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Regularity estimates for convex functions
in Carnot–Carathéodory spaces

Valentino Magnani and Matteo Scienza

Abstract. We prove some first order regularity estimates for a class of
convex functions in Carnot–Carathéodory spaces, generated by Hörman-
der vector fields. Our approach relies on both the structure of metric
balls induced by Hörmander vector fields and local upper estimates for
the corresponding subharmonic functions.

1. Introduction

The present paper is devoted to the study of first order regularity properties of
convex functions in Carnot–Carathéodory spaces. An important class of these
spaces is that of Carnot groups, that can be seen as R

n equipped with both a
group operation and a stratified Lie algebra of left invariant vector fields. By
definition, this algebra is spanned by a choice of elements X1, . . . , Xm, along with
their iterated commutators. The latter condition is a special instance of the more
general Hörmander condition for any given set X of vector fields. When we only
assume that the set X of vector fields satisfies this condition, we obtain a Carnot–
Carathéodory space. All linear combinations of elements of X correspond to the
so-called horizontal vector fields. These vector fields yield the well known Carnot–
Carathéodory distance, hence they also generate the metric structure of the space,
see Section 2 for precise definitions. Convexity in this framework first appeared
in Carnot groups [11], [29], [26], then further extensions of this notion to general
vector fields have been considered in [37], [2] and [4].

Convexity plays an important role in the regularity theory for second order
elliptic non-divergence operators, due to the Aleksandrov–Bakelman–Pucci esti-
mate, [8]. The project of extending this approach to subelliptic non-divergence
operators was one of the main motivations for introducing convexity in Carnot
groups, [11], [10], [29], [26]. Other motivations come from the study of comparison
principles for fully nonlinear degenerate subelliptic equations, [2], [3].
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836 V. Magnani and M. Scienza

After these works, the study of convexity in this non-Euclidean framework has
known an increasing interest with several papers on topics like characterizations of
convexity, Lipschitz continuity, subdifferentials, first and second order differentia-
bility and monotonicity properties, [4], [7], [6], [12], [20], [21], [22], [26], [30], [32],
[36], [37], [38], [39], but this list could be certainly larger.

A geometric approach to convex functions with respect to general vector fields
was developed by Bardi and Dragoni in [2], according to the following notion.
If Ω ⊂ Rn is open and X = {X1, . . . , Xm} are C2 smooth vector fields on Rn,
we say that u : Ω → R is X -convex, if u ◦ γ is convex, where γ : I → Ω satisfies
γ̇ =

∑m
i=1 αi Xi ◦ γ on the open interval I and αi ∈ R are arbitrary. In analogy

with the approach of [26], v-convexity with respect to X requires that

(1.1) ∇2
X u ≥ 0 in the viscosity sense.

It is interesting to notice that in the class of upper semicontinuous functions,
the notions of v-convexity and X -convexity do coincide, where the vector fields
of X are assumed to be of class C2. This characterization has been proved in [2],
along with Lipschitz continuity estimates of X -semiconvex functions in terms of the
L∞-norm of the function, see Theorem 6.1 and Remark 6.2 in [2] for more details.
In particular, here the vector fields are not required to satisfy the Hörmander
condition. In the case of Carnot groups the previous characterization has been
established in [26] and the commutative case, corresponding to Euclidean spaces
goes back to [1]. Let us point out that the use of viscosity solutions in Carnot
groups first appeared in [5].

The investigation of fine properties of convex functions requires precise esti-
mates on their Lipschitz constant. In fact, when X generates a Carnot group
structure, we have the strengthened estimate

(1.2) ess sup
w∈Bx,r

|∇Hu(w)| ≤ C0

r

∫
Bx,2r

|u(w)| dw

for continuous weakly H-convex functions, [11], and upper semicontinuous v-
convex functions, [29], [26], where x varies in G, r > 0 and C0 > 0 is a suitable
geometric constant depending on the metric structure of G. Here Bx,r denotes
the metric ball with respect to the homogeneous distance fixed on the group and
∇Hu is the horizontal gradient (X1u, . . . , Xmu). Let us point out that in Carnot
groups the Lipschitz constant can be bounded by the L∞-norm of the horizontal
gradient in a larger set, with controlled scaling, see for instance Lemma 6.1 of [31].
As a result, the estimate (1.2) immediately gives an integral upper estimate for
the Lipschitz constant.

The same estimate plays an important role in the study of fine properties
of convex functions in Carnot groups. This occurs for instance in relation to
both the second order differentiability, see for instance [30], and the distributional
characterizations of convex functions, [7]. The project of understanding these
results in a broader context certainly requires first to study the validity of (1.2)
for general Hörmander vector fields. This is precisely our main result, according
to the next theorem.
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Theorem 1.1. Let X = {X1, . . . , Xm} be a set of Hörmander vector fields, let
Ω ⊂ R

n be open and let K ⊂ Ω be compact. Then there exist C > 0 and R > 0,
depending on K, such that each X -convex function u : Ω → R, that is locally
bounded from above, for every x ∈ K satisfies the following estimates:

sup
Bx,r

|u| ≤ C

∫
Bx,2r

|u(w)| dw,(1.3)

|u(y)− u(z)| ≤ C
d(y, z)

r

∫
Bx,2r

|u(w)| dw ,(1.4)

for every 0 < r < R and every y, z ∈ Bx,r.

We first point out that (1.4) joined with Proposition 2.10 immediately leads
to (1.2), hence the previous theorem contains the known case of Carnot groups.
However, in the proof Theorem 1.1, the absence of a group operation and of
dilations compatible with the distance represents the source of new difficulties.
In particular, this lack of homogeneity implies that the constant C > 0 cannot
be chosen independently of K, as it occurs for Carnot groups, since in general
Carnot–Carathéodory spaces the doubling dimension may change from point to
point.

Let us present the main scheme to establish Theorem 1.1. The first point is
to prove the Lipschitz continuity of a X -convex function u : Ω → R that is only
assumed to be locally bounded from above, then finding an upper estimate on its
Lipschitz constant in terms of ‖u‖L∞, see Theorem 4.4. Let us point out that this
theorem does not follow from [2], since here the authors consider X -semiconvex
functions that are also assumed to be locally bounded and upper semicontinuous.
In fact, the approach of [2] starts from the bound on the horizontal gradient
of the function in the viscosity sense, see Proposition 6.1 in [2], then the upper
semicontinuity assumption allows for translating this information into the wished
Lipschitz estimate, see Lemma 6.1 of [2].

We are forced to use a completely different approach, since our X -convex func-
tion is only locally bounded from above, so in principle could not be even mea-
surable. In fact, we use the stronger assumption that our vector fields satisfy the
Hörmander condition, hence we rely on the interesting result of [33], that allows
for covering the Carnot–Carathéodory ball by suitable compositions of flows of
horizontal vector fields in a quantitative way, depending on the radius of the ball.
This eventually leads to the proof of Theorem 4.4.

The previous step shows in particular that u belongs to the anisotropic Sobolev
space W 1,2

X ,loc(Ω), see Section 2. The crucial point now is to show that for every
x ∈ Ω the X -convex function u is a subharmonic with respect to a suitable “pointed
sub-Laplacian” Lx =

∑m
j=1 Y

2
j , that is constructed around x.

Theorem 1.2. Let X = {X1, . . . , Xm} be a set of Hörmander vector fields,
let Ω ⊂ Rn be open, let x0 ∈ Ω and let u : Ω → R be a X -convex function that
is locally bounded from above. There exist δ0 > 0 and a family of vector fields
X1 = {Y1, . . . , Ym}, with Yi =

∑m
j=1 aijXj, and aij ∈ {0, 1}, both depending on x0,
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such that Bx0,δ0 ⊂ Ω and u is a weak subsolution of the equation

(1.5)

m∑
i=1

Y 2
i v = 0 on Bx0,δ0 .

Since the Lebesgue measure is locally doubling with respect to metric balls
and the Poincaré inequality holds, the classical Moser iteration technique holds
for weak subsolutions to the sub-Laplacian equation, hence getting the classical
inequality

(1.6) sup
By, r

2

u ≤ κx

∫
By,r

|u(z)| dz

for 0 < r < σx and y ∈ Bx,δx , where the positive constants κx, σx and δx > 0
depend on x, see Section 5 for more information and in particular Corollary 5.4.
The lower estimate of u is reached using the almost exponential introduced in (3.2),
hence obtaining the following pointwise estimate

(1.7) 2Nx u(x)− (2Nx − 1) sup
Bx,N̄δ

u ≤ inf
Bx,bδ

u ,

where Nx depends on x and it satisfies the uniform inequality 1 ≤ Nx ≤ N̄ on
some compact set, see Lemma 4.1. This eventually leads us to the proof of (1.3).
The estimate (1.4) is obtained joining Theorem 4.4 with Theorem 6.2. In sum,
the geometric part of our method arises from a quantitative representation of the
Carnot–Carathéodory ball by almost exponentials and it gives the lower estimates,
then the PDE approach leads to the upper estimates.

Our results have also an unexpected connection with the regularity of k-convex
functions studied by Trudinger in the same framework of Hörmander vector fields,
see [37]. Here a smooth k-convex function has the property that all j-th ele-
mentary symmetric functions of the horizontal Hessian ∇2

Xu are nonnegative for
all j = 1, . . . , k and k ≤ m, where X = {X1, . . . , Xm}. Then the nonsmooth
k-convex functions are defined as L1

loc-limits of smooth k-convex functions.
In the case k = m, it is not difficult to observe that (1.4) gives the local

Lipschitz continuity of nonsmooth m-convex functions with respect to Hörmander
vector fields. In fact, these functions are X -convex. As a byproduct of this simple
characterization, we can improve a family of estimates in [37]. According to these
estimates, we have

(1.8) sup
x,y∈Ω′
x �=y

|u(x)− u(y)|
d(x, y)α

≤ C

∫
Ω

|u(x)| dx

for any nonsmooth k-convex function u : Ω → R, where Ω ⊂ R
n, Ω′ is compactly

contained in Ω, C is a geometric constant depending on Ω′,

(1.9) α =
(
k(Q +m− 2)−m(Q− 1)

)
k−1(m− 1)−1

for every k < m and α < 1 in the case k = m. Our estimate (1.4) precisely shows
that α can be chosen to be equal to one in the case k = m, that fits with (1.9).
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We conclude by a short description of the paper. Section 2 recalls some
elementary facts on Hörmander vector fields and Carnot–Carathéodory distances.
In Section 3, we present the basic properties of the so-called almost exponential.
Section 4 contains Theorem 4.4 along with its proof. In Section 5, we use the local
integral upper bounds for subharmonic functions to prove Theorem 1.2. Section 6
collects the preceding results in order to establish (1.3) in Theorem 1.1.

Acknowledgements. It is a pleasure to thank Daniele Morbildelli for some useful
comments on different notions of distances in Carnot–Carathéodory spaces.

2. Some basic notions and facts

Throughout the paper, we consider a family X of smooth vector fields X1, . . . , Xm

on Rn, which satisfy the Hörmander condition: for every x ∈ Rn there exists a
positive integer r′ such that

(2.1) span{X[S](x) : |S| ≤ r′} = R
n.

For every multi-index S = (s1, . . . , sp) ∈ {1, 2, . . . ,m}p, we have set |S| = p and

(2.2) X[S] =
[
Xs1 ,

[
. . . ,

[
Xsp−1 , Xsp

]
. . .

]]
.

Remark 2.1. As a consequence of the Hörmander condition, for every bounded
set A ⊂ Rn we have a positive integer r, such that (2.1) is satisfied for all x ∈ A
and r′ = r. This follows from the smoothness of Hörmander vector fields. In fact,
condition (2.1) with some r′ implies its validity on all points in a neighborhood
of x and with the same maximal length r′. The relative compactness of bounded
sets leads to our claim.

Definition 2.2 (Flow of a vector field). Let X be a smooth vector field of Rn and
let x ∈ Rn. We consider the Cauchy problem{

γ̇(t) = X(γ(t)),

γ(0) = x,

and denote its solution by t → ΦX(x, t). The mapping ΦX defined on an open
neighbourhood of Rn ×{0} in Rn+1 is the flow associated to X . The flow ΦX will
also define the local diffeomorphism ΦX

t (·) = ΦX(·, t) on bounded open sets for t
sufficiently small.

Definition 2.3 (CC-distances and metric balls). For every x, y ∈ Rn we define
the following distance

(2.3) d(x, y) = inf
{
t > 0 : there exists γ ∈ Γx,y(t)

}
,

where Γx,y(t) denotes the family of all absolutely continuous curves γ : [0, t] → Rn

with γ(0) = x, γ(t) = y and such that for a.e. s ∈ [0, t] we have

γ̇(s) =
m∑
j=1

aj(s)Xj(γ(s)) and max
1≤j≤m

|aj(s)| ≤ 1 .
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This distance along with its properties can be found in [35]. If the previous con-
dition is modified replacing max1≤j≤m |aj(s)| with (

∑
1≤j≤m aj(s)

2)1/2, then in
the context of PDEs this distance first appeared in a work by Fefferman and
Phong, [13]. Metric balls are defined using the following notation:

Bx,r =
{
z ∈ R

n : d(z, x) < r
}
, Dx,r =

{
z ∈ R

n : d(z, x) ≤ r
}

for any r > 0 and x ∈ Rn. We say that d is the Carnot–Carathéodory distance,
in short CC-distance, with respect to X . Another analogous distance that will
be important for the sequel is the following one. Let Γc

x,y(t) be the family of all
absolutely continuous curves γ : [0, t] → Rn with γ(0) = x, γ(t) = y, such that for
a.e. s ∈ [0, t] we have

γ̇(s) =

m∑
j=1

aj(s)Xj(γ(s)) and (a1, . . . , am) ∈ {±e1, . . . ,±em} ,

where the curve (a1, . . . , am) is piecewise constant on [0, t] and (e1, . . . , em) is the
canonical basis of Rm. Thus, we define the distance

(2.4) ρ(x, y) = inf
{
t > 0 : there exists γ ∈ Γc

x,y(t)
}
.

This distance in the framework of PDEs has been first introduced by Franchi and
Lanconelli, [14], [27], [15].

Remark 2.4. Let us consider X ∈ X and t, τ ∈ R, by definition of d and ρ, we
have

max
{
d(ΦX

t (x),ΦX
τ (x)), ρ(ΦX

t (x),ΦX
τ (x))

} ≤ |t− τ |
for any x ∈ Rn, whenever the flows are defined for times t and τ .

Remark 2.5. Let X be the family of smooth Hörmander vector fields X1, . . . , Xm

introduced in Section 2. Then by a rescaling argument, one can easily check that
there holds

(2.5) d(x, y) = inf
{
δ > 0 : there exists γ ∈ Γδ

x,y

}
,

where Γδ
x,y(X ) is the family of absolutely continuous curves γ : [0, 1] → R

n such
that γ(0) = x, γ(1) = y and for a.e. t ∈ [0, 1] we have

γ̇(t) =
m∑
j=1

aj(t)Xj(γ(t)) and max
1≤j≤m

|aj(t)| < δ ,

where d is introduced in Definition 2.3.

Lemma 2.6. Let d and d1 two CC-distances associated to the families of smooth
Hörmander vector fields X = {X1, . . . , Xm} and X1 = {Y1, . . . , Ym}, respectively.
Let {i1, j1, . . . , jm−1} = {1, 2, . . . ,m} and assume that Yj = Xj for all j 
= i1 and
Yi1 = Xi1 +Xj1 . Then we have 4−1d ≤ d1 ≤ 4d.



Regularity for convex functions in Carnot–Carathéodory spaces 841

Proof. We can use for d and d1 the equivalent definition stated in Remark 2.5.
Taking this into account, we fix a compact set K ⊂ R

n and choose any x1, x2 ∈ K,
setting d(x1, x2) = δ/2, for some δ > 0. Then there exists an absolutely continuous
curve γ : [0, 1] → Rn belonging to Γδ

x,y(X ). Clearly, we observe that

γ̇ = ai1Yi1 (γ) + (aj1 − ai1)Yj1(γ) +

m−1∑
s=2

ajs Yjs(γ),

hence γ ∈ Γ2δ
x,y(X1), then d1(x, y) ≤ 2δ = 4 d(x, y). In an analogous way we get

d(x1, x2) ≤ 4 d1(x1, x2), concluding the proof. �

Next, we introduce the anisotropic Sobolev space W 1,p
X with respect to the

family X . Throughout, for every open set Ω ⊂ Rn we denote by C∞
c (Ω), the class

of smooth functions with compact support.

Definition 2.7. Given an open set Ω ⊂ Rn, we define the X -Sobolev space
W 1,p

X (Ω), with 1 ≤ p ≤ ∞, as follows:

W 1,p
X (Ω) =

{
f ∈ Lp(Ω), Xjf ∈ Lp(Ω), j = 1, . . . ,m

}
,

where Xju is the distributional derivative of u ∈ L1
loc(Ω), namely

〈Xiu, φ〉 =
∫
Ω

u X∗
i φ dx, φ ∈ C∞

0 (Ω),

and X∗
i is the formal adjoint of Xi, namely, X∗

i = −Xi − divXi.

The linear space W 1,p
X (Ω) is turned into a Banach space by the norm

‖f‖W 1,p
X (Ω) := ‖f‖Lp(Ω) +

m∑
j=1

‖Xif‖Lp(Ω) .

A function u ∈ W 1,2
X (Ω) is an L-weak subsolution of

(2.6) Lu =

m∑
i=1

X2
i u = 0

if for every nonnegative η ∈ W 1,2
X ,0(Ω), we have

m∑
i=1

∫
Ω

XiuX
∗
i η dx ≥ 0.

Lemma 2.8. Let Ω′ be an open set compactly contained in Ω and let X ∈ X .
There exists T > 0 such that the map ΦX is well defined on Ω′ × (−2T, 2T ) and
for every t ∈ (−2T, 2T ), the mapping ΦX(·, t) : Ω′ → R

n is bi-Lipschitz onto its
image with inverse ΦX(·,−t). The Jacobian JX of ΦX satisfies

JX(x, t) = 1 + J̃X(x, t) and |J̃X(x, t)| ≤ C|t|
for all x ∈ Ω′ and |t| < 2T , where C > 0 is independent of x and t.

The proof of this lemma can be achieved by standard ODEs methods, see
also [25] and [17].
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Theorem 2.9. Every Lipschitz function on an open set Ω ⊂ Rn is in W 1,∞
X (Ω).

The proof of Theorem 2.9 can be found from either Proposition 2.9 of [17] or
Theorem 1.3 of [19]. From either these papers or the arguments of Theorem 11.7
of [23], it is also not difficult to deduce the following proposition.

Proposition 2.10. Let u : Ω → R be a Lipschitz function. Let X be a vector
field of X and fix x ∈ Ω. Let ΦX

t (x) be the flow of X starting at x. Then the
directional derivative d

dtu(Φ
X
t (x))|t=0 exists almost everywhere and it coincides

with the distributional derivative Xu.

3. Almost exponentials and CC-distances

In this section, we introduce a kind of “discrete exponential mappings” for vector
fields and recall their properties, following notations and results of [33]. We define

X (1) = {X1, . . . , Xm}, X (2) = {X[i1,i2], 1 ≤ i1 < i2 ≤ m},
and so on, in such a manner that elements of X (k) are the commutators of length k.
We denote by Y1, . . . , Yq an enumeration of all the elements of X (1), . . . ,X (r),
where r is an integer large enough to ensure that Y1, . . . , Yq span Rn at each point
of a fixed bounded open set Ω ⊂ Rn, see Remark 2.1. We call r the local spanning
step and q the local spanning number of X , to underly that they depend on Ω.
It may be worth to stress that the Lie algebra spanned by X at some point need
not be nilpotent, although the local spanning step is finite.

If Yi is an element of X (j), we say Yi has formal degree di := d(Yi) = j. Let
I = (i1, . . . , in) ∈ {1, 2, . . . , q}n be a multi-index and define from [35] the functions

λI(x) = det [Yi1(x), . . . , Yin(x)] and ‖h‖I = max
j=1,...,n

|hj |1/d(Yij
).

As a consequence of the choice of (Y1, . . . , Yq), we have that for every x ∈ Ω
there exists I ∈ {1, 2, . . . , q}n with λI(x) 
= 0. We denote by d(I) the integer
di1 + · · ·+ din , where dik = d(Yik ).

Definition 3.1. Let X,S ∈ X and consider the mappings ΦX
t and ΦS

t , that
coincide with ΦtX

1 and ΦtS
1 , respectively. Thus, for t sufficiently small, we can

define the local exponentials exp(tX) := ΦtX
1 and exp(tS) := ΦtS

1 , along with the
local product

exp(tX) exp(tS) = ΦtX
1 ◦ ΦtS

1 .

Let S1, . . . , Sl be vector fields belonging to the family X . Therefore, for every
a ∈ R sufficiently small, we can define

C1(a, S1) = exp(aS1),

C2(a, S1, S2) = exp(−aS2)exp(−aS1)exp(aS2)exp(aS1),

Cl(a, S1, . . . , Sl) = Cl−1(a;S2, . . . , Sl)
−1exp(−aS1)Cl−1(a;S2, . . . , Sl)exp(aS1).
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By (14) of [33], for σ ∈ R sufficiently small we define the approximate exponential

(3.1) e
σS[(1,...,l)]
ap =

{
Cl(σ

1/l, S1, . . . , Sl), σ > 0,

Cl(|σ|1/l, S1, . . . , Sl)
−1, σ < 0.

Following (16) of [33], given a multi-index I = (i1, . . . , in), 1 ≤ ij ≤ q and h ∈ Rn

small enough, then we introduce the almost exponential

(3.2) EI,x(h) = e
h1Yi1
ap · · · ehnYin

ap (x).

The next theorem, that is contained in Theorem 3.1 of [33], shows that the almost
exponentials give a good representation of the Carnot–Carathéodory balls.

Theorem 3.2. If Ω ⊂ Rn is an open bounded set with local spanning number q
and K ⊂ Ω is a compact set, then there exist δ0 > 0 and positive numbers a and b,
b < a < 1, so that, given any I ∈ {1, . . . , q}n such that

(3.3) |λI(x)| δd(I) ≥ 1

2
max

J∈{1,...,q}n
|λJ (x)| δd(J), for x ∈ K and 0 < δ < δ0,

it follows that Bx,bδ ⊂EI,x({h ∈ Rn : ‖h‖I < aδ}) ⊂ Bx,δ.

Following the terminology of [35], we introduce the following definition.

Definition 3.3. We say that two distances ρ1 and ρ2 in Rn are equivalent, if for
every compact set K ⊂ Rn, there exist cK ≥ 1, depending on K, such that

c−1
K ρ1(x, y) ≤ ρ2(x, y) ≤ cKρ1(x, y) for all x, y ∈ K.

Remark 3.4. We have stated Theorem 3.2 using only metric balls with respect
to the distance d. In fact, in [33] the same symbol denotes the same distance, with
a different definition, see Remark 2.5. Up to a change of the constant b > 0 in
Theorem 3.1 of [33], we can replace the distance denoted by “ρ” in [33] with d.
In fact, these two distances are equivalent, due to Theorem 4 of [35], joined with
our Remark 2.5.

The following proposition has been pointed out to us by D. Morbidelli. It is a
consequence of the seminal paper by A. Nagel, E.M. Stein and S. Wainger [35],
and it can be also found as a consequence of Theorem 3.1 of [33].

Proposition 3.5. The distances d and ρ introduced in Definition 2.3 are equiva-
lent.

Remark 3.6. Notice that the inequality d ≤ ρ is trivial. As a consequence of the
previous proposition, X -convex functions that are locally bounded are also locally
Lipschitz continuous with respect to d and any other equivalent distance, according
to the notion of equivalence given in Definition 3.3.
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We fix a multi-index I = (i1, . . . , in) and for each Yik we have a multi index

Jik = (jik1 , jik2 , . . . , jikdik
) such that Yik = X[Jik

],

where dik is the formal degree of Yik . We notice that 1 ≤ jiks ≤ m for all 1 ≤ s ≤ dik
and dik ≤ r, where r is the local spanning step of X . By definition of eap we get

(3.4) e
hYik
ap =

⎧⎨
⎩

∏Nik
s=1 exp(σsh

1/dik X ik
s ) , h ≥ 0,∏Nik

s=1 exp
(− σNik

+1−s |h|1/dik X ik
Nik

+1−s

)
, h < 0,

where σs ∈ {−1, 1}, Nik is the length of e
hYik
ap and X ik

1 , X ik
2 , . . . , X ik

Nik
is a suitable

possibly iterated choice among the vectors

X
j
ik
1

, X
j
ik
2

, . . . , X
j
ik
dik

.

A simple calculation gives Nik = 2dik − 2 + 2dik
−1. We define N(I) =

∑n
k=1 2Nik

along with the mapping GI,x : RN → Rn, that is,

(3.5) GI,x(w) =
n∏

k=1

{Nik∏
s=1

exp(wk,s,2X
ik
Nik

+1−s)

Nik∏
s=1

exp(wk,s,1X
ik
s )

}
(x).

In the definition of GI,x, we use the product to indicate the composition of flows
according to the order that starts from the right. The variable w denotes the vector

(w1,1,1, w1,2,1, . . . , w1,Ni1 ,1
, w1,1,2, w1,2,2, . . . , w1,Ni1 ,2

, . . . , wn,1,2, . . . , wn,Nin ,2)

belonging to RN(I). The integer N(I) is locally uniformly bounded from above,
since every multi-index I = (i1, . . . , in) of Theorem 3.2 depends on x and satisfies
Nik ≤ 2r − 2 + 2r−1, where r is the local spanning step of X , depending on the
fixed bounded open set Ω. Therefore we have a local upper bound N̄ defined as

(3.6) N̄ = 2n(2r+1 − 2 + 2r−1),

and clearly N(I) ≤ N̄ , where N̄ is independent of I.

Definition 3.7. For every N ∈ N\{0}, we set ‖w‖N = maxk=1,...,N |wk|, for every
w ∈ RN . The corresponding open ball is defined as

SN,δ =
{
w ∈ R

N : ‖w‖N < δ
}
.

From standard theorems on ODEs, one can establish the following fact.

Proposition 3.8. If K ⊂ Ω is a compact set and N ∈ N is positive, then there
exists δ1 > 0 only depending on K, Ω and X such that for every 0 < δ ≤ δ1 and
every x ∈ K we have Bx,Nδ1 ⊂ Ω and for every integers 1 ≤ j1, . . . , jN ≤ m, the
composition (

exp(wNXjN ) · · · exp(w2Xj2) exp(w1Xj1)
)
(x)

is well defined and contained in Bx,Nδ for all w ∈ SN,δ.
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The previous proposition immediately leads us to the following consequence.

Corollary 3.9. Let Ω be an open bounded set with local spanning number q and
local spanning step r. If K ⊂ Ω is a compact set, then there exist δ1 > 0 such that
for every x ∈ K, every 0 < δ ≤ δ1 and every multi-index I ∈ {1, 2, . . . , q}n, the
mapping GI,x introduced in (3.5) is well defined on SN(I),δ and

GI,x(SN(I),δ) ⊂ Bx,N̄δ ⊂ Dx,N̄δ1 ⊂ Ω ,

where N̄ is defined in (3.6).

For any of the above multi-indexes I = (i1, . . . , in), we introduce the function
FI,x : Rn → RN(I) as follows:

FI,x(h1, . . . , hn) =
(
σ1,1δ1(h1)h

1/di1
1 , . . . , σ1,Ni1

δ1(h1)h
1/di1
1 ,−σ1,Ni1

δ2(h1)|h1|1/di1 ,

. . . ,−σ1,1δ2(h1) |h1|1/di1 , . . . , σn,1δ1(hn)h
1/din
n , . . . , σn,Nin

δ1(hn)h
1/din
n , . . .

)
where σk,j ∈ {−1, 1}, k = 1, . . . , n and j = 1, . . . , Nik . More precisely, we have

FI,x(h) =
n∑

k=1

{Nik∑
s=1

σk,s δ1(hk)h
1/dik

k ek,s,1(3.7)

−
Nik∑
s=1

σk,Nik
+1−s δ2(hk) |hk|1/dik ek,s,2

}
,

where we have introduced the canonical basis{
ek,s,i : 1 ≤ k ≤ n, 1 ≤ s ≤ Nik , i = 1, 2

}
of RN(I) and the functions

δ1(x) =

{
1, x ≥ 0,
0, x < 0,

and δ2(x) =

{
0, x ≥ 0,
1, x < 0.

Remark 3.10. From the definitions of GI,x and FI,x, it is straightforward to
observe that EI,x = GI,x ◦FI,x on a sufficiently small neighbourhood of the origin
in Rn.

Theorem 3.11. If Ω ⊂ Rn is an open bounded set with local spanning number q
and K ⊂ Ω is compact, then there exist δ0 > 0 and positive numbers a and b,
b < a < 1, so that for any x ∈ K and 0 < δ < δ0 and any I ∈ {1, . . . , q}n with

(3.8) |λI(x)|δd(I) ≥ 1

2
max

J∈{1,...,q}n
|λJ (x)| δd(J) ,

we have Bx,bδ ⊂ GI,x({w ∈ RN(I) : ‖w‖N(I) < aδ}) ⊂ Bx,N̄δ ⊂ Dx,N̄δ0 ⊂ Ω.
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Proof. From Theorem 3.2, we get the existence of δ0, a, b > 0, with b < a < 1 such
that for every x ∈ K, 0 < δ < δ0 and I ∈ {1, . . . , q}n satisfying (3.8), we have the
inclusion

Bx,bδ ⊂ EI,x({h ∈ R
n : ‖h‖I < aδ}).

This proves the validity of this inclusion, since for every x ∈ K and 0 < δ < δ0 the
existence of I satisfying (3.8) is trivial. From formula (3.7), we have

(3.9) ‖FI,x(h)‖N(I) = ‖h‖I for all h ∈ R
n.

Remark 3.10 implies that EI,x(h) = GI,x ◦ FI,x(h) for all h ∈ Rn, possibly small,
such that GI,x, introduced in (3.5), is well defined on FI,x(h). In view of Corol-
lary 3.9, it is not restrictive to choose δ0 > 0 possibly smaller, such that GI,x is
well defined on

(3.10) SN(I),δ0 and GI,x(SN(I),δ) ⊂ Bx,N̄δ ⊂ Dx,N̄δ0 ⊂ Ω.

Taking into account (3.9), we have FI,x({h ∈ Rn : ‖h‖I < aδ}) ⊂ SN(I),δ, that
leads us to the following inclusions:

(3.11) Bx,bδ ⊂ EI,x({h ∈ R
n : ‖h‖I < aδ}) ⊂ GI,x

(
SN(I),δ

) ⊂ Bx,N̄δ,

concluding the proof. �

According to [35], for x ∈ Rn, we set

Λ(x, δ) =
∑

I∈{1,2,...,q}n

|λI(x)| δd(I) .

From Theorem 1 in [35], we get the following important fact.

Theorem 3.12. For every K ⊂ Rn compact, there exist δ0 > 0 and positive
constants C1 and C2, depending on K, so that for all x ∈ K and every 0 < δ < δ0
we have

C1 ≤ |Bx,δ|
Λ(x, δ)

≤ C2.

The point of this theorem is that it gives the doubling property of metric balls,
as shown in [35]. In fact, Λ is a polynomial with respect to δ, that only depends
on the enumeration of vector fields Y1, . . . , Yq on some fixed open bounded set Ω.
Thus, we have the following corollary.

Corollary 3.13. For every compact set K ⊂ Rn there exist positive constants C
and r0, depending on K, such that for every x ∈ K and every 0 < r < r0, we have

|Bx,2r| ≤ C |Bx,r|.
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4. Boundedness from above implies Lipschitz continuity

This section is devoted to the proof of the local Lipschitz continuity of X -convex
functions that are locally bounded from above. More precisely, we will prove
Theorem 4.4.

Lemma 4.1. Let u : Ω → R be a X -convex function on an open set Ω ⊂ Rn and
let K be a compact set. Then there exist δ0 > 0, 0 < b < 1 and an integer N̄
only depending on K and X such that for every x ∈ K, there exists an integer
1 ≤ Nx ≤ N̄ such that for every 0 < δ < δ0 we have Dx,N̄δ0 ⊂ Ω and

(4.1) 2Nx u(x)− (2Nx − 1) sup
Bx,N̄δ

u ≤ inf
Bx,bδ

u .

Proof. Let Ω′ be an open bounded set containing K such that Ω′ ⊂ Ω, let r be the
local spanning step and q be the local spanning number with local spanning frame
Y1, . . . , Yq on Ω′. We apply Theorem 3.11 to both K and Ω′, getting an integer N̄
and positive number δ0 > 0, 0 < b < a < 1, depending on K, Ω′ and X , having the
properties stated in this theorem. Thus, we choose any x ∈ K and 0 < δ < δ0, so
that we can find a multi-index I ∈ {1, . . . , q}n such that (3.8) holds. Theorem 3.11
implies that

Bx,bδ ⊂ GI,x(SN(I),aδ) ⊂ Bx,N̄δ ⊂ Dx,N̄δ0 ⊂ Ω′

where GI,x is defined in (3.5). In particular, the closure SN(I),x satisfies

GI,x(SN(I),aδ) ⊂ Ω′.

Let us consider the scalar function ϕ(w) = u ◦GI,x(w), that is well defined for all
w ∈ SN(I),aδ. By definition of X -convexity, we have

μ1 = 2ϕ(0)− sup
Bx,N̄δ

u ≤ 2ϕ(0)− ϕ(−w1, 0, . . . , 0) ≤ ϕ(w1, 0, . . . , 0) ,

whenever |w1| ≤ aδ. Notice that

μ1 = 2 u(x)− sup
Bx,N̄δ

u.

Of course, in the case supBx,N̄δ
u = +∞, then the inequalities (4.3) become trivial.

For each w1 ∈ [−aδ, aδ], the function

[−aδ, aδ] � s �→ ϕ(w1, s, 0, . . . , 0),

is convex with respect to s, hence arguing as before we get

μ2 = 2μ1 − sup
Bx,N̄δ

u ≤ ϕ(w1, s, 0, . . . , 0)).

whenever |s| ≤ aδ. We can repeat this argument up to N(I) times, achieving

(4.2) μN(I) ≤ u ◦GI,x0(w) for every w ∈ SN(I),aδ,
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where μj = 2μj−1 − supBx,N̄δ
u for j = 1, . . . , N(I). In particular, we have

μN(I) = 2N(I)u(x)−
(N(I)−1∑

j=0

2j
)
M = 2N(I)u(x)− 2N(I)M +M

with M = supBx,N̄δ
u. In sum, we have proved that there exist δ0 > 0, 0 < b < 1

and an integer N̄ only depending on K and X such that for every x ∈ K, we can
provide an integer 1 ≤ Nx ≤ N̄ , depending on x, such that for every 0 < δ < δ0
we have Dx,N̄δ0 ⊂ Ω and (4.1) holds. �

Corollary 4.2. Under the assumptions of Lemma 4.1, we have
(4.3)

inf
Bx,bδ

u ≥

⎧⎪⎨
⎪⎩

2 u(x)− (2N̄ − 1) supBx,N̄δ
u if u(x) ≥ 0,

2N̄ u(x)− (2N̄ − 1) supBx,N̄δ
u if u(x) < 0 and supBx,N̄δ

u ≥ 0,

2N̄ u(x)− supBx,N̄δ
u if supBx,N̄δ

u < 0.

The previous corollary immediately leads us to another consequence.

Corollary 4.3. Every X -convex function that is locally bounded from above on an
open set is also locally bounded from below.

We use throughout the distance function distd(A, x) = infa∈A d(a, x), with
A ⊂ Rn.

Theorem 4.4. Let X = {X1, . . . , Xm} be a set of Hörmander vector fields, let
Ω ⊂ Rn open and let u : Ω → R be a X -convex function that is locally bounded from
above. It follows that u is locally Lipschitz continuous. More precisely, if K ⊂ Ω
is compact and 0 < r < distd(K,Ωc), then for every x, y ∈ K we have

(4.4) |u(x)− u(y)| ≤ C

r
d(x, y) sup

Kr

|u| ,

where Kr = {z ∈ Rn : distd(K, z) ≤ r} ⊂ Ω and C > 0 only depends on K and X .

Proof. First of all, from Corollary 4.3 it follows that u is locally bounded. Let us
choose 0 < D < distd(K,Ωc) and consider the compact set

KD = {z ∈ R
n : distd(K, z) ≤ D} ,

that is clearly contained in Ω. Choose any α > 0 such that D + α < distd(K,Ωc).
Therefore for every x ∈ KD and X ∈ X , we have

distd
(
KD,ΦX(x, t)

) ≤ d(ΦX(x, t), x) ≤ |t| ≤ α

hence ΦX(x, t) ∈ KD+α = {z ∈ Rn : distd(K, z) ≤ D + α} ⊂ Ω for all |t| ≤ α.
Hence ΦX is defined on KD × [−α, α] and it is contained in the larger compact
set KD+α ⊂ Ω. Let us fix x, y ∈ K such that ρ(x, y) < D. Let ε > 0 be
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arbitrary chosen such that ρ(x, y) + ε < D. Thus, by definition of ρ, there exists
ρ(x, y) < t̄ < ρ(x, y) + ε and γ ∈ Γc

x,y(t̄) such that t0 = 0 < t1 < · · · < tν = t̄ and

(4.5) γ(t) = ΦXjk

(
γ(tk−1), t− tk−1

)
for all t ∈ [tk−1, tk] and k = 1, . . . , ν, where 1 ≤ j1, . . . , jν ≤ m. We have that

d(γ(t), x) ≤ ρ(γ(t), x) ≤ t ≤ t̄ < D,

therefore the whole curve γ is contained in KD and any restriction γ|[tk−1,tk] can
be smoothly extended on [tk−1−α, tk+α] preserving the same form (4.5). Since u
is locally bounded, we set

M = sup
w∈KD+α

|u(w)| < +∞.

As a result, the X -convexity of u implies that the difference quotient

|u(γ(tk))− u(γ(tk−1))|
|tk − tk−1|

is not greater than the maximum between |u(ΦXjk (γ(tk−1), tk + α − tk−1)
) −

u(γ(tk))|α−1 and |u(ΦXjk (γ(tk−1),−α)
)− u(γ(tk−1))|α−1. This proves that

|u(γ(tk))− u(γ(tk−1))|
|tk − tk−1| ≤ 2M

α
.

It follows that

|u(y)− u(x)| ≤
ν∑

k=1

|u(γ(tk))− u(γ(tk−1)|

≤ 2M

T

ν∑
k=1

(tk − tk−1) <
2M

α
(ρ(x, y) + ε) ,

with an arbitrary choice of ε > 0. In the case ρ(x, y) ≥ D, we immediately have
|u(x)− u(y)| ≤ 2Mρ(x, y)/D, that leads to the inequality

|u(x)− u(y)| ≤ 2ρ(x, y)

min{D,α} sup
KD+α

|u|

for every x, y ∈ K, where D,α > 0 satisfy D+ α < distd(K,Ωc). Thus, we choose
r = 2D = 2α < distd(K,Ωc). By Proposition 3.5, it follows that there exists a
constant C > 0, depending on K, such that 4ρ(x, y) ≤ C d(x, y) for all x, y ∈ K,
hence concluding the proof. �

Remark 4.5. The Lipschitz estimate (4.4) restated with respect to the distance ρ
has only explicit constants. Precisely, under the assumptions of Theorem 4.4 we
have

|u(x)− u(y)| ≤ 2ρ(x, y)

min{α1, α2} sup
Kα1+α2

|u| .
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5. L-weak subsolutions and upper estimates

The point of this section is to show that locally bounded above X -convex func-
tions are L-weak subsolutions of (2.6), where X = {X1, . . . , Xm} is a family of
Hörmander vector fields. This will enable us to apply the following well-known
result.

Theorem 5.1. Let Ω ⊂ R
n be an open bounded set, and let X be a family of smooth

Hörmander vector fields and let p > 0. Thus, there exists r0 > 0, depending on Ω
and X , and there exists κ ≥ 1, depending on p, Ω and X , such that whenever
u ∈ W 1,2

X (Ω) is a weak L-subsolution to (2.6), we have

(5.1) ess sup
Bx, r

2

u ≤ κ
(∫

Bx,r

|u(y)|pdy
)1/p

,

for every x ∈ Ω such that 0 < r ≤ min{r0, dist(Ωc, x)}.

The proof of this theorem is standard: it follows the celebrated Moser iter-
ation technique for weak solutions to elliptic equations in divergence form [34],
that applies to very general frameworks, including Carnot–Carathéodory spaces.
There are several independent works in this area, so we limit ourselves to mention
just a few of them, [28], [24], [9]. Further discussion of this topic can be found for
instance in [23].

In the proof of Theorem 1.2, we will use the following basic fact.

Lemma 5.2. Let X be a vector field on Rn, let z ∈ Rn be such that X(z) 
= 0 and
let π be a hyperplane of Rn transversal to X(z) and passing through z. There exists
an open neighbourhood A of z in π, τ > 0 and an open neighbourhood U of z in Rn

such that the restriction of the flow ΦX to A× (−τ, τ) is a diffeomorphism onto U .
Moreover, for every fixed system of coordinates (ξ1, . . . , ξn−1) on π, denoting by φ
the previous restriction with respect to these coordinates and by Jφ its Jacobian,
we get

(5.2) divX(x) =
∂tJφ
Jφ

◦ φ−1(x) for all x ∈ U.

Remark 5.3. From the definition of commutator and the fact that the family X
satisfies the Hörmander condition, it is clear that for each z ∈ Rn, there exists
X ∈ X such that X(z) 
= 0.

Proof of Theorem 1.2. As observed in Remark 5.3, since X is a family of Hörman-
der vector fields, we must have some j1 ∈ {1, 2, . . . ,m} such that Xj1(x0) 
= 0.
Thus, for each i = 1, . . . ,m, we define Yi = Xi if Xi(x0) 
= 0 and Yi = Xi +Xj1

otherwise, so that all Yi do not vanish on x0. In view of Lemma 5.2, for each
i = 1, . . . ,m we can find an open bounded neighbourhood Ui of x0, that is com-
pactly contained in Ω, an open bounded set Ai ⊂ Rn−1, τi > 0 and a diffeomor-
phism φi : Si → Ui, with Si = Ai × (−τi, τi), φi is the restriction of the flow
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of Yi and then it satisfies (5.2). We can find δ0 > 0 such that Bx0,δ0 is compactly
contained in Ui for all i = 1, . . . ,m. Let us choose any ϕ ∈ C∞

c (Bx0,δ0) with ϕ ≥ 0.
Our claim follows if we prove that

(5.3)

m∑
i=1

∫
Bx0,δ0

Yiu(x) Y
∗
i ϕ(x) dx ≥ 0.

We will prove a stronger fact, namely, the validity of∫
Bx0,δ0

Yiu(x) Y
∗
i ϕ(x) dx ≥ 0 for all i = 1, . . . ,m .

By definition of X -convexity, we have that u(φi(ω, ·)) is convex on the interval
where it is defined for all i = 1, . . . ,m. By Theorem 4.4, u is locally Lipschitz
continuous with respect to d. Iterating Lemma 2.6, no more than m − 1 times,
and observing that X1 = {Y1, . . . , Ym} is also a family of Hörmander vector fields,
its associated distance d1 is equivalent to d, that is obtained from X . Theorem 2.9
and Proposition 2.10 imply that u ∈ W 1,∞

X ,loc(Ω) and the pointwise derivative

∂Yiu(x) =
d

dt
u(ΦYi(x, t))|t=0

exists for almost every x ∈ Ω and coincides with the distributional derivative Yiu,
up to a negligible set. In particular, there exists L > 0 such that |Yiu| ≤ L almost
everywhere in Ui, where Yiu is the distributional derivative of u along Yi. Since φi

sends negligible sets into negligible sets, we have that

(5.4)
∂

∂s
u(φi(ω, s))|s=t = ∂Yiu(φ(ω, t)) = Yiu(φi(ω, t))

for almost every (ω, t) ∈ Si. There exist 0 < ti < τi such that φ(Ai×(−ti, ti)) = U ′
i

still contains Bx0,δ0 , hence for ε > 0 sufficiently small, we can consider

(u ◦ φi)ε(ω, t) =

∫ τi

−τi

(u ◦ φi)(ω, s)) νε(t− s)ds,

for all t ∈ (−ti, ti), where νε are one dimensional mollifiers. Since (u ◦ φi)(ω, ·)
is convex on (−τi, τi) it is also locally Lipschitz, with distributional derivative.
It follows that

∂

∂t
(u ◦ φi)ε(ω, t) = (∂Yiu ◦ φi)ε(ω, t)

for all ω ∈ Ai and t ∈ (−ti, ti). Due to (5.4), applying Fubini’s theorem it follows
that for almost every ω ∈ Ai the pointwise derivative ∂Yiu(ω, t) equals the dis-
tributional derivative Yiu(ω, t) for almost every t ∈ (−τi, τi), that is precisely
represented almost everywhere. As a consequence, we have

(5.5)
∂

∂t
(u ◦ φi)ε(ω, t) = (∂Yiu ◦ φi)ε(ω, t) =

(
(Yiu) ◦ φi

)
ε
(ω, t)
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for almost every ω ∈ Ai and every t ∈ (−ti, ti). Since (u ◦ φ)ε(ω, ·) is smooth and
convex for all ω ∈ Ai, we achieve∫

S′
i

∂2

∂t2
(u ◦ φi)ε(ω, t) ϕ(φ(ω, t))Jφi(ω, t) dω dt ≥ 0,

where S′
i = Ai × (−ti, ti). Integrating by parts, it follows that the previous non-

negative integral equals the following one:

−
∫
S′
i

∂

∂t
(u ◦ φi)ε(ω, t)

∂

∂t
{ϕ(φi(ω, t))Jφi} dω dt,

that can be written as

−
∫
S′
i

( ∂

∂t
(u◦φi)ε(ω, t)

∂

∂t
ϕ(φi(ω, t))Jφi+

∂

∂t
(u◦φi)ε(ω, t) (ϕ◦φi)(ω, t))

∂

∂t
Jφi

)
dω dt.

Clearly, we have
∂

∂t
(ϕ ◦ φi)(ω, t) = (Yiϕ)(φi(ω, t)),

hence by Lemma 5.2, we obtain

−
∫
S′
i

∂

∂t
(u◦φi)ε(ω, t)

(
(Yiϕ)(φ(ω, t))+(divYi ◦φi)(ω, t) (ϕ◦φi)(ω, t))

)
Jφi dω dt ≥ 0.

We can then pass to the limit as ε → 0+, taking into account that Yiu ∈ L∞(Ui)
and that both (5.4) and (5.5) hold, getting

−
∫
φ−1
i (U ′

i)

(Yiu) ◦ φi {(Yiϕ ◦ φi + (divYi ◦ φi) ϕ ◦ φi} Jφi dω dt ≥ 0.

By a change of variables towards the former coordinates, we obtain

−
∫
U ′

i

Yiu(x) {(Yiϕ)(x) + divYi(x)ϕ(x)} dx =

∫
Bx0,δ0

Yiu(x) Y
∗
i ϕ(x) dx ≥ 0 ,

that establishes our claim. �

As a consequence of both Theorem 5.1 and Theorem 1.2, we get the following
consequence.

Corollary 5.4. Let Ω ⊂ Rn be open and let p > 0. If x ∈ Ω, then there exist
σx, δx > 0 and κx ≥ 1, depending on x, Ω, p and X , such that Bx,δx ⊂ Ω,
σx ≤ δx/2 and whenever u : Ω → R is X -convex and locally bounded from above,
for all y ∈ Bx,δx/2 and 0 < r ≤ σx, we have

(5.6) sup
By,r/2

u ≤ κx

(∫
By,r

|u(z)|p dz
)1/p

.



Regularity for convex functions in Carnot–Carathéodory spaces 853

Proof. Let x ∈ Ω and and consider the corresponding δx > 0 given by Theorem 1.2,
such that Bx,δx ⊂ Ω and u is a weak subsolution of (1.5) where the vector fields Yj

depend on x. In view of Theorem 5.1 applied to the open bounded set Bx,δx , we
get some constants κx ≥ 1 and rx > 0, depending on Bx,δx , p, and the vector
fields Yj , such that there holds

(5.7) ess sup
By,r/2

u ≤ κx

( ∫
By,r

|u(z)|pdz
)1/p

,

for all 0 < r ≤ min{rx, dist(Bc
x,δx

, y)}. Since for all y ∈ Bx,δx/2, we have

dist(Bc
x,δx , y) ≥ δx/2,

setting σx = min{rx, δx/2}, then (5.7) holds for all 0 < r ≤ σx and for all y ∈
Bx,δx/2. �

Remark 5.5. Notice that we do not need to use the essential supremum in (5.6),
since X -convex functions that are locally bounded from above are locally Lipschitz
continuous, due to Theorem 4.4.

As a consequence of Corollary 5.4, we can easily establish the following result.

Theorem 5.6. Let Ω ⊂ R
n be open, let p > 0 and let K ⊂ Ω be compact. Then

there exists σ > 0 and κ ≥ 1, depending on K, Ω, X and p, such that for every X -
convex function u : Ω → R that is locally bounded from above and for every x ∈ K,
we have Bx,σ ⊂ Ω and there holds

(5.8) sup
Bx,r2

u ≤ κ
( ∫

Bx,r

|u(z)|pdy
)1/p

for all 0 < r ≤ σ.

6. Regularity estimates for X -convex functions

In this section we combine the upper and lower estimates for X -convex functions,
that give the proof of Theorem 1.1.

Theorem 6.1. Let Ω ⊂ Rn be open, let K ⊂ Ω be compact and let u : Ω → R be
a X -convex function that is locally bounded from above. Then there exists C0 > 0,
b0 > 0 and N0 > 1, depending on K, such that for every x ∈ K there holds

sup
Bx,r

|u| ≤ C0

∫
Bx,N0r

|u(z)| dz

whenever 0 < r < b0 and K0 = {z ∈ Rn : dist(K, z) ≤ N0 b0} ⊂ Ω.

Proof. By Lemma 4.1, we have δ0 > 0, 0 < b < 1 and a positive integer N̄ such that
for every y ∈ K, we have Dy,N̄δ0 ⊂ Ω and there exists with 1 ≤ Ny ≤ N̄ such that

(6.1) 2Ny u(y)− (2Ny − 1) sup
By,N̄δ

u ≤ inf
By,bδ

u
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for all 0 < δ < δ0. Let us consider x ∈ K and any 0 < δ′ < bδ0/4, observing that
there exists x′ ∈ Bx,δ′ such that

u(x′) ≥ −
∫
Bx,δ′

|u(z)| dz .

We clearly have infBx,δ′ u ≥ infBx′,2δ′ u, hence for some 1 ≤ Nx′ ≤ N̄ , we can apply
the estimate (6.1) at x′, getting

inf
Bx,δ′

u ≥ 2Nx′u(x′)− (2Nx′ − 1) sup
Bx′,N̄2δ′/b

u.

From the previous inequalities, it follows that

inf
Bx,δ′

u ≥ −2N̄
∫
Bx,δ′

|u(z)| dz − (2Nx′ − 1) sup
Bx,N̄4δ′/b

u.

Theorem 5.6 provides σ > 0 and κ ≥ 1 such that, up to choose δ0 > 0 possibly
smaller, such that N̄δ0 < σ/2, hence N̄8δ′/b < σ and it follows that

inf
Bx,δ′

u ≥ −2N̄
∫
Bx,δ′

|u(z)| dz − (2N̄ − 1)κ

∫
Bx,N̄8δ′/b

|u(z)| dz.

As a consequence of Corollary 3.13, we have Q0 > 0 and r0 > 0 such that

|Bx,N̄8δ′/b| ≤ 2Q0

(
N̄

8

b

)Q0 |Bx,δ′ |,

up to making δ0 further smaller, namely, satisfying 2N̄δ0 < r0. It follows that

inf
Bx,δ′

u ≥ −2N̄
[
κ+ (16)Q0

(N̄
b

)Q0
]∫

Bx,N̄8δ′/b

|u(z)| dz

and also

sup
Bx,δ′

u ≤ κ 2Q0

(
N̄

4

b

)Q0
∫
Bx,N̄8δ′/b

|u(z)| dz ,

that yield a constant C0 > 0 depending on K, such that

sup
Bx,r

|u| ≤ C0

∫
Bx,N0r

|u(z)| dz

for every 0 < r < b0 and every x ∈ K, with b0 = bδ0/4 and N0 = N̄8/b > 1. By
the previous requirements on δ0, being N0b0 = 2δ0N̄ , we also have

K0 = {z ∈ R
n : dist(K, z) ≤ N0 b0} ⊂ Ω,

reaching the conclusion of the proof. �
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Theorem 6.2. Let Ω ⊂ Rn be open, let K ⊂ Ω be compact and let λ > 1. Then
there exist C̄ > 0 and Q̄ > 0, depending on K and there there exists r̄ > 0,
depending on both K and λ, such that for every x ∈ K and every 0 < r < r̄,
each X -convex function u : Ω → R that is locally bounded from above satisfies the
following estimate:

(6.2) sup
Bx,r

|u| ≤ C̄
(λ+ 1

λ− 1

)Q̄
∫
Bx,λr

|u(z)| dz .

Proof. We fix any β > 0 such that

K1 = {z ∈ R
n : dist(K, z) ≤ β} ⊂ Ω,

and apply Theorem 6.1 to K1, getting the corresponding positive constants C1, b1
and N1 > 1. We have in particular

{z ∈ R
n : dist(K1, z) ≤ N1 b1} ⊂ Ω.

Taking 0 < r < β/λ, we have Bx,λr ⊂ K1 for all x ∈ K, and fixing a = (λ− 1)/N1,
it follows that for 0 < r < r1 and r1 = min{b1/a, β/λ}, the inequality

sup
By,ar

|u| ≤ C1

∫
By,N1ar

|u(z)| dz

holds for all y ∈ K1. Now, let us fix x ∈ K. Thus, whenever 0 < r < r1 we can
cover the compact set Dx,r with a finite number of balls Bxj,ar centered at points
of Dx,r, hence there exists xj0 ∈ Dx,r such that

sup
Bx,r

|u| ≤ sup
Bxj0

,ar

|u| .

Since xj0 ∈ K1 and ar < b1, Theorem 6.1 implies that

sup
Bxj0

,ar

|u| ≤ C1

∫
Bxj0

,N1ar

|u(z)| dz = C1

∫
Bxj0

,(λ−1)r

|u(z)| dz .

As a result, we have proved that

sup
Bx,r

|u| ≤ C1
|Bx,λr|

|Bxj0 ,(λ−1)r|
∫
Bx,λr

|u(z)| dz ≤ C1

|Bxj0 ,(λ+1)r|
|Bxj0 ,(λ−1)r|

∫
Bx,λr

|u(z)| dz

for all 0 < r < r1, where r1 also depends on λ. Finally, we apply Corollary 3.13
to K0, getting r2 > 0 and Q̄ > 0 such that for all 0 < r < min{r1, r2/λ + 1} our
claim (6.2) holds with C̄ = C1 2

Q̄. �
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