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Fitting a Sobolev function to data II

Charles Fefferman, Arie Israel, and Garving Luli

Abstract. In this paper and two companion papers, we produce efficient
algorithms to solve the following interpolation problem. Let m > 1 and
p >mn > 1. Given a finite set E C R™ and a function f : E — R, compute
an extension F of f belonging to the Sobolev space W™P (R™) with norm
having the smallest possible order of magnitude; secondly, compute the
order of magnitude of the norm of F. The combined running time of our
algorithms is at most CNlogN, where N denotes the cardinality of E,
and C depends only on m, n, and p.

Introduction

Continuing from [1], we interpolate data by a function F: R™ — R whose Sobolev
norm has the least possible order of magnitude. More precisely, let m > 1 and
p>mn > 1. Given a function f: E — R with E C R™ finite, we compute a function
F € W™P(R") such that F = f on E, and ||F|jwm.» < C|F|lwm.r for any competing
function F € W™P (R™) such that F=foncE. Here, C depends only on m, n,
and p.

Our computations consist of efficient algorithms to be implemented on an (ide-
alized) von Neumann computer. We study two distinct models of computation.
In the first model (“infinite precision”), we assume that our computer deals with
exact real numbers, without roundoff error. Our second, more realistic model of
computation assumes that our machine handles only S-bit machine numbers, for
some fixed, large S.

In our previous paper [1], we stated our main results for infinite precision, and
developed technical tools to be used in the proof of those results. Here, we complete
the proof of our results for infinite precision. Issues arising from the finite-precision
model of computation will be addressed in [2].
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1. Proof of the main technical results

1.1. Review of notation

Let M denote the collection of all multiindices &« = (&1,...,&n) of order || =
61+ +on <m-—1. Let A C M be a multiindex set. We refer the reader to
Section 3 of [1] for a description of the main technical results for 4. We will prove
the main technical results by induction on A.

We recall the relevant order relation < on multiindex sets A C M (see Sec-
tion 2.6 of [1]). We first define a total order relation on M as follows: given distinct
= (&1yeeey&n)y B =(B1y.-.,Pn) € M, let k € {1,...,n} be the maximal index
such that o1+ -4+ Z P14+ +Px. Then x < Bif o +-- 4o < B1+---+Px,
and o > P otherwise. We next define a total order relation < on 2. Given dis-
tinct subsets A, B C M, pick the minimal element & € AAB (with respect to the
order relation defined above). Then A < B if & € A, and B < A otherwise. (AAB
denotes the symmetric difference of A and B.) Note that M is minimal and the
empty set () is maximal with respect to this order relation on 2.

We recall the notion of monotonic multiindex sets (see Section 2.6 of [1]).
A set A C M is called monotonic if for every « € A and y € M with |y| <
m—1—]|«|, we have a+7v € A. One of the key properties of monotonic multiindex
sets is the following: let x € R™, and let P be a polynomial on R™ of degree at
most m — 1. Then

(1.1)  Amonotonic, 0*P(x) =0 Vo e A = 0*P=0 onR" Vaxe A.

Fix a finite subset E C ;—ZQO, where Q° denotes the unit cube [0,1)™. Let
N := #(E). We assume that N > 2.

Given a multiindex set A C M and € > 0, we say that a cube Q C R™ is
tagged with (A, €) if either #(EN Q) < 1 or there exists A’ < A such that

0(Q) has an (A’,xq, €,8¢g)-basis (recall: xqo = the center of Q).

We refer the reader to Section 2.7.1 of [1] for the definition of a basis for a convex
set of polynomials.

1.2. Starting the induction

We first establish the base case of the induction. This corresponds to proving the
main technical results for A = M.
Let CZ(M) be the collection of maximal dyadic cubes Q C Q° such that

#(EN3Q) < 1.
Using one time-work at most CNlog N in space CN, we produce a CZ(M)-
ORACLE that answers queries as follows.

e A query consists of a point x € Q°.
¢ The response to the query x is a list of all the cubes Q € CZ(M) such that
65
x e Q.
£ < 64

e The work and storage required to answer a query are at most Clog N.
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We simply apply the PLAIN VANILLA CZ-ORACLE from Section 4.6.3 of [1]; see
Remark 47 from the same section.

Since #(E) > 2 and E C Q°, the collection CZ(M) does not contain the
cube Q°. Therefore, each Q € CZ(M) is a strict subcube of Q°, hence Q has a
dyadic parent QT C Q° such that #(3Q" NE) > 2 (because Q is maximal), and
so in particular

(1.2) #£(9QNE)>2 for all Q € CZ(M).

Recall that we say two dyadic cubes Q and Q' touch either if Q = Q’, or if Q
is disjoint from Q’ but the boundaries 0Q and 0Q’ have a nonempty intersection;
we write Q +3 Q' to indicate that Q touches Q.

Lemma 1. If Q,Q’ € CZ(M) and Q & Q’, then 18q < 8q < 25¢.

Proof. We proceed by contradiction. Suppose that Q < Q' and g < J—léQl for
some Q, Q'€ CZ(M). Then3Q*" C 3Q’, and hence #(EN3Q") < #(EN3Q’) < 1.
However, this contradicts that #(3Q" N E) > 2, completing the proof of the
lemma. O

Lemma 2. There exists €1 > 0, depending only on myn, and p, such that 9Q is
not tagged with (M, eq) for any Q € CZ(M).

Proof. Assume that €7 € (0,1) is less than a small enough universal constant.

Let Q € CZ(M). Thanks to (1.2), it suffices to show that o(9Q) does not have
an (M, XQy €1, 59Q)-basis.

We argue by contradiction. Suppose that (Py)aenq is an (M, xq, €1, 09q )-basis
for 0(9Q). Therefore, Po(xq) =1, and 0%Py(xq) =0 for ¢ € M, « # 0. In other
words, Py = 1.

Moreover, there exists @o € X such that @o =0 on EN920Q and

lpollxioq) + 858 @0 — PollLr(oq) < €1855" ™.

We know that #(EN92Q) > 2. Fix x € EN9Q. We apply the Sobolev-type estimate
stated in Lemma 10 of [1] to obtain

55/"7"‘ [po(x) = Po(¥)| < C(lleollx9q) + 8™ l00 = Pollir(9q)) < Cle“s%pim'

But @o(x) =0, and thus |Po(x)| < C”ey. However, if we take e; < 1/C”, then
this inequality contradicts the fact that Py = 1. O

Recall that #(3Q NE) <1 for each Q € CZ(M). This implies the next result.
Lemma 3. If Q € CZ(M) then 3Q is tagged with (M,1/2).

We refer the reader to Section 3 of [1] for a statement of conditions (CZ1)—
(CZ5), which are a component of the main technical results. We now estab-
lish (CZ1)—-(CZ5) for CZ(M). Indeed, (CZ1), (CZ2), and (CZ4) follow from
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Lemmas 1, 2, and 3, respectively. Furthermore, (CZ3) and (CZ5) are vacuously
true because we are treating the base case A = M.

We next describe the algorithms COMPUTE MAIN-CUBES, COMPUTE FUNC-
TIONALS, and COMPUTE EXTENSION OPERATORS from the main technical results.

We set CZain(M) :={Q € CZ(M) : (65/64)Q NE # (}. For Q € CZyain(M),
we denote the unique point in E N g—iQ by x(Q). (Recall that #(EN3Q) < 1 for
Q € CZ(M).)

Next, we define an extension operator and a linear functional associated to each
Q S CZmain(M)'

* We define a linear map T(q ) : X(%Q NE)®P — X given by

(1.3) Tiq,m) (f,P) =P+ f(x(Q)) — P(x(Q)).
* We define a list Z(Q, M) = {£q}, where
(1.4) Eq(f,P) = (F(x(Q)) — P(x(Q))) - 5¢/" ™.

e We take the list of assist functionals Q(Q, M) to be empty.

The functional &g and linear map T g, a¢) obviously have Q(Q, M)-assisted
bounded depth (i.e., bounded depth).
ALGORITHM: COMPUTE MAIN-CUBES AND COMPUTE EXTENSION OPERATOR

We compute a list of the cubes in CZyain(M). For each Q € CZmain(M), we
compute a short form description of the bounded depth functional

EQZX(%QOE)@P—)R.

We give a query algorithm, which requires work at most ClogN to answer a
query. A query consists of a cube Q € CZyain (M) and point x € Q°. The response
to the query (Q,x) is a short form description of the linear map

(f) P) — I&T(g,./\/l) (f) P)
These computations require one-time work at most CNlog N in space CN.

Ezplanation. We compute a list of all the cubes Q € CZain(M) and a list of asso-
ciated points x(Q) € EN %Q. This computation requires work at most CNlog N
in space CN; see the algorithm FIND MAIN-CUBES in Section 4.6.4 of [1].

For each Q in CZmain(M), we compute the linear functional

Eq(f,P) = {f(x(Q)) —P(x(Q))} - 55" ™.

There are at most CN such functionals, and each one is computed using work and
storage at most C.

Given a query (Q,x) € CZpain (M) x Q°, by a binary search we determine the
position of Q in the list CZmain(M). We next compute the linear map

(f,P) = JxTiQ,m (f, P) = P+ f(x(Q)) — P(x(Q)).
This requires work at most Clog N per query. O



FITTING A SOBOLEV FUNCTION TO DATA II 653

We finish by giving a proof of the remaining properties (E1)—(E3) in the main
technical results for M. (See Section 3 of [1].)

Lemma 4. There exists C > 1, depending only on m,n, and p, such that for each
Q € CZmain(M), the following properties hold.

s Tio.m)(f,P)=f on £QNE.
* M@ (G P)llxcez ) + 8™ ITiQa) (f,P) = Pllir(ss.q) < C - [&(f, P)I.

« CHI(FP)lszq < [&a(f,P) < C-[|(f,P)]| sz -

Proof. Note that E N 2—2Q = {x(Q)} and T(g a0 (f,P)(x(Q)) = f(x(Q)) for each
Q € CZmain(M). This implies the first bullet point.

Recall that Tiq a0 (f, P) € P, hence || T(q, m)(f, P)”X(E—EQ) = 0. Moreover,
56mHT(Q‘M)(fa P) — PHLv(g_gQ) = 56m|‘f(X(Q)) - P(X(Q))”Lp(g_gQ)
< Co"™ PIR(X(Q)) — P(x(Q))] = Cléq(f, P).

This implies the second bullet point.
From the first and second bullet points we have

1, PY ez o < ITiauan (6 Pllsgss o) + (8530) ™ ITiaua (P = Pllus s

Let F € X satisfy F = f on %Q N E. Then the Sobolev inequality implies that
5P (F = PY(Q))] = 8¢/ 7™ (F— P)(x(Q))
<C-: (HFHX(%Q) + 56mHF - P”LP[%Q))'

Taking the infimum over such F, we obtain the estimate |Eq (f, P)| < C||(f, P)| 55
Thus we obtain the third bullet point, and this completes the proof. i

This completes the proof of the main technical results for M, which was the
base case of our proof by induction. We start to prove the induction step in the
next section.

1.3. The induction step
Fix a set of multiindices A C M with

(1.5) A# M.

We assume by induction that we have already carried out the main technical results
for each A’ < A. Our goal is to find suitable constants a(A), e1(A), €2(A), c«(A),
and S(A), and to carry out the main technical results for A.



654 C. FEFFERMAN, A. ISRAEL AND G. K. LuLI

Let A~ be the maximal mutiindex set that is smaller than A with respect to
the order relation < on 2. By our induction hypothesis, we have already carried
out the main technical results for A~. We have thus produced the following (see
Section 3 in [1]):

e A decomposition CZ(A™) of Q° into dyadic cubes, with the following prop-

erties.

~IfSQN&Q’ # 0 with Q,Q’ € CZ(A™), then Q + Q' and 15g/ <
5Q < 25Q1.

— The collection of cubes {2—3 : Q € CZ(A7)} has bounded overlap, mean-
ing that there exists a constant C = C(n) such that, for each Q €
CZ(A™) there are at most C cubes Q' € CZ(A™) with (65/64)Q N
(65/64)Q" # 0.

— CZ(M) refines CZ(A™); thus, from (1.2) we conclude that

(1.6) (“E is nearby”) #(EN9Q) >2 for each Q € CZ(A ).

e An oracle that accepts a query point x € Q° and responds with a list of all
cubes Q € CZ(A™) such that x € &

A list CZmain(A ™) consisting of all the Q € CZ(A ™) such that 2—2Q NE # 0.

e For each Q € CZyain (A7), a list of assists Q(Q,. A7) C [X(E)]".
e For each Q € CZyain(A ), a list of Q(Q, A )-assisted bounded depth linear

functionals Z(Q, A7) C [X(%Q NE) & P " written in short form, as well as
a linear extension operator

65
T i X(GQNE) 0P 5 X,

which we “compute” in the sense that (after one-time work) we can answer
queries: In response to a query x € Q° we return a short form description of
the Q(Q, A" )-assisted bounded depth linear map

(f) P) — ]ﬁT[Q,A*) (f) P)

These objects and algorithms have good properties as part of the induction as-
sumption on A~. We listed some of these properties just above. The remaining
properties are mentioned later, as required.

We denote

(1.7) a=a(A"), the geometric constant from the main technical results for A"

ALGORITHM: APPROXIMATE OLD TRACE NORM

For each Q € CZmain(A™), we compute linear functionals E,?, . ..,5,8 on P,
such that

D
(1.8) > J&O,P)P and ) [EX(P)P (PEP)
£EZ(Q,AT) i=1

differ by at most a factor of C. We carry this out using work and storage < CN.
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Ezplanation. For each & in the list =Z(Q,.47), we compute the map P +— &(0,P)
using work and storage at most C, by examining the short form description of
(f,P) — &(f,P) that has been computed. Applying COMPRESS NORMS (see Sec-
tion 2.8 of [1]), we compute linear functionals E?, e ,58 such that (1.8) holds,
using work and storage at most C - # [Z(Q,.A7)]. By the inductive hypothesis, we
know that the sum of # [Z(Q, A7 )] over all Q € CZain(A~) is bounded by CN,
hence the work and storage guarantees are met. O

1.3.1. The non-monotonic case. Here, we assume that A C M is not mono-
tonic and prove the main technical results for A.
We define CZ(A) = CZ(A ) and

e2(A) = e2(A7), cufA) =ci(A7), alA)=a(A7), and S(A) =S(A7).

The constant €71(A) is chosen later in this section.
We define

Q(Q)A) = Q(Q)Ai)) E(Q)A) = E(Q)Ai) and
T[Q,A) = T[Q,A*) for each Q S CZmain(A) = CZmain(Ai)'

The properties of Q(Q,.A), Z(Q,.A) and T, 4) asserted in the main technical re-
sults for A are immediate from the corresponding properties of Q(Q, A7), Z(Q,.A™)
and T(g,4-) asserted in the main technical results for A™.

Next, we prove properties (CZ1)—(CZ5) for the label A. We refer the reader
to Section 3 of [1] for the statements of (CZ1)—(CZ5), which are a component of
the main technical results.

Note that (CZ1) for A follows from (CZ1) for A~. Also, note that (CZ5)
for A holds because CZ(A) = CZ(A™).

Note that (CZ3) for A holds vacuously: There do not exist cubes Q € CZ(.A),
Q’ € CZ(A™) which satisfy the hypotheses of (CZ3). This follows because
CZ(A) = CZ(A™).

We need not check (CZ4), since A # M; see (1.5).

It remains to prove (CZ2) for A, which we accomplish in the next lemma. We
determine €1(A) = €7 in the lemma below.

Lemma 5. There exists a universal constant €1 > 0 such that the following holds.
Suppose that Q € CZ(A) and 5q < c.(A). Then S(A)Q is not tagged with (A, e1).

Proof. We assume that €7 > 0 is less than a small enough universal constant.

Let Q € CZ(A) satisfy g < c.(A). Assume for the sake of contradiction that
S(A)Q is tagged with (A, e1).

If #(S(A)Q NE) <1 then S(A7)Q = S(A)Q is tagged with (A, e1(A7)).
However, this contradicts the induction hypothesis. Hence, we may assume from
now on that #(S(A)Q NE) > 2. Thus,

0(S(A)Q) has an (.Z,XQ, €1,85(4)q)-basis for some A< A.
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Hence, Lemma 25 of [1] implies that there exists k € [k7, k2] such that
0(S(A)Q) has an (A’,xq, €7, ds(4)Q, A)-basis,
with A’ < A and efA19°P < e'f/z.

Here, k1, k2 > 0 are universal constants. (For the definition of an (A, x, €,5, A)-
basis, we refer the reader to Section 2.7.1 of [1].)

Suppose for the moment that A’ < A. Then S(A)Q is tagged with (A~,ef).
Note that ef < e}' < e1(A™), for small enough €;. Thus, S(A7)Q = S(A)Q
is tagged with (A, €1(A7)). However, this contradicts the induction hypothesis.
Hence,

o(S(A)Q) has an (A, xq, €7, ds(4)q, A)-basis.

Thus, there exists (Py)qea with

(1.9) Pa € €f - (8sa))™ P ™o(S(A)Q) (€ A)
o 3PPL(xQ) = dpu (B,x € A)
o [0PPL(xQ)| < € - (85(a)q) 7P (x € AR EM,B >«
e |0PP4(xq) g/\-(és(A)Q)“"'*‘m (xe AP eM).

We are assuming that A is not monotonic. Thus we can pick oo € A and
Y € M such that &p +7v € M\ A. We define

X=0p+y and A=AU{x.
Note that AAA = {&} with & € A. Consequently, A < A.
We define P = Py, Ox, g, where q(y) = ol(y — xqQ)Y. That is,

=
! 1

Px(y) = = Z —,awPao(XQ)(‘J_XQ)w+Y-
Cwl<m—1—y|

Note that P = q - P22 where

X0
main 1
Pa= ) 19 Paxly—xa)®,
Jw|l<m—1—|y|
and that
main 1
cho = cho_choa = Z anPOLo(XQ)(U_XQ)w'

[w[>m—1—]y|
In the above sum for Ry, since |w| > m —1—|y| > |xo| we have w > &, and so
0Py, (xQ)| < Cef a5,

Consequently,
/p+lool
Rao l[Lr(s(ayq) < Cef 857700
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The bullet point properties of Py, now yield the following properties of Pg.
L4 aapa(XQ) = ],
o [0PPx(xq)l < Cefdg Pl (BeM,p>w),
* [0PPz(xq)| < CASS P (B eM).
We now show that
o Pz e Cef- (8g)V/PHE—™. 5(S(A)Q).
To start, (1.9) implies that there exists @ € X with @ =0 on S(A)Q NE and
l@llxiscaq) + 8q™ 1@ = Pag e (s(ayq) < Cef - (8g)™/Prxel—m,

We recall that PEain = Po . — Ry
Ceyogy/PHieel

o- Thus, using the estimate [|[Rq, ||t (s(a)Q) <
, we learn that

(1.10) [lo—Pr™|Ix(s(a)qQ) +8o™l@ —Pa™|[Lr (sa)q) < Cef-(8g)™/Prixel—m,

By definition of q, we have [[09q||1=(s(4)Q) < Cég‘flw‘ for any multiindex w.
By the Leibniz rule, we obtain the estimate

lghlxion S D 119°gll=(@ndPhllLr(q) for g,h € X(Q).

[w|+[Bl=m

Using the previous estimates, we have

g - (@=PRa™lx(scarq) + Q™14 - (@ = Paa™)[tr(s(a)q)
<C ) 5Q ‘BHM ™0P (@ — PR || 1n (s(4)Q)
[BI<m
< C- (5Q)W\(||(p Pmam”X Y mH(p PmamH )
SCev(éQ)W‘(éQ)”/P*'“o‘ m (by (1.10))
:C€1K (5Q)n/p+\&\7m_

In the second inequality above, we used the Sobolev-type estimate stated in Propo-
sition 9 of [1]. Note that q - PE*™ € P, hence the above estimate yields

lq-ellxscaq) +8o™d - ® —Pxlle(s ) < CeX(bg)m/PHia—m,
Since q - @ = 0 on S(A)Q N E, we have shown that Pg € Cel - (§g)/PH&-—m.
0(S(A)Q). This proves all the bullet point properties of Pg.
The bullet point properties of the Py (v € A) imply that (aBP“(XQ))a,BeZ is

(C e, CA, dq)-near triangular. Inverting the matrix (aBPa(XQ))“‘BEZ, we obtain
a matrix (Mcxw)cx,weﬁ such that

Z aBPOL(XQ)MOLw :6[5w (B,(,l)gZ)
xeA
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and
CeXAP .8l 1o ir o w e A, o > w,

|M0€w - 60(00' < D Jw|—]e| . —
CAP -dq , if ot,w € A.

Set P# = 2 «ei PaMaw. The bullet point properties of (Py) .4 imply that
o« PfeCef  AZD 53PN MG(S(A)Q)  (w e A),

¢ PPL(xQ) =0pw  (Byw € A).

For w € A and B € M with B > w, we write

(1.11) FPE(xq) = ) 0PPalx@)Maw + ) 9PPa(xQ)Muw.

<P x>p

An arbitrary term in the first sum in (1.11) is < [C efég“flﬁ‘] : [C/\Déléu‘*l“‘].
Hence, this sum is at most C'e'f/\Dé‘S’l*‘m.

If « > 3, then @ > w, since B > w. Thus, an arbitrary term in the second
sum in (1.11) is < [C/\Sglf‘m] - [CexAP .6‘(5”'7‘“']. Hence, this sum is at most

K [w[—IB]

C’e} /\D“6éU .

Thus,

o [0PPH(xq)| < CefAZPS Pl (pe Myw e A, B > w).

According to the bullet point properties of (PL#U)(UGZ’ we see that o(S(A)Q) has
an (A, xq, Cef AP, 8¢ )-basis, hence o(S(A)Q) has an (A, xq, C'efA?P85(4)0)-
basis. (See Remark 18 in [1].)

For small enough €7 we have C’'efA?P < C’€1K/2 < e]K1/4 < €1(A7), hence

o(S(A)Q) has an (A, XQ, €1(A7),0s(4)q)-basis.

Hence, S(A)Q is tagged with (A7, e1(A7)). However, since 8g < c.(A7) and
S(A) = S(A7), this contradicts the induction hypothesis.
This completes the contradiction, and with it, the proof of the lemma. O

We have thus proven the main technical results for A in the non-monotonic
case.

1.3.2. The monotonic case. From this point onward, we assume that A is
monotonic. We drop this assumption when we prove our main theorem in Section 2.
We will now begin the task of carrying out the induction step by proving the main
technical results for A. (See Section 3 in [1].)

We begin by treating a preliminary case.

Lemma 6. Suppose that 6q > 1/4 for all Q € CZ(A™). Then the main technical
results for A~ imply the main technical results for A.
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Proof. We take CZ(A) to equal CZ(.A~). The other objects and algorithms in the
main technical results for A are copies of the corresponding objects and algorithms
in the main technical results for A~. O

By making at most C calls to the CZ(.A™)-ORACLE, we can check whether the
hypothesis of Lemma 6 holds. This takes one-time work at most ClogN. In the
sequel, we assume that we are in the case that

(1.12) 0o <1/8 for some Q € CZ(A™).

Recall that the decomposition CZ(A~) has the following properties:

e CZ(A7) is a finite partition of Q° = [0,1)™ into pairwise disjoint dyadic
subcubes.

e If Q,Q" € CZ(A7) and Q « Q' then 8¢ /dq, €{1/2,1,2}.
e If Q € CZ(A™) then #(9Q NE) > 2. (See (1.6).)
Lemma 7. If Q € CZ(A™) and dist(Q,R™\ Q°) =0 then dq € {1/2,1/4,1/8}.

Proof. Let Q € CZ(A™) with dist(Q,R™\ Q°) =0.

Recall that 6q # 1, because CZ(A™) #{Q°} (see (1.12)).

We need to show that dg > 1/8. For the sake of contradiction assume that
8o < 1/16. Then since dist(Q,R™\ Q°) = 0, we have 9Q C R™\ -5Q°, hence
2Q € R™\ E. But #(EN9Q) > 2, according to the above bullet points. This
contradiction completes the proof of Lemma 7. |

We now pass from the decomposition CZ(.A~) of Q° to a decomposition CZ(.A™)
of R™.

Proposition 1. There exists a decomposition CZ(A~) of R™ into pairwise disjoint

dyadic cubes, with the following properties:

(a) CZ(A™) Cc CZ(A™).

(b) If Q,Q’" € CZ(A™) and Q < Q' then 156Q/ < 0q < 8dq: (“good geometry”).
Moreover, the collection of cubes {g—ZQ : Q € CZ(A7)} has bounded overlap
(each cube intersects a bounded number of other cubes).

(c) If Q € CZ(A™)\ CZ(A™), then £QNE =0.

(d) If Q € CZ(A")\ CZ(A™), then 100Q intersects cubes in CZ(A~) with side-
length less than 0q.

(e) If Q € CZ(A")\ CZ(A™), then g > 1.

(f) If Q € CZ(A™) then #(9Q NE) > 2.

We produce a CZ(A™)-ORACLE. The CZ(A™)-ORACLE accepts a query consist-
ing of a point x € R™. The response to a query x is the list of cubes Q € CZ(A™)

such that x € g—iQ. The work and storage required to answer a query are at most
ClogN.
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Proof. Let Q consist of the maximal dyadic cubes Q C R™ satisfying the condition
0o < 1or0¢2Q]. A dyadic cube Q C R™ belongs to Q if and only if

(1.13) dg=1or0¢2Q,
and
(1.14) dg+ >2and0€2Q™.

Here, as usual, Q" denotes the parent of a dyadic cube Q.
For any x € R™, there exists a dyadic cube Q containing x such that 56 >2

and 0 € 26. Hence, each x € R™ is contained in some cube Q € Q. Hence, Q
partitions R™ into pairwise disjoint dyadic cubes.

Note that the cube Q° =[0,1)™ belongs to Q.

We now establish good geometry of Q (with constant 1/4). We prove that if
Q,Q’' € Qand Q « Q' then 18g/ < dg <48q.

Assume for the sake of contradiction that there exist cubes Q,Q’ € Q with
8o < §8q and Q «» Q. By (1.14), we have 5+ > 2 and 0 € 2Q*. Moreover,
note that 2Q" C 2Q’ (since Q «» Q' and 5q < 38q, hence Q" « Q’ and
dg+ < ]I‘SQ’)' Hence, 0 € 2Q’. Moreover, dg: > 45g+ > 8. However, since
Q’ € 9, the analogue of (1.13) with Q replaced by Q' must hold. This yields a
contradiction. This completes the proof that the cubes in Q have good geometry.

We define the collection CZ(A~) to consist of all the cubes Q € Q except for
Q = Q°, together with all the cubes Q € CZ(A™). Since Q partitions R™ and
CZ(A™) partitions Q°, we see that CZ(A~) partitions R™ into pairwise disjoint
dyadic cubes. Moreover, property (a) clearly holds.

IfQe 9,Q € CZ(A ), and Q < Q’, then both Q and Q' touch the boundary
of Q°.

We prove the claim that Q contains all 4™ of the dyadic cubes Q C [-2,2)™
with 8q = 1. Indeed, we have Q" C [-2,2)", 6o+ = 2 and 0 € 2Q™" for any
such Q. Hence, each Q satisfies (1.13) and (1.14), which implies that Q belongs
to Q. This proves our claim. Hence, in particular, any Q € Q that intersects the
boundary of Q° = [0,1)™ must satisfy g = 1.

Moreover, by Lemma 7, any Q' € CZ(A ™) that intersects the boundary of Q°
must satisfy g/ € {1/2,1/4,1/8}.

Hence, the previous two statements imply that for any Q € Q and Q' €
CZ(A™) with Q & Q” we have §5¢g < 8¢/ < 0.

Finally, for Q,Q’ € CZ(A~) with Q « Q’, we have 18q < 8q+ < 28q. by
good geometry of the cubes in CZ(A™).

Recall that the cubes in Q satisfy good geometry (with constant 1/4).

Thus, combining the previous three statements, for any Q,Q’ € CZ(A~) with
Q < Q’, we have %6@ < 8g < 85q/. Thus, the collection CZ(A™) satisfies the
hypothesis of Lemma 46 from [1] with y = 1/8. Hence, for Q,Q’ € CZ(A™) with
gi N g—iQ’ # 0, we have Q « Q’. It follows that the collection 2—2Q Qe
CZ(A7)} has bounded overlap. This completes the proof of property (b).

From (1.14), each Q € CZ(A ")\ CZ(A") satisfies 5o > 1. This proves prop-
erty (e).
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We now prove property (c). Let Q € CZ(A™)\ CZ(A~). Then Q € Q and
Q Cc R™\ Q°. According to property (e), there are only two cases to consider

e If 5o = 1, then %Q cannot intersect ;—ZQO (because Q N Q° =  and
5qg =8ge =1). Since E C 55Q°, we conclude that £Q NE = (.

o Ifdg > 2, then 0 ¢ 2Q thanks to (1.13). Assume for the sake of contradiction
t1hat g—ZQ]O ;—ZQO # . Since Q and Q° are .dls‘]og;t, we 1Conclude that
2190 > 7 = 0q > 16. Hence, 0 € 2Q (since gzQ N 35Q° # 0 and
dg > 16, and Q° = [0,1)™). Hence, we derive a contradiction. Thus, %
cannot intersect ;—ZQO Since E C ;—ZQO, we conclude that %Q NE=0.

This completes the proof of property (c).

Property (d) is easy to prove. Let Q € Q. Then 0 € 2Q™ thanks to (1.14).
Hence, 0 € 6Q (since 2Q* C 6Q). Since dg > 1, this implies Q° C 9Q (recall that
Q° =1[0,1)"). Together with (1.12), this implies property (d).

We now prove property (f). Let Q € CZ(A™) be given.

If Q € CZ(A ") then #(9Q NE) > 2, thanks to (1.6).

If Q € Q, then 9Q D Q°, hence #(9Q NE) = #(E) > 2.

This concludes the proof of property (f).

We prepare to describe the construction of the CZ(A~)-ORACLE.

We can determine whether a dyadic cube Q € R™ belongs to CZ(.A~) using
work and storage at most Clog N. We explain the procedure below.

Let Q C R™ be given.

First, suppose that Q € Q°. Then Q € CZ(A™) if and only if Q € CZ(A™).
We can determine whether Q € CZ(A™) by using the CZ(A™)-ORACLE to produce
a list of all the cubes Q' € CZ(A™) satisfying xq € g—i ’. (Recall, xq denotes the
center of Q.) Then Q € CZ(A) if and only if Q belongs to the aforementioned
list. Thus, in this case, we can determine whether Q € CZ(A~) using work at
most Clog N.

Next, suppose that Q° € Q. Then Q can never belong to CZ(A™).

Lastly, suppose that Q € R™\ Q°. Then Q € CZ(A™) if and only if Q € Q.
Recall from (1.13) and (1.14) that Q € Q if and only if [6g =1 or 0 ¢ 2Q] and
6o+ >2and 0 € 2Q*"]. We can check each of these conditions using at most C
computer operations. Thus, in this case we can determine whether Q € CZ(A™)
using work at most C.

Hence, we can determine whether a given cube belongs to CZ(.A~) using work
at most Clog N.

We next explain how to compute the unique cube Qy € CZ(.A™) containing x.
It will then not be difficult to produce a list of the cubes Q € CZ(A™) satisfying
X € g—iQ. We describe this step at the very end.

We check whether or not x € Q°. We split into cases depending on the result.

First, suppose that x € Q°. We then compute the cube Q € CZ(A~) contain-
ing x using the CZ(A~)-ORACLE. We set Qx = Q.

Now suppose that x € R™\ Q°.
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Let Q be the unique cube in Q \ {Q°} containing x. We will explain how to
compute Q. _ B
We compute the dyadic cube Q C R™ such that 5@ =1land x € Q.

We test to see whether 0 € ZQ We can do that using at most C computer
operations. _ _
If 0 € 2Q then Q is a maximal dyadic cube satisfying the condition [6(2 <1

or 0 ¢ ZQ] Hence, in that case, Q is the unique cube in Q containing x. We set
Qx = Q. B . B

Now suppose that 0 ¢ 2Q. Thus, Q satisfies (1.13). Since Q and Q are
intersecting dyadic cubes (they both contain x), and since Q is maximal with
respect to the property (1.13), we conclude that Q C Q.

Assume that Q = Q. Then 0 ¢ 2Q, by assumption. On the other hand,
suppose that Q C Q. Then dg > 1 (since 05 = 1). Since Q satisfies (1.13), we
conclude that 0 ¢ 2Q. B

Thus, in the case where 0 ¢ 2Q, we know that 0 ¢ 2Q. Since x € Q this shows
that |x| > +8q. Moreover, since Q satisfies (1.14) we know that 0 € 9Q. Hence,

1
(1.15) 75 <Ix <95q

for the unique cube Q € Q containing x.

There are no more than C dyadic cubes Q C R™ satisfying (1.15) with x € Q;
moreover, it takes work at most C to list all these cubes. We examine each cube
and test to see whether it belongs to CZ(A~). We set aside the unique cube Q
that passes the test. We set Qx = Q.

We have just explained how to compute the cube Qy € CZ(A™~) containing a
given point x € R™. The work requires is at most ClogN. We now explain how
to construct the CZ(.A™)-ORACLE.

Suppose that Q € CZ(A™) satisfies x € %6. Then
1
8
This follows from condition (b) in Proposition 1 and an application of Lemma 46
of [1] (with y =1/8).

We produce a list of all the dyadic cubes Q that satisfy both (1.16) and x € %_
There are at most C such cubes and it takes work at most C to list them all. We
examine each Q to see whether it belongs to CZ(.A~). We return a list of all those
cubes that belong to CZ(A™).

This completes the description of the CZ(.A~)-ORACLE and finishes the proof
of the proposition. O

(1.16) Qe Qx and o8q, <85 < 8%q,.

1.3.3. Keystone cubes. We define integer constants
So :=S(A"),

(1.17) S := the smallest integer greater than 100,10° - S, and 2 - [c, (A7),
S, := the smallest odd integer greater than 10°S;.
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We let € > 0 be a small parameter. We assume in what follows that
(1.18) € > 0 is less than a small enough universal constant.

We eventually fix € to be a universal constant, but only much later in the proof.
We will take €2(A) = e and e1(A) = €'/% for a small universal constant k.
The discussion of the final choice of the numerical constants relevant to the Main
Results for A occurs in Section 1.8.3. See also (1.180).

We next define the keystone cubes associated to the decomposition CZ(.A™).
We will prove a few basic properties of the keystone cubes and introduce the
relevant algorithms.

Definition 1. A cube Q% € CZ(A™) is keystone if and only if §q > dqg# for every
Q € CZ(A™) that meets S, Q.

Lemma 8. The collection {S1Q7 : Q_#E CZ(A™) keystone} has bounded overlap.
Moreover, each keystone cube Q% € CZ(A™) belongs to CZ(A™).

Proof. Suppose that Q?E, Qf are keystone cubes such that Sy Q?E NSy Q? # () and
8g# < dg#- Then Qf NS2QF # 0, since S2 > 10°S1. Therefore, 5# > 8, by
definition of the keystone cubes.

Consequently, 6Q1¢ = 6Q;2¢ whenever Sy Q?ﬁ NSy Qf # (). Thus, no more than C

Q%>

cubes Sy Qf can intersect any given cube S; Qf This implies the first conclusion
of Lemma 8.

Finally, observe that no cube in CZ(A~) \ CZ(A~) can be keystone, thanks
to condition (d) in Proposition 1 and the fact that S; > 100. This completes the
proof of the lemma. O

The above definition of keystone cubes agrees with the definition of keystone
cubes in Section 4.5 of [1], if we let K = S, and let A be a large universal constant in
Section 4.5 of [1]. The MAIN KEYSTONE CUBE ALGORITHM from Section 4.5 of [1]
says the following: given Q € CZ(A™), we can compute a keystone cube K(Q) €
CZ(A™) such that there exists a sequence S = (Q1,Q2,...,Qr) of CZ(A~) cubes
such that

Q=Q < Q2 QL=K(Q),

and with ,
5, <C-(1—¢)"t8q, for1<t <t<L

We do not compute the sequence S, we just claim its existence.

We now modify the sequence S to consist only of cubes from CZ(.A~) while
retaining the important properties of S.

We first discuss the case in dimension n = 1. We let &’ denote the se-
quence formed by omitting from S all the cubes that belong to CZ(A~)\ CZ(A™).
Recall that all the cubes in CZ(A™) are contained in Q° = [0,1) and all the
cubes in CZ(A~) are contained in R\ [0,1). Consider a maximal subsequence
Qk,y---,Qx, of cubes in S that belong to CZ(A~). Then, by connectedness,
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each Qi (k1 < k < ky) is contained in either [1,00) or (—o0,0). Assume for
sake of definiteness that each Qy is contained in [1,00). Then Qy,_1 and Qx, 1
are the same cube in CZ(A™), namely the unique cube in CZ(A™) that meets
the endpoint x = 1. (This is because the sequence must exit and reenter [0, 1)
using the same cube that borders the endpoint x = 1.) Thus we can remove the
aforementioned subsequence from S and obtain a connected path of cubes. The
resulting sequence is exponentially decreasing with the same constants C and c
above. The same argument shows that we can remove every maximal subsequence
of S consisting of cubes in CZ(A~)\ CZ(A7).

We now handle the case when the dimension n is at least 2.

Suppose that some of the cubes in S belong to CZ(A~). Let Qx, and Qx,
denote the first and last cubes in the sequence S belonging to CZ(A~)\ CZ(A™).
Let Ssub = (Qxkyy- -+, Qk,) denote the corresponding subsequence of S.

We know that Q7 = Q and Qi = K(Q) both belong to CZ(.A™). Hence,
1<k <k, <L

Note that both Qy,_1 and Qx,_1 intersect the boundary of Q° and belong to
CZ(A™).

We join Q,—1 and Qi, 41 with a sequence S/, = (le,...,éka) with the
following properties.

e The cubes Qy € CZ(A™) intersect the boundary of Q°.

* Qi, & Qx,—1, Qx; & Qx,+1, and

QkHQk+] fork; <k <ksz—1.

e k3 —kq is bounded by a universal constant.
¢ Each Qk has sidelength between 1/2 and 1/8.

These properties can be arranged due to Lemma 7.

We replace the subsequence S with the sequence S7,, in . We obtain

a sequence S’ = ((51,(52,...,(~QL) of cubes in CZ(A™~) such that (~Q1 = Q and
Q1 = K(Q); moreover,

Qe Qe (1<0<L—1) and 8, gc'.u—c’)f*f’s@, (1< <e<L).

Indeed, the fact that S’ satisfies the exponentially decreasing property follows
directly from the construction: We removed a subsequence of connected cubes
in § and replaced it with a subsequence of bounded length consisting of cubes
of size € {1/2,1/4,1/8}. This has no effect on the fact that the sidelengths are
exponentially decreasing in the sense of the above estimate.

Hence, the sequence S’ joining Q and K(Q) is exponentially decreasing.

We never actually compute the sequences S or S’, we just claim their existence.

Using the above analysis, the MAIN KEYSTONE CUBE ALGORITHM and the algo-

rithm LIST ALL KEYSTONE CUBES from Section 4.5 of [1], we obtain the following
result.
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ALGORITHM: KEYSTONE-ORACLE

After one-time work at most CNlog N in space CN we produce the following
outcomes:

o We list all the keystone cubes Q7 in CZ(A™).

e We can answer queries: A query consists of a cube Q € CZ(A™), and the
response to a query Q is a keystone cube (Q) to which Q is connected by
an exponentially decreasing path

Q=Q < Qe Qu=K(Q)
with /
55, <C-(1—¢)t 8y, forT<t <t<L

We guarantee that (NQg € CZ(A™) and g—iég C CQ for each £. We guarantee
that $1/0(Q) C CQ; also that £(Q) = Q if Q is keystone. The work required
to answer a query is at most Clog N.

e We list all (Q’,Q") € CZ(A™) x CZ(A™) such that Q" < Q" and K£(Q’) #
K(Q"). Let BD(A™) (the “border disputes”) denote the set of all such pairs
(Q’,Q"). We guarantee that the cardinality of BD(A™) is at most CN.

Remark 1. Let Q1 < --- < Qp be as above. For fixed Q’, we can have Q' = Qe
for at most C distinct €. This is because the path Q1 < Q2 < -+ & Qr is
exponentially decreasing.

Remark 2. We do not attempt to compute the sequence of cubes (~21 Seeny (NQL,“
we only guarantee that this sequence exists, and we guarantee that we can compute
the keystone cube K(Q) = Qr located at the end of the sequence.

1.4. An approximation to the sigma

We begin the proof of the main technical results for A. We recall that 4 C M is
a monotonic set.

In Sections 1.3.2 and 1.3.3, we have defined a dyadic decomposition CZ(.A™)
of R™ and a notion of keystone cubes in CZ(A~). We cannot compute all the
cubes in CZ(A™) since there are infinitely many. Instead, we have access to a
CZ(A™)-0RACLE and a KEYSTONE-ORACLE.

The integer constants So, S7 and S, relating to the keystone cubes are defined
in (1.17).

According to the main technical results for A~ (see Section 3 in [1]), for each
Q € CZmain (A7) the functional

1/p
(1.19) Mga (KR = (Y J&nRI)
£€Z(Q, A7)
satisfies
(1.20) cll(f, Rl (1+a1Q < M(Q,a—)(f,R) < C[[(f,R)]| &3 o-

Recall that a is the constant a(.A~) from the main technical results; see (1.7).



666 C. FEFFERMAN, A. ISRAEL AND G. K. LULI

We set Z(Q, A7) := 0 and M(q, 4 (f,R) := 0 for all Q € CZ(A™)N\CZmain(A").
By definition of the collection CZmain(.A™) and by property (c) in Proposition 1,
we have %QHE = (). Thus, H(f,R)||(1+a)QiO for any Q € CZ(A™ )\ CZmain(A™).
Thus, we see that (1.20) holds for all Q € CZ(A™).

1.4.1. Assigning jets to keystone cubes. Let Q% € CZ(A™) be a keystone
cube. We define its associated CZ cubes to be the collection

(1.21) Z(Q#):={Q € CZ(A™) : QN SoQ* #0}.

We note that the cubes in Z(Q#) belong to CZ(.A~) rather than CZ(.A~). Hence,
the cubes in Z(Q#) are contained in R™, and may not be contained in Q°.

Lemma 9. Let A > 1 be given. Assume that Q,Q € CZ(A~) and Q NAQ # 0.
Then

(1.22) dq < 10°Adg, and

65 —
1.23 —Q C 10°AQ.
Proof. We first prove | (122_) Assume for the sake of contradiction that 8¢ >
103A56 for some Q,Q € CZ(A™) with QNAQ # 0. Then_%Q NQ # 0. How-
ever, this contradicts the good geometry of the cubes in CZ(A™) (see Proposi-

tion 1). This completes the proof of (1.22) by contradiction. Lastly, (1.23) follows
from (1.22) and our assumption that Q NAQ # 0. O

By Lemma 9, the CZ cubes associated to a given Q¥ satisfy the following
property: for each Q € Z(Q#) we have

(1.24) 5q < 10%Sg - 8+, and
65

(1.25) 2QcC S1Q*.

(Recall (1.17), which states that S; > 10°S,.)

Remark 3. The definition of keystone cubes shows that 6q > 8o# whenever
Q € Z(Q™). Hence, (1.24) implies that the cardinality of I(Q#) is bounded by C
for each keystone cube Q7.

If Q € Z(Q¥) and Q € Z(Q¥) then (1.25) implies that $1Q% N $;QF
g—iQ. Recall that the cubes S1Q% (Q# keystone) have bounded overlap. (See
Lemma 8.) Thus, each Q € CZ(A~) belongs to Z(Q#) for at most C distinct
keystone cubes Q7.

ALGORITHM: MAKE NEW ASSISTS AND ASSIGN KEYSTONE JETS

For each keystone cube Q#, we compute a list of new assists Q"% (Q#) C
[X(S1 Q# OE)]*, written in short form, and we produce an Q"% (Q#)-assisted

bounded depth linear map Ré# :X(S1Q# NE) @ P — P, written in short form.
Furthermore, we guarantee that the following conditions are met.
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e The sum of depth(w) over all w in Q" (Q7#), and over all keystone cubes Q7
is bounded by CN.

Given (f,P) € X($7Q#* NE) @ P, denote R¥ = Ré#(f, P).
e Then 0% (R#* —P) = 0 for all « € A. (This condition is natural because A
is monotonic; see (1.1).)
e Let Re P, with 0P (R—P) =0 for all p € A. Then

(1.26) > > o lERRrRHP<c Y > E R

QEZ(Q#) E€Z(Q,A ) QEeZ(Q#) E€Z(Q,A)

To compute the assists Q"% (Q#) and the short form of the maps Ré# (for all the
keystone cubes Q) requires work at most CNlog N, and storage at most CN.

Ezxplanation. Given P € P, we define Vp to be the affine subspace consisting of all
polynomials R € P satisfying 0%(R — P) = 0 for all « € A. We note that R € Vp
& 0%(R—P)(0) =0 for all « € A, since A is monotonic.

We introduce coordinates on Vp, defined by

w=(Wi,...,wg) € R* = R, (x) = Z a%'(o)x“—Fij . );—_',
acA ’ j= )

where we write M\ A = {aq,..., o}

We consider the sum of the p-th powers of the functionals &(f,R,,) over all

Z(Q, A7) and Q € Z(Q#). We want to minimize this expression with respect
to w € R*. We can approximately solve this minimization problem using the
algorithm OPTIMIZE VIA MATRIX from Section 2.8 of [1]. We describe the process
below.

For each Q € CZmyain(A~) with QNSeQ# # 0, we have §g# < 8¢ by definition
of keystone cubes. Hence, from (1.24) we have

(1.27) QNSoQ* #0 and dg# <8q < C-dq#
for a universal constant C.
We list all the dyadic cubes Q that satisfy (1.27). There are at most C cubes in
this list. We test each Q to see whether it belongs to CZmain(A~). Thus, we can
compute the list
£=1{Q € Cuain(A): QNSoQ¥ #£0}.

The list £ contains all cubes Q that participate in (1.26) for which Z(Q,.A47) # 0.
(Recall that Z(Q, A™) =0 for Q € CZ(A™) \ CZmain(A7).)

We list all the functionals & appearing in Z(Q,.A7) for some Q € £. From the
main technical results for A~ (see Section 3 in [1]), each such & is given in the form

k
E(f, Ry +Zua- M@P(0))aea) + Y _ iy - Wy,

j=1



668 C. FEFFERMAN, A. ISRAEL AND G. K. LULI

where A and A are linear functionals; wq € Q(Q, A7) for some Q € £; puq and [y
are real coefficients; and depth(A) = O(1), I = O(1). In this discussion, we write
X = O(Y) to indicate that X < CY for a universal constant C.

Processing each functional & this way takes work O(1) per functional. Thus,
with work O(L) (see below), we obtain a list of all the above &’s, written as

I\/]w

(1.28)  &¢(f, Ry +quweq )+ A((0%P(0))ea) + ) fieswj

j=1

for €=1,...,L; here, L= >  #[Z(Q,A7)].
QEZ(Q#)

Here, each I, = O(1), each A; has bounded depth, and each wg, belongs to
Q(Qeq, A7) for some Qo € £. Of course the Qq need not be distinct, and
k < dim(P) =D.

Processing the functionals w — &(f,Ry,) in (1.28) with the algorithm OPTI-
MIZE VIA MATRIX (see Section 2.8 of [1]), we compute a matrix (bj¢) with the
following property. The sum of the absolute values of the p-th powers of the func-
tionals &¢(f,Ry) (1 < € < L) is essentially minimized for fixed f, (0%P(0))xe.a by
setting w = w* = (wj,...,wj), where

(1.29) wab]z{M +Zueawea +?\e((6°‘P(0))aeA)]

L
- {ijz [helf) + 5 heawea(f)] b+ Y bje A((3%P(0))oen)
=1 a=1 =1

= WY (f) +  AY((%P(0)) aea)-

We have thus defined new assists w?ew and new functionals A?ew.

We may therefore set RQ# (f,P) := Ry with wi = w;‘ew(f)—H\;leW((a“P(O))aeA)
(1 <j < k) and we obtain the estimate (1.26). Note that Ré# has assisted bounded

depth, with assists W} (j =1,...,k). Indeed,

o[ @) + AV((0%P(0))wea) if =0, j=1,...,k
(1.30) @ [RQ#(f,P)](o)—{ 2p(o) o

We can compute the new functionals AJ*Y (1 <j < k) using the obvious
method. This requires work

o) = 0( 5 #[E(Q,A)]).

QeZ(Q#)

We will now express the new assists w3 in short form.

We write we" = @PeW>! 4 w3 2. where w;le"“ and w;lew‘z are defined below
(see (1.31) and (1.34)).
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Each A¢(f) has bounded depth, so the functional

L
(1.31) W Y b Aelf)
=1

can be computed in short form using

work O(LlogL) = (’)(logN . Z #[2(Q,A7)] )
QEZ(Q#)

and storage O(L) = (’)( Z # [E(Q,Af)] )
QEZ(Q#)

This computation follows by a simple sorting procedure. We provide details below.

e Recall that A¢ has bounded depth and is given in short form (without assists):

(1.32) Ae(f) = > ce(x)-f(x), where #(S¢) < C.

XESy

Thus, we can express the functional (1.31) as

L
w;new,] s Z dj(x) - f(x), whereS = U S¢ and
x€S =T

L
(1.33) dj(x) =) bjr-ce(x) forxes.
=1

We compute the weights dj(x) by sorting. More precisely, we sort the points
of S. We make an array indexed by S. We initialize the array to have all
zero entries. We loop over £ = 1,...,L, and we loop over all the points
y € S;. We determine the position of each y in the list S, and we add
the number bje - c¢(y) at the relevant position in the array. This requires
work at most Clog(S) < ClogL for a fixed pair ({,y). Hence, the total
work required is at most CLlogL, since the number of relevant pairs ({,y)
is ZL] #(S¢) < ZL] C < CL. Similarly, the total storage is at most

CY b, #(S) <CL

Thus, we can compute the functional (1.31) using work O(LlogL) and stor-
age O(L).
It remains to compute the functional

L I,
(1.34) w;lew‘z e Z bje quwm(f) in short form. (Recall, each I, = O(1).)
=1 a=1

We recall that each wg, belongs to UQeI(Q#) Q(Q,A™).
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We can express the functional (1.34) in the form

(1.35) w?ew’z e Z Qjw - w(f),
welqez(o#) AQAT)

with work  O(Llogl) = O(logN- Y #[2(Q,A7)] )
QEZ(Q#)

and storage O(L) = (’)( Z # [E(Q,Af)] )
QEZ(Q#)

We can compute the relevant numbers q;., by sorting, since

(1.36) Jjw = Z bje - Hea-

(&,a):wea=w

Finally, once our functional is in the form (1.35), we can easily write it in short
form

(1.37) WP s Y kG(x) - f(x)
xX€ES

with work O(logN . Z Z depth(w))

QeZ(Q#) weO(Q,A)

and storage (’)( Z Z depth(w)).

QEZ(Q#) weQ(Q,A))

Again, we perform a sort to carry this out.

We compute ! = w*™! + "2 in short form by adding the short form
expressions (1.33) and (1.37).

Altogether, we obtain the new assists w3 and the new functionals S for a

given Q¥ using work at most

c.(logN).[ 3 {1+#[E(Q,A*)]+ S depth(w)H

QEeZ(Q#) weO(Q,A)

and storage at most

c | Y {i+#EQAN+ Y depth(w)}].

QeZ(Q#) weO(Q,A™)

(Again, recall that Z(Q, A™) = Q(Q,. A7) = for any Q € CZ(A )\ CZpmain(A7).)
Each Q € CZpain(A™) belongs to Z(Q#) for at most C distinct Q¥ (see Re-
mark 3). Therefore, we can compute the new assists and the new functionals for
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all the keystone cubes Q7 using work at most

C-(logN) - [#{ Keystone Cubes Q¥} + Z #[2(Q, A7)]
QECZmain(AT)

+ Z Z depth(w)},

QECZmain (A7) weQ(Q, A7)

which is at most CNlogN by the induction hypothesis and the statement of
the KEYSTONE-ORACLE (which guarantees that the number of keystone cubes is
bounded by CN). Similarly, we see that all the new assists can be computed using
storage at most CN.

Finally, note that there are at most D new assists for each given keystone cube
Q# € CZ(A7), and each such assist has depth at most #(S;Q# N E). By the
bounded overlap of the cubes S;Q# (see Lemma 8), we see that the sum of the
depths of all the new assists is at most C - #(E) = CN.

This completes the explanation of the algorithm. O

Let Q% € CZ(A™) be a keystone cube. For each (f,R) € X(S1Q* NE) &P, we
define

(1.38) [Mé#(f»R)]piz Z Z |E(F, R)[P = Z Mg, (f,R)]".

QeZ(Q#) E€E ) QEZ(Q™)

The terms &(f, R) appearing above are well-defined, since (1.25) states that g—iQ C
S1Q# for each Q € Z(Q#). (Recall that the domain of each functional & in
Z(Q, A7) is X((65/64)QNE) B P.)

We now show that the “keystone functional” defined in (1.38) is comparable to
the trace semi-norm near the given keystone cube.

Lemma 10. Let Q¥ be a keystone cube. Then
¢ [I(f,R)lsoq# < MEL(f,R) < C-|[(f,R)]s, o
for all (f,R) € X($1Q¥” NE) & P.

Proof. From (1.25) we learn that (1 + a)Q C (65/64)Q C $1Q# for any Q €
Z(Q#). (Recall that a = a(A~) < 1/64; see (1.7).)

Let (f,R) € X(S1Q* NE) & P be given.

For each Q € Z(Q%), by definition of the seminorm () (1+a)q, We can
choose Fo € X with Fg =fon EN (1 +a)Q and

IFallx+aQ) + 01T a)ollFe = Rlltr(1+a1@) < 2+ [[(FR)[[1+a)q

From the left-hand estimate in (1.20) we have [|(f,R)[|(14a)0 < C-M(q,a(f,R).
Thus, by definition (1.38) we have

(1:39) IFQllx(1+a)Q)+8g™ IFe—Rllr ((1+a)q) < C-ME,(f,R)  for Q € Z(Q¥).

We will need to use a few results from Sections 4.6.4 and 4.6.5 in [1]. Consider:
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e CZ:=CZ(A") and Q :=Z(Q¥).
¢ Q:=50Q%;
e T:=a, and A :=103

We have already given a CZ(.A~)-ORACLE. We proved good geometry for CZ(A™),
which is a dyadic decomposition of R™; see Proposition 1. This puts us in the
setting of Section 4.6.4 of [1].

Now, note the following covering condition: every x € SoQ# belongs to some
Q € Z(Q#). This is due to the definition of Z(Q#) in (1.21) and because CZ(.A™)
is a decomposition of R™. We also point out the size condition stated in (1.24):
for each Q € Z(Q#), we have dg < 103650@. These two conditions are equivalent

to (4.53) and (4.54) in Section 4.6.5, with the choice of CZ, Q, (AQ, T, and A as in
the above bullet points. This puts us in the setting of Section 4.6.5 of [1].

By Lemma 48 in [1], there exists a partition of unity 98# e C™(R™) (Q €
Z(Q#)) such that

(1.40) S 68 =1 on S0Q*,
QeT(Q#)

where supp83” C (1+a)Q and 0703 (x)| < C-85* for x € (1+a)Q, |of < m.
Define "
Fi= ) Fq-03 .

QEZ(Q#)

Note that the cardinality of Z(Q#) is at most C (see Remark 3). Thus, from (1.39),
and Lemma 49 in [1], we have

Fllxcsoq#) < C - ME,(f,R).

Moreover, since supp(Gg#) C(1+a)Q and 5o <8q < Cog# forall Q € Z(Q#),
we have

- _ #
52 IF—Rllrseqn) = 02| Y (Fo—R)-687]

(see (1.40))

0cTo%) LP (SoQ#)
o #
<C ) 5g™IFQ —Rlr1+a) 103 li=((1+a)1Q)
QEZ(Q#)
< C-MZ,(f,R) (see (1.39)).

Because supp(eg#) C(1+a)Qand Fog =fon EN(1+a)Q forall Q € Z(Q#),
and from (1.40), we learn that F = f on EN SoQ#. Hence, the above estimates
imply that

1(f,R)llso@# < [[Fllx(soq#) + 85,04 IIF = RllLr(ssq#) S Mé#(ﬂ R).

This proves one inequality in the statement of the lemma.
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Next, using the right-hand estimate in (1.20), we see that

MEERIT = 3 Mg (RRIT<C 3 IR
QEZ(Q¥) QET(Q#)
QECZmain(A)

Recall that Z(Q#) contains at most C cubes. Thus, by Lemma 14 in [1], where
we use the fact that dg# < 6q < Cog# and g—iQ C $1Q7 for all Q € Z(Q#), we
learn that the right-hand side in the above estimate is bounded by C-[|(f, R)||, Q#-
This completes the proof of the lemma. O

The parameter € > 0 now makes its first appearance. Recall that € is assumed
to be less than a small enough universal constant. See (1.18).

Proposition 2. Let Q be a dyadic subcube of Q°, such that 3(5 is tagged with (A, €).
Assume also that Q% € CZ(A™) is a keystone cube, and that S1Q% C 2%@,
Suppose that H € X satisfies H =1 on EN S$1Q% and 0%H(xq#) = 0%P(xq#)

for all x € A. Then

(1.41) 56$|\H—Ré#”m(s,q#) < C- [Hllx(s, #)-

Here, C > 1 is a universal constant; and Ré# = Ré#(f, P).
(See the algorithm MAKE NEW ASSISTS AND ASSIGN KEYSTONE JETS.)

Proof. Recall that SoQ% C 2—2@ and 3@ is tagged with (A, €). Thus, Lemma 28
from [1] implies that So Q7 is tagged with (A, €*) for some universal constant k > 0.

Recall that S1 > 2[c.(A7)]7"; see (1. 17). Thus, since S; Q# C 2_451@ we have

(142) 6Q# S S] 62451Q (./47)
Hence, the induction hypothesis implies that
(1.43) SoQ7 is not tagged with (A’, e1(A7)) for any A’ < A.

In particular, SoQ7 is not tagged with (A’, e*) for any A’ < A.

Since SoQ7 is tagged with (A, €*) but not with (A’,e) for any A’ < A, we
see that 0(SoQ7#) has an (A, xq#, €%, 85,q#)-basis. Thus there exist polynomials
(P«)xea such that

(1.44) Py €€ [bs,0#] ot /pm o(SoQ7)  for € A,
(145)  9PPu(xg#) = dap for B, € A,
(146)  [3PP(xqs)| < € [85,0¢]' ™ for peM, acA B>

To start, we prove the following statement.
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e Suppose that

(1.47) R € 0(SoQ%), and
(1.48) 0%R(xg#) =0 for all x € A.

Then, for some W = W(m,n,p) > 0 we have

(1.49) 8P R(xqs)| < W - 85,7 P1 for B e M.

For the sake of contradiction, suppose that (1.47) and (1.48) do not imply (1.49).

Then, for some large constant W > 0, which will be determined later, there exists
R € 0(SoQ#) satisfying (1.48) and

1. B ) n/pHBl-m _
(1.50) gé&/\)/{lm R(xq#)| - (8g#) w

For each integer £ > 0, define the multi-index set
A¢ = {B € M:[0PR(xq#)l - (8g#)™/PHBI-™ > Wiz O,

Note that Ag # 0 thanks to (1.50), and also Ay C Ag4q for £ > 0.

Since #M = D and A, C M is an increasing sequence, there is an index
. €{0,...,D} such that Ay, = Ag, 1. Pick the maximal element & € A¢, (under
the total order relation < on M). By definition of A, , we have

(1.51) [9%R(xg#)| - (5 )™/ PHE=™ > W2,
Now, if € M and > &, then 3 ¢ Ay, = A, +1, by maximality of ®. Hence,
(1.52) [0PR(xg#)| - (8g#)™/PHPI=™ < W™D for cach p € M with p > .

We define Z and A by setting W = ZA, with A = 2% and 0 < ¢, < D. Then
(1.50)—(1.52) state that

0% R(xq# )l > Z - [5qe]™ /P~
0P R(xq#) < ZV2 - [5qe]™ ™ P Bl for pe M, B >, and
0P R(xq# )| < ZM - [8qs]™ /P Il for B e M.

Define Px := (0%R(xq#)) ™' - R. Then (1.48) implies that
(1.53) 6ﬁﬁa(xQ#) =0qp for B e Au{al.
Since R € 0(SoQ7),

(1.54) Precz [5gs] TP 0(S0Q%),
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and also
(1.55) 0P Px(xq#)| <2772 [5g#) ™" 1Bl for p € M, B > &, and
(1.56) 0P Px(xqw)| < ZM - [5q#)™ 1Bl for p e M.

Set A :={x € A: a < & U{X. Since 0%R(xq#) = 0 for all @ € A, we see
that & ¢ A. Thus,

(1.57) A< A
For o € A with o < &, we set

ﬁcx = ch — 6KP(X(XQ# )ﬁa.

Note that

(1.58) Po € Ce"ZM [50#]' ™7 ™ . 6(S0Q#)  (by (1.44), (1.46), (1.54)),

(1.59) 9PPy(xgx) =dup for B€ A (by (1.45), (1.53)), and

(1.60) [PPu(xq#)| < Ce“ZM 5] 1Bl for Be M, B > a (by (1.46), (1.56)).
Examining (1.53)—(1.60), we see that

(%g )) <7 is an (A, xqQ#,C (So)™ max{eKZA,Zil/z},ésoQ#)-basis for o(SoQ™).

Recall that Z = W/A with A = 2% and 0 < {, < D. We pick W to be a large
enough universal constant, and assume that € is less than a small enough universal
constant. Then (1.57) and (1.61) imply that SoQ# is tagged with (A~, eq(A7)).
But this contradicts (1.43). This completes our proof that (1.49) holds whenever
the polynomial R satisfies (1.47) and (1.48).

We now prove the main assertion in Proposition 2. Suppose that H € X
satisfies H = f on EN $7Q% and 0%H(xq#) = 0%P(xq#) for all « € A. Then
a“(]XQ#H —P) =0 for all x € A. Here, we use the monotonicity of A; see (1.1).
Next, we apply the estimate (1.26) followed by Lemma 10, which gives

ME, (£, RG) < C- MG, (F,Txg s H) < C- I, Tx g Wlsy g < € [IHllx(s, g
wh1ch 1mphes that
MZ,(0,RE, —Txyu H) < C- [Hlix(s, o#)-
Thus, Lemma 10 implies that ||(0, Ré# — IXQ#H)HSOQ# < C[[H[lx(s, o#), hence
RE 4 = JxguH € ClHlx(s, #) - 0(S0Q¥).

By the defining properties of Ré# (see the algorithm MAKE NEW ASSISTS AND
ASSIGN KEYSTONE JETS), and by our assumption on 0*H(xq#), we have

0% (Rg# Jxgu Hl(xg#) = 9%(P = P)(xq#) =0 for all x € A.
Thus, (1.49) shows that
0P (Jxgu H—REL)(xq# )l < C- (8q#)™ ™P Pl Hx(s, q#) for all p € M.
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Hence, by the Sobolev inequality we have
SR H—=RE ,llir (s, o#) < C- [Hllx(s, g#)-
That proves (1.41) and completes the proof of Proposition 2. O

1.4.2. Marked cubes. We summarize various objects that we have computed in
previous sections of the paper. This is meant to serve as a reference for the reader.

e The main cubes. We compute the collection of cubes Q € CZain(A~), each
marked with pointers to the following objects.

— The list Q(Q,.A7) of assist functionals on X(%Q N E), expressed in
short form.

— The list Z(Q,.A™) of functionals on X(%Q NE)® P, each of Q(Q,.A7)-
assisted bounded depth, expressed in short form in terms of assists

Q(Q, A™).
— The list of functionals &?, ceey &8 on P.

(See the main technical results for A~ in Section 3 of [1], and the algorithm
APPROXIMATE OLD TRACE NORM in Section 1.3.)

o The keystone cubes. We list all the keystone cubes Q7 for CZ(A~), each
marked with pointers to the following objects.

— The list Q"% (Q7#) of new assist functionals on X(S7Q# NE), expressed
in short form.

—Tmnmmnmﬂ%#:m&Q#mm@ﬁtep,mmhmmewQﬂ_
assisted bounded depth, and is expressed in short form in terms of assists
Q™ (Q#).

(See MAKE NEW ASSISTS AND ASSIGN KEYSTONE JETS in Section 1.4.1.)

e The border-dispute pairs. We list all the border-dispute pairs (Q’, Q") €
BD(A ). (See the KEYSTONE-ORACLE in Section 1.3.3.)

We store these cubes in memory along with their markings.

1.4.3. Testing cubes. Let Q be a dyadic subcube of Q°. Since CZ(A™) is a
dyadic decomposition of Q°, one and only one of the following alternatives holds.

(A) Q is a disjoint union of cubes from CZ(A™).
(B) Q is strictly contained in one of the cubes of CZ(A™).

Definition 2. Let Q C Q° be a dyadic cube. If alternative (A) holds, we call Q
a testing cube. R
Let 0 <A < 1. We say that a testing cube Q is A-simple if g > A - 6@ for any

Q € CZ(A™) with Q C (65/64)Q.
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We introduce a geometric parameter
(1.62) tg € R, which is an integer power of two.

We assume that 0 < tg < c, where c is a small enough constant determined
by m, n and p.

We will later determine a(.A) to be an appropriate constant depending on tg.
For the main conditions satisfied by a(A), see the fourth and fifth bullet points
in Section 3 of [1]. Near the end of Section 1.4 we determine tg to be a constant
depending only on m, n, and p —but not yet.

We recall that a = a(A ™) is a fixed universal constant.

Lemma 11. Let Q be a testing cube. Assume that tg > 0 is less than a small
enough universal constant. The following properties hold.

* There exists a constant Anew > 0, depending only on tg, m,n,p, such that
the cube (1 + anew)Q is contained in the union of the cubes (14 a/2)Q over
all Q € CZ(A™) with Q C (1+1g)Q.

« If Qe CZ(A ) and Q C (1 +100t6)Q, then 83Q c 82Q

Proof. We assume ey is less than a small enough constant determined by tg,
m, n, and p. We will later fix a,ey to be a constant depending only on tg, m, n,
and p, but not yet. R

Let x € (1 4+ apew)Q be given. We will produce a cube Q € CZ(A™) with
Qc(1+ tg)Q such that x € (14 a/2)Q, thus proving the first bullet point.

Pick a point Xpear € Q with [Xpear — x| < Clnew5(§- (Recall that we use the £>°
metric on R™.)

Since the cubes in CZ(A™) partition Q°, one of the following cases must occur

Case 1. There exists Q1 € CZ(A™) with 0q, < (tg/40)5(2 such that x € Q.
Because x € (1 + anew)Q, we have Q1 C (1 + Qpew + tg/]O)Q in Case 1.

~

Therefore, Q1 C (14 tg)Q. (Here, we assume that apew < 9tg/10.)

Case 2. There exists Q2 € CZ(A™) with g, > (tg/40)5(2 and x € Q3.

Because Q is a testing cube, there exists Q € CZ(.A™) such that Q C Q and
Xnear € Q. Moreover, note that

|X_Xnear| S anewéé S

(Here, we assume that anew < atg/320.) The above estimate and the fact that
x € Q2 imply that Xpear € (1 +a)Q2. Since Xpear € Q, we have dg, < 20 by
good geometry. Therefore, |x — Xpear| < %5Q. Consequently, since Xpear € Q we

have x € (1+ a/2)Q.

Case 3. x € R™\ Q°.
Because Q is a testing cube, there exists Q € CZ(A™) with Q C Q and
Xnear € Q. Note that

diSt(Q)Rn \ Qo) < X — Xnear] < Anew 6@ < Qpew-
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If apew < 1073, then Lemma 7 implies that dq € {1/2,1/4,1/8}, hence |x —
Xnear| < 8Anewdq. Since Xpear € Q, we see that x € (14 100amew)Q C (14 a/2)Q.

Thus, in all cases we have produced some cube Q’ € CZ(A™) such that Q' C
(1 +tg)Q and x € (14 a/2)Q’. Here, x € (1 + anew)Q is arbitrary. We now fix
Qnew tO be a small enough constant depending on tg, m, n, and p. This completes
the proof of the first bullet point.

We now prove the second bullet point. R R

We assume we are given a cube Q € CZ(A~) with QcC (T+100tg)Q. Since Q
is a testing cube, either Q C Q or Q C (1 + 100tg)Q \ Q

In the former case, clearly Q C

In the latter case, we have g < 50t656 and so g—iQ c(1+ 1000tg)Q - g—i

This proves the second bullet point and completes the proof of the lemma. O

1.4.4. Testing functionals. We recall that we have computed linear maps RQ#

associated to the keystone cubes Q# in CZ(A™). See the algorithm MAKE NEW
ASSISTS AND ASSIGN KEYSTONE JETS in Section 1.4.1.

We assume we are given a parameter tg as in (1.62). We assume we are given
a testing cube Q C Q°. (See Definition 2.)

For each Q € CZ(A™) with Q C (1 + 100tg)Q, we define

5Q > tgéé,

= P
1.63 RE(£,P) =
(1.63) Q { RE o) (F:P), 8q < tadg,

for (f,P) € X((65/64)Q NE)® P). We guarantee that S1K(Q) € CQ as in the
KEYSTONE-ORACLE in Section 1.3.3. If 8q < tgdg, then CQ C (1+ Ctg)Q. For
small enough tg, we conclude that

(1.64) $1K(Q) c (65/64)Q.

This shows that the map Rg is well-defined.
We define the “testing functional” [MQ(f, P)IP to be the sum of the following
terms.

(1.65) (I) = the sum of [M(q.a(f,RS(P)]" = 5 |&(f,R3(F, P))[7
£€Z(Q,A)
over all Q € CZyain(A ) such that Q C (1 +tg)Q.

(1.66) (II) = the sumof Y 85, ™ #0P[aB [RS, (f,P) — RS, (f, P)] (xq )"
Bpem

over all (Q’,Q”)€BD(A") such that Q' C (1+tg)Q, dqr < tgdga-

(167) (III) = the sum of | 8% ™ PP |aB[RS(f,P) — P](xq)|”
Bem

over all Q € CZ(A) such that Q C (1+t5)Q, 8q > t&85.
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and

(1.68) (IV) = the sumof Y 8% (™ PUP2B R (£,P)—P](xq)]"
pemM

for a single (arbitrarily chosen) Qgp € CZ(A™) contained in Q

(Note that Q” C (1+ 100tg)Q in (1.66), thanks to the good geometry of cubes in
CZ(A7); hence the sum (IT) is well-defined.)

Thus we have defined a functional MQ(f, P). Although MQ(f, P) depends on
the parameter tg, we leave this dependence implicit in our notation for the sake
of brevity. R

For each testing cube Q, we define

(1.69) 5Q) ={PeP: Mg(0,P) < 1}.

ALGORITHM: APPROXIMATE NEW TRACE NORM

Given a number tg > 0 as in (1.62), we perform one-time work at most
C(tg)NlogN in space C(tg)N, after which we can answer queries.

A query consists of a testing cube Q.

The response to the query Q is a list u?, ceey ug of linear functionals on P
such that

D o~

(1.70) ¢ [Mg(0,P)]" < ) [ud(P)P < C[Mg(0,P)]".
i=1

Define a quadratic form on P by

D o~
(1.71) dg(P) =) [u2(P)%.
i=1

This quadratic form satisfies

2 2
(1.72) c[Mg5(0,P)]” < q5(P) < C[Mg(0,P)]".
In particular,
(1.73) {45 £¢} CT(Q) C{ag < C.
The work required to answer a query is at most C(tg)logN.

Ezxplanation. For each keystone cube Q# € CZ(A™) and each B € M, we have
stored a short form description of the Q"% (Q#)-assisted bounded depth linear

functional (f,P) — 0P [Ré# (f, P)] (0). This corresponds to an expansion

aB [Ré# (f,P)] (0) = )\(Q#‘B)(f) + X(Q#‘B)(P);
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here, A(q#,p)(f) and X(Q#‘B)(P) are linear functionals (with A% g) given in short
form in terms of some set of assists). We mark each keystone cube Q# with the
linear map

_ 1
(1.74) P RELOP) = ) Aq#p)(P)- Exﬁ.
pem '

This requires work and storage at most C for each Q#. (We simply produce the
functionals X(Q#ﬁ) :P — R for all B € M.) The number of keystone cubes is at
most CN, hence this computation requires total work at most CN.

We now perform the marking procedure described below.

e For each cube Q € CZyain(A~), we mark Q with the linear functionals
E(Q.0(P) = EX(RE (o, (0,P) (i=1,...,D).

To compute these functionals we simply compose linear maps that were
already computed. The functionals EiQ on P satisfy (1.8), and are com-
puted using the algorithm APPROXIMATE OLD TRACE NORM. We produce
the keystone cube K(Q) using the KEYSTONE-ORACLE. We locate the map
P — Rﬁ(Q)(O, P) using a binary search.

This requires work at most ClogN for each given Q € CZyain(A7). (The
binary search requires work at most ClogN.)

¢ For each border-dispute pair (Q’,Q"”) € BD(A™), and f € M, we mark Q'
with linear functionals

. sn/p—m+|B] # #
E(Q/sQ”‘B)(P) - ég/p m aB {RK:(Q’)(O’ P) - R’C(QH)(O) P)} (XQ/)'

The linear maps P — Rﬁ(Q/)(O, P) and P — Rﬁ(Q,,)(O, P) are computed using
the KEYSTONE-ORACLE and a binary search, as in the previous bullet point.

This requires work at most ClogN for each given (Q’, Q") € BD(A ™).

Each relevant cube is marked with at most O(1) functionals by the above
bullet points. Since the number of cubes Q and Q’ arising above is at most CN,
the marking procedure requires work at most CNlog N in space CN.

We perform the one-time work for the algorithm COMPUTE NORMS FROM
MARKED CUBOIDS on the marked cubes Q, Q' arising above, which is at most
CNlog N work in space CN (see Section 4.1.5 of [1]). Again, we use the fact that
each cube is marked by O(1) functionals. This concludes the one-time work for
the present algorithm. R

We now explain the query work. Suppose that Q is a given testing cube (a
query).

We partition (1 + tg)Q into dyadic cubes Qq,...,Qr C R™ such that 8g, =
(tG/4)6Q' Note that L = L(tg) is a constant determined by n and tg. (Recall
that 0 < tg < 1 is an integer power of 2; see (1.62).)
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Note that
(1.75) QeCzZ(A ), Qc( +tg)Q, and 6g < (tG/4) =
Qe CZ(A )and Q C Qq forsomefE{],...,L}.

Next, we apply the query algorithm from COMPUTE NORMS FROM MARKED
CUBOIDS (see Section 4.1.5 in [1]) with each cube Qg used as a query ({ =1,...,L).
We obtain linear functionals puy™*, ..., ug“ on P such that

D D
(1.76) c) [P < > EP)IP <CD |udi(PIP.
k=1 k=1

QeCZ(A™), EeP™
QCQ.
Q marked with &
This requires work and storage at most ClogN for each fixed {, and total work

and storage at most C(tg)log N. Summing the above estimate from ¢ = 1,...,L
and using (1.75), we learn that

L

Zgluk

=1k

~> Z|ES(R7§(Q)(0,P))|P £ Q € (ZmainlA7), Q € (1+16)Q,
i=1

5Q§%G5A}.
+> {l&q o (PP (Q,Q") €BD(AT), Q' C (1+1te)Q,
dqr < %Géé, peM}
(1L77) =6, +6,.

We now compute the functionals described below.

(F1) |p2(P) for1<k<D, 1<{<L.

(F2) [E2(RE(o)(0,P)| for 1 <1< D, Q€ CZyain(A"),

~ t
QcC (1+1t6)Q, 8q = —st@.

2
(Fs) |&£2(P) for 1 <1< D, Q € CZuain(A),
Qc(T+t6)Q, 8q = tedy-
(Fa) |&Qr,07,p)(P) for € M, (Q',Q") € BD(A™),
tg tg
6QI - 76@, 6QH S 76@.
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(Fs) |51y/P 1P {aB(Rg(o’ P)=Plixq)}|  forBeM, QeCz(A),

QC (1+tc)Q, 8q > t&dg.

(F) [sr/7 10 {aB(Rgsp(o’P) _p)(xé)} for p € M.

The number of functionals listed here is at most C(tg). To compute these
functionals, we proceed as follows.

We have already produced the functionals in (Fq) that satisfy (1.77).

We can compute the functionals arising in (Fg). If 8q,, > tgéé then the
functionals in (Fg) vanish identically. If instead 8¢q,, < tgéé then the map

RgSP(O,P) = Rfé[Qsp)(O,P) has been computed, and we easily produce the ex-
pression in (Fg).

Next, we loop over all dyadic cubes Q C (1+ tg)Q with 6 > tzGSQ. For each
such Q, we do the following.

If g = t—zﬁéé and Q € CZyain(A~) then we compute the functional in (F2).

If 5 > tg 6@ and Q € CZyain(A7) then we compute the functional in (F3).

If Q € CZ(A™) then we can compute the functionals in (F5). These function-
als are identically zero whenever 5o > tgéé. Otherwise, since we have already

computed the map R%(O, P) = Ri( Q)(O, P), we can easily compute the expression
in (F5). That concludes the loop over Q.

Finally, we loop over the dyadic cubes Q' C (1 + tg)Q with 8g/ = t—zﬁéé.
If Q' € CZ(A™), then we loop over Q" € CZ(A™) such that Q" < Q. If
dgn < (tg/Z)é(2 and £(Q") # K(Q') then we compute the functionals arising
in (F4). That concludes the loop over Q.

Thus we have computed all the functionals arising in (F1)-(Fg). We define the
functional [X(P)]p to be the sum of the p-th powers of all these functionals.

We will now show that [X(P)]p well approximates [MQ(O, P)]p.

The sum of the p-th powers of the functionals arising in (F1) is estimated
in (1.77). We obtain from this the estimate

D P ~
XPI~ 3 { Y 1ERRSO,P)IP : Q € CZpain( A7), Q€ (1 +16)Q
i=1

+ > {l&@rorem (PP 1 (Q,Q") € BD(AT), Q' C (1+16)Q,
tg tg
dgr < 75@, dgn < 75@, e M}
(1.78) + 63 + G4.

Here, &3 and &4 are the terms (III) and (IV), respectively, with f set to O
(see (1.67) and (1.68)). Let us explain how we obtained this formula. The sum
of the term &; in (1.77) and the sum of the p-th powers of all the functionals
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in (F2) and (F3) is equal to the first line in (1.78). (Recall the definition of R8
in (1.63).) The sum of the term &; in (1.77) and the sum of the p-th powers of all
the functionals in (Fy4) is equal to the second line in (1.78). The sum of the p-th
powers of all the functionals in (F5) and (Fg) is equal to the third line in (1.78),
i.e., the quantity &3 + &4.

The sum in the first line in (1.78) is comparable to the term (I) with f = 0
(see (1.65)), thanks to the estimate (1.8). Note that the sum in the second line
in (1.78) is equal to the term (II) with f = 0 (see (1.66)) minus all the summands
in (IT) with g/ = (tg/Z)(SQ and dgr = tgéé. (Recall that by good geometry
the sidelengths of Q' and Q" can differ by at most a factor of 2.) However, these
discarded summands appear also in the term (III). Thus, [X(P)]” is comparable
to the sum of the terms (I), (II), (III), (IV) (with f = 0). Thus, in summary, we
have

c- [Mgl0,P)]” < [X(P)]” < C- [Mp(0,P)]"

for universal constants ¢ > 0 and C > 1.
Processing the functionals in (F1)—(Fg) using the algorithm COMPRESS NORMS

see Section 2.8 of [1]), we compute functionals uQ, RN 1S on P such that
1 D

D R D R
¢ Y QPP < X(PIP < C- Y [u(P)P.
= i=1

The previous two estimates imply the desired estimate (1.70).

The estimate (1.72), concerning the quadratic form qQ(P) defined in (1.71),
follows because the £, and {; norms on the space RP are comparable up to a
constant factor depending on D, which is, in turn, a universal constant. (Recall
that D = dim(P) depends only on m and n.) The pair of inclusions in (1.73)
follows directly from (1.72) and the definition of 3(Q) in (1.69).

This completes the description of the query work, which consists of at most
C(tg)log N computer operations.

This completes the explanation of the algorithm APPROXIMATE NEW TRACE
NORM. O

1.4.5. Computing data associated to a testing cube. Let Q be a testing
cube (see Definition 2), and let tg > 0 be as in (1.62).

The supporting data for Q consists of the following:

(SD1) Pointers to the cubes Q € CZpmain(A™) with Q C (1 +t¢)Q.
(These are the cubes appearing in the sum (I); see (1.65).)

(SD2) Pointers to the pairs (Q’, Q") € BD(A™) with Q' C (1 +t¢)Q and dgr <
tg5Q.
(These are the pairs of cubes appearing in the sum (II); see (1.66).)

(SD3) Pointers to the cubes Q € CZ(A™) with Q C (1+ tg)Q and 0g > tééé.
(These are the cubes appearing in the sum (III); see (1.67).)
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(SD4) A pointer to a cube Qgp € CZ(A™) with Qg C Q.
(This cube appears in (IV); see (1.68).)

(SD5) Pointers to the keystone cubes Q# of CZ(A~) with $1Q# C (65/64)Q.
(See (1.17) for the definition of S;.)

We are given markings as in Section 1.4.2. Each cube Q € CZyain(A7) is
marked with pointers to the lists Q(Q,.A7) and =Z(Q,.A7), and each keystone
cube Q# € CZ(A™) is marked with a pointer to the list Q™" (Q#). We define

Q(Q) =[J{Q(Q A7) : Q € CZuun(47),Q € (1 +t6)Q | |
w79 U [U {QneW(Q#) . Q# € CZ(A™) keystone, $1Q% (65/64)(3”.

Using the supporting data for Q and the above markings, we produce a list of all
the functionals in Q(Q). To form the list (1.79), we examine all the relevant Q
and Q#, and we copy each assist functional w from Q(Q,.A~) or Q"% (Q#) into a
location in memory. The work and space required are bounded by the sum of the
depths of all the w that are copied. We make no attempt to remove duplicates in
the list (1.79). See Section 2.1 in [1] for more details about our notation for unions
of lists. We summarize the procedure in the following algorithm.

ALGORITHM: COMPUTE NEW_ASSISTS

Given a testing cube Q, and given the supporting data for (AQ, we compute a
list of all the functionals in Q(Q). We mark all the functionals that appear in

the lists Q(Q,. A7) (for Q € CZmain(A), Q C (1 + tg)Q in the supporting data)
and QY (Q#) (for Q¥ keystone, S1Q* C (65/64)Q in the supporting data) with
pointers to their position in the list Q(Q). This requires work at most

(1.80) QU1(Q)—C10gN~[1+ > > depth(w)
QECZain (A ) WEQ(Q, A7)
QC(1+t6)Q

+ Z Z depth(w)}

keystone Q¥ cCZ(A ™) weQrew (Q#)

$1Q*C&Q
and storage at most
(181)  &(Q=C- [1 + ) > depth(w)
Qeczmaiu(A )wEQ(Q,A*)

QC(1+t6)Q

+ Z Z depth(w)].

keystone Q¥ €CZ(A ™) weQnew (Q#)
$1Q#¥c&Q
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Remark 4. Let Q be a testing cube, and let & be a linear functlonal that has
Q(Q, A )-assisted bounded depth for Q € CZpain(A ), Q C (1+ t(;)Q relevant
to the supporting data for Q Then & has Q(Q)—assmted bounded depth, since
Q(Q, A7) is a sublist of Q(Q). If £ is given in short form in terms of the assists
Q(Q,.A7), then we can convert & into a short form in terms of the assists _Q(Q)
That is because we have marked each functional in Q(Q,.A7) with a pointer to
its position in the list _Q(Q) The conversion requires a constant amount of work
once we have carried out the algorithm COMPUTE NEW ASSISTS for the given Q
Similarly, let & be a linear functional that has _O.neW(Q#) assisted bounded

depth, for some Q% relevant to the supporting data for Q Given a short form
description of & in terms of the assists Q"% (Q#), we can express & in short form

in terms of the assists Q(Q) using a constant amount of work.

ALGORITHM: COMPUTE SUPPORTING MAP

We perform one-time work at most CN log N in space CN, after which we can
answer queries as follows.

A query consists of a testing cube Q, its supporting data, and a cube Q €
CZ(A™) with Q C (1 + 100tg)Q

The response to a query (Q, Q) is a short form description of the linear map
Rg : X((65/64)Q NE)@P — P in terms of the assists _Q(Q) (see (1.63)).

The work and storage required to answer a query are at most ClogN.

(Here, we do not count the storage used to hold the supporting data for Q.)

Ezplanation. We simply use the definition in (1.63).
We first test to see whether 6g < tgéé or dq > tgéé.

In the first case when 6o > tg(SQ, we have Rg(f,P) = P, and we produce a
short-form description of this map. -

In the second case when 8g < tgé , we compute the map RS = Rﬁ(Q) as
follows.

First, we compute the keystone cube Q# = K(Q) using the KEYSTONE-
ORACLE. Recall that $;Q# C €3Q (sce (1.64)). We locate Q# in the list of

64
pointers appearing in (SD5) using a binary search. We have already computed the

Qrev(Q#)-assisted bounded depth linear map

RE,: X((65/64)QNE) &P — P

in short form in terms of the assists Q"% (Q7#), as described in Section 1.4.2.

Thanks to Remark 4 we can express R#Q# in short form in terms of the assists _Q(Q)

Thus we have computed the desired expression for RQ = Rg# in the second case.
That concludes the explanation of the algorithm. O

ALGORITHM: COMPUTE NEW ASSISTED FUNCTIONALS

Given a testing cube Q and its supporting data, we produce a list :(Q) con-

sisting of Q(Q) assisted bounded depth functionals on X( Q NE) @ P, with each
functional written in short form, such that the following hold
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« Mg(f,P))" = Y [&(f,P)|P for cach (f,P) e X(QNE)®
£€2(Q)
¢ Denote
(1.82) MN(Q) ==#{(Q,Q") € BD(A™): Q' C (1 +15)Q, 8qr < tadg -

We carry out the preceding computation using work at most

(1.83) 20,(Q) := C(tg) - logN - {1 +0N(Q) + Z #[E(Q,A)]}

QECZmaiu(.AA )
QC(1+tc)Q
in space
(1L81)  2(0) = Clta)- [1 QY #[E(Q,A)]}
QECZmain (A7)
QC(1+tc)Q

In particular, #E(Q) < GZ(Q).
(Again, we do not count the space used to hold the supporting data for Q)

Explanation. We compute the list _(Q) of all the functionals appearing in the
sums (I)-(IV) in (1.65)—(1.68).
We loop over all the cubes Q € CZpain(A ) with Q C (1 +tg)Q (asin (SD1)).
We form the functionals

(1.85) (f,P) = £(F,RQ(F,P))  (for & € Z(Q, A 7).

The linear maps Rg are written in short form in terms of the assists Q((AQ) (see
the algorithm COMPUTE SUPPORTING MAP). The functionals & € Z(Q,. A7) are
written in short form in terms of assists Q(Q,.47). We can write the functionals

Z(Q, A7) in short form in terms of the assists Q(Q) (see Remark 4). Hence,
we can express each functional in (1.85) in short form in terms of assists Q(Q).
This requires work at most C for each &.

That concludes the loop on Q. R

We now loop over all pairs (Q’,Q"”) € BD(A™) with Q" C (1 + tg)Q and
8/ < tedg (as in (SD2)). For each such pair, we compute the _O.(Q)—assisted

bounded depth linear maps R%, and Rg,, in short form. We form the functionals

(1.86) 55y P PP (RS, (£,P) — RS, (,P))(xq/)}  (for B € M).

Q//
That concludes the loop on (Q’,Q").
We loop over all the cubes Q € CZ(A™) such that Q C (14 tg)Q and dg >
tzGéé (as in (SD3)). We form the functionals
(1.87) 85/P ™ PUAB (RS (£,P) — P)(xq)} (for p € M).

That concludes the loop on Q.
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We form the functionals

(1.88) 5%/P*m+'ﬁ‘{aﬁ(Rgsp(f, P)—P)(xg)} (for p e M).

Here, we use the cube Qg in (SD4).
Let Z(Q) denote the list of functionals arising in (1.85)—(1.88). All these func-
tionals have Q(Q)-assisted bounded depth and are expressed in short form in terms

~

of assists Q(Q). Comparing with (1.65)—(1.68), we see that [MQ(f, P)IP is equal to
the sum of |E(f, P)|P over all & € E(Q). Clearly, the number of functionals in E(Q)

is bounded by

Clte) - T+9Q+ Y #[Z(Q,A]|.

QECZmain(A )

QC(1+tg)Q

Since we perform work at most Clog N (using storage at most C) to compute each
functional, the total work and storage used by our algorithm are at most 20, (Q)

~

and 6,(Q), respectively. O

The extension operator. Given a testing cube Q, the covering cubes for Q are
(1.89) Teow(Q) = {Q € CZ(A) : Q C (1 + t5)Q}.

We assume that
(1.90) tg satisfies the hypothesis of Lemma 11.

We do not fix tg just yet. Let dpew = Quew(tg) be as in Lemma 11. Thus,
(1.91)
(14 dnew)Q is contained in the union of (1 + §)Q as Q ranges over Zeo. (Q).

We will need several results from Sections 4.6.4 and 4.6.5 in [1]. Consider:

~

o CZ = CZ(Af) and Q :ICOV(Q)'

e The cube called Q in Sections 4.6.4 and 4.6.5 is taken to be (1 + anew)Q,
with Q as in the present section.

e T=aqa, and A = C for a large enough universal constant C.

We have already proven the good geometry of CZ(A ™) and exhibited a CZ(A™)-
ORACLE. This is a part of the main technical results for A~ , which can be found
in Section 3 of [1]. This puts us in the setting of Section 4.6.4.

We point out the covering condition stated in (1.91), and the size condition:
g <C- 6@ for all Q € ICOV(Q) (this follows by definition of ICOV(Q)). These two
conditions are precisely the conditions (4.53) and (4.54) in Section 4.6.5, with the
choice of CZ, Q, Q, T, and A as in the above bullet points. This puts us in the

setting of Section 4.6.5 of [1].
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By Lemma 48 of [1], there exist cutoff functions 98 € C™(R™) such that

(192) Z 68 =1 on (1 + anew)Q)
QEZeov (Q)

(1.93) supp(eg) C(1+a)Q and |a“68| <C- 56'“‘ for o] < m, and
(1.94) 68 =1 near xg, and 98 = O near xq for each Q' € ICOV(Q) \ {Q}.

Moreover, the cutoff functions may be computed with the following algorithm:

ALGORITHM: CoMPUTE POU

After one-time work at most CNlog N in space CN, we can answer queries as
follows. R

A query consists of a testing cube Q and a point x € Q°.

The response to the query (Q, x) is a list of all the cubes Qq,...,QL € ICOV(Q)
(with Qq,...,Qr all distinct) such that x € 2—ng, and the list of polynomials
Jx03,5-- - Jx09, -

To answer a query requires work and storage at most Clog N.

Explanation. We list all the cubes Q € CZ(A™) for which x € 2—2Q using the

~

CZ(A™)-ORACLE. We then discard any cubes that are not contained in (1+tg)Q.
The remaining cubes give the desired list Q1,..., Qr.
We now compute the jet 1268@ for each (. In the proof of Lemma 48 in [1], we
defined R B B B
98( =0gq, - [n o‘i’] ,  where ¥ = Z 0q.

QEZcov (Q)
Applying the algorithm COMPUTE CUTOFF FUNCTION from Section 4.6.5 of [1],
we compute the jet Jx0q, for each £ = 1,...,L. We can compute a formula for

a“]&(ng)(z) given a formula for the jet Jx(n o V). Indeed, by the Leibniz rule,

a“]&(egz)b_c) (lof < m —1) is given by a rational function of the derivatives
0PTx(0q,)(x) and 3P Jx (o W)(x) (IB| < m —1).

Since each 5Qe is supported on g—ng, we have

L
]L\y = Z ]LéQz .

=1

In the proof of Lemma 48 in [1], we use a function n : [0,00) — R defined by
the conditions: n(t) > 1/4 for all t € [0,1/2), and n(t) = t for t € [1/2,00).
Given t, > 0 and k < m, we may assume that the number % (t.) can be computed
using work and storage at most C. This is achieved by taking 1 to be a suitable

spline function. Thus, the jet Jx(n o W) can be computed using the chain rule.

Thus, we can compute the jets Jy (68@) using work and storage at most C once
we know the list Qq,...,Qr. O
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Let (f,P) € X(2QNE) @ P be given.
For ease of notation we write RS = Rg(f, P) for the polyomial defined in (1.63)
(the dependence on (f,P) should be understood).

~

For each Q € Z.ov(Q) we define

(1.95) R { Tigu)(HRY), I SQNE D,
RS, if £QNE=9.

Note that the function Fg € X is well-defined. According to the main technical
results for A~ (see Section 3 in [1]) we have

(1.96) FS=f on(l+a)QnE.
(1.97)  [FSlxc+ar@) + 5™ IFS —Rtr ((1+0)Q)
<) CM(q.a(f,R), IfSQNE#0,

(Recall that a = a(A™) < 1/64; see (1.7).)
Finally, we define

(1.98) Tolf,P):= > F3-03 €X, with0g as in (1.92)~(1.94).
QEZeov(Q)

ALGORITHM: COMPUTE NEW EXTENSION OPERATOR

We perform one-time work at most CN log N in space CN, after which we can
answer queries. R R
A query consists of a testing cube Q, the supporting data for Q, and a point
x€Q°. ~
The response to the query x is a short form description of the Q(Q)-assisted
bounded depth linear map
(£,P) = JxTo (f,P).

To answer a query requires work at most Clog N.

~

Ezplanation. We compute a list of the cubes Qq,...,Qr € Zeov(Q) (Q1,..., QL

all distinct) such that x € %Q@, and a list of the jets ]&681 y oo ,]Xﬁgl. See the
algorithm CoMPUTE POU. Recall that L < C.

Recall that Supp(Gg) C g—ZQ. Therefore,

(1.99) To(f,P) = Y 1503, @ JxTigea ) (f, RS, (F, P)).
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For each { =1,...,L, we compute (see below) the map

(1.100) (f,R) = JxT(q.,a)(fyR) ((f,R) € X((65/64)Q NE) ® P).

We recall the definition (1.89) of ICOV(Q). Since Qg € ICOV((AQ), we have Q, C
(1 —i—tg)Q. Thus, Lemma 11 implies that g—ZQ( C 2—iA, hence the map (1.100) is
well defined.

If g_?tQ@ NE =0 then J,T(q,,4)(f,R) = R. Otherwise, if g—ng NE # (), then
we can compute the map (1.100) in short form in terms of the assists Q(Q,.A™),
thanks to the main technical results for A~. We check whether g—ZQg NE #0, by
checking whether Qg appears in the list CZyain(A~) using a binary search. We

~

write each of the maps (1.100) in short form in terms of the assists Q(Q) (see
Remark 4).

We compute a short form description of the _O.(Q)—assisted bounded depth map
RQ . x(20nE for €=1,...,L
I (aQO >@P%P or{=1,...,L.

We use the algorithm COMPUTE SUPPORTING MAP (see Section 1.4.5).
Substituting R = R%Z (f,P) in the formula for each of the maps (1.100), we can

~

express the map (f,P) — ]&Té(f, P) in short form in terms of the assists Q(Q)
using (1.99).
The query work is clearly bounded by ClogN. O

1.4.6. The main estimates. We first prove a few properties of the extension
operator Tg defined in (1.98).

Let dpew = Qpew(tg) be as in Lemma 11.

Proposition 3. Let Q be a testing cube, and let (f,P) € X(%Q NE)®P. Then
the following properties hold.

« T5(f,P)=f on (1+ Anew)Q N E.
¢ HTQ(]C>P)|‘X((1+%€W)Q) + 6ém”TQ(f>P) - P“LP((]+a‘lew)Q) <C- MQ(f>P)~

Here, the constant C > 1 depends only on m, n, and p.

Proof. The first bullet point follows from (1.92)—(1.94), (1.96) and (1.98). We now
prove the second bullet point.

Recall that we defined the collection of cubes ICOV(Q) in (1.89).

For ease of notation, we set @ = ayey throughout the proof.

We applAy Lemma 49 in [1] toAthe cube (1+ H)Q, the covering set ICOV(Q), the

functions Fg, the polynomials RQ, and the partition of unity 68 (defined for all
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Qe ICOV(Q)). Thus, for G := TQ(f, P) we have

P Qp —mpEQ _ pQp
162 e S 2 [IFSIZ (1varo) + 0™ IFS = R3IEw (1 v

QEZeov (Q)
+ Z Z 686‘*m)p+n|aB(R8/—Rgu)(xQ,)P’_
Q',Q" €Ly (Q) IBISm—1
Q/HQ//

From (1.97), this implies that

Q1P
IG13 1m0 S > [Mgu ) (fRY)]

Q€Zeov(Q)
£2QNE#D

+ Z Z 68[?"“1”’*“@6(]{8/—RSN)(XQ,)P’
Q/,Q"€Zeoy (Q) IBISM—1
Q/HQ//

(1.101) = A1 (f,P) + A,(f, P).

The expression Aj(f,P) is equal to the sum of the terms in (1.65).

We now analyze the expression A (f,P). Suppose that Q’, Q" € ICOV(Q) and
Q’ < Q”. Then one of the following cases must occur.

(A) Both 8g+ and 8g~ are less than tg ~6Q, and £(Q')=K(Q");
(B) Both 8q- and d¢g are less than tg ~6Q, and K£(Q') £ K(Q");
(C) Both 8g and 8¢~ are at least tg - 85;
(D) Exactly one of g+ and dq~ is at least tg 05
If (A) or (C) occurs, then Rg, = Rg,,, hence the summand in A;(f, P) vanishes
identically; see (1.63).
On the other hand, suppose that (D) occurs. Since Q’ and Q" play symmetric

roles in the summand from the second sum in (1.101) (switching Q’ and Q" does
not change the order of magnitude of this term) we may assume that dg» > tg-d o

Hence, Rg,, = P; see (1.63). Since Q' +» Q”, we also have 5q/ > 38~ > tTGéé >
tzGéé by good geometry.
The previous three paragraphs imply the following estimate:
Az(f,P) £ {terms in (1.66): Q/,Q" C (1 +t5)Q, 8q/,8q~ <t - 55
Q' = Q", K(Q)#K(Q"}
+ Z{terms in (1.67): Q ¢ (1+tg)Q, 5 > t§ ~6Q}.
Thus, we have shown that

(1.102) IGllx((12m)3) < C-Mg(f,P).

ol
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We now estimate |G —PJ| Let Qgp be as in (1.68). Observe that

(1+a@)Q)"

%m”G —Pllr(1rma) S 55“1”(; ~Jxow Glir (14w

- Q
+ 85" Jxe,, G — RS,

LP (1+@)Q)
- Q
+85"IRG,, — Pllir (14w )-

We estimate each of the three terms on the right-hand side above. To estimate the
first term, we use the Sobolev inequality to write

85™1G = Txou Glln ((14@@) < ClGlx(11aa)-

To estimate the second term, we will need an elementary estimate about LP norms
of polynomials:

(1103)  Q2cCQi, PeP = 55MPlirian) < C/5g™ Pllirau-

This estimate is simply a consequence of Lemma 7 in [1]. Now, since Qgp C Q
(see (1.68)), and since Jx, G = IXQspFSSP (see (1.94)), we can write

P Q — 5 Q Q
8 Wray 6 =RQ, v (4m@) = 85" e Fau =R e (1100
< 66m||]XQ<DF8<p Rgsp (QSD) (by (1'103))

SIFS,, %@ + 80 IS, — RS, It (Qup-

To prove the last inequality above, we have used the Sobolev-type inequality stated
in Proposition 9 of [1]. According to (1.97), the previous estimate implies that

_ Q N N
5™ 0., 6 =R llin(14a1q) < C-Mgl(fP).

To estimate the third term, we write

55" IR, ~Pllir (1410)
> 5g'+n/P*m|aB(Rgsp —P)(xg)| (see Lemma 7 in [1])
[BI<m—1
<C- Mé(f,P) (see (1.68)).

We combine (1.102) with the above estimates to obtain

< C-Mg

ot P).

(1.104) 1Gllx((1 1m0 +56m”G—P”Lp((1+a)Q)

This completes the proof of Proposition 3. O

We next prove the following result.
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Proposition 4. Let Q be a testing cube, and let (f,P) € X(6—4Q E)® P. Then
the following inequalities hold.

(Unconditional inequality) ||(f, P)”(Hauew)é <C- Mé(f, P).

(Conditional inequality) If 3(5 is tagged with (A, €), then

Mg (f,P) < Cltg) - (1/€) - (£, P)l|s25-

The rest of Section 1.4.6 is devoted to the proof of Proposition 4. We set
T = Apew for the remainder of the section for ease of notation.

The unconditional inequality in Proposition 4 follows easily from Proposition 3.
Indeed, Proposition 3 states that T (f,P) =fon (1+a@)QNE. Hence, by definition
of the trace norm,

||(f,P)||(]+E)Q < ||TQ(f)P)HX((1+E)Q) + 56mHT{j(f»P) - P||Lp((1+a)(’j)~

Again thanks to Proposition 3, the right-hand side is bounded by C - M4 (f, P),
which proves the unconditional inequality.

We now begin the proof of the conditional inequality in Proposition 4. We
assume that

(1.105) 3Q is tagged with (A, €).
and
(1.106) tg <1, wheren = min {c*(.Af), [100 . S(Af)]il}

Now, we consider two separate cases: either Q is -simple or Q is not n-simple.
For the definition of simple testing cubes, see Definition 2.
The conditional inequality is easy to prove in the former case.

Lemma 12. Suppose that a testing cube Q is n-simple with n > tg. Then
M5 (f P) < C(tg) - ||(f,P) HGJQ, where C(tg) depends only on m, n, p, and tg.

Proof. We examine the definition of [Mé(f,P)]p as a sum of terms (I)—(IV)
(see (1.65)—(1.68)).

Suppose that Q € CZ(A™) with Q C (1 4+ 100tg)Q. Then Q C 2—2@ for
small enough tg. Our assumption that Q is n-simple with n > tg implies that
8qQ = tgdgy. Hence, from (1.63) we see that

Qe CZ(A), Q C (1+100t6)Q = RS(f,P) = P.

For every Q’, Q" as in (1.66), by good geometry of CZ(.A™) we have Q", Q" C
1+ 100tg)Q hence RQ, = RQ// = P in (IT). Similarly, for each Q in (1.67), we
have RQ = P in (ITI). Similarly, RQSp = P in (IV). Hence, the terms (II), (IIT),
and (IV), all vanish, and thus [Mé(f, P)]p =(I).
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We estimate the remaining term (I) (see (1.65)).
Let Q € CZpain(A™) satisfy Q C (1 +tg)Q. We will bound each of the

summands [M(Q‘A)(f,Rg)]p, which are relevant to the term (I). As above, we

have RS(f,P) = P. Note that %Q - %Q by Lemma 11. From the right-hand
estimate in (1.20), Lemma 14 in [1], and the estimate 6 > tg 05 (which follows

because Q is n-simple with 1 > tg), we have
M@ (f,P) < C-[[(f,P)llesq < Clta) - I(f, Pl ss 5
Therefore, each summand [M[Q‘A) (f, Rg)]p relevant to (I) is bounded by C(tg)P -
H(f)P)HE%/@ R
Since Q is n-simple, we can have Q C (1+tg)Q for no more than C(tg) of the
cubes Q € CZ(A™). Hence, no more than C(tg) many cubes Q arise in (1.65).
Hence, by summing the estimates just obtained, we learn that [MQ(f,P)]p <

Cltg) - ||(f, P)||%, 5 This completes the proof of Lemma 12. O
s

If Q is N-simple with n = min{c, (A7), [100S(A~)]" '}, then the conditional
inequality follows from Lemma 12. Here, note that the assumption (1.106) implies
the hypotheses of Lemma 12.

Thus, in proving the conditional inequality, we may assume that

(1.107) Q is not n-simple, with 1 = min{c, (A7), [1003(./47)]71}.

This is the latter, more difficult case in the dichotomy mentioned before. By
definition, in this case, there exists a cube Q € CZ(A™) with Q C £Q and
0 < mn-d5. Hence, we note that S(A7)Q C SQ. Moreover, we have 85 <
el A7 )3g < c.(A7).

Thus, (CZ2) in the main technical results for A~ (see Section 3 in [1]) implies
that

(1.108) S(A7)Q is not tagged with (A, e7(A)).

Hence, in particular, we have #(E N 3@) > #(ENS(A7)Q) > 2.
Now, from (1.105) we know that 3(3 is tagged with (A, €). Hence, since #(EN
SQ) > 2, we know that O'(SQ) has an (A/,XQ, €, 636)—basis, for some A" < A.
We next apply Lemma 25 from [1] to the convex set 0 = 0(3(5). Thus, we can
guarantee that there exist numbers A > 1, and k1 < k < k2, and a multiindex set
A" < A’, such that

0(3Q) has an (AH,XQ, €, 8,4, A)-basis, where €% - AT00P < ¢F/2,

30
Here, k1, k2 € (0, 1] are universal constants. Hence, 3@ is tagged with (A", e<1/2),
which implies that S(A~)Q is tagged with (A", €~ for a universal constant k’ > 0.
(Here, we use that S(A7)Q C SQ; see Lemma 28 from [1]). Comparing this
statement and (1.108), we deduce that A" = A.
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In summary,
1.109 o(3Q) has an (A, x5, €5, 8,5, A)-basis, where €~ - A10P < ¢¥/2,
Q 3Q

The assumptions (1.105)—(1.109) will be used in the remainder of this section.
We finish the section by completing the proof of the conditional inequality in
Proposition 4 and by deriving a useful corollary.

The next result represents a main step in the proof of the conditional inequality.

Proposition 5. Assume that (1.105)—(1.109) hold. Then there exists an H € X
such that
e H=fonEN GZQ
* 0%H(xq) = 0%P(xq) for each x € A and Q € CZ(A™) such that Q C 6—4(5
¢ Ml sz + 85" IH Pl ssq) < CAZPH (£, )]sy

Here, C > 1 depends only on m, n, cmd p.
Proof. We set
7@ ={eeTma:Qnga o},

Recall that the cubes in {(65/64)Q : Q € j(@)} have bounded overlap, and that
the cubes in J(Q) have good geometry, i.e.,

(GG) fQ,Q' € 7(Q) andQHQ’then:—G.éQgaQ/gm-sQ.

This follows from Proposition 1, since J (Q) C CZ(A™). We now prove that
(1.110) 6o <C-d5 for cach Q € 7(Q).

For the sake of contradiction, assume that 6g > 1056 for some Q € j(@). By
definition of j(Q) we have Q N 6 Q # (). Hence, since dg > 1056@, we see that
there exists x € 6—4Q N Q NOW, Q is partitioned into cubes in CZ(A™), since
Q C Q° is a testing cube. Thus, we can pick Q, € CZ(A~) with x € Q, and
Q. C Q Note that x € g—iQ N Q.. By good geometry of the cubes in CZ(A™), we
conclude that 6q < 16-0q,. Hence, g < 160q, < 165(2 < 1055@' This gives a
contradiction and completes the proof of (1.110).
For each Q € J(Q) we select yo € QN %Q such that

(1.111) it Q C g—i@ then yg = xq (the center of Q).

By definition of the trace seminorm ||(-, ')”@Q’ there exists a function F € X
64
with

(1.112) IFllx(ss @) + 036 lIF = Plls(ssq) < 2I1(F P)lles g, and

(1.113) F=f on 6—4Q0E.
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Part I: Defining local basis functions.
By (1.109), there exist Py € P and @4 € X such that

(1.114) H‘PCXHX (3Q) +6 H‘ch Pu HLv 30) <€K5‘Oé|+n/p " (x € A),

(1.115)  @x=0 onEﬂ3Q (x € A),
1.116)  [dPP 5 LR ABeM
. alxg) —0ap| < x|= cAPE )
(1.116) | (x5) Bl /\6'31 Bl g <o ( B )
(L117)  3PPalxg) = Sup (o, B € A).
Moreover, by (1.114) and (1.116),
‘a|+‘1

(1'118) ”(Poc”Lp(g,Q) < ||(pOC_POC||LP 3Q) +||P ”Lp (3Q) < Ce K5A v +C/\5A

For each B € M, and each Q € J(Q), we have
0P (yq) = 8apl < (0P (@a — Pa)(yo)|
+[0PPalyq) — 0PPalxg) +[0PPalxg) — Supl-
We shall estimate separately each of the three terms on the above rlght—hand side.

For the first term, we use a Sobolev-type estimate that is stated in Lemma 10 of [1]
to show that

[Bl+n/p— -
5@ P m|aﬁ((ch _Poc)(UQ)| < C<6§m”(9a_PCXHLp(3Q) + H‘chHX[g,Q))

< CeRpltm/rTm
- Q

(Recall that yq € & Q C 3Q.) For the second term, we use a Taylor expansion to
write

0°Palyq) —0PPalxg)l =| X

o<lyl<m—|p|-1

0BHYP (x5)
Q” )Y

! (yQ XQ)
Cefé'g‘*'ﬁ‘, if B>

CAslo- 1B B < o (see (1.116)).
Q )

For the third term, we simply use (1.116). Thus, all together we have shown that
C€f6|fd*||3‘, B Z o,

1.119) 0Py —8ap| <
( ) 0P 9alyq) Bl C/\ég‘flm, B <«

(forx € A, p € M).
In particular, the matrix (0P 9« (yq))«,pea is (Ce¥, CA, 6@)—near triangular (with
eFA100D < e®/2): hence, as claimed in Lemma 22 of [1], this matrix has an inverse
(Aga)y‘cxeA such that

(1.120) > AL, - 0Poulyq) =gy (for all B,y € A);
xeA
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and
Ce?/\Déglf‘“l, if @ >y,

CADgYI -l fo <y (for all &,y € A).
Q ) )

(1L121)  |AQ, ~byal <

We define

(1.122) 9o = Z ASB(PB on R™ (for each x € A).
peA

For any Q' € J(Q) we can write

(1123) Z ('UOLY (py y where wQQ = AQ I:AQ]i
YEA
For each Q € j(@), we have

Q N K ADglal+n/p—m
(1.124) o llx35) < Ce"A 5@ .
(1.125) eQ =00nEN3Q.
(1.126) a"cpg(yQ) =0yu fory € A.
(1.127) 07 0Q(yo)l < CefAD“s‘g'*W‘ fory € M,y > a.
(1.128) 0V (yo)l < C/\D“é‘g'*‘y‘ fory € M.
Here, (1.124), (1.125), (1.126) are immediate consequences of (1.114) and (1.121)

(1.115), and (1.120), respectively. Moreover, (1.127) and (1.128) are both conse-
quences of (1.119) and (1.121) (see Lemma 21 from [1]).

We now show that there exists Z > 0, depending only on m, n, and p, such
that

(1.129) 0V 9Q(yq)| < ZAPH 85, forae A yeM.

For the sake of contradiction, assume that (1.129) fails to hold for some number
Z > 1. We assume that Z exceeds a large enough constant determined by m, n,
and p. We later take Z = Z(m,n,p), but not yet. We assume that € is less than
a small enough constant determined by Z, m, n, and p.

If 59 > min{c.(A7),1/16,[100S(A7)] =1} 6@ then since also 6g < C6A

(see (1.110)), the estimate (1.129) follows from (1.128).
Alternatively, assume that

8q < min{c.(A7),1/16,[100S(A7)] "'} 55
Thus, we have S(A7)Q C 3Q, since Q N g—ZQ # (). Therefore, (1.125) implies that
e =0onENS(A ~)Q. Moreover, the Sobolev inequality and (1.124) imply that
H(p ”X S(A7)Q) + 6 A )Q”(ch IyQ (ch ”Lp S(AT)Q)

< ClloQllxstaro) < CloQllysq) < CeFAPSLE™P™™ < CeFAPST LM E™.

(In the last inequality, we use that ds(4-)g < 835 and x| +n/p—m<0.)
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From the previous paragraph and (1.126), (1.127), we see that (Jy,, (pg)aeA is
an (A,yq, Ce"AP 1 854 q)-basis for o(S(A7)Q).

Note that CeXAP*1 < CeX/2 < e*1/4 a5 long as € is less than a small enough
universal constant. Hence, (]meg)aeA is an (A,yq, eK’/4,65(A7)Q)—basis for

o(S(A7)Q).
We are assuming that (1.129) does not hold, hence

max {|0Y @R (yq)g Ty € A, vy E M} > Z.

If Z exceeds a large enough universal constant, and if €%/ < Z~2, then from
Lemma 24 in [1] we deduce that

o(S(A7)Q) has an (A',yq,Z™ %, ds(a—)q)-basis, with A" < A.

Hence, 0(S(A7)Q) has an (.A”,XQ,Z*Kl,és(Af)Q)—basis for some A” < A’ due
to Lemma 27 in [1]. (Here we use that yo € Q and xq € Q, so [xg —yq| < 20q.)
Here, k and k' are universal constants.

If Z is chosen to be a large enough universal constant, we conclude that

o(S(A7)Q) has an (A", xq, e1(A7), 8s(4—)q)-basis.
Hence, S(A7)Q is tagged with (A~ e1(A7)).
Recall that Q € CZ(A™). In fact, since g < (1/16)6(2 < (1/16), condition (e)
in Proposition 1 shows that Q € CZ(A™).
Since 8g < c«(A™), the previous two paragraphs contradict property (CZ2) of

CZ(A7) in Section 3 of [1]. This completes the proof of (1.129) by contradiction.
This concludes our analysis of the basis functions (@S)ae A-

Part II: Modifying the extension.

Since CZ(A™) forms a partition of R™, we have

65 ~
(1.130) aQc UA Q.
QeJ(Q)

We will need to use a few results from Sections 4.6.4 and 4.6.5 in [1]. Consider:

o Let CZ=CZ(A) and Q = j(@).

o Take the cube called Q in Sections 4.6.4 and 4.6.5 to be g—iA, with Q as in
the present setting.

e Let T=a, and A = C for a large enough universal constant C.

We have established the good geometry of CZ(.A~), which is a dyadic decomposi-
tion of R™; see Proposition 1. This puts us in the setting of Section 4.6.4.
We point out the covering condition stated in (1.130), and the size condi-

~

tion stated in (1.110): g < Cdg for all Q € J(Q). These conditions are exactly

conditions (4.53) and (4.54) in Section 4.6.5, with the choices of CZ, Q, Q, T, and A
as in the above bullet points. This puts us in the setting of Section 4.6.5 of [1].
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By Lemma 48 of [1], there exists 6 € C™(R™) for Q € J(Q) with

65 ~
(a) ZA 0o =1on aQ,
QeJ(Q)
(b) 8 =1 near xg, 0g = 0 near xqg/ for Q' € J(Q)\{Q},

() 10%0qllL=((1+a)qQ) < C 8o for |af <m, and
(d) suppBq C (1+a)Q.

We set H:=F+F on R™, where

= > ) 0gx)-@px) A - [0%(P —F)(yg)l
QEJ(QMBGA

(1.131) = D D 0o(x)-9Q(x)- (P —F)(yg)l
QeJ(Q) xeA

Note that H belongs to X. B R R
Since @« =0 on EN3Q, we see that F =0 on EN3Q, hence H=fon EN %Q;
see (1.113). This proves the first bullet point in Proposition 5.

Suppose that Q € CZ(A™) and Q C 2—2@. Then yg = xq, thanks to (1.111).

Thus, property (b) of {6g} states that 6 = 1 near yg, and g/ = 0 near yq for
any Q' € J(Q)\{Q}. Therefore, (1.126) and (1.131) give

NFlyg) = > eR(yq) - 3*(P—F(yq)
xeA

=) Bay 0%(P—F)(yq) =0"(P—F)lyq) foreachy e A
xeA

Hence,
0"H(yq) = 3" Flyq) + " Flyq) = 9"Plyq) (with yo =xq).
This proves the second bullet point in Proposition 5.

Part III: Estimating the norm.

From property (a) of the partition of unity (0q), we may write

65 ~
(1.132) = Y Fg-0q on 2Q
QeJ(Q)
65 ~
where Fo =F+ Z (,08 -0%(P—=TF)(yq) on —Q.
xeA 64

Before we estimate the semi-norm ||HHX( 65 G)» We present several estimates.
64



700 C. FEFFERMAN, A. ISRAEL AND G. K. LULI

We apply a version of the Sobolev inequality (see the second inequality in (2.4)
from Section 2.3 of [1]), and then we use (1.112) to give

lo|+m/p— —
85 T TAM(F=P)yo)l < C- (35MIIF=Plls(szg) + IF = Plix,
(1.133) < C'-||(f,P)] for x € M.

59))
4

~

Given Q,Q’ € J(Q) such that Q « Q’, define the rectangular boxes
By =(1+a)Qn(65/64)Q and By = (1+a)Q’N (65/64)Q.

Since Q € J(Q), we know that Q N 2—2/\ # 0 and 8g < Cdg (see (1.110)).
Hence, By is a product of n intervals whose lengths are between cdq and Cdg,
for universal constants ¢ and C. Thus, the sidelengths of By are between cdqg
and Coq.

Similarly, the sidelengths of B, are between cdg+ and Cogq-.

Note that g and dq- differ by at most a factor of 64 thanks to good geometry.

We know that (1+ a)Q N (14 a)Q’ # @ because Q + Q’. Since By and B,
are nonempty, the collection of cubes {(1 +a)Q, (1+a)Q’, % A} have nonempty
pairwise intersections, hence we conclude that there is a common point in these
three cubes.! Thus, By N B, # 0.

We have proven the following claim.

~

Claim. For any Q,Q’ € J(Q) with Q + Q’, all the sides of the boxes
By =(14+a)Qn(65/64)Q and B, = (1+a)Q’N (65/64)Q

are between cdq and Cdq for universal constants ¢ and C. Hence, in particular, B4

and B, have aspect ratio at most a universal constant. Moreover, By N B, # (.

Thus, we may apply Lemma 12 from [1] with K equal to a universal constant.
For each 3 € A, we have

0P (Jyo,Fo —P)lyq) =3P (Fq —P)(yq:) =0 (see (1.126), (1.132)).

We conclude that 0P (]yQ,FQz —P)(yq) =0. Here, we use the monotonicity of A;
see (1.1). Hence, [0 (Fq —P)(yq)| = [0F(Fq. —Jyo FQ/)(yq)|- Thus, Lemma 12
from [1] implies that, for € A, we have

0P (Fq — P)(yo)|
m—[B|-n/p
(1-134) 56Q (|‘FQ’HX((1+a)Qﬂ%Q) +HFQ,HX((]+Q)Q’Q%Q))'

(Here, we use that [yg —yq+| < Cdq, which is a consequence of Q <+ Q' and the
good geometry of J(Q).)

IThis follows from the fact that if three intervals have nonempty pairwise intersections then
the three intervals share a point in common.
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From (1.123) and (1.132), for B € M we have

0P (Fq —Fo ) (yq)|
= | 3 0P (F-PIye)ofefiua) — Y 0%F -~ Pllyg)wd 0P eR(yo)|

peA o,peA

<Y [Pofyo)| [[F(F—Pllye) = X 0*(F—P)yq )l ||
peA xeA

=Y [3Fef Q)| [0 (F=Piye) = Y~ *(F—P)yo:)a"e? (vo)||
peA acA

(note that wl§ =P pQ (yq);see (1.123) and (1.126))

= [oPeg o)|[[of (For —P)lyo)]
pea
(see (1.132))
D+1 IBI—IBlsm—m/p—IB|
SCAPTT ) 8 T8g [
peA
(see (1.129) and (1.134))

Forlleiiraenga) +IFQ lxraongal
D+1 mflmfn/P
(1135) < CAP*!.g82 [IFe llxvarongta) + IFe lxraeng o))

We are now prepared to estimate ”HHX(@Q)'
64

We apply Lemma 49 of [1], which shows that

P P
HH” g_ < Z HFQHX((]Jra)Q 6_4@)

QeJ(Q)
—— »

(1.136) + ZA 8 " IFe —JuoFallis (1 1a)onss )

QeI Q)

|7

(1.137) > Y SRR Ty Fo — Tyg, Fo ) (¥Q) P

Q,Q'e(Q)IBI=m-1

QeQ’

(Here, we take Pq = Jy,Fq in our application of Lemma 49.)

First we estimate the terms in (1.136). A version of the Sobolev inequality
(see (2.7) in Section 2.3 of [1]) implies that

80" IFQ = TyaFallir((1+aoneza) < CliFQllx(r1a)nsza)-

(Here we use the fact that the lengths of all sides of the rectangular box (1+a)QnN
4 Q are comparable to dq; see the previous Claim.)
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Next we estimate the terms in (1.137). For Q,Q’ € J(Q) with Q < Q’,

108 [JyoFQ = Juo Fol Q) = 0% [Fq — Ty, Fo'] (yQ)l
< [0 [Fq —Fo ] (Yl + 0% [For — Ty, Fol(yo)|
S10° [Fo —Forl o)l + 85 * P IIFq/lly1ha)gnesa)

+ HFQ'HX((1+a )Q'NE3Q) J.

(Here, in the last inequality we use Lemma 12 from [1].)
Using our previous estimates on (1.136) and (1.137), we obtain

HIIP
|| HX(GS )

&Q
< p ~ ’ p ~
SN [HFQ||X((1+a)Q06—iQ) TPz raanssa)

6

Q.Q'€T(Q)
Q=Q’
+ ) [0P(Fq —FQ')(UQ)lpégB"m)p”}
pem
(1.135)
(D+1)p P P
= A 2 IRl aronszar F TRz a0 nga)
Q.Q'eT(Q)
QeQ’

(1.122),(1.132)
(D+1)p P P
= CA Z [HF”X((IJra)Qﬁ@Q) +”FHX((1+a)Q/ﬂ@Q)

Q.Q'eT(Q) ’
QeQ’

+ ) AP F =PIy (10612 1, o rones e + 19815 1 arames )]
o,REA o
(1.121),(1.133)

< (2D+1)p [ FIE, R

Q,Q'eJ(Q)
Qe=Q’
(m—IB)p—m P P

< AP (6, P, [T Y g2 g 50 7]

64

BeA
2 1)

< CARPEIP |1, P,

(by bounded overlap of {(1+ a)Q:Q € J(Q)} and by (1.112), (1.114)).

This concludes our estimation of HH”X(@Q)'
64



FITTING A SOBOLEV FUNCTION TO DATA II 703

Writing H—P = (F—P) —i—F, we also obtain

H—-P|P ..
IH=PI7, e
(1.131)
S IF=PIP, g
+ Z D 19617, (1rargnszgy Al R¥(P=P)yQ)l
QeJ(Q) % BeA
(1.121),(1.133) »
< — .
/\Dp ,\6(,\ —IBp—m fP
Y Y lesllagnsone 166, P2
QeJQ BGA
< ||F=PII?P Dp . (m*\ﬁl)P*“ P
SIF=PID, gz + AT X ll0al, 50,88 A

peA

(by bounded overlap of the collection {(1+ a)Q: Q € j(@)})
(1.112),(1.118)
<

~

AP (55177 (£, P .

Adding together the previous two estimates, we have
- 2D+1
Ml g5.0) + 53 IH =Pl (s50) < CAZPH (£, P)] sz -

This completes the proof of Proposition 5 O

We recall several facts, and set some notation for the rest of this section.

e Suppose Q € CZ(A") and Q C (1 + 100tg)Q. Then 2Q C %A (see
Lemma 11).

e Suppose that Q',Q” € CZ(A ) Q' c (1+1t5)Q, Q" « Q”, and dgr <
tg - 85. Then Q"c (1+ 100tg)Q (by good geometry).

¢ The sums below are indexed over cubes Q € CZ(A™), and over pairs of cubes
(Q',Q") € CZ(A ) x CZ(A); and often for ease of notation we choose to
not make this indexing explicit.

¢ For ease of notation, we write RQ = Rg(f, P) (the dependence on (f, P) should
be understood).

Q

e We are assuming that tg is less than a small constant determined by m, n,
and p, to be picked later, whereas the universal constant St has already been
picked. (See (1.17).)
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Proposition 6. Given H € X, and given {Rg# : Q7 keystone} C P, the following
imequality holds:

—mpy _ P
Z 6Q ”H R’C(Q)HLP(%Q)

QC(1+100tg)Q

6Q <tg -66

(1.138) s ) Bo#) P IH=RQ#lIF (g5 o +|\H||P%

Q# keystone
S$i1Q#*ces

Proof. Let Q € CZ(A™) satisfy
(1.139) Q C (14100t6)Q and 8¢ < tg - 85

)

Then there exists an exponentially decreasing path connecting Q and K(Q), as
promised by the KEYSTONE-ORACLE. We denote this path by

Q=Q(1) = Q(2) & -+ Q(Lg) =K(Q).
Recall that
(1.140) 8oy < C-(1—c)" Y 8qu fort/ > ¢

also Q) C CQ and SﬂC(Q) C CQ, for a universal constant C. From (1.139) we
conclude that & CQ C 64 , as long as tg is sufficiently small. Therefore,

. 65 ~
(1.141) —Q(f) C —Q forall€=1,...,Lg, and $1K(Q) C @Q
In particular, note that 6 azQ C
Fix an arbitrary number n 6 ( 0,1 —n/p) depending only on n and p. By the

triangle inequality,

6anp”H_RlC ”p 85 < 57mp||H_]XQH”p

(3Q) ~ P (5 Q)
mp
6 HIX)C(Q ” %

mp -n g+m .

+6 H Z ]XQ(e H— IXQ t+1) H) 6Q(€)6Q(e)‘ Lp[g—Q)‘

here, Holder’s inequality shows that
mp - g4
5™ | Z Uxoe M =Txawn M) 8Ty 80|, g6

Lol /el

—mp np -np

S(SQ ( Z 6Q(€)) Z 5Q(€)HIXQ(@)H_IXQ(HHH”Lv (£2Q)

e=1 e=1
Lo—T

<5np mp Z 5~ ‘1 H]XQ H—]XQ(H”HHEP(%Q) (by (1.140));
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also, the Sobolev inequality shows that

59" IH=TuoHIE, (55, < CIMIE 55

Combining these estimates, we have:

Hil (s 0

65

4

66mp||H_RK(Q)||Ep(ng) ~ | +66mp”]X}c(Q)H_R’C |

+ 6T<]2p7mp Z 66?F)||]XQ(UH - ]XQ(e+1)
=1

H”Lp 65 )

4

We apply Lemma 7 of [1] to all but the first term on the right-hand side of the

previous estimate. Thus, we obtain

Sq"P IH—Re(@) Py (g3, < IMIZ 530,
- [Blp+
8™ D 108 (e, M= R (i) 8g 7T
[Bl<m—1
_ — [Blp+
+6T(]2p " Z 5Q?F) Z |aB(IXQ(€)H_IXQ(€+1)H)(X’Q )|p6Qp "
=1 Bl<m—1

Let X denote the sum of §4™|[H — R,C(Q)HPP(%Q) over all Q € CZ(A™) with
Q C (1+100tg)Q and 8¢ < tady-

We now sum the previous estimate over Q. We denote Q% = K(Q), Q' = Q(¢),
and Q” = Q€+ 1), and we switch the order of summation in our sum. Us-
ing (1.141), we see that

< P

XN Z AHH”X(G—EQ)
65 QC%
3 ) PP HRasllxoe)l? 3 8T
Q¥ keystone |Bl<m—1 sQces
$1Q7C&Q K(Q)-Q*
- (M+IBl—m)p+

2 8T Y PP H T Mk 3 8g T

GSQI‘/_) 6;/’\ (Blsm=t %QC%Q,
s1QcaaQ €:Q(0)=Q
§QcEQ

Now, for fixed Q# we have
(IBl— mp+n (IBl—m)p+n (IBl=m)p+n
> % > 8 < C- [0q#] :
£Qc gi’\ Q dyadic
K(Q)=Q# Q*ceQ
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Also, from Remark 1, which can be found after the KEYSTONE-ORACLE, for
fixed Q’ we have

(N +IBI—m)ptn (N +IBI—m)ptn
> 8 <C ) &

§&QcgQ §&QcgEQ
£Q()=Q’ 3¢, Q()=Q’
S C 6(QT1+H3|*TR)P+TL S C . [5Q,](n+|6\7m)r>+n X
Q dyadic
Q'ccQ
Therefore,
< P
XN Z AHH”X(G—EQ)
BocH
(IBl=m)p+n
+ ) Y 18P (kg H—Rae)xqe)lP - [5o#]
Q# keystone [Bl<m—1
S1Q#CE3Q
+ Z Z |aBUXQ/H_]XQ”H)(XQ,)|P.[5Q,]U(5|fm)p+n.
Q'«Q”  Iplsm—1

8Q,&3Q'cH
We first estimate the terms in the second sum on the right-hand side above. For
fixed Q#, the Sobolev-type estimate which is stated in Lemma 10 of [1] implies
that

(IBl—m)p+
> 19 B (Jxqw H-Ra# ) (xq#)IP - [8q#] m)p+n
[BI<m—1

6

S IHIZ g5 )+ SEPIH =R 2, (65 0

To estimate the terms from the third sum, We apply Lemma 12 of [1], using as the
rectangular boxes By = £Q’ and B, = £2Q”, where Q’,Q"” € CZ(A™) satisfy
Q' & Q”. Thus, we obtaln the estimate

B _ P. , (IBl—m)p+n P p
m; [0 Mg )P (o] S IHIR g3 gy +IHIE g5,
=m—

(Here, we use the fact that [xq: —xq~| < C8q and that £Q'N Q" #0.)
Thus, we have

XS Y MBget X [MBgon +IHIEgon)
85Qces Q'=Q”
Qe
—Imn
+ Z ||HHp X(£5Q# + Z 5Q#pHH_RQ#” P(E3Q#)
Q* keystone Q* keystone
S]Q#C%A S]Q#C%Q

£5
[
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From the bounded overlap of the cubes g—ZQ, Q € CZ(A™), the previous esti-
mate implies that

XS I g5 6, + D> SETIH—Re#lI}
Q# keystone
S1Q7Cc&Q

LP (£ Q#)"

This completes the proof of Proposition 6. O

We are now prepared to prove the conditional inequality.

We seck an estimate on [Mé(f, P)]p, which is a sum of terms (I)—(IV) (see
(1.65)—(1.68)). We first apply Lemma 7 of [1] to estimate the summands appearing
n (1.66), (1.67), (1.68) in terms of LP norms of polynomials. We then replace (1.66)
by a sum over a larger collection of pairs (Q’, Q"), as below. Thus, we obtain

[MQ(f,P)]p < Cltg) - { Z [M(q, 4 (f, R%)]p
QECZpain (A7)
QC(1+100tg)Q

+ Z 6Q/ pHRQ/ _RSNHEP(Q )
Q/,Q"eCZ(A)
Q’,Q"C(1+100ts)Q
Q'&Q”
(1.142) ) 8"IRGPIT, g, +O Q“"HRQ —PIF, |-
QeCZ(A )

QC(1+100tg)Q
5taé~56

We pick a function H as in Proposition 5. Our estimates proceed in three stages
below.

Stage I. We bound the relevant summands in (1.142).

We consider Q,Q’,Q” € CZ(A™) that satisfy Q,Q’,Q” C (14 100tg)Q and
Q’ & Q”. We impose either the assumption Q € CZpain(A ™) or the assumption
dg > té - 85, depending on which type of summand we seek to bound.

Assume first that Q € CZpain(A~). Then the right-hand estimate in (1.20)
implies that

M(q,4 )(f,RS) <C- H(f,Rg)Hg_gQ <C- [HHHX(gQ) +66mHH_R8HLP[%Q)]'

Here, in the last inequality, we use the definition of the trace seminorm and recall
that H=fon EN 62Q

On the other hand, assume that 6g > t2 6A We apply the triangle inequality,
and then we apply estimate (2.5) i 1n Lemma 10 of [1] (a consequence of the Sobolev
inequality). Note that £Q C Q so the application of (2.5) given below is
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justified. This gives

5AmIIRQ Pllirq) = 8™ M= Pllir (s g +5Am|\RQ Hllpp (s20)

64

- —m|pQ
< 8™ IH =Pl s3g,+ C- [6Qm|\RQ—H||Lp[g_ )+ Ml s )]

We now consider the summands in (1.142) which are indexed by pairs (Q’, Q").
Using Lemma 11 of [1], we obtain the bound

55?1|\R8,—R8,,||Lp o) < C-[8gMIRS, —Hllns301
QN ||H RQN”Lp 63 "y + ||HHX 65 + ||HHX(%QII):|-

Now, at last, we consider the final term on the right-hand side of (1.142). Since
Qsp C Q, we have g—iQsp C 2—2Q. We now apply a Sobolev-type estimate that is
stated in Lemma 10 of [1]. Thus, we obtain

5™ IP— RS, I, IM=Plliy sz + 5™ IR, — Hlluo(ss)

? 64

%Q %"
55" M= Pl s
+C [5GMIRS,, — Hllin (3., + Ml sz -
We combine (1.142) with the previous four estimates to obtain
Mg (6, P)]” < Clta)-(IHIE 4 )+6:mp|\H—Pufp(g_i@
- Qp
(1.143) Y I S IH =R, g 0)])-
QC(1+100tG)Q
Stage II. Observe that

> MR 52 q) = C- M1 a5
QC(1+100tG)Q
Indeed, we have 2—2Q C g—i@ for any cube Q € CZ(A™) arising above (see
Lemma 11); hence, the desired estimate is a consequence of the fact that the
cubes g—ZQ, with Q € CZ(A™), have bounded overlap.

The number of cubes Q € CZ(.A™) such that Q C (1 +100tg)(§ and g > tgéé
is bounded by a constant C(tg). Hence,

D OQ"PIH=RGIT, (s ) < Clta) 5™ [H=P|?,

QC(1+100t6)Q

5Q2t666

(0 (see (1.63)).

On the other hand, by our definition of Rg (see (1.63)), we obtain

> S™MIH=RI, g > I RE )T g
QC(1+100tg)0 Qc(1+100tc)<§
5Q<t656 6Q<tG66
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We combine (1.143) and the previous three estimates to obtain

65A
(e2Q)

bY SR o)

QC(1+100tg)Q

Mg (1,P)]” < Clta) - (M2 s g, + 55 IH =PI,
64 Q

5Q<tG56
< . p _ —-mp —PJ|P _
< ctta) (M1 g5 + 35" IH = PIE, g,
(1.144) + Z (5Q#)mp”H_Ré#|Ev(S1Q#)>
Q# keystone
$1Q*C&Q

(see Proposition 6).

Stage III. Let Q# € CZ(A~) be a keystone cube with S1Q% C 2—2@. Then, as
stated in Proposition 5, we have 0*H(xqg#) = 0%P(xq#) for all « € A. Thus, by
Proposition 2, we have

(1.145) (8q#) ™PIH=RELITo s, 0%) S IHIE (s, 0

From Lemma 8, we recall that the cubes S1Q# (Q# keystone) have bounded
overlap. Thus, (1.144) and (1.145) imply that

Mg (f,P)? < Clte) - (IHII &5 5, + IH=PIT,

5:4e)
(2Q
p

.
0% )

(1.146) < Cltg) - ABPHIP (£, P)|1, o (see Proposition 5).
a4
Recall that eXA10P < e¥/2 and ® < k» < 1 (see (1.109)). Hence, A2P+1 <

€ X/2 < ¢~ 1. This shows that
Mg (f,P) < Cltg) - (1/€) - [[(f, P)]les g

This completes the proof of the conditional inequality. This completes the proof
of Proposition 4. O

We fix tg > 0, depending only on m, n, and p, small enough so that the above
results hold. Since we have fixed the constant tg, all the previous constants of the
form C(tg) or c(tg) become universal constants C or ¢. In particular, the constant
Qnew = Qnew(ts) from Lemma 11 depends only on m, n, and p. We set

(1.147) a(A) = dyew-

Recall the definition of the convex set 5(Q) in (1.69).
Just for the moment, let € = €p be a small enough constant depending only
on m, n, and p. From Proposition 4 we obtain the following result.
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Proposition 7. There exist universal constants eg > 0 and C > 1 such that the
following holds.

Let Q be a testing cube. Then the following conclusions hold.
(Unconditional inequality) [[(f, P}l ano < CMg ( P).

(Conditional inequality) If 3(5 is tagged with (A, eo), then

Mg (£,P) < C[[(f,P)] sz 5-

(Unconditional inclusion) 3(Q) C Co((1+ a(A))Q).
(Conditional inclusion) If 3(5 is tagged with (A, €o), then 0(—2@) Co(Q).

Once again, let € be a small parameter. As usual, we assume that € is less than
a small enough constant depending only on m, n, and p.

1.5. Tools to fill the gap between geometrically interesting cubes

For the results in this section, the reader may wish to review the definition of
testing cubes (see Definition 2).

Proposition 8. Let Q be a testing cube. If
OBNE) <1 or 5(Q) has an (A’ xq, €,85)-basi A< A
[#(QQO ) <1 or o(Q) has an ( X5 € Q)' asis for some A" < A,

then (1 + a(.A))Q is tagged with (A, €*). Otherwise, no cube containing SQ is
tagged with (A, €'/%). Here, « is a universal constant.

Proof. If #(6—4Q E) <1, then (1+ a(A))Q is tagged with (A, €).

Suppose :(Q) has an (A’ ,XQ, € 5@)—basis for some A’ < A. Proposition 7 gives
that G(Q) C CG((H—G(.A))Q). Thus, G((H—a(.A))Q) has an (A’ x Xg, Ce, 6@)—basis.

Therefore, (1 + a(A))Q is tagged with (A, €*). Here, we can arrange that
Ce < €* by taking e sufficiently small.

This proves the first part of Proposition 8.

On the other hand, suppose Q D 3Q and suppose Q is tagged with (A, e'/*"),

for some k’ > 0 to be picked below. Then 3(3 is tagged with (A, €/, thanks to
Lemma 28 from [1]. Hence, from Proposition 7 we see that

(1.148) (giQ) c C-3(Q).

Recall that 22(3 - Q and that Q is tagged with (A, e'/%"). Thus, Lemma 28

~

from [1] shows that 64 Q is tagged with (A /"), This means that either #( ZQN

E)<Tor (r( Q) has an (A’,x Xg, € K/x ,6@)—ba518, with A’ < A.
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Thus, (1.148) implies that

65"\ —eay ’
o2 < = /AN K/K ) is.
#(MQOE> <1 or o(Q) has an (A,XQ,Ce ,SQ)bams

Hence, either #(g—iQOE) <Tlor E(Q) has an (.A’,XQ, €, 6@)—basis for some A’ < A.

Here, we have set k' = /2, with k as in Lemma 28 from [1]; note that Cex/x' =
Ce2 <e.
This completes the proof of Proposition 8. O

Suppose that Q1 C Qz are testing cubes. We want to understand the tagging
of 3Q; in terms of the convex symmetric set ¢(Q1).

Proposition 9. Suppose that Q1 C Qz are testing cubes. We assume that
(1.149) #(3Q2NE)>2 and
(1.150) (1+a(A)Q1 NE=3Q,NE.

If %(61) has an (.A’,x(21 , e,SQZ)—basis, then SQZ is tagged with (A’, €*) for a
universal constant K.

Proof. Let (Py)xear be an (A', x5 e,ééz)—basis for 5(@1). Thus,

) Q1)
(1.151) Poce 55(2“‘*“/19*'“”%((3]) (xe A
(1.152) aBPa(x@):éBa B,xe A"
(1.153) 0P Pulxg, )l < e85 (xed', BeM, B>

The unconditional inclusion and inclusion (2.12) in Section 2.4 of [1] show that
5(Q1) C Col((1+a(A4))Q1) € Clo((1+ al4)Q1) + Blxg,,385,)] € C'0(3Q2).

(The application of (2.12) is justified because we assume here that (1+ a(.A))Q1 N
E= 3Q2 n E)
Thus, (1.151) implies that

PoeCe 63’(%’:"“/19*'““ -0(3Q2) (xe A).

Thus, due to (1.152) and (1.153), we see that (Py)xe4’ is an (A/,XQ1 ,Ce,d
basis for 0(362).
It follows from Lemma 27 in [1] that 0(3Q2) has an (AN’XQz’ €%, 055, )-basis,

for some A” < A’. By definition, this means that the cube 3@2 is tagged with
(A’, e*), completing the proof of Proposition 9. O

3Q2 -
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Corollary 1. Suppose that Q1 C Qz are testing cubes, and that (1.149) and (1.150)
hold.

Suppose 5(@1) has an (A’ X9, 6 6@2)-ba5i3 for some A’ < A. Then 3(52 18
tagged with (A, €*) for a universal constant K.

Proof. Proposition 9 tells us that 3@2 is tagged with (A’, €*). This trivially implies
that 3Q; is tagged with (A, e*). O

Proposition 10. Suppose that Q] C Qz are testing cubes, and that (1.149)
and (1.150) hold.

Suppose 3@2 is tagged with (A,€). Then 5(61) has an (A’,XQ],eK',ééz)_
basis, for some A’ < A. Here, K’ is a universal constant.

Proof. We have 3@1 C 3(32, so Lemma 28 from [1] tells us that SQ1 is tagged with
(A, €*). Hence, by the conditional inclusion, we have

(1.154) c 0(6—5(31) c Q).

Next note that 65 Q1 NE = 3Q2 NE, and that & Q] - 3Q2 Therefore, Lemma 15
in [1] gives the 1nclu510n

(1.155) 0(3Q2) c C- [0(6—5@) +Blxq,» 859,

(Since |XQ] —XQZ| < b5, it follows that B(x X5, 3Qz) c CB(x X5,:930, ).
shows that (1.155) follows from the conclusion of Lemma 15 in [1].)

Now, 3(52 is assumed to be tagged with (A, €), and #(3@2 N E) is assumed
to be at least 2. Hence, by definition, 0(362) has an (A’ X9, € 6362)—basis for
some A" < A.

By Lemma 25 of [1], we learn that

(1.156) (3Q2) has an (A" 1 XG5, € K8

This

30, , A\)-basis, for some A” < A’ < A,

such that eXA199D < ¢x/2 gnd k € [k1,Kk2]. Here, k1,k2 > 0 are universal

constants.
Inclusions (1.154) and (1.155) show that

(1.157) 0(3Q2) € C”- [3(Q1) + Blxg,,855,)]-
From (1.156), (1.157), and Lemma 23 in [1], we see that

E(Qﬂ has an (A", X5 L, CeBA, 535, CA)-basis.
We now apply Lemma 26 in [1]. Thus,
%(61) has an (A", CeK/\2D+2 1035, , CA?PH 1) basis.

Since CeXAZP+2 < x/3 < eK‘/3, it follows that

(1.158) 5(61) has an (.AN,XQ] , eK‘/z’,SQZ)—baSis.
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(Here, the passage from 0, 0s to 6@2 is harmless; it just increases the constant “C”
in Ce*A?P+2))
Since A" < A, (1.158) is the conclusion of Proposition 10. O

Combining the results of Propositions 9, 10, we now prove the following.

Proposition 11. Suppose that Q1 C Q. are testing cubes and that (1.149), (1.150)
hold. Then

(A) If 5(@1) has an (A',xél,e,éaz)-basz’s for some A’ < A, then (1 —I—a(.A))Qz

is tagged with (A, €*).
(B) If some cube containing 3@2 is tagged with (A, €), then 5(61) has an

(A/,XQ] , e",ééz)—basz’s for some A" < A.
Here, k is a universal constant.
Proof. First we check (A). If 5((51) has an (.A/,XQ] , 6,662)—basis with A" < A,
then according to Corollary 1, the cube 3@2 is tagged with (A, e*). Hence, by
Lemma 28 from [1], (1 + a(.A))Q2 is tagged with (A, e*’), completing the proof
of (A).

To check (B), let Q' D 3Q2 be tagged with (A, ). By Lemma 28 from [1], 3Q>

is tagged with (A, €*). Hence, by Proposition 10, (Q7) has an (A/,XQ] ex 53, )-
basis, for some A’ < A. This completes the proof of (B). O

We apply (A) with e unchanged, and (B) with € replaced by e'/%. Thus we
obtain the following result.

Proposition 12. Let Q C Q be testing cubes. Assume that #(3Q NE) > 2 and
that (1+ a(A)QNE =3QNE.

Then the following hold, for a universal constant K.

(A) If 5(Q) has an (A", x5, €,8q)-basis for some A" < A, then (1 + a(A))Q is
tagged with (A, €*).

B) If 5(Q) does not have an (A’,x5, €,80)-basis for any A’ < A, then no cube
( Q Q
containing 3Q is tagged with (A, e'/*).
The final result in this section is the following algorithm.

ALGORITHM: OPTIMIZE BASIS

We perform one time work at most CNlog N in space CN, after which we can
answer queries as follows. R

A query consists of a testing cube Q and a set A C M

The response to the query (Q,.4) consists of a collection of pairwise disjoint
intervals Iy, and numbers a; and Ay (£ = 1,...,{max), such that the following
conditions hold.

° UZ IZ = (0,00) and emax < C.
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e Let n(Q’A)(S) := a8 for & € Ip. Then we have:

(A1) For each 6 € (0,00) there exists A’ < A such that 5(Q) has an
(A'yx Q,n1/z 8)-basis for all 1 > C -n(QA)(§).

(A2) For each 8 € (0,00) and any A" < A, U(Q) does not have an
(A/,XQ,HVZ, d)-basis with n < ¢ - n(QA4)(5).

(A3) ¢ 'H(Q‘A)(51) < H(Q’A)(éz) <C -n[Q‘A)(&) whenever 587 < 8, <
1067.

e To answer a query requires work at most Clog N.

Explanation. We compute a quadratic form ¢ gon ‘P such that there exist universal
constants ¢ > 0 and C > 1 so that {q(2 < c} Co(Q) C {q(2 < C}. (See the
algorithm APPROXIMATE NEW TRACE NORM in Section 1.4.6.)

Processing the quadratic form qQ using the algorithm F1T BASis To CONVEX

Boby (see Section 4.5 of [1]), we compute a piecewise-monomial function n&Q‘A/) (+)

for each A" < A. We guarantee that E(Q) has an (.A’,XQ,T]]/Z 5)-basis for all
n>C- T]EFQ’A/)(é), but that ?(Q) does not have an (A’,x Q,n]/z 5)-basis for any
n<c-nl@4).

We define

(@A) (§) — n(s) — (Q,4")
n (8) =m(8) = nggl‘ln '(8) for § € (0,00).

It follows that E(Q) has an (A’,xé,nvz,é)—basis for some A" < A whenever
1 > C-n(8), but that E(Q) does not have an (A/,XQ,H]/Z, d)-basis for any A’ < A
whenever 11 < ¢ -1(8). Thus we have proven (A1) and (A2).

Recall that ¢! Q@A) (87) <1(Q@AD(5;) < CnlQAY(8;) for 1581 < 8, < 1087.
Taking the minimum with respect to A’ < A in this inequality, we prove (A3).

Recall that niQ‘Al)(é) = a(’Alé)\(‘A/ for 6 € Iy, 4/, where the intervals Ie 4/

(L=1,...,lmax(A")) form a partition of (0,00), for each A" < A. Here, {nax(A’)
is bounded by a universal constant.
Thus we can partition (0, 0o0) into intervals Iy (€ =1,...,{yax), for which there

exist real numbers ag,A¢ such that n(8) = a¢d* for & € I;. Moreover, Lnax 1s
at most some universal constant. This follows because, for fixed real numbers
a,b, A, v, the equation ad® = bdY is satisfied either for at most one & or for all
5 € (0,00). To compute the intervals I, and the numbers ag, Ay we solve at most C
equations of the above type, and we make at most C comparisons between the
functions n(QA () (A" < A) to compute the minimum value on each of the
relevant intervals. This completes the explanation of our algorithm. O
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1.6. Computing lengthscales

We say that a dyadic cube Q C R™ is geometrically interesting provided that
diam(3Q N E) > Adq, where we set A :=1/40.

ALGORITHM: COMPUTE INTERESTING CUBES

We produce a tree T consisting of all the cubes Q € CZ(.A™) that contain points
of E, together with all testing cubes Q for which diam(SQ NnE) > 7\6@; as well as
the unit cube Q°.

Here, T is a tree with respect to inclusion. We mark each internal node Q € T
with pointers to its children, and we mark each node Q € T (except for the root)
with a pointer to its parent.

The number of nodes in T is at most CN, and T can be computed with work
at most CNlog N in space CN.

We note that all the nodes of T are testing cubes. (This is immediate from the
definition of testing cubes - see Definition 2.)

Ezplanation. We perform the one-time work of the BBD Tree (see Theorem 35
in [1]). Also, we compute representatives arising in the well-separated pairs de-
composition using the algorithm MAKE WSPD (see Section 4.2 of [1]). This allows
us to compute a sequence of tuples (x/,x%2) € E X E (v =1,...,Vmax) such that,

for each (x’;x”) € E x E\ {(x,x) : x € E} there exists v such that
Xy = X[+ [xy = x"] <1070 —x",

and Viyax < CN.
We execute the following loop:

e For each v = 1,...,Viax, we compute the sequence of all dyadic cubes (5
such that x4,xZ € 5Q and |x — x| > %6@. (There are at most C such

cubes for each v.)

We denote the sequence of all cubes produced above, for all v, by Q1,...,Qk. We
remove duplicates by sorting, which requires work at most CNlog N. Note that
we have K < CN.

Let Q be a geometrically interesting cube. By definition, there exist x’,x” €
3Q NE with [x" —x"| > Adq. Hence, there is some v such that

x> o x| = (V2)3

and : 5
. ! X x" < ! —x"| < 3Q.
[l =+ e =1 < ol = x| < S
Therefore, x.,x € 5Q, and hence Q belongs to the list Q1,..., Qk.
We have proven that all geometrically interesting cubes belong to the list
Q1,y...,0Qk.

For each k = 1,...,K, we compute diam(3Qx N E) using the BBD Tree. (See
Remark 36 in [1].) If diam(3Qix N E) < Adq,, then we remove Qy from our list.
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We also compute the cube in CZ(.A™) that contains the center of Qy. If this cube
strictly contains Qi then we remove Qy from our list. (This means that Qy is not
a testing cube.)

We denote the sequence of surviving cubes by 61 Seeny Qi. As shown above,
these are all the testing cubes that are geometrically interesting.

We form a list of all the cubes Q € CZ(.A™) that contain points of E, the
cubes Q1 RN QR? and the unit cube Q°. There are at most CN such cubes. By
sorting, we can remove duplicates. We organize this list into a tree T using the
algorithm MAKE FOREST (see Section 4.1.5 of [1]). We obtain a tree (rather than a
forest) because all the cubes have a common ancestor, namely Q°. This algorithm
marks Q° as the root of T, and marks each non-root node with a pointer to its
parent. In addition, we mark each internal node of T with pointers to its children.

One can easily check that the work and storage of our algorithm are as promised.

O

Lemma 13. Let Q C Q° be dyadic, with 5o < 1/4. Suppose that 3Q NE # O and
diam(3Q++ N E) < 7\5Q++.

Then 3QTTNE =3Q*tNE. Here, Q" denotes the dyadic parent of the dyadic
parent of Q.

Proof. For the sake of contradiction, suppose that there exists x € E with x € 3Q "
and x ¢ 3Q". Thus, for each y € EN3Q we have

5 5
diam(3Q** NE) > [x —y| > dist(R™ \ 3Q*,3Q) > % = %* = Abq e
This yields a contradiction, completing the proof of the lemma. O

Lemma 14. Let Q1 C Q2 be dyadic cubes such that Qy is the parent of Qq in the
tree T. Let a >0 be given. Let Q7¥ and Q4°"™ be dyadic cubes.

Assume that Q1 & Q" C Q9™ ¢ Q2 with 8q, > ASggom > A*dgue >
/\3’6Q1 for some A\ > 2.

If A exceeds a large enough constant determined by a and n, then (1+a)QiPN
E=3Q"™NE.

Proof. If A > 4, then since Q1 C QJ°™ and §q, < #SQ%OWH, we have Q7 *+

cC Qdown
gowm,
Fix a sequence of dyadic cubes Q1,1 C Q1,2 C--- C Q1 ,x with

Qi1 =(QN", Q1 k=Q%™, and Qix = (Qrx_1)" for2 <k <K.

Since Qq is a testing cube (recall that all the nodes of T are testing cubes), it
follows by definition that Q; contains a cube in CZ(A~). Thus, thanks to (1.6),
the set 9Q1 N E is nonempty. We have 3Q1 x D 3Q1,1 = 3QT+Jr D 9Q; for any
1 <k < K. Hence, 3Qq1,x NE # 0 for any 1 < k < K. Moreover, note that Q1 C

Q1,x € Q2, because Q7 "* and Qo™ are strictly contained between Qq and Q.
Since Q3 is the parent of Qq in the tree T, which contains all the geometrically
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interesting testing cubes, we learn that Qi x is not geometrically interesting, for
each 1 < k < K. In particular, we see that QL x = = Q1,k+2 is not geometrically
interesting, hence diam(Qyy NE) < A8t for all 1 < k < K — 2. Thus, the
hypotheses of Lemma 13 are satisfied by Q Qi foreach 1 <k <K—2. We
conclude that

3Q1,2ﬂE:3Q1‘3ﬂE=~-~=3Q1‘KQE.

That is, 3Q7 7" NE =3Q4" NE.

Recall that Q1 C Q" are dyadic cubes with Squr > Adq,. It follows that
3Q7 T < (1 + a)Q)P if A is much larger than a~'. Therefore, 3Q9°"* N E C
(14 a)Q{® N E. Moreover, the reverse inclusion follows because Q) C Q§o™™.
Therefore, 3Q9°"» NE = (1 + a)Q{? N E. O

1.6.1. Finding enough tagged cubes. We produce the following algorithm.

ALGORITHM: COMPUTE CRITICAL TESTING CUBES

Given € > 0 less than a small enough universal constant, we produce a collec-
tion Q. of testing cubes with the following properties.

(a) Each point x € E belongs to some cube Q € Q..
(b) The number of cubes belonging to Q. is bounded by C - N.

(c) If Q € O, strictly contains a cube in CZ(A™), then (1 + a(A))Q is tagged
with (A, e*).

(d) If Q € Q. and 6@ < c*, then no cube containing SQ is tagged with (A, e'/*).

Here, ¢* > 0 and S > 1 are integer powers of 2, depending only on m, n, p; also,
€ (0,1) is a universal constant. The algorithm requires work at most CN log N
in space CN.

Ezxplanation. We introduce a large parameter A = 218" > 1. We later pick A to
be a constant determined by m, n, and p, but not yet. We assume that A exceeds
a large enough constant determined by m, n, and p, and that € is less than a small
enough constant determined by A, m, n, and p.

We let ko,...,k20 € (0,1) be constants to be determined later. We assume
that Ko is less than a small enough constant determined by m, n, and p, and that
Kj1 < k% for j =0,...,19,

We first describe the construction of @e.

Let T be the tree constructed in the algorithm COMPUTE INTERESTING CUBES.

We initialize Q¢ to be the empty collection. Next, for each cube Q1 € T other
than the root, we perform Steps 0-3 below.

e Step 0: We find the parent Q, of Qg in the tree T.

e Step 1: If 8, < /\*ZOSQZ, then we do the following.
Let Q7" be the dyadic cube with Q1 C Q7" and dquw = A - 8q,. We compute

the function n(Q?p’A)(é) using the algorithm OPTIMIZE BASIS (see Section 1.5).
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We determine whether or not there exists a number 6 € [/\]OéQ, , /\*]OéQZ] with

the property that
el/xs < n(le»A)((S) < €,

If such a & exists, we can easily find one. Moreover, we can then find a dyadic
cube Q such that

1CQCQy, 8/2<60<26 and A'%q, <60 <A '%,.
Q Q1 Q Q2

We add Q to the collection @e. Note that cn(Q1"A)(5) < nf ;JD‘A)(éQ) <
Cn(Q">A)(§), thanks to condition (A3) in the algorithm OPTIMIZE BASIS. Thus,
we can guarantee that

(1.159) [e!/xe <n(Q"A(56)] and [n(Q"A)(8q) < e*¢].
e Step 2: We examine each dyadic cube Q with Q1 € Q C Q2, 8¢ < A0, and

[5Q < /\]OéQ] or 5Q > /\7105Q2].

We compute #(E N % ). This requires work at most Clog N using the BBD

Tree. See Remark 36 in [1].
Let Q"P be the dyadic cube with Q C Q" and dguw = Adg. We determine
whether or not

(1.160) [e'/*5 <1(Q" A (5qu)] and [#(g—zQﬂE) <Torn@A(50) < €.

We add Q to the collection Q. if and only if (1.160) holds.

e Step 3: We examine each dyadic cube Q with Q1 C Q C Q2 and g > A~ '°.
We compute #(E N %Q). This requires work at most ClogN using the BBD
Tree.
For each such Q, we determine whether or not

(1.161) [#(ngE) <1 or nQ@A(50) < e*3].

We add Q to the collection Q. if and only if (1.161) holds.
Finally, we perform Steps 4-6 below.
e Step 4: We check whether or not

(1.162) M (5q0) < ).

We add Q° to the collection Q. if and only if (1.162) holds.
e Step 5: We examine all dyadic cubes Q C Q° such that 5 > A~1°.

We can test whether Q € CZ(A™) by querying the CZ(.A™)-ORACLE on the
center of Q. We add Q to the collection Q. if and only if Q € CZ(A™).

o Step 6: We examine all cubes Q € CZ(A™) such that 6o < A71% and QNE # 0.
Let Q"P be the dyadic cube with Q C Q" and dgu = Adg. We determine
whether or not

(1.163) [e]/Ks S]’](QUP’A)((SQup)].

We add Q to the collection Q. if and only if (1.163) holds.
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This completes the construction of ée. We examined at most C(A)N cubes,
and performed work at most ClogN on each cube. Hence, the computation re-
quired work at most C(A)NlogN in space C(A)N. We later choose A to be a
constant depending only on m, n, and p. We have thus not exceeded the work and
storage guarantees of COMPUTE CRITICAL TESTING CUBES. Moreover, we have
#(Qe) < C(A) - N, which implies condition (b).

If Q belongs to Qc, then Q was chosen in one of the six steps above (not
including Step 0). We will examine the six cases separately and prove conditions (c)
and (d) for the cube Q.

Analysis of Step 1. Suppose that Q was chosen in Step 1. Then Q satis-
fies (1.159).

We use properties (A1) and (A2) of the function n(Q1"4) from the algorithm
OPTIMIZE BASIS.

From (A2) and (1.159), we find that, for any A’ < A, 5(Q}") does not have
an (A',le]m, el/x7, dq)-basis.

Since Q1 C Q are testing cubes, and g > A'%8q,, we have #(3Q NE) >
#(9Qi1 NE) > 2.

Also note that (1+a(A))QJ’NE =3Q NE if A is greater than some constant
determined by m, n, p; see Lemma 14.

Hence, Proposition 12 implies that no cube containing 3Q is tagged with
(A, e!/%#). This proves property (d).

To prove property (c), note that (A1) and (1.159) imply that

o(Q7") has an (A’ xqur, €7, 8q)-basis for some A" < A.

Thus, Proposition 12 shows that (1 + a(A4))Q is tagged with (A, €*8).

Analysis of Step 2. Suppose that Q was chosen in Step 2, and let Q"P be as in
Step 2. Then Q and Q"P satisfy (1.160).

We use properties (A1) and (A2) of the functions 1@ and n(Q™>A) from
the algorithm OPTIMIZE BASIS.

Since Q C Q"P are testing cubes, and dqu = Adq, we have #(EN g—iQup) >
#(EN9Q) > 2 for sufficiently large A.

From (A2) and (1.160), we find that, for any A’ < A, 5(Q"P) does not have an
(A", xqQup, el/xe dqur)-basis. Thus, Proposition 8 implies that no cube containing
3Q" is tagged with (A, €'/*7). In particular, since 3Q"P C 100AQ, we find that
no cube containing 100AQ is tagged with (A, e'/%7). This proves property (d).

From (A1) and (1.160), we find that either #(%Q NE) < 1 or o(Q) has
an (A’,xq, €e"¢,dq)-basis for some A" < A. Thus, Proposition 8 implies that
(1+ a(A))Q is tagged with (A, €*7). This proves property (c).

Analysis of Step 3. Note that (d) holds vacuously for all the cubes Q € Q.
chosen in Step 3, assuming that ¢* < A~10,

As in the analysis of Step 2, (1.161) implies that (1 + a(A))Q is tagged with
(A, e*7). This implies property (c) for any Q picked in Step 3.

Analysis of Step 4. Suppose that Q° was chosen in Step 4. Note that (d) holds
vacuously for Q°.
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As in the analysis of Step 2, (1.162) shows that (1 + a(.A4))Q° is tagged with
(A, €*7). This implies property (c) for Q°.

Analysis of Step 5. We may assume that ¢* < A~'°. Therefore, (c) and (d) are
vacuously true for all the cubes Q € @e chosen in Step 5.

Analysis of Step 6. Suppose that Q was chosen in Step 6. Note that (c) holds
vacuously for Q, since Q € CZ(A™).

Since dgue = Adq, and since Q C Q"P are testing cubes, we have #(E N
SQW) > #(EN9Q) = 2.

By (1.163) and property (A2) of the function n(Q"4) stated in OPTIMIZE
BASIS, we find that G(Q"P) does not have an (A’,xqur, e]/KG,éQup)-basis for any
A’ < A. Then Proposition 8 guarantees that no cube containing 3Q"P is tagged
with (A, €'/%7). Therefore, since 3Q"P C 100AQ, we find that no cube containing
100AQ is tagged with (A, e'/%7). This implies property (d) for Q, and concludes
the analysis of Step 6.

This completes the proof of (¢) and (d) in all cases. An inspection of our
argument shows that we may take ¢* = A~'% and S = 128A.

Next we prove property (a).

Let x € E be given. Consider the finite sequence of cubes Q € T such that

(1.164) X€Qo Q1 & & Qv = Q7%

where Qo € CZ(A™) and Q1 is the parent of Q, in T. (We do not attempt to
compute this sequence.)

We will show that there exists Q' € Q. with Qo € Q' C Qv,...- This will
complete the proof of (a).

Note that one of the following cases must occur.

(A) The first extreme case. For all dyadic cubes Q such that Qo C Q C Qw,,..,
the cube 3Q is tagged with (A, €).

(B) The second extreme case. For all dyadic cubes Q such that Qo € Q C Qv,,...,
the cube 3Q is not tagged with (A, €).

(C) The main case. For some dyadic cube Q such that Qo C Q € Q~,,., we find
that exactly one of 3Q, 3Q™" is tagged with (A, €).

(A) In the first extreme case:
(1.165) 3Q° is tagged with (A, €).

Notice that #(g—iQo NE) =#(E) > 2. From (1.165) and Proposition 8, we see
that 5(Q°) has an (A’,xqe, €', 8qe )-basis for some A’ < A. Then property (A2)
from OPTIMIZE BASIS shows that n(QO’A)(SQo) < €*5. Therefore, we decided to
include Q° in @e in Step 4.

This completes the analysis in the first extreme case.

(B) In the second extreme case:
(1.166) 3Qo is not tagged with (A, €).
If 5, > A~1°, then we decided to include Qg in @e in Step 5.
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Otherwise, suppose that dg, < A0,

Let Qp” be a dyadic cube with Qo C Qp” C Q° and dqur = Adq,.

Note that 3Qo C (1 + a(A))QpP, if A is sufficiently large. Then (1.166) and
Lemma 28 from [1] imply that (1+a(A))QpP is not tagged with (A, €'/<1). Hence,
Proposition 8 shows that

G(Qp") does not have an (A’ xque, e]/KZ,éQgp)-basis for any A’ < A.

Thus, property (A1) from OPTIMIZE BASIS shows that n(Qgp’A)(éQgp) > el/xs,

Therefore, we decided to include Qg in @e in Step 6. (Recall that x € Qo, hence
ENQo #0.)

This completes the analysis in the second extreme case.
(C) In the main case: Exactly one of 3Q, 3Q™" is tagged with (A, €), thus

(1.167) 3Q is tagged with (A, €°) (see Lemma 28 from [1]),
and
(1.168)  3Q™ is not tagged with (A, e'/*°) (again, see Lemma 28 from [1]).

We now consider three subcases of the main case.

(C1) The geometrically interesting (“GI”) subcase: For some v,

(1.169) Qv C Q C Qvs1, [6g <A'8q, ordg >A"%q, ], and g < A'°.
(C2) The geometrically uninteresting (“GUI”) subcase: For some v,

(1.170) Qv CQC Qvirand A% g, <8g <A '5q, .

(C3) The near-mazimal (“NM”) subcase:

(1.171) 5o > A'°.

(C1) First consider the GI subcase.
From Proposition 8 and (1.167) we see that

65 _
#(aQ N E) <1 or o(Q) has an (A’,xq, €', 8q)-basis for some A" < A.
Thus, by property (A2) from OPTIMIZE BASIS,
65 (Q.4) s
(1.172) #(anE) <1 or n@A(54) < €.
Pick Q"P (dyadic) such that Q € Q" C Q° and dqu = Adg. (Recall that

5qg < A'0) Then 3Q" C (1+ a(A))QUP, assuming that A is sufficiently large.
Thus, (1.168) shows that

(1+ a(A))Q" is not tagged with (A, e'/*1) (see Lemma 28 from [1]).
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Therefore, Proposition 8 gives that

5(Q"P) does not have an (A’,xque, €'/*2, 8qup)-basis for any A" < A.
Hence, using property (A1) from OPTIMIZE BASIS,
(1.173) n( Q™A (§qup) > e!/*s

From (1.172) and (1.173), we see that Q was included in Q. in Step 2. This
completes the analysis in the GI subcase.

(C2) Next consider the GUI subcase.

Since Qv C Q are testing cubes, and 5g > A'%q,, we have #(EN3Q) >
#(EN9Q,) > 2.

Let QV” denote the dyadic cube with Q C Q3 and dquwr = A -3¢,

Note that (1+ a(A))QY’ NE =3QNE, as long as A > C for a large enough
universal constant C (see Lemma 14).

From Proposition 12 and assumption (1.167) (from the Main Case), we see that

G(QYP) has an (A',xque, €', 8q)-basis, for some A" < A.
Hence, condition (A2) in the algorithm OPTIMIZE BASIS implies that
(1.174) N A (5q) < e*s.

Let Q" be a dyadic cube with Q € Q'Y C Qy41 and dgu = A -dg. Such
a dyadic cube exists because we are assuming that 6g < /\*]OSQH,. Then (1 +
a(A))QYY NE =3Q"P NE thanks to Lemma 14.

For large enough A, we have 3Q* C (1 + a(A))Q"P. Thus, Lemma 28 from [1]
and (1.168) imply that (1 + a(A))Q"P is not tagged with (A, e!/*1). We apply
conclusion (A) in Proposition 12 to the testing cubes Q¥ C Q"P in order to deduce
that

G(QYP) does not have an (A, xqur, G]/Kz,éQup)—baSis, for any A’ < A.

Thus, property (A1) from OPTIMIZE BASIS shows that n(Qv"A) (§qu) > e1/%3,
Moreover, property (A3) from OPTIMIZE BASIS implies that n(Qv ’A)(éQup) <
C(AM(Q"A) (8q), hence we have

(1.175) N A (§5q) > /s,

We are assuming that §q € [A1%8q,,A" 1%, ,,] (from the GUI subcase).

Hence, from (1.174) and (1.175), we see that in Step 1 we included in Q. a dyadic
cube Q' such that Qv € Q' C Qv41. This completes the analysis in the GUI
subcase.

(C3) Finally, consider the NM subcase.
From Proposition 8 and (1.167) we have

#(%Q N E) <1 or o(Q) has an (A’,xq, €', 8q)-basis for some A’ < A.
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Then property (A2) from OPTIMIZE BASIS implies that

65
(1.176) #(anE) <1 or n'@A(50) < €.

Thus, we included Q in @e in Step 3. This completes the analysis in the NM
subcase.

Thus, in all the cases, we see that there exists Q' € Q. with Qo C Q' C Qvpes
where Qg is the unique cube in CZ(.A™) containing the point x € E . As mentioned
before, this completes the proof of (a).

We fix a large enough constant A = 2J > 1, depending only on m, n, and p.

This completes the explanation of the algorithm COMPUTE CRITICAL TESTING
CUBES. O

1.6.2. Lengthscales. With the algorithm COMPUTE CRITICAL TESTING CUBES
from the previous section, we compute a collection Q. consisting of dyadic sub-
cubes of Q°. We proved that each point of E belongs to a cube in Q.. Applying the
algorithm PLACING A POINT INSIDE TARGET CUBOIDS (see Section 4.1.5 of [1]),
we obtain the following algorithm.

ALGORITHM: COMPUTE LENGTHSCALES

For each x € E we compute a cube Qy € @e containing x. This requires work
at most CNlog N in space CN.

We write ¢* > 0 and S > 1 for the universal constants from the algorithm
COMPUTE CRITICAL TESTING CUBES. The conclusion of this algorithm implies
the next result.

Proposition 13. For each x € E, the following properties hold.

(LS1) Suppose that Qy strictly contains a cube of CZ(A™). Then (1 + a(A))Qx
is tagged with (A, €*).

(LS2) Suppose that dg, < c*. Then no cube containing SQx is tagged with
(A, el/<).

Here, k > 0 is a small universal constant.

1.7. Passing from lengthscales to CZ decompositions
For each x € E we compute the sidelength
(1.177) Au(x) =0q,.

Here, we compute the cube Qy using the algorithm COMPUTE LENGTHSCALES.
Recall that x € Q« for each x € E. Since Qx C Q°, we know that

(1.178) A4(x) € (0,1] for all x € E.

Let Q C Q° be a testing cube. We say that Q is OK(.A) provided that either
Q € CZ(A™) or Aug(x) > Kbdq for all x € EN 3Q, where we set K := 107 /a(A).
Recall that we have defined the constant a(A) in equation (1.147). In particular,
since a(A) < 1, we see that K > 1.
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We define a Calderén—Zygmund decomposition CZ(.A) of the unit cube Q° to
consist of the maximal dyadic subcubes Q C Q° that are OK(.A).

We will prove properties (CZ1)—(CZ5) in the main technical results for A.
We refer the reader to Section 3 of [1] for the statements of (CZ1)—-(CZ5), which
are a component of the main technical results.

First, however, we produce a CZ(.A)-ORACLE as described in Section 3 of [1].
The decomposition CZ(.A) coincides with the decomposition CZpe, from Sec-
tion 4.6.3 in [1], where we use CZoq = CZ(A") and A(x) = Aa(x)/K in the
notation therein. Note that A(x) € (0, 1] for each x € E, hence we have proven the
assumptions in Section 4.6.3 of [1]. The GLORIFIED CZ-ORACLE coincides with
the CZ(A)-ORACLE described in Section 3 of [1].

Proposition 14. The collection CZ(A) is a partition of Q° into pairwise disjoint
dyadic subcubes.

Proof. Each point x € Q° belongs to some cube Q¢ € CZ(A™). Note that Qo is
OK(A), and hence Qg is contained in a maximal dyadic subcube Q C Q° that is
also OK(A). Thus, each point x € Q° is contained in some cube Q € CZ(A).
Any two distinct cubes Q,Q’ € CZ(A) are dyadic, hence either Q,Q’ are
disjoint or one of Q,Q’ contains the other. The latter case cannot occur, by
definition of CZ(.A). It follows that the cubes in CZ(.A) are pairwise disjoint. O

Our previous decomposition CZ(A™) clearly refines CZ(A). This establishes
property (CZ5) for A. We now prove the remaining properties (CZ1)—(CZ4).
We prove property (CZ1) in the next result.

Proposition 15. The cubes in CZ(A) have good geometry.

Proof. For the sake of contradiction suppose that there are cubes Q,Q’ € CZ(A)
such that Q &> Q' and 8 < 18q. It follows that 3Q™ C 3Q".

First, suppose Q' € CZ(A™~). Since CZ(A™) refines CZ(.A), there exists a cube
Q" € CZ(A™) with Q” € Q and Q” «» Q'. Note that 5g» < 8g < $8q’. But
this contradicts our assumption that the cubes in CZ(A™) satisfy good geometry.

Next, suppose Q' ¢ CZ(A ™). By definition of CZ(A) we know that Q" is not
OK(A), hence there exists x € EN3Q" with Ay(x) < Kdg+. Thus, x € EN3Q’
and A4(x) < Kdg/. Since also Q' ¢ CZ(A™) we see that Q' is not OK(A). But
this contradicts our assumption that Q' € CZ(A). O

Proposition 16. There exists a universal constant c,. > 0 such that, for any
Q € CZ(A), the following conditions hold.

(a) If Q is not c.-simple then 3Q is tagged with (A, e").

(b) If 8q < ¢4 then WQ is not tagged with (A, e'/*).

Here, k > 0 and W € N are universal constants.

Proof. We choose c, much smaller than the constant ¢* from Proposition 13.

_ We now prove (a). Assume that Q € CZ(.A) is not c.-simple. Then there exists
Q € CZ(A™) with Q C 2—2Q and &5 < ¢.0q. For small enough c, this implies
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that 9Q C 3Q. Recall (1.6), which implies that 9Q N E # ), hence 3Q NE # (). We
fix x € EN3Q.

We have 8q, = Aa(x) > Kdq with K = 107 /a(A), because Q is OK(A) and
Q ¢ CZ(A); see also (1.177).

For any y € 3Q we have [y —x| < 38q < 28q,, because x € 3Q. Moreover,
[x —xq,| < $8q., because x € Qx. (Recall that xq, is the center of Qx.) Thus,

13 1
— < | = —_ < — .
ly—xq.l < [2 + K}5QX <50 +alA)sq, foranyye3Q

(Here, we use that K =10 /a(.A).) Hence,
(1.179) 3Q € (T4 a(A))Qx.

(Recall that we are working with the {*° metric.)

We now prove that Qy strictly contains a cube of CZ(A™). Assume for the sake
of contradiction that Qy is contained in a cube in CZ(.A™). (For a dyadic cube this
is the only alternative.) Since Qy is a testing cube, it follows that Qx belongs to
CZ(A7); see Section 1.4.3 where the definition of a testing cube is given. Thanks
to (CZ5), we know that CZ(A~) refines CZ(.A). Hence, there exists Q € CZ(A™)
with Q C Q. From (1.179) we have

QC3QC (1+alANQy € g Qx.

We know Q and Qy are members of CZ(A~), which has good geometry, hence
we can apply Lemma 46 from [1] to learn that %5@ < dq, < 205. (The good
geometry of CZ(A ™) ensures the hypotheses of Lemma 46 are valid with y = 1/8.)
Hence, because the cubes in CZ(A™) are pairwise disjoint and dyadic, we must
have Qx = Q Thus, we have

(1+ alA))Qx € 3Q C 3Q.

However, this contradicts (1.179). This completes the proof that Qy strictly con-
tains a cube of CZ(A™).

Hence, from (LS1) in Proposition 13 we deduce that (14 a(A))Qx is tagged
with (A, e*); hence, 3Q is tagged with (A, e*’) for some universal constant k’,
thanks to Lemma 28 from [1] and (1.179). This completes the proof of (a).

We now prove (b). Let S be the universal constant in Proposition 13. Assume
that Q € CZ(.A) satisfies g < c,.

Since Q" is not OK(A), there exists x € EN3Q™" such that

dg, = Ay(x) < Kég+.

Hence, because x € Qx and x € 3Q™, we have SQ, C WQ for a large enough
integer constant W > 1 depending only on K and S. Recall that K = 107 /a(A) is a
universal constant. Hence, we can choose W to be a universal constant. Therefore,
dg, < %6(2 < %c* < c¢*. Here, we assume that c, < %c*.
From (LS2) in Proposition 13 it follows that WQ is not tagged with (A, e'/%).
This completes the proof of the proposition. O
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We have proven (CZ2) and (CZ3) in the main technical results for A, where
we set

e (A) = c./2,

S(A) =W,
(1.180) er(A) = €1/K,

e2(A) =€~

Here, k and W are as in Proposition 16. Note that (CZ4) holds vacuously, since
we are assuming that A # M. We have thus proven (CZ1)—(CZ5) for the label A.
We will later pick € to be a small enough universal constant, at which point €7 (.A)
and €5 (A) will be determined once and for all.

We let CZmain(A) denote the collection of all cubes Q € CZ(A) that satisfy
2—2Q NE # (). We note that the collection 2—2Q : Q € CZ(A)} has bounded overlap,
thanks to the good geometry of the cubes in CZ(A) (see Lemma 15). Hence,

(1.181) # (CZmain(A)) < C-N.

1.8. Completing the induction

In the previous section, we defined a decomposition CZ(A) and gave a CZ(.A)-
ORACLE. Here, we construct the remaining objects in the main results for A.

We first compute a list of all the cubes Q in CZpain(A). We just list all the
cubes Q € CZ(A) for which EN 2—2Q # (). This requires the algorithm FIND
MAIN-CUBES from Section 4.6.4 of [1].

We now show that for each Q € CZumain(A) we can efficiently collect all the in-
gredients we need to compute the assists, functionals, and local extension operator
relevant to Q, A.

Recall the notion of supporting data associated to a testing cube; see Sec-
tion 1.4.5.

ALGORITHM: PRODUCE ALL SUPPORTING DATA

We produce the supporting data for each cube Q in CZmain(A), using work at
most CNlog N in space CN.

Ezplanation. We produce the cubes Q, Qsp, Q7 and the pairs of cubes (Q’, Q")
that arise in (SD1)~(SD5) in Section 1.4.5 for some testing cube Q € CZmain(A).

For each Q € CZupain(A™), we apply the CZ(A)-ORACLE to find the cube
Q € CZ(A) that contains Q, as well as all the cubes Q’ € CZ(A) such that
Q’ & Q. For each such Q (or Q’), we check whether Q (or Q') appears in the
list CZmain(A); if it does, then we check whether Q C (1 + tg)Q (or (1+ tg)Q’).
If so, then we add the cube Q to the list of cubes in (SD1) relevant to the testing
cube Q (or Q’)

Similarly, for each pair (Q’, Q") € CZ(A~) x CZ(A~) such that Q' +» Q” but
K(Q') #K(Q") (the “border disputes”), we look for all possible Q € CZmain(A)
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such that (Q’, Q") arises in (SD2) for the testing cube Q That is, we look for all
the Q € CZmain(A) such that Q' C (1+t)Q and 8¢/ < tadgp.

To find all the Q as above, we need only search among the cubes Q’ = the cube
of CZ(A) containing Q’, and the cubes of CZ(A) that touch Q’. We obtain all
those cubes by making at most C calls to the CZ(.A)-ORACLE and doing additional
work at most C. R

We check each Q obtained as above to see whether Q € CZpain(A), and if so
whether also Q has the desired relationship with Q’. For each surviving Q, we
add (Q’, Q") to the list of cubes in (SD2) relevant to that Q.

To find all the Q € CZ(A™) that arise in (SD3), we loop over all the Q €
CZmain(A). For each fixed Q, we examine all the dyadic cubes Q C (1 + tg)Q
such that 8g > t& 8g- (There are only C such Q.) We test Q to see whether it
belongs to CZ(A™); 1f so, then we add Q to the list of cubes in (SD3) relevant
to Q R

For the supporting data in (SD4), we can loop over all Q € CZyain(A). For
each such Q, we can just take Qgp to be the CZ(A™)-cube containing the center
of Q

Finally, we loop over all keystone cubes Q% of CZ(A~). For each such Q7 we
look for all the Q € CZuyain(A) such that S$;Q# C (65/64)Q.

To find all the Q as above, we need only search among the cubes Q = the cube
of CZ(A) containing Q#, and the cubes of CZ(.A) that touch Q' We obtain all
those cubes by making at most C calls to the CZ(.A)-ORACLE and doing additional
work at most C. R

We check each Q obtained as above to see whether Q € CZpain(A), and if
so whether also Q has the desired relationship with Q#. If those conditions are
satisfied, then we add Q7 to the list of cubes in (SD5) relevant to Q.

Once we have carried out the above, then for each Q € CZmain(A), we have a
list of all the cubes Q, Qsp, Q7 and of all the pairs of cubes (Q’, Q") relevant to
the supporting data (SD1)—(SD5) for the given Q Again, see Section 1.4.5.

This uses work O(NlogN) in space O(N). This completes our explanation of
the algorithm PRODUCE ALL SUPPORTING DATA. O

Next, we define
0Q A [X(EQnB]  and 2Q4c [X(EQND 8P|,

and also a linear extension operator T(Q,A) : X(g—i@ NE)® P — X for each

Q € CZmain(A). We will prove that these objects satisfy the properties laid out
in the third, fourth and fifth bullet points in the main technical results for A (see
Section 3 in [1]).

For each Q € CZmain(A), we can define

Mg(r,P) = (3 |£(f,P)|p>1/p.

£€=(Q,4)
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We need to prove the estimates in the fourth bullet point in the main technical
results for A. These estimates are

(1.182) (P4 aga
(1.183) Mg

Recall that a testing cube Q is called A-simple if for every Q € CZ(A~) with
Q C 2—2(5 we have g > A - 6@. We can determine whether a given cube Q is
A-simple using work at most C(A), and at most C(A) calls to the CZ(. A~ )-ORACLE.
Here, C(A) is a constant depending only on A and n.

Let ¢, be the universal constant in Proposition 16.

We loop over all the cubes Q € CZyain(A). We can determine in time O(log N)
whether Q is c.-simple. (Recall that a call to the CZ(.A™)-ORACLE requires work
O(log N).) The body of our loop separates into two cases depending on the result
of the test.

1.8.1. Case I: Non-simple cubes. We suppose Q € CZmain(A) is not c.-simple
(the non-simple case). We will explain how to construct the objects in the main
technical results for A relevant to Q

We have already computed the supporting data for all the cubes in CZp,in (A).
By executing the algorithms COMPUTE NEW ASSISTS and COMPUTE NEW AS-
SISTED FUNCTIONALS (see Section 1.4.5), we can compute

*

(a) A list of assist functionals: Q (Q) [ (E N (65/64)(5)] (see (1.79)), and

(b) A list of assisted functionals: Q) [X(EN (65/64)@) & P]*.

(
Each functional & € (Q) has Q(Q) assisted bounded depth, and is written in

short form in terms of the assists

Q(Q).
We define _Q(Q A) = (Q) (Q A) = E(Q), and
)= ( 3 Il )

£e=z(Q

We now prove the estimates (1.182) and (1.183).

The estimate (1.182) is a direct consequence of the unconditional inequality in
Proposition 7. R R

Since Q € CZmain(A) and Q is not c.-simple, we know that 3Q is tagged
with (A, e*) (see Proposition 16). We may assume that e < ep, with €o as in
Proposition 7. Thus, 3(5 is tagged with (A, €9). Hence, the conditional inequality
in Proposition 7 implies the estimate (1.183).

Next, we estimate how much work and storage are used to compute the lists
Q(Q,A) and Z(Q, A) for all the non-simple cubes Q € CZpain(A). We will prove
that the total work is at most CNlog N and that the storage used is at most CN.

We examine the algorithms COMPUTE NEW ASSISTS and COMPUTE NEW AS-
SISTED FUNCTIONALS (see Section 1.4.5). We see that we can compute all the lists
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.O.(Q,A) and E(Q,.A) for all the non-simple cubes Q € CZmain(A), using total
work at most

Y {wi(Q +w(Q)}

QECZumain(A)

<logN - Z {1 + Z [ Z depth(w) + #(E(Q,Af))}

QECZumain(A) QECZmain(A ) WEQ(Q,A7)
QC(1+t6)Q

+ Z Z depth(w)

keystone Q% €CZ(A ™) wEQeW(Q#)
$1Q*CgQ

+#{(QI,QN) €eBD(A): Q/ c (1 +tG)Q, 5Ql < tgéé}}.

~

See (1.80), (1.82), and (1.83), for the definitions of the quantities 207(Q) and
QHZ(Q). Recall that tg is now a fixed universal constant, and so C(tg) in (1.83)
is a universal constant C.

Each cube Q in CZuyain(A7), each keystone cube Q7 € CZ(A~), and each
pair (Q’, Q") € BD(A™) participates above for at most C distinct Q in CZ(A).
This follows because the collection {(65/ 64)(5 : Q € CZ(A)} has bounded overlap,
which follows from the good geometry of CZ(A). Thus, by reversing the order of
summation in the above expression, we see that the total work is bounded by

c1ogN[#(czmm(A))+ S| X depthw)+#(EQ AN

QECZmain (A7) weO(Q,A)

+ > > depth(w) +#(BD(A))}

keystone Q#€CZ(A ) weQrew (Q#)

According to the main technical results for A~ and (1.181), the sum of terms
inside the curly brackets in the first line above is bounded by CN. According to
the algorithm MAKE NEW ASSISTS AND ASSIGN KEYSTONE JETS in Section 1.4.1,
the term on the second line above is bounded by CN. According to the KEYSTONE-
ORACLE, the term on the last line above is bounded by CN. Hence, with work at

~ ~

most CNlog N, we can compute the lists Q(Q) and =Z(Q) for all the non-simple
cubes Q € CZmain(A).
Similarly, we see that the computation of the lists _O.(Q) and E(Q) for all the
non-simple cubes Q € CZmain(A) requires space at most CN.
Next, we explain how to define a linear extension operator associated to a
non-simple Q € CZmain(A) as in the main technical results for A.
We define the map Ty« X(EN g—i@) @& P — X as in Proposition 3, and set
@4 = Ta-
We perform the one-time work of the algorithm COMPUTE NEW EXTENSION OP-
ERATOR (Section 1.4.5). We thus obtain a query algorithm for Ts. Given x € Q°,

T
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we can compute a short form description of the the Q(Q)—assisted bounded depth
linear functional

(f,P) — 0P []XTQ(f, P)](x)  for every B € M.

This computation requires work at most Clog N per query point.
Proposition 3 states that TQ(f, P)=fon (1+a(A))QNE, and

||TQ(f)P)Hx((1+a(A))Q) + ||TQ(f»P) - P||Lr’[(1+a(A))Q) <C- MQ(f,P)

for any (f,P) € X(g—i(/j NE) @ P, where

MoltP = ( 3 |£(f,P)|p)1/p.
£€Z(Q)

This proves (E1) and (E2) in the main technical results for A.
We have thus treated all the non-simple cubes in CZain(A).

1.8.2. Case II: Simple cubes. We suppose that Q € CZmain(A) is c,-simple.
We will explain how to construct the objects in the main technical results for A
relevant to Q.

We have computed lists Q(Q,.A7) and Z(Q,.A™) of linear functionals on X(EN
(65/64)Q) and X(E N (65/64)Q) @ P, respectively, for each Q € CZpyain(A~). See
the main technical results for A~. Each functional in Z(Q,.A7) has Q(Q,.A™)-
assisted bounded depth and is given in short form.

From (1.19) and (1.20), we know that

1/p
(1.184) M. (f,R) = ( 3 |£(f,R)|p)
£€Z(Q,A)
satisfies
(1.185) ¢ [[(f,R)[[1+a)Q < M(q,ua)(f,R) < C-[|(f,R)][ &3 -

Here, a := a(A™) € (0,1/64] is a universal constant in the main technical results
for A™.
Recall that we have fixed a universal constant tg € (0,1/64] satisfying (1.90).
We define

0(Q, A) = U Q@A) and Z(Q,A) = U 2(Q, A7).
QECZmain(A7) QECZmain(A )
QC(1+tc)Q QC(1+tc)Q

Each Q € CZuyain(A™) participates in the above union for at most C distinct
Q € CZmain(A). This is a consequence of the bounded overlap of {g—iQ :Q e
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CZmain(A)}, since tg < 1/64. We can thus compute the lists .O.(Q,A) for all
c.-simple cubes Q € CZuain(A), using work at most

C- depth(w) < CN,
> >

QECZmain (A7) weQ(Q,A)
and we can compute the lists E(Q, A) for all c,-simple cubes Q € CZmain(A), using

work at most
c. >  {1+#[EQA]}<CN
QeCZmain(AT)

(The upper bound by CN on these sums is stated in the main technical results
for A7) We do not attempt to remove duplicates from the lists Q(Q,A) and
E(Q, A), which are computed simply by copying.

When we copy the functionals in the list Q(Q,.A7), for Q € CZpain(A),
QcCc (1+ tg)Q, into the list Q(Q,A), we mark each functional in Q(Q,.A7)
(Q € CZmain[A7), Q C (1 +tg)Q) with a pointer to its position in the list

(Q A). This requires total extra work at most CN.

Each functional & € (Q A) has Q(Q A~ )-assisted bounded depth for some
Q € CZpain(A™) with Q € (1 + tg)Q hence & has Q(Q,A)-assisted bounded
depth, because Q(Q,.A7) is a sublist of Q(Q,A). We can compute a short form
of & in terms of the assists Q(Q,A) by using the pointers from Q(Q,.A™) into
Q((AQ, A) (see Remark 4). This requires a constant amount of work per functional &.
We assume that this work was carried out when we formed the lists E(Q, A).

We fix Q € CZmain(A) such that Q is c,-simple.

As in the main technical results for A, we define

(1.186) [Mg (P = > [E(f,P)P = > Mg, (f,P)]".
£€2(Q,A4) QECZmain(A )
Qc(+t5)Q

We next define an extension operator T(Q A X(EN (65/64)(5) ®P — X. We
follow an argument in Section 1.4.5.
We define the covering cubes

Icov —{QGCZ( ) QC(]‘I'tG)Q}

Thanks to our assumption (1.90), we can choose a universal constant ayew =

Qpew (tg) satisfying the conclusion of Lemma 11. Hence, since Q is a testing cube,
we obtain the following:

Covering property: The cube (1+ anew)(/j is contained in the union of the cubes
(1+ a/2)Q over all Q € CZ( A7) such that Q C (1 +tg)Q.
Recall that we have defined a(A) = apew in (1.147).
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We pick cutoff functions 98 € C™(R"), for each Q € ICOV(Q), with

ZAe

QEZcov (Q)
supp(eg) C (1+a)Q and |8°‘68| <C- 66‘“' for @] < m, and

O

=Tlon(1+ anew)(/j,

(1.187)
68 = 1 near xq, and 68 = 0 near xq- for each Q' € Teor (Q) \ {Q).

For each Q € ICOV(Q) we define

Q. J Tigua)(f,P), SQNE#D
(1.188) Fa ._{ P i 6654Q0E Py

We define a linear map T(Q A" X(E 6—4(5) @® P — X by the formula

QO

-0

Qo

(1.189) Tow(HP):= )  F

Q€EZeov(Q)

(Compare to (1.98).)
Here, the maps T(g,4) are as in the main technical results for A™; see Sec-
tion 3 in [1]. Bach T(g, 4 has Q(Q,.A7) assisted bounded depth, hence Tig, 4

has Q(Q A)-assisted bounded depth, since by definition Q(Q,.47) is a sublist of
Q(Q, A) for each Q € Teoy (Q).

Therefore, each T( 0,4) has Q(Q,A)—assisted bounded depth. We also give

a query algorithm for T(Q,A): Given x € Q°, we compute the map (f,P) —

]&T@ A)(f,P) in short form in terms of the assists _O.(Q, A). We leave details
to the reader.

Proposition 17. Let (f,P) € X(—i@ BE)@®P. Set @ = apew- Then the following
properties hold.

* Tg(fP)="Fon(l +@)QNE.

<CM

° HT 7mHT(Q A (f,P)—P||me+a)Q) =

@4 B Px0a) 1+ (f, P).

(Q,A)

Proof. The proof is analogous to the proof of Proposition 3, except much easier.
We spell out the details.
The definition of the linear map in (1.189) is the same as that in (1.98), except

that the polynomials RS used in the functions F8 in (1.95) are replaced by P

(compare (1.95) and (1.188)). Thus, to prove our proposition, we may follow
parts of the reasoning in the proof of Proposition 3, as long as we substitute Rg
everywhere with P.
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The functions F8 in (1.188) satisty

Fg:f on(1+a)QNE

(1.190) IFSllxc(1+a)) + 8Q™IFS = PllLe((1+a)q)
< | CMq,a(f,P), f§5QOE7£Q]
0, if

2QNE=0.
This follows from the main technical results for A~.

Thus, the function T o, A)(f, P) defined in (1.189) satisfies the first bullet point

of Proposition 17. This is a consequence of the first and second conditions in (1.187),
and the first condition in (1.190).

We now prove the second bullet point of Proposition 17.

Let G = T(Q‘A)(f,P). A

The equation (1.101) holds in the present setting if we replace Rg with P,
for the same reason as before. (Here, we use the Covering property.) Moreover,

when we replace Rg with P, the term A, (f,P) vanishes. Thus, we have

P < _ P

Q€EZeov(Q)

2 QNE#AD
By definition, the right-hand side is equal to [M(Q,A)(f’ P)]p (see (1.186)). Thus
we have proven

IGlx(14ma) < C- Mg (FP)-
It remains to show that |G — P||]_pm+a)(§) § C- M(QyA)(f,P). We proceed

directly without referring to the previous arguments. Using (1.189) and the first
condition in (1.187), we have

G—P= Z 0

QEZeov (Q)

o)}

(FE=P) on(1+a)Q.

Recall that 98 is supported on (1 + a)Q and |9 | < C (see (1.187)). Since Q is
c.-simple, at most C cubes Q contribute to the above sum, and 0q > C*(SQ for
each Q. Hence,

MG =PI, (hme) S€ 2 BTIFS =Pl (1w

Q€Zeov(Q)
Hence, using (1.190), we have

- P P

A) m”G_PHEp((]JrE)Q) <C Z - [M(Q,A*)(fyp)] =C- [M(Q7A)(fap)] .
QE€Zeov (Q)

This completes the proof of the second bullet point in Proposition 17. )
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Lemma 15. We have
clltf, P14 apenr@ = Mg, (HP) < ClI(E P52 5-

Proof. The inequality ||(1‘,P)||(]JrCln o < CM o, A)(f,P) is an easy consequence
of Proposition 17 and the definition of the trace seminorm. Thus, the only task is
to prove the second inequality, M (f P) < C||(f,P) ||@

= Q

First, the upper bound in (1. 185) 1mphes that

MgaBPI"<C 3 0P,

Q€CZmain(A )
QC(1+tg)Q

Since Q is c.-simple, each cube Q relevant to the above sum satisfies dg 2 c*éA

Moreover, Lemma 11 implies that ZQ C Q for each relevant Q; recall (1. 90)

Hence, each term ||(f, P)||s2 ¢ is bounded by ClI(f,P)]|les o thanks to Lemma 14
ez Q

in [1]. Moreover, the number of terms is at most a universal constant, hence

M g1 (FP) < CI(F,P) 65 -
4

Q, A)(
This completes the proof of the lemma. O

We have produced lists .O.(Q,A) and E(Q,A), and we have defined a linear
map T(Q A) that satisfy the conditions in the main technical results for A (see

Section 3 in [1]), for every Q € CZmain(A) that is c,-simple. We have remarked
that one can easily produce a query algorithm for T(Q A We have performed

these computations using work at most CNlog N in space CN.
We have thus treated all the simple cubes in CZ,in(A)

1.8.3. Closing remarks. All the previously defined objects satisfy the condi-
tions set down in Section 3 of [1] with many of the constants depending on €, and
with €2 (A) = e*, e1(A) = e€'/%. We have computed a list of assists Q(Q,A), and
a list of assisted functionals E(Q, A), and we have given a query algorithm for a
linear map T(Q,A) for each Q € CZmain(A), using one-time work at most CN log N
in space CN. In particular, the bound on the required space implies that

> > depth(w) < CN, and

QECZmain(A) wEQ(Q,A)

> #[EQ,A)] <CN.

QECZumain(A)

We now fix € to be a universal constant, small enough so that the previous
results hold. That completes the induction step, and thus we have achieved the
main technical results for A.
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2. Proofs of the main theorems

2.1. Extension in homogeneous Sobolev spaces

In this section we prove our main theorem concerning homogeneous Sobolev spaces
X =L"™P(R") (p > n), which reads as follows.

Theorem 1. Let E C R™ satisfy N = #(E) > 2.
We produce lists Q and =, consisting of functionals on X(E) = {f : E — R},
with the following properties.

e The sum of depth(w) over all w € Q is bounded by CN. The number of
functionals in = is at most CN.

e Fach functional & in = has Q-assisted depth at most C. The functionals in
Q and = are represented in their short form.

e For all f € X(E) we have

1/p
cllfllxe) < [Z|5(f)|p} < C|lfllx(e)-
&€=

Moreover, there exists a linear map T : X(E) — X with the following properties.
e T has Q-assisted depth at most C.

o Tf=f on E and ||Tf|x < C||f||x() for all f € X(E).

o We produce a query algorithm that operates as follows.

Given a point x € R™, we compute a short form description of the Q-assisted
bounded depth linear map X(E) 3 f — Jx (Tf) € P using work and storage at
most Clog N.

The computations above require one-time work at most CNlog N in space CN.

By translating and rescaling, we may assume without loss of generality that
E C $5Q°, with Q° =[0,1)™.

We deduce Theorem 1 from the main technical results for A = (). Recall that
we have achieved the following (see Section 3 in [1]).

e There is a decomposition CZ of Q° into dyadic cubes. Every point x € Q°
belongs to a unique cube Q4 € CZ.

e We produce a CZ-ORACLE.

The CZ-ORACLE accepts a query point x € Q°. The response to a query x

is the list of all Q € CZ such that g—iQ contains x. The work and storage

required to answer a query are at most Clog N.
* IfQ,Q’ € CZ and Q «» Q’ then +8g < 8qg/ < 28q.

e Each point x € R™ is contained in at most C of the cubes g—iQ, Qe CZ.
(This is an easy consequence of the previous bullet point.)
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e If Q € CZ and 6g < c, then SQ is not tagged with (0, e7).

Recall that any cube is tagged with (0, €1); see Remark 20 in [1]. Thus, we
learn that 8g > ¢, for each Q € CZ. In particular, the cardinality of CZ is
bounded by some universal constant C.

Next, we recall the various assists, functionals and local extension operators
described in the main technical results.

For each Q € CZ with g—iQ NE # 0, we compute a list of assists Q(Q)
and assisted functionals Z(Q) C [X(E NneQ) @P]*. Each & in Z(Q) has

o
Q(Q)-assisted bounded depth. We have
(2.1) D> &P <cC. 16, PIs -
£€Z(Q)

We compute these lists of functionals using one-time work at most CNlog N
in space CN.

We also define an Q(Q)-assisted bounded depth linear map Tq : X(%Q N

E) ® P — X such that

(2.2) To(f,P)=f onEN(1+a)Q

and

(2.3)

HTQ(faP)|‘§((1+a)Q) + 56mp||TQ(faP) - PHlEP((]Jra)Q) <C: Z &, P)[P.
£€Z(Q)

Given a query x € Q°, we can compute the linear map (f,P) — JxTo(f,P)
in short form in terms of the assists Q(Q), using work at most Clog N.

This completes the description of the objects from Section 3 in [1].

We list the cubes in CZ with the following procedure. For each x € (c,/10)Z™N
Q°, we use the CZ-ORACLE to list all the cubes Q in CZ such that x € %Q. Each
Q € CZ contains at least one point in (c./10)Z™ N Q° (because Q C Q° and
dg > c4), hence each Q € CZ arises in an aforementioned list for some x. We
concatenate these lists and then sort the resulting list to remove duplicate cubes.

We now construct a suitable partition of unity adapted to the decomposi-
tion CZ. Let a:= a(A) with A =0, as in Section 3 of [1]. Recall that

(2.4)

0<a<l/64.

For each Q € CZ, let éQ € C™(R™) be a function such that
1. O§§Q§1OHR”,

2. 8g >1/2 on Q,

3. §Q = 0 outside (1 + a)Q,

4.

10PBg (x)| < C for x € R™, |B| < m.
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Also, let 1: [0,00) — R be a C™ function such that
1. n(t)>1/4 for t >0,
2. n(t)=tfort>1/2,

3. [(d/dt)*n(t)| < Cfort >0, k <m.

We can satisfy these conditions by choosing 5Q and N to be appropriate spline
functions. We assume that the following queries can be answered using work at
most C.
ALGORITHM: COMPUTE AUXILIARY FUNCTIONS

Given Q € CZ and x € R™, we can compute the jet Iz(éQ)' Given t, > 0 and

an integer 0 < k < m, we can compute dtk 2(ty).
For each Q € CZ we define

00 (x)
GQ(X):T]OQW(X), where W(x Z GQ

QeCz

Clearly, we can answer the following query using work at most C.

ALGORITHM: CoMPUTE POU2.

Given Q € CZ and x € R™, we compute the jet Jx(0q).

By examination of the proof of Lemma 48 in [1], we can prove the following
properties.

1. 8g € C™(R™) is well-defined, by property (1) of éQ and property (1) of 1.
2. 0 = 0 outside (14 a)Q, by property (3) of éQ.
3. [0%0q(x)] < C for x € R™, |af < m, by property (4) of éQ and properties

(1),(3) of n.
4. Z 0 =1 on Q°.
QeCz
To prove property (4), recall that the cubes in CZ cover Q°. Hence, properties (1)
and (2) above imply that W(x ZQGCZ GQ( x) > 1/2 for x € Q°. Hence, prop-

erty (2) of n implies that n o‘l’( ) =W(x) for x € Q°, which implies that

_ 2 ez 5Q(X) _ o
Q;ZBQ(X)_TX)_] fOI'XEQ.

This completes the proof of property (4) of {8g}oecz.

We let Z° C (X(E)®P)* be the union of the lists Z(Q) for all Q € CZ such that
ZQ # (. Similarly, we let Q° be the union of the lists Q(Q) for all Q € CZ
such that EN £2Q # 0. Hence,

PR PED I

QeCZ Eez(Q)
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The functionals in =° have Q°-assisted bounded depth. We can express each
functional & in =Z° in short form in terms of the assists Q° by sorting. This requires
Work at most Clog N for each & € Z°. Because there are at most CN functionals

in =°, this requires work at most CNlog N in total.
Given (f,P) € X(E) & P we define

(2.5) T°(f,P)= ) 0q-Fq,

QeCz
where Fq = Tq (f, P) whenever 2—2Q NE # 0, and Fg = P whenever 2—2Q NE=0.

Proposition 18. The following hold.

e The sum of depth(w) over all w € Q° is bounded by CN. The cardinality
of Z° is bounded by CN.

e Given x € Q°, we can compute a short form description of the Q°-assisted
bounded depth linear map

X(E)® P> (f,P)—= ] T°(f,P) e P

using work and storage at most Clog N.
e Given (f,P) € X(E) ® P we have T°(f,P) =1 on E, and

1T, PYE e + [T, P) =PI, o) < € Y [, P)P
Eeze

e Given (f,P) € X(E) ® P, we have

Z |5(f»P)|p S C- ”(f)P)”ngo
Eeze o

Proof. From Section 3 in [1], recall that

> > depth(w) < CN  and > #[EQ)] <N

Qecz we(Q) QeCz
3 QNE#£D 3 QNE#£D

This implies the conclusion of the first bullet point.
We fix a query point x € Q°. Then we have

(2.6) TP = > Jx0qOx JxTQ(f,P)+ > Jx0q @Ox P
QeCZ QeCZ
2 QNE#D L2 QNE=0

Recall that we have computed a list of all the Q € CZ, and that there are at
most C such cubes. We loop over all Q € CZ, and perform the steps below.

e Step 1. For each & € M we compute 0%(Jx60¢q)(x) using CoMmpUTE POU2.
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e Step 2. If g—ZQOE # 0, then we compute the linear map (f, P) — JxTo(f, P)
in short form in terms of the assists Q(Q) (see the main technical results for
A = (). This means that for each & € M we compute linear functionals AQ* :
P — R and n9% : X(E) — R, assists wy "",...,(A)dQ’oC € Q(Q), and numbers
y?’“, ... ,y(?’“ € R, such that

d
0% (JxT(f,P))(0) =AQX(P) +n VX (f) + ) v2% - wd*(f).
k=1

We guarantee that depth(n@) + d is at most a universal constant C.

From the first bullet point in Proposition 18, we know that Q° = UgeczQ(Q)
contains at most CN functionals. When we formed the list Q° by concatenation,
we assume that we marked each functional in Q(Q) with a pointer to its position
in the list Q°. This requires additional one-time work work at most CN. Thus,
the previous formula gives a short form representation of the functional (f,P) —
0%(JxTq(f, P))(0) in terms of the assists Q°. Therefore, by Taylor’s theorem we can
compute a short form representation of the functional (f,P) — 0%(J, T (f,P))(x)
in terms of the assists Q°.

From the definition of the product ® and the computation in Step 1, for each
x € M we can compute a short form of the functional

(f,P) = 0%(Jx0q Ox JxTq(f, P))(x)
in terms of the assists Q°.

e Step 3. If 2—2Q NE = 0, then for each &« € M we compute a short form
of the functional (f,P) = 0%(Jx0q ©x P)(x). Here, we use Taylor’s theorem to
compute the change-of-coordinate map (0%P(0))xem — (0%P(x))xert. Thus, the
desired computation is a consequence of the definition of the product © and the
result of Step 1. This concludes the loop over Q.

For « € M, we compute a short form of the functional (f, P) — 9% (] T°(f, P))(x)
in terms of the assists (Q° by adding together the short form representations of the
functionals determined at the end of Step 2 and Step 3 (see the formula (2.6)).
Therefore, we can compute a short form of the functional (f, P) — 0% (] T°(f, P))(0)
in terms of the assists (Q°. This is a consequence of Taylor’s theorem and the
previous computation. The reader may easily check that the above computation
requires work at most Clog N per query x € Q°. This completes the proof of the
second bullet point in Proposition 18.

Fix x € E. Then

(2.7) TO(f,P)(x) = Z 0o (x) - To(f,P)(x) + Z 0q(x) - P(x).
QeCZ QeCZ
2 QNE#£D 2 QNE=0
Recall that 6¢ is supported on the cube (1 + a)Q, which is contained in g—i .
(See (2.4).)
For the Q arising in the second sum in (2.7) we learn that 6g(x) = 0, since the
support of 0o does not intersect E.



740 C. FEFFERMAN, A. ISRAEL AND G. K. LULI

For the Q arising in the first sum in (2.7), if x € (1 +a)Q then T (f,P)(x) =
f(x). Otherwise, if x ¢ (1 + a)Q then 8g(x) = 0, due to the support properties
of 0g

Hence, To(f,P)(x) = ZQeCZ 0o (x)f(x) = f(x), because ZQeczeQ =TlonE
(recall that E C Q°). Hence, T°(f,P) =f on E, as desired.

We plan to apply Lemma 49 from [1], where Pq = P and Fq (Q € CZ) is defined
below (2.5). We note that CZ is a dyadic decomposition of Q° which satisfies good
geometry. We are also given a CZ-ORACLE. These and other properties can be
found in the main technical results in Section 3 of [1]. We plan to take Q = Q° in
the setting of Section 4.6.5 of [1]. We note that the conditions (4.53) and (4.54)
contained therein are obvious consequences of the fact that Q° is decomposed as
a union of all Q € CZ. Thus, we may apply Lemma 49 of [1]. This gives that

HTo(f,P)||§(QO) S Z {||FQH§((1+G)Q) + 56mpHFQ - P||EP((]+Q)Q):|
Qecz

> [“TQ”’ Pl sarq) +0Q" Tl P) = P”EP((HG)Q)}

QeCz
3 QNE#£D
(2.8) < Z Z (see (2.3)).
QGCZ £€Z(Q)
£2QNE#D

All the terms with 65 N E = ) vanish, since Fo = P is an (m — 1)-st degree
Q =
polynomial.)
Since ) 6ecz 0 =1 on Q°, we have

T°(f,P) =P =T°(f,P)— > 0g-P= > (To(f,P)—P)-0q onQ".
QeCZ QeCZ
2 QNE#£D
There are at most C terms in the above sum. Thus, since each 0¢ is supported on
(1+a)Q and [|0g|[L~ < C, we have

(2.9) IT°(6HP) = PlPr oy S 2 ITf,P) =PIl (1ra)g)
QeCz
£2QNE#D
s 2 2k
QeCZ £€Z(Q)
2 QNE#£D

Here, in the last inequality we used (2.3). (Recall that 5 < 1 whenever Q € CZ.)
Summing (2.8) and (2.9) shows that

E"(Q") N Z Z

QECZ E€Z(Q)
S2QNE#D

T2 (6, PY % oy + T (F, P) =Pl

The right-hand expression is equal to } ; .=.|&(f,P)[P. This completes the proof
of the third bullet point in Proposition 18.
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From (2.1), recall that

(2.10) 3 Z ERPIP<C Y (F,P)[&s

QeCzZ ¢&ez= QeCZ
g—4QmE7é(2) QﬂEﬂ)

We have |[|(f, P) H65Q < |I(f, P) ||55 - for each Q € CZ. Here, we apply Lemma 14

from [1] and use the fact that 5Q > ¢, for all Q € CZ. Since the cardinality of CZ
is bounded by a universal constant, we conclude that

S Z Ef, PP < C- (£, P)[% -
64

Q€CZ g€
L2 QNE#£D

This implies the fourth bullet point in Proposition 18. This completes the proof
of Proposition 18. O

We will now construct the various assists, functionals, and the extension oper-
ator from Theorem 1.

o

Computing a near-optimal jet. Each functional &, € =° is given in the form

I,
(2.11) E(f,R) =Ae(f) + D teaWealf) + Y fiea - 9*R(0)
a=1

xeM
for£ =1,...,L; here, L = #(=Z°) < CN.

Here, weq € Q°; Ag is a linear functional; weq and [l are real coefficients; and
depth(A¢) = O(1), I = O(1). In this discussion, we write X = O(Y) to indicate
that X < CY for a universal constant C.

Applying the algorithm OPTIMIZE VIA MATRIX (see Section 2.8 of [1]), we find
a matrix (bue)ae, ¢=1,...,1 such that the sum of the p-th powers of the |&¢(f, R)|
(£=1,...,L) in (2.11) is essentially minimized for fixed f by setting

L
(2.12) 3R(0) = Y bae[Melf) + Z heaWea()] = Wi ().
=1

We express the functionals w3 in short form. We first compute real coeffi-
cients (Hex)xee (¢ € M) so that

(2.13) W) = 3 pax

x€E

We achieve this by summing all the coefficients by - Heq in (2.12) that corre-
spond to the same functional w = w¢q. (We accomplish this by sorting over Q°.)
We can convert the resulting expression into the form (2.13), by sorting over E.
Hence, we can express each wi®¥ in short form using work O(NlogN), since
ZwEQo depth(w) < CN.
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Define the map R : X(E) — P by the formula R(f)(x) = 3_ o4 %w&ew(f) x*.
Hence, we have the key condition

(2.14) > JEfHRE)P <C- > |E(f,R)P for any R € P.
£eze £eze

Picking a cutoff function. We choose a function 8° € C™(R™) such that

1. 8 =0o0on R™\ Q°,

2. 8°=1onE,

3. [0%0°(x)| < C for x € R™, || < m,

4. Given x € R™, we can compute J,0° using work and storage at most C.
We can arrange these conditions by taking 0° to be a spline function that equals 1
on ;—ZQO and equals 0 on R™\ Q°; recall that E C ;—ZQO
Main definitions.

e Let the list Q C (X(E))* consist of all the functionals w in Q° and all the

functionals of the form f — 9P [R(f)] (0) = w‘éew(f) for all p € M.
e Let the list = C (X(E))* consist of all the functionals f — &°(f, R(f)) where

£° € =Z°. Hence,
D IEMP = D [E°(fR(N)P.
geeze

Le=

e Let T:X(E) — X be defined by the formula

Tf = 0° - T°(f, R(f)) + (1 — 0°) - R(f).

We note that the functionals & € = and the map T have Q-assisted bounded depth.
We can list all the functionals in = and Q, with each functional expressed in
short form, using work and storage at most CN. (We have already computed the
functionals in the lists Q° and Z°, and we have computed the map f — JR(f), all
expressed in short form.)
We give a query algorithm for T. A query consists of a point x € R™. Then,
using property (1) of 0° we can write

{1502 Ox T+ Jx(1 - 0°) Ox R(f)  ifx € Q°
]L(Tf) - {9%(1’) lfx ¢ Qo.

We test whether x € Q° or x € R™\ Q°. If x € Q°, then we compute the
map f — Jx(Tf) in short form in terms of the assists 3. This uses the query
algorithm for T° and property (4) of 6°. Note that we can computate a short
form representation of the ®y-product or sum of polynomial-valued maps which
are given in short form, using work at most C. If x € R™\ Q°, then the map is
given by f — Ji (Tf) = %(f), which is given in short form in terms of the assists Q.
This completes the description of the query algorithm for T. The query work is at
most Clog N, as promised in Theorem 1.
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Main conditions. According to the first bullet point in Proposition 18, we have

(2.15) #(Z) <CN, and ) depth(w) < CN.
we

From property (2) of 6°, and since T°(f,3(f)) = f on E, we see that
(2.16) Tf=f onE.
We now estimate || Tf||x. A standard argument shows that
ITllx < C - [IIT°(F, R(E)llx (o) + IT°(F, R(F)) — R(F) 1w Qo)) -

(See the proof of Lemma 49 in [1].) According to the third bullet point in Propo-
sition 18, we therefore have

(2.17) T <C- Y [E(EREP =C- > &)
Eeeze Eez

‘We now observe that

> JEP = Z [£°(F, R(M)|7 < C inf Z |E°(f,R)|P  (see (2.14))
[ 2SS
(2.18) <C mf || f R)||% 55 o (see Proposition 18).

Moreover, by definition of the trace seminorm,

(&Q

(£, Rl g3 o = inf {||F|\X (53 ey + IF = Rllo s ge) : F=fon E}.

Note that ||F — R||Lp(g_iQo) < CHF||X(2_3Q0) if we choose R = Jx . F (thanks to the
Sobolev inequality). Therefore,

inf (106, R 30 < € inf {IFllx: F=fon B} = C [[fllxcey

The previous estimates imply that

(2.19) D EDP < C- 1T,

Le=

Finally, we have ||f||x(g) = infrex {||Fllx : F = f on E} < ||Tf||x, thanks to (2.16).
This estimate and (2.17) imply that

(2.20) G, < D 1E()]

L€z

In view of (2.15)—(2.20), we have proven Theorem 1. O
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2.2. Extension in inhomogeneous Sobolev spaces

Let E C R™ be finite, and let N = #(E).

The inhomogeneous Sobolev space W™P(R™) C L™P(R™) consists of real-
valued functions F on R™ such that 0*F € LP(R™) for all x| < m. This space is
equipped with the norm

[Fllwmer o) =(j > Frax)”

la|<m

Let W™P(E) denote the space of functions f: E — R, equipped with the trace

norm
Ifllwmr ey = inf {IFllwmr ey F=fon E}.

We use our extension results for the homogeneous Sobolev space L™P(R™) to
obtain analogous results for the inhomogeneous Sobolev space W™P(R™). We
will exhibit a query algorithm for a linear extension operator T : W™P(E) —
W™P(R™) and we will compute a formula that approximates the W™P(E) trace
norm. We will do so using one-time work at most CN log N in space at most CN.
Given x € R™ and |&] < m — 1, we will explain how to compute d%*Tf(x) using
work at most Clog N.

2.2.1. Case I. We assume that N = #(E) > 2 and that E C ;—ZQO, where
Qe =10,1)™.

We apply Proposition 18 to define an extension operator T°: W™P(E) @ P —
W™P(Q°) and lists =° ¢ (W™P(E) @ P)* and Q° C (W™P(E))*.

We define a cutoff function 8° on R™. As in Section 2.1, we assume that the
function 6° € C™(R") satisfies 0° =0 on R™\ Q°,0° =1 on E, and [0%0°(x)| < C
for all x € R™ and |&| < m. Furthermore, we assume that we can compute J,0°
for x € R™ using work at most C. We accomplish this by taking 0° to be an
appropriate spline function.

We define a linear map T : W™P(E) — W™P(R™) by

Tf:=0°-T°(f,0) for any f € W™P(E).
Proposition 18 states that T°(f,0) = f on E. Thus, since 6° =1 on E we have
(2.21) Tf=f onE.

We write Jx(Tf) = Jx0° ©x JxT°(f,0). Hence, we compute Jx(Tf) = 0 whenever

x € R™\ Q° (since 8° = 0 on R™ \ Q°). On the other hand, if x € Q° then we

can compute the map f— J,T°(f,0) in short form in terms of the assists Q° (see

Proposition 18), hence we can compute the map f — J(Tf) in short form by basic

algebra (multiplying polynomials). Thus we have given a query algorithm for T.
Proposition 18 states that

(2.22) T, 0)[T s (o) + T, 01Ty (o) < C D [E(F,0)
Eezo
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and

(223) D (&0 < Coimf{|IF7, a5 o)+ IFITy o3 ge) : F = fon B}
geze

<C- 1nf{||FH :F= fonE}.

Wm,p ( %

We write H = Tf = 0°H° with H® = T°(f,0). Recall that 6° is supported on Q°
and that the derivatives of 8° are bounded by a constant C. Hence, applying the
Leibniz rule we see that

IH Iy ey < C- Y JQOIO“H°(X)I"'Ia‘39°(x)lpdxS [ 3 10y (e

[oe|+BI<m [of <m

Thus, using a Sobolev-type estimate (see Proposition 9 in [1]) we have
Hllwmr @y < € [IIH[mr Qo) + IHllLr (o) )-
We finally apply (2.22) and insert the definitions of H and H® to see that

(2.24) TSy ey < C- ) [E(F,0)
Eeze

We set Q = Q°. We define a list = C (X(E))* consisting of the functionals
f— &(f,0) for all £ € Z°. The estimates (2.23) and (2.24) imply that

CHTfHWm P(R™) < Z'Ev |~p < Clnf{HF”Wm P( g_ F - fon E}
£e=

Moreover, note that ||f[|wm.»g) < || Tf|lwm.»(rn), since Tf = f on E.

All the functionals & € = and the map T have Q-assisted bounded depth. We
have given a query algorithm for T, and we have listed the functionals in Q. We
can list the functionals in =, expressed in short form in terms of the assists Q,
using work and storage at most CN. To see this, note that there are at most CN
functionals in Z°. We determine a short form representation of the functional
f+— &(f,0) using the short form representation of (f,P) — &(f, P) by just deleting
all the coefficients of the variables (0%P(0))qecarq. This requires work at most C
per functional &.

According to the first bullet point in Proposition 18 we have

#(Z)<CN, and ) depth(w) < CN.
we

The preceding argument establishes the case N = #(E) > 2 in the result below.

Proposition 19. Assume that we are given a finite subset E C ;—ZQO, with Q° =
[0,1)™. Let N = #(E).

We compute lists Q and =, consisting of functionals on W™P(E) = {f: E — R},
with the following properties.

e The sum of depth(w) over all w € Q is bounded by CN. The number of
functionals in = is at most CN.
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e Fach functional & in = has Q-assisted bounded depth. The functionals in Q
and = are represented in their short form.

e For all f € W™P(E) we have
1/p ,
¢ [fllwmr(e) < [Z|&(f)|¥’} < C-inf {||Fllwmn.p(s3ge) : F = on E}.
fez

Moreover, there exists a linear map T : W™P(E) — W™P(R™) with the fol-
lowing properties.

e T has Q-assisted depth at most C.

» Tt=f onE and |Tffym,pgn) < C- X sc=l&(F)[P for all f € W™P(E).

e We produce a query algorithm that operates as follows.

Given a query point x € R™, we compute a short form description of the
Q-assisted bounded depth map T — Jx (Tf) using work and storage at most
Clog(2+N).

The computations above require one-time work at most CNlog(2 + N) + C in
space at most CN + C.

Proof. We have already established the proposition in case N = #(E) >
When E is a singleton {x°} (i.e., N = 1), we define = = {£{,} and Q =
Eo(f) :=f(x°). We define

2.
(0, where

(Tf)(x) =0°(x) - f(x°) for any f: E — R,

where 0° € C™(R™) is supported on Q° and 0°(x°) = 1. Moreover, a simple
computation shows that ||Tf|[yym.p@rn) < C-[E0(f)].
On the other hand,

&0 ()] = [f(x")] < C- [Fllwm.p(s3qo)

for any F € W™P(R™) such that F(x°) = f(x°), thanks to the Sobolev inequality.
The above computations require a constant amount of work. This completes the
proof of the proposition in the case N = #(E) = 1.

When E = 0, we define Z = Q = (. We define T : W™P(E) — W™P(RM)
to be the trivial (zero) map defined on a zero-dimensional space. These objects
vacuously satisfy the conclusion of the proposition. This completes the proof of
the result. O

2.2.2. Case II. Here we strengthen Proposition 19 by removing the hypothesis
that E is contained in a unit cube. We employ a standard partition of unity
argument.

Assume that E is a finite subset of R™. Let N = #(E).

We decompose R™ into a collection of cubes {Qx : k € Z™"}. For each k =
(k1,k2y...,kn) € Z™ we define

Q= (ki - 271k - 2770 1] x -+ x (kn - 270 K - 2710 4 1]
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Note that the union of all the Qy is equal to R™. Moreover,
(2.25) each point in R™ is contained in at most C of the cubes 200Qx.
We define Ex := E N Qxk for each k € Z™. According to the above,

|J Ek=E and > #(Ex)<C-N.
kezn kezn
We define
ZT:={keZ":Ex #0}L

For each x € E we can easily list all the indices k € Z™ such that x € Q. We
concatenate these lists and remove duplicate indices by sorting. Thus, we can
compute the collection Z. We know that #Z < C- N by (2.25). Moreover, the
computation of Z requires work at most CN log(N + 2) in space at most CN. For
each k arising from some x € E as above, we include x in a list associated to k. In
this way we construct the subsets Ex for each k € Z. This computation requires
work at most CNlog(N + 2).

For each k € 7 we do the following. According to Proposition 19, we can
compute lists Ty and Qy of linear functionals on W™P(Ey). We also give a query
algorithm for a linear extension operator Ty : W™P (Eyx) — W™P(R") (see below).
The following properties hold.

(a) Each & € Zx has Qg-assisted bounded depth.

(b) The sum of depth(w) over all w € Qy is bounded by C#(Exk). The number
of functionals in Zy is at most C - #(Ex).

(c) Tk has _Qk—assisted bounded depth.

(d) (Tkf)(x) = f(x) for all x € Ey.
(e) For any f € W™P(Eyx) we have
(2.26) S IE()P < Cinf {HFH@vm,p(zooQk) :F=fon Ek}
EE€ZK
and
(2.27) Tt Sy gy < C- > [EP

£ezy

(f) We can query the extension operator. A query consists of a point x € R™.
We respond to the query x with a short form description of the Qy-assisted
bounded depth map f — J (Tkf). The query work is at most C log(2+#(Ex)).

(Here, we use the fact that Ex C 31—2 (200Qk). To achieve the preceding results,
we apply Proposition 19 to a rescaled and translated copy of Ex. We leave details
to the reader.)

The above computations require one-time work at most C#(Ey) log(#(Ex)+1)
and storage at most C#(Ey) for each k € Z. Thus, the total work and space
required are at most CNlog(N + 1) + C and CN + C, respectively.

We will define an extension operator T : W™P(E) — W™P(R") and lists =
and Q consisting of linear functionals on W™P (E).
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e Let Q C (W™P(E))* be the union of the lists Qy for all k € Z.
(If E = 0 then we define Q =1.)
e Let = C (W™P(E))* be the union of the lists Zx for all k € Z. Hence,

(2.28) SEBP =D Y JEn)P.
Eez kel £e€zy
(If E = 0 then we define = =).)

Remark 5. The sum of depth(w) over w € Q is bounded by
C) #(E) <CN.

kez
Also,

[1]

#E <Y #EZ:) <Y Co#(E) <CN.

kez kez
We choose a partition of unity {0y }kezn with the following properties.
e Oy € C™(R™), and 0O is supported on Q.

e [0%0k(x)| < C for all || < m and x € R™.
* > kezn Ok =TonR™
e Givenx € R k € Z™, we can compute J 0y using work at most Clog(2+N).

These conditions are easy to arrange. For instance, we can mimic the construction
of {8g}gecz in Section 2.1. We leave the details to the reader.

We define T: W™P(E) - W™P(R") by the formula
(TH(x) = ) (Tf)(x)-0k(x)  (x €RM).

keT

Assume that x € R™ is given. Note that J,0y is nonzero only when Qy con-
tains x (since Oy is supported on Qx). We compute a list of all the indices k € 7
such that x € Qx using a binary search; this requires work at most Clog(2+N). For
each such k, we compute a short form description of the linear map f — Jx (T f).
That requires work at most Clog(2+N). Hence, to compute Jy (Tf) we can sum the
linear maps Jx 0k Ox Jx(Tkf) over all the relevant indices k. Thus we can compute
a short form description of the linear map f +— Jy (Tf) using work and storage at
most Clog(2 + N).

Let x € E. Let k € Z. Recall that 0y (x) =0 if x € Qk. Also, Tif(x) = f(x) if
x € Qk. Thus, we have 0y (x)Tif(x) = Ok (x)f(x) unconditionally.

Let k € Z™ \ Z. By definition of Z we know that x ¢ Qy, hence 0x(x) = 0.
Hence,

TF(x) = ) Ok Tf(x) = ) O Tuf(x) + D Ok(x)f(x)

kel kel keZ"\T

= ) 0k(x)f(x) =f(x) for anyx € E.
kezn
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Proposition 20. For each f € W™P(E) we have

TSy ny < - D_|E(D)P
Eez

Furthermore,

Ny mn ey < D_IEAP < CHlIf1Fymn e
Eez

Proof. To prove the first estimate, we recall that Tf = ), 7 (Tif) - Ox. Recall
that 0y is supported on Qy and that the derivatives of By are uniformly bounded.
Also, note that each point in R™ is contained in at most C of the cubes Qx
(see (2.25)). Hence, by the Leibniz rule we have

(2.27) (2.28)
TSy mr 2y C Y Mk lfymniq, < €D D EMP "="CY ENP

keZ keT £€Zy L€
Hence,
D EDIP 2 T ym @n) 2 lflym,p -
[ 2SS
In the last inequality above, we use the definition of the seminorm || - [[wm.» ()

and the fact that Tf = f on E.
For the reverse inequality, we use (2.26) and (2.28) and deduce that

DIEMP =) > [ENP <C- Y inf {[IFlfymr 000, F=FonENQi}

E€E= ke £€=k kel
<C- mf{ZHFHme (200Q,) - F=fon E}
kez

< C-inf {|[Flfymp@n) : F=FonE} = C- [f[%mpg)-

Here, we use (2.25) to prove the last inequality.
This completes the proof of Proposition 20. O

The above construction implies our main result for the inhomogeneous Sobolev
space. See Proposition 20 and Remark 5.

Theorem 2. Given a finite subset E C R™ with N = #(E), we perform one-time
work at most CNlog(2 + N) + C in space at most CN + C, after which we have
achieved the following.

We compute lists Q and =, consisting of functionals on W™P(E) = {f: E — R},
with the following properties.

e The sum of depth(w) over all w € Q is bounded by CN. The number of
functionals in = is at most CN.

e Fach functional & in = has Q-assisted bounded depth. The functionals in Q
and = are represented in their short form.
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e For all f € W™P(E) we have

1/p
cllflwms ey < [ Y EOP] T < Cllfllwms o).
Eez

Moreover, there exists a linear map T : W™P(E) — W™P(R™) with the fol-
lowing properties.

e T has Q-assisted depth at most C.
o Tf=f on E and | Tf||wm.p@n) < C- |[fllwm.e (k) for all f € W™P(E).
o We produce a query algorithm that operates as follows.
Given a query point x € R™, we respond with a short form description of the

Q-assisted bounded depth map f — Jx (Tf) using work and storage at most
Clog(2+ N).

At last, note that Theorem 1 and Theorem 2 imply the main theorem from the
introduction in [1] (Theorem 6). This completes the analysis of our algorithms for
the infinite-precision model of computation. In [2] we present an analogue of our
algorithms for a finite-precision model of computation.
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