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On the exit time from a cone

for random walks with drift

Rodolphe Garbit and Kilian Raschel

Abstract. We compute the exponential decay of the probability that a
given multi-dimensional random walk stays in a convex cone up to time n,
as n goes to infinity. We show that the latter equals the minimum, on the
dual cone, of the Laplace transform of the random walk increments. As an
example, our results find applications in the counting of walks in orthants,
a classical domain in enumerative combinatorics.

1. Introduction and main results

1.1. General context

For general random processes in R
d, d ≥ 1 (including in particular Brownian mo-

tion and random walks), it is at once important and natural to study the first exit
times τK from certain domains K. Precisely, for discrete-time random processes
(Sn)n≥0, τK is defined by

(1.1) τK := inf{n ≥ 1 : Sn /∈ K}.
Indeed, these random times carry much valuable information on the process. As
an example, the fruitful theory of random walks fluctuations (see, e.g., Spitzer [22])
is based on the analysis of the τK for compact domains K.

In a recent past (1990 to present), the case of cones K has arisen a great interest
in the mathematical community, due to interactions with many areas: First, certain
random walks in conical domains can be treated with representation theory [2], [3]
(in that case, the cones are Weyl chambers related to Lie algebras). Further, the
exit times τK are crucial to construct conditioned random walks in cones, which
appear in the theory of quantum random walks [2], [3], random matrices [13],
non-colliding random walks [8], [14], etc. In another direction, the probability

(1.2) P
x[τK > n]
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admits a direct combinatorial interpretation in terms of the number of walks start-
ing from x and staying in the cone K up to time n. These counting numbers are
particularly important in enumerative combinatorics ([6], [15], [19]), and are the
topic of many recent studies.

For processes with no drift, the exit times τK from cones are now well studied
in the literature. The case of Brownian motion was solved by DeBlassie [7] (see
also Bañuelos and Smits [1]): he showed that the probability (1.2) satisfies a
certain partial differential equation (the heat equation), and he solved it in terms
of hypergeometric functions. Concerning discrete-time random processes, in the
one-dimensional case, the asymptotic behavior of the non-exit probability (1.2) is
well known, as well as that of

(1.3) P
x[Sn = y, τK > n]

(called a local limit theorem), thanks to the theory of fluctuations of random
walks [22]. In higher dimension, some sporadic cases have first been analyzed:
We may cite [11], for which there exists a strong underlying algebraic structure
(certain reflexion groups are finite), or the case of Weyl chambers, which has been
considered in [8] and [14]. For more general cones, but essentially for random
walks with increments having a finite support, Varopoulos [23] gave lower and
upper bounds for the probability (1.2). The first author of the present article
showed in [16] that for general random walks, the probability (1.2) does not decay
exponentially fast. More recently, Denisov and Wachtel [9] provided the exact
asymptotics for both (1.2) and (1.3).

For processes with drift, much less is known. Concerning Brownian motion,
one of the first significant results is due to Biane, Bougerol and O’Connell [4],
who derived the asymptotics of the non-exit probability (1.2) in the case of Weyl
chambers of type A, when the drift is inside of the cone. Later on, by using
different techniques, Pucha�la and Rolski [20] obtained (also in the context of Weyl
chambers) the asymptotics of (1.2) without any hypothesis on the drift. In [17] we
gave, for Brownian motion with a given arbitrary drift, the asymptotics of (1.2)
for a large class of cones.

As for random walks (Sn)n≥0 with increments having a common distribution μ,
the exponential decay of (1.3) is known: it equals the global minimum on R

d of
the Laplace transform of μ:

(1.4) Lμ(x) := Eμ[e〈x,Sn+1−Sn〉] =

∫
Rd

e〈x,y〉μ(dy).

This was first proved by Iglehart [18] for one-dimensional random walks. For more
general walks, this was shown and used by many authors (see, e.g., [9], [16]).
Regarding now the asymptotic behavior of the probability (1.2), the case d = 1 is
known, see [10].

It is the aim of this paper to give, for a very broad class of random walks and
cones, in any dimension, the exponential decay of the non-exit probability (1.2).
We shall also relate its value to the Laplace transform, by proving that it equals
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the minimum of this function on the dual cone; we give the exact statement (The-
orem 1.1) in Subsection 1.4.

Our main motivation comes from the possible applications to lattice path enu-
meration. Indeed, our results provide the first unified treatment of the question of
determining the growth constant for the number of lattice paths confined to the
positive orthant. They also solve a conjecture on these numbers stated in [19].
However, we would like to emphasize that our results are much more general (see
Section 1.3).

Simultaneously and independently of us, Duraj [12] obtained in some particular
case the exact asymptotics of the non-exit probability (1.2) for lattice random
walks. In the following section we introduce our main ideas and tools, and we
discuss the difference between our results and his.

1.2. Preliminary discussion

Let (Sn)n≥0 = (S
(1)
n , . . . , S

(d)
n )n≥0 be the canonical random walk on R

d. Given any
probability measure μ on R

d and x ∈ R
d, we denote by P

x
μ the probability measure

under which (Sn)n≥0 is a random walk started at x whose independent increments
(Sn+1 − Sn)n≥0 have common distribution μ.

The standard idea to handle the case of random walks with non-zero drift is to
carry out an exponential change of measure. More precisely, if z is a point in R

d

such that Lμ(z) is finite, then we can consider the new probability measure

μz(dy) =
e〈z,y〉

Lμ(z)
μ(dy).

It is theoretically possible to compare the behavior of the random walk under Pμ

with its behavior under Pμz thanks to Cramér’s formula (see Lemma 2.1). For
example, for the local probabilities, this formula gives

P
x
μ[Sn = y, τK > n] = Lμ(z)n e〈z,x−y〉

P
x
μz

[Sn = y, τK > n].

Since the asymptotic behavior of those probabilities are now well known when the
random walk has no drift (see [9]), the general problem can be solved if one can find
a point z such that the distribution μz is centered. It is also well known that this
condition is fulfilled if and only if z is a critical point for Lμ (under the assumption
that Lμ be finite in a neighborhood of z). By convexity of Lμ, this means that one
has to find a local, hence global minimum point z = x0 in R

d.
This approach is used by Duraj in [12] to analyze the non-exit probability (1.2).

Indeed, for a lattice random walk, one can sum the contribution of each y to
eventually obtain (below μ0 is an abbreviation for μx0)

P
x
μ[τK > n] = Lμ(x0)n

∑
y∈K∩Zd

e〈x0,x−y〉
P
x
μ0

[Sn = y, τK > n].

But then, one needs to impose an additional condition on the position of the
global minimum point x0 with respect to K so as to ensure that the infinite sum
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of asymptotics will be convergent as well. This technical assumption on x0 done
in [12] happens to have a very natural interpretation in the light of our analysis.
Indeed, for the non-exit probability, Cramér’s formula (applied with any z) gives

(1.5) P
x
μ[τK > n] = Lμ(z)n e〈z,x〉Ex

μ0
[e−〈z,Sn〉, τK > n],

and one sees that the main difficulty will arise because of the exponential term
inside the expectation.

Let K∗ denote the dual cone associated with K, that is, the closed convex cone
defined by

(1.6) K∗ := {z ∈ R
d : 〈x, z〉 ≥ 0, ∀x ∈ K},

where 〈x, z〉 denotes the standard inner product. If z belongs to K∗, it immediately
follows from (1.5) that

P
x
μ[τK > n] ≤ Lμ(z)n e〈z,x〉.

Hence, the infimum ρ of the Laplace transform on K∗ is always an upper bound
of the exponential rate, i.e.,

lim sup
n→∞

P
x
μ[τK > n]1/n ≤ ρ := inf

K∗
Lμ.

Our main result shows that, in fact, when the infimum ρ is a minimum, it is
also a lower bound of the above quantity. Thus ρ is the value of the exponential
decreasing rate of the non-exit probability. It is now easily seen that assumptions 1
and 5 in [12] on the global minimum x0 imply that it belongs to the interior (K∗)o

of the dual cone (and in this case, clearly, x0 = x∗). In [12] the author then obtains
the precise asymptotics of the non-exit probability (1.2) in this specific case.

The general philosophy of our work is different (and in a sense complementary).
We shall only focus on the exponential rate

ρx := lim sup
n→∞

P
x
μ[τK > n]1/n,

and we answer completely the question of determining its value under fairly broad
assumptions, regardless the position of the global minimum point x0.

1.3. Cones and random walks considered

In this work, we consider a closed convex cone K with non-empty interior. Recall
that we denote by K∗ its dual cone, which turns out to be particularly relevant for
our problem. It is the closed convex cone defined in (1.6). We also set

Kδ := K + δv,

where δ ∈ R and v is some fixed vector in Ko, the interior of K.
Throughout this paper, we shall make the assumption that μ is truly d-dimen-

sional in the following sense:

(H1) The support of the probability measure μ is not included in any linear hy-
perplane.
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For a square-integrable probability measure μ with mean m and variance-
covariance matrix Γ, it is well known that the minimal (with respect to inclusion)
affine subspace A such that μ(A) = 1 is m+(ker Γ)⊥. Hence, the condition in (H1)
holds if and only if m+(ker Γ)⊥ is not included in any hyperplane (or equivalently,
if and only if Γ is non-degenerate or dim(ker Γ) = 1 and m /∈ (ker Γ)⊥). Notice
that in the case where m = 0, the assumption (H1) is equivalent to ker Γ = {0},
i.e., Γ is non-degenerate.

As pointed out in the preceding section, our analysis of the decreasing rate of
the non-exit probability requires the existence of a minimum point for the Laplace
transform Lμ on the dual cone. Thus we shall impose the following technical
condition:

(H2) There exists a point x∗ ∈ K∗ and an open neighborhood V of x∗ in R
d such

that Lμ(x) is finite for all x ∈ V , and x∗ is a minimum point of Lμ restricted
to K∗ ∩ V .

It is worth noting that we do not assume the existence of moments of μ. Hy-
pothesis (H2) implies the existence of these moments only in the case where x∗ = 0.

In view of applications, we will prove in Subsection 2.3 that for random walks
with all exponential moments (i.e., Lμ(x) is finite for all x ∈ R

d), the condition (H2)
is equivalent to the more geometric-flavoured condition:

(H2’) The support of μ is not included in any half-space u− := {x ∈ R
d : 〈u, x〉 ≤ 0}

with u ∈ K∗ \ {0}.

1.4. Main results

We are now in position to state our main result:

Theorem 1.1. Suppose μ satisfies (H1) and (H2). Then,

lim
n→∞P

x
μ[τK > n]1/n = Lμ(x∗),

for all x ∈ Kδ, for some constant δ ≥ 0.

For a large class of random walks and cones, Theorem 1.1 gives the universal
recipe to compute the exponential decay of the non-exit probability. Notice that
the latter is independent of the starting point x. This is not the case when (H2) is
not satisfied and we shall illustrate this phenomenon in Section 4, with the walks
in the quarter-plane having transition probabilities as in Figure 1.

Let us point out that, in general, there is no explicit link between the position of
the drift m of the random walk (if it exists), the position of x∗ and the value Lμ(x∗)
of the decreasing rate, except in the case where m belongs to the cone K. As shown
in the next lemma, the fact that m ∈ K is a necessary and sufficient condition for
having Lμ(x∗) = 1 (i.e., a non-exponential decay of the non-exit probability).

Lemma 1.2. Assume (H1) and (H2). Then Lμ(x∗) = 1 if and only if x∗ = 0. In
addition, if the drift m =

∫
Rd yμ(dy) exists (i.e., if μ admits a moment of order 1),

then m belongs to K if and only if x∗ = 0.



516 R. Garbit and K. Raschel

Theorem 1.1 in itself does not provide any explicit value for the constant δ, but
such a value can be found a posteriori thanks to the following:

Proposition 1.3. The statement in Theorem 1.1 holds for any δ ≥ 0 for which
there exists n0 ≥ 1 such that

P
0
μ[τK−δ

> n0, Sn0 ∈ Ko] > 0.

The proofs of Theorem 1.1, Lemma 1.2 and Proposition 1.3 are postponed to
Subsection 2.2.

In order to illustrate Theorem 1.1, it is interesting to compare its content with
the corresponding result known for Brownian motion with drift, in the light of the
recent paper [17]. It is proved there that, for Brownian motion (Bt)t≥0 with drift
a ∈ R

d, the non-exit probability admits the asymptotics (in the continuous case,
the exit time from K is defined by τK := inf{t > 0 : Bt /∈ K})

(1.7) P
x[τK > t ] = κh(x) t−α e−γt (1 + o(1)), t → ∞,

where γ := d(a,K)2/2. Therefore

lim
t→∞P

x[τK > t ]1/t = e−d(a,K)2/2.

Let us compare with the value given by Theorem 1.1 for the random walk (Bn)n≥0.
Its distribution μ is Gaussian with mean a and identity variance-covariance matrix;
therefore

Lμ(x) = e|x|
2/2+〈x,a〉.

The minimum on K∗ of |x|2/2 + 〈x, a〉 is obviously the minimum on the polar cone
K� = −K∗ of

|x|2/2 − 〈x, a〉 = |x− a|2/2 − |a|2/2.

It is reached at x = p⊥K�(a), the orthogonal projection of a on K�, and an easy
computation shows that the minimum value is

|p⊥K�(a) − a|2/2 − |a|2/2 = −|a− p⊥K(a)|2/2 = −d(a,K)2/2,

where we have used Moreau’s decomposition theorem which asserts that, for any
convex cone K, a is the orthogonal sum of p⊥K(a) and p⊥K�(a). We thus have

min
K∗

Lμ = e−d(a,K)2/2,

which means that the exponential decreasing rate is the same for Brownian motion
(Bt)t≥0 and for the “sampled” Brownian motion (Bn)n≥0, as one could expect.

1.5. Plan of the paper

The rest of our article is organized as follows. In Section 2 we prove Theorem 1.1.
In Section 3 we present an important consequence of Theorem 1.1 in the counting
of walks in orthants (a topical domain in enumerative combinatorics), see Corol-
laries 3.1 and 3.2. In Section 4 we consider the walks of Figure 1, for which we
prove that contrary to the walks satisfying hypothesis (H2), the exponential decay
depends on the starting point x. Finally, in Section 5 we prove the non-exponential
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decay of the non-exit probability for random walks with drift in the cone (a refine-
ment of a theorem of [16]), which is needed for proving our main result.

�

�

�

�

�

q

p q

x

Figure 1. Random walks considered in Section 4 (p + 2q = 1, p, q > 0), for different
starting points x.

2. Proof of the main results

This section is organized as follows. In Subsection 2.1, we review some elementary
properties of the Laplace transform and present Cramér’s formula. Then, we prove
Theorem 1.1, Lemma 1.2 and Proposition 1.3 in Subsection 2.2. In Subsection 2.3
we provide a geometric interpretation of our main assumption on the random walk
distribution.

2.1. Cramér’s formula

The Laplace transform of a probability distribution μ is the function Lμ defined
for x ∈ R

d by

Lμ(x) :=

∫
Rd

e〈x,y〉μ(dy).

It is clearly a convex function. If Lμ is finite in a neighborhood of the origin, say

B(0, r), then it is well known that Lμ is (infinitely) differentiable in B(0, r), and
that its partial derivatives are given by

∂Lμ(x)

∂xi
=

∫
Rd

yi e
〈x,y〉 μ(dy), ∀i ∈ �1, d�.

Therefore, the expectation of μ is equal to the gradient of Lμ at the origin: E[μ] =
∇Lμ(0). Notice that μ is centered if and only if 0 is a critical point of Lμ.

Suppose now that z is a point where Lμ is finite, and let μz denote the proba-
bility measure defined by

(2.1) μz(dy) :=
e〈z,y〉

Lμ(z)
μ(dy).

The Laplace transform of μz is related to that of μ by the formula

Lμz(x) =
Lμ(z + x)

Lμ(z)
.
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If in addition Lμ is finite in some ball B(z, r), then Lμz is finite in B(0, r). By
consequence, Lμz is differentiable in B(0, r) and

E[μz ] = ∇Lμz(0) =
∇Lμ(z)

Lμ(z)
.

The distribution of the random walk under Pμz is linked to the initial distribu-
tion by the following:

Lemma 2.1 (Cramér’s formula). We have, for any measurable and positive func-
tion F : Rn → R,

E
x
μ[F (S1, . . . , Sn)] = Lμ(z)n e〈z,x〉 Ex

μz
[e−〈z,Sn〉F (S1, . . . , Sn)].

Proof. It follows directly from the definition (2.1) of μz that

μ⊗n(dy1, . . . , dyn) = Lμ(z)n e−〈z,∑n
i=1 yi〉μ⊗n

z (dy1, . . . , dyn).

The conclusion is then straightforward. �

Applied to the function F (s1, . . . , sn) = Πn
i=1�K(si), Cramér’s formula reads

P
x
μ[τK > n] = Lμ(z)n e〈z,x〉Ex

μz
[e−〈z,Sn〉, τK > n],

and this implies that for all x ∈ R
d,

(2.2) lim sup
n→∞

P
x
μ[τK > n]1/n ≤ inf

K∗
Lμ,

as already observed at the end of Subsection 1.2.

2.2. Proofs of Theorem 1.1, Lemma 1.2 and Proposition 1.3

In order to obtain the lower bound for the non-exit probability, we shall use
Cramér’s formula at z = x∗. The following lemma gives some useful informa-
tion on the position of the drift of the random walk under the measure changed
at x∗.

Lemma 2.2. Suppose μ satisfies (H1) and (H2). Then, the gradient ∇Lμ(x∗)
belongs to K and is orthogonal to x∗.

Proof. We first notice that under (H2), the Laplace transform is finite, hence
differentiable, in some neighborhood of x∗. It is well known that the equality
(K∗)∗ = K holds for any closed convex cone, see Theorem 14.1 in [21]. Hence
∇Lμ(x∗) belongs to K if and only if

〈∇Lμ(x∗), y〉 ≥ 0, ∀y ∈ K∗.

So, let y ∈ K∗. Since K∗ is a convex cone and x∗ ∈ K∗, x∗ + ty also belongs to K∗

for all t ≥ 0. Hence, thanks to (H2), the function

t ∈ [0,∞) �→ fy(t) := Lμ(x∗ + ty)
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is differentiable in some neighborhood of t = 0 and reaches its minimum at t = 0.
This implies

〈∇Lμ(x∗), y〉 = f ′
y(0) ≥ 0.

Now, if we take y = x∗, we have a stronger result since x∗ + tx∗ = (1+ t)x∗ belongs
to K∗ for all t ≥ −1: the function fx∗ is differentiable in some open neighborhood
of t = 0 and has a local minimum point on [−1,∞) at t = 0, hence

〈∇Lμ(x∗), x∗〉 = f ′
x∗(0) = 0.

The proof is completed. �

We are now in position to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. As already observed, Lμ(x∗) is an upper bound for the ex-
ponential decreasing rate

lim sup
n→∞

P
x
μ[τK > n]1/n,

and it remains to prove that it is also the right lower bound. By performing the
Cramér transformation at x∗, we get

P
x
μ[τK > n] = ρn e〈x

∗,x〉
E
x
μ∗ [e−〈x∗,Sn〉, τK > n]

≥ ρn e〈x
∗,x〉 e−α

√
n
P
x
μ∗ [|〈x∗, Sn〉| ≤ α

√
n, τK > n],

where ρ = Lμ(x∗), μ∗(dy) = ρ−1e〈x
∗,y〉μ(dy), and α is any positive number. Notice

that μ∗ is truly d-dimensional, because μ has this property and both measures have
the same support. Note also that by assumption (H2), Lμ∗(x) = ρ−1Lμ(x∗ + x) is
finite in some neighborhood of x = 0, and therefore μ∗ has all moments. Since the
new drift

E[μ∗] = m∗ = ρ−1∇Lμ(x∗)

belongs to K and is orthogonal to x∗ (by Lemma 2.2), it follows from Proposi-
tion 5.1 in Section 5 that there exist α > 0 and δ ≥ 0 such that

lim
n→∞P

x
μ∗ [|〈x∗, Sn〉| ≤ α

√
n, τK > n]1/n = 1, ∀x ∈ Kδ.

Hence, we reach the conclusion that

lim inf
n→∞ P

x
μ[τK > n]1/n ≥ ρ

for all x ∈ Kδ, and the theorem is proved. �

We now give the proof of Lemma 1.2, which provides a necessary and sufficient
condition for having Lμ(x∗) = 1.

Proof of Lemma 1.2. Assume that Lμ(x∗) = 1 and at the same time x∗ �= 0. It is
well known that Lμ is then finite on [0, x∗], thus strictly convex on that segment
(see Subsection 2.3). Since Lμ(0) = Lμ(x∗) = 1 it follows that Lμ(x) < 1 for
all x ∈ (0, x∗). But this open interval is a subset of K∗, hence this contradicts the
hypothesis (H2) asserting that x∗ is a local minimum point on K∗. Conversely,
that x∗ = 0 implies Lμ(x∗) = 1 is trivial.
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We now turn to the second part of the lemma. First, we know from Lemma 2.2
that ∇Lμ(x∗) belongs to K. So, if x∗ = 0, then m = ∇Lμ(0) belongs to K (here we
do not need to assume the existence of m: it exists because (H2) at x∗ = 0 ensures
that Lμ is infinitely differentiable in some neighborhood of 0, and therefore μ has
all moments). Conversely, assume that m exists and belongs to K and suppose
that x∗ �= 0. Consider the function g(t) = Lμ(tx∗), which is finite on [0, 1]. Under
the assumption

∫ |y|μ(dy) < ∞, it follows by standard arguments that g(t) has a
right derivative at t = 0 given by g′(0+) = 〈x∗,m〉. Since m belongs to K and x∗

to K∗, this derivative is non-negative. So, g(t) must be increasing since it is strictly
convex. Thus Lμ(tx∗) = g(t) < g(1) = Lμ(x∗) for all t ∈ [0, 1), and x∗ cannot be
a local minimum. �

To conclude this section, we explain how to find a δ ≥ 0 for which the statement
of Theorem 1.1 holds.

Proof of Proposition 1.3. Recall that v ∈ Ko is fixed and Kδ = K+δv. We assume
that there exist δ ≥ 0 and k ≥ 1 such that

P
0
μ[τK−δ

> k, Sk ∈ Ko] > 0.

Therefore, we can find ε > 0 such that

P
0
μ[τK−δ

> k, Sk ∈ Kε] = γ > 0,

and since K is a convex cone, it satisfies the relation K + K ⊂ K, thus

P
x
μ[τK > k, Sk − x ∈ Kε] ≥ γ,

for all x ∈ Kδ (by inclusion of events). From this, we shall deduce by induction
that

(2.3) p� := P
x
μ[τK > 
k, S�k − x ∈ K�ε] ≥ γ�,

for all 
 ≥ 1 and x ∈ Kδ. Indeed, by the Markov property of the random walk,

p�+1 ≥ E
x
μ[τK > 
k, S�k − x ∈ K�ε,P

S�k
μ [τK > k, Sk − x ∈ K(�+1)ε]]

≥ p� · inf
y
P
y
μ[τK > k, Sk − x ∈ K(�+1)ε],

where the infimum is taken over all y ∈ K such that y − x ∈ K�ε. Noting that
y − x ∈ K�ε and Sk − y ∈ Kε imply Sk − x ∈ K(�+1)ε, we obtain

p�+1 ≥ p� · inf
y
P
y
μ[τK > k, Sk − y ∈ Kε].

But x ∈ Kδ and y − x ∈ K�ε ⊂ K imply y ∈ Kδ. Hence p�+1 ≥ p� · γ and (2.3) is
proved.

Now Theorem 1.1 asserts the existence of some δ0 ≥ 0 such that

lim
n→∞P

y
μ[τK > n]1/n = Lμ(x∗),
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for all y ∈ Kδ0 , and we want to prove that the result also holds for x ∈ Kδ. To
do this, we shall simply use (2.3) in order to push the walk from Kδ to Kδ0 . More
precisely, choose 
 ≥ 1 such that δ + 
ε ≥ δ0. Then for all x ∈ Kδ the inclusion
x + K�ε ⊂ Kδ0 holds, and thanks to (2.3),

P
x
μ[τK > m,Sm ∈ Kδ0 ] ≥ γ�,

for m = k
. By the Markov property, for all n ≥ m, we have

P
x
μ[τK > n] ≥ E

x
μ[τK > m,Sm ∈ Kδ0 ,P

Sm
μ [τK > n−m]]

≥ γ� · inf
y∈Kδ0

P
y
μ[τK > n−m] ≥ γ� · Pδ0v

μ [τK > n−m],

where the last inequality follows by inclusion of events. This implies immediately

lim inf
n→∞ P

x
μ[τK > n]1/n ≥ Lμ(x∗).

But since the inequality

lim sup
n→∞

P
x
μ[τK > n]1/n ≤ Lμ(x∗)

holds for all x (see (2.2)), Proposition 1.3 is proved. �

2.3. Geometric interpretation of condition (H2)

The aim of this subsection is to give a geometric interpretation of condition (H2)
under some additional condition on the exponential moments. Throughout this
section, we fix a closed convex cone C and assume that μ has all C-exponential
moments, that is,

Lμ(x) < ∞, ∀x ∈ C.

The strict convexity of the exponential function ensures that

(2.4) Lμ(ax1 + bx2) ≤ aLμ(x1) + b Lμ(x2),

for all x1 �= x2 ∈ C and a, b > 0 with a + b = 1, and that equality occurs if and
only if

μ((x1 − x2)⊥) = 1,

where (x1 − x2)⊥ denotes the hyperplane orthogonal to x1 − x2. Thus, if (H1) is
satisfied, the equality in (2.4) never occurs and Lμ is strictly convex on C.

Let S
d−1 denote the unit sphere of R

d. Standard arguments involving the
convexity of Lμ and the compactness of C ∩ S

d−1 show that Lμ(x) goes to infinity
as |x| → ∞ uniformly on C if and only if

(2.5) lim
t→∞Lμ(tu) = ∞, ∀u ∈ C ∩ S

d−1.

Hence, the condition (2.5) is sufficient for the existence of a global minimum on C.
Indeed, if it is satisfied, then there exists R > 0 such that Lμ(x) ≥ 1 for all x ∈ C

with |x| ≥ R. By continuity, Lμ reaches a minimum on B(0, R) ∩ C which is less
than or equal to 1 (since Lμ(0) = 1), thus it is a global minimum on C.
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The next lemma gives some interesting information on the behavior at infinity
of Lμ. Recall that u− denotes the half-space {y ∈ R

d : 〈u, y〉 ≤ 0}.

Lemma 2.3. Suppose that μ has all C-exponential moments. For every u ∈
C ∩ S

d−1, the following dichotomy holds:

(1) If μ(u−) < 1, then

lim
t→∞Lμ(x + tu) = ∞, ∀x ∈ C.

(2) If μ(u−) = 1, then

lim
t→∞Lμ(x + tu) =

∫
u⊥

e〈x,y〉μ(dy), ∀x ∈ C.

Proof. If μ(u−) < 1, then we can find ε > 0 such that the set {y ∈ R
d : 〈u, y〉 ≥ ε}

has positive measure, and the inequality

Lμ(x + tu) ≥
∫
{y∈Rd:〈u,y〉≥ε}

e〈x,y〉etεμ(dy) ≥ cetε,

proves the first assertion of Lemma 2.3. Suppose on the contrary that μ(u−) = 1.
We then may write

Lμ(x + tu) =

∫
u⊥

e〈x,y〉μ(dy) +

∫
{y∈Rd:〈u,y〉<0}

e〈x+tu,y〉μ(dy).

The second integral on the right-hand side of the above equation goes to zero as t
goes to infinity by the dominated convergence theorem, thus proving the second
assertion of Lemma 2.3. �

Lemma 2.4. Suppose that μ satisfies (H1) and has all C-exponential moments.
Then the Laplace transform Lμ has a global minimum on the closed convex cone C
if and only if there does not exist any u �= 0 in C such that μ(u−) = 1.

Proof. If μ(u−) < 1 for all u �= 0 in C, then limt→∞ Lμ(tu) = ∞ by Lemma 2.3,
and the function Lμ has a global minimum on C as explained earlier. Now, suppose
on the contrary that μ(u−) = 1 for some u �= 0 in C. Then, by Lemma 2.3 again,
the limit

h(x) := lim
t→∞Lμ(x + tu)

exists and is finite for all x. Since any convex cone is a semi-group, x+ tu ∈ C for
all x ∈ C and t ≥ 0, and consequently

h(x) ≥ inf
C

Lμ, ∀x ∈ C.

But our assumption that μ satisfies (H1) implies that Lμ is strictly convex, so that
Lμ(x) > h(x) for all x ∈ C (for else the strictly convex function t �→ Lμ(x+ tu) on
[0,∞) would not have a finite limit). We thus reach the conclusion that Lμ(x) >
infC Lμ for all x ∈ C, thereby proving that Lμ has no global minimum on C. �

For random walks with all exponential moments, the equivalence between con-
ditions (H2) and (H2’) under (H1) is now an easy consequence of Lemma 2.4.
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3. Application to lattice path enumeration

In this section we present an application of our main result (Theorem 1.1) in
enumerative combinatorics: given a finite set S of allowed steps, a now classical
problem is to study S-walks in the orthant

Q := (R+)d = {x ∈ R
d : xi ≥ 0, ∀i ∈ �1, d�},

that is walks confined to Q, starting at a fixed point x (often the origin) and using
steps in S only. Denote by fS(x, y;n) the number of such walks that end at y
and use exactly n steps. Many properties of the counting numbers fS(x, y;n) have
been recently analyzed (the seminal work in this area is [6]). First, exact properties
of them were derived, via the study of their generating function (exact expression
and algebraic nature). Such properties are now well established for the case of
small steps walks in the quarter-plane, meaning that the step set S is included in
{0,±1}2. More qualitative properties of the fS(x, y;n) were also investigated, such
as the asymptotic behavior, as n → ∞, of the number of excursions fS(x, y;n) for
fixed y, or that of the total number of walks,

(3.1) fS(x;n) :=
∑
y∈Q

fS(x, y;n).

Concerning the excursions, several small steps cases have been treated by Bousquet-
Mélou and Mishna [6] and by Fayolle and Raschel [15]. Later on, Denisov and
Wachtel [9] obtained the very precise asymptotics of the excursions, for a quite
large class of step sets and cones. As for the total number of walks (3.1), only
very particular cases are solved, see again [6] and [15]. In a most recent work [19],
Johnson, Mishna and Yeats obtained an upper bound for the exponential growth
constant, namely,

lim sup
n→∞

fS(x;n)1/n,

and proved by comparison with results of [15] that these bounds are tight for
all small steps models in the quarter-plane. In the present article, we find the
exponential growth constant of the total number of walks (3.1) in any dimension
for any model such that:

(H1”) The step set S is not included in a linear hyperplane;

(H2”) The step set S is not included in a half-space u−, with u ∈ Q \ {0}.

Our results provide the first unified treatment of this problem of determining the
growth constant for the number of lattice paths confined to the positive orthant.
In the sequel we shall say that a step set S is proper if it satisfies to (H1”)
and (H2”). Note in particular that the well-known 79 models of walks in the
quarter-plane studied in [6] and [15] (including the so-called 5 singular walks)
satisfy both hypotheses above.

Corollary 3.1. Let S be any proper step set. The Laplace transform of S,

LS(x) :=
∑
s∈S

e〈x,s〉,
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reaches a global minimum on Q at a unique point x0, and there exists δ ≥ 0 such
that for any starting point x ∈ Qδ,

lim
n→∞ fS(x;n)1/n = LS(x0).

Suppose that, in addition:

(H3”) The step set allows a path staying in Q from the origin to some point in the
interior of Q.

Then it follows from Proposition 1.3 that the result in Corollary 3.1 holds with
δ = 0, i.e., it is valid for all x ∈ Q. Note that this assumption is not restrictive
from a combinatorial point of view, since if (H3”) is not satisfied, the counting
problem is obvious.

Proof of Corollary 3.1. Consider a random walk (Sn)n≥0 starting from x such
that μ is the uniform law on S. Let then τQ denote the first exit time from Q.
The enumeration problem is related to probabilities in a simple way:

(3.2) P
x
μ[τQ > n] =

fS(x;n)

|S|n .

Further, it is immediate from our definitions that LS(x) = |S|Lμ(x). Corollary 3.1
then follows from Theorem 1.1 and from the fact that Q∗ = Q. �

As a consequence, we obtain the following result, which was conjectured in [19]:

Corollary 3.2. Let S ⊂ Z
d be a proper step set (hypotheses (H1”) and (H2”)),

which additionally satisfies (H3”), and let KS be the growth constant for the total
number of walks (3.1). Let P be the set of hyperplanes through the origin in R

d

which do not meet the interior of the first orthant. Given p ∈ P, let KS(p) be
the growth constant of the walks on S which are restricted to the side of p which
includes the first orthant. Then KS = minp∈P KS(p).

Proof. Let us first notice that P can be described as the set of hyperplanes u⊥ such
that u ∈ Q ∩ S

d−1, and that the side of p = u⊥ which includes the first orthant is
then the half-space u+ = {x ∈ R

d : 〈x, u〉 ≥ 0}. By Theorem 1.1, the exponential
rate for the random walk associated to the step set S and confined to u+ is the
minimum of LS/|S| on the dual cone (u+)∗ = {tu : t ≥ 0}. Therefore, the growth
constant KS(p) equals mint≥0 LS(tu), and the equality

min
x∈Q

LS(x) = min
u∈Q∩ Sd−1

min
t≥0

LS(tu)

immediately translates into

KS = min
p∈P

KS(p).

The proof of Corollary 3.2 is completed. �
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4. An example of half-space walk

In this section we illustrate the following phenomenon: if the support of the random
walk is included in a certain half-space (chosen so as contradicting (H2)), such a
universal result as Theorem 1.1 does not hold; in particular, the exponential decay
of the non-exit probability may depend on the starting point.

Let (Sn)n≥0 be the random walk on Q starting at x and with transition prob-
abilities to (1,−1), (−1, 1) and (−1,−1), with respective probabilities q, q and p,
where p + 2q = 1 and p, q > 0, see Figures 1 and 2. Let τQ be the exit time (1.1)
of this random walk from the quarter-plane Q. Finally, define for fixed N the
segment D2N = {(i, j) ∈ Q : i + j = 2N}.

Proposition 4.1. For any N ≥ 1 and any x ∈ D2N , we have

(4.1) lim
n→∞P

x[τQ > n]1/n = 2q cos
( π

2N + 2

)
.

We shall need the following result on the simple symmetric random walk on Z

(the proof can be easily derived from the identities in [22], page 243):

Lemma 4.2 ([22]). For the simple symmetric random walk (S̃n)n≥0 on Z (with
jumps to the left and to the right with equal probabilities 1/2), we have, for any
x ∈ �0, 2N�,

lim
n→∞P

x[S̃1, . . . , S̃n ∈ �0, 2N�]1/n = cos
( π

2N + 2

)
.
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Figure 2. Random walks considered in the proof of Proposition 4.1 on the lines {(i, j) ∈
Q : i+ j = 2N} for N ≥ 0

Proof of Proposition 4.1. We shall prove Proposition 4.1 by induction over N ≥ 1.
For N = 1, we have three choices for x (see Figure 2). We write the proof when
x = (1, 1), since the arguments for other values of x are quite similar. For this
choice of x, the origin (0, 0) can be reached only at odd times n, and in that event,
the random walk gets out of Q at time n + 1. From this simple remark we deduce
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that (below, we note (Xk)k≥1 the increments of the random walk (Sn)n≥0)

P
x[τQ > 2n] = P

x[τQ > 2n,Xk �= (−1,−1), ∀k ∈ �1, n�]

= P
x[τQ > 2n|Xk �= (−1,−1), ∀k ∈ �1, n�] (2q)n.

Further, the random walk conditioned on never making the jump (−1,−1) is a
simple symmetric random walk on the segment D2. Therefore,

P
x[τQ > 2n] = P

1[S̃1, . . . , S̃n ∈ �0, 2�] (2q)2n.

Using Lemma 4.2, we conclude that for x = (1, 1),

lim
n→∞P

x[τQ > 2n]1/(2n) = 2q cos
(π

4

)
.

The fact that P
x[τ > n] is decreasing in n implies that the above equation holds

with 2n + 1 instead of 2n. This achieves the proof of Proposition 4.1 for N = 1.
Let us now assume that equation (4.1) holds for a fixed value of N ≥ 1. For

x ∈ D2N+2, introduce
H := inf{n > 0 : Sn ∈ D2N}

the hitting time of the set D2N , see Figure 2. We can write

(4.2) P
x[τQ > n] = P

x[τQ > n,H > n] +

n∑
k=1

P
x[τQ > n,H = k].

The first term in the right-hand side of (4.2) can be written as

P
x[τQ > n,H > n] = P

x[τQ > n|H > n] (2q)n,

where (for the same reasons as for the case N = 1)

lim
n→∞P

x[τQ > n|H > n]1/n = cos
( π

2N + 4

)
.

As for the second term in the right-hand side of (4.2),

P
x[τQ > n,H = k] = E

x[τQ > k,H = k,PSk [τQ > n− k]]

≤ C · Px[τQ > k,H = k]Px0 [τQ > n− k]

≤ C · Px[τQ > k − 1, H > k − 1]Px0 [τQ > n− k]

:= C ak bn−k.

The first equality above comes from the strong Markov property. The first in-
equality follows from the fact that for any fixed x0 ∈ D2N , there exists a constant
C > 0 such that, for any n ≥ 0 and any y ∈ D2N , Py[τQ > n] ≤ CP

x0 [τQ > n].
The second inequality is obvious, and the last line has to be read as a definition.

Using on the one hand the same reasoning as for the case N = 1, and on the
other hand the induction hypothesis, we obtain

lim
n→∞ a1/nn = 2q cos

( π

2N + 4

)
> 2q cos

( π

2N + 2

)
= lim

n→∞ b1/nn .
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Standard properties of the Cauchy product then lead to

lim sup
n→∞

( n∑
k=1

akbn−k

)1/n

≤ 2q cos
( π

2N + 4

)
.

To summarize, with the help of (4.2) we have written P
x[τQ > n] = An + Bn,

where

lim
n→∞A1/n

n = 2q cos
( π

2N + 4

)
, lim sup

n→∞
B1/n

n ≤ 2q cos
( π

2N + 4

)
.

The formula (4.1) therefore holds for N + 1, and Proposition 4.1 is proved. �

5. The case of random walks with drift in the cone

In this section we refine a result announced in [16] concerning the non-exponential
decay of the non-exit probability (1.2) from a cone for a centered, square-integrable
and non-degenerate multidimensional random walk. We prove that the result
in [16] still holds if the random walk has a drift in the cone and if the hypothesis
that its variance-covariance matrix is non-degenerate is weakened to (H1). This
result is one of the main ingredients of the proof of Theorem 1.1. We would like
to notice that the proof of (a weakened form of) Proposition 5.1 below was only
sketched in [16], so that the extended proof we shall give here is new.

As before, we only assume that K is a closed convex cone with non-empty
interior Ko. We fix some v ∈ Ko and define Kδ = K + δv. In this setting, we shall
prove the following:

Proposition 5.1. Assume that the distribution μ of the random walk increments
is square-integrable and truly d-dimensional (H1). Suppose in addition that the
drift m = E

0[S1] belongs to the cone K and that v is a vector orthogonal to m.
Then there exists α > 0 and δ ≥ 0 such that, for all x ∈ Kδ,

lim
n→∞P

x[τK > n, |〈v, Sn〉| ≤ α
√
n]1/n = 1.

If m = 0, as we have already explained, (H1) is equivalent to the fact that
the variance-covariance matrix of the increments distribution is non-degenerate.
Hence, we exactly recover the main theorem in [16]. However, if m �= 0, Proposi-
tion 5.1 can not be derived the main result of [16]. Indeed, under the hypothesis
of Theorem 5.1, it is clear that

P
x[τK > n, |〈v, Sn〉| ≤ α

√
n] ≥ P

x[τK(S̃) > n, |〈v, S̃n〉| ≤ α
√
n],

where (S̃n = Sn − nm)n≥0 is the centered random walk associated with (Sn)n≥0.

But the variance-covariance matrix of S̃1 is equal to that of S1 and might be
degenerate, so that the main theorem in [16] would not apply to the walk (S̃n)n≥0.
This is for example the case when (Sn)n≥0 is the uniform two-dimensional random
walk with step set S = {(0, 1), (1, 0)}.

In order to prove Theorem 5.1, we will need a series of lemmas. We begin with
some geometric considerations.
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Lemma 5.2. Let m be a point in K and V be a linear subspace of Rd. If (m +
V ) ∩Ko = ∅, then m + V is included in a hyperplane.

Proof. Clearly, dimV < d, for else m + V = R
d would intersect Ko. Since m + V

is included in the linear subspace generated by m and V , whose dimension is less
or equal to dim V + 1, the affine space m + V is always included in a hyperplane
if dimV < d − 1. Thus, it remains to consider the case where V is a hyperplane,
that is,

V = u⊥ = {x ∈ R
d : 〈u, x〉 = 0}

for some u �= 0. Assume m /∈ V . Possibly changing u to −u, we can assume in
addition that 〈m,u〉 > 0. Then,⋃

λ>0

(λm + V ) =
⋃
λ>0

(λu + V ) = {x ∈ R
d : 〈u, x〉 > 0} =: u+

∗ .

Further, by homogeneity of V and Ko, we have (λm+V )∩Ko = ∅ for every λ > 0.
Hence, Ko does not intersect u+∗ , and is therefore included in u− = {x ∈ R

d :
〈u, x〉 ≤ 0}. This is a contradiction since m ∈ K = (Ko) (this equality holds for
any convex set with non-empty interior) and 〈m,u〉 > 0. Thus m belongs to V
and m + V = V is a hyperplane. �

Lemma 5.3. Let Y ∈ R
d be a random vector with Gaussian distribution N (m,Γ).

If m belongs to K and if m + (ker Γ)⊥ is not included in a hyperplane, then

P[Y ∈ Ko] > 0.

Proof. It is well known that the Gaussian distribution N (m,Γ) admits a positive
density with respect to Lebesgue measure on the affine space m+ (ker Γ)⊥. Thus,
it suffices to show that (m + (ker Γ)⊥) ∩ Ko is a non-empty open set in m +
(ker Γ)⊥. But this follows from Lemma 5.2 since m + (ker Γ)⊥ is not contained in
a hyperplane. �

Lemma 5.4. Under the hypotheses of Theorem 5.1, there exist k ≥ 1 and δ ≥ 0
such that

P[τK−δ
> k, Sk ∈ Ko] > 0.

Proof. For n ≥ 1 define Zn := (Sn − nm)/
√
n. The homogeneity and convexity

properties of K ensure that

{Sn ∈ Ko} = {Zn ∈ Ko −√
nm} ⊃ {Zn ∈ Ko −m}

Let Γ denote the variance-covariance matrix of μ. We notice that m + (ker Γ)⊥

is not included in a hyperplane since μ satisfies (H1). The central limit theorem
asserts that (Zn)n≥1 converges in distribution to a random vector Y with Gaussian
distribution N (0,Γ). Hence, applying the Portmanteau theorem (Theorem 2.1
in [5]), we obtain the inequality

lim inf
n→∞ P[Sn ∈ Ko] ≥ P[Y ∈ Ko −m],
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where the right-hand side is positive according to Lemma 5.3. Now, to conclude
it suffices to fix k so that P[Sk ∈ Ko] = 2ε > 0, and then choose δ so large that
P[τK−δ

> k] ≥ 1 − ε (this is possible since K−δ ↑ R
d as δ ↑ ∞). �

Proof of Theorem 5.1. The proof follows the same kind of arguments as in [16].
We shall first use Lemma 5.4 in order to push the random walk inside the cone
at a distance

√
n from the boundary, and then apply the functional central limit

theorem.
Recall that v ∈ Ko is fixed and that Kδ = K + δv. We know by Lemma 5.4

that there exist δ ≥ 0 and k ≥ 1 such that

P[τK−δ
> k, Sk ∈ Ko] > 0.

Therefore, we can find a closed ball B := B(z, ε) ⊂ Ko, with center at z ∈ Ko and
radius ε > 0, such that

P[τK−δ
> k, Sk ∈ B] = γ > 0.

Since K is a convex cone, it satisfies the relation K + K ⊂ K, thus

P
x[τK > k, Sk − x ∈ B] ≥ γ,

for all x ∈ Kδ (by inclusion of events). From this, we shall deduce by induction
that

(5.1) p� := P
x[τK > 
k, S�k − x ∈ 
B] ≥ γ�,

for all 
 ≥ 1 and x ∈ Kδ. Indeed, by the Markov property of the random walk,

p�+1 ≥ E
x[τK > 
k, S�k − x ∈ 
B,PS�k [τK > k, Sk − x ∈ (
 + 1)B]]

≥ p� · inf
{y∈K:y−x∈�B}

P
y[τK > k, Sk − x ∈ (
 + 1)B].

Noticing that y − x ∈ 
B and Sk − y ∈ B yields Sk − x ∈ (
 + 1)B, we obtain

p�+1 ≥ p� · inf
{y∈K:y−x∈�B}

P
y[τK > k, Sk − y ∈ B].

But x ∈ Kδ and y − x ∈ 
B ⊂ K imply y ∈ Kδ. Hence p�+1 ≥ p� · γ and (5.1) is
proved.

Now, for x ∈ Kδ, define

p̃n := P
x[τK > n, |〈v, Sn〉| ≤ α

√
n],

where α > 0 will be fixed latter. Write 
 = �√n� for the lower integer part of
√
n.

Using the Markov property at time 
k and the estimate in (5.1) leads to

p̃n ≥ P
x[τK > n, S�k − x ∈ 
B, |〈v, Sn〉| ≤ α

√
n]

≥ E
x[τK > 
k, S�k − x ∈ 
B,PS�k [τK > n− 
k, |〈v, Sn−�k〉| ≤ α

√
n]]

≥ γ� · inf
{y∈K:y−x∈�B}

P
y[τK > n− 
k, |〈v, Sn−�k〉| ≤ α

√
n].
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Therefore, Proposition 5.1 will follow from the fact that

lim inf
n→∞ inf

{y∈K:y−x∈�B}
P
y[τK > n− 
k, |〈v, Sn−�k〉| ≤ α

√
n] > 0,

which we shall prove now. Since 
k � n does not play any significant role in the
last probability, we will neglect it in order to simplify notations. Also, for any
ε′ > ε, we have

x + 
B = 

(x



+ B(z, ε)
)
⊂ 
B(z, ε′)

for all large enough n. Since an ε′ > ε can be found so that B(z, ε′) ⊂ Ko, we may
replace x + 
B by 
B without loss of generality. Finally, since 
 ≤ √

n, we may
replace 
B by

√
nB. With these simplifications, it remains to consider

qn := inf
{y∈K:y∈√

nB}
P
y[τK > n, |〈v, Sn〉| ≤ α

√
n].

By mapping y to y/
√
n, we may write

qn = inf
y∈B

qn(y),

where
qn(y) := P

0[τK(y
√
n + S) > n, |〈v, y√n + Sn〉| ≤ α

√
n].

Let S̃ = (S̃n = Sn − nm)n≥0 denote the centered random walk associated with
S = (Sn)n≥0. By inclusion of events we get the lower bound

qn(y) ≥ P
0[τK(y

√
n + S̃) > n, |〈v, y√n + S̃n〉| ≤ α

√
n],

where we used the fact that m ∈ K and 〈v,m〉 = 0. Finally, let us denote by Zn =

(Zn(t))t the random process with continuous paths that coincides with S̃k/
√
n for

t = k/n and which is linearly interpolated elsewhere. By definition of Zn and
convexity of K, the last inequality immediately rewrites

qn(y) ≥ P
0[τK(y + Zn(t)) > 1, |〈v, y + Zn(1)〉| ≤ α].

The functional central limit theorem ensures that Zn converges in distribution
to a Brownian motion (b(t))t with variance-covariance matrix Γ. Suppose that
the sequence (yn)n≥0 converges to some y ∈ B. Then (yn + Zn)n≥0 converges in
distribution to y + b, and it follows from the Portmanteau theorem that

(5.2) lim inf
n→∞ qn(yn) ≥ P

0[τKo(y + b(t)) > 1, |〈v, y + b(1)〉| < α].

Now, it is time to choose α. To do this, first recall that B = B(z, ε) ⊂ Ko. Choose
η > ε so that B(z, η) ⊂ Ko and set (notice that we could have done this at the
very beginning of the proof)

α = |v|(|z| + η).
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If |b(t)| < η − ε for all t ∈ [0, 1], then y + b(t) ∈ B(z, η) ⊂ Ko for all t ∈ [0, 1].
Furthermore,

|〈v, y + b(1)〉| ≤ |v|(|y| + |b(1)|) < |v|(|z| + ε + η − ε) = α.

Therefore, the probability in (5.2) is bounded from below by the probability

P
[

max
t∈[0,1]

|b(t)| < η − ε
]

that the Brownian motion (b(t))t stays near the origin for all t ∈ [0, 1], and this
event happens with positive probability, regardless Γ be positive definite or not.

To summarize, we have proved that

lim inf
n→∞ qn(yn) > 0,

for any sequence (yn)n≥0 ∈ B that converges to some y. Thus, by standard
compactness arguments, we reach the conclusion that

lim inf
n→∞ qn = lim inf

n→∞ inf
y∈B

qn(y) > 0,

and Proposition 5.1 is proved. �
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