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The system of sets of lengths in Krull monoids
under set addition

Alfred Geroldinger and Wolfgang A. Schmid

Abstract. Let H be a Krull monoid with class group G and suppose
that each class contains a prime divisor. Then every element a ∈ H has
a factorization into irreducible elements, and the set L(a) of all possible
factorization lengths for a is the set of lengths of a. We consider the system
L(H) = {L(a) | a ∈ H} of all sets of lengths, and we characterize (in terms
of the class group G) when L(H) is additively closed under set addition.

1. Introduction and main result

By a monoid, we mean a commutative cancellative semigroup with unit element,
and we say that a monoid is atomic if every non-unit can be written as a finite
product of irreducible elements (also called atoms). Let H be an atomic monoid. If
a ∈ H is a non-unit and a = u1 · · ·uk is a factorization of a into k atoms, then k is
called the length of the factorization. The set L(a) ⊂ N of all possible factorization
lengths is called the set of lengths of a. It is convenient to set L(a) = {0} for each
unit a ∈ H , and we denote by L(H) = {L(a) | a ∈ H} the system of sets of lengths
of H . All v-noetherian monoids (in particular, Krull monoids and the monoids
of non-zero elements of noetherian domains) are atomic monoids in which all sets
of lengths are finite. Let a, b ∈ H . Then the sumset L(a) + L(b) = {l + l′ | l ∈
L(a), l′ ∈ L(b)} is contained in L(ab). Thus, if |L(a)| > 1 and k ∈ N, then the k-fold
sumset kL(a) = L(a) + · · ·+ L(a) is contained in L(ak), and hence |L(ak)| > k.

The system of sets of lengths L(H) is said to be additively closed if the sum-
set L + L′ ∈ L(H) for all sets of lengths L,L′ ∈ L(H). Clearly, set addition is
commutative, {0} = L(1) ∈ L(H) is the zero-element, and it is the only invertible
element. Thus L(H) is additively closed if and only if (L(H),+) is a commu-
tative reduced semigroup with respect to set addition. Indeed, in this case it is
an acyclic semigroup in the sense of [8]. In this paper, Cilleruelo, Hamidoune,
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and Serra study addition theorems in acyclic semigroups, and systems of subsets
of certain semigroups with set addition as the operation belong to their main ex-
amples.

The system of sets of lengths (together with invariants controlling sets of
lengths, such as elasticities and sets of distances) are the best investigated in-
variants in factorization theory. However, the system of sets of lengths has been
explicitly determined only in some very special cases (they include Krull monoids
with small class groups, see Theorem 7.3.2 in [15] and [3]; certain numerical
monoids, [1]; and self-idealizations of principal ideal domains, see Corollary 16
in [7]). Recent studies of direct-sum decompositions in module theory revealed
monoids of modules which are Krull and whose systems of sets of lengths are ad-
ditively closed (see Section 6.3 in [3]). This phenomenon has not been observed
so far in any relevant cases, and it has surprising consequences. Note that, if
H ′ ⊂ H is a divisor-closed submonoid, then L(H ′) ⊂ L(H), and in all cases stud-
ied so far, a proper containment of the monoids implied a proper containment of
their systems of sets of lengths. In contrast to this, suppose that H is an atomic
monoid such that L(H) is additively closed. Then the direct product H × H is
an atomic monoid, H is a divisor-closed submonoid of H ×H (up to units), and
L(H × H) = {L + L′ | L,L′ ∈ L(H)} = L(H). Proposition 2.2 provides more
sophisticated consequences of the fact that a system of sets of lengths is additively
closed.

Krull monoids having the property that each class contains a prime divisor
have found the greatest interest in factorization theory, and they will be the focus
of the present paper. Their arithmetic can be studied with methods from addi-
tive combinatorics ([12]). Based on a couple of recent results (see the proofs of
Propositions 3.1 and 3.13), we show that their systems of sets of lengths are addi-
tively closed only in a very small number of exceptional cases. Here is our main
result.

Theorem 1.1. Let H be a Krull monoid with class group G and suppose that each
class contains a prime divisor. Then the system of sets of lengths L(H) is additively
closed under set addition if and only if G has one of the following forms :

(a) G is cyclic of order |G| ≤ 4.

(b) G is an elementary 2-group of rank r ≤ 3.

(c) G is an elementary 3-group of rank r ≤ 2.

(d) G is infinite.

Clearly, the groups given in (a)–(c) are precisely those groups G with exp(G)+
r(G) ≤ 5. In Section 2 we outline that it is sufficient to prove Theorem 1.1 for a
special class of Krull monoids and that the statement of Theorem 1.1 is valid too for
classes of non-Krull monoids (see Proposition 2.1). The proof of Theorem 1.1 will
be given in Section 3. The idea of the proof will be outlined after Proposition 3.1
when we have the required concepts at our disposal.
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2. Context and applications

We denote by N the set of positive integers and set N0 = N∪{0}. For real number
a, b ∈ R, we denote by [a, b] = {x ∈ Z | a ≤ x ≤ b} the discrete interval between a
and b. For every positive integer n ∈ N, Cn means a cyclic group of order n. Let
L,L′ ⊂ Z be subsets of the integers. Then L + L′ = {a+ b | a ∈ L, b ∈ L′} is the
sumset of L and L′. For k ∈ N, we denote by kL = L + · · ·+ L the k-fold sumset
of L and by k · L = {ka | a ∈ L} the dilation of L by k. A positive integer d ∈ N
is called a distance of L if there exist elements k, l ∈ L such that k < l, d = l − k,
and [k, l] ∩ L = {k, l}. We denote by Δ(L) the set of distances of L. We use the
convention that max ∅ = min ∅ = 0.

By a monoid, we always mean a commutative semigroup with identity which
satisfies the cancellation laws. If R is a domain, then the multiplicative monoid
R• = R\{0} of nonzero elements of R is a monoid, and all terminology introduced
for monoids will be used for domains in an obvious sense. In particular, we say
that R is atomic if R• is atomic, and we set L(R) = L(R•) for the system of sets
of lengths of R, and so on. A monoid F is called free abelian with basis P ⊂ F if
every a ∈ F has a unique representation of the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P .

Let F be free abelian with basis P . We set F = F(P ) and call

• |a| = ∑
p∈P vp(a) the length of a and

• supp(a) = {p ∈ P | vp(a) > 0} the support of a.

Clearly, P ⊂ F is the set of primes of F , and if P is nonempty, then, for the
system of sets of lengths, we have L(F ) = {{y} | y ∈ N0}. A monoid H is said
to be a Krull monoid if it satisfies one of the following equivalent properties (see
Theorem 2.4.8 in [15] or Chapter 22 of [19]):

(a) H is completely integrally closed and satisfies the ascending chain condition
on divisorial ideals.

(b) H has a divisor homomorphism into a free abelian monoid (i.e., there is a
homomorphism ϕ : H → F(P ) such that, for each two elements a, b ∈ H , a
divides b in H if and only if ϕ(a) divides ϕ(b) in F(P )).

A domain R is a Krull domain if and only if R• is a Krull monoid, and thus
property (a) shows that a noetherian domain is Krull if and only if it is integrally
closed. Holomorphy rings in global fields and regular congruence monoids in these
domains are Krull monoids with finite class groups such that each class contains
infinitely many prime divisors (see Section 2.11 of [15]). Monoid domains and
power series domains that are Krull are discussed in [21] and [6]. For monoids of
modules that are Krull we refer to [5], [9], and [3].

We discuss a Krull monoid of a combinatorial flavor which plays a universal
role in the study of sets of lengths in Krull monoids. Let G be an additive abelian
group. Following the tradition of combinatorial number theory ([18]), the elements
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of F(G) will be called sequences over G. Let S = g1 · · · gl ∈ F(G) be a sequence
over G. Then σ(S) = g1 + · · ·+ gl ∈ G is the sum of S, and S is called a zero-sum
sequence if σ(S) = 0. Clearly, the set B(G) of all zero-sum sequences over G is a
submonoid of F(G), and the embedding B(G) ↪→ F(G) is a divisor homomorphism.
Thus B(G) is a Krull monoid by Property (b). It is easy to check that B(G) is
free abelian if and only if |G| ≤ 2. Suppose that |G| ≥ 3. Then B(G) is a Krull
monoid with class group isomorphic to G and each class contains precisely one
prime divisor (see Proposition 2.5.6 in [15]).

The following proposition gathers together results demonstrating the universal
role of the Krull monoid B(G) in the study of sets of lengths.

Proposition 2.1.

1) If H is a Krull monoid with class group G such that each class contains a
prime divisor, then L(H) = L(B(G)

)
.

2) Let O be a holomorphy ring in a global field K, A a central simple algebra
over K, and H a classical maximal O-order of A such that every stably free
left R-ideal is free. Then L(H) = L(B(G)

)
, where G is a ray class group

of O and hence finite abelian.

3) Let H be a seminormal order in a holomorphy ring of a global field with

principal order Ĥ such that the natural map X(Ĥ) → X(H) is bijective and

there is an isomorphism ϑ : Cv(H) → Cv(Ĥ) between the v-class groups. Then
L(H) = L(B(G)

)
, where G = Cv(H) is finite abelian.

Proof. 1) See Section 3.4 of [15]. 2) See Theorem 1.1 in [24], and [4] for related
results of this flavor. 3) See Theorem 5.8 in [16] for a more general result in the
setting of weakly Krull monoids. �

Statements 2) and 3) say that the systems of sets of lengths of the monoids
under consideration coincide with the system of sets of lengths of a Krull monoid
as in Theorem 1.1, and hence we know when they are additively closed. Without
going into details, we would like to mention that the same is true for certain
non-commutative Krull monoids ([13]). Furthermore, Frisch [10] showed that, for
the domain R of integer-valued polynomials over the integers, we have L(R) =
L(B(G)

)
for an infinite group G.

We end this section by highlighting a surprising consequence of when the system
of sets of lengths of a domain is additively closed.

Proposition 2.2. Let R be an atomic domain, let n ≥ 2 be an integer, and
let Tn(R) be the semigroup of upper triangular matrices with nonzero determinant.
Then L(R) ⊂ L(Tn(R)

)
, and equality holds if and only if L(R) is additively closed.

Proof. LetH = R• denote the monoid of nonzero elements ofR. Then Theorem 4.2
in [2] implies that L(Tn(H)

)
coincides with the system of sets of lengths of the

n-fold direct product of H . Therefore

L(Tn(H)
)
= L(H × · · · ×H) =

{
L1 + · · ·+ Ln | L1, . . . , Ln ∈ L(H)

}
,

and thus the assertion follows. �
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3. Proof of Theorem 1.1

Let G be an additively written finite abelian group. Then G ∼= Cn1 ⊕ . . . ⊕ Cnr

with 1 < n1 | . . . |nr, where r = r(G) ∈ N0 is the rank of G and nr = exp(G)
is the exponent of G. A tuple of elements (e1, . . . , es) ∈ Gs, with s ∈ N, is
said to be independent if e1, . . . , es are non-zero and 〈e1, . . . , es〉 = 〈e1〉 ⊕ . . . ⊕
〈es〉. Furthermore, (e1, . . . , es) is said to be a basis of G if it is independent and
〈e1, . . . , es〉 = G.

We gather the necessary concepts describing the arithmetic of monoids of zero-
sum sequences (for details and proofs, we refer to [15] and [12]). Let G0 ⊂ G
be a subset. Then B(G0) = B(G) ∩ F(G0) denotes the submonoid of zero-sum
sequences overG0. An atom of B(G0) is a minimal zero-sum sequence over G0, and
we denote by A(G0) the set of atoms of B(G0). A sequence S = g1 · · · gl ∈ F(G0)
is a (minimal) zero-sum sequence if and only if −S = (−g1) · · · (−gl) is a (minimal)
zero-sum sequence. The set A(G0) is finite and

D(G0) = max{|U | | U ∈ A(G0)} ∈ N

is the Davenport constant of G0. It is easy to see that 1+
∑r

i=1(ni−1) ≤ D(G). We
will use without further mention that equality holds for p-groups and for groups
with rank r(G) ≤ 2 (see Chapter 5 of [15]).

Factorization sets and sets of lengths. Let Z(G0) = F(A(G0)) denote the
factorization monoid of B(G0) (thus, Z(G0) is the monoid of formal products of
minimal zero-sum sequences over G0), and let π : Z(G0) → B(G0) denote the
canonical epimorphism. For A ∈ B(G0), Z(A) = π−1(A) ⊂ Z(G0) is the set of
factorizations of A. For a factorization z ∈ Z(A), we call |z| ∈ N0 the length of z
and L(A) = {|z| | z ∈ Z(A)} ⊂ N0 is the set of lengths of A. Clearly, this coincides
with the former informal definition. In particular, L(A) = {0} if and only if A = 1,
and L(A) = {1} if and only if A ∈ A(G0). Furthermore,

L(G0) := L(B(G0)
)
= {L(B) | B ∈ B(G0)}

is the system of sets of lengths of B(G0). If z, z
′ ∈ Z(G0) are two factorizations, say

z = U1 · · ·UlV1 · · ·Vm and z′ = U1 · · ·UlW1 · · ·Wn ,

where l,m, n ∈ N0, and all Ui, Vj ,Wk ∈ A(G0) with {V1, . . . , Vm}∩{W1, . . . ,Wn} =
∅, then d(z, z′) = max{m,n} ∈ N0 is the distance between z and z′. The distance
function d : Z(G0)× Z(G0) → N0 has the usual properties of a metric.

Elasticities. Let |G| ≥ 3. For k ∈ N, we define

ρk(G) = max{maxL | k ∈ L ∈ L(G)}

and recall that (see Section 6.3 of [15])

ρ2k(G) = kD(G) , 1 + kD(G) ≤ ρ2k+1(G) ≤ kD(G) +
⌊D(G)

2

⌋
,
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and that

ρ(G) = max
{maxL

minL

∣∣L ∈ L(G)
}
= lim

k→∞
ρk(G)

k
=

D(G)

2
.

Moreover, for A ∈ B(G), the following statements are equivalent:

• maxL(A)/min L(A) = D(G)/2.

• A = (−U1)U1 · · · (−Uj)Uj with j ∈ N, Ui ∈ A(G) and |Ui| = D(G) for
i ∈ [1, j] (in which case 2j = min L(A)).

Catenary degrees. The catenary degree c(A) of an element A ∈ B(G0) is the
smallest N ∈ N0 such that, for any two factorizations z, z′ ∈ Z(A), there exist
factorizations z = z0, z1, . . . , zk = z′ of A such that d(zi−1, zi) ≤ N for each
i ∈ [1, k]. Then

c(G0) = sup{c(A) | A ∈ B(G0)}
denotes the catenary degree of G0. It is easy to show that c(A) ≤ maxL(A) and
that c(G0) ≤ D(G0).

Sets of distances. The set

Δ(G0) =
⋃

L∈L(G0)

Δ(L)

is the set of distances of B(G0). It is easy to verify that, for distinct z, z′ ∈
Z(A), one has d(z, z′) ≥ 2 + |(|z| − |z′|)|. In particular, |Z(A)| ≥ 2 implies 2 +
maxΔ(L(A)) ≤ c(A), and if B(G0) is not factorial, then 2 + maxΔ(G0) ≤ c(G0).
We will further need that minΔ(G0) = gcdΔ(G0), and we call

Δ∗(G) = {minΔ(G1) | G1 ⊂ G with Δ(G1) �= ∅} ⊂ Δ(G)

the set of minimal distances of B(G). We denote by Δ1(G) the set of all d ∈ N
with the following property:

For every k ∈ N there is an L ∈ L(G) having the following form: L =
L′ ∪ {y + νd | ν ∈ [0, l]} ∪ L′′, where l ≥ k, and L′ and L′′ are subsets of L
with maxL′ < y and y + ld < minL′′.

The relevance of the sets Δ∗(G) and Δ1(G) stems from their occurrence in the
structure theorem for sets of lengths (see Proposition 3.1 below), and it will play
a crucial role in the proof of Theorem 1.1. Let d ∈ N, M ∈ N0 and {0, d} ⊂ D ⊂
[0, d]. A subset L ⊂ Z is called an almost arithmetical multiprogression (AAMP
for short) with difference d, period D, and bound M , if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ,

where y ∈ Z is a shift parameter,

• L∗ is finite nonempty with minL∗ = 0 and L∗ = (D+ dZ)∩ [0,maxL∗], and
• L′ ⊂ [−M,−1] and L′′ ⊂ maxL∗ + [1,M ].
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Proposition 3.1. Let G be a finite abelian group.

1) There is a constant M ∈ N0 such that each L ∈ L(G) is an AAMP with
difference d ∈ Δ∗(G) and bound M .

2) Δ∗(G) ⊂ Δ1(G) ⊂ {d1 ∈ Δ(G) | d1 divides some d ∈ Δ∗(G)}.
3) maxΔ∗(G) = max{exp(G)− 2, r(G)− 1}.

Proof. See Corollary 4.3.16 and Section 4.7 of [15] and [17]. �

Note that the description in 1) is best possible by the realization theorem in [23].

The proof of Theorem 1.1 is based on (all parts of) Proposition 3.1. We pro-
ceed in a series of propositions. The generic case is handled at the very end
(in Proposition 3.13). The key idea is as follows. We choose a d0 such that
L = {2, 2 + d0} ∈ L(G). If L(G) would be additively closed, then the k-fold sum-
set of L is in L(G) and hence d ∈ Δ1(G). Comparing the maxima of Δ(G), Δ1(G),
and Δ∗(G), we obtain a contradiction. Unfortunately, maxΔ(G) is known only
in very special cases (even maxΔ(Cn ⊕ Cn) is unknown). If G is an elementary
2-group, then Δ(G) = Δ∗(G). Thus elementary 2-groups need some extra care,
and the same is true for elementary 3-groups. We start with an already known
case, then we handle two special groups, and after that study elementary 2-groups
(Proposition 3.5) and elementary 3-groups (Proposition 3.12).

Proposition 3.2. Suppose that G is cyclic. Then L(G) is additively closed if and
only if |G| ≤ 4.

Proof. See Proposition 6.14 in [3]. �

Lemma 3.3. Let G = C2 ⊕ C4. Then L(G) is not additively closed.

Proof. By an argument on page 411 of [15], for every U ∈ A(G) of length |U | = 5,
there exist (e1, e2) ∈ G2 with ord(e1) = 2 and ord(e4) = 4 such that U = e32e1(e1+
e2). Considering U(−U) for such a U , it follows that L = {2, 4, 5} ∈ L(G).

We assert that the sumset L+L = L2 = {4, 6, 7, 8, 9, 10} /∈ L(G), which implies
that L(G) is not additively closed.

We have D(G) = 5 and ρ(G) = 5/2. Assume to the contrary that L2 ∈ L(G).
Since maxL2/minL2 = 5/2 and by a result recalled in Section 2, there exist
minimal zero-sum sequences U, V ∈ A(G) with |U | = |V | = 5 such that

L
(
(−U)U(−V )V

)
= L2 .

Let (e1, e2) as above be given and suppose that U = e32e1(e1 + e2). We go
through all cases for V and show that 5 ∈ L

(
(−U)U(−V )V

)
, which implies the

wanted contradiction. Note that ord(2e2) = ord(e1 + 2e2) = ord(e1) = 2 and that
ord(e2) = ord(−e2) = ord(e1 + e2) = ord(e1 − e2) = 4. Therefore we have

{V ∈ A(G) | |V | = 5} = {V1 = e32e1(e1 + e2), −V1,

V2 = e32(e1 + 2e2)(e1 − e2), −V2,

V3 = (e1 + e2)
3e1e2, −V3,

V4 = (e1 + e2)
3(e1 + 2e2)(−e2), −V4 } .
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Since

(−U)U(−V1)V1 =
(
(e1 + e2)

2e22
)(
e42
)(
e21
)
(−U)(−U) ,

(−U)U(−V2)V2 =
(
e42
)(
(e1 + e2)(e1 + 2e2)e2

)(
e1(e1 − e2)e2

)
(−U)(−V2) ,

(−U)U(−V3)V3 =
(
(e1 + e2)

4
)(
e42
)(
e21
)
(−U)(−V3) , and

(−U)U(−V4)V4 =
(
(e1 + e2)

4
)(
(e1 + 2e2)e

2
2e1

)(
(−e2)e2

)
(−U)(−V4) ,

it follows that 5 ∈ L
(
(−U)U(−Vν)Vν

)
for each ν ∈ [1, 4]. �

Lemma 3.4. Let G = C5 ⊕ C5. Then L(G) is not additively closed.

Proof. Let k ∈ N, (e1, e2) be a basis of G and U = e41e
4
2(e1+e2). Then L

(
(−U)U

)
=

{2, 5, 8, 9}, and we consider the k-fold sumset Lk = L+· · ·+L. Clearly, minLk = 2k
and min(Lk \{2k}) = 2k+3. We assert that, for all sufficiently large k, Lk /∈ L(G)
which implies that L(G) is not additively closed.

We have D(G) = 9, ρ(G) = 9/2, and we set {U1,−U1, . . . , Us,−Us} = {W ∈
A(G) | |W | = 9}. Let k ∈ N and suppose that Lk ∈ L(G). Since maxLk/minLk =
9/2 and by a result recalled in Section 2, there exist k1, . . . , ks ∈ N0 with k1+ · · ·+
ks = k such that

L
(
(−U1)

k1Uk1
1 · · · (−Us)

ksUks
s

)
= Lk .

If k is sufficiently large, then there is a ν ∈ [1, s] such that kν ≥ 2. We assert that
3 ∈ L(U2

ν ) for each ν ∈ [1, s]. This implies 2k+1 ∈ L
(
(−U1)

k1Uk1
1 · · · (−Us)

ksUks
s

)
,

a contradiction.
To prove the assertion, let W ∈ A(G) be of length |W | = 9. By Proposition 4.2

in [11], there exists a basis (f1, f2) of G such that

W = f4
1 (a1f1 + f2)(a2f1 + f2)(a3f1 + f2)(a4f1 + f2)(a5f1 + f2) ,

with a1, . . . , a5 ∈ [0, 4]. Then W 2 =
(
f5
1

)
S for some zero-sum sequence S over G.

Since |S| = 13 > D(G) = 9, S /∈ A(G). It follows immediately that L(S) = {2}
and hence 3 ∈ L(W 2). �

We continue with elementary 2-groups. Let G = Cr
2 with r ≥ 2. It is well-

known that Δ(G) = Δ∗(G) = [1, r − 1] (see Corollary 6.8.3 in [15]). The next
proposition summarizes our results for elementary 2-groups.

Proposition 3.5. Let G = Cr
2 with r ∈ N.

1) If r = 1, then L(G) =
{{y} | y ∈ N0

}
. In particular, L(G) is additively

closed.

2) If r = 2, then L(G) =
{
y + 2k + [0, k]

∣∣ y, k ∈ N0

}
. In particular, L(G) is

additively closed.

3) If r = 3, then L(C3
2 ) =

{
y + (k + 1) + [0, k]

∣∣ y ∈ N0, k ∈ [0, 2]
}

∪ {
y+k+[0, k]

∣∣ y ∈ N0, k ≥ 3
}∪{y+2k+2·[0, k] ∣∣ y, k ∈ N0

}
.

In particular, L(G) is additively closed.

4) If r ≥ 4, then L(G) is not additively closed.
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The proof of Proposition 3.5 will be done in a series of lemmas. Since we
believe that some are of interest in their own right we state them in more generality
than needed for the immediate purpose at hand. We fix our notation which will
remain valid till the end of the proof of Proposition 3.5. Let G = Cr

2 with r ∈ N
and let (e1, . . . , er) be a basis of G. Let I, J ⊂ [1, r] be subsets. We denote by
I�J = (I ∪ J) \ (I ∩ J) the symmetric difference. For an element i ∈ [0, r] \ I we
write i /∈ I. If I is nonempty, then we set

eI =
∑
i∈I

ei , UI = eI
∏
i∈I

ei , and VI = eI
∏

i∈[0,r]\I
ei .

Moreover, we set e0 = e[1,r], G0 = {e0, . . . , er}, and V0 = e0 · · · er. Obviously,
A(G0) = {h2 | h ∈ G0} ∪ {V0} and A(G0 ∪ {eI}) = A(G0) ∪ {UI , VI , e

2
I}.

Lemma 3.6. Let r ≥ 3.

1) Let U = f0 · · · fs ∈ A(G) with s ≥ 2.

(a) The tuple (f1, . . . , fs) is independent and f0 = f1 + · · ·+ fs.

(b) If k ∈ N, then L(U2k) = 2k + (s − 1) · [0, k] ∈ L(G). In particular,
Δ({f0, . . . , fs}) = {s− 1}.

2) If A ∈ B(G) and A is squarefree in F(G), then c(A) ≤ r and maxΔ(L(A)) ≤
r − 2.

Proof. 1a) Corollary 5.1.9 in [15] implies that (f1, . . . , fs) is independent. Since U
has sum zero, it follows that f0 = f1 + · · ·+ fs.

1b) Let k ∈ N. Obviously, L(U2) = {2, s + 1}, and U, f2
0 , . . . , f

2
s are the only

atoms dividing U2k. Thus L(U2k) is the k-fold sumset of L(U2), and hence it has
the asserted form. Let d ∈ Δ({f0, . . . , fs}). Then there is a B ∈ B({f0, . . . , fs})
with d ∈ Δ(L(B)). There is a k ∈ N such that B |U2k, and we set U2k = BC with
C ∈ B({f0, . . . , fs}). If m ∈ L(C), then m+ L(B) ⊂ L(U2k) = 2k + (s− 1) · [0, k],
and hence d = s− 1.

2) Since maxΔ(L(A)) ≤ max{0, c(A)−2}, it is sufficient to prove the statement
on c(A) (recall our convention that max ∅ = 0). Furthermore, it is sufficient to
consider squarefree zero-sum sequences A with 0 � A. We proceed by induction
on |A|. Since c(A) ≤ maxL(A), the assertion holds for all A with maxL(A) ≤ r.

Let A be a squarefree zero-sum sequence with 0 � A, and let z = U1 · · ·Um and
z′ = V1 · · ·Vn be factorizations of A with m,n ∈ N and U1, . . . , Um, V1, . . . , Vn ∈
A(G). If m ≤ r and n ≤ r, then d(z, z′) ≤ r, and we are done. So we suppose
without restriction that m > r.

Suppose that |V1| = . . . = |Vn| = D(G) = r + 1. Since A is squarefree,
gcdF(G)(V1, V2) = 1 whence V1V2 = W1 · · ·Wt with t ∈ [3, r], W1, . . . ,Wt ∈ A(G),
and |W1| ≤ r. Since d(V1 · · ·Vn,W1 · · ·WtV3 · · ·Vn) = t ≤ r, we may suppose –
after a suitable change of notation – that |V1| ≤ r.

Let I ⊂ [1,m] be minimal such that V1 |
∏

i∈I Ui, say I = [1, l]. Then l ≤
|V1| ≤ r < m, and there are k ∈ N and W2, . . . ,Wk ∈ A(G), such that

U1 · · ·Um = V1W2 · · ·WkUl+1 · · ·Um = V1 · · ·Vn .
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By induction hypothesis, there are r-chains of factorizations from U1 · · ·Um−1 to
V1W2 · · ·WkUl+1 · · ·Um−1 and from W2 · · ·WkUl+1 · · ·Um to V2 · · ·Vn. Multiply-
ing the first chain with Um and the second chain with V1 we obtain an r-chain
from U1 · · ·Um to V1 · · ·Vn. �

We already investigated the minimal zero-sum sequences over G0 and one ad-
ditional element. Next we consider the problem for two additional elements.

Lemma 3.7. Let r ≥ 3 and let I, J ⊂ [1, r] with |I|, |J | ∈ [2, r − 1]. The minimal
zero-sum sequences over G0 ∪ {eI , eJ} which are divisible by eIeJ are

• UI,J = eIeJ
∏

i∈I�J ei if I ∩ J �= ∅,
• VI,J = eIeJ

∏
i/∈I�J ei if both I �⊂ J and J �⊂ I.

Proof. Let A ∈ A(G) with eIeJ |A. If I = J , then A = e2I = UI,I . Suppose that
I �= J . Then veI (A) = veJ (A) = 1.

If e0 � A, it follows that A = eIeJ
∏

i∈I�J ei. Since A is neither divisible by UI

nor by UJ , it follows that I ∩ J �= ∅.
If e0 | A, it follows that A = eIeJ

∏
i/∈I�J ei. Again, any product of such a type

lies in A(G) if and only if it is neither divisible by UI nor by UJ (as it could only
decompose as UIVJ and UJVI), which is the case precisely when neither I ⊂ J
nor J ⊂ I. �

We continue to use the notation UI,J and VI,J for all subsets I, J ⊂ [1, r]
(then UI,J and VI,J are not necessarily minimal zero-sum sequences).

Lemma 3.8. Let r ≥ 3 and let I, J ⊂ [1, r] with |I|, |J | ∈ [2, r].

1) L(UIUJ) = {2, 1 + |I ∩ J |} if I ∩ J �= ∅, and L(UIUJ) = {2} otherwise.

2) L(VIVJ ) = {2, 1 + δ + r + 1 − |I ∪ J |}, where δ = 0 if I ∩ J �= ∅ and δ = 1
otherwise.

3) L(UIVJ) = {2, 1 + δ + |I \ J |}, where δ = 0 if both J �⊂ I and I �⊂ J , and
δ = 1 otherwise.

Proof. 1) First, we note that if there exists a factorization of UIUJ other than
this one, then it must contain a minimal zero-sum sequence containing both eI
and eJ . We have UIUJ = UI,J

∏
i∈I∩J e2i . For I ∩ J �= ∅, we know by Lemma 3.7

that UI,J is a minimal zero-sum sequence, and we thus have a factorization of
length 1 + |I ∩ J |. If however I ∩ J = ∅, then UI,J = UIUJ .

2) Suppose I ∩ J = ∅. Then VIVJ = UIUJ

∏
i/∈I∪J e2i and these two are the

only factorizations not involving a minimal zero-sum sequence containing both eI
and eJ . In this case UI,J , is not minimal. The only remaining factorization is
thus VI,JV0

Suppose I ∩ J �= ∅. Then VIVJ is not divisible by UI , UJ and VI,J , since
we do not have ei in VIVJ for i ∈ I ∩ J . The only other factorization is thus
UI,J

∏
i/∈I∪J e2i .
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3) If J ⊂ I, we note that VI | UIVJ and we get the factorization VIUJ

∏
i∈I\J e2i .

The only other factorization is UI,JV0.
If J �⊂ I, we note that ei for i ∈ J \ I does not appear in UIVJ . Thus, UIVJ

is not divisible by UJ and UI,J . The only possibly other decomposition is thus
VI,J

∏
i∈I\J e2i . Note that VI,J is minimal if and only if I �⊂ J . �

Lemma 3.9. Let r ≥ 3 and let A ∈ A(G) be such that eI | A, where I ⊂ [1, r]
with |I| ∈ [2, r − 1]. Then there exist B,B′ ∈ B(G) \ {1} with maxL(B) ≤ |I|
and maxL(B′) ≤ r + 1 − |I| such that AV0 = VIB = UIB

′. In particular, if
neither B nor B′ is a minimal zero-sum sequence, then min(L(AV0) \ {2}) ≤
min{|I|+ 1, r + 2− |I|} ≤ (r + 3)/2.

Proof. Clearly, the sequences F = e−1
I A, SV =

∏
i∈I ei, and SU =

∏
i/∈I ei are

zero-sum free, and we have AV0 = VI(SV F ) = UI(SUF ). We set B = SV F
and B′ = SUF , and by Lemma 6.4.3 in [15] we infer that maxL(B) ≤ |SV | and
maxL(B′) ≤ |SU |. The additional statement follows immediately. �

Lemma 3.10. Let r ≥ 3.

1) Let A ∈ B(G) with Δ(L(A)) �= ∅ . The following statements are equivalent :

(a) r − 1 ∈ Δ(L(A)).

(b) There is a basis (f1, . . . , fr) of G such that

supp(A) \ {0} = {f1, . . . , fr, f1 + · · ·+ fr}.

2) Let G1 ⊂ G \ {0} be a subset. Then minΔ(G1) = r − 1 if and only if
G1 = {f1, . . . , fr, f1 + · · ·+ fr} for some basis (f1, . . . , fr) of G.

Proof. 1) Lemma 3.6 shows that (b) implies (a). Conversely, let A ∈ B(G) such
that r− 1 ∈ Δ(L(A)), say [l, l+ r− 1]∩L(A) = {l, l+ r− 1}. Since c(G) = r+1 by
Theorem 6.4.7 in [15], there exist factorizations z1 and z2 of A with |z1| = l and
|z2| = l+r−1 such that d(z1, z2) = r+1, say z1 = U1 · · ·Usz, z2 = V1 · · ·Vtz where
z = gcd(z1, z2), U1, . . . , Us, V1, . . . , Vt ∈ A(G), and max{s, t} = t = r + 1. Since
|z1| = s+ |z| = l and |z2| = t+ |z| = l+ r− 1, it follows that t− s = r− 1 whence
s = 2 and t = r + 1. Thus U1U2 = V1 · · ·Vr+1, whence U1 = U2, |U1| = r + 1, and
|V1| = . . . = |Vr+1| = 2. Without loss of generality assume that U1 = V0.

Assume A is not of the claimed form. Then there exists some eI | A with
|I| ∈ [2, r−1]. LetD | z withD ∈ A(G) be such that eI | D. By Lemma 3.9 we have
DV0 = VICV = UICU with CU , CV ∈ B(G) \ {1}. Since maxL(DV0) + |z| ∈ L(A),
the ‘in particular’ statement of Lemma 3.9 implies CU ∈ A(G) or CV ∈ A(G).

Thus, we have that V0VICV (D
−1z) or V0UICU (D

−1z) is a factorization of A
of length |z1|. Yet, by Lemma 3.8 it follows that L(V0VI) = {2, 1 + (r + 1 − |I|)}
and L(V0UI) = {2, 1 + |I|}. Thus, l+ r− |I| or l+ |I| − 1 is an element of L(A), a
contradiction.

2) That minΔ({f1, . . . , fr, f1+ · · ·+fr}) = r−1 for a basis (f1, . . . , fr) follows
by Lemma 3.6. Conversely, if minΔ(G1) = r−1, then there exists some A ∈ B(G1)
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with r−1 ∈ Δ(L(A)). By the first part, we get that supp(A) = {f1, . . . , fr, f1+· · ·+
fr} for a basis (f1, . . . , fr). If G1 would contain any other element, it would equal
fI =

∑
i∈I fi with some I ⊂ [1, r] and |I| ∈ [2, r − 1]. Then, fI

∏
i∈I fi ∈ A(G1)

and Lemma 3.8.1 yields |I| − 1 ∈ Δ(G1), a contradiction. �

Lemma 3.11. Let r ≥ 4, B ∈ B(G), and let z0 ∈ Z(B) be a factorization of length
|z0| = min L(B) such that V 2

0 | z0. If min
(
L(B) \min L(B)

)
= min L(B) + (r − 2),

then | supp(B) \ (G0 ∪ {0})| = 1 and this extra element is the sum of two distinct
elements from G0.

Proof. By 2) in Lemma 3.10, supp(B) \ (G0 ∪ {0}) �= ∅, and hence there exists
some I ⊂ [0, r] such that eI /∈ G0 and eI | B. Let AI ∈ A(G) be such that AI | z0
and eI | AI . Since min L(B) − 2 + L(AIV0) ⊂ L(B) and since r > (r + 3)/2, it
follows by Lemma 3.9 that AIV0 = WICI with WI ∈ {UI , VI} and CI ∈ A(G).

By Lemma 3.8 we have that L(UIV0) = {2, |I|+ 1}. Thus if WI = UI , we infer
that |I| − 1 ≥ r − 2 and thus |I| = r − 1. We also have L(VIV0) = {2, 2 + r − |I|}.
Thus if WI = VI , we infer that |I| = 2. Therefore we have shown that each
non-zero element in supp(B) \G0 is the sum of two distinct elements from G0.

Now, we assume to the contrary that there exist two distinct sets I, J ⊂ [1, r]
such that eI , eJ /∈ G0 and eIeJ | B. Let z′0 = WICI((AIV0)

−1z0) be the factor-
ization constructed above and note that V0 divides z′0. Let AJ ∈ A(G) be such
that AJ | z′0 and eJ | AJ . Note that AJ �= WI . As above we obtain that AJV0

equals WJCJ with WJ ∈ {UJ , VJ}, CJ ∈ A(G), and |J | ∈ {2, r− 1}. In particular,
we have a factorization z′′0 ∈ Z(B) of minimal length with WIWJ | z′′0 and hence
min L(B)− 2 + L(WIWJ ) ⊂ L(B).

We analyze L(WIWJ ), and distinguish four cases. We use Lemma 3.8 through-
out.

Case 1. WI = UI and WJ = UJ .
We have |I| = |J | = r − 1 and thus |I ∩ J | = r − 2 as I �= J . Now L(UIUJ) =

{2, |I ∩ J |+ 1} = {2, r − 1}, a contradiction.

Case 2. WI = UI and WJ = VJ .
We have |I| = r − 1 and |J | = 2. If J ⊂ I, then L(UIVJ ) = {2, 2 + |I \ J |} =

{2, r − 1}, a contradiction. If J �⊂ I, then L(UIVJ ) = {2, 1 + |I \ J |} = {2, r − 1},
a contradiction.

Case 3. WI = VI and WJ = UJ .
Completely analogous to Case 2.

Case 4. WI = VI and WJ = VJ .
We have |I| = |J | = 2. If I ∩ J = ∅, then L(VIVJ ) = {2, 2 + r + 1 − |I ∪ J |} =

{2, r− 1}, a contradiction. If I ∩ J �= ∅, then L(VIVJ ) = {2, 1 + r + 1− |I ∪ J |} =
{2, r − 1}, a contradiction. �

Proof of Proposition 3.5. For r ≤ 3 the claim follows from Theorem 7.3.2 in [15].
We assume r ≥ 4 and need to show that L(G) is not additively closed.

By Lemma 3.6, we infer that L′ = {4, r+2, 2r} ∈ L(G) and L′′
k = 2k+(r− 1) ·

[0, k] ∈ L(G) for each k ∈ N. We assert that the sumset Lk = L′ + L′′
k /∈ L(G) for
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all sufficiently large k ∈ N. Assume to the contrary that there exist Bk = 0vkB′
k,

where vk ∈ N0 and B′
k ∈ B(G \ {0}), such that L(Bk) = Lk for each k ∈ N. Note

that minLk = 2k + 4, minLk \ {2k + 4} = 2k + r + 2 = minLk + (r − 2), and
maxLk = k(r + 1)+ 2r. We consider a factorization of minimal length and one of
maximal length, say

Bk = 0vkX1 · · ·X2k+4−vk = 0vkY1 · · ·Yk(r+1)+2r−vk

where all Xi, Yj ∈ A(G) \ {0}. Then

vk + 2
(
k(r + 1) + 2r − vk

) ≤ vk +

k(r+1)+2r−vk∑
ν=1

|Yν | = |Bk|

= vk +

2k+4−vk∑
ν=1

|Xν | ≤ vk + (2k + 4− vk)(r + 1) .

Since the difference between the upper and lower bound equals 4 − vk(r − 1), it
follows that vk ≤ 1, that at most 4 of the atoms Y1, . . . , Yk(r+1)+2r−vk do not have
length 2, at most four of the atoms X1, . . . , X2k+4−vk do not have length r + 1,
and thus at least k of the Xi have length r + 1. Since A(G) is finite, it follows
that, for all sufficiently large k, any factorization of Bk of minimal length contains
a minimal zero-sum sequence of length r + 1 with multiplicity at least 6.

Now suppose that k is sufficiently large that this holds, and without restriction
suppose that V0 is the atom with multiplicity 6. By Lemma 3.11, | supp(Bk)\(G0∪
{0})| = 1 and this additional element is the sum of two distinct elements from G0.

Without restriction we may suppose that e0 + er =
∑r−1

i=1 ei is this element. We
set I = [1, r − 1] and assert that veI (Bk) ∈ [2, 4].

Assume to the contrary that veI (Bk) = 1. Then UI and VI are the only minimal
zero-sum sequences containing eI that divide Bk. We set Bk = UICk = VIDk, with
Ck, Dk ∈ B(G0), and obtain that Z(Bk) = UIZ(Ck) ∪ VIZ(Dk). By Lemma 3.6,
L(Ck) and L(Dk) are arithmetical progressions with difference r−1, and thus L(Bk)
is a union of two arithmetical progression with difference r − 1, a contradiction
to L(Bk) = Lk.

The only minimal zero-sum sequences containing eI over supp(Bk) ⊂ G0 ∪
{0, eI} are e2I , UI , and VI , having lengths 2, r, and 3, respectively. If e2I occurs,
then rechecking the above chain of inequalities shows that there are at most two
minimal zero-sum sequences in a factorization of minimal length that do not have
length r+1, and hence veI (Bk) ≤ 4. If e2I does not occur, then we also obtain that
veI (Bk) ≤ 4, because we know that there are at most 4 of the minimal zero-sum
sequences in a factorization of minimal length do not have length r + 1.

Now, we assert that maxL(Bk)−1 ∈ L(Bk), a contradiction to maxLk−1 /∈ Lk.
Consider a factorization z ∈ Z(Bk) of maximal length |z| = maxL(Bk). We know
that most 4 atoms dividing z do not have length 2, and thus the atoms e20 and e2r
divide z; recall that V0 has multiplicity 6 in Bk. Since veI (Bk) ∈ [2, 4] and the only
atoms containing eI over supp(Bk) ⊂ G0 ∪{0, eI} are e2I , UI , and VI , z is divisible
by e2I , or by U2

I , or by V 2
I , or by UIVI . Clearly, no factorization of maximal length
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is divisible by U2
I or by V 2

I . Since UIVI = e2IV0, we may assume without restriction
that z is divisible by the atom e2I . Since z is also divisible by e20 and by e2r, and
since e2Ie

2
0e

2
r = V 2

I , we obtain a factorization of length |z| − 1 = maxL(Bk) − 1,
yielding the desired contradiction. �

We continue with elementary 3-groups. If r ∈ [1, 3], then Δ(Cr
3 ) = Δ∗(Cr

3 ) =
[1,max{r−1, 1}] (this follows from Corollary 5.1 in [14]). If r ≥ 4, then [1, r−1] =
Δ∗(Cr

3 ) ⊂ Δ(Cr
3 ), and it is an open problem whether equality holds or not.

Proposition 3.12. Let G = Cr
3 with r ∈ N.

1) If r = 1, then L(G) = {y + 2k + [0, k] | y, k ∈ N0}. In particular, L(G) is
additively closed.

2) If r = 2, then

L(G) =
{{1}} ∪ {

[2k, ν] | k ∈ N0, ν ∈ [2k, 5k]
}

∪ {
[2k + 1, ν] | k ∈ N, ν ∈ [2k + 1, 5k + 2]

}
.

In particular, L(G) is additively closed.

3) If r ≥ 3, then L(G) is not additively closed.

Proof. Let r ≥ 2, (e1, . . . , er) be a basis of G, and U = e21 · · · e2re0 with e0 =
e1 + · · ·+ er. We assert that

L
(
(−U)U

)
= [2, r + 2] ∪ {2r + 1} .

Suppose that (−U)U = V1 · · ·Vs with s ∈ N and V1, . . . , Vs ∈ A(G). If (−e0)e0 ∈
{V1, . . . , Vs}, then s = 2r+1. Otherwise, we may suppose without restriction that
e0 |Vs and −e0 |Vs−1. There is a subset J ⊂ [1, r] such that

Vs = e0
∏
j∈J

(−ej)
∏
i∈I

e2i and I = [1, r] \ I .

This implies that

Vs−1 = (−e0)
∏
j∈J

ej
∏
i∈I

(−ei)
2 = −Vs .

Therefore we obtain that V1 · · ·Vs−2 =
∏

j∈J

(
(−ej)ej

)
and hence s = |J | + 2.

Summing up we infer that

L
(
(−U)U

)
= {2r + 1} ∪ {2 + |J | | J ⊂ [0, r]} = {2r + 1} ∪ [2, r + 2] .

1) By Theorem 7.3.2 in [15], L(G) has the given form, which immediately
implies that L(G) is additively closed.

2) Suppose that r = 2. It is sufficient to show that L(G) has the asserted form.
Then it can be verified immediately that L(G) is additively closed.

We have D(G) = 5, ρ(G) = 5/2, Δ(G) = {1} (see Corollary 6.4.9 in [15]), and
ρk(G) = �kD(G)/2� by Theorem 6.3.4 in [15] for all k ≥ 2. These facts imply that
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every L ∈ L(G) equals one of the sets given on the right hand side. So it remains
to verify that conversely every set L given on the right hand side can be realized
as a set of lengths in L(G). Clearly, {k} ∈ L(G) for each k ∈ N0. Let k ∈ N.

First, we assert that [2k, ν] ∈ L(G) for all ν ∈ [2k, 5k], and we proceed by
induction on k. The construction above shows that [2, 5] ∈ L(G). If W3 =
e1e2(−e0), then L

(
(−W3)W3

)
= [2, 3] ∈ L(G). If W4 = e21e2(e1 − e2), then

L
(
(−W4)W4

)
= [2, 4] ∈ L(G). Thus the assertion holds for k = 1. Suppose the

assertion holds for k ∈ N. If ν ∈ [2k, 5k] and Aν ∈ B(G) with L(Aν) = [2k, ν], then
L(02Aν) = [2k+2, ν+2]. Thus it remains to show that [2k+2, 5k+3], [2k+2, 5k+4],
and [2k + 2, 5k + 5] ∈ L(G). If U,W3, and W4 are as above, then

L
(
(−U)kUk

)
= [2k, 5k] ,

L
(
(−U)kUk(−W3)W3

)
= [2k + 2, 5k + 3] ,

L
(
(−U)kUk(−W4)W4

)
= [2k + 2, 5k + 4] , and

L
(
(−U)k+1Uk+1

)
= [2k + 2, 5k + 5] .

Next, we assert that [2k + 1, ν] ∈ L(G) for all ν ∈ [2k + 1, 5k + 2]. If k ∈ N,
ν ∈ [2k, 5k], and Aν ∈ B(G) with L(Aν) = [2k, ν], then L(0Aν) = [2k + 1, ν + 1].
Since ρ2k+1(G) = 5k + 2, there is a Bk ∈ B(G) with 2k + 1, 5k + 2 ∈ L(Bk) and
hence L(Bk) = [2k + 1, 5k + 2] ∈ L(G).

3) Suppose that r ≥ 3. Let k ∈ N. We consider the k-fold sumset Lk =
L+· · ·+L of L = L

(
(−U)U

)
. We assert that, for all sufficiently large k, Lk /∈ L(G),

which implies that L(G) is not additively closed. We set {U1,−U1, . . . , Us,−Us} =
{W ∈ A(G) | |W | = D(G)}. Let k ∈ N and suppose that Lk ∈ L(G). Since
maxLk/minLk equals ρ(G) and by a result recalled in Section 2, there exist
k1, . . . , ks ∈ N0 with k1 + · · ·+ ks = k such that

L
(
(−U1)

k1Uk1
1 · · · (−Us)

ksUks
s

)
= Lk .

Note that maxLk = k(2r+1) and that max
(
Lk \{k(2r+1)}) = k(2r+1)−(r−1).

There is a unique factorization of length maxLk. It consists entirely of atoms
having length two. If k is sufficiently large, then there is a ν ∈ [1, s] such that
kν ≥ 3, say ν = 1 and U1 = gS with g ∈ G and S ∈ F(G). Then the factorization

of length maxLk contains the product
(
(−g)g

)3
. Since

(
(−g)g

)3
= (g3)

(
(−g)3

)
,

it follows that maxLk − 1 ∈ L
(
(−U1)

k1Uk1
1 · · · (−Us)

ksUks
s

)
, a contradiction. �

Finally, we handle the generic case.

Proposition 3.13. Let G be a finite abelian group with exp(G) = n ≥ 4 and
r = r(G) ≥ 2. Then L(G) is not additively closed.

Proof. If G = C5 ⊕C5 or G = C2⊕C4, then the assertion follows from Lemma 3.3
and from Lemma 3.4. Let G = Cn1 ⊕ . . . ⊕ Cnr with 1 < n1 | . . . |nr, |G| ≥ 5,
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and suppose that G is distinct from the above two groups. Simple examples (see
Theorem 6.6.2 in [15]) show that

{2, d} ∈ L(G) for all d ∈ [
3, max{n, d0}

]
, where d0 = 1 +

r(G)∑
i=1

⌊ni

2

⌋
.

Assume to the contrary that L(G) is additively closed. Then d − 2 ∈ Δ1(G) for
each d as above, in particular d0 − 2 ∈ Δ1(G), and the interval [1, n− 2] ⊂ Δ1(G).
We use that maxΔ1(G) ≤ maxΔ∗(G) = max{r − 1, n− 2} by Proposition 3.1.

If r − 1 ≥ n − 2, then n ≥ 4 implies that d0 − 2 > r − 1 = maxΔ∗(G), a
contradiction. Thus it follows that r − 1 < n− 2. We distinguish three cases.

Case 1. G = Cn ⊕ Cn.
If n is even, then d0−2 = n−1 > n−2 = maxΔ∗(G), a contradiction. Suppose

that n is odd. Then n ≥ 7 and n− 4 ∈ Δ1(G). By Corollary 3.8 in [22], it follows
that

maxΔ∗(Cn ⊕ Cn) \ {n− 3, n− 2} =
n− 3

2
.

Since n ≥ 7, it follows that n− 4 > (n− 3)/2, a contradiction.

Case 2. G has a proper subgroup isomorphic to Cn ⊕ Cn.
Then d0 − 2 ≥ n− 1 > n− 2 = maxΔ∗(G), a contradiction.

Case 3. G has no subgroup isomorphic to Cn ⊕ Cn.
Then it follows that nr−1 ≤ nr/2. If r = n − 2, then n ≥ 6 (because G /∈

{C2 ⊕ C4, C5, C5 ⊕ C5}) and thus

d0 − 2 ≥ r − 1 +
⌊n
2

⌋
− 1 = n− 4 +

⌊n
2

⌋
> n− 2 ,

a contradiction.
Suppose that r ≤ n− 3. Then n ≥ 5. If n = 5, then G is either cyclic or has a

subgroup isomorphic to C5 ⊕C5, a contradiction. Thus n ≥ 6. Then Theorem 3.2
in [22] implies that

Δ∗(G) ⊂ [1,max{m(G), �n/2� − 1}] ∪ {n− 2} , where

m(G) = max{minΔ(G0) | G0 ⊂ G is a non-half-factorial LCN-set} .
Since m(G) < n− 3, by Lema 4.2 in [17], it follows that max{m(G), �n/2�− 1}] ≤
n− 4. This implies that n− 3 /∈ Δ∗(G), but n− 3 ∈ Δ1(G), a contradiction to 2)
in Proposition 3.1. �

Proof of Theorem 1.1. Let H be a Krull monoid with class group G and suppose
that each class contains a prime divisor. By Proposition 2.1, it is sufficient to
consider the monoid B(G) instead of the monoid H .

First suppose that G is infinite. By the realization theorem of Kainrath, every
finite subset L ⊂ N≥2 can be realized as a set of lengths in L(G). Thus we obtain
that

L(G) = {L ⊂ N≥2 | L is finite and nonempty} ∪ {{0}, {1}} ,
(see [20] or Theorem 7.4.1 in [15]), which shows that L(G) is additively closed.
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Suppose now that G is finite. Cyclic groups are considered in Proposition 3.2,
elementary 2-groups are treated in Proposition 3.5, and elementary 3-groups in
Proposition 3.12. The case of non-cyclic groups with exponent n ≥ 4 is settled by
Proposition 3.13. �
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UMR 7539, Université Paris 8, F-93430, Villetaneuse, France.

E-mail: schmid@math.univ-paris13.fr

This work was supported by the Austrian Science Fund FWF, Project Number P26036-N26,
by the Austrian-French Amadée Program FR03/2012, and by the ANR Project Caesar, Project
Number ANR-12-BS01-0011.

mailto:alfred.geroldinger@uni-graz.at
mailto:schmid@math.univ-paris13.fr

	Introduction and main result
	Context and applications
	Proof of Theorem 1.1

