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Boundary Harnack estimates in slit domains and
applications to thin free boundary problems

Daniela De Silva and Ovidiu Savin

Abstract. We provide a higher order boundary Harnack inequality for
harmonic functions in slit domains. As a corollary we obtain the C∞ reg-
ularity of the free boundary in the Signorini problem near non-degenerate
points.

1. Introduction

In our recent work [10] we proved a higher order boundary Harnack estimate for
harmonic functions vanishing on a part of the boundary of a domain Ω in R

n. We
recall briefly the main result.

Theorem 1.1. Let v and u > 0 be two harmonic functions in Ω ⊂ R
n that vanish

continuously on some portion of the boundary Γ ⊂ ∂Ω and let k ≥ 1.
If Γ ∈ Ck,α, then v/u ∈ Ck,α up to the boundary in a neighborhood of Γ.

By classical Schauder estimates both functions u and v are of class Ck,α up to
the boundary. In general, the quotient of two Ck,α functions that vanish on the
boundary is only of class Ck−1,α in a neighborhood of the boundary. The theorem
states that the quotient of two harmonic functions is in fact one derivative better
than what is expected from boundary Schauder estimates.

Theorem 1.1 is well known as the boundary Harnack theorem in the case k = 0
(see [14], [4], [12]). An easy application of Theorem 1.1 gives C∞ regularity for C1,α

free boundaries in the classical obstacle problem, see [10].
In this paper we obtain the corresponding theorems in the case of slit domains

and the thin obstacle problem. A slit domain is a domain in R
n+1 from which we

remove an n-dimensional set P ⊂ {xn+1 = 0} (slit), with Ck,α boundary in R
n,

Γ := ∂RnP , k ≥ 1.
In [9] we investigated the higher regularity of the free boundary for the thin

one-phase free boundary problem (see [5], [6], [7], [8]). In particular we developed
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a Schauder type estimate in slit domains, see Theorem 2.4 in the next section for
the precise statement. The Schauder estimate states that if u is even in xn+1, and
it is harmonic in the slit domain B1 \P , and u vanishes continuously on the slit P
then

Γ ∈ Ck,α =⇒ u

U0
∈ Ck−1,α(x1, . . . , xn, r), k ≥ 2.

Here

U0 :=
1√
2

√
d+ r

where d represents the signed distance to Γ in R
n and r denotes the distance to Γ

in R
n+1. The above statement says that the quotient u/U0 is essentially a Ck−1,α

function in the variables (x1, . . . , xn, r).
The explicit function U0 is an approximation of a harmonic function which

vanishes on P and plays the same role as the distance function in smooth (non-slit)
domains. For example when Γ = {(xn, xn+1) = (0, 0)} is a “straight” boundary
then U0 is indeed harmonic.

In this paper we obtain the boundary Harnack estimate in slit domains, see
Theorem 2.3 in the next section. We show that if u and U > 0 are even, harmonic
functions vanishing on P then

Γ ∈ Ck,α =⇒ u

U
∈ Ck,α(x1, . . . , xn, r), k ≥ 1.

We also provide the Schauder estimates in slit domains with C1,α boundary, which
were not completed in [8].

The proofs of the Schauder estimates and the boundary Harnack estimates are
essentially the same. We approximate u in a sequence of concentric balls Bρl by
functions U0P or U P with P (x, r) a polynomial in x and r. The gain of one extra
derivative comes from the fact that while U is harmonic, the explicit function U0

only approximates a harmonic function up to an error, thus U P provides a better
approximation than U0P .

Signorini problem. As an application of the boundary Harnack estimates in
slit domains we obtain C∞ regularity of the free boundary near regular points in
the Signorini problem, also known as the thin obstacle problem. It consists in
minimizing

(1.1) min
u∈A

∫
B1

|∇u|2dX,

with B1 ⊂ R
n+1, X = (x, xn+1) ∈ R

n+1, and A the convex set

A :=
{
u ∈ H1(B1), u = ϕ on ∂B1, u(x, 0) ≥ 0

}
.

There is considerable literature on the regularity properties of the solution (see
[11], [3], [16]). In particular, the minimizer u is Lipschitz in B1, and is harmonic
in the slit domain B1 \ P with P := {u = 0} ∩ {xn+1 = 0}. Athanasopoulos
and Caffarelli obtained in [1] the optimal regularity of the solution on the free
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boundary Γ := ∂RnP ∩ B1, i.e., the solution u is pointwise C1,1/2 at all points
on Γ. A point X0 ∈ Γ is called a singular point of the free boundary if

u(X) = o(|X −X0|3/2).
Otherwise, X0 is called a regular point of the free boundary.

Concerning the regularity of the free boundary Γ, Athanasopoulos, Caffarelli
and Salsa showed in [2] that if X0 is a regular point, then Γ is given locally by the
graph of a C1,α function g in some direction, say the en direction (see also [13]
concerning the singular set). Moreover, the derivatives ui, i = 1, 2, . . . , n, are
harmonic in the slit domain B1 \ P and vanish continuously on P , and un > 0 in
a neighborhood of X0. We remark that we may assume that u is even in the xn+1

variable since the even part of u solves the obstacle problem with the same free
boundary.

Now we can apply the boundary Harnack estimate, Theorem 2.3, and improve
the C1,α regularity of Γ to Γ ∈ C∞. Indeed, since Γ ∈ C1,α, we obtain that ui/un

is C1,α when restricted to Γ in a neighborhood of X0. On the other hand, ui/un

restricted to Γ represents the derivative gi. In conclusion g ∈ C2,α, hence Γ ∈ C2,α.
We iterate this indefinitely and obtain Γ ∈ C∞.

Theorem 1.2. Let X0 be a regular point of the free boundary Γ of a solution u to
the Signorini problem (1.1). Then Γ ∈ C∞ in a neighborhood of X0.

We remark that analyticity of the free boundary Γ near regular points was
obtained by Koch, Petrosyan and Shi in [15] at the same time this paper was com-
pleted. They used a different method based on partial Legendre transformation.

The paper is organized as follows. In Section 2 we introduce some notation and
state our main result, the boundary Harnack estimate Theorem 2.3. In Section 3
we prove this theorem in the case Γ ∈ Ck,α with k ≥ 2. In Section 4 we obtain
both the Schauder and the boundary Harnack estimates when Γ ∈ C1,α. Finally,
in Section 5 we collect the proofs of some technical lemmas used in our proofs.

2. Notation and statement of main results

2.1. Notation

Let Γ be a Ck+1,α surface in R
n, k ≥ 0. Assume for simplicity that Γ is given by

the graph of a function g of n− 1 variables,

(2.1) Γ := {(x′, g(x′))}, g : B′
1 ⊂ R

n−1 → R,

satisfying
g(0) = 0, ∇x′g(0) = 0, ‖g‖Ck+1,α(B′

1)
≤ 1.

Let P denote the n dimensional slit in R
n+1 given by

P := {X = (x, xn+1) ∈ B1 | xn+1 = 0, xn ≤ g(x′)}.
Notice that in the n dimensional ball B′

1 × {0} we have ∂RnP = Γ.
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Given a point X = (x, xn+1) we denote by d the signed distance in R
n from x

to Γ with d > 0 above Γ (in the en direction). Let

r :=
√
x2
n+1 + d2

be the distance in R
n+1 from X to Γ. We have

(2.2) ∇xr =
d

r
ν, ν = ∇xd,

where ν(x) represents the unit normal in R
n to the parallel surface to Γ passing

through x.
We recall the definition of the class Ck,α

xr introduced in [9]. We denote by

P (x, r) = aμm xμrm, degP = k,

a polynomial of degree k in the (x, r) variables, and we use throughout the paper
the summation convention over repeated indices. Also

xμ = xμ1

1 · · ·xμn
n , |μ| = μ1 + · · ·+ μn, μi ≥ 0.

Sometimes we think that aμm are defined for all indices (μ,m), by extending them
to be 0. We also denote

‖P‖ := max |aμm|.
Definition 2.1. We say that a function f : B1 ⊂ R

n+1 → R is pointwise Ck,α

in the (x, r)-variables at 0 ∈ Γ and write f ∈ Ck,α
xr (0) if there exists a (tangent)

polynomial P0(x, r) of degree k such that

f(X) = P0(x, r) +O(|X |k+α).

We define ‖f‖Ck,α
xr (0) as the smallest constant M such that

‖P0‖ ≤ M and |f(X)− P0(x, r)| ≤ M |X |k+α,

for all X in the domain of definition.
Similarly, we may write the definition for f to be pointwise Ck,α

xr at some other
point Z ∈ Γ.

Definition 2.2. Let K ⊂ Γ. We say that f ∈ Ck,α
xr (K) if there exists a constantM

such that f ∈ Ck,α
xr (Z) for all Z ∈ K and ‖f‖Ck,α

xr (Z) ≤ M for all Z ∈ K.

The smallest M in the definition above is denoted by ‖f‖Ck,α
x,r (K).

We remark that if f ∈ Ck,α
xr (Γ) and Γ ∈ Ck,α then the restriction of f on Γ is

a Ck,α function.
Finally, let θ ∈ (−π, π] be the angle between the segment of length r from X

to Γ and the x-hyperplane and define

(2.3) U0(X) := r1/2 cos
θ

2
=

1√
2

√
d+ r.
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2.2. Main results

Let u ∈ C(B1) be even in the xn+1 coordinate, with ‖u‖L∞ ≤ 1, and

(2.4)

⎧⎨
⎩Δu =

U0

r
f in B1 \ P ,

u = 0 on P .

Also, let U be a positive harmonic function, even in xn+1, which is normalized
such that U(12en) = 1. Precisely we assume that U > 0 solves the problem above
with f = 0, i.e.,

(2.5)

{
ΔU = 0 in B1 \ P ,

U = 0 on P ,
and U

(
1
2en

)
= 1.

Notice that by a version of the Hopf lemma in slit domains (see Lemma 7.1 in [7])
and the boundary Harnack inequality we have

(2.6) c U0 ≤ U ≤ C U0

for some universal c, C > 0.
Our main result reads as follows.

Theorem 2.3 (Boundary Harnack in slit domains). Let Γ ∈ Ck+1,α satisfy (2.1),
and let u and U satisfy (2.4), (2.5) with k ≥ 0, and

f ∈ Ck,α
xr (Γ ∩B1), ‖f‖Ck,α

xr (Γ∩B1)
≤ 1.

Then,

(2.7)
∥∥∥ u

U

∥∥∥
Ck+1,α

xr (Γ∩B1/2)
≤ C,

with C depending only on n, k and α.

The boundary Harnack Theorem 2.3 complements the Schauder type estimates
obtained in [9] that we state below.

Theorem 2.4 (Schauder estimates in slit domains). Let Γ ∈ Ck+1,α with k ≥ 1
satisfy (2.1), and assume u solves (2.4) with

f ∈ Ck−1,α
xr (Γ ∩B1), ‖f‖Ck−1,α

xr (Γ∩B1)
≤ 1.

Then,

(2.8)
∥∥∥ u

U0

∥∥∥
Ck,α

xr (Γ∩B1/2)
≤ C

and

(2.9)
∥∥∥ ∇xu

(U0/r)

∥∥∥
Ck,α

xr (Γ∩B1/2)
≤ C,

with C a constant depending only on n, k and α.
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In Section 4 we also prove the Schauder estimates when Γ ∈ C1,α.

Theorem 2.5. Let Γ ∈ C1,α satisfy (2.1) with k = 0, and assume u solves (2.4)
with

|f | ≤ rα−3/2.

Then, ∥∥∥ u

U0

∥∥∥
Cα

xr(Γ∩B1/2)
≤ C,

with C a constant depending only on n and α.

Throughout the paper we denote by c, C various positive constants that depend
only on n, k and α and we refer to them as universal constants.

3. The case Γ ∈ Ck+1,α with k ≥ 1

In this section we prove Theorem 2.3 in the case k ≥ 1. We follow the same strategy
as in the proof of the Schauder estimates from [9]. The difference is that now we
approximate u by functions U(X)P (x, r) instead of U0(X)P (x, r) as in [9].

It suffices to prove the following slightly stronger pointwise estimate for u/U .

Proposition 3.1. Let Γ ∈ Ck+1,α, satisfy (2.1) with k ≥ 1, and let U be as
in (2.5). Assume that u ∈ C(B1) is even and vanishes on P, ‖u‖L∞ ≤ 1, and

Δu(X) =
U0

r
R(x, r) + F (X) in B1 \ P,

with

|F (X)| ≤ r−1/2 |X |k+α and R(x, r) a polynomial of degree k with ‖R‖ ≤ 1.

There exists a polynomial P (x, r) of degree k + 1 with coefficients bounded by C
such that ∣∣∣ u

U
− P

∣∣∣ ≤ C |X |k+1+α,

with C depending on k, α, n.

Now Theorem 2.3 follows at the origin (and therefore at all points in Γ∩B1/2)
since

f(X) = R(x, r) + h(X), degR = k, h(X) = O(|X |k+α),

and F := U0

r h(X) satisfies the bound above.

Before we proceed with the proof of Proposition 3.1 we first need to express U
in terms of U0. This is given by the Schauder estimates Theorem 2.4 applied to U
a solution of (2.5). Thus U satisfies the following expansion at 0 ∈ Γ:

(3.1) U(X) = U0(X) (P0(x, r) +O(|X |k+α)),
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for some polynomial P0(x, r) of degree k. The derivatives Ui are in fact obtained
by differentiating formally this expansion in the xi direction (see Subsection 5.2
in [9]). It is easy to check that

(3.2) ∇xU0 =
U0

2r
ν.

Thus, using (2.2)–(3.2) we have

(3.3) ∇xU =
U0

r

[1
2
P0 ν + r ∂xP0 + (DrP0) d ν +O(|X |k+α)

]
,

where DrP0 represents the formal derivative of P0 with respect to the r variable.
Since ν, d ∈ Ck,α

x we obtain

Ui =
U0

r
(P i

0(x, r) +O(|X |k+α)), degP i
0 = k,

for some polynomial P i
0 .

In the next lemma we state that this expansion holds also for the radial deriva-
tive ∂rU := ∇r · ∇U . Its proof can be found in Section 5.

Lemma 3.2. Let Γ and U be as above. Then∣∣∣∂rU − U0

r
P r
0

∣∣∣ ≤ C
U0

r
|X |k+α,

with degP r
0 = k and U0

r P r
0 is obtained by formally differentiating U0P0 in the

r-direction, i.e.,

(3.4) ∂rU =
U0

r

[1
2
P0 +∇xP0 · (d ν) + r (DrP0) +O(|X |k+α)

]
.

We also recall the following theorem from [9], which deals with the case when Γ
is straight.

Theorem 3.3. Assume Γ = {xn = 0} and u ∈ C(B1) is even, ‖u‖ ≤ 1 and
satisfies

Δu = 0 in B1 \ P , u = 0 on P.

For any m ≥ 0, there exists a polynomial P0(x, r) of degree m such that U0P0 is
harmonic in B1 \ P and

|u− U0P0| ≤ K |X |m+1U0,

for some constant K depending on m and n.

We now proceed to prove Proposition 3.1. After careful computations are car-
ried on, the proof follows from similar arguments as in Proposition 5.1 in [9].

After performing an initial dilation we may assume that:

(3.5) ‖g‖Ck+1,α ≤ δ, |R| ≤ δ, |F | ≤ δ r−1/2 |X |k+α.
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Moreover, after multiplying U by a constant (see (2.6) and (3.1)) we may also
assume

(3.6) U = U0(1 + δQ0 + δO(|X |k+α)), degQ0 = k, ‖Q0‖ ≤ 1,

with the 0-th order term of Q0 being 0. The constant δ will be made precise later.
Next we define the notion of “approximating polynomial” which plays a crucial

role in our analysis.
Let κ(x) be the mean curvature of the parallel surface to Γ passing through x

and ν(x) denote the normal to this parallel surface. Thus,

κ(x) = −Δd ∈ Ck−1,α
x , ν(x) = ∇d ∈ Ck,α

x .

Then, one easily computes that (m ≥ 0)

(3.7) Δrm = mrm−2(m− κ d).

Now, let |μ| +m ≤ k + 1 and let ī denote the multi-index with 1 on the i-th
position and zeros elsewhere. Using (3.7), (2.2), and the fact that U is harmonic
in B1 \ P we obtain

Δ(xμrmU) = UΔ(xμrm) + 2∇(xμrm) · ∇U

= U
(
rmμi(μi − 1)xμ−2̄i +mxμrm−2(m− κ d) + 2mrm−1 d

r
ν · ∇xx

μ
)

+ 2
(
rm∇xμ · ∇xU +mxμrm−1∂rU

)
=

U

r
I + 2 II.

By Taylor expansion at 0, we write (see (3.5) and recall ∇x′g(0) = 0)

(3.8) νi = δin + · · · , κ = κ(0) + · · · , d = xn + · · ·
We arrange the terms in I by the degree up to order k and group the remaining
ones in a remainder. Precisely,

I = m(m+ 2μn)x
μrm−1 + μi(μi − 1)xμ−2̄irm+1 + bμmσl xσrl + δ O(|X |k+α),

with
bμmσl �= 0 only if |μ|+m− 1 < |σ|+ l ≤ k.

Notice that the monomials bμmσl xσrl have strictly higher degree than the first
terms and together with the remainder can be thought as lower order terms. Also
they are linear combinations of coefficients of the tangent polynomials at 0 for
dκ(x), dνi thus,

|bμmσl | ≤ C δ.

Notice that bμmσl vanish in the flat case Γ = {xn = 0}.
To estimate II we use (3.3)–(3.4) and obtain

II =
U0

r

[ 1

2
rmμnx

μ−n̄ +
1

2
mxμrm−1 + pμmσl xσrl + δO(|X |k+α)

]
,

where the coefficients pμmσl have the same properties as the bμmσl .
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Thus, using (3.6) we conclude that

Δ(xμrmU) =
U0

r

[
m(m+ 1 + 2μn)x

μrm−1 + rmμnx
μ−n̄

+ μi(μi − 1)xμ−2̄irm+1 + cμmσl xσrl + δ O(|X |k+α)
]
,

with
cμmσl �= 0 only if |μ|+m− 1 < |σ|+ l ≤ k,

and

(3.9) |cμmσl | ≤ C δ.

If P = aμmxμrm is a polynomial of degree k + 1, then

(3.10) Δ(UP ) =
U0

r

(
Aσlx

σrl + δO(|X |k+α)
)
, |σ|+ l ≤ k,

with

Aσl = (l + 1)(l + 2 + 2σn) aσ,l+1 + (σn + 1)aσ+n̄,l(3.11)

+ (σi + 1)(σi + 2)aσ+2̄i,l−1 + cμm
σl aμm.

From (3.11) we see that aσ,l+1 (whose coefficient is different than 0) can be
expressed in terms of Aσl and a linear combination of aμm with μ+m < |σ|+ l+1
plus a linear combination of aμm with μ+m = |σ|+ l+1 and m < l+1. This shows
that the coefficients aμm are uniquely determined from the linear system (3.11)
once Aσl and aμ0 are given.

Definition 3.4. We say that P is approximating for u/U at 0 if Aσl coincide with
the coefficients of R.

Remark 3.5. Here we point out the difference between approximating using U
and U0. If we want to obtain an expansion as in (3.10) for (U0P ) then we need
to require Γ ∈ Ck+2,α in order to deal with the terms xμrmU0.

The following improvement of flatness lemma is the key ingredient in the proof
of Proposition 3.1.

Lemma 3.6. There exist universal constants ρ, δ depending only on k, α and n,
such that if P with ‖P‖ ≤ 1 is an approximating polynomial for u/U in Bλ, that
is P is approximating for u/U at 0 and

‖u− UP‖L∞(Bλ) ≤ λk+3/2+α,

for some λ > 0, then there exists an approximating polynomial P̄ for u/U at 0
such that, in Bρλ,

‖u− UP̄‖L∞(Bρλ) ≤ (ρλ)k+3/2+α and ‖P̄ − P‖L∞(Bλ) ≤ Cλk+1+α.
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Proof. Set

u− UP =: λk+3/2+α ũ
(X
λ

)
.

Thus, since P is approximating,

(3.12) Δũ
(X
λ

)
= λ1/2−k−α

(
F (X)− δ

U0

r
O(|X |k+α)

)
=: F̃

(X
λ

)
.

Using the hypothesis on u and F we find

|ũ(X)| ≤ 1, |Δũ(X)| ≤ C δr−1/2 in B1.

Denote by Γ̃, P̃, Ũ0, Ũ the rescalings of Γ, P , U0 and Ũ from Bλ to B1, i.e.,

Γ̃ :=
1

λ
Γ, P̃ :=

1

λ
P , Ũ0(X) := λ−1/2 U0(λX), Ũ(X) := λ−1/2 U(λX).

We decompose ũ as
ũ = ũ0 + ṽ,

with {
Δũ0 = 0 in B1 \ P̃,

ũ0 = ũ on ∂B1 ∪ P̃,
and

{
|Δṽ| ≤ Cδr−1/2 in B1 \ P̃,

ṽ = 0 on ∂B1 ∪ P̃ .

Using barriers it follows that (see (5.6) in [9] or Lemma 5.2 in Section 5)

(3.13) ‖ṽ‖L∞(B1) ≤ C δ Ũ0.

To estimate ũ0 we observe that ũ0 is a harmonic function in B1 \ P̃ , |ũ0| ≤ 1
and as δ → 0, Γ̃ converges in the Ck+1,α norm to the hyperplane {xn = 0}.
Moreover, ũ0 is uniformly Hölder continuous in B1/2. By compactness, if δ is
sufficiently small, ũ0 can be approximated in B1/2 by a solution of the Laplace

problem with Γ = {xn = 0}. Thus by Theorem 3.3, and the fact that Ũ → Ũ0

uniformly as δ → 0 (see (3.6)) we deduce that

(3.14) ‖ũ0 − ŨQ‖L∞(Bρ) ≤ Cρk+2+1/2, degQ = k + 1,

with ‖Q‖ ≤ C. Since U0Q is harmonic we also get that the coefficients of Q satisfy
(see (3.11))

(3.15) (l+1)(l+2+ 2σn) qσ,l+1 + (σn +1) qσ+n̄,l + (σi +1)(σi +2) qσ+2̄i,l−1 = 0,

with bounded qμm.

Using also (3.13) we find

‖ũ− ŨQ‖L∞(Bρ) ≤ C ρk+5/2 + C δ ≤ 1

2
ρk+3/2+α

provided that we choose first ρ and then δ, universal, sufficiently small.
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Writing this inequality in terms of the original function u, we find

∣∣∣u− U
(
P + λk+1+αQ

(X
λ

))∣∣∣ ≤ 1

2
(λρ)3/2+α in Bρλ.

However P (X)+λk+1+αQ(X/λ) is not an approximating polynomial and therefore
we need to perturb Q by a small amount.

Precisely, we need to modify Q into Q̄ such that Q̄(x/λ, r/λ) is approximat-
ing for R ≡ 0. Thus its coefficients solve the system (3.11) with Aσl = 0 and
rescaled cμm

σl , i.e.,

(l + 1)(l + 2 + 2σn) q̄σ,l+1 + (σn + 1)q̄σ+n̄,l(3.16)

+(σi + 1)(σi + 2)q̄σ+2̄i,l−1 + c̄μm
σl q̄μm = 0,

with

c̄μm
σl := λ|σ|+l+1−|μ|−m cμm

σl , hence |c̄μm
σl | ≤ |cμm

σl | ≤ Cδ.

After subtracting (3.16) from (3.15) we see that the coefficients of Q− Q̄ solve the
linear system (3.16) with right hand side Aσl = c̄μm

σl qμm, hence |Aσl| ≤ Cδ. As we
mentioned before Definition 3.4, this system is uniquely solvable after choosing
q̄μ0 − qμ0 = 0 and we find

‖Q̄−Q‖ ≤ Cδ.

This concludes the proof. �

Remark 3.7. The classical boundary Harnack inequality implies that |ũ0| ≤ CŨ0

which together with (3.13) gives

|ũ| ≤ C Ũ0 in B1/2.

This shows that the hypothesis of Proposition 3.1 can be improved to

|u− UP | ≤ C U0 λ
k+1+α in Bλ/2.

We can now conclude the proof of Proposition 3.1.

After multiplying u by a small constant, we see that the hypotheses of the
lemma are satisfied for some initial λ0 small. Indeed, the coefficients of R become
sufficiently small and, by (3.11), we can choose an initial approximating polyno-
mial Pλ0 with ‖Pλ0‖ ≤ 1/2. Now we may iterate the lemma for all λ = λ0ρ

m and
conclude that there exists a limiting approximating polynomial P0, ‖P0‖ ≤ 1, such
that

|u− UP0| ≤ C |X |k+3/2+α in B1.

Moreover, in view of the remark above, the right-hand side can be replaced by
C U0|X |k+1+α, or equivalently by C U |X |k+1+α, and the proposition is proved.
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4. C1,α boundaries

We start by proving the Schauder estimate Theorem 2.5. For the reader’s conve-
nience we state it again.

Theorem 4.1. Let u be a solution to

|Δu| ≤ rα−3/2 in B1 \ P, u = 0 on P

with ‖u‖L∞ ≤ 1 and ‖Γ‖C1,α ≤ 1. Then,∥∥∥ u

U0

∥∥∥
Cα

xr(Γ∩B1/2)
≤ C

with C > 0 depending on n and α.

At the origin, the theorem states that there exists a constant a, |a| ≤ C such
that

(4.1) |u− aU0| ≤ C |X |αU0.

It turns out that if u is harmonic then we can differentiate formally the inequality
above.

Lemma 4.2. Assume that u is harmonic, satisfies the hypotheses of Theorem 4.1,
and the expansion (4.1) holds. Then, for a.e. X ∈ B1/2 we have

|∇u−∇(aU0)| ≤ C |X |α r−1/2, |∇xu−∇x(aU0)| ≤ C |X |α U0

r
.

We prove the Schauder estimates and the boundary Harnack in slit domains
with C1,α boundary using the same strategy as in the case of Ck+1,α domains with
k ≥ 1. However, due to the lack of regularity of r, d and U0 the “test” functions
in the proof for k ≥ 1 must be slightly modified. We achieve this by working
with “regularizations” of the functions r, U0 that we denote by r̄, Ū0. Their main
properties are given in the next lemma. Notice that r, U0 are differentiable a.e.

Lemma 4.3. Let ‖Γ‖C1,α ≤ δ. There exist smooth functions r̄, Ū0 such that

∣∣∣ r̄
r
− 1

∣∣∣ ≤ Cδ rα,
∣∣∣ Ū0

U0
− 1

∣∣∣ ≤ Cδ rα,∣∣∇r̄ −∇r
∣∣ ≤ Cδ rα, |∂xn+1 r̄ − ∂xn+1r| ≤ Cδ rα−1/2 U0,∣∣∣Δr̄ − 1

r

∣∣∣ ≤ Cδ rα−1, |ΔŪ0| ≤ Cδ rα−3/2,

with C universal.

The proof of Lemma 4.3 is postponed until Section 5.
As usually, Theorem 4.1 follows from the next improvement of flatness lemma.
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Lemma 4.4. Let

|Δu| ≤ δ rα−3/2 in B1 \ P , u = 0 on P , ‖Γ‖C1,α ≤ δ.

Assume that there exists a constant a, |a| ≤ 1 such that for some λ > 0

‖u− aU0‖L∞(Bλ) ≤ λα+1/2.

Then there exists ρ > 0 such that

‖u− b U0‖L∞(Bρλ) ≤ (ρλ)α+1/2,

with |a− b| ≤ Cλα, as long as δ is sufficiently small.

Proof. From Lemma 4.3 we can replace U0 by Ū0 and assume that

|u− aŪ0| ≤ 2λα+1/2 in Bλ.

Set

u− aŪ0 = 2λα+1/2 ũ
(X
λ

)
.

Then, using the bound for Ū0, we obtain that

|ũ| ≤ 1, |Δũ| ≤ Cδ rα−3/2 in B1.

We now write
ũ = ũ1 + ũ2,

with
Δũ1 = Δũ in B1 \ P , ũ1 = 0 on ∂B1 ∪ P̃

and
Δũ2 = 0 in B1 \ P , ũ2 = ũ on ∂B1 ∪ P̃ .

By Lemma 5.2 in Section 5 we have ‖ũ1‖L∞ ≤ CδŨ0, hence ũ1 converges to 0
uniformly as δ → 0.

To estimate ũ2 we argue by compactness, as in the case k ≥ 1. If δ is sufficiently
small universal, ũ2 can be approximated in B1/2 by a solution of the Laplace
problem with Γ = {xn = 0}. Thus by Theorem 3.3, we deduce that

‖ũ2 − b Ũ0‖L∞(Bρ) ≤ C ρ1+1/2,

for some constant b, |b| ≤ C. Thus,

‖ũ− b Ũ0‖L∞(Bρ) ≤ C ρ1+1/2 + o(δ) ≤ 1

4
ρ1/2+α,

provided we choose first ρ then δ sufficiently small.
Writing this inequality in terms of the original function u we obtain (for δ small

enough),

|u− aŪ0 − 2bλαU0| ≤ 1

2
(λρ)α+1/2 in Bρλ.

Then, by Lemma 4.3, we obtain

|u− (a+ 2bλα)U0| ≤ (λρ)α+1/2, in Bρλ

as desired. �
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For the remaining of this section we prove our main Theorem 2.3, for k = 0.
For clarity of exposition we write below the statements of Proposition 3.1 and
Lemma 3.6 leading to it, in the case k = 0.

Proposition 4.5. Let Γ ∈ C1,α, ‖Γ‖C1,α ≤ 1, and U be as in (2.5). Assume that
u ∈ C(B1) is even and vanishes on P, ‖u‖L∞ ≤ 1, and

Δu(X) = q
U0

r
+ F (X) in B1 \ P,

with
|F (X)| ≤ r−1/2 |X |α and |q| ≤ 1.

There exists a polynomial P (x, r) of degree 1 with coefficients bounded by C such
that ∣∣∣ u

U
− P

∣∣∣ ≤ C |X |1+α,

with C depending on α, n.

As usually, after performing an initial dilation we may assume that:

(4.2) ‖g‖C1,α ≤ δ, |q| ≤ δ, |F | ≤ δr−1/2|X |α.
Proposition 4.5 will follow as in the case k ≥ 1, after we extend the definition of
approximating polynomial to this case i.e. now P is a polynomial in (x, r̄), rather
than (x, r).

Let P (x, r̄) be a polynomial of degree one in x and r̄,

P (x, r̄) = a0 +

n∑
i=1

aixi + an+1 r̄.

We claim that

(4.3) Δ(UP ) =
U0

r
[an + 2an+1 +O(δ|X |α)].

Definition 4.6. We say that P is approximating for u/U at 0 if

an + 2an+1 = q.

The proof of the claim is postponed until later. Now, with this definition the
proof of Proposition 4.5 is a consequence of the next lemma, whose proof is identical
to the case k ≥ 1.

Lemma 4.7. There exist universal constants ρ and δ, depending only on α and n,
such that if P0(x, r̄) with ‖P0‖ ≤ 1 is an approximating polynomial for u/U in Bλ,
that is P is approximating for u/U at 0 and

|u− UP |L∞(Bλ) ≤ λ3/2+α,

for some λ > 0, then there exists an approximating polynomial P1(x, r̄) for u/U
at 0 such that, in Bρλ,

|u− UP1|L∞(Bρλ) ≤ (ρλ)3/2+α and ‖P1 − P0‖L∞(Bλ) ≤ Cλ1+α.
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Notice that, in view of Lemma 4.3,

|P (x, r) − P (x, r̄)| ≤ Cδ ‖P‖r1+α,

and Proposition 4.5 follows as before.
It remains to prove formula (4.3). We compute that

(4.4) Δ(UP ) = an+1UΔr̄ + 2aiUi + 2an+1∇r̄ · ∇U.

Now we use Theorem 4.1, Lemma 4.2 and estimate U , ∇U in terms of U0, ∇U0

together with the estimates for ∇r̄, r̄ from Lemma 4.3. From Theorem 4.1,
Lemma 4.2, we see that after multiplication by a constant and a dilation we may
suppose that the function U satisfies

U = U0(1 +O(δ|X |α)),

∇xU = ∇xU0 +O
(
δ
U0

r
|X |α

)
, ∂xn+1U = ∂xn+1U0 +O(δ r−1/2 |X |α).

Since

r̄ =
1

r
+O(δrα−1),

∇xr̄ = ∇xr +O(δrα), ∂xn+1 r̄ = ∂xn+1r +O(δ U0 r
α−1/2),

and also

∇xU0 =
U0

2r
∇xd, ∇xd = en +O(δ|X |α),

|∇U0| ≤ Cr−1/2, ∇r · ∇U0 =
U0

2r
, |∂xn+1r| ≤ C U0 r

−1/2,

we easily obtain (4.3) from (4.4).

5. Proof of some technical lemmas

In this section we collect the proofs of several technical lemmas. We start with the
approximation Lemma 4.3. For the reader’s convenience we state it again.

Lemma 5.1. Let ‖Γ‖C1,α ≤ 1. There exist smooth functions r̄, Ū0 such that

∣∣∣ r̄
r
− 1

∣∣∣ ≤ C rα,
∣∣∣ Ū0

U0
− 1

∣∣∣ ≤ C rα,

|∇r̄ −∇r| ≤ C rα, |∂xn+1 r̄ − ∂xn+1r| ≤ C rα−1/2 U0,∣∣∣Δr̄ − 1

r

∣∣∣ ≤ C rα−1, |ΔŪ0| ≤ Crα−3/2,

with C universal. Moreover if we assume ‖Γ‖C1,α ≤ δ, small, then the constant C
above is replaced by Cδ.
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Proof. The idea is to smooth out the signed distance function d to Γ and then
smooth out r and U0 using the formulas

r =
√
d2 + x2

n+1 and U0 =
1√
2

√
r + d.

We divide the proof in three steps. Whenever we write ∇d, ∇r, ∇U0 we assume
we are at a point where these locally Lipschitz functions are differentiable.

Step 1. We start by constructing d̄ by smoothing the signed distance d to Γ in
dyadic tubular neighborhoods, and then we glue them together. First, define the
open tubular neighborhood of Γ,

Dλ = {x ∈ R
n : |d| < λ}, λ small.

We set

dλ := d ∗ ρλ, ρλ = λ−n ρ
(x
λ

)
,

with ρ a symmetric kernel supported in B1/10.
We claim that

(5.1) |dλ − d| ≤ Cλ1+α, |∇dλ −∇d| ≤ Cλα, |D2dλ| ≤ Cλα−1 in D4λ.

We check our claim at a point x0 on the xn-axis. Since ‖Γ‖C1,α ≤ 1, we have

|d− xn| ≤ Cλ1+α, in B4λ,

and we remark that if ‖Γ‖C1,α ≤ δ then we may replace C by Cδ.
Thus,

d = xn + λ1+αv, |v| ≤ C,

and using that xn ∗ ρλ = xn we get

dλ = d ∗ ρλ = xn + λ1+α (v ∗ ρλ).

This gives,

∇dλ = en + λ1+α (v ∗ ∇ρλ), D2dλ = λ1+α (v ∗D2ρλ)

and the claim (5.1) follows by using that∫
λ |∇ρλ| dx ≤ C,

∫
λ2 |D2ρλ| dx ≤ C, |∇d(x0)− en| ≤ Cλα.

The function dλ approximates d up to an error λ1+α in Dλ. Next we interpolate
between various dλ with λ = λk = 4−k in the annular sets Aλ := {λ < d < 4λ}.

We define d̄ to coincide with dλ in Aλ ∩ D2λ and with d4λ in Aλ \D3λ. Pre-
cisely, let

d̄ = ϕdλ + (1− ϕ) d4λ,
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with ϕ a cutoff function

(5.2) ϕ = 0 if d > 3λ, ϕ = 1 if d < 2λ.

We set

ϕ = h
(dλ
λ

)
,

with
h(t) = 1 if t ≤ 2 + 1/4, h(t) = 0 if t ≥ 2 + 3/4

and h smooth in between. Thus,

(5.3) |∇ϕ| ≤ Cλ−1, |D2ϕ| ≤ Cλ−2.

Then, d̄ satisfies

(5.4) |d̄− d| ≤ Cλ1+α, |∇d̄−∇d| ≤ Cλα, |D2d̄ | ≤ Cλα−1 in Aλ.

This follows immediately after computing

∇d̄ = ϕ∇dλ + (1− ϕ)∇d4λ + (dλ − d4λ)∇ϕ,(5.5)

D2d̄ = ϕD2dλ + (1− ϕ)D2d4λ + 2(∇dλ −∇d4λ)⊗∇ϕ+ (dλ − d4λ)D
2ϕ,

and then using (5.1) and (5.3).

Step 2. We construct r̄ in a similar fashion as d̄. We first construct approxima-
tions rλ in dyadic annular regions Rλ in R

n+1, and then we “glue” them together.
We define

(5.6) rλ :=
√
d2λ + x2

n+1, in Rλ = {λ/2 < r < 4λ}.

with dλ as in Step 1. Then r, rλ and λ are all comparable to each other in Rλ and
we claim that

|rλ − r| ≤ Cλ1+α,
∣∣Δrλ − 1/r

∣∣ ≤ Cλα−1(5.7)

|∇rλ −∇r| ≤ Cλα, ‖D2rλ‖ ≤ C/λ.(5.8)

Indeed, using the first inequality in (5.1) we obtain

|r2λ − r2| = |d2λ − d2| ≤ Cλ2+α.

This gives the first inequality in (5.7), hence

(5.9)
∣∣∣rλ
r

− 1
∣∣∣ ≤ Cλα.

Since

(5.10) ∇rλ =
1

rλ
(dλ∇xdλ, xn+1)

the inequalities in (5.8) follow easily from the estimates for dλ (see (5.1), (5.9)).
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From (5.8) and (5.1) we obtain

|∇rλ| − 1 = O(λα), |∇dλ| − 1 = O(λα).

Then the identity

rλΔrλ + |∇rλ|2 =
1

2
Δr2λ =

1

2
Δ(d2λ + x2

n+1) = dλΔdλ + |∇dλ|2 + 1

implies
rλrλ = 1 +O(λα),

which gives the second inequality in (5.7) and our claim is proved.

Next we glue various rλ’s with λ = λk = 4−k. In the regions {λk < r < 4λk}
we define

r̄ = ϕrλ + (1− ϕ)r4λ, with ϕ := h(rλ/λ), h as above.

Notice that ϕ satisfies (5.3), and (5.8) holds with d replaced by r. This shows
that r̄ still satisfies in this region

(5.11) |r̄ − r| ≤ Cr1+α, |∇r̄ −∇r| ≤ Crα,
∣∣∣Δr̄ − 1

r

∣∣∣ ≤ C rα−1.

Moreover (5.10) and |∂xn+1ϕ| ≤ C |xn+1|/λ2 imply

|∂xn+1 r̄ − ∂xn+1r| ≤ C
|xn+1|

r
λα ≤ C

U0

r1/2
λα.

Step 3. We construct Ū0. As before,

(U0)λ =
1√
2
(dλ + rλ)

1/2, in Rλ.

Below we show that (U0)λ satisfies the following inequalities:

∣∣∣ (U0)λ
U0

− 1
∣∣∣ ≤C λα, |∇(U0)λ −∇U0| ≤ C λα−1/2,(5.12)

|(U0)λ| ≤ Cλα−3/2.(5.13)

Then the function Ū0 is obtained as in Step 2 by interpolating the various (U0)λ’s.
We check the inequalities above separately in the regions

R1
λ := Rλ ∩ {d > −r/2} and R2

λ := Rλ ∩ {d < −r/2},
depending whether or not we are closer to the set P where U0 and (U0)λ vanish.

Case 1. In the region R1
λ we know that U0, (U0)λ and λ1/2 are comparable to

each other and

(U0)λ = U0

(rλ + dλ
r + d

)1/2

.



Boundary Harnack in slit domains 909

From Steps 1 and 2 we have

rλ + dλ
r + d

= 1 +O(λα), ∇rλ + dλ
r + d

= O(λα−1),

and we easily obtain the two inequalities in (5.12). In particular we find

|∇(U0)λ| = |∇U0|+O(λα−1/2) =
1

2
r−1/2 +O(λα−1/2).

Now (5.13) follows from the identity (see also (5.1), (5.7))

(U0)λ(U0)λ + |∇(U0)λ|2 =
1

4
(dλ + rλ).

Case 2. In the region R2
λ we know that U0, (U0)λ and |xn+1|λ−1/2 are compa-

rable to each other since

(U0)λ = |xn+1|(rλ − dλ)
−1/2 = U0

(rλ − dλ
r − d

)−1/2

,

and (5.12) is obtained as above. In order to prove (5.13) we write (assume
xn+1 > 0)

(U0)λ = 2∂xn+1(rλ − dλ)
−1/2 + xn+1(rλ − dλ)

−1/2

=
xn+1

2
(rλ − dλ)

−3/2
(
− 2

1

rλ
−(rλ − dλ) +

3

2

|∇(rλ − dλ)|2
rλ − dλ

)
,(5.14)

and we used ∂xn+1rλ = xn+1/rλ and ∂xn+1dλ = 0. Since

|∇(rλ − dλ)|2 = r−2
λ

(
(rλ − dλ)

2|∇dλ|2 + x2
n+1

)
= r−2

λ

(
2rλ(rλ − dλ) +O(λ2+α)

)
we find that the quantity in the parenthesis in (5.14) is O(λα−1) and our claim is
proved. �

In the next lemma we obtain an L∞ bound for solutions to the Laplace equation
with right hand side that degenerates near Γ.

Lemma 5.2 (Barrier). Assume ‖Γ‖C1,α ≤ δ with α ∈ (0, 1/2), and

|Δu| ≤ rα−3/2 in B1 \ P, u = 0 on P ∪ ∂B1.

Then
|u| ≤ C U0 in B1,

with C and δ depending on n and α.

Proof. We construct an upper barrier for u. Let

V := Ū0 − Ū 1+2α
0 ,

and notice that V ≥ 0 in B1.
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We compute

V = Ū0 − (1 + 2α)Ū0
2α−1

(Ū0Ū0 + 2α|∇Ū0|2).
By Lemma 5.1 we have

|Ū0| ≤ r1/2, |Ū0| ≤ Cδ rα−3/2, |∇Ū0| ≥ c r−1/2,

thus we obtain
V ≤ −c rα−3/2.

Since V ≥ 0 and (CV ) ≤ u, we apply maximum principle in B1 \P and obtain

u ≤ C V ≤ C Ū0 in B1. �

Remark 5.3. L∞ bounds for u hold also for more degenerate right hand side. If
for some small γ > 0,

|u| ≤ rγ−2, u = 0 on P ∪ ∂B1,

then
|u| ≤ C rγ .

Indeed, in this case we can use V = Ū2γ
0 as an upper barrier.

Proof of Lemma 4.2. We have

|u− aU0| ≤ C rα U0 ≤ C r1/2+α.

The idea is to replace U0 with an appropriate function U∗
0 which measures the

distances d and r to a straight boundary instead of Γ. Notice that u and U∗
0 are

both harmonic.
We pick a point X0 at distance λ from Γ. Assume for simplicity of notation

that the closest point to X0 on Γ is the origin 0, thus X0 belongs to the 2D plane
{x′ = 0}. Let U∗

0 denote the 1-dimensional solution with respect to the straight
boundary L := {xn = 0}, i.e.,

U∗
0 := U0,L =

1√
2

√
xn + r∗, r∗ :=

√
x2
n + x2

n+1.

Notice that U∗
0 nd r∗ coincide with U0 and r at the point X0. Moreover, if d, r,

and U0 are differentiable at X0, then

∇d = ∇xn = en, ∇U0 = ∇U∗
0 , ∇r = ∇r∗ at X0.

In the conical region

C := {|x′| < r∗} ∩ {λ/2 < r∗ < 2λ}
we use that ‖Γ‖C1,α ≤ 1 and obtain (as in (5.12))

|U∗
0 − U0| ≤ C λ1/2+α,

thus
|u− aU∗

0 | ≤ C λ1/2+α in C.
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Since u− aU∗
0 is harmonic and vanishes on P we apply gradient estimates and

obtain

|∇u− a∇U∗
0 | ≤ Cλα−1/2, |∇xu− a∇xU

∗
0 | ≤ C λα−1 U∗

0 at X0,

and we replace U∗
0 by U0 in the inequalities above.

In conclusion, at an arbitrary point X ∈ B1/2 where U0 is differentiable we
have

|∇u − aπ(X)∇U0| ≤ C rα−1/2 and |∇xu− aπ(X)∇xU0| ≤ C rα−1 U0,

where π(X) is the projection of X onto Γ and aπ(X) represents the corresponding
constant for the expansion of u at π(X). The lemma is proved since

|aπ(X) − a| ≤ C |π(X)|α ≤ C|X |α, r ≤ |X |,
|∇U0| ≤ C r−1/2, ∇xU0 =

U0

2r
∇xd, |∇xU0| ≤ C

U0

r
.

�

Finally we conclude with the proof of Lemma 3.2.

Proof of Lemma 3.2. By Lemma 5.5 in [9], we see that

Ui = ∂xi(U0P0) +O
(U0

r
|X |k+α

)
i = 1, 2, . . . , n,

Un+1 = ∂xn+1(U0P0) +O(|X |k−1/2+α)

in the cone C0 = {|(xn, xn+1)| > |x′|}. Since |∂xn+1r| ≤ r−1/2U0, we find

∂rU = ∂r(U0P0) +O
(U0

r
|X |k+α

)
in C0,

and the conclusion of the lemma follows as in [9], by writing the equality above
for all corresponding cones CZ , Z ∈ Γ. �
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