Theorem I.4.1 in Malgrange’s book [9]).

The existence of a continuous linear extension operator for jets of infinite order
depends on the shape of the compact set and there is a vast amount of literature
about this question, we refer to the introduction of [6] for an overview. In par-
ticular, if K is too small, e.g. a singleton (in which case Whitney’s theorem was
already shown by Borel [2]), Mitjagin [11] observed that there is no continuous lin-
ear extension operators (although there is always a linear but discontinuous one,
as well as a continuous but non-linear one – just because this is always so for quo-
tients of Fréchet spaces, see e.g. Bourbaki’s book on topological vector spaces, [4],
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Chapter II, §4). On the other hand, there are several results proving that there is
a continuous linear extension operator if K is “big enough”, we only mention the
work of Tidten [18].

1.2. Extensions without loss of derivatives

The problem we deal with in this paper is the characterization of compact sets K
having an extension operator E : E (K) → C∞(Rd) which induces, simultaneously
for all n, continuous extension operators E : E n(K) → C n(Rd). Since E (K) is
dense in E n(K) this is the equivalent to the continuity estimates

sup{|∂αE(f)(x)| : |α| ≤ n, x ∈ R
d} ≤ Cn‖f‖n for all n ∈ N0.

We therefore say that E is an extension operator without loss of derivatives.
Seeley [16] gave a simple construction of such operators for half spaces, and

Stein [17] found extension operators without loss of derivatives for compact sub-
sets K with Lip1-boundary. Also Rogers [15] gave a sufficient geometric condition
for K permitting the existence of an operator such that even all the Sobolev spaces
W p

k (K) can be extended to W p
k (Rd) for each k ∈ N and 1 ≤ p ≤ ∞.

Our main result will use a (local) Markov inequality for polynomials in a
form (apparently) first used by Jonsson, Sjögren, and Wallin [8]. Paw�lucki and
Pleśniak [12], [13], as well as Pleśniak [14], used a global version to character-
ize the existence of continuous linear extension operators for E (K) with a weaker
topology (which, of course, implies continuity with respect to the Whitney norms),
and Bos and Milman [3] introduced a local Markov inequality with some expo-
nent r ≥ 1 (LMI(r)) on a compact set K (which eventually turned out to be
equivalent to Paw�lucki’s and Pleśniak’s condition) to obtain extension operators
with homogeneous loss of differentiability. The exact loss of differentiability was
then characterized in [7].

Let us now give the precise definition. K ⊆ Rd satisfies the LMI(r) if there
exist ε0 > 0 and constants ck ≥ 1 such that for each polynomial P of degree
deg(P ) ≤ k, each ε ∈ (0, ε0), and each x0 ∈ K we have

|∇P (x0)| ≤ ck ε
−r ‖P‖B(x0,ε)∩K ,

where ‖ · ‖M denotes the uniform norm on a set M ⊆ Rd and B(x0, ε) the closed
ball of radius ε centered at x0.

By applying the estimate k-times with 2−kε instead of ε we obtain (with dif-
ferent constants ck) for all α ∈ Nd

0,

|∂αP (x0)| ≤ ckε
−r|α|‖P‖B(x0,ε)∩K ,

which is LMI(r) in the form used by Bos and Milman.
Modifying the constants in the definition of LMI one can replace the existence

quantifier for ε0 by the universal quantifier or just by ε0 = 1. (Bos and Milman
kept track of the constants and therefore, the formulation with ε0 was used, for
our purpose, the constants are not important).
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LMI measures the “local size” of K near its boundary points and will serve as
the characterization of the existence of extension operators without loss of deriva-
tives in our main contribution:

Theorem 1. A compact set K ⊆ Rd has an extension operator E (K) → C∞(Rd)
without loss of derivatives if and only if K satisfies LMI(1).

The big advantage of LMI(1) compared to the case r > 1 is that Jonsson,
Sjögren, and Wallin (Theorems 1.2 and 1.3 in [8]) showed that it is enough to
check LMI(1) for polynomials of degree 1 which enabled them to obtain a purely
geometric characterization figuring in the following corollary.

Corollary 2. A compact set K ⊆ Rd has an extension operator E (K) → C∞(Rd)
without loss of derivatives if and only if there is � ∈ (0, 1) such that, for every
x0 ∈ K and ε ∈ (0, 1), K ∩ B(x0, ε) is not contained in any band of the form
{x ∈ Rd : |〈b, x− x0〉| ≤ �ε}, where b ∈ Rd is any vector of norm 1.

An alternative formulation of the condition was given by Bos and Milman in
Theorem D of [3]: K ⊆ Rd satisfies LMI(1) if and only if there is � ∈ (0, 1) such
that for every x0 ∈ K and ε ∈ (0, 1) there are d points x1 . . . , xd in K ∩ B(x0, ε)
such that for all n ∈ {0, . . . , d− 1}

dist(xn+1, affine hull{x0, . . . , xn}) ≥ � ε

(the equivalence of this condition to the one of Jonsson, Sjögren, and Wallin is
elementary).

These geometric conditions are very easy to check in concrete cases so that,
for instance, our result includes Stein’s theorem about compact sets with Lip1-
boundary as well as sets with inward directed cusps (which are covered neither
by Stein’s theorem nor by Roger’s results). Moreover, we easily obtain that such
porous sets like Cantor’s or the Sierpiński triangle admit extension operators with-
out loss of differentiability whereas sets with outward directed cusps do not.

1.3. The trace space

Let us close this introduction with the remark that there is of course an alternative
approach to smooth functions on small sets just by setting C ∞(K) = {f |K : f ∈
C∞(Rd)} endowed with the quotient topology. If E (K) admits a linear continuous
extension operator at all then, by a result in [6], remark 3.13, E (K) and C ∞(K)
coincide (more precisely, (f (α))α∈Nd

0
�→ f (0) is an isomorphism) and our result

thus applies to the latter space. Instead of a continuous linear extension the ideas
in [6] yield that it would be enough that for all n ∈ N there are m(n) ∈ N and
C(n) > 0 such that for every f ∈ E (K) there is an extension F ∈ C∞(Rd) with
|F |n ≤ C(n)‖f‖m(n). In particular, a continuous and homogeneous extension map
would be enough.

However, if K is too small, C∞(K) and E (K) are very different spaces (con-
sider, for example, the extreme case of a singleton) and much less is known about
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extension operators for C∞(K). On the one hand, there is a very deep result
of Bierstone and Milman [1] about semicoherent subanalytic sets; and on the
other hand, two special cases of non-subanalytic sets were treated by Fefferman
and Ricci in [5].

1.4. Necessity of LMI

The main point of our contribution is certainly the sufficiency of LMI(1) and, thus,
the geometric conditions of Jonsson, Sjögren, and Wallin, and Bos and Milman, re-
spectively. Necessity of LMI(1) follows from the methods in [3] and a short explicit
proof is also contained in [7]. We thus only describe very briefly the main idea in [3]:
The key ingredients are the classical Sobolev–Gagliardo–Nirenberg (SGN) inequal-
ities with optimal exponents (which, in terms of the structure theory of Fréchet
spaces, correspond to Vogt’s condition (DN), see, e.g., Meise and Vogt [10]) which
hold for smooth functions on a large ball containing K and just by applying them
to E(f) for f ∈ E (K) one gets the SGN inequalities for E (K). To obtain then LMI
for polynomials one multiplies with a bump function, applies SGN inequalities and
uses an iterative application of the estimates so obtained.

The rest of the paper is organized as follows. In section 2 we will explain the
construction of the extension operator which is based on certain measures μα so
that

∫
fdμα interpolate the partial derivatives (this part is similar to our previous

article [7] and was inspired by Whitney’s original construction). In the third section
we will then show how to obtain those measures if K satisfies LMI(1).

2. Construction of the extension operators

We first recall Whitney’s explicit construction of an extension operator for E n(K).
For a suitable partition of unity (ϕi)i∈N of Ω \K (where Ω is an open set contain-
ing K) such that the supports of ϕi tend to K, and for xi ∈ K minimizing the
distance to supp(ϕi) the operator En is of the following form:

En(f)(x) =

⎧⎨
⎩

f (0)(x), x ∈ K,
∞∑
i=1

ϕi(x)T n
xi

(f)(x), x /∈ K.

As we want to have an operator which works simultaneously for all n ∈ N0 we
replace the n-th degree Taylor polynomials around xi by certain “interpolations”
which only depend on f (0), namely

Si(f)(x) =
∑
|α|≤i

1

α!
μα,i(f

(0))(x− xi)
α,

where μα,i(f
(0)) =

∫
f (0)dμα,i is the integral of f with respect to a suitable (com-

plex) measure.
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Theorem 3. Suppose that for all α ∈ Nd
0, x ∈ ∂K, and ε > 0 there are mea-

sures να,x,ε on K such that, for all n ∈ N0 and f ∈ E n(K),

lim
ε→0

sup
|α|≤n,x∈∂K

|να,x,ε(f (0)) − ε|α|f (α)(x)|
εn

= 0 and

lim
ε→0

sup
|α|>n,x∈∂K

|να,x,ε(f (0))|
εn

= 0.

Then K has an extension operator without loss of derivatives.

Proof. We consider the partition of unity constructed by Whitney [19]. For K ⊆ R
d

compact there are an open set Ω containing K and positive test functions ϕi ∈
D(Ω \K) with the following properties:

(i)
∑∞

i=1 ϕi(x) = 1 for all x ∈ Ω \ K and each point belongs to at most N
supports supp(ϕi) for some constant N ∈ N.

(ii) supp(ϕi) → K for i → ∞, that is, for each ε > 0 there is k ∈ N such that
supp(ϕi) ⊆ {x ∈ Rd : dist(x,K) < ε} for all i ≥ k.

(iii) diam(supp(ϕi)) ≤ 2 dist(supp(ϕi),K) (where diam is the diameter of a set).

(iv) There are constants cβ such that
∣∣∂βϕi(x)

∣∣ ≤ cβ dist(x,K)−|β| for all i ∈ N,
β ∈ Nd

0, and x ∈ Rd.

With the help of this partition, Whitney showed that the operators En defined
above are indeed continuous linear extension operators from E n(K) to C n(Rd).
Let us denote

γi = dist(K, supp(ϕi)) = dist(xi, supp(ϕi)).

For |β| ≤ n and |α| ≤ n we can use Leibniz’ rule, (iii), and (iv) to obtain positive
constants Cn independent of i such that

(2.1)
∣∣∂β ((x− xi)

αϕi(x))
∣∣ ≤ Cn γ

|α|−|β|
i for all x ∈ supp(ϕi).

For |β| ≤ n and |α| > n we observe that property (iii) implies that |x − xi| ≤
3γi for all x ∈ supp(ϕi). Using Leibniz’s rule again, we find (different) Cn not
depending on i, such that

(2.2)
∣∣∂β ((x− xi)

αϕi(x))
∣∣ ≤ Cn 3|α| sup

γ≤β,γ≤α

α!

(α− γ)!
γ
|α|−|β|
i , x ∈ supp(ϕi).

We remark that, for |β| ≤ n,

∑
|α|>n

sup
γ≤β,γ≤α

1

(α− γ)!
3|α| ≤ 3|β|

∑
γ≤β

∑
|α|>n,α≥γ

1

(α− γ)!
3|α−γ|

≤ 3n(n + 1)d
( ∑

j∈N0

1

j!
3j
)d

= e3d (n + 1)d 3n.(2.3)
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We set μα,i = να,xi,γi/γ
|α|
i , and for f ∈ E 0(K) = C (K) we define

E(f) =

⎧⎨
⎩

f (0)(x), x ∈ K,∑
i∈N

ϕi(x)
∑

|α|≤i

1
α!μα,i(f

(0))(x− xi)
α, x /∈ K.

With Whitney’s operators En we will show below that for all |β| ≤ n, f ∈ E n(K)
we have

(2.4)
∣∣∂βE(f)(x) − ∂βEn(f)(x)

∣∣ = o(dist(x,K)n−|β|) for x → ∂K.

This implies that (E −En)(f) admits derivatives up to order n in (the bound-
ary of) K and that they all vanish on K. Since the partition ϕi is locally fi-
nite E(f) is clearly C∞ on Rd \ K. Thus E − En : E n(K) → C n(Rd) is a
well defined linear operator and takes its values in J n(K) = {g ∈ C n(Rd) :
∂αg(x) = 0 for all x ∈ K, |α| ≤ n}.

It is clear that the operator is continuous if we consider in J n(K) the topol-
ogy of pointwise convergence in Rd \K. Since this topology is Hausdorff we can
apply the closed graph theorem to conclude that E − En : E n(K) → J n(K) is
continuous with respect to the Fréchet space topology on J n(K), and therefore
also E : E n(K) → C n(Rd) is continuous.

Let us now prove (2.4). For x ∈ Rd \ K we define i(x) = min{i ∈ I : x ∈
suppϕi}. Because of the property (ii) we then have i(x) → ∞ if x → ∂K. For
|β| ≤ n, f ∈ E n(K), and i(x) > n we have

∂β(E(f) − En(f))(x) =
∑

i≥i(x)

∑
|α|≤n

1

α!
(μα,i(f

(0)) − f (α)(xi))∂
β((x − xi)

αϕi(x))

+
∑

i≥i(x)

∑
n<|α|≤i

1

α!
μα,i(f

(0))∂β((x− xi)
αϕi(x)).

We will estimate both terms. Using the hypotheses on the measures we get,
for |α| ≤ n,

|μα,i(f
(0)) − f (α)(xi)| = o(γ

n−|α|
i ) as i → ∞.

From this, (2.1), and the bound for the number of supports that can contain x we
obtain

∣∣∣ ∑
|α|≤n

1

α!
(μα,i(f

(0)) − f (α)(xi))∂
β((x − xi)

αϕi(x))
∣∣∣ = o(γ

n−|β|
i ) for i → ∞,

where the limit is uniform with respect to x ∈ Rd.

From γi ≤ d(x,K) ≤ 3γi for each x ∈ supp(ϕi) it then follows that

lim
x→∂K

∑
i≥i(x)

1

d(x,K)n−|β|

∣∣∣ ∑
|α|≤n

1

α!
(μα,i(f

(0)) − f (α)(xi))∂
β((x − xi)

αϕi(x))
∣∣∣ = 0.
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For the second summand we use again the hypotheses to get

sup
|α|>n

∣∣μα,i(f
(0))γ

|α|
i

∣∣ = o(γn
i ) as i → ∞.

Then (2.2) and (2.3) imply that (again uniformly in x)

∣∣∣ ∑
|α|>n

1

α!
μα,i(f

(0)) ∂β ((x− xi)
αϕi(x))

∣∣∣

≤
∑
|α|>n

1

α!
γ
−|α|
i o(γn

i )Cn sup
γ≤β,γ≤α

α!

(α− γ)!
3|α|γ|α|−|β|

i

≤ o(γn
i )Cne

3d(n + 1)d3nγ
−|β|
i = o(γ

n−|β|
i ) as i → ∞.

Altogether we obtain (remembering i(x) → ∞ if x → ∂K)

lim
x→∂K

∑
i≥i(x)

1

d(x,K)n−|β|

∣∣∣ ∑
n<|α|≤i

1

α!
μα,i(f

(0))∂β((x− xi)
αϕi(x))

∣∣∣ = 0,

which gives (2.4). �

3. Construction of the measures

To finish the proof of the main theorem we have to show the existence of the
measures figuring in Theorem 3:

Proposition 4. Let K ⊆ R
d be a compact subset satisfying LMI(1). For all

α ∈ Nd
0, x ∈ ∂K, and ε ∈ (0, 1) there is a measure να,x,ε on K such that, for all

n ∈ N0 and f ∈ E n(K),

lim
ε→0

sup
|α|≤n,x∈∂K

|να,x,ε(f (0)) − ε|α|f (α)(x)|
εn

= 0 and

lim
ε→0

sup
|α|>n,x∈∂K

|να,x,ε(f (0))|
εn

= 0.

The main ingredient in the proof will be the solution of a suitable moment
problem and in order to get uniform estimates for x ∈ ∂K we will apply scaling
arguments. It is therefore convenient to consider the following “blow-ups” of K
with respect to a boundary point:

Ax,ε = ε−1(K − x) ∪ {y ∈ R
d : |y| ≥ ε−1}.

The union with the complement of the large ball is necessary to solve the moment
problem. However, cutting off the part of the measures supported in {|y| ≥ ε−1}
will have no influence on the properties required in Theorem 3.

The moment problem is described in the following proposition.
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Proposition 5. Let K ⊆ Rd be a compact subset satisfying LMI(1). Then there
exists a continuous and radial function � : Rd → (0,∞) with |y|n = o(�(y)) for
|y| → ∞ and all n ∈ N such that for each x ∈ ∂K, ε ∈ (0, 1), and α ∈ Nd

0

there exists a finite regular Borel measure μ := μα,x,ε on Ax,ε with total variation
|μ|(Ax,ε) ≤ 1 such that

∫
Ax,ε

yβ
1

�(y)
dμ(y) =

{
α!, β = α,
0, else.

Before proving this let us show how to obtain Proposition 4.

Proof of Proposition 4. We assume without loss of generality that K ⊆ B(0, 1/4).
For x ∈ ∂K, ε ∈ (0, 1), α ∈ Nd

0, and f ∈ C (K) we define

να,x,ε(f) =

∫
ε−1(K−x)

f(εy + x)
1

�(y)
dμα,x,ε(y),

with μα,x,ε from Proposition 5. For each f ∈ C (Rd) with support in B(0, 3/4) we
then have

να,x,ε(f |K) =

∫
Ax,ε

f(εy + x)
1

�(y)
dμα,x,ε(y)

since |x + εy| > 3/4 whenever |y| > 1/ε.
Multiplying with a cut-off function we may assume that Whitney’s extension

operator En : E n(K) → C n(Rd) has values in the space of C n-functions with
support in B(0, 3/4). For f ∈ E n(K) we denote by F = En(f) an extension of f ,
and obtain from Taylor’s theorem and the condition on the moments of μα,x,ε,

|να,x,ε(f (0)) − ε|α|f (α)(x)| =
∣∣∣
∫
Ax,ε

F (εy + x)
1

�(y)
dμα,x,ε(y) − ε|α|∂αF (x)

∣∣∣
=

∣∣∣
∫
Ax,ε

( ∑
|γ|<n

∂γF (x)

γ!
ε|γ|yγ + εn

∑
|γ|=n

∂γF (ξ)

γ!
yγ

) 1

�(y)
dμα,x,ε(y) − ε|α|∂αF (x)

∣∣∣

= εn
∣∣∣
∫
Ax,ε

∑
|γ|=n

(∂γF (ξ)

γ!
− ∂γF (x)

γ!

) yγ

�(y)
dμα,x,ε(y)

∣∣∣,

with ξ := ξ(x, ε, y, f) ∈ [x, x + εy]. We split the integral into the parts over
Ax,ε ∩ {|y| ≤ r} and Ax,ε ∩ {|y| > r}. The first integral then becomes small (for
ε → 0 and each fixed r) because of the uniform continuity of ∂γF and the second
becomes small (for r → ∞ uniformly in ε) because of the boundedness of ∂γF ,
|μα,x,ε|(Ax,ε) ≤ 1, and |y||γ|/�(y) → 0 for |y| → ∞.

For |α| > n we compute similarly

sup
|α|>n,x∈∂K

|να,x,ε(f (0))|
εn

= sup
|α|>n,x∈∂K

∣∣∣ 1

εn

∫
Ax,ε

F (εy + x)
1

�(y)
dμα,x,ε(y)

∣∣∣
= sup

|α|>n,x∈∂K

∣∣∣
∫
Ax,ε

∑
|γ|=n

(∂γF (ξ)

γ!
− ∂γF (x)

γ!

) yγ

�(y)
dμα,x,ε(y)

∣∣∣,
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with ξ := ξ(x, ε, y, f) ∈ [x, x + εy]. By the same arguments as above we get

lim
ε→0

sup
|α|>n,x∈∂K

|να,x,ε(f (0))|
εn

= 0. �

The proof of Proposition 5 will use duality theory (in particular, Riesz’ repre-
sentation theorem for duals of spaces of continuous functions to obtain the desired
measures) where an improved version of LMI(1) implies a suitable continuity esti-
mate. For this improvement we first show a very simple lemma about the Markov
inequality for balls. We denote by Pk the space of polynomials of degree less or
equal k.

Lemma 6. For each k ∈ N there is Ck > 0 such that for all Q ∈ Pk and all � ≥ 2
we have ∑

|α|≤k

|∂αQ(x)|
α!

�|α| ≤ Ck sup
1≤|y−x|≤�

|Q(y)|.

Proof. It is enough to show the statement for x = 0. Since both sides of the
inequality are norms on the finite dimensional space Pk, there are constants Ck

such that the inequality holds for � = 2. For � > 2 we denote Q�(x) = Q(�2x) and
obtain

∑
|α|≤k

∣∣∣∣∂
αQ(0)

α!

∣∣∣∣ �|α| =
∑
|α|≤k

∣∣∣∣∂
αQ�(0)

α!

∣∣∣∣ 2|α| ≤ Ck sup
1≤|y|≤2

|Q�(y)|

= Ck sup
�/2≤|y|≤�

|Q(y)| ≤ Ck sup
1≤|y|≤�

|Q(y)|.

�

The next lemma gives a uniform Markov inequality for the highest degree
derivatives.

Lemma 7. Let K ⊆ Rd be a compact subset satisfying LMI(1). For all k ∈ N

there is Ck > 0 such that for all ε ∈ (0, 1), x ∈ ∂K, r > 0 and P ∈ Pk we have

∑
|α|=k

∣∣∣∂αP (0)

α!

∣∣∣ ≤ Ck

rk
sup{|P (y)| : y ∈ Ax,ε, |y| ≤ r}.

Proof. We may assume ε0 = 2 in the definition of the Markov inequality and
take the sequence ck from there. Fix k ∈ N, x ∈ ∂K, 0 < ε ≤ 1, P ∈ Pk,
and 0 ≤ r ≤ 2/ε. Set Q(y) := P (1ε (y − x)). For suitable constants Ck(depending
on ck and k) we get

∑
|α|=k

∣∣∣∂αP (0)

α!

∣∣∣ rk =
∑
|α|=k

∣∣∣∂αQ(x)

α!

∣∣∣ rkεk ≤ Ck sup
y∈B(x,rε)∩K

|Q(y)|

= Ck sup
{|P (z)| : z ∈ ε−1 (K − x) ∩B(0, r)

}
.
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If on the other hand r ≥ 2/ε, we set � = rε and we get from Lemma 6 (with
different constants)

∑
|α|=k

∣∣∣∂αP (0)

α!

∣∣∣ rk ≤
∑
|α|≤k

∣∣∣∂αQ(x)

α!

∣∣∣ �k ≤ Ck{sup |Q(y)| : 1 ≤ |y − x| ≤ �}

= Ck sup{|P (z)| : ε−1 ≤ |z| ≤ r} ≤ Ck sup{|P (z)| : z ∈ Aε,x, |z| ≤ r}.
�

The following lemma is the main technical tool to solve the moment problem
in Proposition 5.

Lemma 8. Let K ⊆ Rd be a compact subset satisfying LMI(1). For each family
(εα)α∈Nd

0
of positive numbers there is a continuous and radial function � : Rd →

(0,∞) with |y|k = o(�(y)) for y → ∞ and each k ∈ N such that for all x ∈ ∂K,
ε ∈ (0, 1), and all polynomials P we have

sup
y∈Ax,ε

|P (y)|
�(y)

≤ 1 =⇒ |∂αP (0)|
α!

< εα for all α ∈ N
d
0.

Proof. Let (εα)α∈Nd
0

be given. For a suitable increasing sequence Rk → ∞ we

define a radial weight function � : Rd → (0,∞) by �(0) = ε0/3 and

�(x) = |x|k−1 for Rk−1 < |x| ≤ Rk.

We will construct the sequence Rk so that � satisfies slightly more than the asser-
tion of the lemma. Afterwards it is easy to find a continuous modification.

Proceeding recursively, we will show that (Rk)k can be found such that for all
polynomials P ∈ Pk, x ∈ ∂K, and ε ∈ (0, 1) we have

sup
y∈Ax,ε,|y|≤Rk

|P (y)|
�(y)

≤ 1 +
1

k + 1
=⇒ |∂αP (0)|

α!
< εα

for all |α| ≤ k. Since �(0) < ε0/2, this is true for k = 0. We assume that
R0, . . . , Rk−1 are constructed so that

sup
y∈Ax,ε,|y|≤Rk−1

|P (y)|
�(y)

≤ 1 +
1

k
=⇒ |∂αP (0)|

α!
< εα

for all |α| ≤ k − 1 and P ∈ Pk−1. From Lemma 7 we get Ck > 0 such that, for all
P ∈ Pk, x ∈ ∂K, ε ∈ (0, 1), and R > 0,

(3.1)
∑
|α|=k

|∂αP (0)|
α!

≤ Ck

R
sup

y∈Ax,ε,|y|≤R

|P (y)|
Rk−1

.

We choose Rk > Rk−1 such that

Ck

Rk
< min{εα/2 : |α| = k} and

Ck

Rk
<

ε0

3(k + 1)2 Rk
k−1

.
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If now P ∈ Pk satisfies

sup
y∈Ax,ε,|y|≤Rk

|P (y)|
�(y)

≤ 1 +
1

k + 1
,

we apply (3.1) for R = Rk. Since �(y) is increasing we get, for |α| = k,

|∂αP (0)|
α!

≤ Ck

Rk
sup

y∈Ax,ε,|y|≤Rk

|P (y)|
Rk−1

k

<
εα
2

sup
y∈Ax,ε,|y|≤Rk

|P (y)|
�(y)

≤ εα.

Let Pk be the homogeneous part of P of degree k. Using �(y) ≤ Rk−1
k for

|y| ≤ Rk and again (3.1) for R = Rk we obtain

sup
y∈Ax,ε,|y|≤Rk−1

|(P − Pk)(y)|
�(y)

≤ sup
y∈Ax,ε,|y|≤Rk

|P (y)|
�(y)

+ sup
y∈Ax,ε,|y|≤Rk−1

|Pk(y)|
�(0)

≤ 1 +
1

k+1
+

3

ε0

∑
|α|=k

|∂αP (0)|
α!

Rk
k−1 ≤ 1 +

1

k+1
+

3Rk
k−1

ε0

Ck

Rk
sup

y∈Ax,ε,|y|≤Rk

|P (y)|
Rk−1

k

≤ 1 +
1

k + 1
+

1

(k + 1)2
sup

y∈Ax,ε,|y|≤Rk

|P (y)|
�(y)

≤ 1 +
1

k
.

Using the induction assumption we conclude

|∂αP (0)|
α!

=
|∂α(P − Pk)(0)|

α!
< εα for |α| < k. �

Proof of Proposition 5. Consider the space

ϕ(Nd
0) = {x : Nd

0 → C : {α ∈ N
d
0 : xα �= 0} finite}

as the locally convex direct sum of Nd
0 copies of C. It has the finest locally con-

vex topology (that is, every seminorm on it is continuous or, equivalently, every
absorbing absolutely convex set is a neighbourhood of 0) and it is the dual of the

product ω(Nd
0) = CN

d
0 with the product topology where x ∈ ϕ(Nd

0) acts on ω(Nd
0)

by y �→ 〈x, y〉 =
∑

β xβyβ. The set

L = {(α!δα,β)β∈Nd
0

: α ∈ N
d
0} ⊆ ω(Nd

0)

is compact in ω(Nd
0) by Tychonov’s theorem and thus, the polar L◦ = {x ∈ ϕ(Nd

0) :
|〈x, y〉| ≤ 1 for all y ∈ L} is a 0-neighbourhood in ϕ(Nd

0) because L◦ is absolutely
convex and absorbing. Therefore, there is a family (εα)α∈Nd

0
of positive numbers

such that U = {(λα)α∈Nd
0
∈ ϕ(Nd

0) : |λα| < εα} is a 0-neighbourhood in ϕ(Nd
0)

with U ⊆ L◦. For the weight function � from Lemma 8, x ∈ K and ε ∈ (0, 1) we
consider the spaces

Cx,ε :=
{
f ∈ C (Ax,ε) : lim

y→∞
|f(y)|
�(y)

= 0
}
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equipped with the weighted sup-norm ‖f‖x,ε = sup{|f(y)|/�(y) : y ∈ Ax,ε}, and
denote the corresponding unit ball by Bx,ε. In a functional analytic form, Lemma 8
says that the continuous linear mapping

Tx,ε : ϕ (Nn
0 ) → Cx,ε, (λα)α∈Nd

0
�→

(
y �→

∑
α∈Nd

0

λαy
α
)

satisfies T−1
x,ε (Bx,ε) ⊆ U for each x ∈ K and each ε ∈ (0, 1). Since the map

Cx,ε → C0(Ax,ε), f �→ f/� is an isometry Riesz’ representation theorem yields

C′
x,ε =

{
1
� μ : μ a regular finite Borel measure on Ax,ε

}
,

and the unit ball of C′
x,ε is

B◦
x,ε = Dx,ε :=

{
1
� μ : |μ|(Ax,ε) ≤ 1

}
.

By Alaoǧlu’s theorem, this dual unit ball is weak*-compact, and T t
x,ε : C′

x,ε →
ω(Nd

0) is weak*-weak* continuous (this is true for the transposed of every oper-
ator) so that the image T t

x,ε(Dx,ε) is weak*-closed. The bipolar theorem yields
T t
x,ε(Dx,ε) = T t

x,ε(Dx,ε)
◦◦. Applying the general fact that S(A)◦ = (St)−1(A◦) to

S = T t and A = Dx,ε = B◦
x,ε we obtain from T tt = T and B◦◦

x,ε = Bx,ε that

T t
x,ε(Dx,ε) = T t

x,ε(Dx,ε)
◦◦ = T−1

x,ε (Bx,ε)
◦ ⊇ U◦ ⊇ L◦◦ ⊇ L.

Since z = (α!δα,β)β∈Nd
0
∈ L we thus find a measure μ = μα,x,ε on Ax,ε with total

variation bounded by 1 such that z = T t
x,ε(μ/�). This implies the assertion of

Proposition 5 since, for the canonical unit vectors eγ = (δγ,β)β∈Nd
0
,

〈T t
x,ε(μ/�), eγ〉 = μ/�(Tx,εeγ) =

∫
yγ/�(y) dμ(y). �
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[7] Frerick, L., Jordá, E. and Wengenroth, J.: Tame linear extension operators
for smooth Whitney functions. J. Funct. Anal. 261 (2011), no. 3, 591–603.
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