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Fitting a Sobolev function to data II

Charles Fefferman, Arie Israel, and Garving Luli

Abstract. In this paper and two companion papers, we produce efficient
algorithms to solve the following interpolation problem. Let m ≥ 1 and
p > n ≥ 1. Given a finite set E ⊂ Rn and a function f : E → R, compute
an extension F of f belonging to the Sobolev space Wm,p(Rn) with norm
having the smallest possible order of magnitude; secondly, compute the
order of magnitude of the norm of F. The combined running time of our
algorithms is at most CN logN, where N denotes the cardinality of E,
and C depends only on m, n, and p.

Introduction

Continuing from [1], we interpolate data by a function F : Rn → R whose Sobolev
norm has the least possible order of magnitude. More precisely, let m ≥ 1 and
p > n ≥ 1. Given a function f : E → R with E ⊂ Rn finite, we compute a function
F ∈ Wm,p(Rn) such that F = f on E, and ‖F‖Wm,p ≤ C‖F̃‖Wm,p for any competing

function F̃ ∈ Wm,p(Rn) such that F̃ = f on E. Here, C depends only on m, n,
and p.

Our computations consist of efficient algorithms to be implemented on an (ide-
alized) von Neumann computer. We study two distinct models of computation.
In the first model (“infinite precision”), we assume that our computer deals with
exact real numbers, without roundoff error. Our second, more realistic model of
computation assumes that our machine handles only S-bit machine numbers, for
some fixed, large S.

In our previous paper [1], we stated our main results for infinite precision, and
developed technical tools to be used in the proof of those results. Here, we complete
the proof of our results for infinite precision. Issues arising from the finite-precision
model of computation will be addressed in [2].
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1. Proof of the main technical results

1.1. Review of notation

Let M denote the collection of all multiindices α = (α1, . . . , αn) of order |α| =
α1 + · · · + αn ≤ m − 1. Let A ⊂ M be a multiindex set. We refer the reader to
Section 3 of [1] for a description of the main technical results for A. We will prove
the main technical results by induction on A.

We recall the relevant order relation < on multiindex sets A ⊂ M (see Sec-
tion 2.6 of [1]). We first define a total order relation onM as follows: given distinct
α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ M, let k ∈ {1, . . . , n} be the maximal index
such that α1+ · · ·+αk �= β1+ · · ·+βk. Then α < β if α1+ · · ·+αk < β1+ · · ·+βk,
and α > β otherwise. We next define a total order relation < on 2M. Given dis-
tinct subsets A,B ⊂ M, pick the minimal element α ∈ AΔB (with respect to the
order relation defined above). Then A < B if α ∈ A, and B < A otherwise. (AΔB
denotes the symmetric difference of A and B.) Note that M is minimal and the
empty set ∅ is maximal with respect to this order relation on 2M.

We recall the notion of monotonic multiindex sets (see Section 2.6 of [1]).
A set A ⊂ M is called monotonic if for every α ∈ A and γ ∈ M with |γ| ≤
m−1− |α|, we have α+γ ∈ A. One of the key properties of monotonic multiindex
sets is the following: let x ∈ Rn, and let P be a polynomial on Rn of degree at
most m − 1. Then

(1.1) A monotonic, ∂αP(x) = 0 ∀α ∈ A =⇒ ∂αP ≡ 0 on Rn ∀α ∈ A.

Fix a finite subset E ⊂ 1
32
Q◦, where Q◦ denotes the unit cube [0, 1)n. Let

N := #(E). We assume that N ≥ 2.
Given a multiindex set A ⊂ M and ε > 0, we say that a cube Q ⊂ Rn is

tagged with (A, ε) if either #(E ∩Q) ≤ 1 or there exists A ′ ≤ A such that

σ(Q) has an (A ′, xQ, ε, δQ)-basis (recall: xQ = the center of Q).

We refer the reader to Section 2.7.1 of [1] for the definition of a basis for a convex
set of polynomials.

1.2. Starting the induction

We first establish the base case of the induction. This corresponds to proving the
main technical results for A = M.

Let CZ(M) be the collection of maximal dyadic cubes Q ⊂ Q◦ such that
#(E ∩ 3Q) ≤ 1.

Using one time-work at most CN logN in space CN, we produce a CZ(M)-
oracle that answers queries as follows.

• A query consists of a point x ∈ Q◦.
• The response to the query x is a list of all the cubes Q ∈ CZ(M) such that

x ∈ 65
64
Q.

• The work and storage required to answer a query are at most C logN.
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We simply apply the Plain vanilla CZ-oracle from Section 4.6.3 of [1]; see
Remark 47 from the same section.

Since #(E) ≥ 2 and E ⊂ Q◦, the collection CZ(M) does not contain the
cube Q◦. Therefore, each Q ∈ CZ(M) is a strict subcube of Q◦, hence Q has a
dyadic parent Q+ ⊂ Q◦ such that #(3Q+ ∩ E) ≥ 2 (because Q is maximal), and
so in particular

(1.2) #(9Q ∩ E) ≥ 2 for all Q ∈ CZ(M).

Recall that we say two dyadic cubes Q and Q ′ touch either if Q = Q ′, or if Q
is disjoint from Q ′ but the boundaries ∂Q and ∂Q ′ have a nonempty intersection;
we write Q ↔ Q ′ to indicate that Q touches Q ′.

Lemma 1. If Q,Q ′ ∈ CZ(M) and Q ↔ Q ′, then 1
2
δQ ≤ δQ ′ ≤ 2δQ.

Proof. We proceed by contradiction. Suppose that Q ↔ Q ′ and δQ ≤ 1
4
δQ ′ for

someQ,Q ′∈CZ(M). Then 3Q+⊂ 3Q ′, and hence #(E ∩ 3Q+) ≤ #(E ∩ 3Q ′) ≤ 1.
However, this contradicts that #(3Q+ ∩ E) ≥ 2, completing the proof of the
lemma. �

Lemma 2. There exists ε1 > 0, depending only on m,n, and p, such that 9Q is
not tagged with (M, ε1) for any Q ∈ CZ(M).

Proof. Assume that ε1 ∈ (0, 1) is less than a small enough universal constant.
Let Q ∈ CZ(M). Thanks to (1.2), it suffices to show that σ(9Q) does not have

an (M, xQ, ε1, δ9Q)-basis.
We argue by contradiction. Suppose that (Pα)α∈M is an (M, xQ, ε1, δ9Q)-basis

for σ(9Q). Therefore, P0(xQ) = 1, and ∂αP0(xQ) = 0 for α ∈ M, α �= 0. In other
words, P0 ≡ 1.

Moreover, there exists ϕ0 ∈ X such that ϕ0 = 0 on E ∩ 9Q and

‖ϕ0‖X(9Q) + δ−m
9Q ‖ϕ0 − P0‖Lp(9Q) ≤ ε1δ

n/p−m
9Q .

We know that #(E∩9Q) ≥ 2. Fix x ∈ E∩9Q. We apply the Sobolev-type estimate
stated in Lemma 10 of [1] to obtain

δ
n/p−m
Q · |ϕ0(x) − P0(x)| ≤ C

(‖ϕ0‖X(9Q) + δ−m
Q ‖ϕ0 − P0‖Lp(9Q)

) ≤ C ′ε1δ
n/p−m
9Q .

But ϕ0(x) = 0, and thus |P0(x)| ≤ C ′′ε1. However, if we take ε1 < 1/C ′′, then
this inequality contradicts the fact that P0 ≡ 1. �

Recall that #(3Q ∩ E) ≤ 1 for each Q ∈ CZ(M). This implies the next result.

Lemma 3. If Q ∈ CZ(M) then 3Q is tagged with (M, 1/2).

We refer the reader to Section 3 of [1] for a statement of conditions (CZ1)–
(CZ5), which are a component of the main technical results. We now estab-
lish (CZ1)–(CZ5) for CZ(M). Indeed, (CZ1), (CZ2), and (CZ4) follow from
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Lemmas 1, 2, and 3, respectively. Furthermore, (CZ3) and (CZ5) are vacuously
true because we are treating the base case A = M.

We next describe the algorithms Compute main-cubes, Compute func-
tionals, and Compute extension operators from the main technical results.

We set CZmain(M) := {Q ∈ CZ(M) : (65/64)Q ∩ E �= ∅}. For Q ∈ CZmain(M),
we denote the unique point in E ∩ 65

64
Q by x(Q). (Recall that #(E ∩ 3Q) ≤ 1 for

Q ∈ CZ(M).)
Next, we define an extension operator and a linear functional associated to each

Q ∈ CZmain(M).

• We define a linear map T(Q,M) : X(
65
64
Q ∩ E)⊕ P → X given by

(1.3) T(Q,M)(f, P) = P + f(x(Q)) − P(x(Q)).

• We define a list Ξ(Q,M) = {ξQ}, where

(1.4) ξQ(f, P) =
(
f(x(Q)) − P(x(Q))

) · δn/p−m
Q .

• We take the list of assist functionals Ω(Q,M) to be empty.

The functional ξQ and linear map T(Q,M) obviously have Ω(Q,M)-assisted
bounded depth (i.e., bounded depth).

Algorithm: Compute main-cubes and compute extension operator

We compute a list of the cubes in CZmain(M). For each Q ∈ CZmain(M), we
compute a short form description of the bounded depth functional

ξQ : X
(65
64

Q ∩ E
)
⊕ P → R.

We give a query algorithm, which requires work at most C logN to answer a
query. A query consists of a cube Q ∈ CZmain(M) and point x ∈ Q◦. The response
to the query (Q, x) is a short form description of the linear map

(f, P) → JxT(Q,M)(f, P).

These computations require one-time work at most CN logN in space CN.

Explanation. We compute a list of all the cubes Q ∈ CZmain(M) and a list of asso-
ciated points x(Q) ∈ E ∩ 65

64
Q. This computation requires work at most CN logN

in space CN; see the algorithm Find main-cubes in Section 4.6.4 of [1].
For each Q in CZmain(M), we compute the linear functional

ξQ(f, P) =
{
f(x(Q)) − P(x(Q))

} · δn/p−m
Q .

There are at most CN such functionals, and each one is computed using work and
storage at most C.

Given a query (Q, x) ∈ CZmain(M)×Q◦, by a binary search we determine the
position of Q in the list CZmain(M). We next compute the linear map

(f, P) → JxT(Q,M)(f, P) = P + f(x(Q)) − P(x(Q)).

This requires work at most C logN per query. �
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We finish by giving a proof of the remaining properties (E1)–(E3) in the main
technical results for M. (See Section 3 of [1].)

Lemma 4. There exists C ≥ 1, depending only on m,n, and p, such that for each
Q ∈ CZmain(M), the following properties hold.

• T(Q,M)(f, P) = f on 65
64
Q ∩ E.

• ‖T(Q,M)(f, P)‖X(65
64

Q) + δ−m
Q ‖T(Q,M)(f, P) − P‖Lp( 65

64
Q) ≤ C · |ξQ(f, P)|.

• C−1 · ‖(f, P)‖ 65
64

Q ≤ |ξQ(f, P)| ≤ C · ‖(f, P)‖ 65
64

Q.

Proof. Note that E ∩ 65
64
Q = {x(Q)} and T(Q,M)(f, P)(x(Q)) = f(x(Q)) for each

Q ∈ CZmain(M). This implies the first bullet point.

Recall that T(Q,M)(f, P) ∈ P , hence ‖T(Q,M)(f, P)‖X( 65
64

Q) = 0. Moreover,

δ−m
Q ‖T(Q,M)(f, P) − P‖Lp(65

64
Q) = δ−m

Q ‖f(x(Q)) − P(x(Q))‖Lp( 65
64

Q)

≤ Cδ
−m+n/p
Q |f(x(Q)) − P(x(Q))| = C|ξQ(f, P)|.

This implies the second bullet point.
From the first and second bullet points we have

‖(f, P)‖ 65
64

Q ≤ ‖T(Q,M)(f, P)‖X(65
64

Q) + (δ 65
64

Q)−m‖T(Q,M)(f, P) − P‖Lp( 65
64

Q)

≤ C |ξQ(f, P)|.

Let F ∈ X satisfy F = f on 65
64
Q ∩ E. Then the Sobolev inequality implies that

δ
n/p−m
Q |(f − P)(x(Q))| = δ

n/p−m
Q |(F − P)(x(Q))|

≤ C · (‖F‖
X( 65

64
Q) + δ−m

Q ‖F− P‖Lp( 65
64

Q)

)
.

Taking the infimum over such F, we obtain the estimate |ξQ(f, P)| ≤ C‖(f, P)‖ 65
64

Q.

Thus we obtain the third bullet point, and this completes the proof. �

This completes the proof of the main technical results for M, which was the
base case of our proof by induction. We start to prove the induction step in the
next section.

1.3. The induction step

Fix a set of multiindices A ⊂ M with

(1.5) A �= M.

We assume by induction that we have already carried out the main technical results
for each A ′ < A. Our goal is to find suitable constants a(A), ε1(A), ε2(A), c∗(A),
and S(A), and to carry out the main technical results for A.
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Let A− be the maximal mutiindex set that is smaller than A with respect to
the order relation < on 2M. By our induction hypothesis, we have already carried
out the main technical results for A−. We have thus produced the following (see
Section 3 in [1]):

• A decomposition CZ(A−) of Q◦ into dyadic cubes, with the following prop-
erties.

– If 65
64
Q ∩ 65

64
Q ′ �= ∅ with Q,Q ′ ∈ CZ(A−), then Q ↔ Q ′ and 1

2
δQ ′ ≤

δQ ≤ 2δQ ′ .

– The collection of cubes {65
64
Q : Q ∈ CZ(A−)} has bounded overlap, mean-

ing that there exists a constant C = C(n) such that, for each Q ∈
CZ(A−) there are at most C cubes Q ′ ∈ CZ(A−) with (65/64)Q ∩
(65/64)Q ′ �= ∅.

– CZ(M) refines CZ(A−); thus, from (1.2) we conclude that

(1.6) (“E is nearby”) #(E ∩ 9Q) ≥ 2 for each Q ∈ CZ(A−).

• An oracle that accepts a query point x ∈ Q◦ and responds with a list of all
cubes Q ∈ CZ(A−) such that x ∈ 65

64
Q.

• A list CZmain(A−) consisting of all the Q ∈ CZ(A−) such that 65
64
Q∩ E �= ∅.

• For each Q ∈ CZmain(A−), a list of assists Ω(Q,A−) ⊂ [X(E)]
∗
.

• For each Q ∈ CZmain(A−), a list of Ω(Q,A−)-assisted bounded depth linear

functionals Ξ(Q,A−) ⊂ [
X(65

64
Q ∩ E)⊕ P]∗

written in short form, as well as
a linear extension operator

T(Q,A−) : X
(65
64

Q ∩ E
)
⊕ P → X,

which we “compute” in the sense that (after one-time work) we can answer
queries: In response to a query x ∈ Q◦ we return a short form description of
the Ω(Q,A−)-assisted bounded depth linear map

(f, P) → JxT(Q,A−)(f, P).

These objects and algorithms have good properties as part of the induction as-
sumption on A−. We listed some of these properties just above. The remaining
properties are mentioned later, as required.

We denote

(1.7) a = a(A−), the geometric constant from the main technical results for A−.

Algorithm: Approximate old trace norm

For each Q ∈ CZmain(A−), we compute linear functionals ξ
Q
1 , . . . , ξ

Q
D on P ,

such that

(1.8)
∑

ξ∈Ξ(Q,A−)

|ξ(0, P)|p and

D∑
i=1

|ξQi (P)|p (P ∈ P)

differ by at most a factor of C. We carry this out using work and storage ≤ CN.
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Explanation. For each ξ in the list Ξ(Q,A−), we compute the map P → ξ(0, P)
using work and storage at most C, by examining the short form description of
(f, P) → ξ(f, P) that has been computed. Applying Compress norms (see Sec-

tion 2.8 of [1]), we compute linear functionals ξ
Q
1 , · · · , ξQD such that (1.8) holds,

using work and storage at most C ·# [Ξ(Q,A−)]. By the inductive hypothesis, we
know that the sum of # [Ξ(Q,A−)] over all Q ∈ CZmain(A−) is bounded by CN,
hence the work and storage guarantees are met. �

1.3.1. The non-monotonic case. Here, we assume that A ⊂ M is not mono-
tonic and prove the main technical results for A.

We define CZ(A) = CZ(A−) and

ε2(A) = ε2(A−), c∗(A) = c∗(A−), a(A) = a(A−), and S(A) = S(A−).

The constant ε1(A) is chosen later in this section.
We define

Ω(Q,A) := Ω(Q,A−), Ξ(Q,A) := Ξ(Q,A−) and

T(Q,A) := T(Q,A−) for each Q ∈ CZmain(A) = CZmain(A−).

The properties of Ω(Q,A), Ξ(Q,A) and T(Q,A) asserted in the main technical re-
sults forA are immediate from the corresponding properties ofΩ(Q,A−), Ξ(Q,A−)
and T(Q,A−) asserted in the main technical results for A−.

Next, we prove properties (CZ1)–(CZ5) for the label A. We refer the reader
to Section 3 of [1] for the statements of (CZ1)–(CZ5), which are a component of
the main technical results.

Note that (CZ1) for A follows from (CZ1) for A−. Also, note that (CZ5)
for A holds because CZ(A) = CZ(A−).

Note that (CZ3) for A holds vacuously: There do not exist cubes Q ∈ CZ(A),
Q ′ ∈ CZ(A−) which satisfy the hypotheses of (CZ3). This follows because
CZ(A) = CZ(A−).

We need not check (CZ4), since A �= M; see (1.5).
It remains to prove (CZ2) for A, which we accomplish in the next lemma. We

determine ε1(A) = ε1 in the lemma below.

Lemma 5. There exists a universal constant ε1 > 0 such that the following holds.
Suppose that Q ∈ CZ(A) and δQ ≤ c∗(A). Then S(A)Q is not tagged with (A, ε1).

Proof. We assume that ε1 > 0 is less than a small enough universal constant.
Let Q ∈ CZ(A) satisfy δQ ≤ c∗(A). Assume for the sake of contradiction that

S(A)Q is tagged with (A, ε1).
If #(S(A)Q ∩ E) ≤ 1 then S(A−)Q = S(A)Q is tagged with (A−, ε1(A−)).

However, this contradicts the induction hypothesis. Hence, we may assume from
now on that #(S(A)Q ∩ E) ≥ 2. Thus,

σ(S(A)Q) has an (Ã, xQ, ε1, δS(A)Q)-basis for some Ã ≤ A.
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Hence, Lemma 25 of [1] implies that there exists κ ∈ [κ1, κ2] such that

σ(S(A)Q) has an (A ′, xQ, εκ1 , δS(A)Q, Λ)-basis,

with A ′ ≤ A and εκ1Λ
100D ≤ ε

κ/2
1 .

Here, κ1, κ2 > 0 are universal constants. (For the definition of an (A, x, ε, δ,Λ)-
basis, we refer the reader to Section 2.7.1 of [1].)

Suppose for the moment that A ′ < A. Then S(A)Q is tagged with (A−, εκ1).
Note that εκ1 ≤ εκ1

1 ≤ ε1(A−), for small enough ε1. Thus, S(A−)Q = S(A)Q
is tagged with (A−, ε1(A−)). However, this contradicts the induction hypothesis.
Hence,

σ(S(A)Q) has an (A, xQ, εκ1, δS(A)Q, Λ)-basis.

Thus, there exists (Pα)α∈A with

(1.9) Pα ∈ εκ1 · (δS(A)Q)n/p+|α|−mσ(S(A)Q) (α ∈ A)

• ∂βPα(xQ) = δβα (β,α ∈ A)

• |∂βPα(xQ)| ≤ εκ1 · (δS(A)Q)|α|−|β| (α ∈ A, β ∈ M, β > α)

• |∂βPα(xQ)| ≤ Λ · (δS(A)Q)|α|−|β| (α ∈ A, β ∈ M).

We are assuming that A is not monotonic. Thus we can pick α0 ∈ A and
γ ∈ M such that α0 + γ ∈ M \A. We define

α = α0 + γ and A = A ∪ {α}.

Note that AΔA = {α} with α ∈ A. Consequently, A < A.

We define Pα = Pα0
�xQ

q, where q(y) = α0!
α!

(y− xQ)γ. That is,

Pα(y) =
α0!

α!

∑
|ω|≤m−1−|γ|

1

ω!
∂ωPα0

(xQ)(y− xQ)ω+γ.

Note that Pα = q · Pmain
α0

, where

Pmain
α0

=
∑

|ω|≤m−1−|γ|

1

ω!
∂ωPα0

(xQ)(y− xQ)ω,

and that

Rα0
:= Pα0

− Pmain
α0

=
∑

|ω|>m−1−|γ|

1

ω!
∂ωPα0

(xQ)(y− xQ)ω.

In the above sum for Rα0
, since |ω| > m− 1− |γ| ≥ |α0| we have ω > α0, and so

|∂ωPα0
(xQ)| ≤ Cεκ1 δ

|α0|−|ω|

Q .

Consequently,

‖Rα0
‖Lp(S(A)Q) ≤ C ′ εκ1 δ

n/p+|α0|

Q .
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The bullet point properties of Pα0
now yield the following properties of Pα.

• ∂αPα(xQ) = 1,

• |∂βPα(xQ)| ≤ Cεκ1 δ
|α|−|β|

Q (β ∈ M, β > α),

• |∂βPα(xQ)| ≤ CΛδ
|α|−|β|

Q (β ∈ M).

We now show that

• Pα ∈ Cεκ1 · (δQ)n/p+|α|−m · σ(S(A)Q).

To start, (1.9) implies that there exists ϕ ∈ X with ϕ = 0 on S(A)Q ∩ E and

‖ϕ‖X(S(A)Q) + δ−m
Q ‖ϕ− Pα0

‖Lp(S(A)Q) ≤ Cεκ1 · (δQ)n/p+|α0|−m.

We recall that Pmain
α0

= Pα0
− Rα0

. Thus, using the estimate ‖Rα0
‖Lp(S(A)Q) ≤

Cεκ1 δ
n/p+|α0|

Q , we learn that

(1.10) ‖ϕ−Pmain
α0

‖X(S(A)Q)+δ−m
Q ‖ϕ−Pmain

α0
‖Lp(S(A)Q) ≤ Cεκ1 ·(δQ)n/p+|α0|−m.

By definition of q, we have ‖∂ωq‖L∞(S(A)Q) ≤ Cδ
|γ|−|ω|

Q for any multiindex ω.
By the Leibniz rule, we obtain the estimate

‖gh‖X(Q ′) �
∑

|ω|+|β|=m

‖∂ωg‖L∞(Q ′)‖∂βh‖Lp(Q ′) for g, h ∈ X(Q ′).

Using the previous estimates, we have

‖q · (ϕ−Pmain
α0

)‖X(S(A)Q) + δ−m
Q ‖q · (ϕ− Pmain

α0
)‖Lp(S(A)Q)

≤ C
∑

|β|≤m

(δQ)|β|+|γ|−m‖∂β(ϕ− Pmain
α0

)‖Lp(S(A)Q)

≤ C · (δQ)|γ|
(‖ϕ− Pmain

α0
‖X(S(A)Q) + δ−m

Q ‖ϕ− Pmain
α0

‖Lp(S(A)Q)

)
≤ Cεκ1 · (δQ)|γ|(δQ)n/p+|α0|−m (by (1.10))

= Cεκ1 · (δQ)n/p+|α|−m.

In the second inequality above, we used the Sobolev-type estimate stated in Propo-
sition 9 of [1]. Note that q · Pmain

α0
∈ P , hence the above estimate yields

‖q ·ϕ‖X(S(A)Q) + δ−m
Q ‖q ·ϕ− Pα‖Lp(S(A)Q) ≤ Cεκ1(δQ)n/p+|α|−m.

Since q · ϕ = 0 on S(A)Q ∩ E, we have shown that Pα ∈ Cεκ1 · (δQ)n/p+|α|−m ·
σ(S(A)Q). This proves all the bullet point properties of Pα.

The bullet point properties of the Pα (α ∈ A) imply that (∂βPα(xQ))α,β∈A is

(Cεκ1 , CΛ, δQ)-near triangular. Inverting the matrix (∂βPα(xQ))α,β∈A, we obtain
a matrix (Mαω)α,ω∈A such that∑

α∈A
∂βPα(xQ)Mαω = δβω (β,ω ∈ A)
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and

|Mαω − δαω| ≤
{

Cεκ1Λ
D · δ|ω|−|α|

Q , if α,ω ∈ A, α ≥ ω,

CΛD · δ|ω|−|α|

Q , if α,ω ∈ A.

Set P#
ω =

∑
α∈A PαMαω. The bullet point properties of (Pα)α∈A imply that

• P
#
ω ∈ Cεκ1 ·Λ2D · δn/p+|ω|−m

Q σ(S(A)Q) (ω ∈ A),

• ∂βP
#
ω(xQ) = δβω (β,ω ∈ A).

For ω ∈ A and β ∈ M with β > ω, we write

(1.11) ∂βP#
ω(xQ) =

∑
α<β

∂βPα(xQ)Mαω +
∑
α≥β

∂βPα(xQ)Mαω.

An arbitrary term in the first sum in (1.11) is ≤ [
Cεκ1 δ

|α|−|β|

Q

] · [CΛDδ
|ω|−|α|

Q

]
.

Hence, this sum is at most C ′εκ1Λ
Dδ

|ω|−|β|

Q .

If α ≥ β, then α > ω, since β > ω. Thus, an arbitrary term in the second

sum in (1.11) is ≤ [
CΛδ

|α|−|β|

Q

] · [Cεκ1Λ
D · δ|ω|−|α|

Q

]
. Hence, this sum is at most

C ′εκ1Λ
D+1δ

|ω|−|β|

Q .

Thus,

• |∂βP
#
ω(xQ)| ≤ Cεκ1Λ

2Dδ
|ω|−|β|

Q (β ∈ M,ω ∈ A, β > ω).

According to the bullet point properties of (P#
ω)ω∈A, we see that σ(S(A)Q) has

an (A, xQ, Cεκ1Λ
2D, δQ)-basis, hence σ(S(A)Q) has an (A, xQ, C ′εκ1Λ

2D, δS(A)Q)-
basis. (See Remark 18 in [1].)

For small enough ε1 we have C ′εκ1Λ
2D ≤ C ′εκ/21 ≤ ε

κ1/4
1 ≤ ε1(A−), hence

σ(S(A)Q) has an (A, xQ, ε1(A−), δS(A)Q)-basis.

Hence, S(A)Q is tagged with (A−, ε1(A−)). However, since δQ ≤ c∗(A−) and
S(A) = S(A−), this contradicts the induction hypothesis.

This completes the contradiction, and with it, the proof of the lemma. �

We have thus proven the main technical results for A in the non-monotonic
case.

1.3.2. The monotonic case. From this point onward, we assume that A is
monotonic. We drop this assumption when we prove our main theorem in Section 2.
We will now begin the task of carrying out the induction step by proving the main
technical results for A. (See Section 3 in [1].)

We begin by treating a preliminary case.

Lemma 6. Suppose that δQ ≥ 1/4 for all Q ∈ CZ(A−). Then the main technical
results for A− imply the main technical results for A.



Fitting a Sobolev function to data II 659

Proof. We take CZ(A) to equal CZ(A−). The other objects and algorithms in the
main technical results for A are copies of the corresponding objects and algorithms
in the main technical results for A−. �

By making at most C calls to the CZ(A−)-oracle, we can check whether the
hypothesis of Lemma 6 holds. This takes one-time work at most C logN. In the
sequel, we assume that we are in the case that

(1.12) δQ ≤ 1/8 for some Q ∈ CZ(A−).

Recall that the decomposition CZ(A−) has the following properties:

• CZ(A−) is a finite partition of Q◦ = [0, 1)n into pairwise disjoint dyadic
subcubes.

• If Q,Q ′ ∈ CZ(A−) and Q ↔ Q ′ then δQ/δQ ′ ∈ {1/2, 1, 2}.

• If Q ∈ CZ(A−) then #(9Q ∩ E) ≥ 2. (See (1.6).)

Lemma 7. If Q ∈ CZ(A−) and dist(Q,Rn \Q◦) = 0 then δQ ∈ {1/2, 1/4, 1/8}.

Proof. Let Q ∈ CZ(A−) with dist(Q,Rn \Q◦) = 0.
Recall that δQ �= 1, because CZ(A−) �= {Q◦} (see (1.12)).
We need to show that δQ ≥ 1/8. For the sake of contradiction assume that

δQ ≤ 1/16. Then since dist(Q,Rn \ Q◦) = 0, we have 9Q ⊂ Rn \ 1
10
Q◦, hence

9Q ⊂ Rn \ E. But #(E ∩ 9Q) ≥ 2, according to the above bullet points. This
contradiction completes the proof of Lemma 7. �

We now pass from the decomposition CZ(A−) ofQ◦ to a decomposition CZ(A−)
of Rn.

Proposition 1. There exists a decomposition CZ(A−) of Rn into pairwise disjoint
dyadic cubes, with the following properties:

(a) CZ(A−) ⊂ CZ(A−).

(b) If Q,Q ′ ∈ CZ(A−) and Q ↔ Q ′ then 1
8
δQ ′ ≤ δQ ≤ 8δQ ′ (“good geometry”).

Moreover, the collection of cubes {65
64
Q : Q ∈ CZ(A−)} has bounded overlap

(each cube intersects a bounded number of other cubes).

(c) If Q ∈ CZ(A−) \ CZ(A−), then 65
64
Q ∩ E = ∅.

(d) If Q ∈ CZ(A−) \ CZ(A−), then 100Q intersects cubes in CZ(A−) with side-
length less than δQ.

(e) If Q ∈ CZ(A−) \ CZ(A−), then δQ ≥ 1.

(f) If Q ∈ CZ(A−) then #(9Q ∩ E) ≥ 2.

We produce a CZ(A−)-oracle. The CZ(A−)-oracle accepts a query consist-
ing of a point x ∈ Rn. The response to a query x is the list of cubes Q ∈ CZ(A−)
such that x ∈ 65

64
Q. The work and storage required to answer a query are at most

C logN.
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Proof. Let Q consist of the maximal dyadic cubes Q ⊂ Rn satisfying the condition
[δQ ≤ 1 or 0 /∈ 2Q]. A dyadic cube Q ⊂ Rn belongs to Q if and only if

(1.13) δQ = 1 or 0 /∈ 2Q,

and

(1.14) δQ+ ≥ 2 and 0 ∈ 2Q+.

Here, as usual, Q+ denotes the parent of a dyadic cube Q.
For any x ∈ Rn, there exists a dyadic cube Q containing x such that δQ ≥ 2

and 0 ∈ 2Q. Hence, each x ∈ Rn is contained in some cube Q ∈ Q. Hence, Q
partitions Rn into pairwise disjoint dyadic cubes.

Note that the cube Q◦ = [0, 1)n belongs to Q.
We now establish good geometry of Q (with constant 1/4). We prove that if

Q,Q ′ ∈ Q and Q ↔ Q ′ then 1
4
δQ ′ ≤ δQ ≤ 4δQ ′ .

Assume for the sake of contradiction that there exist cubes Q,Q ′ ∈ Q with
δQ ≤ 1

8
δQ ′ and Q ↔ Q ′. By (1.14), we have δQ+ ≥ 2 and 0 ∈ 2Q+. Moreover,

note that 2Q+ ⊂ 2Q ′ (since Q ↔ Q ′ and δQ ≤ 1
8
δQ ′ , hence Q+ ↔ Q ′ and

δQ+ ≤ 1
4
δQ ′). Hence, 0 ∈ 2Q ′. Moreover, δQ ′ ≥ 4δQ+ ≥ 8. However, since

Q ′ ∈ Q, the analogue of (1.13) with Q replaced by Q ′ must hold. This yields a
contradiction. This completes the proof that the cubes in Q have good geometry.

We define the collection CZ(A−) to consist of all the cubes Q ∈ Q except for
Q = Q◦, together with all the cubes Q ∈ CZ(A−). Since Q partitions Rn and
CZ(A−) partitions Q◦, we see that CZ(A−) partitions Rn into pairwise disjoint
dyadic cubes. Moreover, property (a) clearly holds.

If Q ∈ Q, Q ′ ∈ CZ(A−), and Q ↔ Q ′, then both Q and Q ′ touch the boundary
of Q◦.

We prove the claim that Q contains all 4n of the dyadic cubes Q ⊂ [−2, 2)n

with δQ = 1. Indeed, we have Q+ ⊂ [−2, 2)n, δQ+ = 2 and 0 ∈ 2Q+ for any
such Q. Hence, each Q satisfies (1.13) and (1.14), which implies that Q belongs
to Q. This proves our claim. Hence, in particular, any Q ∈ Q that intersects the
boundary of Q◦ = [0, 1)n must satisfy δQ = 1.

Moreover, by Lemma 7, any Q ′ ∈ CZ(A−) that intersects the boundary of Q◦

must satisfy δQ ′ ∈ {1/2, 1/4, 1/8}.
Hence, the previous two statements imply that for any Q ∈ Q and Q ′ ∈

CZ(A−) with Q ↔ Q ′ we have 1
8
δQ ≤ δQ ′ ≤ δQ.

Finally, for Q,Q ′ ∈ CZ(A−) with Q ↔ Q ′, we have 1
2
δQ ≤ δQ ′ ≤ 2δQ, by

good geometry of the cubes in CZ(A−).
Recall that the cubes in Q satisfy good geometry (with constant 1/4).
Thus, combining the previous three statements, for any Q,Q ′ ∈ CZ(A−) with

Q ↔ Q ′, we have 1
8
δQ ′ ≤ δQ ≤ 8δQ ′ . Thus, the collection CZ(A−) satisfies the

hypothesis of Lemma 46 from [1] with γ = 1/8. Hence, for Q,Q ′ ∈ CZ(A−) with
65
64
Q ∩ 65

64
Q ′ �= ∅, we have Q ↔ Q ′. It follows that the collection {65

64
Q : Q ∈

CZ(A−)} has bounded overlap. This completes the proof of property (b).
From (1.14), each Q ∈ CZ(A−) \ CZ(A−) satisfies δQ ≥ 1. This proves prop-

erty (e).
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We now prove property (c). Let Q ∈ CZ(A−) \ CZ(A−). Then Q ∈ Q and
Q ⊂ Rn \Q◦. According to property (e), there are only two cases to consider

• If δQ = 1, then 65
64
Q cannot intersect 1

32
Q◦ (because Q ∩ Q◦ = ∅ and

δQ = δQ◦ = 1). Since E ⊂ 1
32
Q◦, we conclude that 65

64
Q ∩ E = ∅.

• If δQ ≥ 2, then 0 /∈ 2Q thanks to (1.13). Assume for the sake of contradiction
that 65

64
Q ∩ 1

32
Q◦ �= ∅. Since Q and Q◦ are disjoint, we conclude that

1
64
δQ ≥ 1

4
=⇒ δQ ≥ 16. Hence, 0 ∈ 2Q (since 65

64
Q ∩ 1

32
Q◦ �= ∅ and

δQ ≥ 16, and Q◦ = [0, 1)n). Hence, we derive a contradiction. Thus, 65
64
Q

cannot intersect 1
32
Q◦. Since E ⊂ 1

32
Q◦, we conclude that 65

64
Q ∩ E = ∅.

This completes the proof of property (c).

Property (d) is easy to prove. Let Q ∈ Q. Then 0 ∈ 2Q+ thanks to (1.14).
Hence, 0 ∈ 6Q (since 2Q+ ⊂ 6Q). Since δQ ≥ 1, this implies Q◦ ⊂ 9Q (recall that
Q◦ = [0, 1)n). Together with (1.12), this implies property (d).

We now prove property (f). Let Q ∈ CZ(A−) be given.

If Q ∈ CZ(A−) then #(9Q ∩ E) ≥ 2, thanks to (1.6).

If Q ∈ Q, then 9Q ⊃ Q◦, hence #(9Q ∩ E) = #(E) ≥ 2.

This concludes the proof of property (f).

We prepare to describe the construction of the CZ(A−)-oracle.

We can determine whether a dyadic cube Q ⊂ Rn belongs to CZ(A−) using
work and storage at most C logN. We explain the procedure below.

Let Q ⊂ Rn be given.

First, suppose that Q ⊂ Q◦. Then Q ∈ CZ(A−) if and only if Q ∈ CZ(A−).
We can determine whether Q ∈ CZ(A−) by using the CZ(A−)-oracle to produce
a list of all the cubes Q ′ ∈ CZ(A−) satisfying xQ ∈ 65

64
Q ′. (Recall, xQ denotes the

center of Q.) Then Q ∈ CZ(A−) if and only if Q belongs to the aforementioned
list. Thus, in this case, we can determine whether Q ∈ CZ(A−) using work at
most C logN.

Next, suppose that Q◦ � Q. Then Q can never belong to CZ(A−).

Lastly, suppose that Q ⊂ Rn \Q◦. Then Q ∈ CZ(A−) if and only if Q ∈ Q.
Recall from (1.13) and (1.14) that Q ∈ Q if and only if [δQ = 1 or 0 /∈ 2Q] and
[δQ+ ≥ 2 and 0 ∈ 2Q+]. We can check each of these conditions using at most C

computer operations. Thus, in this case we can determine whether Q ∈ CZ(A−)
using work at most C.

Hence, we can determine whether a given cube belongs to CZ(A−) using work
at most C logN.

We next explain how to compute the unique cube Qx ∈ CZ(A−) containing x.

It will then not be difficult to produce a list of the cubes Q ∈ CZ(A−) satisfying
x ∈ 65

64
Q. We describe this step at the very end.

We check whether or not x ∈ Q◦. We split into cases depending on the result.

First, suppose that x ∈ Q◦. We then compute the cube Q ∈ CZ(A−) contain-
ing x using the CZ(A−)-oracle. We set Qx = Q.

Now suppose that x ∈ Rn \Q◦.
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Let Q be the unique cube in Q \ {Q◦} containing x. We will explain how to
compute Q.

We compute the dyadic cube Q̃ ⊂ Rn such that δ
Q̃

= 1 and x ∈ Q̃.

We test to see whether 0 ∈ 2Q̃. We can do that using at most C computer
operations.

If 0 ∈ 2Q̃ then Q̃ is a maximal dyadic cube satisfying the condition [δ
Q̃

≤ 1

or 0 /∈ 2Q̃]. Hence, in that case, Q̃ is the unique cube in Q containing x. We set

Qx = Q̃.

Now suppose that 0 /∈ 2Q̃. Thus, Q̃ satisfies (1.13). Since Q and Q̃ are
intersecting dyadic cubes (they both contain x), and since Q is maximal with

respect to the property (1.13), we conclude that Q̃ ⊂ Q.

Assume that Q̃ = Q. Then 0 /∈ 2Q, by assumption. On the other hand,
suppose that Q̃ � Q. Then δQ > 1 (since δ

Q̃
= 1). Since Q satisfies (1.13), we

conclude that 0 /∈ 2Q.
Thus, in the case where 0 /∈ 2Q̃, we know that 0 /∈ 2Q. Since x ∈ Q this shows

that |x| ≥ 1
4
δQ. Moreover, since Q satisfies (1.14) we know that 0 ∈ 9Q. Hence,

(1.15)
1

4
δQ ≤ |x| ≤ 9 δQ

for the unique cube Q ∈ Q containing x.
There are no more than C dyadic cubes Q ⊂ Rn satisfying (1.15) with x ∈ Q;

moreover, it takes work at most C to list all these cubes. We examine each cube
and test to see whether it belongs to CZ(A−). We set aside the unique cube Q

that passes the test. We set Qx = Q.

We have just explained how to compute the cube Qx ∈ CZ(A−) containing a
given point x ∈ Rn. The work requires is at most C logN. We now explain how
to construct the CZ(A−)-oracle.

Suppose that Q ∈ CZ(A−) satisfies x ∈ 65
64
Q. Then

(1.16) Q ↔ Qx and
1

8
δQx

≤ δQ ≤ 8 δQx
.

This follows from condition (b) in Proposition 1 and an application of Lemma 46
of [1] (with γ = 1/8).

We produce a list of all the dyadic cubesQ that satisfy both (1.16) and x ∈ 65
64
Q.

There are at most C such cubes and it takes work at most C to list them all. We
examine each Q to see whether it belongs to CZ(A−). We return a list of all those
cubes that belong to CZ(A−).

This completes the description of the CZ(A−)-oracle and finishes the proof
of the proposition. �

1.3.3. Keystone cubes. We define integer constants

(1.17)

⎧⎪⎨
⎪⎩

S0 := S(A−),

S1 := the smallest integer greater than 100, 105 · S0, and 2 · [c∗(A−)]−1,

S2 := the smallest odd integer greater than 105S1.
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We let ε > 0 be a small parameter. We assume in what follows that

(1.18) ε > 0 is less than a small enough universal constant.

We eventually fix ε to be a universal constant, but only much later in the proof.
We will take ε2(A) = εκ and ε1(A) = ε1/κ for a small universal constant κ.
The discussion of the final choice of the numerical constants relevant to the Main
Results for A occurs in Section 1.8.3. See also (1.180).

We next define the keystone cubes associated to the decomposition CZ(A−).
We will prove a few basic properties of the keystone cubes and introduce the
relevant algorithms.

Definition 1. A cube Q# ∈ CZ(A−) is keystone if and only if δQ ≥ δQ# for every

Q ∈ CZ(A−) that meets S2Q
#.

Lemma 8. The collection {S1Q
# : Q# ∈ CZ(A−) keystone} has bounded overlap.

Moreover, each keystone cube Q# ∈ CZ(A−) belongs to CZ(A−).

Proof. Suppose that Q#
1 , Q

#
2 are keystone cubes such that S1Q

#
1 ∩S1Q

#
2 �= ∅ and

δ
Q

#
1
≤ δ

Q
#
2
. Then Q

#
1 ∩ S2Q

#
2 �= ∅, since S2 ≥ 105S1. Therefore, δQ#

1
≥ δ

Q
#
2
, by

definition of the keystone cubes.
Consequently, δ

Q
#
1
= δ

Q
#
2
whenever S1Q

#
1 ∩S1Q

#
2 �= ∅. Thus, no more than C

cubes S1Q
#
2 can intersect any given cube S1Q

#
1 . This implies the first conclusion

of Lemma 8.
Finally, observe that no cube in CZ(A−) \ CZ(A−) can be keystone, thanks

to condition (d) in Proposition 1 and the fact that S2 ≥ 100. This completes the
proof of the lemma. �

The above definition of keystone cubes agrees with the definition of keystone
cubes in Section 4.5 of [1], if we let K = S2 and let A be a large universal constant in
Section 4.5 of [1]. The Main keystone cube algorithm from Section 4.5 of [1]
says the following: given Q ∈ CZ(A−), we can compute a keystone cube K(Q) ∈
CZ(A−) such that there exists a sequence S = (Q1, Q2, . . . , QL) of CZ(A−) cubes
such that

Q = Q1 ↔ Q2 ↔ · · · ↔ QL = K(Q),

and with
δQ�

≤ C · (1− c)	−	 ′
δQ� ′ for 1 ≤ � ′ ≤ � ≤ L.

We do not compute the sequence S, we just claim its existence.
We now modify the sequence S to consist only of cubes from CZ(A−) while

retaining the important properties of S.
We first discuss the case in dimension n = 1. We let S ′ denote the se-

quence formed by omitting from S all the cubes that belong to CZ(A−)\CZ(A−).
Recall that all the cubes in CZ(A−) are contained in Q◦ = [0, 1) and all the
cubes in CZ(A−) are contained in R \ [0, 1). Consider a maximal subsequence
Qk1

, . . . , Qk2
of cubes in S that belong to CZ(A−). Then, by connectedness,
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each Qk (k1 ≤ k ≤ k2) is contained in either [1,∞) or (−∞, 0). Assume for
sake of definiteness that each Qk is contained in [1,∞). Then Qk1−1 and Qk2+1

are the same cube in CZ(A−), namely the unique cube in CZ(A−) that meets
the endpoint x = 1. (This is because the sequence must exit and reenter [0, 1)
using the same cube that borders the endpoint x = 1.) Thus we can remove the
aforementioned subsequence from S and obtain a connected path of cubes. The
resulting sequence is exponentially decreasing with the same constants C and c

above. The same argument shows that we can remove every maximal subsequence
of S consisting of cubes in CZ(A−) \ CZ(A−).

We now handle the case when the dimension n is at least 2.
Suppose that some of the cubes in S belong to CZ(A−). Let Qk1

and Qk2

denote the first and last cubes in the sequence S belonging to CZ(A−) \CZ(A−).
Let Ssub = (Qk1

, . . . , Qk2
) denote the corresponding subsequence of S.

We know that Q1 = Q and QL = K(Q) both belong to CZ(A−). Hence,
1 < k1 ≤ k2 < L.

Note that both Qk1−1 and Qk2−1 intersect the boundary of Q◦ and belong to
CZ(A−).

We join Qk1−1 and Qk2+1 with a sequence S ′
sub = (Q̃k1

, . . . , Q̃k3
) with the

following properties.

• The cubes Q̃k ∈ CZ(A−) intersect the boundary of Q◦.

• Q̃k1
↔ Qk1−1, Q̃k3

↔ Qk2+1, and

Q̃k ↔ Q̃k+1 for k1 ≤ k ≤ k3 − 1.

• k3 − k1 is bounded by a universal constant.

• Each Q̃k has sidelength between 1/2 and 1/8.

These properties can be arranged due to Lemma 7.
We replace the subsequence Ssub with the sequence S ′

sub in S. We obtain

a sequence S ′ = (Q̃1, Q̃2, . . . , Q̃L) of cubes in CZ(A−) such that Q̃1 = Q and

Q̃L = K(Q); moreover,

Q̃	 ↔ Q̃	+1 (1 ≤ � ≤ L− 1) and δ
Q̃�

≤ C ′ · (1− c ′)	−	 ′
δ
Q̃� ′ (1 ≤ � ′ ≤ � ≤ L).

Indeed, the fact that S ′ satisfies the exponentially decreasing property follows
directly from the construction: We removed a subsequence of connected cubes
in S and replaced it with a subsequence of bounded length consisting of cubes
of size ∈ {1/2, 1/4, 1/8}. This has no effect on the fact that the sidelengths are
exponentially decreasing in the sense of the above estimate.

Hence, the sequence S ′ joining Q and K(Q) is exponentially decreasing.
We never actually compute the sequences S or S ′, we just claim their existence.

Using the above analysis, the Main keystone cube algorithm and the algo-
rithm List all keystone cubes from Section 4.5 of [1], we obtain the following
result.
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Algorithm: Keystone-oracle

After one-time work at most CN logN in space CN we produce the following
outcomes:

• We list all the keystone cubes Q# in CZ(A−).

• We can answer queries: A query consists of a cube Q ∈ CZ(A−), and the
response to a query Q is a keystone cube K(Q) to which Q is connected by
an exponentially decreasing path

Q = Q̃1 ↔ Q̃2 ↔ · · · ↔ Q̃L = K(Q)

with
δ
Q̃�

≤ C · (1− c)	−	 ′
δ
Q̃� ′ for 1 ≤ � ′ ≤ � ≤ L.

We guarantee that Q̃	 ∈ CZ(A−) and 65
64
Q̃	 ⊂ CQ for each �. We guarantee

that S1K(Q) ⊂ CQ; also that K(Q) = Q if Q is keystone. The work required
to answer a query is at most C logN.

• We list all (Q ′, Q ′′) ∈ CZ(A−)× CZ(A−) such that Q ′ ↔ Q ′′ and K(Q ′) �=
K(Q ′′). Let BD(A−) (the “border disputes”) denote the set of all such pairs
(Q ′, Q ′′). We guarantee that the cardinality of BD(A−) is at most CN.

Remark 1. Let Q̃1 ↔ · · · ↔ Q̃L be as above. For fixed Q ′, we can have Q ′ = Q̃	

for at most C distinct �. This is because the path Q̃1 ↔ Q̃2 ↔ · · · ↔ Q̃L is
exponentially decreasing.

Remark 2. We do not attempt to compute the sequence of cubes Q̃1, . . . , Q̃L−1,
we only guarantee that this sequence exists, and we guarantee that we can compute
the keystone cube K(Q) = Q̃L located at the end of the sequence.

1.4. An approximation to the sigma

We begin the proof of the main technical results for A. We recall that A � M is
a monotonic set.

In Sections 1.3.2 and 1.3.3, we have defined a dyadic decomposition CZ(A−)
of Rn and a notion of keystone cubes in CZ(A−). We cannot compute all the
cubes in CZ(A−) since there are infinitely many. Instead, we have access to a
CZ(A−)-oracle and a Keystone-oracle.

The integer constants S0, S1 and S2 relating to the keystone cubes are defined
in (1.17).

According to the main technical results for A− (see Section 3 in [1]), for each
Q ∈ CZmain(A−) the functional

(1.19) M(Q,A−)(f, R) :=
( ∑

ξ∈Ξ(Q,A−)

|ξ(f, R)|p
)1/p

satisfies

(1.20) c‖(f, R)‖(1+a)Q ≤ M(Q,A−)(f, R) ≤ C‖(f, R)‖ 65
64

Q.

Recall that a is the constant a(A−) from the main technical results; see (1.7).
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We set Ξ(Q,A−) := ∅ andM(Q,A−)(f, R) := 0 for allQ ∈ CZ(A−)\CZmain(A−).
By definition of the collection CZmain(A−) and by property (c) in Proposition 1,
we have 65

64
Q∩E = ∅. Thus, ‖(f, R)‖(1+a)Q = 0 for anyQ ∈ CZ(A−)\CZmain(A−).

Thus, we see that (1.20) holds for all Q ∈ CZ(A−).

1.4.1. Assigning jets to keystone cubes. Let Q# ∈ CZ(A−) be a keystone
cube. We define its associated CZ cubes to be the collection

(1.21) I(Q#) :=
{
Q ∈ CZ(A−) : Q ∩ S0Q

# �= ∅}.
We note that the cubes in I(Q#) belong to CZ(A−) rather than CZ(A−). Hence,
the cubes in I(Q#) are contained in Rn, and may not be contained in Q◦.

Lemma 9. Let A ≥ 1 be given. Assume that Q,Q ∈ CZ(A−) and Q ∩ AQ �= ∅.
Then

δQ ≤ 103AδQ, and(1.22)

65

64
Q ⊂ 105AQ.(1.23)

Proof. We first prove (1.22). Assume for the sake of contradiction that δQ >

103AδQ for some Q,Q ∈ CZ(A−) with Q ∩ AQ �= ∅. Then 65
64
Q ∩ Q �= ∅. How-

ever, this contradicts the good geometry of the cubes in CZ(A−) (see Proposi-
tion 1). This completes the proof of (1.22) by contradiction. Lastly, (1.23) follows
from (1.22) and our assumption that Q ∩AQ �= ∅. �

By Lemma 9, the CZ cubes associated to a given Q# satisfy the following
property: for each Q ∈ I(Q#) we have

δQ ≤ 103S0 · δQ# , and(1.24)

65

64
Q ⊂ S1Q

#.(1.25)

(Recall (1.17), which states that S1 ≥ 105S0.)

Remark 3. The definition of keystone cubes shows that δQ ≥ δQ# whenever
Q ∈ I(Q#). Hence, (1.24) implies that the cardinality of I(Q#) is bounded by C

for each keystone cube Q#.
If Q ∈ I(Q#

1 ) and Q ∈ I(Q#
2 ) then (1.25) implies that S1Q

#
1 ∩ S1Q

#
2 ⊃

65
64
Q. Recall that the cubes S1Q

# (Q# keystone) have bounded overlap. (See

Lemma 8.) Thus, each Q ∈ CZ(A−) belongs to I(Q#) for at most C distinct
keystone cubes Q#.

Algorithm: Make new assists and assign keystone jets

For each keystone cube Q#, we compute a list of new assists Ωnew(Q#) ⊂[
X(S1Q

# ∩ E)
]∗
, written in short form, and we produce an Ωnew(Q#)-assisted

bounded depth linear map R
#
Q# : X(S1Q

# ∩ E) ⊕ P → P , written in short form.
Furthermore, we guarantee that the following conditions are met.



Fitting a Sobolev function to data II 667

• The sum of depth(ω) over allω inΩnew(Q#), and over all keystone cubesQ#,
is bounded by CN.

Given (f, P) ∈ X(S1Q
# ∩ E)⊕ P , denote R# = R

#
Q#(f, P).

• Then ∂α
(
R# − P

) ≡ 0 for all α ∈ A. (This condition is natural because A
is monotonic; see (1.1).)

• Let R ∈ P , with ∂β (R− P) ≡ 0 for all β ∈ A. Then

(1.26)
∑

Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

|ξ(f, R#)|p ≤ C
∑

Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

|ξ(f, R)|p.

To compute the assists Ωnew(Q#) and the short form of the maps R#
Q# (for all the

keystone cubes Q#) requires work at most CN logN, and storage at most CN.

Explanation. Given P ∈ P , we define VP to be the affine subspace consisting of all
polynomials R ∈ P satisfying ∂α(R − P) ≡ 0 for all α ∈ A. We note that R ∈ VP⇐⇒ ∂α(R − P)(0) = 0 for all α ∈ A, since A is monotonic.

We introduce coordinates on VP, defined by

w = (w1, . . . , wk) ∈ Rk =⇒ Rw(x) =
∑
α∈A

∂αP(0)

α!
xα +

k∑
j=1

wj · x
αj

αj!
,

where we write M \A = {α1, . . . , αk}.
We consider the sum of the p-th powers of the functionals ξ(f, Rw) over all

ξ ∈ Ξ(Q,A−) and Q ∈ I(Q#). We want to minimize this expression with respect
to w ∈ Rk. We can approximately solve this minimization problem using the
algorithm Optimize via matrix from Section 2.8 of [1]. We describe the process
below.

For each Q ∈ CZmain(A−) with Q∩S0Q
# �= ∅, we have δQ# ≤ δQ by definition

of keystone cubes. Hence, from (1.24) we have

Q ∩ S0Q
# �= ∅ and δQ# ≤ δQ ≤ C · δQ#(1.27)

for a universal constant C.

We list all the dyadic cubes Q that satisfy (1.27). There are at most C cubes in
this list. We test each Q to see whether it belongs to CZmain(A−). Thus, we can
compute the list

L =
{
Q ∈ CZmain(A−) : Q ∩ S0Q

# �= ∅}.
The list L contains all cubes Q that participate in (1.26) for which Ξ(Q,A−) �= ∅.
(Recall that Ξ(Q,A−) = ∅ for Q ∈ CZ(A−) \ CZmain(A−).)

We list all the functionals ξ appearing in Ξ(Q,A−) for some Q ∈ L. From the
main technical results for A− (see Section 3 in [1]), each such ξ is given in the form

ξ(f, Rw) = λ(f) +

I∑
a=1

μa ·ωa(f) + λ̌((∂αP(0))α∈A) +
k∑

j=1

μ̌j ·wj,
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where λ and λ̌ are linear functionals; ωa ∈ Ω(Q,A−) for some Q ∈ L; μa and μ̌j

are real coefficients; and depth(λ) = O(1), I = O(1). In this discussion, we write
X = O(Y) to indicate that X ≤ CY for a universal constant C.

Processing each functional ξ this way takes work O(1) per functional. Thus,
with work O(L) (see below), we obtain a list of all the above ξ’s, written as

ξ	(f, Rw) = λ	(f) +

I�∑
a=1

μ	aω	a(f) + λ̌	((∂
αP(0))α∈A) +

k∑
j=1

μ̌	jwj(1.28)

for � = 1, . . . , L; here, L =
∑

Q∈I(Q#)

#
[
Ξ(Q,A−)

]
.

Here, each I	 = O(1), each λ	 has bounded depth, and each ω	a belongs to
Ω(Q	a,A−) for some Q	a ∈ L. Of course the Q	a need not be distinct, and
k ≤ dim(P) = D.

Processing the functionals w → ξ	(f, Rw) in (1.28) with the algorithm Opti-
mize via matrix (see Section 2.8 of [1]), we compute a matrix (bj	) with the
following property. The sum of the absolute values of the p-th powers of the func-
tionals ξ	(f, Rw) (1 ≤ � ≤ L) is essentially minimized for fixed f, (∂αP(0))α∈A by
setting w = w∗ = (w∗

1, . . . , w
∗
k), where

w∗
j =

L∑
	=1

bj	

[
λ	(f) +

I�∑
a=1

μ	aω	a(f) + λ̌	((∂
αP(0))α∈A)

]
(1.29)

=
{ L∑

	=1

bj	

[
λ	(f) +

I�∑
a=1

μ	aω	a(f)
]}

+

L∑
	=1

bj	 · λ̌	((∂αP(0))α∈A)

≡ ωnew
j (f) + λnewj ((∂αP(0))α∈A).

We have thus defined new assists ωnew
j and new functionals λnewj .

We may therefore set R#
Q#(f, P) := Rw∗ withw∗

j = ωnew
j (f)+λnewj ((∂αP(0))α∈A)

(1 ≤ j ≤ k) and we obtain the estimate (1.26). Note that R#
Q# has assisted bounded

depth, with assists ωnew
j (j = 1, . . . , k). Indeed,

(1.30) ∂α[R#
Q#(f, P)](0) =

{
ωnew

j (f) + λnewj ((∂αP(0))α∈A) if α = αj, j = 1, . . . , k

∂αP(0) if α ∈ A.

We can compute the new functionals λnewj (1 ≤ j ≤ k) using the obvious
method. This requires work

O(L) = O
( ∑

Q∈I(Q#)

#
[
Ξ(Q,A−)

])
.

We will now express the new assists ωnew
j in short form.

We write ωnew
j = ωnew,1

j +ωnew,2
j , where ωnew,1

j and ωnew,2
j are defined below

(see (1.31) and (1.34)).
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Each λ	(f) has bounded depth, so the functional

(1.31) ωnew,1
j : f → L∑

	=1

bj	 · λ	(f)

can be computed in short form using

work O(L log L) = O
(
logN ·

∑
Q∈I(Q#)

#
[
Ξ(Q,A−)

] )

and storage O(L) = O
( ∑

Q∈I(Q#)

#
[
Ξ(Q,A−)

] )
.

This computation follows by a simple sorting procedure. We provide details below.

• Recall that λ	 has bounded depth and is given in short form (without assists):

(1.32) λ	(f) =
∑
x∈S�

c	(x) · f(x), where #(S	) ≤ C.

Thus, we can express the functional (1.31) as

ωnew,1
j : f → ∑

x∈S

dj(x) · f(x), where S =

L⋃
	=1

S	 and

dj(x) =

L∑
	=1

bj	 · c	(x) for x ∈ S.(1.33)

We compute the weights dj(x) by sorting. More precisely, we sort the points
of S. We make an array indexed by S. We initialize the array to have all
zero entries. We loop over � = 1, . . . , L, and we loop over all the points
y ∈ S	. We determine the position of each y in the list S, and we add
the number bj	 · c	(y) at the relevant position in the array. This requires
work at most C log(S) ≤ C log L for a fixed pair (�, y). Hence, the total
work required is at most CL log L, since the number of relevant pairs (�, y)

is
∑L

	=1 #(S	) ≤ ∑L
	=1C ≤ CL. Similarly, the total storage is at most

C
∑L

	=1 #(S	) ≤ CL.

Thus, we can compute the functional (1.31) using work O(L log L) and stor-
age O(L).

It remains to compute the functional

(1.34) ωnew,2
j : f → L∑

	=1

bj	

I�∑
a=1

μ	aω	a(f) in short form. (Recall, each I	 = O(1).)

We recall that each ω	a belongs to
⋃

Q∈I(Q#)Ω(Q,A−).
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We can express the functional (1.34) in the form

(1.35) ωnew,2
j : f → ∑

ω∈⋃
Q∈I(Q#)

Ω(Q,A−)

qjω ·ω(f),

with work O(L log L) = O
(
logN ·

∑
Q∈I(Q#)

#
[
Ξ(Q,A−)

] )

and storage O(L) = O
( ∑

Q∈I(Q#)

#
[
Ξ(Q,A−)

] )
.

We can compute the relevant numbers qjω by sorting, since

(1.36) qjω =
∑

(	,a):ω�a=ω

bj	 · μ	a.

Finally, once our functional is in the form (1.35), we can easily write it in short
form

(1.37) ωnew,2
j : f → ∑

x∈S

kj(x) · f(x)

with work O
(
logN ·

∑
Q∈I(Q#)

∑
ω∈Ω(Q,A−)

depth(ω)
)

and storage O
( ∑

Q∈I(Q#)

∑
ω∈Ω(Q,A−))

depth(ω)
)
.

Again, we perform a sort to carry this out.
We compute ωnew

j = ωnew,1
j +ωnew,2

j in short form by adding the short form
expressions (1.33) and (1.37).

Altogether, we obtain the new assists ωnew
j and the new functionals λnewj for a

given Q# using work at most

C · (logN) ·
[ ∑
Q∈I(Q#)

{
1+#

[
Ξ(Q,A−)

]
+

∑
ω∈Ω(Q,A−)

depth(ω)
}]

and storage at most

C ·
[ ∑
Q∈I(Q#)

{
1+#

[
Ξ(Q,A−)

]
+

∑
ω∈Ω(Q,A−)

depth(ω)
}]

.

(Again, recall that Ξ(Q,A−) = Ω(Q,A−) = ∅ for any Q ∈ CZ(A−)\CZmain(A−).)
Each Q ∈ CZmain(A−) belongs to I(Q#) for at most C distinct Q# (see Re-

mark 3). Therefore, we can compute the new assists and the new functionals for
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all the keystone cubes Q# using work at most

C · (logN) ·
[
#{ Keystone Cubes Q#}+

∑
Q∈CZmain(A−)

#
[
Ξ(Q,A−)

]
+

∑
Q∈CZmain(A−)

∑
ω∈Ω(Q,A−)

depth(ω)
]
,

which is at most CN logN by the induction hypothesis and the statement of
the Keystone-oracle (which guarantees that the number of keystone cubes is
bounded by CN). Similarly, we see that all the new assists can be computed using
storage at most CN.

Finally, note that there are at most D new assists for each given keystone cube
Q# ∈ CZ(A−), and each such assist has depth at most #(S1Q

# ∩ E). By the
bounded overlap of the cubes S1Q

# (see Lemma 8), we see that the sum of the
depths of all the new assists is at most C ·#(E) = CN.

This completes the explanation of the algorithm. �

Let Q# ∈ CZ(A−) be a keystone cube. For each (f, R) ∈ X(S1Q
# ∩E)⊕P , we

define [
M

#
Q#(f, R)

]p
:=

∑
Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

|ξ(f, R)|p =
∑

Q∈I(Q#)

[
M(Q,A−)(f, R)

]p
.(1.38)

The terms ξ(f, R) appearing above are well-defined, since (1.25) states that 65
64
Q ⊂

S1Q
# for each Q ∈ I(Q#). (Recall that the domain of each functional ξ in

Ξ(Q,A−) is X((65/64)Q ∩ E)⊕ P .)
We now show that the “keystone functional” defined in (1.38) is comparable to

the trace semi-norm near the given keystone cube.

Lemma 10. Let Q# be a keystone cube. Then

c · ‖(f, R)‖S0Q# ≤ M
#
Q#(f, R) ≤ C · ‖(f, R)‖S1Q#

for all (f, R) ∈ X(S1Q
# ∩ E)⊕ P.

Proof. From (1.25) we learn that (1 + a)Q ⊂ (65/64)Q ⊂ S1Q
# for any Q ∈

I(Q#). (Recall that a = a(A−) ≤ 1/64; see (1.7).)
Let (f, R) ∈ X(S1Q

# ∩ E)⊕ P be given.
For each Q ∈ I(Q#), by definition of the seminorm ‖(·, ·)‖(1+a)Q, we can

choose FQ ∈ X with FQ = f on E ∩ (1+ a)Q and

‖FQ‖X((1+a)Q) + δ−m
(1+a)Q‖FQ − R‖Lp((1+a)Q) ≤ 2 · ‖(f, R)‖(1+a)Q.

From the left-hand estimate in (1.20) we have ‖(f, R)‖(1+a)Q ≤ C ·M(Q,A−)(f, R).
Thus, by definition (1.38) we have

(1.39) ‖FQ‖X((1+a)Q)+δ−m
Q ‖FQ−R‖Lp((1+a)Q) ≤ C·M#

Q#(f, R) for Q ∈ I(Q#).

We will need to use a few results from Sections 4.6.4 and 4.6.5 in [1]. Consider:
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• CZ := CZ(A−) and Q := I(Q#).

• Q̂ := S0Q
#;

• r := a, and A := 103.

We have already given a CZ(A−)-oracle. We proved good geometry for CZ(A−),
which is a dyadic decomposition of Rn; see Proposition 1. This puts us in the
setting of Section 4.6.4 of [1].

Now, note the following covering condition: every x ∈ S0Q
# belongs to some

Q ∈ I(Q#). This is due to the definition of I(Q#) in (1.21) and because CZ(A−)
is a decomposition of Rn. We also point out the size condition stated in (1.24):
for each Q ∈ I(Q#), we have δQ ≤ 103δ

S0Q̂
. These two conditions are equivalent

to (4.53) and (4.54) in Section 4.6.5, with the choice of CZ, Q, Q̂, r, and A as in
the above bullet points. This puts us in the setting of Section 4.6.5 of [1].

By Lemma 48 in [1], there exists a partition of unity θ
Q#

Q ∈ Cm(Rn) (Q ∈
I(Q#)) such that

(1.40)
∑

Q∈I(Q#)

θ
Q#

Q = 1 on S0Q
#,

where supp θQ
#

Q ⊂ (1+a)Q and |∂αθ
Q#

Q (x)| ≤ C · δ−|α|

Q for x ∈ (1+a)Q, |α| ≤ m.

Define
F :=

∑
Q∈I(Q#)

FQ · θQ#

Q .

Note that the cardinality of I(Q#) is at most C (see Remark 3). Thus, from (1.39),
and Lemma 49 in [1], we have

‖F‖X(S0Q#) ≤ C ·M#
Q#(f, R).

Moreover, since supp(θQ
#

Q ) ⊂ (1+a)Q and δQ# ≤ δQ ≤ CδQ# for all Q ∈ I(Q#),
we have

δ−m
Q# ‖F− R‖Lp(S0Q#) = δ−m

Q#

∥∥∥ ∑
Q∈I(Q#)

(FQ − R) · θQ#

Q

∥∥∥
Lp(S0Q#)

(see (1.40))

≤ C
∑

Q∈I(Q#)

δ−m
Q ‖FQ − R‖Lp((1+a)Q)‖θQ

#

Q ‖L∞((1+a)Q)

≤ C ·M#
Q#(f, R) (see (1.39)).

Because supp(θQ
#

Q ) ⊂ (1+a)Q and FQ = f on E∩ (1+a)Q for all Q ∈ I(Q#),

and from (1.40), we learn that F = f on E ∩ S0Q
#. Hence, the above estimates

imply that

‖(f, R)‖S0Q# ≤ ‖F‖X(S0Q#) + δ−m
S0Q#‖F− R‖Lp(S0Q#) � M

#
Q#(f, R).

This proves one inequality in the statement of the lemma.
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Next, using the right-hand estimate in (1.20), we see that

[
M

#
Q#(f, R)

]p
=

∑
Q∈I(Q#)

Q∈CZmain(A−)

[
M(Q,A−)(f, R)

]p ≤ C
∑

Q∈I(Q#)

‖(f, R)‖p65
64

Q
.

Recall that I(Q#) contains at most C cubes. Thus, by Lemma 14 in [1], where
we use the fact that δQ# ≤ δQ ≤ CδQ# and 65

64
Q ⊂ S1Q

# for all Q ∈ I(Q#), we
learn that the right-hand side in the above estimate is bounded by C·‖(f, R)‖p

S1Q# .
This completes the proof of the lemma. �

The parameter ε > 0 now makes its first appearance. Recall that ε is assumed
to be less than a small enough universal constant. See (1.18).

Proposition 2. Let Q̂ be a dyadic subcube of Q◦, such that 3Q̂ is tagged with (A, ε).

Assume also that Q# ∈ CZ(A−) is a keystone cube, and that S1Q
# ⊆ 65

64
Q̂.

Suppose that H ∈ X satisfies H = f on E ∩ S1Q
# and ∂αH(xQ#) = ∂αP(xQ#)

for all α ∈ A. Then

(1.41) δ−m
Q# ‖H− R

#
Q#‖Lp(S1Q#) ≤ C · ‖H‖X(S1Q#).

Here, C ≥ 1 is a universal constant; and R
#
Q# = R

#
Q#(f, P).

(See the algorithm Make new assists and assign keystone jets.)

Proof. Recall that S0Q
# ⊂ 65

64
Q̂ and 3Q̂ is tagged with (A, ε). Thus, Lemma 28

from [1] implies that S0Q
# is tagged with (A, εκ) for some universal constant κ > 0.

Recall that S1 ≥ 2[c∗(A−)]−1; see (1.17). Thus, since S1Q
# ⊂ 65

64
Q̂ we have

(1.42) δQ# ≤ S−1
1 δ 65

64
Q̂

≤ c∗(A−).

Hence, the induction hypothesis implies that

(1.43) S0Q
# is not tagged with (A ′, ε1(A−)) for any A ′ < A.

In particular, S0Q
# is not tagged with (A ′, εκ) for any A ′ < A.

Since S0Q
# is tagged with (A, εκ) but not with (A ′, εκ) for any A ′ < A, we

see that σ(S0Q
#) has an (A, xQ# , εκ, δS0Q#)-basis. Thus there exist polynomials

(Pα)α∈A such that

Pα ∈ εκ
[
δS0Q#

]|α|+n/p−m · σ(S0Q#) for α ∈ A,(1.44)

∂βPα(xQ#) = δαβ for β,α ∈ A,(1.45)

|∂βPα(xQ#)| ≤ εκ
[
δS0Q#

]|α|−|β|
for β ∈ M, α ∈ A, β > α.(1.46)

To start, we prove the following statement.



674 C. Fefferman, A. Israel and G.K. Luli

• Suppose that

R ∈ σ(S0Q
#), and(1.47)

∂αR(xQ#) = 0 for all α ∈ A.(1.48)

Then, for some W = W(m,n, p) ≥ 0 we have

(1.49) |∂βR(xQ#)| ≤ W · δm−n/p−|β|

Q# for β ∈ M.

For the sake of contradiction, suppose that (1.47) and (1.48) do not imply (1.49).

Then, for some large constant Ŵ ≥ 0, which will be determined later, there exists
R ∈ σ(S0Q

#) satisfying (1.48) and

(1.50) max
β∈M

|∂βR(xQ#)| · (δQ#)n/p+|β|−m = Ŵ.

For each integer � ≥ 0, define the multi-index set

Δ	 =
{
β ∈ M : |∂βR(xQ#)| · (δQ#)n/p+|β|−m ≥ Ŵ(2−�)

}
.

Note that Δ0 �= ∅ thanks to (1.50), and also Δ	 ⊂ Δ	+1 for � ≥ 0.
Since #M = D and Δ	 ⊂ M is an increasing sequence, there is an index

�∗ ∈ {0, . . . , D} such that Δ	∗ = Δ	∗+1. Pick the maximal element α ∈ Δ	∗ (under
the total order relation < on M). By definition of Δ	∗ , we have

(1.51) |∂αR(xQ#)| · (δQ#)n/p+|α|−m ≥ Ŵ(2−�∗ ).

Now, if β ∈ M and β > α, then β /∈ Δ	∗ = Δ	∗+1, by maximality of α. Hence,

(1.52) |∂βR(xQ#)| · (δQ#)n/p+|β|−m ≤ Ŵ(2−�∗−1) for each β ∈ M with β > α.

We define Z and A by setting Ŵ = ZA, with A = 2	∗ and 0 ≤ �∗ ≤ D. Then
(1.50)–(1.52) state that

|∂αR(xQ#)| ≥ Z · [δQ# ]m−n/p−|α|,

|∂βR(xQ#)| ≤ Z1/2 · [δQ# ]m−n/p−|β| for β ∈ M, β > α, and

|∂βR(xQ#)| ≤ ZA · [δQ# ]m−n/p−|β| for β ∈ M.

Define Pα := (∂αR(xQ#))−1 · R. Then (1.48) implies that

(1.53) ∂βPα(xQ#) = δαβ for β ∈ A ∪ {α}.

Since R ∈ σ(S0Q
#),

(1.54) Pα ∈ Z−1
[
δQ#

]|α|+n/p−m · σ(S0Q#),
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and also

|∂βPα(xQ#)| ≤ Z−1/2 · [δQ# ]|α|−|β| for β ∈ M, β > α, and(1.55)

|∂βPα(xQ#)| ≤ ZA · [δQ# ]|α|−|β| for β ∈ M.(1.56)

Set A := {α ∈ A : α < α} ∪ {α}. Since ∂αR(xQ#) = 0 for all α ∈ A, we see
that α /∈ A. Thus,

(1.57) A < A.

For α ∈ A with α < α, we set

Pα := Pα − ∂αPα(xQ#)Pα.

Note that

Pα ∈ CεκZA
[
δQ#

]|α|+n/p−m · σ(S0Q#) (by (1.44), (1.46), (1.54)),(1.58)

∂βPα(xQ#) = δαβ for β∈A (by (1.45), (1.53)), and(1.59)

|∂βPα(xQ#)| ≤ CεκZA[δQ# ]|α|−|β| for β∈M, β > α (by (1.46), (1.56)).(1.60)

Examining (1.53)–(1.60), we see that
(1.61)
(Pα)α∈A is an (A, xQ# , C · (S0)m max{εκZA, Z−1/2}, δS0Q#)-basis for σ(S0Q

#).

Recall that Z = Ŵ1/A with A = 2	∗ and 0 ≤ �∗ ≤ D. We pick Ŵ to be a large
enough universal constant, and assume that ε is less than a small enough universal
constant. Then (1.57) and (1.61) imply that S0Q

# is tagged with (A−, ε1(A−)).
But this contradicts (1.43). This completes our proof that (1.49) holds whenever
the polynomial R satisfies (1.47) and (1.48).

We now prove the main assertion in Proposition 2. Suppose that H ∈ X

satisfies H = f on E ∩ S1Q
# and ∂αH(xQ#) = ∂αP(xQ#) for all α ∈ A. Then

∂α(Jx
Q#H − P) ≡ 0 for all α ∈ A. Here, we use the monotonicity of A; see (1.1).

Next, we apply the estimate (1.26) followed by Lemma 10, which gives

M
#
Q#(f, R

#
Q#) ≤ C ·M#

Q#(f, Jx
Q#

H) ≤ C · ‖(f, Jx
Q#

H)‖S1Q# ≤ C · ‖H‖X(S1Q#),

which implies that

M
#
Q#(0, R

#
Q# − Jx

Q#
H) ≤ C · ‖H‖X(S1Q#).

Thus, Lemma 10 implies that ‖(0, R#
Q# − Jx

Q#H)‖S0Q# ≤ C‖H‖X(S1Q#), hence

R
#
Q# − Jx

Q#
H ∈ C‖H‖X(S1Q#) · σ(S0Q#).

By the defining properties of R#
Q# (see the algorithm Make new assists and

assign keystone jets), and by our assumption on ∂αH(xQ#), we have

∂α(R#
Q# − Jx

Q#
H)(xQ#) = ∂α(P − P)(xQ#) = 0 for all α ∈ A.

Thus, (1.49) shows that

|∂β(Jx
Q#

H − R
#
Q#)(xQ#)| ≤ C · (δQ#)m−n/p−|β|‖H‖X(S1Q#) for all β ∈ M.



676 C. Fefferman, A. Israel and G.K. Luli

Hence, by the Sobolev inequality we have

δ−m
Q# ‖H− R

#
Q#‖Lp(S1Q#) ≤ C · ‖H‖X(S1Q#).

That proves (1.41) and completes the proof of Proposition 2. �

1.4.2. Marked cubes. We summarize various objects that we have computed in
previous sections of the paper. This is meant to serve as a reference for the reader.

• The main cubes. We compute the collection of cubes Q ∈ CZmain(A−), each
marked with pointers to the following objects.

– The list Ω(Q,A−) of assist functionals on X(65
64
Q ∩ E), expressed in

short form.

– The list Ξ(Q,A−) of functionals on X(65
64
Q∩E)⊕P , each of Ω(Q,A−)-

assisted bounded depth, expressed in short form in terms of assists
Ω(Q,A−).

– The list of functionals ξQ1 , . . . , ξ
Q
D on P .

(See the main technical results for A− in Section 3 of [1], and the algorithm
Approximate old trace norm in Section 1.3.)

• The keystone cubes. We list all the keystone cubes Q# for CZ(A−), each
marked with pointers to the following objects.

– The list Ωnew(Q#) of new assist functionals on X(S1Q
#∩E), expressed

in short form.

– The linear map R
#
Q# : X(S1Q

# ∩ E) ⊕ P → P , which has Ωnew(Q#)-
assisted bounded depth, and is expressed in short form in terms of assists
Ωnew(Q#).

(See Make new assists and assign keystone jets in Section 1.4.1.)

• The border-dispute pairs. We list all the border-dispute pairs (Q ′, Q ′′) ∈
BD(A−). (See the Keystone-oracle in Section 1.3.3.)

We store these cubes in memory along with their markings.

1.4.3. Testing cubes. Let Q̂ be a dyadic subcube of Q◦. Since CZ(A−) is a
dyadic decomposition of Q◦, one and only one of the following alternatives holds.

(A) Q̂ is a disjoint union of cubes from CZ(A−).

(B) Q̂ is strictly contained in one of the cubes of CZ(A−).

Definition 2. Let Q̂ ⊂ Q◦ be a dyadic cube. If alternative (A) holds, we call Q̂
a testing cube.

Let 0 < λ < 1. We say that a testing cube Q̂ is λ-simple if δQ ≥ λ · δ
Q̂

for any

Q ∈ CZ(A−) with Q ⊂ (65/64)Q̂.
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We introduce a geometric parameter

(1.62) tG ∈ R, which is an integer power of two.

We assume that 0 < tG < c, where c is a small enough constant determined
by m, n and p.

We will later determine a(A) to be an appropriate constant depending on tG.
For the main conditions satisfied by a(A), see the fourth and fifth bullet points
in Section 3 of [1]. Near the end of Section 1.4 we determine tG to be a constant
depending only on m, n, and p – but not yet.

We recall that a = a(A−) is a fixed universal constant.

Lemma 11. Let Q̂ be a testing cube. Assume that tG > 0 is less than a small
enough universal constant. The following properties hold.

• There exists a constant anew > 0, depending only on tG,m, n, p, such that
the cube (1+ anew)Q̂ is contained in the union of the cubes (1+ a/2)Q over

all Q ∈ CZ(A−) with Q ⊂ (1+ tG)Q̂.

• If Q ∈ CZ(A−) and Q ⊂ (1+ 100tG)Q̂, then 65
64
Q ⊂ 65

64
Q̂.

Proof. We assume anew is less than a small enough constant determined by tG,
m, n, and p. We will later fix anew to be a constant depending only on tG, m, n,
and p, but not yet.

Let x ∈ (1 + anew)Q̂ be given. We will produce a cube Q ∈ CZ(A−) with

Q ⊂ (1+ tG)Q̂ such that x ∈ (1+ a/2)Q, thus proving the first bullet point.

Pick a point xnear ∈ Q̂ with |xnear − x| ≤ anewδQ̂. (Recall that we use the �∞

metric on Rn.)
Since the cubes in CZ(A−) partition Q◦, one of the following cases must occur

Case 1. There exists Q1 ∈ CZ(A−) with δQ1
≤ (tG/40)δQ̂ such that x ∈ Q1.

Because x ∈ (1 + anew)Q̂, we have Q1 ⊂ (1 + anew + tG/10)Q̂ in Case 1.

Therefore, Q1 ⊂ (1+ tG)Q̂. (Here, we assume that anew ≤ 9tG/10.)

Case 2. There exists Q2 ∈ CZ(A−) with δQ2
> (tG/40)δQ̂ and x ∈ Q2.

Because Q̂ is a testing cube, there exists Q ∈ CZ(A−) such that Q ⊂ Q̂ and
xnear ∈ Q. Moreover, note that

|x− xnear| ≤ anewδQ̂ ≤ 40anew

tG
δQ2

≤ a

8
δQ2

.

(Here, we assume that anew ≤ atG/320.) The above estimate and the fact that
x ∈ Q2 imply that xnear ∈ (1 + a)Q2. Since xnear ∈ Q, we have δQ2

≤ 2δQ by
good geometry. Therefore, |x − xnear| ≤ a

4
δQ. Consequently, since xnear ∈ Q we

have x ∈ (1+ a/2)Q.

Case 3. x ∈ Rn \Q◦.
Because Q̂ is a testing cube, there exists Q ∈ CZ(A−) with Q ⊂ Q̂ and

xnear ∈ Q. Note that

dist(Q,Rn \Q◦) ≤ |x− xnear| ≤ anew δ
Q̂

≤ anew.
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If anew < 10−3, then Lemma 7 implies that δQ ∈ {1/2, 1/4, 1/8}, hence |x −
xnear| ≤ 8anewδQ. Since xnear ∈ Q, we see that x ∈ (1+ 100anew)Q ⊂ (1+ a/2)Q.

Thus, in all cases we have produced some cube Q ′ ∈ CZ(A−) such that Q ′ ⊂
(1 + tG)Q̂ and x ∈ (1 + a/2)Q ′. Here, x ∈ (1 + anew)Q̂ is arbitrary. We now fix
anew to be a small enough constant depending on tG, m, n, and p. This completes
the proof of the first bullet point.

We now prove the second bullet point.
We assume we are given a cube Q ∈ CZ(A−) with Q ⊂ (1+ 100tG)Q̂. Since Q̂

is a testing cube, either Q ⊂ Q̂ or Q ⊂ (1+ 100tG)Q̂ \ Q̂.

In the former case, clearly 65
64
Q ⊂ 65

64
Q̂.

In the latter case, we have δQ ≤ 50tGδQ̂ and so 65
64
Q ⊂ (1+ 1000tG)Q̂ ⊂ 65

64
Q̂.

This proves the second bullet point and completes the proof of the lemma. �

1.4.4. Testing functionals. We recall that we have computed linear maps R#
Q#

associated to the keystone cubes Q# in CZ(A−). See the algorithm Make new
assists and assign keystone jets in Section 1.4.1.

We assume we are given a parameter tG as in (1.62). We assume we are given

a testing cube Q̂ ⊂ Q◦. (See Definition 2.)

For each Q ∈ CZ(A−) with Q ⊆ (1+ 100tG)Q̂, we define

(1.63) R
Q̂
Q(f, P) :=

{
P, δQ ≥ tGδQ̂,

R
#
K(Q)

(f, P), δQ < tGδQ̂,

for (f, P) ∈ X((65/64)Q̂ ∩ E) ⊕ P). We guarantee that S1K(Q) ⊂ CQ as in the

Keystone-oracle in Section 1.3.3. If δQ < tGδQ̂, then CQ ⊂ (1 + CtG)Q̂. For
small enough tG, we conclude that

(1.64) S1K(Q) ⊂ (65/64)Q̂.

This shows that the map R
Q̂
Q is well-defined.

We define the “testing functional” [M
Q̂
(f, P)]p to be the sum of the following

terms.

(I) = the sum of
[
M(Q,A−)(f, R

Q̂
Q(f, P))

]p
=

∑
ξ∈Ξ(Q,A−)

∣∣ξ(f, RQ̂
Q(f, P)

)∣∣p(1.65)

over all Q∈CZmain(A−) such that Q ⊂ (1+ tG)Q̂.

(II) = the sum of
∑
β∈M

δ
n−(m−|β|)p
Q ′

∣∣∂β
[
R
Q̂
Q ′(f, P) − R

Q̂
Q ′′(f, P)

]
(xQ ′)

∣∣p(1.66)

over all (Q ′, Q ′′)∈BD(A−) such that Q ′⊂(1+tG)Q̂, δQ ′ < tGδQ̂.

(III) = the sum of
∑
β∈M

δ
n−(m−|β|)p
Q

∣∣∂β
[
R
Q̂
Q(f, P) − P

]
(xQ)

∣∣p(1.67)

over all Q ∈ CZ(A−) such that Q ⊂ (1+ tG)Q̂, δQ ≥ t2GδQ̂.
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and

(IV) = the sum of
∑
β∈M

δ
n−(m−|β|)p

Q̂

∣∣∂β
[
R
Q̂
Qsp

(f, P) − P
]
(x

Q̂
)
∣∣p(1.68)

for a single (arbitrarily chosen) Qsp ∈ CZ(A−) contained in Q̂.

(Note that Q ′′ ⊂ (1+ 100tG)Q̂ in (1.66), thanks to the good geometry of cubes in
CZ(A−); hence the sum (II) is well-defined.)

Thus we have defined a functional M
Q̂
(f, P). Although M

Q̂
(f, P) depends on

the parameter tG, we leave this dependence implicit in our notation for the sake
of brevity.

For each testing cube Q̂, we define

(1.69) σ(Q̂) =
{
P ∈ P : M

Q̂
(0, P) ≤ 1

}
.

Algorithm: Approximate new trace norm

Given a number tG > 0 as in (1.62), we perform one-time work at most
C(tG)N logN in space C(tG)N, after which we can answer queries.

A query consists of a testing cube Q̂.

The response to the query Q̂ is a list μ
Q̂
1 , . . . , μ

Q̂
D of linear functionals on P

such that

(1.70) c
[
M

Q̂
(0, P)

]p ≤
D∑
i=1

|μQ̂
i (P)|p ≤ C

[
M

Q̂
(0, P)

]p
.

Define a quadratic form on P by

(1.71) q
Q̂
(P) :=

D∑
i=1

|μQ̂
i (P)|2.

This quadratic form satisfies

(1.72) c
[
M

Q̂
(0, P)

]2 ≤ q
Q̂
(P) ≤ C

[
M

Q̂
(0, P)

]2
.

In particular,

(1.73) {q
Q̂

≤ c} ⊂ σ(Q̂) ⊂ {q
Q̂

≤ C}.

The work required to answer a query is at most C(tG) logN.

Explanation. For each keystone cube Q# ∈ CZ(A−) and each β ∈ M, we have
stored a short form description of the Ωnew(Q#)-assisted bounded depth linear

functional (f, P) → ∂β
[
R
#
Q#(f, P)

]
(0). This corresponds to an expansion

∂β
[
R
#
Q#(f, P)

]
(0) = λ(Q#,β)(f) + λ(Q#,β)(P);
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here, λ(Q#,β)(f) and λ(Q#,β)(P) are linear functionals (with λ(Q#,β) given in short

form in terms of some set of assists). We mark each keystone cube Q# with the
linear map

(1.74) P → R
#
Q#(0, P) =

∑
β∈M

λ(Q#,β)(P) ·
1

β!
xβ.

This requires work and storage at most C for each Q#. (We simply produce the
functionals λ(Q#,β) : P → R for all β ∈ M.) The number of keystone cubes is at
most CN, hence this computation requires total work at most CN.

We now perform the marking procedure described below.

• For each cube Q ∈ CZmain(A−), we mark Q with the linear functionals

ξ(Q,i)(P) := ξ
Q
i

(
R
#
K(Q)

(0, P)
)

(i = 1, . . . , D).

To compute these functionals we simply compose linear maps that were
already computed. The functionals ξ

Q
i on P satisfy (1.8), and are com-

puted using the algorithm Approximate old trace norm. We produce
the keystone cube K(Q) using the Keystone-oracle. We locate the map

P → R
#
K(Q)(0, P) using a binary search.

This requires work at most C logN for each given Q ∈ CZmain(A−). (The
binary search requires work at most C logN.)

• For each border-dispute pair (Q ′, Q ′′) ∈ BD(A−), and β ∈ M, we mark Q ′

with linear functionals

ξ(Q ′,Q ′′,β)(P) := δ
n/p−m+|β|

Q ′ ∂β
{
R
#
K(Q ′)(0, P) − R

#
K(Q ′′)(0, P)

}
(xQ ′).

The linear maps P → R
#
K(Q ′)(0, P) and P → R

#
K(Q ′′)(0, P) are computed using

the Keystone-oracle and a binary search, as in the previous bullet point.

This requires work at most C logN for each given (Q ′, Q ′′) ∈ BD(A−).

Each relevant cube is marked with at most O(1) functionals by the above
bullet points. Since the number of cubes Q and Q ′ arising above is at most CN,
the marking procedure requires work at most CN logN in space CN.

We perform the one-time work for the algorithm Compute norms from
marked cuboids on the marked cubes Q, Q ′ arising above, which is at most
CN logN work in space CN (see Section 4.1.5 of [1]). Again, we use the fact that
each cube is marked by O(1) functionals. This concludes the one-time work for
the present algorithm.

We now explain the query work. Suppose that Q̂ is a given testing cube (a
query).

We partition (1 + tG)Q̂ into dyadic cubes Q1, . . . , QL ⊂ Rn such that δQ�
=

(tG/4)δQ̂. Note that L = L(tG) is a constant determined by n and tG. (Recall

that 0 < tG < 1 is an integer power of 2; see (1.62).)
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Note that

Q ∈ CZ(A−), Q ⊂ (1 + tG)Q̂, and δQ ≤ (tG/4)δQ̂ ⇐⇒(1.75)

Q ∈ CZ(A−) and Q ⊂ Q	 for some � ∈ {1, . . . , L}.

Next, we apply the query algorithm from Compute norms from marked
cuboids (see Section 4.1.5 in [1]) with each cube Q	 used as a query (� = 1, . . . , L).

We obtain linear functionals μQ�

1 , . . . , μ
Q�

D on P such that

(1.76) c

D∑
k=1

|μQ�

k (P)|p ≤
∑

Q∈CZ(A−), ξ∈P∗
Q⊂Q�

Q marked with ξ

|ξ(P)|p ≤ C

D∑
k=1

|μQ�

k (P)|p.

This requires work and storage at most C logN for each fixed �, and total work
and storage at most C(tG) logN. Summing the above estimate from � = 1, . . . , L

and using (1.75), we learn that

L∑
	=1

D∑
k=1

|μQ�

k (P)|p

∼
∑{ D∑

i=1

|ξQi (R#
K(Q)(0, P))|p : Q ∈ CZmain(A−), Q ⊂ (1+ tG)Q̂,

δQ ≤ tG

4
δ
Q̂

}
.

+
∑{|ξ(Q ′,Q ′′,β)(P)|p : (Q ′, Q ′′) ∈ BD(A−), Q ′ ⊂ (1+ tG)Q̂,

δQ ′ ≤ tG

4
δ
Q̂
, β ∈ M}

=: S1 +S2.(1.77)

We now compute the functionals described below.

(F1) μ
Q�

k (P) for 1 ≤ k ≤ D, 1 ≤ � ≤ L.

(F2) ξ
Q
i (R#

K(Q)
(0, P)) for 1 ≤ i ≤ D, Q ∈ CZmain(A−),

Q ⊂ (1+ tG)Q̂, δQ =
tG

2
δ
Q̂
.

(F3) ξ
Q
i (P) for 1 ≤ i ≤ D, Q ∈ CZmain(A−),

Q ⊂ (1+ tG)Q̂, δQ ≥ tGδQ̂.

(F4) ξ(Q ′,Q ′′,β)(P) for β ∈ M, (Q ′, Q ′′) ∈ BD(A−),

δQ ′ =
tG

2
δ
Q̂
, δQ ′′ ≤ tG

2
δ
Q̂
.
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(F5) δ
n/p−m+|β|

Q

{
∂β(RQ̂

Q(0, P) − P)(xQ)
}

for β ∈ M, Q ∈ CZ(A−),

Q ⊂ (1+ tG)Q̂, δQ ≥ t2GδQ̂.

(F6) δ
n/p−m+|β|

Q̂

{
∂β(RQ̂

Qsp
(0, P) − P)(x

Q̂
)
}

for β ∈ M.

The number of functionals listed here is at most C(tG). To compute these
functionals, we proceed as follows.

We have already produced the functionals in (F1) that satisfy (1.77).
We can compute the functionals arising in (F6). If δQsp ≥ tGδQ̂ then the

functionals in (F6) vanish identically. If instead δQsp < tGδQ̂ then the map

R
Q̂
Qsp

(0, P) = R
#
K(Qsp)

(0, P) has been computed, and we easily produce the ex-

pression in (F6).

Next, we loop over all dyadic cubes Q ⊂ (1+ tG)Q̂ with δQ ≥ t2GδQ̂. For each
such Q, we do the following.

If δQ = tG
2
δ
Q̂

and Q ∈ CZmain(A−) then we compute the functional in (F2).

If δQ ≥ tGδQ̂ and Q ∈ CZmain(A−) then we compute the functional in (F3).

If Q ∈ CZ(A−) then we can compute the functionals in (F5). These function-
als are identically zero whenever δQ ≥ tGδQ̂. Otherwise, since we have already

computed the map R
Q̂
Q(0, P) = R

#
K(Q)(0, P), we can easily compute the expression

in (F5). That concludes the loop over Q.

Finally, we loop over the dyadic cubes Q ′ ⊂ (1 + tG)Q̂ with δQ ′ = tG
2
δ
Q̂
.

If Q ′ ∈ CZ(A−), then we loop over Q ′′ ∈ CZ(A−) such that Q ′′ ↔ Q ′. If
δQ ′′ ≤ (tG/2)δQ̂ and K(Q ′′) �= K(Q ′) then we compute the functionals arising

in (F4). That concludes the loop over Q ′.
Thus we have computed all the functionals arising in (F1)-(F6). We define the

functional
[
X(P)

]p
to be the sum of the p-th powers of all these functionals.

We will now show that
[
X(P)

]p
well approximates

[
M

Q̂
(0, P)

]p
.

The sum of the p-th powers of the functionals arising in (F1) is estimated
in (1.77). We obtain from this the estimate

[
X(P)

]p
∼
∑{ D∑

i=1

|ξQi (RQ̂
Q(0, P))|p : Q ∈ CZmain(A−), Q ⊂ (1+ tG)Q̂

}
+
∑{|ξ(Q ′,Q ′′,β)(P)|p : (Q ′, Q ′′) ∈ BD(A−), Q ′ ⊂ (1 + tG)Q̂,

δQ ′ ≤ tG

2
δ
Q̂
, δQ ′′ ≤ tG

2
δ
Q̂
, β ∈ M}

+S3 +S4.(1.78)

Here, S3 and S4 are the terms (III) and (IV), respectively, with f set to 0

(see (1.67) and (1.68)). Let us explain how we obtained this formula. The sum
of the term S1 in (1.77) and the sum of the p-th powers of all the functionals
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in (F2) and (F3) is equal to the first line in (1.78). (Recall the definition of RQ̂
Q

in (1.63).) The sum of the term S2 in (1.77) and the sum of the p-th powers of all
the functionals in (F4) is equal to the second line in (1.78). The sum of the p-th
powers of all the functionals in (F5) and (F6) is equal to the third line in (1.78),
i.e., the quantity S3 +S4.

The sum in the first line in (1.78) is comparable to the term (I) with f ≡ 0

(see (1.65)), thanks to the estimate (1.8). Note that the sum in the second line
in (1.78) is equal to the term (II) with f ≡ 0 (see (1.66)) minus all the summands
in (II) with δQ ′ = (tG/2)δQ̂ and δQ ′′ = tGδQ̂. (Recall that by good geometry

the sidelengths of Q ′ and Q ′′ can differ by at most a factor of 2.) However, these
discarded summands appear also in the term (III). Thus, [X(P)]

p
is comparable

to the sum of the terms (I), (II), (III), (IV) (with f ≡ 0). Thus, in summary, we
have

c · [M
Q̂
(0, P)

]p ≤ [
X(P)

]p ≤ C · [M
Q̂
(0, P)

]p
for universal constants c > 0 and C ≥ 1.

Processing the functionals in (F1)–(F6) using the algorithm Compress norms

(see Section 2.8 of [1]), we compute functionals μQ̂
1 , . . . , μ

Q̂
D on P such that

c ·
D∑
i=1

|μQ̂
i (P)|p ≤ [X(P)]p ≤ C ·

D∑
i=1

|μQ̂
i (P)|p.

The previous two estimates imply the desired estimate (1.70).
The estimate (1.72), concerning the quadratic form q

Q̂
(P) defined in (1.71),

follows because the �p and �2 norms on the space RD are comparable up to a
constant factor depending on D, which is, in turn, a universal constant. (Recall
that D = dim(P) depends only on m and n.) The pair of inclusions in (1.73)

follows directly from (1.72) and the definition of σ(Q̂) in (1.69).
This completes the description of the query work, which consists of at most

C(tG) logN computer operations.
This completes the explanation of the algorithm Approximate new trace

norm. �

1.4.5. Computing data associated to a testing cube. Let Q̂ be a testing
cube (see Definition 2), and let tG > 0 be as in (1.62).

The supporting data for Q̂ consists of the following:

(SD1) Pointers to the cubes Q ∈ CZmain(A−) with Q ⊂ (1+ tG)Q̂.
(These are the cubes appearing in the sum (I); see (1.65).)

(SD2) Pointers to the pairs (Q ′, Q ′′) ∈ BD(A−) with Q ′ ⊂ (1 + tG)Q̂ and δQ ′ <

tGδQ̂.

(These are the pairs of cubes appearing in the sum (II); see (1.66).)

(SD3) Pointers to the cubes Q ∈ CZ(A−) with Q ⊂ (1+ tG)Q̂ and δQ ≥ t2GδQ̂.

(These are the cubes appearing in the sum (III); see (1.67).)
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(SD4) A pointer to a cube Qsp ∈ CZ(A−) with Qsp ⊂ Q̂.
(This cube appears in (IV); see (1.68).)

(SD5) Pointers to the keystone cubes Q# of CZ(A−) with S1Q
# ⊂ (65/64)Q̂.

(See (1.17) for the definition of S1.)

We are given markings as in Section 1.4.2. Each cube Q ∈ CZmain(A−) is
marked with pointers to the lists Ω(Q,A−) and Ξ(Q,A−), and each keystone
cube Q# ∈ CZ(A−) is marked with a pointer to the list Ωnew(Q#). We define

Ω(Q̂) :=
[⋃{

Ω(Q,A−) : Q ∈ CZmain(A−), Q ⊂ (1+ tG)Q̂
} ]

⋃ [⋃{
Ωnew(Q#) : Q# ∈ CZ(A−) keystone, S1Q

# ⊂ (65/64)Q̂
} ]

.(1.79)

Using the supporting data for Q̂ and the above markings, we produce a list of all
the functionals in Ω(Q̂). To form the list (1.79), we examine all the relevant Q

and Q#, and we copy each assist functional ω from Ω(Q,A−) or Ωnew(Q#) into a
location in memory. The work and space required are bounded by the sum of the
depths of all the ω that are copied. We make no attempt to remove duplicates in
the list (1.79). See Section 2.1 in [1] for more details about our notation for unions
of lists. We summarize the procedure in the following algorithm.

Algorithm: Compute new assists

Given a testing cube Q̂, and given the supporting data for Q̂, we compute a
list of all the functionals in Ω(Q̂). We mark all the functionals that appear in

the lists Ω(Q,A−) (for Q ∈ CZmain(A−), Q ⊂ (1 + tG)Q̂ in the supporting data)

and Ωnew(Q#) (for Q# keystone, S1Q
# ⊂ (65/64)Q̂ in the supporting data) with

pointers to their position in the list Ω(Q̂). This requires work at most

W1(Q̂) = C logN ·
[
1+

∑
Q∈CZmain(A−)

Q⊂(1+tG)Q̂

∑
ω∈Ω(Q,A−)

depth(ω)(1.80)

+
∑

keystone Q#∈CZ(A−)

S1Q
#⊂ 65

64
Q̂

∑
ω∈Ωnew(Q#)

depth(ω)

]

and storage at most

S1(Q̂) = C ·
[
1+

∑
Q∈CZmain(A−)

Q⊂(1+tG)Q̂

∑
ω∈Ω(Q,A−)

depth(ω)(1.81)

+
∑

keystone Q#∈CZ(A−)

S1Q
#⊂ 65

64
Q̂

∑
ω∈Ωnew(Q#)

depth(ω)

]
.
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Remark 4. Let Q̂ be a testing cube, and let ξ be a linear functional that has
Ω(Q,A−)-assisted bounded depth for Q ∈ CZmain(A−), Q ⊂ (1 + tG)Q̂ relevant

to the supporting data for Q̂. Then ξ has Ω(Q̂)-assisted bounded depth, since

Ω(Q,A−) is a sublist of Ω(Q̂). If ξ is given in short form in terms of the assists

Ω(Q,A−), then we can convert ξ into a short form in terms of the assists Ω(Q̂).
That is because we have marked each functional in Ω(Q,A−) with a pointer to

its position in the list Ω(Q̂). The conversion requires a constant amount of work

once we have carried out the algorithm Compute new assists for the given Q̂.
Similarly, let ξ be a linear functional that has Ωnew(Q#)-assisted bounded

depth, for some Q# relevant to the supporting data for Q̂. Given a short form
description of ξ in terms of the assists Ωnew(Q#), we can express ξ in short form

in terms of the assists Ω(Q̂) using a constant amount of work.

Algorithm: Compute supporting map

We perform one-time work at most CN logN in space CN, after which we can
answer queries as follows.

A query consists of a testing cube Q̂, its supporting data, and a cube Q ∈
CZ(A−) with Q ⊂ (1+ 100tG)Q̂.

The response to a query (Q̂,Q) is a short form description of the linear map

R
Q̂
Q : X((65/64)Q̂ ∩ E)⊕ P → P in terms of the assists Ω(Q̂) (see (1.63)).
The work and storage required to answer a query are at most C logN.
(Here, we do not count the storage used to hold the supporting data for Q̂.)

Explanation. We simply use the definition in (1.63).
We first test to see whether δQ < tGδQ̂ or δQ ≥ tGδQ̂.

In the first case when δQ ≥ tGδQ̂, we have R
Q̂
Q(f, P) = P, and we produce a

short-form description of this map.

In the second case when δQ < tGδQ̂, we compute the map R
Q̂
Q = R

#
K(Q)

as

follows.
First, we compute the keystone cube Q# = K(Q) using the Keystone-

oracle. Recall that S1Q
# ⊂ 65

64
Q̂ (see (1.64)). We locate Q# in the list of

pointers appearing in (SD5) using a binary search. We have already computed the
Ωnew(Q#)-assisted bounded depth linear map

R
#
Q# : X((65/64)Q̂ ∩ E)⊕ P → P

in short form in terms of the assists Ωnew(Q#), as described in Section 1.4.2.

Thanks to Remark 4 we can express R#
Q# in short form in terms of the assistsΩ(Q̂).

Thus we have computed the desired expression for RQ̂
Q = R

#
Q# in the second case.

That concludes the explanation of the algorithm. �

Algorithm: Compute new assisted functionals

Given a testing cube Q̂ and its supporting data, we produce a list Ξ(Q̂) con-

sisting of Ω(Q̂)-assisted bounded depth functionals on X(65
64
Q̂∩E)⊕P , with each

functional written in short form, such that the following hold.
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•
[
M

Q̂
(f, P)

]p
=

∑
ξ∈Ξ(Q̂)

|ξ(f, P)|p for each (f, P) ∈ X(65
64
Q̂ ∩ E)⊕ P .

• Denote

(1.82) N(Q̂) := #
{
(Q ′, Q ′′) ∈ BD(A−) : Q ′ ⊂ (1 + tG)Q̂, δQ ′ < tGδQ̂

}
.

We carry out the preceding computation using work at most

(1.83) W2(Q̂) := C(tG) · logN ·
[
1+N(Q̂) +

∑
Q∈CZmain(A−)

Q⊂(1+tG)Q̂

#
[
Ξ(Q,A−)

]]

in space

(1.84) S2(Q̂) := C(tG) ·
[
1+N(Q̂) +

∑
Q∈CZmain(A−)

Q⊂(1+tG)Q̂

#
[
Ξ(Q,A−)

]]
.

In particular, #Ξ(Q̂) ≤ S2(Q̂).

(Again, we do not count the space used to hold the supporting data for Q̂.)

Explanation. We compute the list Ξ(Q̂) of all the functionals appearing in the
sums (I)–(IV) in (1.65)–(1.68).

We loop over all the cubes Q ∈ CZmain(A−) with Q ⊂ (1+ tG)Q̂ (as in (SD1)).
We form the functionals

(1.85) (f, P) → ξ(f, RQ̂
Q(f, P)) (for ξ ∈ Ξ(Q,A−)).

The linear maps R
Q̂
Q are written in short form in terms of the assists Ω(Q̂) (see

the algorithm Compute supporting map). The functionals ξ ∈ Ξ(Q,A−) are
written in short form in terms of assists Ω(Q,A−). We can write the functionals

ξ ∈ Ξ(Q,A−) in short form in terms of the assists Ω(Q̂) (see Remark 4). Hence,

we can express each functional in (1.85) in short form in terms of assists Ω(Q̂).
This requires work at most C for each ξ.

That concludes the loop on Q.
We now loop over all pairs (Q ′, Q ′′) ∈ BD(A−) with Q ′ ⊂ (1 + tG)Q̂ and

δQ ′ < tGδQ̂ (as in (SD2)). For each such pair, we compute the Ω(Q̂)-assisted

bounded depth linear maps RQ̂
Q ′ and R

Q̂
Q ′′ in short form. We form the functionals

(1.86) δ
n/p−m+|β|

Q ′
{
∂β(RQ̂

Q ′(f, P) − R
Q̂
Q ′′(f, P))(xQ ′)

}
(for β ∈ M).

That concludes the loop on (Q ′, Q ′′).
We loop over all the cubes Q ∈ CZ(A−) such that Q ⊂ (1 + tG)Q̂ and δQ ≥

t2GδQ̂ (as in (SD3)). We form the functionals

(1.87) δ
n/p−m+|β|

Q

{
∂β(RQ̂

Q(f, P) − P)(xQ)
}

(for β ∈ M).

That concludes the loop on Q.
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We form the functionals

(1.88) δ
n/p−m+|β|

Q̂

{
∂β(RQ̂

Qsp
(f, P) − P)(x

Q̂
)
}

(for β ∈ M).

Here, we use the cube Qsp in (SD4).

Let Ξ(Q̂) denote the list of functionals arising in (1.85)–(1.88). All these func-

tionals haveΩ(Q̂)-assisted bounded depth and are expressed in short form in terms

of assists Ω(Q̂). Comparing with (1.65)–(1.68), we see that [M
Q̂
(f, P)]p is equal to

the sum of |ξ(f, P)|p over all ξ ∈ Ξ(Q̂). Clearly, the number of functionals in Ξ(Q̂)
is bounded by

C(tG) ·
[
1+N(Q̂) +

∑
Q∈CZmain(A−)

Q⊂(1+tG)Q̂

#
[
Ξ(Q,A−)

]]
.

Since we perform work at most C logN (using storage at most C) to compute each

functional, the total work and storage used by our algorithm are at most W2(Q̂)

and S2(Q̂), respectively. �

The extension operator. Given a testing cube Q̂, the covering cubes for Q̂ are

(1.89) Icov(Q̂) :=
{
Q ∈ CZ(A−) : Q ⊂ (1+ tG)Q̂

}
.

We assume that

(1.90) tG satisfies the hypothesis of Lemma 11.

We do not fix tG just yet. Let anew = anew(tG) be as in Lemma 11. Thus,
(1.91)

(1 + anew)Q̂ is contained in the union of (1+ a
2
)Q as Q ranges over Icov(Q̂).

We will need several results from Sections 4.6.4 and 4.6.5 in [1]. Consider:

• CZ = CZ(A−) and Q = Icov(Q̂).

• The cube called Q̂ in Sections 4.6.4 and 4.6.5 is taken to be (1 + anew)Q̂,

with Q̂ as in the present section.

• r = a, and A = C for a large enough universal constant C.

We have already proven the good geometry of CZ(A−) and exhibited a CZ(A−)-
oracle. This is a part of the main technical results for A−, which can be found
in Section 3 of [1]. This puts us in the setting of Section 4.6.4.

We point out the covering condition stated in (1.91), and the size condition:

δQ ≤ C · δ
Q̂

for all Q ∈ Icov(Q̂) (this follows by definition of Icov(Q̂)). These two

conditions are precisely the conditions (4.53) and (4.54) in Section 4.6.5, with the

choice of CZ, Q, Q̂, r, and A as in the above bullet points. This puts us in the
setting of Section 4.6.5 of [1].
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By Lemma 48 of [1], there exist cutoff functions θQ̂Q ∈ Cm(Rn) such that∑
Q∈Icov(Q̂)

θ
Q̂
Q = 1 on (1+ anew)Q̂,(1.92)

supp(θQ̂Q) ⊂ (1+ a)Q and |∂αθ
Q̂
Q| ≤ C · δ−|α|

Q for |α| ≤ m, and(1.93)

θ
Q̂
Q = 1 near xQ, and θ

Q̂
Q = 0 near xQ ′ for each Q ′ ∈ Icov(Q̂) \ {Q}.(1.94)

Moreover, the cutoff functions may be computed with the following algorithm:

Algorithm: Compute POU

After one-time work at most CN logN in space CN, we can answer queries as
follows.

A query consists of a testing cube Q̂ and a point x ∈ Q◦.
The response to the query (Q̂, x) is a list of all the cubes Q1, . . . , QL ∈ Icov(Q̂)

(with Q1, . . . , QL all distinct) such that x ∈ 65
64
Q	, and the list of polynomials

Jxθ
Q̂
Q1

, . . . , Jxθ
Q̂
QL

.

To answer a query requires work and storage at most C logN.

Explanation. We list all the cubes Q ∈ CZ(A−) for which x ∈ 65
64
Q using the

CZ(A−)-oracle. We then discard any cubes that are not contained in (1+ tG)Q̂.
The remaining cubes give the desired list Q1, . . . , QL.

We now compute the jet Jxθ
Q̂
Q�

for each �. In the proof of Lemma 48 in [1], we
defined

θ
Q̂
Q�

= θ̃Q�
· [η ◦ Ψ]−1

, where Ψ =
∑

Q∈Icov(Q̂)

θ̃Q.

Applying the algorithm Compute cutoff function from Section 4.6.5 of [1],

we compute the jet Jxθ̃Q�
for each � = 1, . . . , L. We can compute a formula for

∂αJx(θ
Q̂
Q�

)(x) given a formula for the jet Jx(η ◦ Ψ). Indeed, by the Leibniz rule,

∂αJx(θ
Q̂
Q�

)(x) (|α| ≤ m − 1) is given by a rational function of the derivatives

∂βJx(θ̃Q�
)(x) and ∂βJx(η ◦ Ψ)(x) (|β| ≤ m − 1).

Since each θ̃Q�
is supported on 65

64
Q	, we have

JxΨ =

L∑
	=1

Jxθ̃Q�
.

In the proof of Lemma 48 in [1], we use a function η : [0,∞) → R defined by
the conditions: η(t) ≥ 1/4 for all t ∈ [0, 1/2), and η(t) = t for t ∈ [1/2,∞).

Given t∗ ≥ 0 and k ≤ m, we may assume that the number dkη
dtk

(t∗) can be computed
using work and storage at most C. This is achieved by taking η to be a suitable
spline function. Thus, the jet Jx(η ◦ Ψ) can be computed using the chain rule.

Thus, we can compute the jets Jx(θ
Q̂
Q�

) using work and storage at most C once
we know the list Q1, . . . , QL. �
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Let (f, P) ∈ X(65
64
Q̂ ∩ E)⊕ P be given.

For ease of notation we write RQ̂
Q = R

Q̂
Q(f, P) for the polyomial defined in (1.63)

(the dependence on (f, P) should be understood).

For each Q ∈ Icov(Q̂) we define

(1.95) F
Q̂
Q :=

{
T(Q,A−)(f, R

Q̂
Q), if 65

64
Q ∩ E �= ∅,

R
Q̂
Q, if 65

64
Q ∩ E = ∅.

Note that the function F
Q̂
Q ∈ X is well-defined. According to the main technical

results for A− (see Section 3 in [1]) we have

(1.96) F
Q̂
Q = f on (1+ a)Q ∩ E.

‖FQ̂Q‖X((1+a)Q) + δ−m
Q ‖FQ̂Q − R

Q̂
Q‖Lp((1+a)Q)(1.97)

≤
{

CM(Q,A−)(f, R
Q̂
Q), if 65

64
Q ∩ E �= ∅,

0, if 65
64
Q ∩ E = ∅.

(Recall that a = a(A−) ≤ 1/64; see (1.7).)
Finally, we define

(1.98) T
Q̂
(f, P) :=

∑
Q∈Icov(Q̂)

F
Q̂
Q · θQ̂Q ∈ X, with θ

Q̂
Q as in (1.92)–(1.94).

Algorithm: Compute new extension operator

We perform one-time work at most CN logN in space CN, after which we can
answer queries.

A query consists of a testing cube Q̂, the supporting data for Q̂, and a point
x ∈ Q◦.

The response to the query x is a short form description of the Ω(Q̂)-assisted
bounded depth linear map

(f, P) → JxTQ̂(f, P).

To answer a query requires work at most C logN.

Explanation. We compute a list of the cubes Q1, . . . , QL ∈ Icov(Q̂) (Q1, . . . , QL

all distinct) such that x ∈ 65
64
Q	, and a list of the jets Jxθ

Q̂
Q1

, · · · , JxθQ̂QL
. See the

algorithm Compute POU. Recall that L ≤ C.

Recall that supp(θQ̂Q) ⊂ 65
64
Q. Therefore,

(1.99) JxTQ̂(f, P) =

L∑
	=1

Jxθ
Q̂
Q�

�x JxT(Q�,A−)(f, R
Q̂
Q�

(f, P)).
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For each � = 1, . . . , L, we compute (see below) the map

(1.100) (f, R) → JxT(Q�,A−)(f, R) ((f, R) ∈ X((65/64)Q̂ ∩ E)⊕ P).

We recall the definition (1.89) of Icov(Q̂). Since Q	 ∈ Icov(Q̂), we have Q	 ⊂
(1 + tG)Q̂. Thus, Lemma 11 implies that 65

64
Q	 ⊂ 65

64
Q̂, hence the map (1.100) is

well defined.

If 65
64
Q	 ∩ E = ∅ then JxT(Q�,A−)(f, R) = R. Otherwise, if 65

64
Q	 ∩ E �= ∅, then

we can compute the map (1.100) in short form in terms of the assists Ω(Q,A−),
thanks to the main technical results for A−. We check whether 65

64
Q	 ∩ E �= ∅, by

checking whether Q	 appears in the list CZmain(A−) using a binary search. We

write each of the maps (1.100) in short form in terms of the assists Ω(Q̂) (see
Remark 4).

We compute a short form description of the Ω(Q̂)-assisted bounded depth map

R
Q̂
Q�

: X
(65
64

Q̂ ∩ E
)
⊕ P → P for � = 1, . . . , L.

We use the algorithm Compute supporting map (see Section 1.4.5).

Substituting R = R
Q̂
Q�

(f, P) in the formula for each of the maps (1.100), we can

express the map (f, P) → JxTQ̂(f, P) in short form in terms of the assists Ω(Q̂)

using (1.99).

The query work is clearly bounded by C logN. �

1.4.6. The main estimates. We first prove a few properties of the extension
operator T

Q̂
defined in (1.98).

Let anew = anew(tG) be as in Lemma 11.

Proposition 3. Let Q̂ be a testing cube, and let (f, P) ∈ X(65
64
Q̂ ∩ E) ⊕ P. Then

the following properties hold.

• T
Q̂
(f, P) = f on (1 + anew)Q̂ ∩ E.

• ‖T
Q̂
(f, P)‖

X((1+anew)Q̂)
+ δ−m

Q̂
‖T

Q̂
(f, P) − P‖

Lp((1+anew)Q̂)
≤ C ·M

Q̂
(f, P).

Here, the constant C ≥ 1 depends only on m, n, and p.

Proof. The first bullet point follows from (1.92)–(1.94), (1.96) and (1.98). We now
prove the second bullet point.

Recall that we defined the collection of cubes Icov(Q̂) in (1.89).

For ease of notation, we set a = anew throughout the proof.

We apply Lemma 49 in [1] to the cube (1+ a)Q̂, the covering set Icov(Q̂), the

functions F
Q̂
Q, the polynomials R

Q̂
Q, and the partition of unity θ

Q̂
Q (defined for all
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Q ∈ Icov(Q̂)). Thus, for G := T
Q̂
(f, P) we have

‖G‖p
X((1+a)Q̂)

�
∑

Q∈Icov(Q̂)

[
‖FQ̂Q‖p

X((1+a)Q) + δ
−mp
Q ‖FQ̂Q − R

Q̂
Q‖p

Lp((1+a)Q)

]

+
∑

Q ′,Q ′′∈Icov(Q̂)
Q ′

↔Q ′′

∑
|β|≤m−1

δ
(|β|−m)p+n
Q ′

∣∣∂β(RQ̂
Q ′ − R

Q̂
Q ′′)(xQ ′)

∣∣p.

From (1.97), this implies that

‖G‖p
X((1+a)Q̂)

�
∑

Q∈Icov(Q̂)
65
64

Q∩E
=∅

[
M(Q,A−)(f, R

Q̂
Q)

]p

+
∑

Q ′,Q ′′∈Icov(Q̂)
Q ′

↔Q ′′

∑
|β|≤m−1

δ
(|β|−m)p+n
Q ′

∣∣∂β(RQ̂
Q ′ − R

Q̂
Q ′′)(xQ ′)

∣∣p

= A1(f, P) +A2(f, P).(1.101)

The expression A1(f, P) is equal to the sum of the terms in (1.65).

We now analyze the expression A2(f, P). Suppose that Q ′, Q ′′ ∈ Icov(Q̂) and
Q ′ ↔ Q ′′. Then one of the following cases must occur.

(A) Both δQ ′ and δQ ′′ are less than tG · δ
Q̂
, and K(Q ′) = K(Q ′′);

(B) Both δQ ′ and δQ ′′ are less than tG · δ
Q̂
, and K(Q ′) �= K(Q ′′);

(C) Both δQ ′ and δQ ′′ are at least tG · δ
Q̂
;

(D) Exactly one of δQ ′ and δQ ′′ is at least tG · δ
Q̂
.

If (A) or (C) occurs, then R
Q̂
Q ′ = R

Q̂
Q ′′ , hence the summand in A2(f, P) vanishes

identically; see (1.63).
On the other hand, suppose that (D) occurs. Since Q ′ and Q ′′ play symmetric

roles in the summand from the second sum in (1.101) (switching Q ′ and Q ′′ does
not change the order of magnitude of this term) we may assume that δQ ′′ ≥ tG ·δ

Q̂
.

Hence, RQ̂
Q ′′ = P; see (1.63). Since Q ′ ↔ Q ′′, we also have δQ ′ ≥ 1

2
δQ ′′ ≥ tG

2
δ
Q̂

≥
t2GδQ̂ by good geometry.

The previous three paragraphs imply the following estimate:

A2(f, P) �
∑{

terms in (1.66) : Q ′, Q ′′ ⊂ (1 + tG)Q̂, δQ ′ , δQ ′′ < tG · δ
Q̂
,

Q ′ ↔ Q ′′, K(Q ′) �= K(Q ′′)
}

+
∑{

terms in (1.67) : Q ⊂ (1+ tG)Q̂, δQ ≥ t2G · δ
Q̂

}
.

Thus, we have shown that

(1.102) ‖G‖
X((1+a)Q̂)

≤ C ·M
Q̂
(f, P).
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We now estimate ‖G− P‖
Lp((1+a)Q̂)

. Let Qsp be as in (1.68). Observe that

δ−m

Q̂
‖G− P‖

Lp((1+a)Q̂)
� δ−m

Q̂
‖G− JxQsp

G‖
Lp((1+a)Q̂)

+ δ−m

Q̂
‖JxQsp

G− R
Q̂
Qsp

‖
Lp((1+a)Q̂)

+ δ−m

Q̂
‖RQ̂

Qsp
− P‖

Lp((1+a)Q̂)
.

We estimate each of the three terms on the right-hand side above. To estimate the
first term, we use the Sobolev inequality to write

δ−m

Q̂
‖G− JxQsp

G‖
Lp((1+a)Q̂)

≤ C‖G‖
X((1+a)Q̂)

.

To estimate the second term, we will need an elementary estimate about Lp norms
of polynomials:

(1.103) Q2 ⊂ CQ1, P ∈ P =⇒ δ−m
Q1

‖P‖Lp(Q1) ≤ C ′δ−m
Q2

‖P‖Lp(Q2).

This estimate is simply a consequence of Lemma 7 in [1]. Now, since Qsp ⊂ Q̂

(see (1.68)), and since JxQsp
G = JxQsp

F
Q̂
Qsp

(see (1.94)), we can write

δ−m

Q̂
‖JxQsp

G− R
Q̂
Qsp

‖
Lp((1+a)Q̂)

= δ−m

Q̂
‖JxQsp

F
Q̂
Qsp

− R
Q̂
Qsp

‖
Lp((1+a)Q̂)

� δ−m
Qsp

‖JxQsp
F
Q̂
Qsp

− R
Q̂
Qsp

‖Lp(Qsp) (by (1.103))

� ‖FQ̂Qsp
‖X(Qsp) + δ−m

Qsp
‖FQ̂Qsp

− R
Q̂
Qsp

‖Lp(Qsp).

To prove the last inequality above, we have used the Sobolev-type inequality stated
in Proposition 9 of [1]. According to (1.97), the previous estimate implies that

δ−m

Q̂
‖JxQsp

G− R
Q̂
Qsp

‖
Lp((1+a)Q̂)

≤ C ·M
Q̂
(f, P).

To estimate the third term, we write

δ−m

Q̂
‖RQ̂

Qsp
−P‖

Lp((1+a)Q̂)

∼
∑

|β|≤m−1

δ
|β|+n/p−m

Q̂

∣∣∂β(RQ̂
Qsp

− P)(x
Q̂
)
∣∣ (see Lemma 7 in [1])

≤ C ·M
Q̂
(f, P) (see (1.68)).

We combine (1.102) with the above estimates to obtain

(1.104) ‖G‖
X((1+a)Q̂) + δ−m

Q̂
‖G− P‖

Lp((1+a)Q̂) ≤ C ·M
Q̂
(f, P).

This completes the proof of Proposition 3. �

We next prove the following result.
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Proposition 4. Let Q̂ be a testing cube, and let (f, P) ∈ X(65
64
Q̂ ∩ E) ⊕ P. Then

the following inequalities hold.

(Unconditional inequality) ‖(f, P)‖
(1+anew)Q̂

≤ C ·M
Q̂
(f, P).

(Conditional inequality) If 3Q̂ is tagged with (A, ε), then

M
Q̂
(f, P) ≤ C(tG) · (1/ε) · ‖(f, P)‖ 65

64
Q̂
.

The rest of Section 1.4.6 is devoted to the proof of Proposition 4. We set
a = anew for the remainder of the section for ease of notation.

The unconditional inequality in Proposition 4 follows easily from Proposition 3.
Indeed, Proposition 3 states that T

Q̂
(f, P) = f on (1+a)Q̂∩E. Hence, by definition

of the trace norm,

‖(f, P)‖(1+a)Q̂ ≤ ‖T
Q̂
(f, P)‖

X((1+a)Q̂) + δ−m

Q̂
‖T

Q̂
(f, P) − P‖

Lp((1+a)Q̂).

Again thanks to Proposition 3, the right-hand side is bounded by C · M
Q̂
(f, P),

which proves the unconditional inequality.
We now begin the proof of the conditional inequality in Proposition 4. We

assume that

(1.105) 3Q̂ is tagged with (A, ε).

and

(1.106) tG ≤ η, where η = min
{
c∗(A−),

[
100 · S(A−)

]−1}
Now, we consider two separate cases: either Q̂ is η-simple or Q̂ is not η-simple.

For the definition of simple testing cubes, see Definition 2.
The conditional inequality is easy to prove in the former case.

Lemma 12. Suppose that a testing cube Q̂ is η-simple with η ≥ tG. Then
M

Q̂
(f, P) ≤ C(tG) · ‖(f, P)‖ 65

64
Q̂
, where C(tG) depends only on m, n, p, and tG.

Proof. We examine the definition of
[
M

Q̂
(f, P)

]p
as a sum of terms (I)–(IV)

(see (1.65)–(1.68)).

Suppose that Q ∈ CZ(A−) with Q ⊂ (1 + 100tG)Q̂. Then Q ⊂ 65
64
Q̂ for

small enough tG. Our assumption that Q̂ is η-simple with η ≥ tG implies that
δQ ≥ tGδQ̂. Hence, from (1.63) we see that

Q ∈ CZ(A−), Q ⊂ (1 + 100tG)Q̂ =⇒ R
Q̂
Q(f, P) = P.

For every Q ′, Q ′′ as in (1.66), by good geometry of CZ(A−) we have Q ′, Q ′′ ⊂
(1 + 100tG)Q̂, hence R

Q̂
Q ′ = R

Q̂
Q ′′ = P in (II). Similarly, for each Q in (1.67), we

have R
Q̂
Q = P in (III). Similarly, RQ̂

Qsp
= P in (IV). Hence, the terms (II), (III),

and (IV), all vanish, and thus
[
M

Q̂
(f, P)

]p
= (I).
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We estimate the remaining term (I) (see (1.65)).

Let Q ∈ CZmain(A−) satisfy Q ⊂ (1 + tG)Q̂. We will bound each of the

summands
[
M(Q,A)(f, R

Q̂
Q)

]p
, which are relevant to the term (I). As above, we

have R
Q̂
Q(f, P) = P. Note that 65

64
Q ⊂ 65

64
Q̂ by Lemma 11. From the right-hand

estimate in (1.20), Lemma 14 in [1], and the estimate δQ ≥ tGδQ̂ (which follows

because Q̂ is η-simple with η ≥ tG), we have

M(Q,A−)(f, P) ≤ C · ‖(f, P)‖ 65
64

Q ≤ C(tG) · ‖(f, P)‖ 65
64

Q̂
.

Therefore, each summand
[
M(Q,A)(f, R

Q̂
Q)

]p
relevant to (I) is bounded by C(tG)

p ·
‖(f, P)‖p65

64
Q̂
.

Since Q̂ is η-simple, we can have Q ⊂ (1+ tG)Q̂ for no more than C(tG) of the
cubes Q ∈ CZ(A−). Hence, no more than C(tG) many cubes Q arise in (1.65).
Hence, by summing the estimates just obtained, we learn that

[
M

Q̂
(f, P)

]p ≤
C(tG) · ‖(f, P)‖p65

64
Q̂
. This completes the proof of Lemma 12. �

If Q̂ is η-simple with η = min{c∗(A−), [100S(A−)]
−1

}, then the conditional
inequality follows from Lemma 12. Here, note that the assumption (1.106) implies
the hypotheses of Lemma 12.

Thus, in proving the conditional inequality, we may assume that

(1.107) Q̂ is not η-simple, with η = min{c∗(A−),
[
100S(A−)

]−1
}.

This is the latter, more difficult case in the dichotomy mentioned before. By
definition, in this case, there exists a cube Q ∈ CZ(A−) with Q ⊂ 65

64
Q̂ and

δQ ≤ η · δ
Q̂
. Hence, we note that S(A−)Q ⊂ 3Q̂. Moreover, we have δQ ≤

c∗(A−)δ
Q̂

≤ c∗(A−).

Thus, (CZ2) in the main technical results for A− (see Section 3 in [1]) implies
that

(1.108) S(A−)Q is not tagged with (A−, ε1(A−)).

Hence, in particular, we have #(E ∩ 3Q̂) ≥ #(E ∩ S(A−)Q) ≥ 2.

Now, from (1.105) we know that 3Q̂ is tagged with (A, ε). Hence, since #(E ∩
3Q̂) ≥ 2, we know that σ(3Q̂) has an (A ′, x

Q̂
, ε, δ

3Q̂
)-basis, for some A ′ ≤ A.

We next apply Lemma 25 from [1] to the convex set σ = σ(3Q̂). Thus, we can
guarantee that there exist numbers Λ ≥ 1, and κ1 ≤ κ ≤ κ2, and a multiindex set
A ′′ ≤ A ′, such that

σ(3Q̂) has an (A ′′, x
Q̂
, εκ, δ

3Q̂
, Λ)-basis, where εκ ·Λ100D ≤ εκ/2.

Here, κ1, κ2 ∈ (0, 1] are universal constants. Hence, 3Q̂ is tagged with (A ′′, εκ1/2),
which implies that S(A−)Q is tagged with (A ′′, εκ

′
) for a universal constant κ ′ > 0.

(Here, we use that S(A−)Q ⊂ 3Q̂; see Lemma 28 from [1]). Comparing this
statement and (1.108), we deduce that A ′′ = A.
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In summary,

(1.109) σ(3Q̂) has an (A, x
Q̂
, εκ, δ

3Q̂
, Λ)-basis, where εκ ·Λ100D ≤ εκ/2.

The assumptions (1.105)–(1.109) will be used in the remainder of this section.
We finish the section by completing the proof of the conditional inequality in
Proposition 4 and by deriving a useful corollary.

The next result represents a main step in the proof of the conditional inequality.

Proposition 5. Assume that (1.105)–(1.109) hold. Then there exists an H ∈ X

such that

• H = f on E ∩ 65
64
Q̂.

• ∂αH(xQ) = ∂αP(xQ) for each α ∈ A and Q ∈ CZ(A−) such that Q ⊂ 65
64
Q̂.

• ‖H‖
X(65

64
Q̂)

+ δ−m

Q̂
‖H− P‖

Lp( 65
64

Q̂)
≤ CΛ2D+1 · ‖(f, P)‖ 65

64
Q̂
.

Here, C ≥ 1 depends only on m, n, and p.

Proof. We set

J (Q̂) :=

{
Q ∈ CZ(A−) : Q ∩ 65

64
Q̂ �= ∅

}
.

Recall that the cubes in {(65/64)Q : Q ∈ J (Q̂)} have bounded overlap, and that

the cubes in J (Q̂) have good geometry, i.e.,

(GG) If Q,Q ′ ∈ J (Q̂) and Q ↔ Q ′ then
1

16
· δQ ≤ δQ ′ ≤ 16 · δQ.

This follows from Proposition 1, since J (Q̂) ⊂ CZ(A−). We now prove that

(1.110) δQ ≤ C · δ
Q̂

for each Q ∈ J (Q̂).

For the sake of contradiction, assume that δQ ≥ 105δ
Q̂

for some Q ∈ J (Q̂). By

definition of J (Q̂), we have Q ∩ 65
64
Q̂ �= ∅. Hence, since δQ ≥ 105δ

Q̂
, we see that

there exists x ∈ 65
64
Q ∩ Q̂. Now, Q̂ is partitioned into cubes in CZ(A−), since

Q̂ ⊂ Q◦ is a testing cube. Thus, we can pick Q∗ ∈ CZ(A−) with x ∈ Q∗ and

Q∗ ⊂ Q̂. Note that x ∈ 65
64
Q∩Q∗. By good geometry of the cubes in CZ(A−), we

conclude that δQ ≤ 16 · δQ∗ . Hence, δQ ≤ 16δQ∗ ≤ 16δ
Q̂

< 105δ
Q̂
. This gives a

contradiction and completes the proof of (1.110).

For each Q ∈ J (Q̂) we select yQ ∈ Q ∩ 65
64
Q̂ such that

(1.111) if Q ⊂ 65

64
Q̂ then yQ = xQ (the center of Q).

By definition of the trace seminorm ‖(·, ·)‖ 65
64

Q̂
, there exists a function F ∈ X

with

‖F‖
X(65

64
Q̂) + δ−m

65
64

Q̂
‖F− P‖

Lp( 65
64

Q̂) ≤ 2 ‖(f, P)‖ 65
64

Q̂
, and(1.112)

F = f on
65

64
Q̂ ∩ E.(1.113)
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Part I: Defining local basis functions.

By (1.109), there exist Pα ∈ P and ϕα ∈ X such that

‖ϕα‖X(3Q̂) + δ−m

3Q̂
‖ϕα − Pα‖Lp(3Q̂) ≤ εκδ

|α|+n/p−m

3Q̂
(α ∈ A),(1.114)

ϕα = 0 on E ∩ 3Q̂ (α ∈ A),(1.115)

|∂βPα(xQ̂) − δαβ| ≤
⎧⎨
⎩ εκδ

|α|−|β|

3Q̂
, if β ≥ α

Λδ
|α|−|β|

3Q̂
, if β < α

(α ∈ A, β ∈ M),(1.116)

∂βPα(xQ̂) = δαβ (α,β ∈ A).(1.117)

Moreover, by (1.114) and (1.116),

(1.118) ‖ϕα‖Lp(3Q̂)
≤ ‖ϕα−Pα‖Lp(3Q̂)

+‖Pα‖Lp(3Q̂)
≤ Cεκδ

|α|+n
p

Q̂
+CΛδ

|α|+n
p

Q̂
.

For each β ∈ M, and each Q ∈ J (Q̂), we have

|∂βϕα(yQ) − δαβ| ≤ |∂β(ϕα − Pα)(yQ)|
+ |∂βPα(yQ) − ∂βPα(xQ̂)|+ |∂βPα(xQ̂) − δαβ|.

We shall estimate separately each of the three terms on the above right-hand side.
For the first term, we use a Sobolev-type estimate that is stated in Lemma 10 of [1]
to show that

δ
|β|+n/p−m

Q̂
|∂β(ϕα − Pα)(yQ)| ≤ C

(
δ−m

Q̂
‖ϕα − Pα‖Lp(3Q̂)

+ ‖ϕα‖X(3Q̂)

)
≤ Cεκδ

|α|+n/p−m

Q̂
.

(Recall that yQ ∈ 65
64
Q̂ ⊂ 3Q̂.) For the second term, we use a Taylor expansion to

write

|∂βPα(yQ) − ∂βPα(xQ̂)| =
∣∣∣ ∑
0<|γ|≤m−|β|−1

∂β+γPα(xQ̂)

γ!
· (yQ − x

Q̂
)γ
∣∣∣

≤
⎧⎨
⎩ Cεκδ

|α|−|β|

Q̂
, if β ≥ α,

CΛδ
|α|−|β|

Q̂
, if β < α

(see (1.116)).

For the third term, we simply use (1.116). Thus, all together we have shown that

(1.119) |∂βϕα(yQ) − δαβ| ≤
⎧⎨
⎩ Cεκδ

|α|−|β|

Q̂
, β ≥ α,

CΛδ
|α|−|β|

Q̂
, β < α

(for α ∈ A, β ∈ M).

In particular, the matrix (∂βϕα(yQ))α,β∈A is (Cεκ, CΛ, δ
Q̂
)-near triangular (with

εκΛ100D ≤ εκ/2); hence, as claimed in Lemma 22 of [1], this matrix has an inverse

(AQ
γα)γ,α∈A such that

(1.120)
∑
α∈A

AQ
γα · ∂βϕα(yQ) = δβγ (for all β, γ ∈ A);
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and

(1.121) |AQ
γα − δγα| ≤

⎧⎨
⎩ CεκΛDδ

|γ|−|α|

Q̂
, if α ≥ γ,

CΛDδ
|γ|−|α|

Q̂
, if α < γ,

(for all α, γ ∈ A).

We define

(1.122) ϕQ
α :=

∑
β∈A

A
Q
αβϕβ on Rn (for each α ∈ A).

For any Q ′ ∈ J (Q̂), we can write

(1.123) ϕQ ′
α =

∑
γ∈A

ωQQ ′
αγ ϕQ

γ , where ωQQ ′
:= AQ ′ · [AQ

]−1
.

For each Q ∈ J (Q̂), we have

‖ϕQ
α ‖

X(3Q̂) ≤ CεκΛDδ
|α|+n/p−m

Q̂
.(1.124)

ϕQ
α = 0 on E ∩ 3Q̂.(1.125)

∂γϕQ
α (yQ) = δγα for γ ∈ A.(1.126)

|∂γϕQ
α (yQ)| ≤ CεκΛD+1δ

|α|−|γ|

Q̂
for γ ∈ M, γ > α.(1.127)

|∂γϕQ
α (yQ)| ≤ CΛD+1δ

|α|−|γ|

Q̂
for γ ∈ M.(1.128)

Here, (1.124), (1.125), (1.126) are immediate consequences of (1.114) and (1.121),
(1.115), and (1.120), respectively. Moreover, (1.127) and (1.128) are both conse-
quences of (1.119) and (1.121) (see Lemma 21 from [1]).

We now show that there exists Z > 0, depending only on m, n, and p, such
that

(1.129) |∂γϕQ
α (yQ)| ≤ ZΛD+1δ

|α|−|γ|

S(A−)Q for α ∈ A, γ ∈ M.

For the sake of contradiction, assume that (1.129) fails to hold for some number
Z ≥ 1. We assume that Z exceeds a large enough constant determined by m, n,
and p. We later take Z = Z(m,n, p), but not yet. We assume that ε is less than
a small enough constant determined by Z, m, n, and p.

If δQ ≥ min{c∗(A−), 1/16, [100S(A−)]−1} · δ
Q̂

then since also δQ ≤ Cδ
Q̂

(see (1.110)), the estimate (1.129) follows from (1.128).
Alternatively, assume that

δQ < min{c∗(A−), 1/16, [100S(A−)]−1} · δ
Q̂
.

Thus, we have S(A−)Q ⊆ 3Q̂, since Q ∩ 65
64
Q̂ �= ∅. Therefore, (1.125) implies that

ϕ
Q
α = 0 on E ∩ S(A−)Q. Moreover, the Sobolev inequality and (1.124) imply that

‖ϕQ
α ‖X(S(A−)Q) + δ−m

S(A−)Q‖ϕQ
α − JyQ

ϕQ
α ‖Lp(S(A−)Q)

≤ C‖ϕQ
α ‖X(S(A−)Q) ≤ C‖ϕQ

α ‖
X(3Q̂) ≤ CεκΛDδ

|α|+n/p−m

3Q̂
≤ CεκΛDδ

|α|+n/p−m

S(A−)Q .

(In the last inequality, we use that δS(A−)Q ≤ δ
3Q̂

and |α|+ n/p−m < 0.)
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From the previous paragraph and (1.126), (1.127), we see that (JyQ
ϕ

Q
α )α∈A is

an (A, yQ, CεκΛD+1, δS(A−)Q)-basis for σ(S(A−)Q).

Note that CεκΛD+1 ≤ Cεκ/2 ≤ εκ1/4 as long as ε is less than a small enough
universal constant. Hence, (JyQ

ϕ
Q
α )α∈A is an (A, yQ, εκ1/4, δS(A−)Q)-basis for

σ(S(A−)Q).
We are assuming that (1.129) does not hold, hence

max
{|∂γϕQ

α (yQ)|δ|γ|−|α|

S(A−)Q
: α ∈ A, γ ∈ M} ≥ Z.

If Z exceeds a large enough universal constant, and if εκ1/4 < Z−2, then from
Lemma 24 in [1] we deduce that

σ(S(A−)Q) has an (A ′, yQ, Z−κ, δS(A−)Q)-basis, with A ′ < A.

Hence, σ(S(A−)Q) has an (A ′′, xQ, Z−κ ′
, δS(A−)Q)-basis for some A ′′ ≤ A ′, due

to Lemma 27 in [1]. (Here we use that yQ ∈ Q and xQ ∈ Q, so |xQ −yQ| ≤ 2δQ.)
Here, κ and κ ′ are universal constants.

If Z is chosen to be a large enough universal constant, we conclude that

σ(S(A−)Q) has an (A ′′, xQ, ε1(A−), δS(A−)Q)-basis.

Hence, S(A−)Q is tagged with (A−, ε1(A−)).
Recall that Q ∈ CZ(A−). In fact, since δQ ≤ (1/16)δ

Q̂
≤ (1/16), condition (e)

in Proposition 1 shows that Q ∈ CZ(A−).
Since δQ ≤ c∗(A−), the previous two paragraphs contradict property (CZ2) of

CZ(A−) in Section 3 of [1]. This completes the proof of (1.129) by contradiction.

This concludes our analysis of the basis functions (ϕQ
α )α∈A.

Part II: Modifying the extension.

Since CZ(A−) forms a partition of Rn, we have

(1.130)
65

64
Q̂ ⊂

⋃
Q∈J (Q̂)

Q.

We will need to use a few results from Sections 4.6.4 and 4.6.5 in [1]. Consider:

• Let CZ = CZ(A−) and Q = J (Q̂).

• Take the cube called Q̂ in Sections 4.6.4 and 4.6.5 to be 65
64
Q̂, with Q̂ as in

the present setting.

• Let r = a, and A = C for a large enough universal constant C.

We have established the good geometry of CZ(A−), which is a dyadic decomposi-
tion of Rn; see Proposition 1. This puts us in the setting of Section 4.6.4.

We point out the covering condition stated in (1.130), and the size condi-

tion stated in (1.110): δQ ≤ Cδ
Q̂

for all Q ∈ J (Q̂). These conditions are exactly

conditions (4.53) and (4.54) in Section 4.6.5, with the choices of CZ, Q, Q̂, r, and A

as in the above bullet points. This puts us in the setting of Section 4.6.5 of [1].
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By Lemma 48 of [1], there exists θQ ∈ Cm(Rn) for Q ∈ J (Q̂) with

(a)
∑

Q∈J (Q̂)

θQ = 1 on
65

64
Q̂,

(b) θQ = 1 near xQ, θQ = 0 near xQ ′ for Q ′ ∈ J (Q̂) \ {Q},

(c) ‖∂αθQ‖L∞((1+a)Q) ≤ C · δ−|α|

Q for |α| ≤ m, and

(d) supp θQ ⊂ (1+ a)Q.

We set H := F+ F̃ on Rn, where

F̃(x) :=
∑

Q∈J (Q̂)

∑
α,β∈A

θQ(x) ·ϕβ(x) ·AQ
αβ · [∂α(P − F)(yQ)]

=
∑

Q∈J (Q̂)

∑
α∈A

θQ(x) ·ϕQ
α (x) · [∂α(P − F)(yQ)].(1.131)

Note that H belongs to X.
Since ϕα = 0 on E∩ 3Q̂, we see that F̃ = 0 on E∩ 3Q̂, hence H = f on E∩ 65

64
Q̂;

see (1.113). This proves the first bullet point in Proposition 5.

Suppose that Q ∈ CZ(A−) and Q ⊂ 65
64
Q̂. Then yQ = xQ, thanks to (1.111).

Thus, property (b) of {θQ} states that θQ ≡ 1 near yQ, and θQ ′ ≡ 0 near yQ for

any Q ′ ∈ J (Q̂) \ {Q}. Therefore, (1.126) and (1.131) give

∂γF̃(yQ) =
∑
α∈A

∂γϕQ
α (yQ) · ∂α(P − F)(yQ)

=
∑
α∈A

δαγ · ∂α(P − F)(yQ) = ∂γ(P − F)(yQ) for each γ ∈ A.

Hence,

∂γH(yQ) = ∂γF(yQ) + ∂γF̃(yQ) = ∂γP(yQ) (with yQ = xQ).

This proves the second bullet point in Proposition 5.

Part III: Estimating the norm.

From property (a) of the partition of unity (θQ), we may write

H =
∑

Q∈J (Q̂)

FQ · θQ on
65

64
Q̂,(1.132)

where FQ = F+
∑
α∈A

ϕQ
α · ∂α(P − F)(yQ) on

65

64
Q̂.

Before we estimate the semi-norm ‖H‖
X(65

64
Q̂)

, we present several estimates.
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We apply a version of the Sobolev inequality (see the second inequality in (2.4)
from Section 2.3 of [1]), and then we use (1.112) to give

δ
|α|+n/p−m

Q̂
|∂α(F− P)(yQ)| ≤ C · (δ−m

Q̂
‖F− P‖

Lp( 65
64

Q̂)
+ ‖F− P‖

X(65
64

Q̂)

)
≤ C ′ · ‖(f, P)‖ 65

64
Q̂

for α ∈ M.(1.133)

Given Q,Q ′ ∈ J (Q̂) such that Q ↔ Q ′, define the rectangular boxes

B1 = (1+ a)Q ∩ (65/64)Q̂ and B2 = (1+ a)Q ′ ∩ (65/64)Q̂.

Since Q ∈ J (Q̂), we know that Q ∩ 65
64
Q̂ �= ∅ and δQ ≤ Cδ

Q̂
(see (1.110)).

Hence, B1 is a product of n intervals whose lengths are between cδQ and CδQ,
for universal constants c and C. Thus, the sidelengths of B1 are between cδQ
and CδQ.

Similarly, the sidelengths of B2 are between cδQ ′ and CδQ ′ .
Note that δQ and δQ ′ differ by at most a factor of 64 thanks to good geometry.
We know that (1 + a)Q ∩ (1 + a)Q ′ �= ∅ because Q ↔ Q ′. Since B1 and B2

are nonempty, the collection of cubes
{
(1+ a)Q, (1+ a)Q ′, 65

64
Q̂
}
have nonempty

pairwise intersections, hence we conclude that there is a common point in these
three cubes.1 Thus, B1 ∩ B2 �= ∅.

We have proven the following claim.

Claim. For any Q,Q ′ ∈ J (Q̂) with Q ↔ Q ′, all the sides of the boxes

B1 = (1 + a)Q ∩ (65/64)Q̂ and B2 = (1 + a)Q ′ ∩ (65/64)Q̂

are between cδQ and CδQ for universal constants c and C. Hence, in particular, B1

and B2 have aspect ratio at most a universal constant. Moreover, B1 ∩ B2 �= ∅.
Thus, we may apply Lemma 12 from [1] with K equal to a universal constant.

For each β ∈ A, we have

∂β(JyQ ′ FQ ′ − P)(yQ ′) = ∂β(FQ ′ − P)(yQ ′) = 0 (see (1.126), (1.132)).

We conclude that ∂β(JyQ ′ FQ ′ − P)(yQ) = 0. Here, we use the monotonicity of A;

see (1.1). Hence, |∂β(FQ ′ −P)(yQ)| = |∂β(FQ ′ − JyQ ′ FQ ′)(yQ)|. Thus, Lemma 12
from [1] implies that, for β ∈ A, we have

|∂β(FQ ′ − P)(yQ)|
� δ

m−|β|−n/p
Q

(‖FQ ′‖
X((1+a)Q∩65

64
Q̂)

+ ‖FQ ′‖
X((1+a)Q ′∩ 65

64
Q̂)

)
.(1.134)

(Here, we use that |yQ − yQ ′ | ≤ CδQ, which is a consequence of Q ↔ Q ′ and the

good geometry of J (Q̂).)

1This follows from the fact that if three intervals have nonempty pairwise intersections then
the three intervals share a point in common.
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From (1.123) and (1.132), for β ∈ M we have

|∂β(FQ − FQ ′)(yQ)|
=

∣∣∣∑
β∈A

∂β(F − P)(yQ)∂βϕ
Q
β (yQ) −

∑
α,β∈A

∂α(F− P)(yQ ′ )ωQQ ′
αβ ∂βϕ

Q
β (yQ)

∣∣∣
≤

∑
β∈A

∣∣∂βϕ
Q
β (yQ)

∣∣ [∣∣∣∂β(F− P)(yQ) −
∑
α∈A

∂α(F − P)(yQ ′)ωQQ ′
αβ

∣∣∣]

=
∑
β∈A

∣∣∂βϕ
Q
β (yQ)

∣∣ [∣∣∣∂β(F− P)(yQ) −
∑
α∈A

∂α(F− P)(yQ ′)∂βϕQ ′
α (yQ)

∣∣∣]

(note that ωQQ ′
αβ = ∂βϕQ ′

α (yQ); see (1.123) and (1.126))

=
∑
β∈A

∣∣∂βϕ
Q
β (yQ)

∣∣[∣∣∂β(FQ ′ − P)(yQ)
∣∣]

(see (1.132))

≤ CΛD+1
∑
β∈A

δ
|β|−|β|

Q δ
m−n/p−|β|

Q

[‖FQ ′‖
X((1+a)Q∩65

64
Q̂) + ‖FQ ′‖

X((1+a)Q ′∩ 65
64

Q̂)

]
(see (1.129) and (1.134))

(1.135) ≤ CΛD+1 · δm−|β|−n/p
Q

[‖FQ ′‖
X((1+a)Q∩65

64
Q̂) + ‖FQ ′‖

X((1+a)Q ′∩ 65
64

Q̂)

]
.

We are now prepared to estimate ‖H‖
X(65

64
Q̂).

We apply Lemma 49 of [1], which shows that

‖H‖p
X(65

64
Q̂)

�
∑

Q∈J (Q̂)

‖FQ‖p
X((1+a)Q∩65

64
Q̂)

+
∑

Q∈J (Q̂)

δ
−mp
Q ‖FQ − JyQ

FQ‖p
Lp((1+a)Q∩65

64
Q̂)

(1.136)

+
∑

Q,Q ′∈J (Q̂)
Q↔Q ′

∑
|β|≤m−1

δ
(|β|−m)p+n
Q |∂β(JyQ

FQ − JyQ ′FQ ′)(yQ)|p.(1.137)

(Here, we take PQ = JyQ
FQ in our application of Lemma 49.)

First we estimate the terms in (1.136). A version of the Sobolev inequality
(see (2.7) in Section 2.3 of [1]) implies that

δ−m
Q ‖FQ − JyQ

FQ‖
Lp((1+a)Q∩65

64
Q̂) ≤ C‖FQ‖

X((1+a)Q∩65
64

Q̂).

(Here, we use the fact that the lengths of all sides of the rectangular box (1+a)Q∩
65
64
Q̂ are comparable to δQ; see the previous Claim.)
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Next we estimate the terms in (1.137). For Q,Q ′ ∈ J (Q̂) with Q ↔ Q ′,

|∂β
[
JyQ

FQ − JyQ ′FQ ′
]
(yQ)| = |∂β

[
FQ − JyQ ′FQ ′

]
(yQ)|

≤ |∂β
[
FQ − FQ ′

]
(yQ)|+ |∂β

[
FQ ′ − JyQ ′ FQ ′

]
(yQ)|

� |∂β
[
FQ − FQ ′

]
(yQ)|+ δ

m−|β|−n/p
Q

[‖FQ ′‖
X((1+a)Q∩65

64
Q̂)

+ ‖FQ ′‖
X((1+a)Q ′∩ 65

64
Q̂)

]
.

(Here, in the last inequality we use Lemma 12 from [1].)

Using our previous estimates on (1.136) and (1.137), we obtain

‖H‖p
X(65

64
Q̂)

�
∑

Q,Q ′∈J (Q̂)
Q↔Q ′

[
‖FQ‖p

X((1+a)Q∩65
64

Q̂)
+ ‖FQ ′‖p

X((1+a)Q∩65
64

Q̂)

+
∑
β∈M

|∂β(FQ − FQ ′)(yQ)|pδ(|β|−m)p+n
Q

]
(1.135)

≤ CΛ(D+1)p
∑

Q,Q ′∈J (Q̂)
Q↔Q ′

[‖FQ‖p
X((1+a)Q∩65

64
Q̂)

+ ‖FQ‖p
X((1+a)Q ′∩65

64
Q̂)

]
.

(1.122),(1.132)

≤ CΛ(D+1)p
∑

Q,Q ′∈J (Q̂)
Q↔Q ′

[
‖F‖p

X((1+a)Q∩65
64

Q̂)
+ ‖F‖p

X((1+a)Q ′∩65
64

Q̂)

+
∑

α,β∈A
|AQ

αβ|p|∂α(F− P)(yQ)|p(‖ϕβ‖p
X((1+a)Q∩65

64
Q̂)

+ ‖ϕβ‖p
X((1+a)Q ′∩65

64
Q̂)

)]
(1.121),(1.133)

≤ CΛ(2D+1)p
∑

Q,Q ′∈J (Q̂)
Q↔Q ′

[
‖F‖p

X((1+a)Q∩65
64

Q̂)

+
∑
β∈A

δ
(m−|β|)p−n

Q̂
‖(f, P)‖p65

64
Q̂
‖ϕβ‖p

X((1+a)Q∩65
64

Q̂)

]

≤ CΛ(2D+1)p · ‖(f, P)‖p
65
64

Q̂

[
1+

∑
β∈A

‖ϕβ‖p
X(3Q̂)

δ
(m−|β|)p−n

Q̂

]
≤ CΛ(2D+1)p · ‖(f, P)‖p65

64
Q̂

(by bounded overlap of {(1+ a)Q : Q ∈ J (Q̂)} and by (1.112), (1.114)).

This concludes our estimation of ‖H‖
X(65

64
Q̂)

.
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Writing H − P = (F− P) + F̃, we also obtain

‖H− P‖p
Lp( 65

64
Q̂)

(1.131)

� ‖F− P‖p
Lp(65

64
Q̂)

+
∑

Q∈J (Q̂)

∑
α,β∈A

‖ϕβ‖p
Lp((1+a)Q∩65

64
Q̂)

· |AQ
αβ|p · |∂α(P − F)(yQ)|p

(1.121),(1.133)

� ‖F− P‖p
Lp( 65

64
Q̂)

+ΛDp ·
∑

Q∈J (Q̂)

∑
β∈A

‖ϕβ‖p
Lp((1+a)Q∩65

64
Q̂)

δ
(m−|β|)p−n

Q̂
‖(f, P)‖p65

64
Q̂

� ‖F− P‖p
Lp( 65

64
Q̂)

+ΛDp ·
∑
β∈A

‖ϕβ‖p
Lp(3Q̂)

δ
(m−|β|)p−n

Q̂
‖(f, P)‖p65

64
Q̂

(by bounded overlap of the collection {(1+ a)Q : Q ∈ J (Q̂)})

(1.112),(1.118)

� Λ(D+1)p · [δ
Q̂
]mp‖(f, P)‖p65

64
Q̂
.

Adding together the previous two estimates, we have

‖H‖
X(65

64
Q̂) + δ−m

Q̂
‖H− P‖

Lp( 65
64

Q̂) ≤ CΛ2D+1‖(f, P)‖ 65
64

Q̂
.

This completes the proof of Proposition 5 �

We recall several facts, and set some notation for the rest of this section.

• Suppose Q ∈ CZ(A−) and Q ⊂ (1 + 100tG)Q̂. Then 65
64
Q ⊂ 65

64
Q̂ (see

Lemma 11).

• Suppose that Q ′, Q ′′ ∈ CZ(A−), Q ′ ⊂ (1 + tG)Q̂, Q ′ ↔ Q ′′, and δQ ′ <

tG · δ
Q̂
. Then Q ′′ ⊂ (1+ 100tG)Q̂ (by good geometry).

• The sums below are indexed over cubes Q ∈ CZ(A−), and over pairs of cubes
(Q ′, Q ′′) ∈ CZ(A−) × CZ(A−); and often for ease of notation we choose to
not make this indexing explicit.

• For ease of notation, we write RQ̂
Q = R

Q̂
Q(f, P) (the dependence on (f, P) should

be understood).

• We are assuming that tG is less than a small constant determined by m, n,
and p, to be picked later, whereas the universal constant S1 has already been
picked. (See (1.17).)
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Proposition 6. Given H ∈ X, and given {RQ# : Q# keystone} ⊂ P, the following
inequality holds:∑

Q⊂(1+100tG)Q̂
δQ<tG·δ

Q̂

δ
−mp
Q ‖H− RK(Q)‖pLp( 65

64
Q)

�
∑

Q# keystone
S1Q

#⊂ 65
64

Q̂

[δQ# ]−mp‖H− RQ#‖p
Lp( 65

64
Q#)

+ ‖H‖p
X(65

64
Q̂)

.(1.138)

Proof. Let Q ∈ CZ(A−) satisfy

(1.139) Q ⊂ (1+ 100tG)Q̂ and δQ < tG · δ
Q̂
.

Then there exists an exponentially decreasing path connecting Q and K(Q), as
promised by the Keystone-oracle. We denote this path by

Q = Q(1) ↔ Q(2) ↔ · · · ↔ Q(LQ) = K(Q).

Recall that

(1.140) δQ(	 ′) ≤ C · (1− c)	
′−	 · δQ(	) for �

′ ≥ �;

also Q(�) ⊂ CQ, and S1K(Q) ⊂ CQ, for a universal constant C. From (1.139) we

conclude that 65
64
CQ ⊂ 65

64
Q̂, as long as tG is sufficiently small. Therefore,

(1.141)
65

64
Q(�) ⊂ 65

64
Q̂ for all � = 1, . . . , LQ, and S1K(Q) ⊂ 65

64
Q̂.

In particular, note that 65
64
Q ⊂ 65

64
Q̂.

Fix an arbitrary number η ∈ (0, 1 − n/p) depending only on n and p. By the
triangle inequality,

δ
−mp
Q ‖H− RK(Q)‖pLp( 65

64
Q)

� δ
−mp
Q ‖H− JxQ

H‖p
Lp( 65

64
Q)

+ δ
−mp
Q ‖JxK(Q)

H− RK(Q)‖pLp( 65
64

Q)

+ δ
−mp
Q

∥∥∥ LQ−1∑
	=1

(
JxQ(�)

H− JxQ(�+1)
H
)
δ
−η
Q(	)

δ
+η
Q(	)

∥∥∥p
Lp( 65

64
Q)

;

here, Hölder’s inequality shows that

δ
−mp
Q

∥∥∥ LQ−1∑
	=1

(
JxQ(�)

H − JxQ(�+1)
H
)
δ
−η
Q(	) δ

+η
Q(	)

∥∥∥p

Lp( 65
64

Q)

≤ δ
−mp
Q

( LQ−1∑
	=1

δ
ηp ′

Q(	)

)p/p ′ LQ−1∑
	=1

δ
−ηp
Q(	)‖JxQ(�)

H − JxQ(�+1)
H‖p

Lp( 65
64

Q)

� δ
ηp−mp
Q

LQ−1∑
	=1

δ
−ηp
Q(	) ‖JxQ(�)

H− JxQ(�+1)
H‖p

Lp(65
64

Q)
(by (1.140));
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also, the Sobolev inequality shows that

δ
−mp
Q ‖H− JxQ

H‖p
Lp( 65

64
Q)

≤ C ‖H‖p
X(65

64
Q)

.

Combining these estimates, we have:

δ
−mp
Q ‖H− RK(Q)‖pLp( 65

64
Q)

� ‖H‖p
X(65

64
Q)

+ δ
−mp
Q ‖JxK(Q)

H − RK(Q)‖pLp( 65
64

Q)

+ δ
ηp−mp
Q

LQ−1∑
	=1

δ
−ηp
Q(	)‖JxQ(�)

H − JxQ(�+1)
H‖p

Lp( 65
64

Q)
.

We apply Lemma 7 of [1] to all but the first term on the right-hand side of the
previous estimate. Thus, we obtain

δ
−mp
Q ‖H− RK(Q)‖pLp(65

64
Q)

� ‖H‖p
X(65

64
Q)

+ δ
−mp
Q

∑
|β|≤m−1

|∂β(JxK(Q)
H− RK(Q))(xK(Q))|p δ

|β|p+n
Q

+ δ
ηp−mp
Q

LQ−1∑
	=1

δ
−ηp
Q(	)

∑
|β|≤m−1

|∂β(JxQ(�)
H − JxQ(�+1)

H)(xQ(	))|p δ
|β|p+n
Q .

Let X denote the sum of δ−mp
Q ‖H− RK(Q)‖pLp( 65

64
Q)

over all Q ∈ CZ(A−) with

Q ⊂ (1+ 100tG)Q̂ and δQ < tGδQ̂.

We now sum the previous estimate overQ. We denote Q# = K(Q), Q ′ = Q(�),
and Q ′′ = Q(� + 1), and we switch the order of summation in our sum. Us-
ing (1.141), we see that

X �
∑

65
64

Q⊂ 65
64

Q̂

‖H‖p
X(65

64
Q)

+
∑

Q# keystone
S1Q

#⊂ 65
64

Q̂

∑
|β|≤m−1

|∂β(Jx
Q#

H− RQ#)(xQ#)|p
∑

65
64

Q⊂ 65
64

Q̂

K(Q)=Q#

δ
(|β|−m)p+n
Q

+
∑

Q ′
↔Q ′′

65
64

Q ′⊂ 65
64

Q̂
65
64

Q ′′⊂ 65
64

Q̂

δ
−ηp
Q ′

∑
|β|≤m−1

|∂β(JxQ ′H − JxQ ′′H)(xQ ′)|p
∑

65
64

Q⊂ 65
64

Q̂

	:Q(	)=Q ′

δ
(η+|β|−m)p+n
Q .

Now, for fixed Q# we have∑
65
64

Q⊂ 65
64

Q̂

K(Q)=Q#

δ
(|β|−m)p+n
Q ≤

∑
Q dyadic
Q#⊂CQ

δ
(|β|−m)p+n
Q ≤ C · [δQ#

](|β|−m)p+n
.
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Also, from Remark 1, which can be found after the Keystone-oracle, for
fixed Q ′ we have∑

65
64

Q⊂ 65
64

Q̂

	:Q(	)=Q ′

δ
(η+|β|−m)p+n
Q ≤ C

∑
65
64

Q⊂ 65
64

Q̂

∃	, Q(	)=Q ′

δ
(η+|β|−m)p+n
Q

≤ C
∑

Q dyadic
Q ′⊂CQ

δ
(η+|β|−m)p+n
Q ≤ C · [δQ ′ ]

(η+|β|−m)p+n
.

Therefore,

X �
∑

65
64

Q⊂ 65
64

Q̂

‖H‖p
X(65

64
Q)

+
∑

Q# keystone
S1Q

#⊂65
64

Q̂

∑
|β|≤m−1

|∂β(Jx
Q#

H − RQ#)(xQ#)|p · [δQ#

](|β|−m)p+n

+
∑

Q ′
↔Q ′′

65
64

Q ′, 65
64

Q ′′⊂ 65
64

Q̂

∑
|β|≤m−1

|∂β(JxQ ′H− JxQ ′′H)(xQ ′)|p · [δQ ′ ]
(|β|−m)p+n

.

We first estimate the terms in the second sum on the right-hand side above. For
fixed Q#, the Sobolev-type estimate which is stated in Lemma 10 of [1] implies
that ∑

|β|≤m−1

|∂β(Jx
Q#

H−RQ#)(xQ#)|p · [δQ#

](|β|−m)p+n

� ‖H‖p
X(65

64
Q#)

+ δ
−mp

Q# ‖H− RQ#‖p
Lp( 65

64
Q#)

.

To estimate the terms from the third sum, we apply Lemma 12 of [1], using as the
rectangular boxes B1 = 65

64
Q ′ and B2 = 65

64
Q ′′, where Q ′, Q ′′ ∈ CZ(A−) satisfy

Q ′ ↔ Q ′′. Thus, we obtain the estimate∑
|β|≤m−1

|∂β(JxQ ′H−JxQ ′′H)(xQ ′)|p ·[δQ ′ ](|β|−m)p+n � ‖H‖p
X(65

64
Q ′)+‖H‖p

X(65
64

Q ′′).

(Here, we use the fact that |xQ ′ − xQ ′′ | ≤ CδQ ′ and that 65
64
Q ′ ∩ 65

64
Q ′′ �= ∅.)

Thus, we have

X �
∑

65
64

Q⊂ 65
64

Q̂

‖H‖p
X(65

64
Q)

+
∑

Q ′
↔Q ′′

65
64

Q ′, 65
64

Q ′′⊂ 65
64

Q̂

[
‖H‖p

X(65
64

Q ′) + ‖H‖p
X(65

64
Q ′′)

]

+
∑

Q# keystone
S1Q

#⊂ 65
64

Q̂

‖H‖p
X(65

64
Q#)

+
∑

Q# keystone
S1Q

#⊂ 65
64

Q̂

δ
−mp
Q# ‖H− RQ#‖p

Lp( 65
64

Q#)
.
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From the bounded overlap of the cubes 65
64
Q, Q ∈ CZ(A−), the previous esti-

mate implies that

X � ‖H‖p
X(65

64
Q̂)

+
∑

Q# keystone
S1Q

#⊂ 65
64

Q̂

δ
−mp

Q# ‖H− RQ#‖p
Lp( 65

64
Q#)

.

This completes the proof of Proposition 6. �

We are now prepared to prove the conditional inequality.

We seek an estimate on
[
M

Q̂
(f, P)

]p
, which is a sum of terms (I)–(IV) (see

(1.65)–(1.68)). We first apply Lemma 7 of [1] to estimate the summands appearing
in (1.66), (1.67), (1.68) in terms of Lp norms of polynomials. We then replace (1.66)
by a sum over a larger collection of pairs (Q ′, Q ′′), as below. Thus, we obtain

[
M

Q̂
(f, P)

]p ≤ C(tG) ·
[ ∑
Q∈CZmain(A−)

Q⊂(1+100tG)Q̂

[
M(Q,A−)(f, R

Q̂
Q)

]p

+
∑

Q ′,Q ′′∈CZ(A−)

Q ′,Q ′′⊂(1+100tG)Q̂
Q ′

↔Q ′′

δ
−mp
Q ′ ‖RQ̂

Q ′ − R
Q̂
Q ′′‖pLp(Q ′)

+
∑

Q∈CZ(A−)

Q⊂(1+100tG)Q̂

δQ≥t2G·δ
Q̂

δ
−mp

Q̂
‖RQ̂

Q − P‖p
Lp(Q̂)

+ δ
−mp

Q̂
‖RQ̂

Qsp
− P‖p

Lp(Q̂)

]
.(1.142)

We pick a function H as in Proposition 5. Our estimates proceed in three stages
below.

Stage I. We bound the relevant summands in (1.142).

We consider Q,Q ′, Q ′′ ∈ CZ(A−) that satisfy Q,Q ′, Q ′′ ⊂ (1 + 100tG)Q̂ and
Q ′ ↔ Q ′′. We impose either the assumption Q ∈ CZmain(A−) or the assumption
δQ ≥ t2G · δ

Q̂
, depending on which type of summand we seek to bound.

Assume first that Q ∈ CZmain(A−). Then the right-hand estimate in (1.20)
implies that

M(Q,A−)(f, R
Q̂
Q) ≤ C · ‖(f, RQ̂

Q)‖ 65
64

Q ≤ C · [‖H‖
X(65

64
Q) + δ−m

Q ‖H− R
Q̂
Q‖Lp( 65

64
Q)

]
.

Here, in the last inequality, we use the definition of the trace seminorm and recall
that H = f on E ∩ 65

64
Q̂.

On the other hand, assume that δQ ≥ t2GδQ̂. We apply the triangle inequality,

and then we apply estimate (2.5) in Lemma 10 of [1] (a consequence of the Sobolev

inequality). Note that 65
64
Q ⊂ 65

64
Q̂, so the application of (2.5) given below is
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justified. This gives

δ−m

Q̂
‖RQ̂

Q − P‖
Lp(Q̂) ≤ δ−m

Q̂
‖H− P‖

Lp( 65
64

Q̂) + δ−m

Q̂
‖RQ̂

Q −H‖
Lp(65

64
Q̂)

≤ δ−m

Q̂
‖H− P‖

Lp( 65
64

Q̂) + C ·
[
δ−m
Q ‖RQ̂

Q −H‖Lp( 65
64

Q) + ‖H‖
X(65

64
Q̂)

]
.

We now consider the summands in (1.142) which are indexed by pairs (Q ′, Q ′′).
Using Lemma 11 of [1], we obtain the bound

δ−m
Q ′ ‖RQ̂

Q ′−R
Q̂
Q ′′‖Lp(Q ′) ≤ C · [δ−m

Q ′ ‖RQ̂
Q ′ −H‖Lp( 65

64
Q ′)

+ δ−m
Q ′′ ‖H− R

Q̂
Q ′′‖Lp( 65

64
Q ′′) + ‖H‖

X(65
64

Q ′) + ‖H‖
X(65

64
Q ′′)

]
.

Now, at last, we consider the final term on the right-hand side of (1.142). Since

Qsp ⊂ Q̂, we have 65
64
Qsp ⊂ 65

64
Q̂. We now apply a Sobolev-type estimate that is

stated in Lemma 10 of [1]. Thus, we obtain

δ−m

Q̂
‖P − R

Q̂
Qsp

‖
Lp( 65

64
Q̂) ≤ δ−m

Q̂
‖H− P‖

Lp( 65
64

Q̂) + δ−m

Q̂
‖RQ̂

Qsp
−H‖

Lp( 65
64

Q̂)

≤ δ−m

Q̂
‖H− P‖

Lp( 65
64

Q̂)

+ C ·
[
δ−m
Qsp

‖RQ̂
Qsp

−H‖Lp( 65
64

Qsp)
+ ‖H‖

X(65
64

Q̂)

]
.

We combine (1.142) with the previous four estimates to obtain[
M

Q̂
(f, P)

]p ≤ C(tG)·
(
‖H‖p

X(65
64

Q̂)
+ δ

−mp

Q̂
‖H− P‖p

Lp( 65
64

Q̂)

+
∑

Q⊂(1+100tG)Q̂

[‖H‖p
X(65

64
Q)

+ δ
−mp
Q ‖H− R

Q̂
Q‖p

Lp( 65
64

Q)

])
.(1.143)

Stage II. Observe that ∑
Q⊂(1+100tG)Q̂

‖H‖p
X(65

64
Q)

≤ C · ‖H‖p
X(65

64
Q̂)

.

Indeed, we have 65
64
Q ⊂ 65

64
Q̂ for any cube Q ∈ CZ(A−) arising above (see

Lemma 11); hence, the desired estimate is a consequence of the fact that the
cubes 65

64
Q, with Q ∈ CZ(A−), have bounded overlap.

The number of cubesQ ∈ CZ(A−) such thatQ ⊂ (1+100tG)Q̂ and δQ ≥ tGδQ̂
is bounded by a constant C(tG). Hence,∑
Q⊂(1+100tG)Q̂

δQ≥tGδ
Q̂

δ
−mp
Q ‖H−R

Q̂
Q‖p

Lp( 65
64

Q)
≤ C(tG)·δ−mp

Q̂
‖H−P‖p

Lp( 65
64

Q̂)
(see (1.63)).

On the other hand, by our definition of RQ̂
Q (see (1.63)), we obtain∑

Q⊂(1+100tG)Q̂
δQ<tGδ

Q̂

δ
−mp
Q ‖H− R

Q̂
Q‖p

Lp( 65
64

Q)
=

∑
Q⊂(1+100tG)Q̂

δQ<tGδ
Q̂

δ
−mp
Q ‖H− R

#
K(Q)‖pLp( 65

64
Q)

.
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We combine (1.143) and the previous three estimates to obtain

[
M

Q̂
(f, P)

]p ≤ C(tG) ·
(
‖H‖p

X(65
64

Q̂)
+ δ

−mp

Q̂
‖H− P‖p

Lp( 65
64

Q̂)

+
∑

Q⊂(1+100tG)Q̂
δQ<tGδ

Q̂

δ
−mp
Q ‖H− R

#
K(Q)‖pLp( 65

64
Q)

)

≤ C(tG) ·
(
‖H‖p

X(65
64

Q̂)
+ δ

−mp

Q̂
‖H− P‖p

Lp( 65
64

Q̂)

+
∑

Q# keystone
S1Q

#⊂ 65
64

Q̂

(δQ#)−mp‖H− R
#
Q#‖pLp(S1Q#)

)
(1.144)

(see Proposition 6).

Stage III. Let Q# ∈ CZ(A−) be a keystone cube with S1Q
# ⊂ 65

64
Q̂. Then, as

stated in Proposition 5, we have ∂αH(xQ#) = ∂αP(xQ#) for all α ∈ A. Thus, by
Proposition 2, we have

(1.145) (δQ#)−mp‖H− R
#
Q#‖pLp(S1Q#)

� ‖H‖p
X(S1Q#)

.

From Lemma 8, we recall that the cubes S1Q
# (Q# keystone) have bounded

overlap. Thus, (1.144) and (1.145) imply that

M
Q̂
(f, P)p ≤ C(tG) ·

(‖H‖p
X(65

64
Q̂)

+ ‖H− P‖p
Lp( 65

64
Q̂)

δ
−mp

Q̂

)
≤ C(tG) ·Λ(2D+1)p · ‖(f, P)‖p65

64
Q̂

(see Proposition 5).(1.146)

Recall that εκΛ100D ≤ εκ/2 and κ ≤ κ2 ≤ 1 (see (1.109)). Hence, Λ2D+1 ≤
ε−κ/2 ≤ ε−1. This shows that

M
Q̂
(f, P) ≤ C(tG) · (1/ε) · ‖(f, P)‖ 65

64
Q̂

This completes the proof of the conditional inequality. This completes the proof
of Proposition 4. �

We fix tG > 0, depending only on m, n, and p, small enough so that the above
results hold. Since we have fixed the constant tG, all the previous constants of the
form C(tG) or c(tG) become universal constants C or c. In particular, the constant
anew = anew(tG) from Lemma 11 depends only on m, n, and p. We set

(1.147) a(A) = anew.

Recall the definition of the convex set σ(Q̂) in (1.69).
Just for the moment, let ε = ε0 be a small enough constant depending only

on m, n, and p. From Proposition 4 we obtain the following result.
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Proposition 7. There exist universal constants ε0 > 0 and C ≥ 1 such that the
following holds.

Let Q̂ be a testing cube. Then the following conclusions hold.

(Unconditional inequality) ‖(f, P)‖
(1+a(A))Q̂ ≤ CM

Q̂
(f, P).

(Conditional inequality) If 3Q̂ is tagged with (A, ε0), then

M
Q̂
(f, P) ≤ C‖(f, P)‖ 65

64
Q̂
.

(Unconditional inclusion) σ(Q̂) ⊂ Cσ((1 + a(A))Q̂).

(Conditional inclusion) If 3Q̂ is tagged with (A, ε0), then σ(65
64
Q̂) ⊂ Cσ(Q̂).

Once again, let ε be a small parameter. As usual, we assume that ε is less than
a small enough constant depending only on m, n, and p.

1.5. Tools to fill the gap between geometrically interesting cubes

For the results in this section, the reader may wish to review the definition of
testing cubes (see Definition 2).

Proposition 8. Let Q̂ be a testing cube. If[
#
(65
64

Q̂ ∩ E
)
≤ 1 or σ(Q̂) has an (A ′, x

Q̂
, ε, δ

Q̂
)-basis for some A ′ ≤ A

]
,

then (1 + a(A))Q̂ is tagged with (A, εκ). Otherwise, no cube containing 3Q̂ is
tagged with (A, ε1/κ). Here, κ is a universal constant.

Proof. If #(65
64
Q̂ ∩ E) ≤ 1, then (1+ a(A))Q̂ is tagged with (A, ε).

Suppose σ(Q̂) has an (A ′, x
Q̂
, ε, δ

Q̂
)-basis for someA ′ ≤ A. Proposition 7 gives

that σ(Q̂) ⊂ Cσ((1+a(A))Q̂). Thus, σ((1+a(A))Q̂) has an (A ′, x
Q̂
, Cε, δ

Q̂
)-basis.

Therefore, (1 + a(A))Q̂ is tagged with (A, εκ). Here, we can arrange that
Cε ≤ εκ by taking ε sufficiently small.

This proves the first part of Proposition 8.
On the other hand, suppose Q ⊃ 3Q̂ and suppose Q is tagged with (A, ε1/κ

′
),

for some κ ′ > 0 to be picked below. Then 3Q̂ is tagged with (A, εκ/κ
′
), thanks to

Lemma 28 from [1]. Hence, from Proposition 7 we see that

(1.148) σ
(65
64

Q̂
)
⊂ C · σ(Q̂).

Recall that 65
64
Q̂ ⊂ Q and that Q is tagged with (A, ε1/κ

′
). Thus, Lemma 28

from [1] shows that 65
64
Q̂ is tagged with (A, εκ/κ

′
). This means that either #(65

64
Q̂∩

E) ≤ 1 or σ(65
64
Q̂) has an (A ′, x

Q̂
, εκ/κ

′
, δ

Q̂
)-basis, with A ′ ≤ A.
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Thus, (1.148) implies that

#
(65
64

Q̂ ∩ E
)
≤ 1 or σ(Q̂) has an (A ′, x

Q̂
, Cεκ/κ

′
, δ

Q̂
)-basis.

Hence, either #(65
64
Q̂∩E) ≤ 1 or σ(Q̂) has an (A ′, x

Q̂
, ε, δ

Q̂
)-basis for someA ′ ≤ A.

Here, we have set κ ′ = κ/2, with κ as in Lemma 28 from [1]; note that Cεκ/κ
′
=

Cε2 ≤ ε.

This completes the proof of Proposition 8. �

Suppose that Q̂1 ⊂ Q̂2 are testing cubes. We want to understand the tagging
of 3Q̂2 in terms of the convex symmetric set σ(Q̂1).

Proposition 9. Suppose that Q̂1 ⊂ Q̂2 are testing cubes. We assume that

#(3Q̂2 ∩ E) ≥ 2 and(1.149)

(1+ a(A))Q̂1 ∩ E = 3Q̂2 ∩ E.(1.150)

If σ(Q̂1) has an (A ′, x
Q̂1

, ε, δ
Q̂2

)-basis, then 3Q̂2 is tagged with (A ′, εκ) for a
universal constant κ.

Proof. Let (Pα)α∈A ′ be an (A ′, x
Q̂1

, ε, δ
Q̂2

)-basis for σ(Q̂1). Thus,

Pα ∈ ε δ
−(m−n/p−|α|)

Q̂2

σ(Q̂1) (α ∈ A ′)(1.151)

∂βPα(xQ̂1
) = δβα (β,α ∈ A ′)(1.152)

|∂βPα(xQ̂1
)| ≤ ε δ

|α|−|β|

Q̂2

(α ∈ A ′, β ∈ M, β > α).(1.153)

The unconditional inclusion and inclusion (2.12) in Section 2.4 of [1] show that

σ(Q̂1) ⊂ Cσ((1 + a(A))Q̂1) ⊂ C
[
σ((1+ a(A))Q̂1) + B(x

Q̂1
, 3δ

Q̂2
)
] ⊂ C ′σ(3Q̂2).

(The application of (2.12) is justified because we assume here that (1+a(A))Q̂1 ∩
E = 3Q̂2 ∩ E.)

Thus, (1.151) implies that

Pα ∈ Cε δ
−(m−n/p−|α|)

3Q̂2

· σ(3Q̂2) (α ∈ A ′).

Thus, due to (1.152) and (1.153), we see that (Pα)α∈A ′ is an (A ′, x
Q̂1

, Cε, δ
3Q̂2

)-

basis for σ(3Q̂2).

It follows from Lemma 27 in [1] that σ(3Q̂2) has an (A ′′, x
Q̂2

, εκ, δ
3Q̂2

)-basis,

for some A ′′ ≤ A ′. By definition, this means that the cube 3Q̂2 is tagged with
(A ′, εκ), completing the proof of Proposition 9. �
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Corollary 1. Suppose that Q̂1 ⊂ Q̂2 are testing cubes, and that (1.149) and (1.150)
hold.

Suppose σ(Q̂1) has an (A ′, x
Q̂1

, ε, δ
Q̂2

)-basis for some A ′ ≤ A. Then 3Q̂2 is

tagged with (A, εκ) for a universal constant κ.

Proof. Proposition 9 tells us that 3Q̂2 is tagged with (A ′, εκ). This trivially implies

that 3Q̂2 is tagged with (A, εκ). �

Proposition 10. Suppose that Q̂1 ⊂ Q̂2 are testing cubes, and that (1.149)
and (1.150) hold.

Suppose 3Q̂2 is tagged with (A, ε). Then σ(Q̂1) has an (A ′, x
Q̂1

, εκ
′
, δ

Q̂2
)-

basis, for some A ′ ≤ A. Here, κ ′ is a universal constant.

Proof. We have 3Q̂1 ⊂ 3Q̂2, so Lemma 28 from [1] tells us that 3Q̂1 is tagged with
(A, εκ). Hence, by the conditional inclusion, we have

(1.154) c · σ
(65
64

Q̂1

)
⊂ σ(Q̂1).

Next note that 65
64
Q̂1 ∩E = 3Q̂2 ∩E, and that 65

64
Q̂1 ⊂ 3Q̂2. Therefore, Lemma 15

in [1] gives the inclusion

(1.155) σ(3Q̂2) ⊂ C ·
[
σ
(65
64

Q̂1

)
+ B(x

Q̂2
, δ

3Q̂2
)
]
.

(Since |x
Q̂1

− x
Q̂2

| ≤ δ
Q̂2

, it follows that B(x
Q̂1

, δ
3Q̂2

) ⊂ CB(x
Q̂2

, δ
3Q̂2

). This

shows that (1.155) follows from the conclusion of Lemma 15 in [1].)

Now, 3Q̂2 is assumed to be tagged with (A, ε), and #(3Q̂2 ∩ E) is assumed

to be at least 2. Hence, by definition, σ(3Q̂2) has an (A ′, x
Q̂2

, ε, δ
3Q̂2

)-basis for

some A ′ ≤ A.
By Lemma 25 of [1], we learn that

(1.156) σ(3Q̂2) has an (A ′′, x
Q̂2

, εκ, δ
3Q̂2

, Λ)-basis, for some A ′′ ≤ A ′ ≤ A,

such that εκΛ100D ≤ εκ/2 and κ ∈ [κ1, κ2]. Here, κ1, κ2 > 0 are universal
constants.

Inclusions (1.154) and (1.155) show that

(1.157) σ(3Q̂2) ⊂ C ′′ · [σ(Q̂1) + B(x
Q̂2

, δ
3Q̂2

)
]
.

From (1.156), (1.157), and Lemma 23 in [1], we see that

σ(Q̂1) has an (A ′′, x
Q̂2

, CεκΛ, δ
3Q̂2

, CΛ)-basis.

We now apply Lemma 26 in [1]. Thus,

σ(Q̂1) has an (A ′′, x
Q̂1

, CεκΛ2D+2, δ
3Q̂2

, CΛ2D+1)-basis.

Since CεκΛ2D+2 ≤ εκ/3 ≤ εκ1/3, it follows that

(1.158) σ(Q̂1) has an (A ′′, x
Q̂1

, εκ1/3, δ
Q̂2

)-basis.
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(Here, the passage from δ
3Q̂2

to δ
Q̂2

is harmless; it just increases the constant “C”

in CεκΛ2D+2.)
Since A ′′ ≤ A, (1.158) is the conclusion of Proposition 10. �

Combining the results of Propositions 9, 10, we now prove the following.

Proposition 11. Suppose that Q̂1 ⊂ Q̂2 are testing cubes and that (1.149), (1.150)
hold. Then

(A) If σ(Q̂1) has an (A ′, x
Q̂1

, ε, δ
Q̂2

)-basis for some A ′ ≤ A, then (1+ a(A))Q̂2

is tagged with (A, εκ).

(B) If some cube containing 3Q̂2 is tagged with (A, ε), then σ(Q̂1) has an
(A ′, x

Q̂1
, εκ, δ

Q̂2
)-basis for some A ′ ≤ A.

Here, κ is a universal constant.

Proof. First we check (A). If σ(Q̂1) has an (A ′, x
Q̂1

, ε, δ
Q̂2

)-basis with A ′ ≤ A,

then according to Corollary 1, the cube 3Q̂2 is tagged with (A, εκ). Hence, by

Lemma 28 from [1], (1 + a(A))Q̂2 is tagged with (A, εκ
′
), completing the proof

of (A).

To check (B), let Q ′ ⊃ 3Q̂2 be tagged with (A, ε). By Lemma 28 from [1], 3Q̂2

is tagged with (A, εκ). Hence, by Proposition 10, σ(Q̂1) has an (A ′, x
Q̂1

, εκ
′
, δ

Q̂2
)-

basis, for some A ′ ≤ A. This completes the proof of (B). �

We apply (A) with ε unchanged, and (B) with ε replaced by ε1/κ. Thus we
obtain the following result.

Proposition 12. Let Q̂ ⊂ Q be testing cubes. Assume that #(3Q ∩ E) ≥ 2 and

that (1+ a(A))Q̂ ∩ E = 3Q ∩ E.

Then the following hold, for a universal constant κ.

(A) If σ(Q̂) has an (A ′, x
Q̂
, ε, δQ)-basis for some A ′ ≤ A, then (1 + a(A))Q is

tagged with (A, εκ).

(B) If σ(Q̂) does not have an (A ′, x
Q̂
, ε, δQ)-basis for any A ′ ≤ A, then no cube

containing 3Q is tagged with (A, ε1/κ).

The final result in this section is the following algorithm.

Algorithm: Optimize basis

We perform one time work at most CN logN in space CN, after which we can
answer queries as follows.

A query consists of a testing cube Q̂ and a set A ⊂ M
The response to the query (Q̂,A) consists of a collection of pairwise disjoint

intervals I	, and numbers a	 and λ	 (� = 1, . . . , �max), such that the following
conditions hold.

•
⋃

	 I	 = (0,∞) and �max ≤ C.
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• Let η(Q̂,A)(δ) := a	δ
λ� for δ ∈ I	. Then we have:

(A1) For each δ ∈ (0,∞) there exists A ′ ≤ A such that σ(Q̂) has an

(A ′, x
Q̂
, η1/2, δ)-basis for all η > C · η(Q̂,A)(δ).

(A2) For each δ ∈ (0,∞) and any A ′ ≤ A, σ(Q̂) does not have an

(A ′, x
Q̂
, η1/2, δ)-basis with η < c · η(Q̂,A)(δ).

(A3) c · η(Q̂,A)(δ1) ≤ η(Q̂,A)(δ2) ≤ C · η(Q̂,A)(δ1) whenever 1
10
δ1 ≤ δ2 ≤

10δ1.

• To answer a query requires work at most C logN.

Explanation. We compute a quadratic form q
Q̂
on P such that there exist universal

constants c > 0 and C ≥ 1 so that {q
Q̂

≤ c} ⊂ σ(Q̂) ⊂ {q
Q̂

≤ C}. (See the

algorithm Approximate new trace norm in Section 1.4.6.)

Processing the quadratic form qQ̂ using the algorithm Fit Basis to Convex

Body (see Section 4.5 of [1]), we compute a piecewise-monomial function η
(Q̂,A ′)
∗ (·)

for each A ′ ≤ A. We guarantee that σ(Q̂) has an (A ′, x
Q̂
, η1/2, δ)-basis for all

η > C · η(Q̂,A ′)
∗ (δ), but that σ(Q̂) does not have an (A ′, x

Q̂
, η1/2, δ)-basis for any

η < c · η(Q̂,A ′)
∗ (δ).

We define

η(Q̂,A)(δ) = η(δ) = min
A ′≤A

η
(Q̂,A ′)
∗ (δ) for δ ∈ (0,∞).

It follows that σ(Q̂) has an (A ′, x
Q̂
, η1/2, δ)-basis for some A ′ ≤ A whenever

η > C ·η(δ), but that σ(Q̂) does not have an (A ′, x
Q̂
, η1/2, δ)-basis for any A ′ ≤ A

whenever η < c · η(δ). Thus we have proven (A1) and (A2).

Recall that c·η(Q̂,A ′)(δ1) ≤ η(Q̂,A ′)(δ2) ≤ C·η(Q̂,A ′)(δ1) for
1
10
δ1 ≤ δ2 ≤ 10δ1.

Taking the minimum with respect to A ′ ≤ A in this inequality, we prove (A3).

Recall that η
(Q̂,A ′)
∗ (δ) = a	,A ′δλ�,A′ for δ ∈ I	,A ′ , where the intervals I	,A ′

(� = 1, . . . , �max(A ′)) form a partition of (0,∞), for each A ′ ≤ A. Here, �max(A ′)
is bounded by a universal constant.

Thus we can partition (0,∞) into intervals I	 (� = 1, . . . , �max), for which there
exist real numbers a	, λ	 such that η(δ) = a	δ

λ� for δ ∈ I	. Moreover, �max is
at most some universal constant. This follows because, for fixed real numbers
a, b, λ, γ, the equation aδλ = bδγ is satisfied either for at most one δ or for all
δ ∈ (0,∞). To compute the intervals I	 and the numbers a	, λ	 we solve at most C
equations of the above type, and we make at most C comparisons between the

functions η(Q̂,A ′)(δ) (A ′ ≤ A) to compute the minimum value on each of the
relevant intervals. This completes the explanation of our algorithm. �
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1.6. Computing lengthscales

We say that a dyadic cube Q ⊂ Rn is geometrically interesting provided that
diam(3Q ∩ E) ≥ λδQ, where we set λ := 1/40.

Algorithm: Compute interesting cubes

We produce a tree T consisting of all the cubes Q ∈ CZ(A−) that contain points

of E, together with all testing cubes Q̂ for which diam(3Q̂ ∩ E) ≥ λδ
Q̂
; as well as

the unit cube Q◦.
Here, T is a tree with respect to inclusion. We mark each internal node Q ∈ T

with pointers to its children, and we mark each node Q ∈ T (except for the root)
with a pointer to its parent.

The number of nodes in T is at most CN, and T can be computed with work
at most CN logN in space CN.

We note that all the nodes of T are testing cubes. (This is immediate from the
definition of testing cubes - see Definition 2.)

Explanation. We perform the one-time work of the BBD Tree (see Theorem 35
in [1]). Also, we compute representatives arising in the well-separated pairs de-
composition using the algorithmMake WSPD (see Section 4.2 of [1]). This allows
us to compute a sequence of tuples (x ′

ν, x
′′
ν) ∈ E × E (ν = 1, . . . , νmax) such that,

for each (x ′, x ′′) ∈ E× E \ {(x, x) : x ∈ E} there exists ν such that

|x ′
ν − x ′|+ |x ′′

ν − x ′′| ≤ 10−10|x ′ − x ′′|,

and νmax ≤ CN.
We execute the following loop:

• For each ν = 1, . . . , νmax, we compute the sequence of all dyadic cubes Q̃

such that x ′
ν, x

′′
ν ∈ 5Q̃ and |x ′

ν − x ′′
ν| ≥ λ

2
δ
Q̃
. (There are at most C such

cubes for each ν.)

We denote the sequence of all cubes produced above, for all ν, by Q1, . . . , QK. We
remove duplicates by sorting, which requires work at most CN logN. Note that
we have K ≤ CN.

Let Q be a geometrically interesting cube. By definition, there exist x ′, x ′′ ∈
3Q ∩ E with |x ′ − x ′′| ≥ λδQ. Hence, there is some ν such that

|x ′
ν − x ′′

ν | ≥
9

10
|x ′ − x ′′| ≥ (λ/2)δQ

and

|x ′
ν − x ′| + |x ′′

ν − x ′′| ≤ 1

10
|x ′ − x ′′| ≤ δ3Q

10
.

Therefore, x ′
ν, x

′′
ν ∈ 5Q, and hence Q belongs to the list Q1, . . . , QK.

We have proven that all geometrically interesting cubes belong to the list
Q1, . . . , QK.

For each k = 1, . . . , K, we compute diam(3Qk ∩ E) using the BBD Tree. (See
Remark 36 in [1].) If diam(3Qk ∩ E) < λδQk

, then we remove Qk from our list.
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We also compute the cube in CZ(A−) that contains the center of Qk. If this cube
strictly contains Qk then we remove Qk from our list. (This means that Qk is not
a testing cube.)

We denote the sequence of surviving cubes by Q̃1, . . . , Q̃K̃
. As shown above,

these are all the testing cubes that are geometrically interesting.
We form a list of all the cubes Q ∈ CZ(A−) that contain points of E, the

cubes Q̃1, . . . , Q̃K̃
, and the unit cube Q◦. There are at most CN such cubes. By

sorting, we can remove duplicates. We organize this list into a tree T using the
algorithmMake Forest (see Section 4.1.5 of [1]). We obtain a tree (rather than a
forest) because all the cubes have a common ancestor, namely Q◦. This algorithm
marks Q◦ as the root of T , and marks each non-root node with a pointer to its
parent. In addition, we mark each internal node of T with pointers to its children.

One can easily check that the work and storage of our algorithm are as promised.
�

Lemma 13. Let Q ⊂ Q◦ be dyadic, with δQ ≤ 1/4. Suppose that 3Q∩ E �= ∅ and
diam(3Q++ ∩ E) < λδQ++.

Then 3Q++∩E = 3Q+∩E. Here, Q++ denotes the dyadic parent of the dyadic
parent of Q.

Proof. For the sake of contradiction, suppose that there exists x ∈ E with x ∈ 3Q++

and x /∈ 3Q+. Thus, for each y ∈ E ∩ 3Q we have

diam(3Q++ ∩ E) ≥ |x − y| ≥ dist(Rn \ 3Q+, 3Q) ≥ δQ

10
=

δQ++

40
= λδQ++ .

This yields a contradiction, completing the proof of the lemma. �

Lemma 14. Let Q1 ⊂ Q2 be dyadic cubes such that Q2 is the parent of Q1 in the
tree T . Let a > 0 be given. Let Qup

1 and Qdown
2 be dyadic cubes.

Assume that Q1 � Q
up
1 � Qdown

2 � Q2 with δQ2
≥ ΛδQdown

2
≥ Λ2δQup

1
≥

Λ3δQ1
for some Λ ≥ 2.

If Λ exceeds a large enough constant determined by a and n, then (1+a)Qup
1 ∩

E = 3Qdown
2 ∩ E.

Proof. If Λ ≥ 4, then since Q1 ⊂ Qdown
2 and δQ1

≤ 1
Λ2 δQdown

2
, we have Q+++

1

⊂ Qdown
2 .
Fix a sequence of dyadic cubes Q1,1 ⊂ Q1,2 ⊂ · · · ⊂ Q1,K with

Q1,1 = (Q1)
+++, Q1,K = Qdown

2 , and Q1,k = (Q1,k−1)
+ for 2 ≤ k ≤ K.

Since Q1 is a testing cube (recall that all the nodes of T are testing cubes), it
follows by definition that Q1 contains a cube in CZ(A−). Thus, thanks to (1.6),
the set 9Q1 ∩ E is nonempty. We have 3Q1,k ⊃ 3Q1,1 = 3Q+++

1 ⊃ 9Q1 for any
1 ≤ k ≤ K. Hence, 3Q1,k ∩ E �= ∅ for any 1 ≤ k ≤ K. Moreover, note that Q1 �

Q1,k � Q2, because Q+++
1 and Qdown

2 are strictly contained between Q1 and Q2.
Since Q2 is the parent of Q1 in the tree T , which contains all the geometrically
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interesting testing cubes, we learn that Q1,k is not geometrically interesting, for
each 1 ≤ k ≤ K. In particular, we see that Q++

1,k = Q1,k+2 is not geometrically
interesting, hence diam(Q++

1,k ∩ E) < λδQ++
1,k

, for all 1 ≤ k ≤ K − 2. Thus, the
hypotheses of Lemma 13 are satisfied by Q = Q1,k for each 1 ≤ k ≤ K − 2. We
conclude that

3Q1,2 ∩ E = 3Q1,3 ∩ E = · · · = 3Q1,K ∩ E.

That is, 3Q++++
1 ∩ E = 3Qdown

2 ∩ E.
Recall that Q1 ⊂ Q

up
1 are dyadic cubes with δQup

1
≥ ΛδQ1

. It follows that

3Q++++
1 ⊂ (1 + a)Qup

1 if Λ is much larger than a−1. Therefore, 3Qdown
2 ∩ E ⊂

(1 + a)Qup
1 ∩ E. Moreover, the reverse inclusion follows because Q

up
1 ⊂ Qdown

2 .
Therefore, 3Qdown

2 ∩ E = (1 + a)Qup
1 ∩ E. �

1.6.1. Finding enough tagged cubes. We produce the following algorithm.

Algorithm: Compute critical testing cubes

Given ε > 0 less than a small enough universal constant, we produce a collec-
tion Q̂ε of testing cubes with the following properties.

(a) Each point x ∈ E belongs to some cube Q̂x ∈ Q̂ε.

(b) The number of cubes belonging to Q̂ε is bounded by C ·N.

(c) If Q̂ ∈ Q̂ε strictly contains a cube in CZ(A−), then (1 + a(A))Q̂ is tagged
with (A, εκ).

(d) If Q̂ ∈ Q̂ε and δ
Q̂

≤ c∗, then no cube containing SQ̂ is tagged with (A, ε1/κ).

Here, c∗ > 0 and S ≥ 1 are integer powers of 2, depending only on m, n, p; also,
κ ∈ (0, 1) is a universal constant. The algorithm requires work at most CN logN
in space CN.

Explanation. We introduce a large parameter Λ = 2integer ≥ 1. We later pick Λ to
be a constant determined by m, n, and p, but not yet. We assume that Λ exceeds
a large enough constant determined by m, n, and p, and that ε is less than a small
enough constant determined by Λ, m, n, and p.

We let κ0, . . . , κ20 ∈ (0, 1) be constants to be determined later. We assume
that κ0 is less than a small enough constant determined by m, n, and p, and that
κj+1 ≤ κ100j for j = 0, . . . , 19.

We first describe the construction of Q̂ε.
Let T be the tree constructed in the algorithm Compute interesting cubes.
We initialize Q̂ε to be the empty collection. Next, for each cube Q1 ∈ T other

than the root, we perform Steps 0-3 below.

• Step 0: We find the parent Q2 of Q1 in the tree T .

• Step 1: If δQ1
≤ Λ−20δQ2

, then we do the following.
Let Qup

1 be the dyadic cube with Q1 ⊂ Q
up
1 and δQup

1
= Λ · δQ1

. We compute

the function η(Q̂up
1

,A)(δ) using the algorithm Optimize basis (see Section 1.5).
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We determine whether or not there exists a number δ ∈ [Λ10δQ1
, Λ−10δQ2

] with
the property that

ε1/κ5 ≤ η(Qup
1

,A)(δ) ≤ εκ5 .

If such a δ exists, we can easily find one. Moreover, we can then find a dyadic
cube Q such that

Q1 ⊂ Q ⊂ Q2, δ/2 ≤ δQ ≤ 2δ and Λ10δQ1
≤ δQ ≤ Λ−10δQ2

.

We add Q to the collection Q̂ε. Note that cη(Qup
1

,A)(δ) ≤ η(Qup
1

,A)(δQ) ≤
Cη(Qup

1
,A)(δ), thanks to condition (A3) in the algorithm Optimize basis. Thus,

we can guarantee that

(1.159)
[
ε1/κ6 ≤ η(Qup

1
,A)(δQ)

]
and

[
η(Qup

1
,A)(δQ) ≤ εκ6

]
.

• Step 2: We examine each dyadic cube Q with Q1 ⊂ Q ⊂ Q2, δQ ≤ Λ−10, and[
δQ ≤ Λ10δQ1

or δQ ≥ Λ−10δQ2

]
.

We compute #(E ∩ 65
64
Q). This requires work at most C logN using the BBD

Tree. See Remark 36 in [1].
Let Qup be the dyadic cube with Q ⊂ Qup and δQup = ΛδQ. We determine

whether or not

(1.160)
[
ε1/κ5 ≤ η(Qup,A)(δQup)

]
and

[
#
(65
64

Q ∩ E
)
≤ 1 or η(Q,A)(δQ) ≤ εκ5

]
.

We add Q to the collection Q̂ε if and only if (1.160) holds.

• Step 3: We examine each dyadic cube Q with Q1 ⊂ Q ⊂ Q2 and δQ ≥ Λ−10.
We compute #(E ∩ 65

64
Q). This requires work at most C logN using the BBD

Tree.
For each such Q, we determine whether or not

(1.161)
[
#
(65
64

Q ∩ E
)
≤ 1 or η(Q,A)(δQ) ≤ εκ5

]
.

We add Q to the collection Q̂ε if and only if (1.161) holds.

Finally, we perform Steps 4-6 below.

• Step 4: We check whether or not

(1.162)
[
η(Q◦,A)(δQ◦) ≤ εκ5

]
.

We add Q◦ to the collection Q̂ε if and only if (1.162) holds.

• Step 5: We examine all dyadic cubes Q ⊂ Q◦ such that δQ ≥ Λ−10.
We can test whether Q ∈ CZ(A−) by querying the CZ(A−)-oracle on the

center of Q. We add Q to the collection Q̂ε if and only if Q ∈ CZ(A−).

• Step 6: We examine all cubes Q ∈ CZ(A−) such that δQ ≤ Λ−10 and Q∩E �= ∅.
Let Qup be the dyadic cube with Q ⊂ Qup and δQup = ΛδQ. We determine

whether or not

(1.163)
[
ε1/κ5 ≤ η(Qup,A)(δQup)

]
.

We add Q to the collection Q̂ε if and only if (1.163) holds.



Fitting a Sobolev function to data II 719

This completes the construction of Q̂ε. We examined at most C(Λ)N cubes,
and performed work at most C logN on each cube. Hence, the computation re-
quired work at most C(Λ)N logN in space C(Λ)N. We later choose Λ to be a
constant depending only on m, n, and p. We have thus not exceeded the work and
storage guarantees of Compute critical testing cubes. Moreover, we have
#(Q̂ε) ≤ C(Λ) ·N, which implies condition (b).

If Q belongs to Qε, then Q was chosen in one of the six steps above (not
including Step 0). We will examine the six cases separately and prove conditions (c)
and (d) for the cube Q.

Analysis of Step 1. Suppose that Q was chosen in Step 1. Then Q satis-
fies (1.159).

We use properties (A1) and (A2) of the function η(Qup
1

,A) from the algorithm
Optimize basis.

From (A2) and (1.159), we find that, for any A ′ ≤ A, σ(Qup
1 ) does not have

an (A ′, xQup
1
, ε1/κ7 , δQ)-basis.

Since Q1 ⊂ Q are testing cubes, and δQ ≥ Λ10δQ1
, we have #(3Q ∩ E) ≥

#(9Q1 ∩ E) ≥ 2.
Also note that (1+ a(A))Qup

1 ∩ E = 3Q ∩ E if Λ is greater than some constant
determined by m, n, p; see Lemma 14.

Hence, Proposition 12 implies that no cube containing 3Q is tagged with
(A, ε1/κ8). This proves property (d).

To prove property (c), note that (A1) and (1.159) imply that

σ(Qup
1 ) has an (A ′, xQup

1
, εκ7 , δQ)-basis for some A ′ ≤ A.

Thus, Proposition 12 shows that (1 + a(A))Q is tagged with (A, εκ8).

Analysis of Step 2. Suppose that Q was chosen in Step 2, and let Qup be as in
Step 2. Then Q and Qup satisfy (1.160).

We use properties (A1) and (A2) of the functions η(Q,A) and η(Qup,A) from
the algorithm Optimize basis.

Since Q ⊂ Qup are testing cubes, and δQup = ΛδQ, we have #(E ∩ 65
64
Qup) ≥

#(E ∩ 9Q) ≥ 2 for sufficiently large Λ.
From (A2) and (1.160), we find that, for any A ′ ≤ A, σ(Qup) does not have an

(A ′, xQup , ε1/κ6 , δQup)-basis. Thus, Proposition 8 implies that no cube containing
3Qup is tagged with (A, ε1/κ7). In particular, since 3Qup ⊂ 100ΛQ, we find that
no cube containing 100ΛQ is tagged with (A, ε1/κ7). This proves property (d).

From (A1) and (1.160), we find that either #(65
64
Q ∩ E) ≤ 1 or σ(Q) has

an (A ′, xQ, εκ6 , δQ)-basis for some A ′ ≤ A. Thus, Proposition 8 implies that
(1+ a(A))Q is tagged with (A, εκ7). This proves property (c).

Analysis of Step 3. Note that (d) holds vacuously for all the cubes Q ∈ Q̂ε

chosen in Step 3, assuming that c∗ ≤ Λ−10.
As in the analysis of Step 2, (1.161) implies that (1 + a(A))Q is tagged with

(A, εκ7). This implies property (c) for any Q picked in Step 3.

Analysis of Step 4. Suppose that Q◦ was chosen in Step 4. Note that (d) holds
vacuously for Q◦.
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As in the analysis of Step 2, (1.162) shows that (1 + a(A))Q◦ is tagged with
(A, εκ7). This implies property (c) for Q◦.
Analysis of Step 5. We may assume that c∗ ≤ Λ−10. Therefore, (c) and (d) are

vacuously true for all the cubes Q ∈ Q̂ε chosen in Step 5.

Analysis of Step 6. Suppose that Q was chosen in Step 6. Note that (c) holds
vacuously for Q, since Q ∈ CZ(A−).

Since δQup = ΛδQ, and since Q ⊂ Qup are testing cubes, we have #(E ∩
65
64
Qup) ≥ #(E ∩ 9Q) ≥ 2.

By (1.163) and property (A2) of the function η(Qup,A) stated in Optimize
basis, we find that σ(Qup) does not have an (A ′, xQup , ε1/κ6 , δQup)-basis for any
A ′ ≤ A. Then Proposition 8 guarantees that no cube containing 3Qup is tagged
with (A, ε1/κ7). Therefore, since 3Qup ⊂ 100ΛQ, we find that no cube containing
100ΛQ is tagged with (A, ε1/κ7). This implies property (d) for Q, and concludes
the analysis of Step 6.

This completes the proof of (c) and (d) in all cases. An inspection of our
argument shows that we may take c∗ = Λ−10 and S = 128Λ.

Next we prove property (a).
Let x ∈ E be given. Consider the finite sequence of cubes Qν ∈ T such that

(1.164) x ∈ Q0 � Q1 � · · · � Qνmax = Q◦,

where Q0 ∈ CZ(A−) and Qν+1 is the parent of Qν in T . (We do not attempt to
compute this sequence.)

We will show that there exists Q ′ ∈ Q̂ε with Q0 ⊂ Q ′ ⊂ Qνmax . This will
complete the proof of (a).

Note that one of the following cases must occur.

(A) The first extreme case. For all dyadic cubes Q such that Q0 ⊂ Q ⊂ Qνmax ,
the cube 3Q is tagged with (A, ε).

(B) The second extreme case. For all dyadic cubes Q such that Q0 ⊂ Q ⊂ Qνmax ,
the cube 3Q is not tagged with (A, ε).

(C) The main case. For some dyadic cube Q such that Q0 ⊂ Q � Qνmax we find
that exactly one of 3Q, 3Q+ is tagged with (A, ε).

(A) In the first extreme case:

(1.165) 3Q◦ is tagged with (A, ε).

Notice that #(65
64
Q◦ ∩ E) = #(E) ≥ 2. From (1.165) and Proposition 8, we see

that σ(Q◦) has an (A ′, xQ◦ , εκ1 , δQ◦)-basis for some A ′ ≤ A. Then property (A2)
from Optimize basis shows that η(Q◦,A)(δQ◦) ≤ εκ5 . Therefore, we decided to

include Q◦ in Q̂ε in Step 4.
This completes the analysis in the first extreme case.

(B) In the second extreme case:

(1.166) 3Q0 is not tagged with (A, ε).

If δQ0
≥ Λ−10, then we decided to include Q0 in Q̂ε in Step 5.
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Otherwise, suppose that δQ0
< Λ−10.

Let Qup
0 be a dyadic cube with Q0 ⊂ Q

up
0 ⊂ Q◦ and δQup

0
= ΛδQ0

.

Note that 3Q0 ⊂ (1 + a(A))Qup
0 , if Λ is sufficiently large. Then (1.166) and

Lemma 28 from [1] imply that (1+a(A))Qup
0 is not tagged with (A, ε1/κ1). Hence,

Proposition 8 shows that

σ(Qup
0 ) does not have an (A ′, xQup

0
, ε1/κ2 , δQup

0
)-basis for any A ′ ≤ A.

Thus, property (A1) from Optimize basis shows that η(Qup
0

,A)(δQup
0
) ≥ ε1/κ5 .

Therefore, we decided to include Q0 in Q̂ε in Step 6. (Recall that x ∈ Q0, hence
E ∩Q0 �= ∅.)

This completes the analysis in the second extreme case.

(C) In the main case: Exactly one of 3Q, 3Q+ is tagged with (A, ε), thus

(1.167) 3Q is tagged with (A, εκ0) (see Lemma 28 from [1]),

and

(1.168) 3Q+ is not tagged with (A, ε1/κ0) (again, see Lemma 28 from [1]).

We now consider three subcases of the main case.

(C1) The geometrically interesting (“GI”) subcase: For some ν,

(1.169) Qν ⊂ Q ⊂ Qν+1,
[
δQ ≤ Λ10δQν

or δQ ≥ Λ−10δQν+1

]
, and δQ ≤ Λ−10.

(C2) The geometrically uninteresting (“GUI”) subcase: For some ν,

(1.170) Qν ⊂ Q ⊂ Qν+1 and Λ10δQν
≤ δQ ≤ Λ−10δQν+1

.

(C3) The near-maximal (“NM”) subcase:

(1.171) δQ ≥ Λ−10.

(C1) First consider the GI subcase.
From Proposition 8 and (1.167) we see that

#
(65
64

Q ∩ E
)
≤ 1 or σ(Q) has an (A ′, xQ, εκ1 , δQ)-basis for some A ′ ≤ A.

Thus, by property (A2) from Optimize basis,

(1.172) #
(65
64

Q ∩ E
)
≤ 1 or η(Q,A)(δQ) ≤ εκ5 .

Pick Qup (dyadic) such that Q ⊂ Qup ⊂ Q◦ and δQup = ΛδQ. (Recall that
δQ ≤ Λ−10.) Then 3Q+ ⊂ (1 + a(A))Qup, assuming that Λ is sufficiently large.
Thus, (1.168) shows that

(1+ a(A))Qup is not tagged with (A, ε1/κ1) (see Lemma 28 from [1]).
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Therefore, Proposition 8 gives that

σ(Qup) does not have an (A ′, xQup , ε1/κ2 , δQup)-basis for any A ′ ≤ A.

Hence, using property (A1) from Optimize basis,

(1.173) η(Qup,A)(δQup) ≥ ε1/κ5

From (1.172) and (1.173), we see that Q was included in Q̂ε in Step 2. This
completes the analysis in the GI subcase.

(C2) Next consider the GUI subcase.
Since Qν ⊂ Q are testing cubes, and δQ ≥ Λ10δQν

, we have #(E ∩ 3Q) ≥
#(E ∩ 9Qν) ≥ 2.

Let Qup
ν denote the dyadic cube with Qν ⊂ Q

up
ν and δQup

ν
= Λ · δQν

Note that (1 + a(A))Qup
ν ∩ E = 3Q ∩ E, as long as Λ ≥ C for a large enough

universal constant C (see Lemma 14).
From Proposition 12 and assumption (1.167) (from the Main Case), we see that

σ(Qup
ν ) has an (A ′, xQup

ν
, εκ1 , δQ)-basis, for some A ′ ≤ A.

Hence, condition (A2) in the algorithm Optimize basis implies that

(1.174) η(Qup
ν ,A)(δQ) ≤ εκ5 .

Let Qup be a dyadic cube with Q ⊂ Qup � Qν+1 and δQup = Λ · δQ. Such
a dyadic cube exists because we are assuming that δQ ≤ Λ−10δQν+1

. Then (1 +
a(A))Qup

ν ∩ E = 3Qup ∩ E thanks to Lemma 14.
For large enough Λ, we have 3Q+ ⊂ (1+ a(A))Qup. Thus, Lemma 28 from [1]

and (1.168) imply that (1 + a(A))Qup is not tagged with (A, ε1/κ1). We apply
conclusion (A) in Proposition 12 to the testing cubes Qup

ν ⊂ Qup in order to deduce
that

σ(Qup
ν ) does not have an (A ′, xQup

ν
, ε1/κ2 , δQup)-basis, for any A ′ ≤ A.

Thus, property (A1) from Optimize basis shows that η(Qup
ν ,A)(δQup) ≥ ε1/κ3 .

Moreover, property (A3) from Optimize basis implies that η(Qup
ν ,A)(δQup) ≤

C(Λ)η(Qup
ν ,A)(δQ), hence we have

(1.175) η(Qup
ν ,A)(δQ) ≥ ε1/κ5 .

We are assuming that δQ ∈ [Λ10δQν
, Λ−10δQν+1

] (from the GUI subcase).

Hence, from (1.174) and (1.175), we see that in Step 1 we included in Q̂ε a dyadic
cube Q ′ such that Qν ⊂ Q ′ ⊂ Qν+1. This completes the analysis in the GUI
subcase.

(C3) Finally, consider the NM subcase.
From Proposition 8 and (1.167) we have

#
(65
64

Q ∩ E
)
≤ 1 or σ(Q) has an (A ′, xQ, εκ1 , δQ)-basis for some A ′ ≤ A.
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Then property (A2) from Optimize basis implies that

(1.176) #
(65
64

Q ∩ E
)
≤ 1 or η(Q,A)(δQ) ≤ εκ5 .

Thus, we included Q in Q̂ε in Step 3. This completes the analysis in the NM
subcase.

Thus, in all the cases, we see that there exists Q ′ ∈ Q̂ε with Q0 ⊂ Q ′ ⊂ Qνmax ,
where Q0 is the unique cube in CZ(A−) containing the point x ∈ E . As mentioned
before, this completes the proof of (a).

We fix a large enough constant Λ = 2J ≥ 1, depending only on m, n, and p.
This completes the explanation of the algorithm Compute critical testing

cubes. �

1.6.2. Lengthscales. With the algorithm Compute critical testing cubes
from the previous section, we compute a collection Q̂ε consisting of dyadic sub-
cubes of Q◦. We proved that each point of E belongs to a cube in Q̂ε. Applying the
algorithm Placing a point inside target cuboids (see Section 4.1.5 of [1]),
we obtain the following algorithm.

Algorithm: Compute lengthscales

For each x ∈ E we compute a cube Qx ∈ Q̂ε containing x. This requires work
at most CN logN in space CN.

We write c∗ > 0 and S ≥ 1 for the universal constants from the algorithm
Compute critical testing cubes. The conclusion of this algorithm implies
the next result.

Proposition 13. For each x ∈ E, the following properties hold.

(LS1) Suppose that Qx strictly contains a cube of CZ(A−). Then (1 + a(A))Qx

is tagged with (A, εκ).

(LS2) Suppose that δQx
≤ c∗. Then no cube containing SQx is tagged with

(A, ε1/κ).

Here, κ > 0 is a small universal constant.

1.7. Passing from lengthscales to CZ decompositions

For each x ∈ E we compute the sidelength

(1.177) ΔA(x) := δQx
.

Here, we compute the cube Qx using the algorithm Compute Lengthscales.
Recall that x ∈ Qx for each x ∈ E. Since Qx ⊂ Q◦, we know that

(1.178) ΔA(x) ∈ (0, 1] for all x ∈ E.

Let Q ⊂ Q◦ be a testing cube. We say that Q is OK(A) provided that either
Q ∈ CZ(A−) or ΔA(x) ≥ KδQ for all x ∈ E ∩ 3Q, where we set K := 109/a(A).
Recall that we have defined the constant a(A) in equation (1.147). In particular,
since a(A) ≤ 1, we see that K ≥ 1.
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We define a Calderón–Zygmund decomposition CZ(A) of the unit cube Q◦ to
consist of the maximal dyadic subcubes Q ⊂ Q◦ that are OK(A).

We will prove properties (CZ1)–(CZ5) in the main technical results for A.
We refer the reader to Section 3 of [1] for the statements of (CZ1)–(CZ5), which
are a component of the main technical results.

First, however, we produce a CZ(A)-oracle as described in Section 3 of [1].
The decomposition CZ(A) coincides with the decomposition CZnew from Sec-
tion 4.6.3 in [1], where we use CZold = CZ(A−) and Δ(x) = ΔA(x)/K in the
notation therein. Note that Δ(x) ∈ (0, 1] for each x ∈ E, hence we have proven the
assumptions in Section 4.6.3 of [1]. The Glorified CZ-Oracle coincides with
the CZ(A)-oracle described in Section 3 of [1].

Proposition 14. The collection CZ(A) is a partition of Q◦ into pairwise disjoint
dyadic subcubes.

Proof. Each point x ∈ Q◦ belongs to some cube Q0 ∈ CZ(A−). Note that Q0 is
OK(A), and hence Q0 is contained in a maximal dyadic subcube Q ⊂ Q◦ that is
also OK(A). Thus, each point x ∈ Q◦ is contained in some cube Q ∈ CZ(A).

Any two distinct cubes Q,Q ′ ∈ CZ(A) are dyadic, hence either Q,Q ′ are
disjoint or one of Q,Q ′ contains the other. The latter case cannot occur, by
definition of CZ(A). It follows that the cubes in CZ(A) are pairwise disjoint. �

Our previous decomposition CZ(A−) clearly refines CZ(A). This establishes
property (CZ5) for A. We now prove the remaining properties (CZ1)–(CZ4).

We prove property (CZ1) in the next result.

Proposition 15. The cubes in CZ(A) have good geometry.

Proof. For the sake of contradiction suppose that there are cubes Q,Q ′ ∈ CZ(A)
such that Q ↔ Q ′ and δQ ≤ 1

4
δQ ′ . It follows that 3Q+ ⊂ 3Q ′.

First, suppose Q ′ ∈ CZ(A−). Since CZ(A−) refines CZ(A), there exists a cube
Q ′′ ∈ CZ(A−) with Q ′′ ⊂ Q and Q ′′ ↔ Q ′. Note that δQ ′′ ≤ δQ ≤ 1

4
δQ ′ . But

this contradicts our assumption that the cubes in CZ(A−) satisfy good geometry.
Next, suppose Q ′ /∈ CZ(A−). By definition of CZ(A) we know that Q+ is not

OK(A), hence there exists x ∈ E ∩ 3Q+ with ΔA(x) < KδQ+ . Thus, x ∈ E ∩ 3Q ′

and ΔA(x) < KδQ ′ . Since also Q ′ /∈ CZ(A−) we see that Q ′ is not OK(A). But
this contradicts our assumption that Q ′ ∈ CZ(A). �

Proposition 16. There exists a universal constant c∗ > 0 such that, for any
Q ∈ CZ(A), the following conditions hold.

(a) If Q is not c∗-simple then 3Q is tagged with (A, εκ).

(b) If δQ ≤ c∗ then WQ is not tagged with (A, ε1/κ).

Here, κ > 0 and W ∈ N are universal constants.

Proof. We choose c∗ much smaller than the constant c∗ from Proposition 13.
We now prove (a). Assume that Q ∈ CZ(A) is not c∗-simple. Then there exists

Q ∈ CZ(A−) with Q ⊂ 65
64
Q and δQ ≤ c∗δQ. For small enough c∗ this implies
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that 9Q ⊂ 3Q. Recall (1.6), which implies that 9Q∩E �= ∅, hence 3Q∩E �= ∅. We
fix x ∈ E ∩ 3Q.

We have δQx
= ΔA(x) ≥ KδQ with K = 109/a(A), because Q is OK(A) and

Q /∈ CZ(A−); see also (1.177).
For any y ∈ 3Q we have |y − x| ≤ 3δQ ≤ 3

K
δQx

, because x ∈ 3Q. Moreover,

|x− xQx
| ≤ 1

2
δQx

, because x ∈ Qx. (Recall that xQx
is the center of Qx.) Thus,

|y− xQx
| ≤

[1
2
+

3

K

]
δQx

≤ 1

2
[1+ a(A)] δQx

for any y ∈ 3Q.

(Here, we use that K = 109/a(A).) Hence,

(1.179) 3Q ⊂ (1+ a(A))Qx.

(Recall that we are working with the �∞ metric.)
We now prove that Qx strictly contains a cube of CZ(A−). Assume for the sake

of contradiction that Qx is contained in a cube in CZ(A−). (For a dyadic cube this
is the only alternative.) Since Qx is a testing cube, it follows that Qx belongs to
CZ(A−); see Section 1.4.3 where the definition of a testing cube is given. Thanks

to (CZ5), we know that CZ(A−) refines CZ(A). Hence, there exists Q̃ ∈ CZ(A−)

with Q̃ ⊂ Q. From (1.179) we have

Q̃ ⊂ 3Q ⊂ (1 + a(A))Qx ⊂ 65

64
Qx.

We know Q̃ and Qx are members of CZ(A−), which has good geometry, hence
we can apply Lemma 46 from [1] to learn that 1

2
δ
Q̃

≤ δQx
≤ 2δ

Q̃
. (The good

geometry of CZ(A−) ensures the hypotheses of Lemma 46 are valid with γ = 1/8.)
Hence, because the cubes in CZ(A−) are pairwise disjoint and dyadic, we must

have Qx = Q̃. Thus, we have

(1 + a(A))Qx � 3Q̃ ⊂ 3Q.

However, this contradicts (1.179). This completes the proof that Qx strictly con-
tains a cube of CZ(A−).

Hence, from (LS1) in Proposition 13 we deduce that (1 + a(A))Qx is tagged
with (A, εκ); hence, 3Q is tagged with (A, εκ

′
) for some universal constant κ ′,

thanks to Lemma 28 from [1] and (1.179). This completes the proof of (a).

We now prove (b). Let S be the universal constant in Proposition 13. Assume
that Q ∈ CZ(A) satisfies δQ ≤ c∗.

Since Q+ is not OK(A), there exists x ∈ E ∩ 3Q+ such that

δQx
= ΔA(x) ≤ KδQ+ .

Hence, because x ∈ Qx and x ∈ 3Q+, we have SQx ⊂ WQ for a large enough
integer constant W ≥ 1 depending only on K and S. Recall that K = 109/a(A) is a
universal constant. Hence, we can choose W to be a universal constant. Therefore,
δQx

≤ W
S
δQ ≤ W

S
c∗ ≤ c∗. Here, we assume that c∗ ≤ S

W
c∗.

From (LS2) in Proposition 13 it follows that WQ is not tagged with (A, ε1/κ).
This completes the proof of the proposition. �
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We have proven (CZ2) and (CZ3) in the main technical results for A, where
we set

(1.180)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c∗(A) = c∗/2,
S(A) = W,

ε1(A) = ε1/κ,

ε2(A) = εκ.

Here, κ and W are as in Proposition 16. Note that (CZ4) holds vacuously, since
we are assuming that A �= M. We have thus proven (CZ1)–(CZ5) for the label A.
We will later pick ε to be a small enough universal constant, at which point ε1(A)
and ε2(A) will be determined once and for all.

We let CZmain(A) denote the collection of all cubes Q ∈ CZ(A) that satisfy
65
64
Q∩E �= ∅. We note that the collection {65

64
Q : Q ∈ CZ(A)} has bounded overlap,

thanks to the good geometry of the cubes in CZ(A) (see Lemma 15). Hence,

(1.181) # (CZmain(A)) ≤ C ·N.

1.8. Completing the induction

In the previous section, we defined a decomposition CZ(A) and gave a CZ(A)-
oracle. Here, we construct the remaining objects in the main results for A.

We first compute a list of all the cubes Q in CZmain(A). We just list all the
cubes Q ∈ CZ(A) for which E ∩ 65

64
Q �= ∅. This requires the algorithm Find

main-cubes from Section 4.6.4 of [1].

We now show that for each Q̂ ∈ CZmain(A) we can efficiently collect all the in-
gredients we need to compute the assists, functionals, and local extension operator
relevant to Q̂,A.

Recall the notion of supporting data associated to a testing cube; see Sec-
tion 1.4.5.

Algorithm: Produce all supporting data

We produce the supporting data for each cube Q̂ in CZmain(A), using work at
most CN logN in space CN.

Explanation. We produce the cubes Q,Qsp, Q
# and the pairs of cubes (Q ′, Q ′′)

that arise in (SD1)–(SD5) in Section 1.4.5 for some testing cube Q̂ ∈ CZmain(A).
For each Q ∈ CZmain(A−), we apply the CZ(A)-oracle to find the cube

Q̂ ∈ CZ(A) that contains Q, as well as all the cubes Q̂ ′ ∈ CZ(A) such that

Q̂ ′ ↔ Q̂. For each such Q̂ (or Q̂ ′), we check whether Q̂ (or Q̂ ′) appears in the

list CZmain(A); if it does, then we check whether Q ⊂ (1+ tG)Q̂ (or (1+ tG)Q̂
′).

If so, then we add the cube Q to the list of cubes in (SD1) relevant to the testing

cube Q̂ (or Q̂ ′).
Similarly, for each pair (Q ′, Q ′′) ∈ CZ(A−)×CZ(A−) such that Q ′ ↔ Q ′′ but

K(Q ′) �= K(Q ′′) (the “border disputes”), we look for all possible Q̂ ∈ CZmain(A)
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such that (Q ′, Q ′′) arises in (SD2) for the testing cube Q̂. That is, we look for all

the Q̂ ∈ CZmain(A) such that Q ′ ⊂ (1+ tG)Q̂ and δQ ′ < tGδQ̂.

To find all the Q̂ as above, we need only search among the cubes Q̂ ′ = the cube
of CZ(A) containing Q ′, and the cubes of CZ(A) that touch Q̂ ′. We obtain all
those cubes by making at most C calls to the CZ(A)-oracle and doing additional
work at most C.

We check each Q̂ obtained as above to see whether Q̂ ∈ CZmain(A), and if so

whether also Q̂ has the desired relationship with Q ′. For each surviving Q̂, we
add (Q ′, Q ′′) to the list of cubes in (SD2) relevant to that Q̂.

To find all the Q ∈ CZ(A−) that arise in (SD3), we loop over all the Q̂ ∈
CZmain(A). For each fixed Q̂, we examine all the dyadic cubes Q ⊂ (1 + tG)Q̂
such that δQ ≥ t2GδQ̂. (There are only C such Q.) We test Q to see whether it

belongs to CZ(A−); if so, then we add Q to the list of cubes in (SD3) relevant

to Q̂.
For the supporting data in (SD4), we can loop over all Q̂ ∈ CZmain(A). For

each such Q̂, we can just take Qsp to be the CZ(A−)-cube containing the center

of Q̂.
Finally, we loop over all keystone cubes Q# of CZ(A−). For each such Q#, we

look for all the Q̂ ∈ CZmain(A) such that S1Q
# ⊂ (65/64)Q̂.

To find all the Q̂ as above, we need only search among the cubes Q̂ ′ = the cube
of CZ(A) containing Q#, and the cubes of CZ(A) that touch Q̂ ′. We obtain all
those cubes by making at most C calls to the CZ(A)-oracle and doing additional
work at most C.

We check each Q̂ obtained as above to see whether Q̂ ∈ CZmain(A), and if

so whether also Q̂ has the desired relationship with Q#. If those conditions are
satisfied, then we add Q# to the list of cubes in (SD5) relevant to Q̂.

Once we have carried out the above, then for each Q̂ ∈ CZmain(A), we have a
list of all the cubes Q,Qsp, Q

# and of all the pairs of cubes (Q ′, Q ′′) relevant to
the supporting data (SD1)–(SD5) for the given Q̂. Again, see Section 1.4.5.

This uses work O(N logN) in space O(N). This completes our explanation of
the algorithm Produce all supporting data. �

Next, we define

Ω(Q̂,A) ⊂
[
X(65

64
Q̂ ∩ E)

]∗
and Ξ(Q̂,A) ⊂

[
X(65

64
Q̂ ∩ E)⊕ P

]∗
,

and also a linear extension operator T
(Q̂,A)

: X(65
64
Q̂ ∩ E) ⊕ P → X for each

Q̂ ∈ CZmain(A). We will prove that these objects satisfy the properties laid out
in the third, fourth and fifth bullet points in the main technical results for A (see
Section 3 in [1]).

For each Q̂ ∈ CZmain(A), we can define

M
Q̂
(f, P) =

( ∑
ξ∈Ξ(Q̂,A)

|ξ(f, P)|p
)1/p

.



728 C. Fefferman, A. Israel and G.K. Luli

We need to prove the estimates in the fourth bullet point in the main technical
results for A. These estimates are

c‖(f, P)‖(1+a(A))Q̂
≤ M

Q̂
(f, P) and(1.182)

M
Q̂
(f, P) ≤ C‖(f, P)‖ 65

64
Q̂
.(1.183)

Recall that a testing cube Q̂ is called λ-simple if for every Q ∈ CZ(A−) with

Q ⊂ 65
64
Q̂ we have δQ ≥ λ · δ

Q̂
. We can determine whether a given cube Q̂ is

λ-simple using work at most C(λ), and at most C(λ) calls to the CZ(A−)-oracle.
Here, C(λ) is a constant depending only on λ and n.

Let c∗ be the universal constant in Proposition 16.
We loop over all the cubes Q̂ ∈ CZmain(A). We can determine in time O(logN)

whether Q̂ is c∗-simple. (Recall that a call to the CZ(A−)-oracle requires work
O(logN).) The body of our loop separates into two cases depending on the result
of the test.

1.8.1. Case I: Non-simple cubes. We suppose Q̂ ∈ CZmain(A) is not c∗-simple
(the non-simple case). We will explain how to construct the objects in the main

technical results for A relevant to Q̂.
We have already computed the supporting data for all the cubes in CZmain(A).

By executing the algorithms Compute new assists and Compute new as-
sisted functionals (see Section 1.4.5), we can compute

(a) A list of assist functionals : Ω(Q̂) ⊂ [
X
(
E ∩ (65/64)Q̂

)]∗
(see (1.79)), and

(b) A list of assisted functionals : Ξ(Q̂) ⊂ [
X
(
E ∩ (65/64)Q̂

)⊕ P]∗
.

Each functional ξ ∈ Ξ(Q̂) has Ω(Q̂)-assisted bounded depth, and is written in

short form in terms of the assists Ω(Q̂).

We define Ω(Q̂,A) := Ω(Q̂), Ξ(Q̂,A) := Ξ(Q̂), and

M
Q̂
(f, P) =

( ∑
ξ∈Ξ(Q̂)

|ξ(f, P)|p
)1/p

.

We now prove the estimates (1.182) and (1.183).
The estimate (1.182) is a direct consequence of the unconditional inequality in

Proposition 7.
Since Q̂ ∈ CZmain(A) and Q̂ is not c∗-simple, we know that 3Q̂ is tagged

with (A, εκ) (see Proposition 16). We may assume that εκ ≤ ε0, with ε0 as in

Proposition 7. Thus, 3Q̂ is tagged with (A, ε0). Hence, the conditional inequality
in Proposition 7 implies the estimate (1.183).

Next, we estimate how much work and storage are used to compute the lists
Ω(Q̂,A) and Ξ(Q̂,A) for all the non-simple cubes Q̂ ∈ CZmain(A). We will prove
that the total work is at most CN logN and that the storage used is at most CN.

We examine the algorithms Compute new assists and Compute new as-
sisted functionals (see Section 1.4.5). We see that we can compute all the lists
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Ω(Q̂,A) and Ξ(Q̂,A) for all the non-simple cubes Q̂ ∈ CZmain(A), using total
work at most∑
Q̂∈CZmain(A)

{
W1(Q̂) +W2(Q̂)

}
� logN ·

∑
Q̂∈CZmain(A)

{
1+

∑
Q∈CZmain(A−)

Q⊂(1+tG)Q̂

[ ∑
ω∈Ω(Q,A−)

depth(ω) +#
(
Ξ(Q,A−)

)]

+
∑

keystone Q#∈CZ(A−)

S1Q
#⊂ 65

64
Q̂

∑
ω∈Ωnew(Q#)

depth(ω)

+#
{
(Q ′, Q ′′) ∈ BD(A−) : Q ′ ⊂ (1+ tG)Q̂, δQ ′ < tGδQ̂

}}
.

See (1.80), (1.82), and (1.83), for the definitions of the quantities W1(Q̂) and

W2(Q̂). Recall that tG is now a fixed universal constant, and so C(tG) in (1.83)
is a universal constant C.

Each cube Q in CZmain(A−), each keystone cube Q# ∈ CZ(A−), and each

pair (Q ′, Q ′′) ∈ BD(A−) participates above for at most C distinct Q̂ in CZ(A).

This follows because the collection {(65/64)Q̂ : Q̂ ∈ CZ(A)} has bounded overlap,
which follows from the good geometry of CZ(A). Thus, by reversing the order of
summation in the above expression, we see that the total work is bounded by

C logN

[
#
(
CZmain(A)

)
+

∑
Q∈CZmain(A−)

[ ∑
ω∈Ω(Q,A−)

depth(ω) +#
(
Ξ(Q,A−)

)]

+
∑

keystone Q#∈CZ(A−)

∑
ω∈Ωnew(Q#)

depth(ω) +#
(
BD(A−)

)]
.

According to the main technical results for A− and (1.181), the sum of terms
inside the curly brackets in the first line above is bounded by CN. According to
the algorithm Make new assists and assign keystone jets in Section 1.4.1,
the term on the second line above is bounded by CN. According to theKeystone-
oracle, the term on the last line above is bounded by CN. Hence, with work at
most CN logN, we can compute the lists Ω(Q̂) and Ξ(Q̂) for all the non-simple

cubes Q̂ ∈ CZmain(A).

Similarly, we see that the computation of the lists Ω(Q̂) and Ξ(Q̂) for all the

non-simple cubes Q̂ ∈ CZmain(A) requires space at most CN.
Next, we explain how to define a linear extension operator associated to a

non-simple Q̂ ∈ CZmain(A) as in the main technical results for A.

We define the map T
Q̂

: X(E ∩ 65
64
Q̂) ⊕ P → X as in Proposition 3, and set

T(Q̂,A) := T
Q̂
.

We perform the one-time work of the algorithmCompute new extension op-
erator (Section 1.4.5). We thus obtain a query algorithm for T

Q̂
. Given x ∈ Q◦,
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we can compute a short form description of the the Ω(Q̂)-assisted bounded depth
linear functional

(f, P) → ∂β
[
JxTQ̂(f, P)

]
(x) for every β ∈ M.

This computation requires work at most C logN per query point.
Proposition 3 states that T

Q̂
(f, P) = f on (1+ a(A))Q̂ ∩ E, and

‖T
Q̂
(f, P)‖

X((1+a(A))Q̂) + ‖T
Q̂
(f, P) − P‖

Lp((1+a(A))Q̂) ≤ C ·M
Q̂
(f, P)

for any (f, P) ∈ X(65
64
Q̂ ∩ E)⊕ P , where

M
Q̂
(f, P) =

( ∑
ξ∈Ξ(Q̂)

|ξ(f, P)|p
)1/p

.

This proves (E1) and (E2) in the main technical results for A.
We have thus treated all the non-simple cubes in CZmain(A).

1.8.2. Case II: Simple cubes. We suppose that Q̂ ∈ CZmain(A) is c∗-simple.
We will explain how to construct the objects in the main technical results for A
relevant to Q̂.

We have computed lists Ω(Q,A−) and Ξ(Q,A−) of linear functionals on X(E∩
(65/64)Q) and X(E ∩ (65/64)Q) ⊕ P , respectively, for each Q ∈ CZmain(A−). See
the main technical results for A−. Each functional in Ξ(Q,A−) has Ω(Q,A−)-
assisted bounded depth and is given in short form.

From (1.19) and (1.20), we know that

(1.184) M(Q,A−)(f, R) :=
( ∑

ξ∈Ξ(Q,A−)

|ξ(f, R)|p
)1/p

satisfies

(1.185) c · ‖(f, R)‖(1+a)Q ≤ M(Q,A−)(f, R) ≤ C · ‖(f, R)‖ 65
64

Q.

Here, a := a(A−) ∈ (0, 1/64] is a universal constant in the main technical results
for A−.

Recall that we have fixed a universal constant tG ∈ (0, 1/64] satisfying (1.90).
We define

Ω(Q̂,A) :=
⋃

Q∈CZmain(A−)

Q⊂(1+tG)Q̂

Ω(Q,A−). and Ξ(Q̂,A) :=
⋃

Q∈CZmain(A−)

Q⊂(1+tG)Q̂

Ξ(Q,A−).

Each Q ∈ CZmain(A−) participates in the above union for at most C distinct

Q̂ ∈ CZmain(A). This is a consequence of the bounded overlap of {65
64
Q̂ : Q̂ ∈
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CZmain(A)}, since tG ≤ 1/64. We can thus compute the lists Ω(Q̂,A) for all

c∗-simple cubes Q̂ ∈ CZmain(A), using work at most

C ·
∑

Q∈CZmain(A−)

∑
ω∈Ω(Q,A−)

depth(ω) ≤ CN,

and we can compute the lists Ξ(Q̂,A) for all c∗-simple cubes Q̂ ∈ CZmain(A), using
work at most

C ·
∑

Q∈CZmain(A−)

{
1+#

[
Ξ(Q,A−)

]} ≤ CN.

(The upper bound by CN on these sums is stated in the main technical results

for A−.) We do not attempt to remove duplicates from the lists Ω(Q̂,A) and

Ξ(Q̂,A), which are computed simply by copying.

When we copy the functionals in the list Ω(Q,A−), for Q ∈ CZmain(A−),

Q ⊂ (1 + tG)Q̂, into the list Ω(Q̂,A), we mark each functional in Ω(Q,A−)

(Q ∈ CZmain(A−), Q ⊂ (1 + tG)Q̂) with a pointer to its position in the list

Ω(Q̂,A). This requires total extra work at most CN.

Each functional ξ ∈ Ξ(Q̂,A) has Ω(Q,A−)-assisted bounded depth for some

Q ∈ CZmain(A−) with Q ⊂ (1 + tG)Q̂, hence ξ has Ω(Q̂,A)-assisted bounded

depth, because Ω(Q,A−) is a sublist of Ω(Q̂,A). We can compute a short form

of ξ in terms of the assists Ω(Q̂,A) by using the pointers from Ω(Q,A−) into

Ω(Q̂,A) (see Remark 4). This requires a constant amount of work per functional ξ.

We assume that this work was carried out when we formed the lists Ξ(Q̂,A).

We fix Q̂ ∈ CZmain(A) such that Q̂ is c∗-simple.

As in the main technical results for A, we define

(1.186)
[
M

(Q̂,A)
(f, P)

]p
=

∑
ξ∈Ξ(Q̂,A)

|ξ(f, P)|p =
∑

Q∈CZmain(A−)

Q⊂(1+tG)Q̂

[
M(Q,A−)(f, P)

]p
.

We next define an extension operator T(Q̂,A) : X(E ∩ (65/64)Q̂) ⊕ P → X. We

follow an argument in Section 1.4.5.

We define the covering cubes

Icov(Q̂) :=
{
Q ∈ CZ(A−) : Q ⊂ (1+ tG)Q̂

}
.

Thanks to our assumption (1.90), we can choose a universal constant anew =

anew(tG) satisfying the conclusion of Lemma 11. Hence, since Q̂ is a testing cube,
we obtain the following:

Covering property: The cube (1+anew)Q̂ is contained in the union of the cubes

(1+ a/2)Q over all Q ∈ CZ(A−) such that Q ⊂ (1+ tG)Q̂.

Recall that we have defined a(A) = anew in (1.147).
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We pick cutoff functions θQ̂Q ∈ Cm(Rn), for each Q ∈ Icov(Q̂), with

(1.187)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
Q∈Icov(Q̂)

θ
Q̂
Q = 1 on (1+ anew)Q̂,

supp(θQ̂Q) ⊂ (1+ a)Q and |∂αθ
Q̂
Q| ≤ C · δ−|α|

Q for |α| ≤ m, and

θ
Q̂
Q = 1 near xQ, and θ

Q̂
Q = 0 near xQ ′ for each Q ′ ∈ Icov(Q̂) \ {Q}.

For each Q ∈ Icov(Q̂) we define

(1.188) F
Q̂
Q :=

{
T(Q,A−)(f, P), if 65

64
Q ∩ E �= ∅

P, if 65
64
Q ∩ E = ∅.

We define a linear map T
(Q̂,A)

: X(E ∩ 65
64
Q̂)⊕ P → X by the formula

(1.189) T(Q̂,A)(f, P) :=
∑

Q∈Icov(Q̂)

F
Q̂
Q · θQ̂Q.

(Compare to (1.98).)

Here, the maps T(Q,A−) are as in the main technical results for A−; see Sec-
tion 3 in [1]. Each T(Q,A−) has Ω(Q,A−) assisted bounded depth, hence T(Q,A−)

has Ω(Q̂,A)-assisted bounded depth, since by definition Ω(Q,A−) is a sublist of

Ω(Q̂,A) for each Q ∈ Icov(Q̂).

Therefore, each T
(Q̂,A)

has Ω(Q̂,A)-assisted bounded depth. We also give

a query algorithm for T
(Q̂,A)

: Given x ∈ Q◦, we compute the map (f, P) →
JxT(Q̂,A)

(f, P) in short form in terms of the assists Ω(Q̂,A). We leave details

to the reader.

Proposition 17. Let (f, P) ∈ X(65
64
Q̂∩ E)⊕P. Set a = anew. Then the following

properties hold.

• T
(Q̂,A)

(f, P) = f on (1+ a)Q̂ ∩ E.

• ‖T
(Q̂,A)

(f, P)‖
X((1+a)Q̂)

+δ−m

Q̂
‖T

(Q̂,A)
(f, P)−P‖

Lp((1+a)Q̂)
≤ CM

(Q̂,A)
(f, P).

Proof. The proof is analogous to the proof of Proposition 3, except much easier.
We spell out the details.

The definition of the linear map in (1.189) is the same as that in (1.98), except

that the polynomials R
Q̂
Q used in the functions F

Q̂
Q in (1.95) are replaced by P

(compare (1.95) and (1.188)). Thus, to prove our proposition, we may follow

parts of the reasoning in the proof of Proposition 3, as long as we substitute R
Q̂
Q

everywhere with P.
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The functions FQ̂Q in (1.188) satisfy

(1.190)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F
Q̂
Q = f on (1 + a)Q ∩ E

‖FQ̂Q‖X((1+a)Q) + δ−m
Q ‖FQ̂Q − P‖Lp((1+a)Q)

≤
{

CM(Q,A−)(f, P), if 65
64
Q ∩ E �= ∅,

0, if 65
64
Q ∩ E = ∅.

This follows from the main technical results for A−.
Thus, the function T(Q̂,A)(f, P) defined in (1.189) satisfies the first bullet point

of Proposition 17. This is a consequence of the first and second conditions in (1.187),
and the first condition in (1.190).

We now prove the second bullet point of Proposition 17.
Let G = T(Q̂,A)(f, P).

The equation (1.101) holds in the present setting if we replace R
Q̂
Q with P,

for the same reason as before. (Here, we use the Covering property.) Moreover,

when we replace R
Q̂
Q with P, the term A2(f, P) vanishes. Thus, we have

‖G‖p
X((1+a)Q̂)

�
∑

Q∈Icov(Q̂)
65
64

Q∩E
=∅

[
M(Q,A−)(f, P)

]p
.

By definition, the right-hand side is equal to
[
M(Q̂,A)(f, P)

]p
(see (1.186)). Thus

we have proven
‖G‖

X((1+a)Q̂)
≤ C ·M

(Q̂,A)
(f, P).

It remains to show that ‖G − P‖
Lp((1+a)Q̂) ≤ C · M(Q̂,A)(f, P). We proceed

directly without referring to the previous arguments. Using (1.189) and the first
condition in (1.187), we have

G− P =
∑

Q∈Icov(Q̂)

θ
Q̂
Q · (FQ̂Q − P) on (1+ a)Q̂.

Recall that θ
Q̂
Q is supported on (1 + a)Q and |θQ̂Q| ≤ C (see (1.187)). Since Q̂ is

c∗-simple, at most C cubes Q contribute to the above sum, and δQ ≥ c∗δQ̂ for
each Q. Hence,

(δ
Q̂
)−m‖G− P‖p

Lp((1+a)Q̂)
≤ C

∑
Q∈Icov(Q̂)

(δQ)−m‖FQ̂Q − P‖p
Lp((1+a)Q)

.

Hence, using (1.190), we have

(δ
Q̂
)−m‖G− P‖p

Lp((1+a)Q̂)
≤ C

∑
Q∈Icov(Q̂)

[
M(Q,A−)(f, P)

]p
= C · [M

(Q̂,A)
(f, P)

]p
.

This completes the proof of the second bullet point in Proposition 17. �
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Lemma 15. We have

c‖(f, P)‖(1+anew)Q̂ ≤ M(Q̂,A)(f, P) ≤ C‖(f, P)‖ 65
64

Q̂
.

Proof. The inequality ‖(f, P)‖(1+anew)Q̂ ≤ CM(Q̂,A)(f, P) is an easy consequence

of Proposition 17 and the definition of the trace seminorm. Thus, the only task is
to prove the second inequality, M(Q̂,A)

(f, P) ≤ C‖(f, P)‖ 65
64

Q̂
.

First, the upper bound in (1.185) implies that

[
M

(Q̂,A)
(f, P)

]p ≤ C
∑

Q∈CZmain(A−)

Q⊂(1+tG)Q̂

‖(f, P)‖p65
64

Q
.

Since Q̂ is c∗-simple, each cube Q relevant to the above sum satisfies δQ ≥ c∗δQ̂.

Moreover, Lemma 11 implies that 65
64
Q ⊂ 65

64
Q̂ for each relevant Q; recall (1.90).

Hence, each term ‖(f, P)‖ 65
64

Q is bounded by C‖(f, P)‖ 65
64

Q̂
thanks to Lemma 14

in [1]. Moreover, the number of terms is at most a universal constant, hence

M
(Q̂,A)

(f, P) ≤ C‖(f, P)‖ 65
64

Q̂
.

This completes the proof of the lemma. �

We have produced lists Ω(Q̂,A) and Ξ(Q̂,A), and we have defined a linear
map T(Q̂,A)

that satisfy the conditions in the main technical results for A (see

Section 3 in [1]), for every Q̂ ∈ CZmain(A) that is c∗-simple. We have remarked
that one can easily produce a query algorithm for T

(Q̂,A)
. We have performed

these computations using work at most CN logN in space CN.
We have thus treated all the simple cubes in CZmain(A)

1.8.3. Closing remarks. All the previously defined objects satisfy the condi-
tions set down in Section 3 of [1] with many of the constants depending on ε, and

with ε2(A) = εκ, ε1(A) = ε1/κ. We have computed a list of assists Ω(Q̂,A), and

a list of assisted functionals Ξ(Q̂,A), and we have given a query algorithm for a

linear map T(Q̂,A)
for each Q̂ ∈ CZmain(A), using one-time work at most CN logN

in space CN. In particular, the bound on the required space implies that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
Q̂∈CZmain(A)

∑
ω∈Ω(Q̂,A)

depth(ω) ≤ CN, and

∑
Q̂∈CZmain(A)

#
[
Ξ(Q̂,A)

] ≤ CN.

We now fix ε to be a universal constant, small enough so that the previous
results hold. That completes the induction step, and thus we have achieved the
main technical results for A.
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2. Proofs of the main theorems

2.1. Extension in homogeneous Sobolev spaces

In this section we prove our main theorem concerning homogeneous Sobolev spaces
X = Lm,p(Rn) (p > n), which reads as follows.

Theorem 1. Let E ⊂ Rn satisfy N = #(E) ≥ 2.
We produce lists Ω and Ξ, consisting of functionals on X(E) = {f : E → R},

with the following properties.

• The sum of depth(ω) over all ω ∈ Ω is bounded by CN. The number of
functionals in Ξ is at most CN.

• Each functional ξ in Ξ has Ω-assisted depth at most C. The functionals in
Ω and Ξ are represented in their short form.

• For all f ∈ X(E) we have

c‖f‖X(E) ≤
[∑
ξ∈Ξ

|ξ(f)|p
]1/p

≤ C‖f‖X(E).

Moreover, there exists a linear map T : X(E) → X with the following properties.

• T has Ω-assisted depth at most C.

• Tf = f on E and ‖Tf‖X ≤ C‖f‖X(E) for all f ∈ X(E).

• We produce a query algorithm that operates as follows.

Given a point x ∈ Rn, we compute a short form description of the Ω-assisted
bounded depth linear map X(E) � f → Jx (Tf) ∈ P using work and storage at
most C logN.

The computations above require one-time work at most CN logN in space CN.

By translating and rescaling, we may assume without loss of generality that
E ⊂ 1

32
Q◦, with Q◦ = [0, 1)n.

We deduce Theorem 1 from the main technical results for A = ∅. Recall that
we have achieved the following (see Section 3 in [1]).

• There is a decomposition CZ of Q◦ into dyadic cubes. Every point x ∈ Q◦

belongs to a unique cube Qx ∈ CZ.

• We produce a CZ-oracle.

The CZ-oracle accepts a query point x ∈ Q◦. The response to a query x

is the list of all Q ∈ CZ such that 65
64
Q contains x. The work and storage

required to answer a query are at most C logN.

• If Q,Q ′ ∈ CZ and Q ↔ Q ′ then 1
2
δQ ≤ δQ ′ ≤ 2δQ.

• Each point x ∈ Rn is contained in at most C of the cubes 65
64
Q, Q ∈ CZ.

(This is an easy consequence of the previous bullet point.)
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• If Q ∈ CZ and δQ ≤ c∗ then SQ is not tagged with (∅, ε1).
Recall that any cube is tagged with (∅, ε1); see Remark 20 in [1]. Thus, we
learn that δQ > c∗ for each Q ∈ CZ. In particular, the cardinality of CZ is
bounded by some universal constant C.

• Next, we recall the various assists, functionals and local extension operators
described in the main technical results.

For each Q ∈ CZ with 65
64
Q ∩ E �= ∅, we compute a list of assists Ω(Q)

and assisted functionals Ξ(Q) ⊂ [
X(E ∩ 65

64
Q)⊕ P]∗

. Each ξ in Ξ(Q) has
Ω(Q)-assisted bounded depth. We have

(2.1)
∑

ξ∈Ξ(Q)

|ξ(f, P)|p ≤ C · ‖(f, P)‖p65
64

Q
.

We compute these lists of functionals using one-time work at most CN logN
in space CN.

We also define an Ω(Q)-assisted bounded depth linear map TQ : X(65
64
Q ∩

E)⊕ P → X such that

(2.2) TQ(f, P) = f on E ∩ (1+ a)Q

and
(2.3)

‖TQ(f, P)‖p
X((1+a)Q)

+ δ
−mp
Q ‖TQ(f, P) − P‖p

Lp((1+a)Q)
≤ C ·

∑
ξ∈Ξ(Q)

|ξ(f, P)|p.

Given a query x ∈ Q◦, we can compute the linear map (f, P) → JxTQ(f, P)
in short form in terms of the assists Ω(Q), using work at most C logN.

This completes the description of the objects from Section 3 in [1].

We list the cubes in CZ with the following procedure. For each x ∈ (c∗/10)Zn∩
Q◦, we use the CZ-oracle to list all the cubes Q in CZ such that x ∈ 65

64
Q. Each

Q ∈ CZ contains at least one point in (c∗/10)Zn ∩ Q◦ (because Q ⊂ Q◦ and
δQ > c∗), hence each Q ∈ CZ arises in an aforementioned list for some x. We
concatenate these lists and then sort the resulting list to remove duplicate cubes.

We now construct a suitable partition of unity adapted to the decomposi-
tion CZ. Let a := a(A) with A = ∅, as in Section 3 of [1]. Recall that

(2.4) 0 < a ≤ 1/64.

For each Q ∈ CZ, let θ̃Q ∈ Cm(Rn) be a function such that

1. 0 ≤ θ̃Q ≤ 1 on Rn,

2. θ̃Q ≥ 1/2 on Q,

3. θ̃Q = 0 outside (1+ a)Q,

4. |∂βθ̃Q(x)| ≤ C for x ∈ Rn, |β| ≤ m.
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Also, let η : [0,∞) → R be a Cm function such that

1. η(t) ≥ 1/4 for t ≥ 0,

2. η(t) = t for t ≥ 1/2,

3. |(d/dt)kη(t)| ≤ C for t ≥ 0, k ≤ m.

We can satisfy these conditions by choosing θ̃Q and η to be appropriate spline
functions. We assume that the following queries can be answered using work at
most C.

Algorithm: Compute auxiliary functions

Given Q ∈ CZ and x ∈ Rn, we can compute the jet Jx(θ̃Q). Given t∗ ≥ 0 and

an integer 0 ≤ k ≤ m, we can compute dkη
dtk

(t∗).
For each Q ∈ CZ we define

θQ(x) =
θ̃Q(x)

η ◦ Ψ(x) , where Ψ(x) =
∑

Q∈CZ

θ̃Q(x).

Clearly, we can answer the following query using work at most C.

Algorithm: Compute POU2.

Given Q ∈ CZ and x ∈ Rn, we compute the jet Jx(θQ).
By examination of the proof of Lemma 48 in [1], we can prove the following

properties.

1. θQ ∈ Cm(Rn) is well-defined, by property (1) of θ̃Q and property (1) of η.

2. θQ = 0 outside (1+ a)Q, by property (3) of θ̃Q.

3. |∂αθQ(x)| ≤ C for x ∈ Rn, |α| ≤ m, by property (4) of θ̃Q and properties
(1),(3) of η.

4.
∑

Q∈CZ

θQ = 1 on Q◦.

To prove property (4), recall that the cubes in CZ cover Q◦. Hence, properties (1)
and (2) above imply that Ψ(x) =

∑
Q∈CZ θ̃Q(x) ≥ 1/2 for x ∈ Q◦. Hence, prop-

erty (2) of η implies that η ◦ Ψ(x) = Ψ(x) for x ∈ Q◦, which implies that

∑
Q∈CZ

θQ(x) =

∑
Q∈CZ θ̃Q(x)

Ψ(x)
= 1 for x ∈ Q◦.

This completes the proof of property (4) of {θQ}Q∈CZ.

We let Ξ◦ ⊂ (X(E)⊕P)∗ be the union of the lists Ξ(Q) for all Q ∈ CZ such that
E ∩ 65

64
Q �= ∅. Similarly, we let Ω◦ be the union of the lists Ω(Q) for all Q ∈ CZ

such that E ∩ 65
64
Q �= ∅. Hence,∑

ξ◦∈Ξ◦
|ξ◦(f, P)|p =

∑
Q∈CZ

∑
ξ∈Ξ(Q)

|ξ(f, P)|p.
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The functionals in Ξ◦ have Ω◦-assisted bounded depth. We can express each
functional ξ in Ξ◦ in short form in terms of the assists Ω◦ by sorting. This requires
work at most C logN for each ξ ∈ Ξ◦. Because there are at most CN functionals
in Ξ◦, this requires work at most CN logN in total.

Given (f, P) ∈ X(E)⊕ P we define

(2.5) T◦(f, P) =
∑

Q∈CZ

θQ · FQ,

where FQ = TQ(f, P) whenever 65
64
Q ∩ E �= ∅, and FQ = P whenever 65

64
Q ∩ E = ∅.

Proposition 18. The following hold.

• The sum of depth(ω) over all ω ∈ Ω◦ is bounded by CN. The cardinality
of Ξ◦ is bounded by CN.

• Given x ∈ Q◦, we can compute a short form description of the Ω◦-assisted
bounded depth linear map

X(E)⊕ P � (f, P) → JxT
◦(f, P) ∈ P

using work and storage at most C logN.

• Given (f, P) ∈ X(E)⊕ P we have T◦(f, P) = f on E, and

‖T◦(f, P)‖p
X(Q◦) + ‖T◦(f, P) − P‖p

Lp(Q◦) ≤ C
∑
ξ∈Ξ◦

|ξ(f, P)|p.

• Given (f, P) ∈ X(E)⊕ P, we have∑
ξ∈Ξ◦

|ξ(f, P)|p ≤ C · ‖(f, P)‖p65
64

Q◦ .

Proof. From Section 3 in [1], recall that∑
Q∈CZ

65
64

Q∩E
=∅

∑
ω∈Ω(Q)

depth(ω) ≤ CN and
∑

Q∈CZ
65
64

Q∩E
=∅

#
[
Ξ(Q)

] ≤ CN.

This implies the conclusion of the first bullet point.
We fix a query point x ∈ Q◦. Then we have

(2.6) JxT
◦(f, P) =

∑
Q∈CZ

65
64

Q∩E
=∅

JxθQ �x JxTQ(f, P) +
∑

Q∈CZ
65
64

Q∩E=∅

JxθQ �x P.

Recall that we have computed a list of all the Q ∈ CZ, and that there are at
most C such cubes. We loop over all Q ∈ CZ, and perform the steps below.

• Step 1. For each α ∈ M we compute ∂α(JxθQ)(x) using Compute POU2.
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• Step 2. If 65
64
Q∩E �= ∅, then we compute the linear map (f, P) → JxTQ(f, P)

in short form in terms of the assists Ω(Q) (see the main technical results for
A = ∅). This means that for each α ∈ M we compute linear functionals λQ,α :

P → R and ηQ,α : X(E) → R, assists ω
Q,α
1 , . . . ,ω

Q,α
d ∈ Ω(Q), and numbers

γ
Q,α
1 , . . . , γ

Q,α
d ∈ R, such that

∂α(JxTQ(f, P))(0) = λQ,α(P) + ηQ,α(f) +

d∑
k=1

γ
Q,α
k ·ωQ,α

k (f).

We guarantee that depth(ηQ,α) + d is at most a universal constant C.
From the first bullet point in Proposition 18, we know that Ω◦ = ∪Q∈CZΩ(Q)

contains at most CN functionals. When we formed the list Ω◦ by concatenation,
we assume that we marked each functional in Ω(Q) with a pointer to its position
in the list Ω◦. This requires additional one-time work work at most CN. Thus,
the previous formula gives a short form representation of the functional (f, P) →
∂α(JxTQ(f, P))(0) in terms of the assistsΩ◦. Therefore, by Taylor’s theorem we can
compute a short form representation of the functional (f, P) → ∂α(JxTQ(f, P))(x)
in terms of the assists Ω◦.

From the definition of the product �x and the computation in Step 1, for each
α ∈ M we can compute a short form of the functional

(f, P) → ∂α(JxθQ �x JxTQ(f, P))(x)

in terms of the assists Ω◦.

• Step 3. If 65
64
Q ∩ E = ∅, then for each α ∈ M we compute a short form

of the functional (f, P) → ∂α(JxθQ �x P)(x). Here, we use Taylor’s theorem to
compute the change-of-coordinate map (∂αP(0))α∈M → (∂αP(x))α∈M. Thus, the
desired computation is a consequence of the definition of the product �x and the
result of Step 1. This concludes the loop over Q.

For α∈M, we compute a short form of the functional (f, P) → ∂α(JxT
◦(f, P))(x)

in terms of the assists Ω◦ by adding together the short form representations of the
functionals determined at the end of Step 2 and Step 3 (see the formula (2.6)).
Therefore, we can compute a short form of the functional (f, P) → ∂α(JxT

◦(f, P))(0)
in terms of the assists Ω◦. This is a consequence of Taylor’s theorem and the
previous computation. The reader may easily check that the above computation
requires work at most C logN per query x ∈ Q◦. This completes the proof of the
second bullet point in Proposition 18.

Fix x ∈ E. Then

(2.7) T◦(f, P)(x) =
∑

Q∈CZ
65
64

Q∩E
=∅

θQ(x) · TQ(f, P)(x) +
∑

Q∈CZ
65
64

Q∩E=∅

θQ(x) · P(x).

Recall that θQ is supported on the cube (1 + a)Q, which is contained in 65
64
Q.

(See (2.4).)
For the Q arising in the second sum in (2.7) we learn that θQ(x) = 0, since the

support of θQ does not intersect E.
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For the Q arising in the first sum in (2.7), if x ∈ (1 + a)Q then TQ(f, P)(x) =
f(x). Otherwise, if x /∈ (1 + a)Q then θQ(x) = 0, due to the support properties
of θQ.

Hence, T◦(f, P)(x) =
∑

Q∈CZ θQ(x)f(x) = f(x), because
∑

Q∈CZ θQ = 1 on E

(recall that E ⊂ Q◦). Hence, T◦(f, P) = f on E, as desired.
We plan to apply Lemma 49 from [1], where PQ = P and FQ (Q ∈ CZ) is defined

below (2.5). We note that CZ is a dyadic decomposition of Q◦ which satisfies good
geometry. We are also given a CZ-Oracle. These and other properties can be
found in the main technical results in Section 3 of [1]. We plan to take Q̂ = Q◦ in
the setting of Section 4.6.5 of [1]. We note that the conditions (4.53) and (4.54)
contained therein are obvious consequences of the fact that Q◦ is decomposed as
a union of all Q ∈ CZ. Thus, we may apply Lemma 49 of [1]. This gives that

‖T◦(f, P)‖p
X(Q◦) �

∑
Q∈CZ

[
‖FQ‖p

X((1+a)Q) + δ
−mp
Q ‖FQ − P‖p

Lp((1+a)Q)

]

=
∑

Q∈CZ
65
64

Q∩E
=∅

[
‖TQ(f, P)‖p

X((1+a)Q) + δ
−mp
Q ‖TQ(f, P) − P‖p

Lp((1+a)Q)

]

�
∑

Q∈CZ
65
64

Q∩E
=∅

∑
ξ∈Ξ(Q)

|ξ(f, P)|p (see (2.3)).(2.8)

(All the terms with 65
64
Q ∩ E = ∅ vanish, since FQ = P is an (m − 1)-st degree

polynomial.)
Since

∑
Q∈CZ θQ = 1 on Q◦, we have

T◦(f, P) − P = T◦(f, P) −
∑

Q∈CZ

θQ · P =
∑

Q∈CZ
65
64

Q∩E
=∅

(TQ(f, P) − P) · θQ on Q◦.

There are at most C terms in the above sum. Thus, since each θQ is supported on
(1+ a)Q and ‖θQ‖L∞ ≤ C, we have

‖T◦(f, P) − P‖p
Lp(Q◦) �

∑
Q∈CZ

65
64

Q∩E
=∅

‖TQ(f, P) − P‖p
Lp((1+a)Q)(2.9)

�
∑

Q∈CZ
65
64

Q∩E
=∅

∑
ξ∈Ξ(Q)

|ξ(f, P)|p.

Here, in the last inequality we used (2.3). (Recall that δQ ≤ 1 whenever Q ∈ CZ.)
Summing (2.8) and (2.9) shows that

‖T◦(f, P)‖p
X(Q◦) + ‖T◦(f, P) − P‖p

Lp(Q◦) �
∑

Q∈CZ
65
64

Q∩E
=∅

∑
ξ∈Ξ(Q)

|ξ(f, P)|p.

The right-hand expression is equal to
∑

ξ∈Ξ◦ |ξ(f, P)|p. This completes the proof
of the third bullet point in Proposition 18.
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From (2.1), recall that

(2.10)
∑

Q∈CZ
65
64

Q∩E
=∅

∑
ξ∈Ξ(Q)

|ξ(f, P)|p ≤ C
∑

Q∈CZ
65
64

Q∩E
=∅

‖(f, P)‖p65
64

Q
.

We have ‖(f, P)‖ 65
64

Q � ‖(f, P)‖ 65
64

Q◦ for each Q ∈ CZ. Here, we apply Lemma 14

from [1] and use the fact that δQ ≥ c∗ for all Q ∈ CZ. Since the cardinality of CZ
is bounded by a universal constant, we conclude that∑

Q∈CZ
65
64

Q∩E
=∅

∑
ξ∈Ξ(Q)

|ξ(f, P)|p ≤ C · ‖(f, P)‖p65
64

Q◦ .

This implies the fourth bullet point in Proposition 18. This completes the proof
of Proposition 18. �

We will now construct the various assists, functionals, and the extension oper-
ator from Theorem 1.

Computing a near-optimal jet. Each functional ξ	 ∈ Ξ◦ is given in the form

ξ	(f, R) = λ	(f) +

I�∑
a=1

μ	aω	a(f) +
∑
α∈M

μ̌	α · ∂αR(0)(2.11)

for � = 1, . . . , L; here, L = #(Ξ◦) ≤ CN.

Here, ω	a ∈ Ω◦; λ	 is a linear functional; μ	a and μ̌	α are real coefficients; and
depth(λ	) = O(1), I	 = O(1). In this discussion, we write X = O(Y) to indicate
that X ≤ CY for a universal constant C.

Applying the algorithm Optimize via matrix (see Section 2.8 of [1]), we find
a matrix (bα	)α∈M , 	=1,...,L such that the sum of the p-th powers of the |ξ	(f, R)|
(� = 1, . . . , L) in (2.11) is essentially minimized for fixed f by setting

∂αR(0) =

L∑
	=1

bα	

[
λ	(f) +

I�∑
a=1

μ	aω	a(f)
]
≡ ωnew

α (f).(2.12)

We express the functionals ωnew
α in short form. We first compute real coeffi-

cients (μαx)x∈E (α ∈ M) so that

(2.13) ωnew
α (f) =

∑
x∈E

μαx · f(x).

We achieve this by summing all the coefficients bα	 · μ	a in (2.12) that corre-
spond to the same functional ω = ω	a. (We accomplish this by sorting over Ω◦.)
We can convert the resulting expression into the form (2.13), by sorting over E.
Hence, we can express each ωnew

α in short form using work O(N logN), since∑
ω∈Ω◦ depth(ω) ≤ CN.
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Define the map R : X(E) → P by the formula R(f)(x) =
∑

α∈M
1
α!
ωnew

α (f) ·xα.
Hence, we have the key condition

(2.14)
∑
ξ∈Ξ◦

|ξ(f,R(f))|p ≤ C ·
∑
ξ∈Ξ◦

|ξ(f, R)|p for any R ∈ P .

Picking a cutoff function. We choose a function θ◦ ∈ Cm(Rn) such that

1. θ◦ = 0 on Rn \Q◦,

2. θ◦ = 1 on E,

3. |∂αθ◦(x)| ≤ C for x ∈ Rn, |α| ≤ m,

4. Given x ∈ Rn, we can compute Jxθ
◦ using work and storage at most C.

We can arrange these conditions by taking θ◦ to be a spline function that equals 1
on 1

32
Q◦ and equals 0 on Rn \Q◦; recall that E ⊂ 1

32
Q◦.

Main definitions.

• Let the list Ω ⊂ (X(E))∗ consist of all the functionals ω in Ω◦ and all the
functionals of the form f → ∂β [R(f)] (0) = ωnew

β (f) for all β ∈ M.

• Let the list Ξ ⊂ (X(E))∗ consist of all the functionals f → ξ◦(f,R(f)) where
ξ◦ ∈ Ξ◦. Hence, ∑

ξ∈Ξ

|ξ(f)|p =
∑

ξ◦∈Ξ◦
|ξ◦(f,R(f))|p.

• Let T : X(E) → X be defined by the formula

Tf = θ◦ · T◦(f,R(f)) + (1− θ◦) ·R(f).

We note that the functionals ξ ∈ Ξ and the map T have Ω-assisted bounded depth.
We can list all the functionals in Ξ and Ω, with each functional expressed in

short form, using work and storage at most CN. (We have already computed the
functionals in the lists Ω◦ and Ξ◦, and we have computed the map f → R(f), all
expressed in short form.)

We give a query algorithm for T . A query consists of a point x ∈ Rn. Then,
using property (1) of θ◦ we can write

Jx(Tf) =

{
Jxθ

◦ �x JxT
◦ + Jx(1− θ◦)�x R(f) if x ∈ Q◦

R(f) if x /∈ Q◦.

We test whether x ∈ Q◦ or x ∈ Rn \ Q◦. If x ∈ Q◦, then we compute the
map f → Jx(Tf) in short form in terms of the assists Ω. This uses the query
algorithm for T◦ and property (4) of θ◦. Note that we can computate a short
form representation of the �x-product or sum of polynomial-valued maps which
are given in short form, using work at most C. If x ∈ Rn \Q◦, then the map is
given by f → Jx(Tf) = R(f), which is given in short form in terms of the assists Ω.
This completes the description of the query algorithm for T . The query work is at
most C logN, as promised in Theorem 1.
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Main conditions. According to the first bullet point in Proposition 18, we have

(2.15) #(Ξ) ≤ CN, and
∑
ω∈Ω

depth(ω) ≤ CN.

From property (2) of θ◦, and since T◦(f,R(f)) = f on E, we see that

(2.16) Tf = f on E.

We now estimate ‖Tf‖X. A standard argument shows that

‖Tf‖X ≤ C · [‖T◦(f,R(f))‖X(Q◦) + ‖T◦(f,R(f)) − R(f)‖Lp(Q◦)
]
.

(See the proof of Lemma 49 in [1].) According to the third bullet point in Propo-
sition 18, we therefore have

‖Tf‖p
X
≤ C ·

∑
ξ◦∈Ξ◦

|ξ◦(f,R(f))|p = C ·
∑
ξ∈Ξ

|ξ(f)|p.(2.17)

We now observe that∑
ξ∈Ξ

|ξ(f)|p =
∑

ξ◦∈Ξ◦
|ξ◦(f,R(f))|p ≤ C inf

R∈P

∑
ξ◦∈Ξ◦

|ξ◦(f, R)|p (see (2.14))

≤ C inf
R∈P

‖(f, R)‖p65
64

Q◦ (see Proposition 18).(2.18)

Moreover, by definition of the trace seminorm,

‖(f, R)‖ 65
64

Q◦ = inf
F∈X

{
‖F‖

X(65
64

Q◦) + ‖F− R‖Lp( 65
64

Q◦) : F = f on E
}
.

Note that ‖F− R‖Lp(65
64

Q◦) ≤ C‖F‖
X( 65

64
Q◦) if we choose R = JxQ◦ F (thanks to the

Sobolev inequality). Therefore,

inf
R∈P

‖(f, R)‖ 65
64

Q◦ ≤ C · inf
F∈X

{‖F‖X : F = f on E
}
= C · ‖f‖X(E).

The previous estimates imply that

(2.19)
∑
ξ∈Ξ

|ξ(f)|p ≤ C · ‖f‖p
X(E)

.

Finally, we have ‖f‖X(E) = infF∈X

{‖F‖X : F = f on E
} ≤ ‖Tf‖X, thanks to (2.16).

This estimate and (2.17) imply that

(2.20) c · ‖f‖p
X(E)

≤
∑
ξ∈Ξ

|ξ(f)|p.

In view of (2.15)–(2.20), we have proven Theorem 1. �
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2.2. Extension in inhomogeneous Sobolev spaces

Let E ⊂ Rn be finite, and let N = #(E).
The inhomogeneous Sobolev space Wm,p(Rn) ⊂ Lm,p(Rn) consists of real-

valued functions F on Rn such that ∂αF ∈ Lp(Rn) for all |α| ≤ m. This space is
equipped with the norm

‖F‖Wm,p(Rn) =
( ∫

Rn

∑
|α|≤m

|∂αF(x)|pdx
)1/p

.

Let Wm,p(E) denote the space of functions f : E → R, equipped with the trace
norm

‖f‖Wm,p(E) = inf
F∈Wm,p(Rn)

{‖F‖Wm,p(Rn) : F = f on E
}
.

We use our extension results for the homogeneous Sobolev space Lm,p(Rn) to
obtain analogous results for the inhomogeneous Sobolev space Wm,p(Rn). We
will exhibit a query algorithm for a linear extension operator T : Wm,p(E) →
Wm,p(Rn) and we will compute a formula that approximates the Wm,p(E) trace
norm. We will do so using one-time work at most CN logN in space at most CN.
Given x ∈ Rn and |α| ≤ m − 1, we will explain how to compute ∂αTf(x) using
work at most C logN.

2.2.1. Case I. We assume that N = #(E) ≥ 2 and that E ⊂ 1
32
Q◦, where

Q◦ = [0, 1)n.
We apply Proposition 18 to define an extension operator T◦ : Wm,p(E)⊕P →

Wm,p(Q◦) and lists Ξ◦ ⊂ (Wm,p(E)⊕ P)∗ and Ω◦ ⊂ (Wm,p(E))∗.
We define a cutoff function θ◦ on Rn. As in Section 2.1, we assume that the

function θ◦ ∈ Cm(Rn) satisfies θ◦ = 0 on Rn \Q◦, θ◦ = 1 on E, and |∂αθ◦(x)| ≤ C

for all x ∈ Rn and |α| ≤ m. Furthermore, we assume that we can compute Jxθ
◦

for x ∈ Rn using work at most C. We accomplish this by taking θ◦ to be an
appropriate spline function.

We define a linear map T : Wm,p(E) → Wm,p(Rn) by

Tf := θ◦ · T◦(f, 0) for any f ∈ Wm,p(E).

Proposition 18 states that T◦(f, 0) = f on E. Thus, since θ◦ = 1 on E we have

(2.21) Tf = f on E.

We write Jx(Tf) = Jxθ
◦ �x JxT

◦(f, 0). Hence, we compute Jx(Tf) = 0 whenever
x ∈ Rn \ Q◦ (since θ◦ ≡ 0 on Rn \ Q◦). On the other hand, if x ∈ Q◦ then we
can compute the map f → JxT

◦(f, 0) in short form in terms of the assists Ω◦ (see
Proposition 18), hence we can compute the map f → Jx(Tf) in short form by basic
algebra (multiplying polynomials). Thus we have given a query algorithm for T .

Proposition 18 states that

(2.22) ‖T◦(f, 0)‖p
Lm,p(Q◦) + ‖T◦(f, 0)‖p

Lp(Q◦) ≤ C
∑
ξ∈Ξ◦

|ξ(f, 0)|p
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and ∑
ξ∈Ξ◦

|ξ(f, 0)|p ≤ C · inf
F

{‖F‖p
Lm,p( 65

64
Q◦) + ‖F‖p

Lp( 65
64

Q◦) : F = f on E
}

(2.23)

≤ C · inf
F

{‖F‖p
Wm,p( 65

64
Q◦) : F = f on E

}
.

We write H = Tf = θ◦H◦ with H◦ = T◦(f, 0). Recall that θ◦ is supported on Q◦

and that the derivatives of θ◦ are bounded by a constant C. Hence, applying the
Leibniz rule we see that

‖H‖p
Wm,p(Rn) ≤ C ·

∑
|α|+|β|≤m

∫
Q◦
|∂αH◦(x)|p · |∂βθ◦(x)|pdx ≤ C

[ ∑
|α|≤m

‖∂αH◦‖p
Lp(Q◦)

]
.

Thus, using a Sobolev-type estimate (see Proposition 9 in [1]) we have

‖H‖Wm,p(Rn) ≤ C · [‖H◦‖Lm,p(Q◦) + ‖H◦‖Lp(Q◦)
]
.

We finally apply (2.22) and insert the definitions of H and H◦ to see that

(2.24) ‖Tf‖p
Wm,p(Rn) ≤ C ·

∑
ξ∈Ξ◦

|ξ(f, 0)|p.

We set Ω = Ω◦. We define a list Ξ ⊂ (X(E))∗ consisting of the functionals
f → ξ(f, 0) for all ξ ∈ Ξ◦. The estimates (2.23) and (2.24) imply that

c‖Tf‖p
Wm,p(Rn)

≤
∑
ξ∈Ξ

|ξ(f)|p ≤ C inf
F

{‖F‖p
Wm,p( 65

64
Q◦) : F = f on E

}
.

Moreover, note that ‖f‖Wm,p(E) ≤ ‖Tf‖Wm,p(Rn), since Tf = f on E.
All the functionals ξ ∈ Ξ and the map T have Ω-assisted bounded depth. We

have given a query algorithm for T , and we have listed the functionals in Ω. We
can list the functionals in Ξ, expressed in short form in terms of the assists Ω,
using work and storage at most CN. To see this, note that there are at most CN
functionals in Ξ◦. We determine a short form representation of the functional
f → ξ(f, 0) using the short form representation of (f, P) → ξ(f, P) by just deleting
all the coefficients of the variables (∂αP(0))α∈M. This requires work at most C

per functional ξ.
According to the first bullet point in Proposition 18 we have

#(Ξ) ≤ CN, and
∑
ω∈Ω

depth(ω) ≤ CN.

The preceding argument establishes the case N = #(E) ≥ 2 in the result below.

Proposition 19. Assume that we are given a finite subset E ⊂ 1
32
Q◦, with Q◦ =

[0, 1)n. Let N = #(E).

We compute lists Ω and Ξ, consisting of functionals on Wm,p(E) = {f : E → R},
with the following properties.

• The sum of depth(ω) over all ω ∈ Ω is bounded by CN. The number of
functionals in Ξ is at most CN.
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• Each functional ξ in Ξ has Ω-assisted bounded depth. The functionals in Ω

and Ξ are represented in their short form.

• For all f ∈ Wm,p(E) we have

c · ‖f‖Wm,p(E) ≤
[∑
ξ∈Ξ

|ξ(f)|p
]1/p

≤ C · inf {‖F‖Wm,p( 65
64

Q◦) : F = f on E
}
.

Moreover, there exists a linear map T : Wm,p(E) → Wm,p(Rn) with the fol-
lowing properties.

• T has Ω-assisted depth at most C.

• Tf = f on E and ‖Tf‖p
Wm,p(Rn)

≤ C ·∑ξ∈Ξ|ξ(f)|p for all f ∈ Wm,p(E).

• We produce a query algorithm that operates as follows.

Given a query point x ∈ Rn, we compute a short form description of the
Ω-assisted bounded depth map f → Jx (Tf) using work and storage at most
C log(2+N).

The computations above require one-time work at most CN log(2 +N) + C in
space at most CN+ C.

Proof. We have already established the proposition in case N = #(E) ≥ 2.
When E is a singleton {x◦} (i.e., N = 1), we define Ξ = {ξ0} and Ω = ∅, where

ξ0(f) := f(x◦). We define

(Tf)(x) = θ◦(x) · f(x◦) for any f : E → R,

where θ◦ ∈ Cm(Rn) is supported on Q◦ and θ◦(x◦) = 1. Moreover, a simple
computation shows that ‖Tf‖Wm,p(Rn) ≤ C · |ξ0(f)|.

On the other hand,

|ξ0(f)| = |f(x◦)| ≤ C · ‖F‖Wm,p( 65
64

Q◦)

for any F ∈ Wm,p(Rn) such that F(x◦) = f(x◦), thanks to the Sobolev inequality.
The above computations require a constant amount of work. This completes the
proof of the proposition in the case N = #(E) = 1.

When E = ∅, we define Ξ = Ω = ∅. We define T : Wm,p(E) → Wm,p(Rn)
to be the trivial (zero) map defined on a zero-dimensional space. These objects
vacuously satisfy the conclusion of the proposition. This completes the proof of
the result. �

2.2.2. Case II. Here we strengthen Proposition 19 by removing the hypothesis
that E is contained in a unit cube. We employ a standard partition of unity
argument.

Assume that E is a finite subset of Rn. Let N = #(E).
We decompose Rn into a collection of cubes {Qk : k ∈ Zn}. For each k =

(k1, k2, . . . , kn) ∈ Zn we define

Qk =
(
k1 · 2−10, k1 · 2−10 + 1

]× · · · × (
kn · 2−10, kn · 2−10 + 1

]
.
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Note that the union of all the Qk is equal to Rn. Moreover,

(2.25) each point in Rn is contained in at most C of the cubes 200Qk.

We define Ek := E ∩Qk for each k ∈ Zn. According to the above,⋃
k∈Zn

Ek = E and
∑
k∈Zn

#(Ek) ≤ C ·N.

We define
I := {k ∈ Zn : Ek �= ∅}.

For each x ∈ E we can easily list all the indices k ∈ Zn such that x ∈ Qk. We
concatenate these lists and remove duplicate indices by sorting. Thus, we can
compute the collection I. We know that #I ≤ C · N by (2.25). Moreover, the
computation of I requires work at most CN log(N + 2) in space at most CN. For
each k arising from some x ∈ E as above, we include x in a list associated to k. In
this way we construct the subsets Ek for each k ∈ I. This computation requires
work at most CN log(N + 2).

For each k ∈ I we do the following. According to Proposition 19, we can
compute lists Ξk and Ωk of linear functionals on Wm,p(Ek). We also give a query
algorithm for a linear extension operator Tk : Wm,p(Ek) → Wm,p(Rn) (see below).
The following properties hold.

(a) Each ξ ∈ Ξk has Ωk-assisted bounded depth.

(b) The sum of depth(ω) over all ω ∈ Ωk is bounded by C#(Ek). The number
of functionals in Ξk is at most C ·#(Ek).

(c) Tk has Ωk-assisted bounded depth.

(d) (Tkf)(x) = f(x) for all x ∈ Ek.

(e) For any f ∈ Wm,p(Ek) we have

(2.26)
∑
ξ∈Ξk

|ξ(f)|p ≤ C inf
{
‖F‖p

Wm,p(200Qk)
: F = f on Ek

}
and

(2.27) ‖Tkf‖pWm,p(Rn) ≤ C ·
∑
ξ∈Ξk

|ξ(f)|p.

(f) We can query the extension operator. A query consists of a point x ∈ Rn.
We respond to the query x with a short form description of the Ωk-assisted
bounded depth map f → Jx(Tkf). The query work is at most C log(2+#(Ek)).

(Here, we use the fact that Ek ⊂ 1
32
(200Qk). To achieve the preceding results,

we apply Proposition 19 to a rescaled and translated copy of Ek. We leave details
to the reader.)

The above computations require one-time work at most C#(Ek) log(#(Ek)+1)
and storage at most C#(Ek) for each k ∈ I. Thus, the total work and space
required are at most CN log(N + 1) + C and CN + C, respectively.

We will define an extension operator T : Wm,p(E) → Wm,p(Rn) and lists Ξ

and Ω consisting of linear functionals on Wm,p(E).
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• Let Ω ⊂ (Wm,p(E))∗ be the union of the lists Ωk for all k ∈ I.
(If E = ∅ then we define Ω = ∅.)

• Let Ξ ⊂ (Wm,p(E))∗ be the union of the lists Ξk for all k ∈ I. Hence,
(2.28)

∑
ξ∈Ξ

|ξ(f)|p =
∑
k∈I

∑
ξ∈Ξk

|ξ(f)|p.

(If E = ∅ then we define Ξ = ∅.)
Remark 5. The sum of depth(ω) over ω ∈ Ω is bounded by

C
∑
k∈I

#(Ek) ≤ CN.

Also,

#(Ξ) ≤
∑
k∈I

#(Ξk) ≤
∑
k∈I

C ·#(Ek) ≤ CN.

We choose a partition of unity {θk}k∈Zn with the following properties.

• θk ∈ Cm(Rn), and θk is supported on Qk.

• |∂αθk(x)| ≤ C for all |α| ≤ m and x ∈ Rn.

• ∑
k∈Zn θk = 1 on Rn.

• Given x ∈ Rn, k ∈ Zn, we can compute Jxθk using work at most C log(2+N).

These conditions are easy to arrange. For instance, we can mimic the construction
of {θQ}Q∈CZ in Section 2.1. We leave the details to the reader.

We define T : Wm,p(E) → Wm,p(Rn) by the formula

(Tf)(x) =
∑
k∈I

(Tkf)(x) · θk(x) (x ∈ Rn).

Assume that x ∈ Rn is given. Note that Jxθk is nonzero only when Qk con-
tains x (since θk is supported on Qk). We compute a list of all the indices k ∈ I
such that x ∈ Qk using a binary search; this requires work at most C log(2+N). For
each such k, we compute a short form description of the linear map f → Jx(Tkf).
That requires work at most C log(2+N). Hence, to compute Jx(Tf) we can sum the
linear maps Jxθk �x Jx(Tkf) over all the relevant indices k. Thus we can compute
a short form description of the linear map f → Jx(Tf) using work and storage at
most C log(2+N).

Let x ∈ E. Let k ∈ I. Recall that θk(x) = 0 if x /∈ Qk. Also, Tkf(x) = f(x) if
x ∈ Qk. Thus, we have θk(x)Tkf(x) = θk(x)f(x) unconditionally.

Let k ∈ Zn \ I. By definition of I we know that x /∈ Qk, hence θk(x) = 0.
Hence,

Tf(x) =
∑
k∈I

θk(x)Tkf(x) =
∑
k∈I

θk(x)Tkf(x) +
∑

k∈Zn\I
θk(x)f(x)

=
∑
k∈Zn

θk(x)f(x) = f(x) for any x ∈ E.
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Proposition 20. For each f ∈ Wm,p(E) we have

‖Tf‖p
Wm,p(Rn) ≤ C ·

∑
ξ∈Ξ

|ξ(f)|p.

Furthermore,

c · ‖f‖p
Wm,p(E)

≤
∑
ξ∈Ξ

|ξ(f)|p ≤ C · ‖f‖p
Wm,p(E)

.

Proof. To prove the first estimate, we recall that Tf =
∑

k∈I(Tkf) · θk. Recall
that θk is supported on Qk and that the derivatives of θk are uniformly bounded.
Also, note that each point in Rn is contained in at most C of the cubes Qk

(see (2.25)). Hence, by the Leibniz rule we have

‖Tf‖p
Wm,p(Rn)

≤ C
∑
k∈I

‖Tkf‖pWm,p(Qk)

(2.27)

≤ C
∑
k∈I

∑
ξ∈Ξk

|ξ(f)|p (2.28)
= C

∑
ξ∈Ξ

|ξ(f)|p.

Hence, ∑
ξ∈Ξ

|ξ(f)|p ≥ c‖Tf‖p
Wm,p(Rn)

≥ c‖f‖p
Wm,p(E)

.

In the last inequality above, we use the definition of the seminorm ‖ · ‖Wm,p(E)

and the fact that Tf = f on E.
For the reverse inequality, we use (2.26) and (2.28) and deduce that∑

ξ∈Ξ

|ξ(f)|p =
∑
k∈I

∑
ξ∈Ξk

|ξ(f)|p ≤ C ·
∑
k∈I

inf
{‖F‖p

Wm,p(200Qk)
: F = f on E ∩Qk

}
≤ C · inf

{∑
k∈I

‖F‖p
Wm,p(200Qk)

: F = f on E
}

≤ C · inf {‖F‖p
Wm,p(Rn) : F = f on E

}
= C · ‖f‖p

Wm,p(E).

Here, we use (2.25) to prove the last inequality.
This completes the proof of Proposition 20. �

The above construction implies our main result for the inhomogeneous Sobolev
space. See Proposition 20 and Remark 5.

Theorem 2. Given a finite subset E ⊂ Rn with N = #(E), we perform one-time
work at most CN log(2 + N) + C in space at most CN + C, after which we have
achieved the following.

We compute lists Ω and Ξ, consisting of functionals on Wm,p(E) = {f : E → R},
with the following properties.

• The sum of depth(ω) over all ω ∈ Ω is bounded by CN. The number of
functionals in Ξ is at most CN.

• Each functional ξ in Ξ has Ω-assisted bounded depth. The functionals in Ω

and Ξ are represented in their short form.
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• For all f ∈ Wm,p(E) we have

c‖f‖Wm,p(E) ≤
[∑
ξ∈Ξ

|ξ(f)|p
]1/p

≤ C‖f‖Wm,p(E).

Moreover, there exists a linear map T : Wm,p(E) → Wm,p(Rn) with the fol-
lowing properties.

• T has Ω-assisted depth at most C.

• Tf = f on E and ‖Tf‖Wm,p(Rn) ≤ C · ‖f‖Wm,p(E) for all f ∈ Wm,p(E).

• We produce a query algorithm that operates as follows.

Given a query point x ∈ Rn, we respond with a short form description of the
Ω-assisted bounded depth map f → Jx (Tf) using work and storage at most
C log(2+N).

At last, note that Theorem 1 and Theorem 2 imply the main theorem from the
introduction in [1] (Theorem 6). This completes the analysis of our algorithms for
the infinite-precision model of computation. In [2] we present an analogue of our
algorithms for a finite-precision model of computation.
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