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The Dirichlet problem for elliptic systems

with data in Köthe function spaces

José Maŕıa Martell, Dorina Mitrea, Irina Mitrea, and Marius Mitrea

Abstract. We show that the boundedness of the Hardy–Littlewood max-
imal operator on a Köthe function space X and on its Köthe dual X′ is
equivalent to the well-posedness of the X-Dirichlet and X

′-Dirichlet prob-
lems in R

n
+ in the class of all second-order, homogeneous, elliptic systems,

with constant complex coefficients. As a consequence, we obtain that
the Dirichlet problem for such systems is well-posed for boundary data
in Lebesgue spaces, variable exponent Lebesgue spaces, Lorentz spaces,
Zygmund spaces, as well as their weighted versions. We also discuss a
version of the aforementioned result which contains, as a particular case,
the Dirichlet problem for elliptic systems with data in the classical Hardy
space H1, and the Beurling-Hardy space HAp for p ∈ (1,∞). Based on
the well-posedness of the Lp-Dirichlet problem we then prove the unique-
ness of the Poisson kernel associated with such systems, as well as the fact
that they generate a strongly continuous semigroup in natural settings.
Finally, we establish a general Fatou type theorem guaranteeing the exis-
tence of the pointwise nontangential boundary trace for null-solutions of
such systems.

1. Introduction, statement of main results, and examples

Let M ∈ N be fixed and consider the second-order, homogeneous, M ×M system,
with constant complex coefficients, written (with the usual convention of summa-
tion over repeated indices in place) as

(1.1) Lu :=
(
∂r(a

αβ
rs ∂suβ)

)
1≤α≤M

,
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when acting on a C 2 vector-valued function u = (uβ)1≤β≤M defined in the upper-
half space R

n
+ := {(x′, xn) ∈ R

n−1 × R : xn > 0}, n ≥ 2. A standing assumption
in this paper is that L is elliptic in the sense that there exists a real number κo > 0
such that the following Legendre–Hadamard condition is satisfied:

(1.2)
Re
[
aαβrs ξr ξs ηα ηβ

]
≥ κo |ξ|2| η|2

for every ξ = (ξr)1≤r≤n ∈ Rn and η = (ηα)1≤α≤M ∈ CM .

Two basic examples to keep in mind are the Laplacian L := Δ in Rn, and the
Lamé system

Lu := μΔu + (λ+ μ)∇div u, u = (u1, . . . , un) ∈ C 2,(1.3)

where the constants λ, μ ∈ R (typically called Lamé moduli) are assumed to satisfy

μ > 0 and 2μ+ λ > 0,(1.4)

a condition actually equivalent to the demand that the Lamé system (1.3) satisfies
the Legendre–Hadamard ellipticity condition (1.2).

As is known from the seminal work of S. Agmon, A. Douglis, and L. Nirenberg
in [1] and [2], every operator L as in (1.1)–(1.2) has a Poisson kernel, denoted
by PL, an object whose properties mirror the most basic characteristics of the
classical harmonic Poisson kernel

(1.5) PΔ(x′) :=
2

ωn−1

1(
1 + |x′|2

)n/2 , ∀x′ ∈ R
n−1,

where ωn−1 is the area of the unit sphere Sn−1 in Rn. For details, see Theorem 2.4
below. Here we only wish to note that, using the notation Pt(x

′) := t1−nP (x′/t)
for each t ∈ (0,∞) and x′ ∈ Rn−1, where P is a generic function defined in Rn−1,
it follows that there exists some C ∈ (0,∞) such that

(1.6) |PL
t (x′)| ≤ C

t

(t2 + |x′|2)n/2 , ∀x′ ∈ R
n−1, ∀ t ∈ (0,∞).

The main goal of this paper is to establish well-posedness results for the Dirich-
let problem for a system L, as above, in Rn

+ formulated in terms of certain types
of function spaces (made precise below).

Prior to formulating the most general result in this paper, some comments
on the notation used are in order. The symbol M is reserved for the Hardy–
Littlewood maximal operator in Rn−1; see (2.9). Also, given a function u defined
in Rn

+, by Nu we shall denote the nontangential maximal function of u; see (2.3)

for a precise definition. Next, by u
∣∣n.t.
∂Rn

+

we denote the nontangential limit of the

given function u on the boundary of the upper half-space (canonically identified
with Rn−1), as defined in (2.4). Going further, denote by M the collection of all
(equivalence classes of) Lebesgue measurable functions f : Rn−1 → [−∞,∞] such
that |f | < ∞ a.e. in Rn−1. Also, call a subset Y of M a function lattice if the
following properties hold:
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(i) whenever f, g ∈ M satisfy 0 ≤ f ≤ g a.e. in Rn−1 and g ∈ Y, then necessarily
f ∈ Y;

(ii) 0 ≤ f ∈ Y implies λf ∈ Y for every λ ∈ (0,∞);

(iii) 0 ≤ f, g ∈ Y implies max{f, g} ∈ Y.

In passing, note that, granted (i), one may replace (ii)–(iii) above by the con-
dition: 0 ≤ f, g ∈ Y implies f + g ∈ Y. As usual, we set log+ t := max

{
0 , ln t

}
for each t ∈ (0,∞). Finally, we alert the reader that the notation employed does
not always distinguish between vector and scalar valued functions (which should
be clear from context).

Theorem 1.1. Let L be a system as in (1.1)–(1.2), and assume that X and Y are
arbitrary collections of measurable functions satisfying

X ⊂ L1
(
R

n−1 ,
1

1 + |x′|n dx
′
)
, Y ⊂ L1

(
R

n−1 ,
1 + log+ |x′|
1 + |x′|n−1

dx′
)
,(1.7)

Y is a function lattice, MX ⊂ Y.(1.8)

Then the (X,Y)-Dirichlet boundary value problem for L in R
n
+,

(1.9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C ∞(Rn
+),

Lu = 0 in Rn
+,

Nu ∈ Y,

u
∣∣n.t.
∂Rn

+

= f ∈ X,

has a unique solution. Moreover, the solution u of (1.9) is given by

(1.10) u(x′, t) = (PL
t ∗ f)(x′) for all (x′, t) ∈ R

n
+,

where PL is the Poisson kernel for L in Rn
+, and satisfies

(1.11) Nu(x′) ≤ CMf(x′), ∀x′ ∈ R
n−1,

for some constant C ∈ [1,∞) that depends only on L and n.

Regarding the formulation of Theorem 1.1, we wish to note that the first condi-
tion in (1.7) is actually redundant, and we have only included it for its pedagogical
value (as it makes the proof of the existence of a solution for (1.9) most natural).
Indeed, a more general result of this flavor holds, namely:

(1.12) X ⊂ M and Mf �≡ ∞ for each f ∈ X =⇒ X ⊂ L1
(
R

n−1,
1

1 + |x′|n dx
′
)
.

Granted this, it is clear that the first inclusion in (1.7) is implied by the last
condition in (1.8) and the second condition in (1.7). As regards the justification



916 J.M. Martell, D. Mitrea, I. Mitrea, and M. Mitrea

of (1.12), let f ∈ X be arbitrary. Then the hypotheses in (1.12) imply that there
exists some x′0 ∈ R

n−1 such that Mf(x′0) < ∞, in which case, for some finite
constant C = C(n, x′0) > 0, we may estimate

(1.13)

∫
Rn−1

|f(x′)| 1

1 + |x′|n dx
′ ≤ C

∫
Rn−1

|f(x′)|
1 + |x′ − x′0|n

dx′ ≤ CMf(x′0) <∞,

where the next-to-last inequality follows from a familiar dyadic annular decompo-
sition argument (in the spirit of (3.18)). Thus, (1.12) is true.

The particular case X = Y holds a special significance (in this vein, see Theo-
rem 1.4 below). Incidentally, in this scenario the first condition in (1.7) is simply
implied by the second condition in (1.7) alone. This being said, the case X �= Y is
natural to consider, as it arises commonly in practice. For example, the Dirichlet
problem (1.9) is well-posed for any system L as in (1.1)–(1.2) provided, for a given
p ∈ (1,∞),

(1.14) X := L1(Rn−1) ∩ Lp(Rn−1) and Y := L1,∞(Rn−1) ∩ Lp(Rn−1),

since conditions (1.7)–(1.8) are easily verified in this case. We stress that in the
formulation of Theorem 1.1 the set X is not required to be a function lattice, and
this is a relevant observation for the (H1, L1)-Dirichlet problem discussed below
in Corollary 1.2 (see also Corollary 1.3 for a similar phenomenon).

The proof of Theorem 1.1 in §4 makes strong use of the results established
in §3. More specifically, the second inclusion in (1.7) ensures (keeping in mind
the function lattice property for Y) the applicability of Theorem 3.2, which yields
uniqueness. The first inclusion in (1.7) guarantees the applicability of Theorem 3.1,
which shows that the function u as in (1.10) belongs to C∞(Rn

+) and satisfies

Lu = 0 in Rn
+ as well as u

∣∣n.t.
∂Rn

+

= f and (1.11). Granted the latter property (and

bearing in mind the function lattice property for Y), the last condition in (1.8)
then guarantees that

(1.15) f ∈ X and u as in (1.10) =⇒ Nu ∈ Y.

This proves existence in Theorem 1.1. It is worth noting that MX ⊂ Y may
be replaced in the formulation of Theorem 1.1 (without affecting the conclusions)
by the weaker condition (1.15). This is significant, because the latter holds even
though the former fails in the important case of the Dirichlet problem with data
from the Hardy space, when

(1.16) X := H1(Rn−1) and Y := L1(Rn−1).

This permits us to prove (see §4 for details) the following well-posedness result.

Corollary 1.2. The (H1, L1)-Dirichlet boundary value problem in R
n
+ is well-posed

for each system L as in (1.1)–(1.2).

In fact, the weaker condition in the left-hand side of (1.15) is also relevant in
other scenarios such as the Dirichlet problem with data from the Beurling–Hardy
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space, when

(1.17) X := HAp(Rn−1) and Y := Ap(Rn−1) for some p ∈ (1,∞).

Above, Ap(Rn−1) is the classical (convolution) algebra introduced by A. Beurling
in [7], while HAp(Rn−1) is the Hardy space associated with the Beurling algebra
Ap(Rn−1) as in [16] (following work in the complex plane in [8]). For concrete defi-
nitions the reader is referred to §4, where the proof of the following well-posedness
result may also be found.

Corollary 1.3. For each p ∈ (1,∞), the (HAp,Ap)-Dirichlet boundary value prob-
lem in Rn

+ is well-posed whenever L is a system as in (1.1)–(1.2).

As is apparent from the statement of Theorem 1.1, devising practical ways
for checking the validity of the inclusions in (1.7) becomes a significant issue that
deserves further attention. One natural, and also general, setting where the named
inclusions may be equivalently rephrased as the membership of the intervening
weight functions to dual spaces is that of Köthe function spaces. Since the latter
class of function spaces plays a significant role for us here, we proceed to summarize
their definition and basic properties (more details may be found in Bennett and
Sharpley [6], where the terminology employed is that of Banach function spaces;
see also [12], [22], [43]). Specifically, call a mapping ‖ · ‖ : M → [0,∞] a function
norm provided the following properties are satisfied for all f, g ∈ M:

(1) ‖f‖ =
∥∥|f |∥∥, and ‖f‖ = 0 if and only if f = 0 a.e. in R

n−1;

(2) ‖f + g‖ ≤ ‖f‖+ ‖g‖, and ‖λf‖ = |λ| ‖f‖ for each λ ∈ R;

(3) if |f | ≤ |g| a.e. in Rn−1 then ‖f‖ ≤ ‖g‖;

(4) if {fk}k∈N ⊂ M is a sequence such that |fk| increases to |f | pointwise
a.e. in Rn−1 as k → ∞, then ‖fk‖ increases to ‖f‖ as k → ∞;

(5) if E ⊂ Rn−1 is a measurable set of finite measure, then its characteristic
function 1E satisfies ‖1E‖ <∞ and

∫
E
|f(x′)| dx′ ≤ CE‖f‖, where CE <∞

depends on E, but not on f .

Given a function norm ‖ · ‖, the set

(1.18) X :=
{
f ∈ M : ‖f‖ <∞

}
is referred to as a Köthe function space on (Rn−1, dx′). In such a scenario, we
shall write ‖ · ‖X in place of ‖ · ‖ in order to emphasize the connection between the
function norm ‖ · ‖ and its associated Köthe function space X. Then

(
X, ‖ · ‖X

)
is

a complete normed vector subspace of M, hence a Banach space. It is apparent
from the above definitions that many of the classical function spaces in analysis are
actually Köthe function spaces. This includes ordinary Lebesgue spaces, variable
exponent Lebesgue spaces, Orlicz spaces, Lorentz spaces, mixed-normed spaces,
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Marcinkiewicz spaces, Morrey spaces, etc. Typically, function spaces whose defini-
tions take into account cancellation or differentiability properties of the functions,
such as Hardy spaces, BMO, Sobolev spaces, etc., fail to be Köthe function spaces.

Starting with a Köthe function space X, we can define its Köthe dual (also
known as its associate space in the terminology of [6]) according to

(1.19)

X′ :=
{
f ∈ M : ‖f‖X′ <∞

}
where, for each f ∈ M,

‖f‖X′ := sup
{∫

Rn−1

|f(x′) g(x′)| dx′ : g ∈ X, ‖g‖X ≤ 1
}
.

One can check that ‖ · ‖X′ is indeed a function norm, hence X′ is itself a Köthe
function space.

An immediate consequence of the above definitions is the generalized Hölder’s
inequality:

(1.20)

∫
Rn−1

|f(x′) g(x′)| dx′ ≤ ‖f‖X ‖g‖X′, for all f ∈ X, g ∈ X
′.

In this regard, let us also record here the following characterization of the Köthe
dual given in Lemma 2.6, p. 10, of [6]:

(1.21) X
′ =
{
g ∈ M :

∫
Rn−1

|f(x′) g(x′)| dx′ <∞ for each f ∈ X

}
.

Moreover,

(1.22) (X′)′ = X,

i.e., the Köthe dual space of X′ is again X. As a consequence, the function norm
on X may be expressed in terms of the function norm on X′ according to

(1.23) ‖f‖X = sup
{∫

Rn−1

|f(x′) g(x′)| dx′ : g ∈ X
′, ‖g‖X′ ≤ 1

}
, ∀ f ∈ X.

For further reference it will be of interest to note that

(1.24) 1E ∈ X ∩ X
′ if E ⊂ Rn−1 is a measurable set of finite measure,

and

(1.25) X ⊂ L1
loc(R

n−1), X
′ ⊂ L1

loc(R
n−1).

The key observation is that whenever X,Y are Köthe function spaces, then Y

is a function lattice by design and, thanks to (1.21), the inclusions in (1.7) are
equivalent to the memberships

(1.26)
1

1 + |x′|n ∈ X
′ and

1 + log+ |x′|
1 + |x′|n−1

∈ Y
′.
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Furthermore, if the last condition in (1.8) is strengthened to

(1.27) M : X −→ Y boundedly,

then by (1.11) and the monotonicity of the function norm in Y it follows that there
exists a constant C = C(n, L,X,Y) ∈ (0,∞) with the property that the solution u
of (1.9) satisfies

(1.28) ‖Nu‖Y ≤ C ‖f‖X.

One convenient practical way of ensuring that (1.26) holds is to check that M is
bounded on X′ and Y′. This is a consequence of (1.24) and Lemma 2.1, in the
body of the paper.

In the important special case of Köthe function spaces satisfying X = Y, the
first condition in (1.26) becomes redundant (as it is implied by the second). In this
scenario, if

(1.29)
1 + log+ |x′|
1 + |x′|n−1

∈ X
′ and MX ⊂ X

then the X-Dirichlet boundary value problem for L in Rn
+, formulated as in (1.9)

with Y = X, is well-posed. Moreover,

(1.30) M bounded on X implies ‖Nu‖X ≤ C ‖f‖X.

Let us also note here that, as seen from (1.29) and Lemma 2.1, the first condi-
tion in (1.29) may also be expressed in terms of the Hardy–Littlewood maximal
operator as

(1.31) M(2)
(
1Bn−1(0′,1)

)
∈ X

′,

where M(2) is the two-fold composition of M with itself, and where Bn−1(0
′, 1)

denotes the (n − 1)-dimensional Euclidean ball of radius 1 centered at the origin
0′ = (0, . . . , 0) ∈ Rn−1. In particular,

(1.32) if M is bounded on X′ then the first condition in (1.29) holds.

As a consequence of the above considerations, we have the following notable
result showing that the boundedness of the Hardy–Littlewood maximal operator
on X and X′ is equivalent to the well-posedness of the X-Dirichlet and X′-Dirichlet
boundary value problems in R

n
+ for the class of all second-order, homogeneous,

elliptic systems, with constant complex coefficients.

Theorem 1.4. Assume that L is a system as in (1.1)–(1.2), and suppose X is a
Köthe function space such that

(1.33) M is bounded both on X and X
′.
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Then the X-Dirichlet boundary value problem for L in Rn
+,

(1.34)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C ∞(Rn
+),

Lu = 0 in Rn
+,

Nu ∈ X,

u
∣∣n.t.
∂Rn

+

= f ∈ X,

is well-posed. In addition, the solution u of (1.34) is given by u(x′, t) = (PL
t ∗f)(x′)

for all (x′, t) ∈ Rn
+, where P

L is the Poisson kernel for L in Rn
+. Also,

(1.35) ‖Nu‖X ≈ ‖f‖X,

where the constants involved depend only on X, n, and L.
Moreover, the X′-Dirichlet boundary value problem for L in Rn

+, formulated
analogously to (1.34) (with X′ replacing X) is also well-posed, and the solution
enjoys the same type of properties as above.

Finally, the above result is sharp in the sense that the solvability of both the
X-Dirichlet and the X′-Dirichlet boundary value problems for the class of all second-
order, homogeneous, elliptic systems, with constant complex coefficients (in the
form of convolution with the Poisson kernel) with naturally accompanying bounds
(as in (1.35)) is equivalent to the boundedness of the Hardy–Littlewood maximal
operator M both on X and on X′.

Assuming Theorem 1.1, the proof of Theorem 1.4 is rather short. Indeed,
the discussion preceding its statement gives the well-posedness of the X-Dirichlet
boundary value problem. Furthermore, since (1.22) entails that the hypothe-
sis (1.33) is stable under replacing X by X′, the well-posedness of the X′-Dirichlet
boundary value problem follows as well.

As regards the sharpness claim from the last part of the statement, first assume
the solvability of the X-Dirichlet boundary value problem for the Laplacian in Rn

+

(in the form of convolution with the Poisson kernel) with naturally accompanying
bounds. Note that, with PΔ as in (1.5), whenever 0 ≤ f ∈ M we may estimate,
for each (x′, t) ∈ Rn

+,

u(x′, t) = (PΔ
t ∗ f)(x′) = 2

ωn−1

∫
Rn−1

t(
t2 + |x′ − y′|2

)n/2 f(y′) dy′(1.36)

≥ Cn −
∫
Bn−1(x′,t)

f(y′) dy′.

Hence,

(1.37) (Nu)(x′) ≥ sup
t>0

u(x′, t) ≥ Cn(Mf)(x′), for each x′ ∈ R
n−1,

which, together with the upper estimate in (1.35), implies the boundedness of M
on X. Likewise, the solvability of the X′-Dirichlet boundary value problem for the
Laplacian in Rn

+ yields the boundedness of M on X′. This finishes the proof of
Theorem 1.4.
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As is apparent from the above proof, the solvability of both the X-Dirichlet and
the X

′-Dirichlet boundary value problems for the Laplacian in R
n
+ (in the form of

convolution with the Poisson kernel) with naturally accompanying bounds implies
the boundedness of M both on X and X′. As a consequence, the solvability of
the X-Dirichlet and the X′-Dirichlet boundary value problems for the Laplacian
in Rn

+ (in the manner described above) is equivalent to the solvability of the X-
Dirichlet and the X′-Dirichlet boundary value problems in Rn

+ for all systems L as
in (1.1)–(1.2).

Here we also wish to remark that, under the background assumptions in Theo-
rem 1.4, the first three conditions in (1.34) imply that the nontangential pointwise

trace u
∣∣n.t.
∂Rn

+

exists a.e. in Rn−1. Indeed, this becomes a consequence of a general

Fatou type result established in Theorem 6.1, upon observing that

(1.38) X ⊂ L1
(
R

n−1 ,
1 + log+ |x′|
1 + |x′|n−1

dx′
)
.

In turn, thanks to (1.21), the latter condition is equivalent to
1+log+ |x′|
1+|x′|n−1 ∈ X′,

which is further implied by Lemma 2.1 and (1.24).

At this stage we find it instructive to illustrate the scope of Theorems 1.1–1.4
by providing two examples of interest.

Example 1. Ordinary Lebesgue spaces. For p ∈ (1,∞), X := Lp(Rn−1) is
a Köthe function space, with Köthe dual X′ = Lp′

(Rn−1) with 1/p + 1/p′ = 1.
Hence, in this case (1.33) holds. As such, Theorem 1.4 shows that the Lp-Dirichlet
boundary value problem in Rn

+,

(1.39)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C ∞(Rn
+),

Lu = 0 in Rn
+,

Nu ∈ Lp(Rn−1),

u
∣∣n.t.
∂Rn

+

= f ∈ Lp(Rn−1),

is well-posed for any system L as in (1.1)–(1.2). Moreover, the solution is given
by (1.10) and satisfies naturally accompanying bounds. Of course, one can also
arrive at the same conclusion using Theorem 1.1 instead, since (1.7)–(1.8) are
readily checked for X = Y := Lp(Rn−1) with p ∈ (1,∞).

In §5, the well-posedness of the Lp-Dirichlet problem (1.39) is then used as
a tool for establishing the uniqueness of the (Agmon–Douglis–Nirenberg) Poisson
kernel for the system L (from Theorem 2.4), and to show that the said kernel
satisfies the semigroup property (cf. Theorem 5.1).

Example 2. Weighted Lebesgue spaces. Given p ∈ (1,∞), along with an
a.e. positive and finite measurable function w defined on Rn−1, let Lp(Rn−1, w)
denote the Lebesgue space of p-th power integrable functions in the measure space(
R

n−1, w(x′) dx′
)
. For a system L as in (1.1)–(1.2) the Lp(Rn−1, w)-Dirichlet
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problem then reads:

(1.40)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C∞(Rn
+),

Lu = 0 in Rn
+,

Nu ∈ Lp(Rn−1, w),

u
∣∣n.t.
∂Rn

+

= f ∈ Lp(Rn−1, w).

Theorem 1.1 may then be invoked in order to show that (with Ap(R
n−1) denoting

the class of Muckenhoupt weights, as defined in (2.22)):

(1.41)

if L is a system as in (1.1)–(1.2), 1 < p <∞, and w ∈ Ap(R
n−1) then

the Lp(Rn−1, w)-Dirichlet problem (1.40) is well-posed, the solution u

is given by (1.10), and satisfies ‖Nu‖Lp(Rn−1, w) ≤ C‖f‖Lp(Rn−1, w).

To see that this is the case, note that X = Y = Lp(Rn−1, w) satisfy (1.8) (tak-
ing into account Muckenhoupt’s classical result), whereas the second embedding
in (1.7) is checked by estimating, for every h ∈ Lp(Rn−1, w),∫

Rn−1

1 + log+ |x′|
1 + |x′|n−1

|h(x′)| dx′(1.42)

≤ C

∫
Rn−1

|h(x′)|w(x′)1/p M(2)
(
1Bn−1(0′,1)

)
(x′)w(x′)−1/p dx′

≤ C ‖h‖Lp(Rn−1, w)

∥∥M(2)
(
1Bn−1(0′,1)

)∥∥
Lp′(Rn−1, w1−p′)

≤ C ‖h‖Lp(Rn−1, w)

∥∥1Bn−1(0′,1)
∥∥
Lp′(Rn−1, w1−p′)

≤ C ‖h‖Lp(Rn−1, w)w
(
Bn−1(0

′, 1)
)−1/p

,

where we have used Lemma 2.1 for the first inequality, Hölder’s inequality for the
second, that M is bounded on Lp′

(Rn−1, w1−p′
) since w ∈ Ap(R

n−1) if and only

if w1−p′ ∈ Ap′(Rn−1) in the third and, lastly, that w ∈ Ap(R
n−1). This takes care

of the well-posedness, while the corresponding bound follows from (1.11) and the
boundedness of M on Lp(Rn−1, w).

In this vein, it is worth noting that, as (1.37) shows, the bound in (1.41) in the
case when L = Δ necessarily places the weight function w in the Muckenhoupt
class Ap(R

n−1).
One may well wonder whether Theorem 1.4 is also effective in the current set-

ting. However, this is not the case. To illustrate the root of the problem note that,
technically speaking, Lp(Rn−1, w) is not a Köthe function space on (Rn−1, dx′) ac-
cording to the terminology used earlier. Altering the definition so that Lp(Rn−1, w)
would be a Köthe function space requires working with

(
Rn−1, w(x′) dx′

)
as the

underlying measure space, and such a change affects the manner in which the
Köthe dual is computed. Indeed, the Köthe dual of Lp(Rn−1, w)

(
which now has

to be taken with respect to the measure space
(
Rn−1, w(x′) dx′

))
is Lp′

(Rn−1, w).
However, M is not necessarily bounded on this space, so (1.33) cannot be ensured.
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So far we have seen that the Dirichlet problem with data in ordinary Lp spaces
can be treated by Theorem 1.4, though this theorem ceases to be effective in the
case of weighted Lp spaces. The question now becomes:

(1.43)

Is there a suitable version of Theorem 1.4 targeted to more special-
ized Köthe function spaces, such as rearrangement invariant spaces,
devised for the purpose of treating not just Lp(Rn−1, w), but a va-
riety of other weighted Köthe spaces?

Recall that a Köthe function space
(
X, ‖ · ‖X

)
is said to be rearrangement inva-

riant provided the function norm ‖f‖X of any f ∈ X may be expressed in terms
of the measure of the level sets of that function. The reader is referred to §4 for a
more detailed discussion, which also elaborates on the notion of lower and upper
Boyd indices, denoted by pX and qX (our definition ensures that pX = qX = p
if X = Lp(Rn−1)). Given a weight w on Rn−1, if f∗

w denotes the decreasing
rearrangement of f with respect to the measure w(x′) dx′, the weighted version
X(w) of the Köthe function space X is defined as

(1.44) X(w) :=
{
f ∈ M : ‖f∗

w‖X <∞
}
, ‖f‖X(w) := ‖f∗

w‖X,

where X is the rearrangement invariant function space on [0,∞) associated with
the original X as in Luxemburg’s representation theorem. One can check that if
X := Lp(Rn−1), p ∈ (1,∞), then X(w) = Lp(Rn−1, w).

The theorem answering the question posed in (1.43) is as follows.

Theorem 1.5. Let L be a system as in (1.1)–(1.2), and let X be a rearrangement
invariant space whose lower and upper Boyd indices satisfy

(1.45) 1 < pX ≤ qX <∞.

Then for every Muckenhoupt weight w ∈ ApX
(Rn−1), the X(w)-Dirichlet bound-

ary value problem for L in Rn
+,

(1.46)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C∞(Rn
+),

Lu = 0 in Rn
+,

Nu ∈ X(w),

u
∣∣n.t.
∂Rn

+

= f ∈ X(w),

has a unique solution. Furthermore, the solution u of (1.46) is given by u(x′, t) =
(PL

t ∗ f)(x′) for all (x′, t) ∈ Rn
+, where P

L is the Poisson kernel for L in Rn
+, and

there exists a constant C = C(n, L,X, w) ∈ (0,∞) with the property that

(1.47) ‖Nu‖X(w) ≤ C ‖f‖X(w).

As a consequence of the classical result of Lorentz–Shimogaki, given a rear-
rangement invariant space X, condition (1.45) is equivalent to (1.33), i.e., to the
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fact that M is bounded on both X and X′. Thus, in the class of rearrangement
invariant spaces, Theorem 1.5 may be viewed as a weighted version of Theorem 1.4
(to which the latter reduces when the weight is a constant). As was the case with
Theorem 1.4, we also have that Theorem 1.5 is sharp; its proof is presented in §4,
and the strategy relies on Theorem 1.1. This requires verifying the embedding

(1.48) X(w) ⊂ L1
(
R

n−1 ,
1 + log+ |x′|
1 + |x′|n−1

dx′
)
.

A direct approach based on duality, along the lines of (1.42), quickly runs into
difficulties (due to the general nature of X(w), in contrast to the particular case
of Lp(Rn−1, w) considered in (1.42)). This being said, the fact that (1.42) can
be carried out for all weights w ∈ Ap(R

n−1) eventually allows us to use Rubio de
Francia’s extrapolation in the context of rearrangement invariant spaces (cf. [12])
in order to derive a similar estimate in X(w) (cf. Lemma 4.5 for actual details).

In spite of its elegance and sharpness, Theorem 1.5 is confined to the class of
rearrangement invariant spaces. An example of interest, lying outside the latter
class, is that of variable exponent Lebesgue spaces. As discussed below, in this
setting it is Theorem 1.4 which may be employed in order to treat the corresponding
Dirichlet problem.

Example 3. Variable exponent Lebesgue spaces. Given a (Lebesgue) mea-
surable function p(·) : Rn−1 → (1,∞), the variable Lebesgue space Lp(·)(Rn−1) is
defined as the collection of all measurable functions f such that, for some λ > 0,

(1.49)

∫
Rn−1

( |f(x′)|
λ

)p(x′)
dx′ <∞.

Here and elsewhere, we follow the custom of writing p(·) instead of p in order to
emphasize that the exponent is a function and not necessarily a constant. The
set Lp(·)(Rn−1) becomes a Köthe function space when equipped with the function
norm

(1.50) ‖f‖Lp(·)(Rn−1) := inf
{
λ > 0 :

∫
Rn−1

( |f(x′)|
λ

)p(x′)
dx′ ≤ 1

}
.

This family of spaces generalizes the scale of ordinary Lebesgue spaces. Indeed,
if p(x′) ≡ p0, then Lp(·)(Rn−1) equals Lp0(Rn−1). The Köthe dual space of
Lp(·)(Rn−1) is Lp′(·)(Rn−1), where the conjugate exponent function p′(·) is uniquely
defined by the demand that

(1.51)
1

p(x′)
+

1

p′(x′)
= 1, ∀x′ ∈ R

n−1.

Associated to p(·) we introduce the following natural parameters:

(1.52) p− := ess inf
Rn−1

p(·) and p+ := ess sup
Rn−1

p(·).

To apply Theorem 1.4 to X := Lp(·)(Rn−1), we need M to be bounded on both
Lp(·)(Rn−1) and Lp′(·)(Rn−1). This, in turn, is known to imply that 1 < p− ≤
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p+ <∞; see [11]. Assuming 1 < p− ≤ p+ <∞, it has been shown in [14] that M
is bounded on Lp(·)(Rn−1) if and only if M is bounded on Lp′(·)(Rn−1). Therefore,
Theorem 1.4 gives the following result:

(1.53)
if L is a second-order system as in (1.1)–(1.2), 1 < p− ≤ p+ <∞,
and ifM is bounded on Lp(·)(Rn−1), the Lp(·)(Rn−1)-Dirichlet prob-
lem for L in Rn

+ is well-posed.

Moreover, the sharpness of Theorem 1.4 yields a characterization of the bounded-
ness of the Hardy–Littlewoodmaximal operator on Lp(·)(Rn−1) and on Lp′(·)(Rn−1)
in terms of the well-posedness of the Lp(·)(Rn−1)-Dirichlet and Lp′(·)(Rn−1)-Dirich-
let problems in Rn

+.
Let us further augment the above discussion by noting that, as proved in [11]

and [30], the operator M is bounded on Lp(·)(Rn−1) if p(·) satisfies the following
log-Hölder continuity conditions: there exist constants C ∈ [0,∞) and p∞ ∈ [0,∞)
such that, for each x′, y′ ∈ R

n−1,

(1.54) |p(x′)− p(y′)| ≤ C

− log |x′ − y′| whenever 0 < |x′ − y′| ≤ 1/2,

and

(1.55) |p(x′)− p∞| ≤ C

log(e+ |x′|) .

We refer the reader to [10] and [15] for full details and complete references.

Moving on, we discuss two more classes of spaces for which Theorem 1.5 applies.

Example 4. Weighted Lorentz spaces. Let f∗ denote the decreasing rear-
rangement of a function f ∈ M (cf. (4.31)). For 0 < p, q <∞, define

(1.56) ‖f‖Lp,q(Rn−1) :=
( ∫ ∞

0

f∗(s)qsq/p−1 ds
)1/q

,

and, corresponding to q = ∞,

(1.57) ‖f‖Lp,∞(Rn−1) := sup
0<s<∞

[
f∗(s)s1/p

]
.

Then set

(1.58) Lp,q(Rn−1) :=
{
f ∈ M : ‖f‖Lp,q(Rn−1) <∞

}
.

For 0 < p < ∞ and 0 < q ≤ ∞, the Lorentz spaces just defined are only quasi-
normed spaces, but when 1 < p < ∞ and 1 ≤ q ≤ ∞, or when p = 1 and
1 ≤ q <∞, they are equivalent to normed spaces. Also,

(1.59)
if 1 < p < ∞ and 1 ≤ q ≤ ∞, or p = 1 and 1 ≤ q < ∞, then
X := Lp,q(Rn−1) is a rearrangement invariant function space with
lower and upper Boyd indices given by pX = qX = p.

The spaces X(w) are the weighted Lorentz spaces Lp,q
(
Rn−1, w(x′)dx′

)
obtained

by replacing f∗ with f∗
w in (1.56)–(1.58). Granted (1.59), Theorem 1.5 applies and
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yields the well-posedness of the Dirichlet problem in Rn
+ for a system L as in (1.1)–

(1.2) with data in Lp,q
(
R

n−1, w(x′)dx′
)
provided 1 < p < ∞, 1 ≤ q ≤ ∞, and

w ∈ Ap(R
n−1). In particular, this well-posedness result holds for data in the

standard Lorentz spaces Lp,q(Rn−1) with 1 < p <∞ and 1 ≤ q ≤ ∞.

Example 5. Weighted Orlicz spaces. Given a Young function Φ, define the
Orlicz space LΦ(Rn−1) to be the function space associated with the Luxemburg
norm

(1.60) ‖f‖LΦ(Rn−1) := inf
{
λ > 0 :

∫
Rn−1

Φ
( |f(x′)|

λ

)
dx′ ≤ 1

}
.

Then X := LΦ(Rn−1) is a rearrangement invariant function space. It turns out
that its weighted version X(w), originally defined as in (1.44), may be described
as above with the Lebesgue measure replaced by w(x′) dx′. Clearly the Lebesgue
spaces are Orlicz spaces with Φ(t) := tp. Other examples include the Zygmund
spaces Lp(logL)α, 1 < p <∞, α ∈ R, which are defined using Φ(t) := tp log(e+t)α.
In this case, pX = qX = p, so Theorem 1.5 applies and yields the well-posedness
of the Dirichlet problem in Rn

+ for a system L as in (1.1)–(1.2) with data in the
weighted Zygmund spaces Lp(logL)α(Rn−1, w(x′)dx′), 1 < p < ∞, α ∈ R, and
w ∈ Ap(R

n−1).
The spaces Lp + Lq and Lp ∩ Lq can also be treated as Orlicz spaces, with

Φ(t) ≈ max{tp, tq} and Φ(t) ≈ min{tp, tq}, respectively. In both cases, pX =
min{p, q} and qX = max{p, q}. Hence, if 1 < min{p, q} and max{p, q} < ∞ then
Theorem 1.5 applies. Note that for these and other Orlicz spaces, the Boyd indices
can be computed directly from the function Φ (see [12], Chapter 4).

Remark 1.6. As the alert reader has perhaps noted, in the applications of The-
orem 1.1 (such as those discussed in (1.14), (1.16), Theorem 1.4, Theorem 1.5,
as well as in Examples 1-5) we have taken the set X to actually be a linear sub-
space of M. This is no accident since, in general, starting with X,Y merely satis-
fying (1.7)–(1.8), if X̂ is the linear span of X in M, then the pair X̂,Y continue to
satisfy (1.7)–(1.8). Indeed, this is readily seen from the sublinearity of M and the
fact that Y is a function lattice. In particular, for any system L as in (1.1)–(1.2),

the (X̂,Y)-Dirichlet boundary value problem for L in Rn
+ is uniquely solvable in

the same manner as before.

We conclude our list of examples by discussing another significant case when
Theorem 1.1 applies.

Example 6. Morrey spaces. Recall that the Morrey scale in Rn−1 consists of
spaces Lp,λ(Rn−1) defined for each p ∈ (1,∞) and λ ∈ (0, n− 1) according to

(1.61) Lp,λ(Rn−1) :=
{
f ∈ Lp

loc(R
n−1) : ‖f‖Lp,λ(Rn−1) <∞

}
where

(1.62) ‖f‖Lp,λ(Rn−1) := sup
x′∈Rn−1, r>0

(
r−λ

∫
Bn−1(x′,r)

|f(y′)|p dy′
)1/p

.
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Given a function f ∈ Lp
loc(R

n−1), break up∫
Rn−1

|f(x′)|
1 + log+ |x′|
1 + |x′|n−1

dx′ =
∞∑
j=0

Ij(1.63)

where

I0 :=

∫
Bn−1(0′,2)

|f(x′)|
1 + log+ |x′|
1 + |x′|n−1

dx′(1.64)

and, for each j ∈ N,

Ij :=

∫
Bn−1(0′,2j+1)\Bn−1(0′,2j)

|f(x′)|
1 + log+ |x′|
1 + |x′|n−1

dx′.(1.65)

Use Hölder’s inequality and (1.62) to estimate

Ij ≤
1 + (j + 1) ln 2

2j(n−1)

∫
Bn−1(0′,2j+1)

|f(x′)| dx′(1.66)

≤ 2n−1
(ωn−2

n− 1

) p−1
p 1 + (j + 1) ln 2

2(j+1)(n−1)/p

(∫
Bn−1(0′,2j+1)

|f(x′)|p dx′
)1/p

≤ 2n−1
(ωn−2

n− 1

) p−1
p 1 + (j + 1) ln 2

2(j+1)(n−1−λ)/p
‖f‖Lp,λ(Rn−1), ∀ j ∈ N,

and, likewise,

I0 ≤ 2n−1
(ωn−2

n− 1

) p−1
p 1 + ln 2

2(n−1−λ)/p
‖f‖Lp,λ(Rn−1).(1.67)

Bearing in mind that

(1.68) λ < n− 1 =⇒
∞∑
j=0

1 + (j + 1) ln 2

2(j+1)(n−1−λ)/p
<∞,

then yields ∫
Rn−1

|f(x′)|
1 + log+ |x′|
1 + |x′|n−1

dx′ ≤ Cn,p,λ ‖f‖Lp,λ(Rn−1)(1.69)

for some finite constant Cn,p,λ > 0 independent of f . This proves that if p ∈ (1,∞)
and λ ∈ (0, n− 1) then

Lp,λ(Rn−1) ⊂ L1
(
R

n−1 ,
1 + log+ |x′|
1 + |x′|n−1

dx′
)
.(1.70)

In addition, it is clear from (1.61)–(1.62) that

Lp,λ(Rn−1) is a function lattice if 1 < p <∞ and 0 < λ < n− 1,(1.71)
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and it has been proved by F. Chiarenza and M. Frasca in [9] that

(1.72)
the Hardy–Littlewood maximal operatorM is bounded on the Mor-
rey space Lp,λ(Rn−1) whenever 1 < p <∞ and 0 < λ < n− 1.

Granted (1.70)–(1.72), Theorem 1.1 applies and gives that for any system L as in
(1.1)–(1.2) the Lp,λ(Rn−1)-Dirichlet problem

(1.73)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C ∞(Rn
+),

Lu = 0 in Rn
+,

Nu ∈ Lp,λ(Rn−1),

u
∣∣n.t.
∂Rn

+

= f ∈ Lp,λ(Rn−1),

is well-posed for arbitrary p ∈ (1,∞) and λ ∈ (0, n− 1).

In the last portion of this section we briefly comment on the literature deal-
ing with Dirichlet boundary value problems for elliptic operators in the upper-
half space. From the outset it is important to recognize that the nature of these
problems is affected not only by the choice of the function space from which the
boundary datum f is selected but also by the means through which the size of the
solution u is measured and the very manner in which its boundary trace is consid-
ered. For example, there is an enormous amount of work devoted to the case when
the solution u is sought in various Sobolev spaces in Rn

+, the boundary datum f is
assumed to belong to suitable Besov spaces on Rn−1, and the boundary trace of u
is taken in the generalized sense of Sobolev space theory. Classical references in
this regard include [1], [2], [23], [25], [40], and the reader is also invited to consult
the literature cited therein.

In this paper we are interested in the case when the size of u is measured in
terms of the nontangential maximal function and the trace of u on the boundary
of R

n
+ is taken in a nontangential pointwise sense (cf. (2.4)). In the particular

case when L = Δ, the Laplacian in Rn, the boundary value problem (1.39) has
been treated at length in a number of monographs, including [5], [17], [37], [38],
and [39]. In all these works, the existence part makes use of the explicit form of
the harmonic Poisson kernel from (1.5), while the uniqueness relies on either the
Maximum Principle, or the Schwarz reflection principle for harmonic functions.
Neither of the latter techniques may be adapted successfully to prove uniqueness
in the case of general systems treated here, so we develop a new approach based
on the properties of the Green function for an elliptic system in the upper half-
space (reviewed in the appendix). While arguments involving Green functions have
been successfully used in the past to prove uniqueness, the novelty here is that we
succeed in constructing a Green function whose basic properties are compatible
with the very formulation of the original boundary value problem. In our case,
a key aspect is the specific manner in which the nontangential maximal function
of the derivatives of the said Green function are controlled; cf. (A.29), and other
pertinent features from Theorem A.4. It is remarkable that such a detailed analysis
may be carried out for the entire class of elliptic systems L as in (1.1)–(1.2).
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There is also a sizable amount of work devoted to studying the (classical) Dirich-
let problem for the Laplacian in the upper-half space with a continuous boundary
datum f . In such a scenario, one seeks a harmonic function u ∈ C∞(Rn

+)∩C 0(Rn
+)

satisfying u|∂Rn
+
= f . As noted by Helms in [18], p. 42 and p. 158, even in the case

when the boundary datum f is a bounded continuous function in Rn−1 the solu-
tion u of this classical Dirichlet problem is not unique. To ensure uniqueness in
such a setting one typically specifies the behavior of u(x′, t) as t → ∞. A case
in point is [33], where uniqueness is established in the class of harmonic func-
tions u ∈ C∞(Rn

+) ∩ C 0(Rn
+) satisfying u(x) = o(|x| secγ θ) as |x| → ∞ (where

θ := arccos(xn/|x|) and γ ∈ R is arbitrary), by proving a Phragmén–Lindelöf
principle under the latter growth condition. This builds on the work of [32], [42],
and others. In this regard, see also [41]. All these works rely on positivity and
specialized properties of the Laplace operator, so the techniques employed do not
extend to the considerably more general class of elliptic systems considered in the
present paper.

Much attention has also been paid to the case of the Lp-Dirichlet problem in
the upper-half space for variable coefficient scalar elliptic operators in divergence
form, L = divA∇, under various assumptions on the coefficient matrix A = A(x′, t)
for (x′, t) ∈ Rn

+. For this topic, the interested reader is referred to the excellent ex-
position in Kenig’s monograph [20], as well as the more recent work in [3], [19] and
in the references cited there. This body of work crucially relies on the De Giorgi–
Nash–Moser theory, an ingredient not available for the type of systems considered
in the present paper.

Finally, we wish to mention that in [31] Shen has considered the well-posedness
of the Dirichlet problem for elliptic systems L as in (1.1)–(1.2) in a Lipschitz do-
main Ω with boundary data from Morrey spaces on ∂Ω. For this more general class
of domains he proved the well-posedness of a boundary value problem formulated
as in (1.73) with the upper-half space Rn

+ replaced by a Lipschitz domain Ω but
only when p = 2. In relation to this, the novelty in our paper is the consideration
of the full range p ∈ (1,∞).

2. Preliminary matters

Throughout the paper, we let N stand for the collection of all strictly positive
integers, and set N0 := N ∪ {0}. In this way Nk

0 , where k ∈ N, stands for the set
of multi-indices α = (α1, . . . , αk) with αj ∈ N0 for 1 ≤ j ≤ k. Also, fix n ∈ N with
n ≥ 2. We shall work in the upper-half space

(2.1) R
n
+ :=

{
x = (x′, xn) ∈ R

n = R
n−1 × R : xn > 0

}
,

whose topological boundary ∂Rn
+ = Rn−1 × {0} will be frequently identified with

the horizontal hyperplane Rn−1 via (x′, 0) ≡ x′. The origin in Rn−1 is denoted
by 0′ and we let Bn−1(x

′, r) stand for the (n − 1)-dimensional Euclidean ball of
radius r centered at x′ ∈ Rn−1. Fix a number κ > 0 and for each boundary
point x′ ∈ ∂Rn

+ introduce the conical nontangential approach region with vertex
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at x′ as

(2.2) Γ(x′) := Γκ(x
′) :=

{
y = (y′, t) ∈ R

n
+ : |x′ − y′| < κ t

}
.

Given a vector-valued function u : Rn
+ → CM , define the nontangential maximal

function of u by

(2.3)
(
Nu
)
(x′) :=

(
Nκu

)
(x′) := sup

{
|u(y)| : y ∈ Γκ(x

′)
}
, x′ ∈ R

n−1.

It is well-known that the aperture of the cones used to define the nontangential
maximal operator plays only a secondary role; see Proposition A.6 for a concrete
result of this flavor. Whenever meaningful, we also define

(2.4) u
∣∣n.t.
∂Rn

+

(x′) := lim
Γκ(x′)�y→(x′,0)

u(y) for x′ ∈ R
n−1.

In the sequel, we shall need to consider a localized version of the nontangential
maximal operator. Specifically, given any E ⊂ Rn

+, for each u : E → CM we set

(2.5)
(
NEu

)
(x′) :=

(
NE

κ u
)
(x′) := sup

{
|u(y)| : y ∈ Γκ(x

′) ∩E
}
, x′ ∈ R

n−1.

Hence, NE
κ u = Nκũ where ũ is the extension of u to Rn

+ by zero outside E. In the
scenario when u is originally defined in the entire upper-half space Rn

+ we may
therefore write

(2.6) NE
κ u = Nκ(1Eu),

where 1E denotes the characteristic function of E. Corresponding to the special

case when E =
{
(x′, xn) ∈ R

n
+ : xn < ε

}
, we simply write N (ε)

κ in place of NE
κ .

That is,

(2.7) N (ε)
κ u(x′) := sup

y=(y′,yn)∈Γκ(x
′)

0<yn<ε

|u(y)|, x′ ∈ R
n−1.

Throughout the paper we use the symbol |E| to denote the Lebesgue measure
of Lebesgue measurable set E ⊂ R

n. The Lebesgue measure itself in R
n will

be denoted by L n. We let Q denote open cubes in Rn−1 with sides parallel to
the coordinate axes, and employ �(Q) to denote its side-length. We will also use
the standard convention λQ, with λ > 0, for the cube concentric with Q whose
side-length is λ �(Q). For any Q and any h ∈ L1

loc(R
n−1), we write

(2.8) hQ := −
∫
Q

h dL n−1 :=
1

|Q|

∫
Q

h(x′) dx′.

If the function h is CM -valued, the average is taken componentwise. The Hardy–
Littlewood maximal operator on Rn−1 is defined as

(2.9) Mf(x′) := sup
Q�x′

−
∫
Q

|f(y′)| dy′, x′ ∈ R
n−1.
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Also, we write

(2.10) M(2) := M◦M

for the two-fold composition of M with itself. We follow the customary nota-
tion A ≈ B in order to indicate that each quantity A,B is dominated by a fixed
multiple of the other (via constants independent of the essential parameters inter-
vening in A and B).

Lemma 2.1. For x′ ∈ Rn−1, one has

(2.11) M
(
1Bn−1(0′,1)

)
(x′) ≈ 1

1 + |x′|n−1

and

(2.12) M(2)
(
1Bn−1(0′,1)

)
(x′) ≈ 1 + log+ |x′|

1 + |x′|n−1
,

where the implicit constants depend only on n.

Proof. The proof of (2.11) is elementary but we include it for completeness. Note
first that for every x′ ∈ Rn−1, if we denote by Qx′ the cube in Rn−1 centered at
the origin and with side-length 2 (|x′| + 1), then x′ ∈ Qx′ and Bn−1(0

′, 1) ⊂ Qx′ .
Thus, we easily obtain

M
(
1Bn−1(0′,1)

)
(x′) ≥ −

∫
Qx′

1Bn−1(0′,1)(y
′) dy′(2.13)

=
|Bn−1(0

′, 1)|
|Qx′ | ≥ Cn

1 + |x′|n−1
.

To obtain the converse inequality we first observe that, clearly,

(2.14) M
(
1Bn−1(0′,1)

)
(x′) ≤ 1 ≤ Cn

1 + |x′|n−1
, whenever |x′| ≤ 2.

Suppose next that |x′| > 2. Notice that if x′ ∈ Q ⊂ Rn−1 and there is some
y′ ∈ Q ∩Bn−1(0

′, 1) then

(2.15) |x′| ≤ |x′ − y′|+ |y′| ≤
√
n �(Q) + 1 ≤

√
n �(Q) + |x′|/2.

Therefore �(Q) > |x′|/(2
√
n), which entails

(2.16) −
∫
Q

1Bn−1(0′,1)(y
′) dy′ ≤ |Bn−1(0

′, 1)|
|Q| ≤ Cn

|x′|n−1
≤ Cn

1 + |x′|n−1
.

The same inequality trivially holds in the case when Q is disjoint from Bn−1(0
′, 1).

Taking the supremum of the most extreme sides of (2.16) over all cubes Q con-
taining x′ then yields the upper estimate in (2.11) in the case when |x′| > 2. This
finishes the proof of (2.11).



932 J.M. Martell, D. Mitrea, I. Mitrea, and M. Mitrea

Turning to the proof of (2.12), we first invoke an auxiliary estimate whose proof
can be found in [13]:

(2.17)
M(2)f(x′) ≈ ML logLf(x

′) := supQ�x′ ‖f‖L logL,Q

uniformly for f ∈ L1
loc(R

n−1) and x′ ∈ Rn−1,

where ‖ · ‖L logL,Q stands for the localized and normalized Luxemburg norm

(2.18) ‖f‖L logL,Q := inf
{
λ > 0 : −

∫
Q

Φ
( |f(x′)|

λ

)
dx′ ≤ 1

}
,

with Φ(t) := t log(e + t), t ≥ 0. Defining ϕ(t) :=
(
Φ−1(t−1)

)−1
for t ∈ (0,∞) and

ϕ(0) := 0, easy calculations lead to

(2.19) ‖1Bn−1(0′,1)‖L logL,Q = ϕ
( |Bn−1(0

′, 1) ∩Q|
|Q|

)
= ϕ
(
−
∫
Q

1Bn−1(0′,1)(y
′) dy′

)
.

Using then (2.17), (2.19), the fact that ϕ is a continuous strictly increasing function
in [0,∞), and (2.11), we conclude that

M(2)
(
1Bn−1(0′,1)

)
(x′) ≈ sup

Q�x′
ϕ
(
−
∫
Q

1Bn−1(0′,1)(y
′) dy′

)
(2.20)

= ϕ
(
sup
Q�x′

−
∫
Q

1Bn−1(0′,1)(y
′) dy′

)
= ϕ
(
M(1Bn−1(0′,1))(x

′)
)
≈ ϕ
( 1

1 + |x′|n−1

)
,

uniformly for x′ ∈ Rn−1. Thus, to complete the proof of (2.12) we only need to
find a suitable estimate for the last term above. To this end, one can easily check
that Φ−1(t) ≈ t/ log(e+ t), which gives that ϕ(t) ≈ t log(e+ t−1). This and (2.20)
then yield

(2.21) M(2)
(
1Bn−1(0′,1)

)
(x′) ≈ 1

1 + |x′|n−1
log(e+ 1 + |x′|n−1) ≈ 1 + log+ |x′|

1 + |x′|n−1
,

uniformly for x′ ∈ Rn−1, as desired. �

We next introduce the class of Muckenhoupt weights. Call a real-valued func-
tion w defined on R

n−1 a weight if it is non-negative and measurable. Given a
weight w and p ∈ [1,∞], we write Lp(Rn−1, w) = Lp(Rn−1, w dx′). If 1 < p <∞,
a weight w belongs to the Muckenhoupt class Ap = Ap(R

n−1) if

(2.22) [w]Ap := sup
Q⊂Rn−1

(
−
∫
Q

w(x′) dx′
)(

−
∫
Q

w(x′)1−p′
dx′
)p−1

<∞,

where p′ = p/(p−1) denotes the conjugate exponent of p. Corresponding to p = 1,
the class A1 = A1(R

n−1) is then defined as the collection of all weights w in R
n−1



The Dirichlet problem with data in Köthe function spaces 933

for which

(2.23) [w]A1 := sup
Q⊂Rn−1

(
ess inf

Q
w
)−1(

−
∫
Q

w(x′) dx′
)
<∞.

In particular,

(2.24) −
∫
Q

w(y′) dy′ ≤ [w]A1 w(x
′) for a.e. x′ ∈ Q,

for every cube Q ⊂ Rn−1. Equivalently,

(2.25) Mw(x′) ≤ [w]A1 w(x
′) for a.e. x′ ∈ R

n−1.

Finally, corresponding to p = ∞, we let A∞ stand for
⋃

1≤p<∞Ap.

We summarize a number of well-known facts which are relevant for us here. See,
e.g., [17] for a more detailed discussion, including the following basic properties:

(i) given 1 < p <∞ and a weight w, then w ∈ Ap if and only if M is bounded
on Lp(Rn−1, w);

(ii) given 1 < p < ∞ and a weight w, then w ∈ Ap if and only if w1−p′ ∈ Ap′ ,

and [w1−p′
]Ap′ = [w]p

′−1
Ap

;

(iii) if w1, w2 ∈ A1 and 1 ≤ p < ∞, then w1 w
1−p
2 ∈ Ap and [w1 w

1−p
2 ]Ap ≤

[w1]A1 [w2]
p−1
A1

;

(iv) the classes Ap, 1 ≤ p <∞, may be equivalently defined using balls in Rn−1

(in place of cubes), in which scenario [w]ballsAp
≈ [w]Ap with implicit constants

depending only on n and p.

In the last part of this section we discuss the notion of Poisson kernel in Rn
+

for an operator L as in (1.1)–(1.2).

Definition 2.2 (Poisson Kernel for L in Rn
+). Let L be a second-order elliptic

system with complex coefficients as in (1.1)–(1.2). A Poisson kernel for L in Rn
+

is a matrix-valued function PL =
(
PL
αβ

)
1≤α,β≤M

: Rn−1 → CM×M such that the

following conditions hold:

(a) there exists C ∈ (0,∞) such that

(2.26) |PL(x′)| ≤ C

(1 + |x′|2)n/2 for each x′ ∈ R
n−1;

(b) the function PL is Lebesgue measurable and
∫
Rn−1P

L(x′) dx′ = IM×M , the
M ×M identity matrix;

(c) if KL(x′, t) := PL
t (x′) := t1−nPL(x′/t), for each x′ ∈ Rn−1 and t ∈ (0,∞),

then the functionKL =
(
KL

αβ

)
1≤α,β≤M

satisfies (in the sense of distributions)

(2.27) LKL
·β = 0 in R

n
+ for each β ∈ {1, . . . ,M},

where KL
·β :=

(
KL

αβ

)
1≤α≤M

.
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Remark 2.3. The following comments pertain to Definition 2.2.

(i) Condition (a) ensures that the integral in part (b) is absolutely convergent.

(ii) Condition (c) and the ellipticity of the operator L ensure (cf. [26], Theo-
rem 10.9, p. 318) that KL ∈ C ∞(Rn

+). In particular, (2.27) holds in a point-
wise sense. Also, given that PL(x′) = KL(x′, 1) for each x′ ∈ Rn−1, we
deduce that PL ∈ C∞(Rn−1).

(iii) Condition (b) is equivalent to limt→0+ P
L
t (x′) = δ0′(x

′) IM×M in D′(Rn−1),
where δ0′ is Dirac’s distribution with mass at the origin 0′ of Rn−1.

(iv) For all x ∈ Rn
+ and λ > 0 we have KL(λx) = λ1−nKL(x).

Poisson kernels for elliptic boundary value problems in a half-space have been
studied extensively in [1], [2], §10.3 in [21], [34], [35], [36]. Here we record a
corollary of more general work done by Agmon, Douglis, and Nirenberg in [2].

Theorem 2.4. Any elliptic differential operator L as in (1.1)–(1.2) has a Poisson
kernel PL in the sense of Definition 2.2, which has the additional property that the
function

(2.28) KL(x′, t) := PL
t (x′) for all (x′, t) ∈ R

n
+,

satisfies KL ∈ C∞(Rn
+ \B(0, ε)

)
for every ε > 0.

Remark 2.5. As a consequence of part (iv) in Remark 2.3 and the regularity
of K stated in Theorem 2.4, we have that for each multi-index α ∈ Nn

0 there exists
Cα ∈ (0,∞) with the property that

(2.29)
∣∣(∂αKL)(x)

∣∣ ≤ Cα |x|1−n−|α|, for every x ∈ Rn
+ \ {0}.

In this respect, we wish to note that this estimate is stronger than what a direct
application of the properties of Poisson kernels listed in Definition 2.2 would imply.
Specifically, as noted in part (ii) of Remark 2.3, we have KL ∈ C ∞(Rn

+) which, in
concert with part (iv) of Remark 2.3, shows that (2.29) holds for x ∈ Γκ(0

′), for
each κ > 0, with a constant also depending on the parameter κ.

3. Tools for existence and uniqueness

This section is devoted to proving the results stated in Theorems 3.1–3.2 below.
Here and elsewhere, the convolution between two functions, which are matrix-
valued and vector-valued, respectively, takes into account the algebraic multipli-
cation between a matrix and a vector in a natural fashion.

Theorem 3.1 (Main tool for the existence part). Let L be a system as in (1.1)–
(1.2). Given a Lebesgue measurable function f : Rn−1 → CM satisfying

(3.1)

∫
Rn−1

|f(x′)|
1 + |x′|n dx

′ <∞,
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set

(3.2) u(x′, t) := (PL
t ∗ f)(x′), ∀ (x′, t) ∈ R

n
+,

where PL is the Poisson kernel for L in R
n
+ from Theorem 2.4. Then u is mean-

ingfully defined via an absolutely convergent integral,

(3.3) u ∈ C∞(Rn
+), Lu = 0 in R

n
+, u

∣∣n.t.
∂Rn

+

= f a.e. in R
n−1

(convergence holds, for instance, in the set of Lebesgue points of f), and there
exists a constant C = C(n, L) ∈ (0,∞) with the property that

(3.4) Nu(x′) ≤ CMf(x′), ∀x′ ∈ R
n−1.

Theorem 3.2 (Main tool for the uniqueness part). Let L be a system as in (1.1)–
(1.2). Assume that u ∈ C∞(Rn

+) is such that Lu = 0 in Rn
+, its nontangential

maximal function Nu satisfies

(3.5)

∫
Rn−1

Nu(x′)
1 + log+ |x′|
1 + |x′|n−1

dx′ <∞,

and that u
∣∣n.t.
∂Rn

+

= 0 a.e. in Rn−1. Then u ≡ 0 in Rn
+.

In preparation to presenting the proof of Theorem 3.1 we first deal with a
purely real variable lemma pertaining to the stability of the first weighted L1

space appearing in (1.7) under convolutions with a fixed (matrix-valued) function
whose size is controlled by the harmonic Poisson kernel. In the same context, we
also deal with nontangential maximal function estimates and nontangential limits.

Lemma 3.3. Let P =
(
Pαβ

)
1≤α,β≤M

: Rn−1 → CM×M be a Lebesgue measurable

function satisfying, for some c ∈ (0,∞),

(3.6) |P (x′)| ≤ c

(1 + |x′|2)n/2 for each x′ ∈ R
n−1,

and recall that Pt(x
′) := t1−nP (x′/t) for each x′ ∈ R

n−1 and t ∈ (0,∞). Then,
for each t ∈ (0,∞) fixed, the operator

(3.7) L1
(
R

n−1 ,
1

1 + |x′|n dx
′
)
� f �→ Pt ∗ f ∈ L1

(
R

n−1 ,
1

1 + |x′|n dx
′
)

is well-defined, linear and bounded, with operator norm controlled by C(t + 1).
Moreover, for every κ > 0 there exists a finite constant Cκ > 0 with the property
that for each x′ ∈ Rn−1,

(3.8) sup
|x′−y′|<κt

∣∣(Pt ∗ f)(y′)
∣∣ ≤ Cκ Mf(x′), ∀ f ∈ L1

(
R

n−1 ,
1

1 + |x′|n dx
′
)
.
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Finally, given any function

(3.9) f = (fβ)1≤β≤M ∈ L1
(
R

n−1 ,
1

1 + |x′|n dx
′
)
⊂ L1

loc(R
n−1),

at every Lebesgue point x′0 ∈ R
n−1 of f there holds

(3.10) lim
(x′, t)→(x′

0,0)

|x′−x′
0|<κt

(Pt ∗ f)(x′) =
(∫

Rn−1

P (x′) dx′
)
f(x′0),

and the function

(3.11) R
n
+ � (x′, t) �→ (Pt ∗ f)(x′) ∈ C

M is locally integrable in R
n
+.

Proof. Pick a function f as in (3.9) and fix some t ∈ (0,∞). First, consider the issue
whether Pt ∗f is well-defined, via an absolutely convergent integral. In this regard,
note that for any x′, y′ ∈ Rn−1 and t ∈ (0,∞) one has |y′| ≤ (1+|x′|/t) (t+|x′−y′|)
and 1 ≤ (1/t)(t+ |x′ − y′|), hence

(3.12) 1 + |y′| ≤ (1 + |x′|/t+ 1/t) (t+ |x′ − y′|).

Thus, for each fixed x′ ∈ Rn−1 and t ∈ (0,∞), we have

(3.13)

∫
Rn−1

t

(t+ |x′ − y′|)n |f(y′)| dy′

≤ C t(1 + |x′|/t+ 1/t)n
∫
Rn−1

|f(y′)|
1 + |y′|n dy

′ <∞,

which, in light of (3.6), shows that Pt ∗ f is meaningfully defined via an absolutely
convergent integral. To proceed, observe from (3.6) and (1.5) that there exists
some C ∈ (0,∞) with the property that

(3.14) |Pt(x
′)| ≤ CPΔ

t (x′) for all x′ ∈ R
n−1, t ∈ (0,∞).

Consequently, ∫
Rn−1

∣∣(Pt ∗ f)(x′)
∣∣

1 + |x′|n dx′ ≤ C

∫
Rn−1

(
PΔ
t ∗ |f |

)
(x′)PΔ

1 (x′) dx′(3.15)

= C
(
(PΔ

t ∗ |f |) ∗ PΔ
1

)
(0′) = C

(
(PΔ

t ∗ PΔ
1 ) ∗ |f |

)
(0′)

= C
(
PΔ
t+1 ∗ |f |

)
(0′) ≤ C (t+ 1)

∫
Rn−1

|f(y′)|
1 + |y′|n dy

′,

where we have used the semigroup property for the harmonic Poisson kernel (see,
e.g., [37], (vi), p. 62), and where the last inequality follows from (3.13) written with
t + 1 in place of t and x′ = 0′. Now all desired conclusions concerning (3.7) are
seen from (3.15).
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Before proceeding with the rest of the proof, let us momentarily digress in order
to note that, once some κ > 0 has been fixed, (3.6) self-improves in the sense that
there exists Cκ ∈ (0,∞) such that, for every x′ ∈ Rn−1 and t ∈ (0,∞),

(3.16) |Pt(x
′ − y′)| ≤ Cκ

t

(t2 + |x′|2)n/2 whenever |y′| < κt.

Indeed, this follows from the fact that |x′| ≤ max{1, κ}(t + |x′ − y′|) whenever
x′, y′ ∈ Rn−1 and t ∈ (0,∞) are such that |y′| < κt which, in turn, is easily
justified by the triangle inequality.

To deal with (3.8), pick a function f as in (3.9). Also, fix x′ ∈ R
n−1 and let

y′ ∈ Rn−1 and t ∈ (0,∞) satisfy |x′ − y′| < κt. Granted (3.16), this implies

(3.17) |Pt(y
′ − z′)| ≤ Cκ

t

(t2 + |x′ − z′|2)n/2 for every z′ ∈ R
n−1.

Based on (3.17) we may then estimate∣∣(Pt ∗ f)(y′)
∣∣ ≤ ∫

Rn−1

|Pt(y
′−z′)| |f(z′)| dz′ ≤ Cκ

∫
Rn−1

t

(t2 + |x′−z′|2)n/2 |f(z′)| dz′

≤ Cκ −
∫
Bn−1(x′,t)

|f(z′)| dz′

+
∞∑
j=0

∫
Bn−1(x′,2j+1t)\Bn−1(x′,2jt)

t

(t2 + |x′ − z′|2)n/2 |f(z′)| dz′

≤ Cκ

∞∑
j=0

2−j −
∫
Bn−1(x′,2jt)

|f(z′)| dz′ ≤ CκMf(x′),(3.18)

from which (3.8) follows.
Let us now deal with (3.10). To this end, abbreviate

(3.19) A :=

∫
Rn−1

P (x′) dx′ ∈ C
M×M .

Also, select a function f as in (3.9) and introduce

(3.20) u(x′, t) := (Pt ∗ f)(x′) for each (x′, t) ∈ R
n
+.

From what we have proved already, this function is well-defined by an absolutely
convergent integral. In the remainder of the proof, we shall adapt the argument
in [37], p. 198, where the case L = Δ and f ∈ Lp(Rn−1), 1 ≤ p ≤ ∞, has been
treated. Specifically, fix a Lebesgue point x′0 ∈ Rn−1 of f and let ε > 0 be arbitrary.
Then there exists δ > 0 such that

(3.21) −
∫
Bn−1(0′,r)

∣∣f(z′ + x′0)− f(x′0)
∣∣ dz′ < ε, ∀ r ∈ (0, δ].

In particular, if we set

(3.22) g :=
[
f(·+ x′0)− f(x′0)

]
1Bn−1(0′,δ) in R

n−1,



938 J.M. Martell, D. Mitrea, I. Mitrea, and M. Mitrea

then (3.21) implies (for some dimensional constant cn > 0)

(3.23) Mg(0′) ≤ cn ε.

Then, bearing in mind (3.19), for each y′ ∈ Rn−1 and t ∈ (0,∞) we may write

u(y′ + x′0, t)−Af(x′0) =

∫
Rn−1

Pt(y
′ + x′0 − z′)[f(z′)− f(x′0)] dz

′(3.24)

=

∫
Rn−1

Pt(y
′ − z′)[f(z′ + x′0)− f(x′0)] dz

′.

In turn, this and (3.16) then imply that, under the assumption that y′ ∈ Rn−1 and
t ∈ (0,∞) satisfy |y′| < κt, we have∣∣u(y′+x′0, t)−Af(x′0)∣∣ ≤ Cκ

∫
{z′∈Rn−1: |z′|<δ}

t

(t2 + |z′|2)n/2 |f(z′+x′0)− f(x′0)| dz′

+ Cκ

∫
{z′∈Rn−1: |z′|≥δ}

t

(t2 + |z′|2)n/2 |f(z′+x′0)− f(x′0)| dz′

=: I1 + I2.(3.25)

Note that thanks to (3.22), (1.5), and (3.8) (used with P = PΔ, f = g, and
x′ = y′ = 0), for some constant Cκ ∈ (0,∞) independent of ε and f we have

I1 = Cκ

∫
Rn−1

t

(t2 + |z′|2)n/2 |g(z′)| dz′ = Cκ(P
Δ
t ∗ |g|)(0′) ≤ CκMg(0′) ≤ Cκε,

(3.26)

where the last inequality is (3.23). For I2, we first observe that if |z′| ≥ δ then

(3.27) 1 + |z′ + x′0| ≤ (1 + |x′0|) (1 + |z′|) ≤ (1 + |x′0|) (1 + δ−1) |z′|.

Thus,

I2 ≤ Cκ t

∫
{z′∈Rn−1: |z′|≥δ}

1

|z′|n
∣∣f(z′ + x′0)− f(x′0)

∣∣ dz′(3.28)

≤ C t
(∫

{z′∈Rn−1: |z′|≥δ}

|f(z′ + x′0)|
(1 + |z′ + x0|)n

dz′ +
|f(x′0)|
δ

)
≤ C t

(∫
Rn−1

|f(x′)|
1 + |x′|n dx

′ + |f(x′0)|
)
,

where C depends only on n, κ, x′0, and δ. Hence limt→0+ I2 = 0. This, (3.26),
and (3.25) then imply

(3.29) lim sup
|y′|<κt, t→0+

∣∣u(y′ + x′0, t)−Af(x′0)
∣∣ ≤ Cκ ε,

for some Cκ ∈ (0,∞) independent of ε and f . Now the claim in (3.10) is clear
from (3.29) and (3.19)–(3.20). Finally, (3.13) implies u ∈ L1

loc(R
n
+), and this takes

care of (3.11). �
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After these preparations, the proof of Theorem 3.1 is short and straightforward.

Proof of Theorem 3.1. That u in (3.2) is well-defined and satisfies (3.4) as well as

u
∣∣n.t.
∂Rn

+

= f a.e. in Rn−1 follows immediately from Lemma 3.3, Theorem 2.4, and the

normalization of the Poisson kernel (cf. part (b) in Definition 2.2). Next, given a
multi-index α ∈ Nn

0 , from (2.29) if |α| ≥ 1 and from (2.28) combined with part (a)
in Definition 2.2 if |α| = 0 we see that there exists a constant Cα ∈ (0,∞) with
the property that

(3.30)
∣∣(∂αKL)(x′, t)

∣∣ ≤ Cα t
−|α| t

(t+ |x′|)n , ∀ (x′, t) ∈ R
n
+.

In concert with (3.13), this justifies differentiation under the integral defining u
so, ultimately, u ∈ C∞(Rn

+). Moreover, Lu = 0 in Rn
+ by (3.2), part (c) in

Definition 2.2, and part (ii) in Remark 2.3. �

Remark 3.4. In the proof of Theorem 3.1, the construction of a function u sat-
isfying (3.3) is based on the formula (3.2) in which PL is the Agmon–Douglis–
Nirenberg Poisson kernel for L from Theorem 2.4. Such a choice ensured that (3.30)
holds which, as noted in Remark 2.5, is not immediately clear for a “generic” Pois-
son kernel in the sense of Definition 2.2. Later on, in Theorem 5.1, we shall actually
show that there exists precisely one Poisson kernel for the system L in the sense of
Definition 2.2, so this issue will eventually become a moot point. This being said,
in the proof of Theorem 5.1 it is important to know that

for any PL as in Definition 2.2, properties (3.3)

and (3.4) remain valid for u as in (3.1)–(3.2).
(3.31)

To see that this is indeed the case, assume that PL is as in Definition 2.2. Then, if

u is as in (3.1)–(3.2), it follows from Lemma 3.3 that u ∈ L1
loc(R

n
+), u

∣∣n.t.
∂Rn

+

= f a.e.

in R
n−1, and Nu ≤ CMf . As such, there remains to show that u ∈ C∞(Rn

+) and
Lu = 0 in Rn

+. The strategy is to prove that Lu = 0 in the sense of distributions
in Rn

+, which then forces u ∈ C ∞(Rn
+) by elliptic regularity (see [26], Theorem 10.9,

p. 318). With this goal in mind, pick an arbitrary vector-valued test function
ϕ ∈ C∞

0 (Rn
+) and, with L

� denoting the transposed of L, compute∫
Rn

+

〈
u(x) , (L�ϕ)(x)

〉
dx(3.32)

=

∫
Rn

+

〈∫
Rn−1

PL
t (x′ − y′)f(y′) dy′ , (L�ϕ)(x′, t)

〉
dx′dt

=

∫
Rn−1

(∫
Rn

+

〈
PL
t (x′ − y′)f(y′) , (L�ϕ)(x′, t)

〉
dx′dt

)
dy′

=

∫
Rn−1

(∫
Rn

+

〈
KL(x)f(y′) ,

[
L�(ϕ(·+ (y′, 0))

)]
(x)
〉
dx
)
dy′

= 0.
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Above, the first equality uses (3.2), the second one is based on Fubini’s theorem
(whose applicability is ensured by (3.13)), the third employs the definition of KL

and a natural change of variables, while the fourth one follows from (2.27). Hence,
Lu = 0 in the sense of distributions in Rn

+, and the proof of (3.31) is complete.

We now turn to the task of proving Theorem 3.2, which is the key technical
result of this paper. In the process, we shall make use of all the auxiliary results
from Appendix A, which the reader is invited to review at this stage.

Proof of Theorem 3.2. Fix κ > 0 and let u = (uβ)1≤β≤M ∈ C ∞(Rn
+) be such that

Lu = 0 in Rn
+, Nκu satisfies (3.5), and u

∣∣n.t.
∂Rn

+

= 0 a.e. in Rn−1. The goal is to

show that u ≡ 0 in Rn
+. To this end, fix an arbitrary point x
 ∈ Rn

+ and consider
the Green function G = G( · , x
) in Rn

+ with pole at x
 for L�, the transposed
of the operator L (cf. Definition A.3 and Theorem A.4 for details on this matter).
By design, this is a matrix-valued function, say G = (Gαγ)1≤α,γ≤M .

We shall apply Theorem A.1 to a suitably chosen vector field and compact set.
To set the stage, consider the compact set

(3.33) K
 := B(x
, r) ⊂ R
n
+, where r := 3

4 dist (x

, ∂Rn

+).

Also, consider a function

(3.34)
ψ ∈ C∞(R) with the property that 0 ≤ ψ ≤ 1,

ψ(t) = 0 for t ≤ 1, and ψ(t) = 1 for t ≥ 2.

Fix (for now) some ε ∈ (0, r/4), and define

(3.35) ψε(x) := ψ(xn/ε) for each x = (x1, . . . , xn) ∈ R
n.

In particular, the conditions on ε and r ensure that

(3.36) ψε(x

) = 1.

To proceed, fix γ ∈ {1, . . . ,M} and define in Rn
+ (as usual, using the summation

convention over repeated indices)

(3.37) �F :=
(
ψεGαγ a

αβ
jk ∂kuβ − ψε uαa

βα
kj ∂kGβγ − uβ Gαγ a

αβ
kj ∂kψε

)
1≤j≤n

.

From (A.39), (A.41), (A.42), and (3.37) it follows that �F ∈ L1
loc(R

n
+,C

n), and a

direct calculation shows that div �F (considered in the sense of distributions in Rn
+)

is given by

div �F = (∂jψε)Gαγ a
αβ
jk ∂kuβ + ψε (∂jGαγ) a

αβ
jk ∂kuβ + ψεGαγ a

αβ
jk (∂j∂kuβ)

− (∂jψε)uα a
βα
kj ∂kGβγ − ψε (∂juα) a

βα
kj ∂kGβγ − ψε uα a

βα
kj (∂j∂kGβγ)

− (∂juβ)Gαγ a
αβ
kj ∂kψε − uβ (∂jGαγ) a

αβ
kj ∂kψε − uβ Gαγ a

αβ
kj (∂j∂kψε)

=: I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9,(3.38)
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where the last equality defines the Ii’s. Let us analyze some of these terms. Chang-
ing variables j′ = k and k′ = j in I1 yields

(3.39) I1 = (∂k′ψε)Gαγ a
αβ
k′j′ ∂j′uβ = −I7.

For I2 we change variables j′ = k, k′ = j, α′ = β, β′ = α in order to write

(3.40) I2 = ψε (∂k′Gβ′γ) a
β′α′
k′j′ ∂j′uα′ = −I5.

As regards I3, we have

(3.41) I3 = ψεGαγ (Lu)α = 0,

by the assumptions on u. For I6 we observe that (with G· γ := (Gμγ)μ)

(3.42) I6 = −ψε uα(L
�G· γ)α = −ψε uαδαγδx� = −ψε uγ δx� ,

thanks to (A.26) where we recall that G = G(·, x
) is the Green function for L�

with pole at x
. Collectively, these equalities permit us to conclude that

div �F =− ψε uγ δx� − (∂jψε)uαa
βα
kj ∂kGβγ(3.43)

− uβ (∂jGαγ)a
αβ
kj ∂kψε − uβ Gαγ a

αβ
kj (∂j∂kψε) in D′(Rn

+).

Notice that the first term in the right-hand side is a distribution supported at the
singleton {x
} and therefore is in E ′

K�
(Rn

+). The remaining terms are in L1(Rn
+),

as seen from estimates (3.57), (3.59) established below. Thus, condition (a) in
Theorem A.1 holds.

To verify condition (c) in Theorem A.1 we first observe that ψε ≡ 0 in the
horizontal strip {x = (x1, . . . , xn) ∈ Rn : 0 < xn < ε}. In light of (3.37), this
clearly implies that

(3.44) �F
∣∣n.t.
∂Rn

+

= 0 everywhere on ∂Rn
+.

Let us now turn our attention to condition (b) in Theorem A.1. This is a purely
qualitative membership, so bounds depending on ε and x
 are permissible. We first
observe from (3.37) that there exists C ∈ (0,∞) such that

(3.45) |�F | ≤ C 1{xn≥ε}|G| |∇u|+ C 1{xn≥ε}|u| |∇G|+ C ε−1 1{ε≤xn≤2ε}|u||G|,

in Rn
+. Pick a point x′ ∈ Rn−1, and select y = (y′, yn) ∈ Γκ/4(x

′) with yn ≥ ε

(where κ > 0 was fixed above). Let ρ := min
{
1/4 , 9κ/(16+ 4κ)

}
. We claim that

(3.46) B(y, ρ ε) ⊂ Γκ(x
′).

Indeed, if z = (z′, zn) ∈ B(y, ρ ε) then zn > 3 ε/4 and yn < zn + ε ρ. Hence,
yn < (4 ρ/3 + 1) zn. Since |y′ − x′| < (κ/4) yn also holds, we obtain

(3.47) |z′−x′| ≤ |z−y|+|y′−x′| < ρ ε+(κ/4) yn <
(
4 ρ/3+κρ/3+κ/4

)
zn ≤ κ zn,

ultimately proving (3.46).
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Using this and the interior estimates from Theorem A.5 we may therefore write

(3.48) |∇u(y)| ≤ C (ρ ε)−1−
∫
B(y,ρ ε)

|u(z)| dz ≤ Cε−1 sup
z∈B(y,ρ ε)

|u(z)| ≤ Cε−1 Nκu(x
′).

Next, consider a point y = (y′, yn) ∈ Γκ/4(x
′) \ K
 with yn ≥ ε. Then, as be-

fore, (3.46) holds. Let us also note that any z ∈ B(y, 2 ρ ε) satisfies |z−x
| > 3r/4
since, upon recalling that ε < r/2 and ρ ≤ 1/4, we may estimate

(3.49) r < |y − x
| ≤ |y − z|+ |z − x
| < 2 ρ ε+ |z − x
| ≤ r/4 + |z − x
|.
Thus,

(3.50) B(y, 2 ρ ε) ∩B(x
, 3r/4) = ∅.
In particular, L�G = 0 in B(y, 2 ρ ε). As such, we can use interior estimates for G
(cf. Theorem A.5) in this ball and (A.28) in order to write (with the help of (3.46)
and (3.50))

|∇G(y)| ≤ C (ρ ε)−1 −
∫
B(y,ρ ε)

|G(z)| dz ≤ C ε−1 sup
z∈B(y,ρ ε)

|G(z)|(3.51)

≤ C ε−1 NKc

κ G(x′) ≤ C ε−1 1 + log+ |x′|
1 + |x′|n−1

,

where K := B(x
, 3r/4) ⊂ Rn
+.

From (3.45), (3.48), (3.51), and (A.28) we deduce that

NKc
�

κ/4
�F (x′) ≤ Cε,κ,x� Nκu(x

′)
1 + log+ |x′|
1 + |x′|n−1

, ∀x′ ∈ R
n−1.(3.52)

Consequently, based on (3.52) and the assumption on Nκu in (3.5), we obtain that∫
Rn−1

NKc
�

κ/4
�F (x′) dx′ ≤ Cε,κ,x�

∫
Rn−1

Nκu(x
′)
1 + log+ |x′|
1 + |x′|n−1

dx′ <∞.(3.53)

The above estimate shows that NKc
�

κ/4
�F ∈ L1(∂Rn

+) which, together with (A.56),

implies NKc
�

κ
�F ∈ L1(∂Rn

+). Hence, condition (b) in Theorem A.1 holds as well.

Having verified all hypotheses in Theorem A.1, from (A.4), (3.44), (3.43),
and (3.36), we obtain that

0 = −
∫
∂Rn

+

en ·
(
�F
∣∣n.t.
∂Rn

+

)
dL n−1 = (C∞

b (Rn
+))∗
〈
div �F , 1

〉
C∞

b (Rn
+)

= −uγ(x
) −
∫
Rn

+

(∂jψε)uαa
βα
kj ∂kGβγ dL

n(3.54)

−
∫
Rn

+

uβ (∂jGαγ)a
αβ
kj ∂kψε dL

n −
∫
Rn

+

uβ Gαγ a
αβ
kj (∂j∂kψε) dL

n.

We claim that the three integrals in (3.54) converge to zero as ε → 0+. This, in
turn, will imply that u(x
) = 0 and since x
 ∈ Rn

+ is an arbitrary point we may
ultimately conclude that u ≡ 0 in Rn

+, as desired.
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An inspection of the aforementioned integrals reveals that we need to prove
that

(3.55) lim
ε→0+

1

ε

∫
{x=(x′, xn)∈Rn: ε<xn<2 ε}

|u| |∇G| dL n = 0,

and

(3.56) lim
ε→0+

1

ε2

∫
{x=(x′, xn)∈Rn: ε<xn<2 ε}

|u| |G| dL n = 0.

From (A.35), and the mean value theorem we have

1

ε2

∫
{x=(x′, xn)∈Rn: ε<xn<2 ε}

|u| |G| dL n(3.57)

=
1

ε2

∫
{x=(x′, xn)∈Rn: ε<xn<2 ε}

|u(x′, xn)| |G(x′, xn)−G(x′, 0)| dx

≤ C

ε

∫
{x=(x′, xn)∈Rn: ε<xn<2 ε}

|u(x′, xn)|
(

sup
0<t<2ε

|(∂xnG)(x
′, t)|

)
dx

≤ C

ε

∫
{x=(x′, xn)∈Rn: ε<xn<2 ε}

|u(x′, xn)|
(

sup
0<t<2ε

|(∇G)(x′, t)|
)
dx.

Note that the integral in (3.55) can also be controlled by the last quantity in (3.57).
Therefore, matters have been reduced to showing that

(3.58) lim
ε→0+

1

ε

∫
{x=(x′, xn)∈Rn: ε<xn<2 ε}

|u(x′, xn)|
(

sup
0<t<2ε

|(∇G)(x′, t)|
)
dx = 0.

In this regard, by (A.29) we have

C

ε

∫
{x=(x′, xn)∈Rn: ε<xn<2 ε}

|u(x′, xn)|
(

sup
0<t<2ε

|(∇G)(x′, t)|
)
dx

≤ C

∫
Rn−1

N (2ε)
κ u(x′)N (2ε)

κ (∇G)(x′) dx′

≤ C

∫
Rn−1

N (2ε)
κ u(x′)NKc

κ (∇G)(x′) dx′

≤ C

∫
Rn−1

N (2ε)
κ u(x′)

1

1+|x′|n−1
dx′ ≤ C

∫
Rn−1

N (2ε)
κ u(x′)

1 + log+ |x′|
1+|x′|n−1

dx′,(3.59)

where N (2ε)
κ is the truncated nontangential maximal function defined as in (2.7).

Notice that limε→0+ N (2ε)
κ u(x′) = 0 for a.e. x′ ∈ R

n−1 by the fact that u
∣∣n.t.
∂Rn

+

= 0.

On the other hand, 0 ≤ N (2ε)
κ u(x′) ≤ Nκu(x

′) for each x′ ∈ Rn−1, and there-
fore the integrand is uniformly controlled by an L1(Rn−1) function thanks to our
assumption in (3.5). Thus, (3.58) follows from (3.59), (3.5), and Lebesgue’s domi-
nated convergence theorem. This finishes the proof of Theorem 3.2. �
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We conclude this section with a remark which, in particular, shows that in the
special case when L = Δ the hypotheses in Theorem 3.2 may be slightly relaxed.

Remark 3.5. If the system L (assumed to be as in (1.1)–(1.2)) is such that its
fundamental solution EL from Theorem A.2 is a radial function when restricted to
R

n \ {0}, then the logarithm in (3.5) may be omitted. This is seen by inspecting
the proof of Theorem 3.2 and making use of part (1) in Theorem A.4.

4. Well-posedness for the Dirichlet problem

In this section, Theorems 3.1 and 3.2 will be used to prove Theorem 1.1, Corol-
lary 1.2, Corollary 1.3, and Theorem 1.5.

Proof of Theorem 1.1. For existence, invoke Theorem 3.1 (whose applicability is
ensured by the first condition in (1.7)) and note that if u is as in (3.2) then the first,
second, and last conditions in (1.9) are satisfied. In addition, (1.11) is simply (3.4).
Together, (1.8) and (1.11) then permit us to conclude that the third condition
in (1.9) is also satisfied. Hence, u solves (1.9). For uniqueness, assume that both u1
and u2 solve (1.9) for the same datum f and set u := u1 − u2 ∈ C∞(Rn

+). Then
Lu = 0 in Rn

+ and, since Nu1,Nu2 ∈ Y, the estimate 0 ≤ Nu ≤ Nu1 + Nu2 ≤
2max

{
Nu1 , Nu2

}
forces Nu ∈ Y by the properties of the function lattice Y.

Granted this, Theorem 3.2 applies (thanks to the second condition in (1.7)) and
gives that u ≡ 0 in Rn

+, hence u1 = u2 as wanted. �

Before presenting the proof of Corollary 1.2, some comments are in order.
Having fixed some q ∈ (1,∞) (whose actual choice is ultimately immaterial), one
may define the Hardy space H1(Rn−1) as

H1(Rn−1) :=
{
f ∈ L1(Rn−1) : f =

∑
j∈N

λj aj a.e. in R
n−1,(4.1)

for some (1, q)-atoms {aj}j∈N and scalars {λj}j∈N ∈ �1
}
.

For each f ∈ H1(Rn−1) we then set ‖f‖H1(Rn−1) := inf
∑

j∈N
|λj | with the infimum

taken over all atomic representations of f as
∑

j∈N
λj aj .

Recall that a Lebesgue measurable function a : Rn−1 → C is said to be an
(1, q)-atom if, for some cube Q ⊂ Rn−1, one has

(4.2) supp a ⊂ Q, ‖a‖Lq(Rn−1) ≤ |Q|1/q−1,

∫
Rn−1

a(y′) dy′ = 0.

Proof of Corollary 1.2. Having already established Theorem 1.1, we only need to
check that the implication in (1.15) holds if X = H1(Rn−1) and Y = L1(Rn−1) (re-
call that we have H1(Rn−1) ⊂ L1(Rn−1), thus (1.7) and the first condition in (1.8)
are clear for this choice). To this end, assume first that

(4.3) u(x′, t) := (Pt ∗ a)(x′), ∀ (x′, t) ∈ R
n
+,

where a : Rn−1 → CM is a Lebesgue measurable function (whose scalar components
are) as in (4.2).
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Then (3.4), Hölder’s inequality, the Lq-boundedness of the Hardy–Littlewood
maximal function, and the normalization of the atom permit us to write∫

2
√
nQ

Nκu dL
n−1 ≤ C

∫
2
√
nQ

Ma dL n−1 ≤ C |Q|1/q′
(∫

2
√
nQ

(
Ma
)q
dL n−1

)1/q
(4.4) ≤ C |Q|1/q

′(∫
Rn−1

(
Ma
)q
dL n−1

)1/q
≤ C |Q|1/q

′
‖a‖Lq(Rn−1) ≤ C,

for some constant C ∈ (0,∞) depending only on n, L, κ. To proceed, fix an arbi-
trary point x′ ∈ Rn−1 \ 2

√
nQ. If �(Q) and x′Q are, respectively, the side-length

and center of the cube Q, this choice entails

(4.5) |z′ − x′Q| ≤ max{κ, 2}
(
t+ |z′ − ξ′|

)
, ∀ (z′, t) ∈ Γκ(x

′), ∀ ξ′ ∈ Q.

Indeed, if (z′, t) ∈ Γκ(x
′) and ξ′ ∈ Q then, first, |z′ − x′Q| ≤ |z′ − ξ′| + |ξ′ − x′Q|

and, second,

(4.6) |ξ′−x′Q| ≤
√
n

2
�(Q) ≤ 1

2
|x′−x′Q| ≤

1

2
(|x′−z′|+|z′−x′Q|) ≤

1

2
(κt+|z′−x′Q|),

from which (4.5) follows. Next, using (2.28), the vanishing moment condition
for the atom, the mean value theorem together with (3.30) and (4.5), Hölder’s
inequality and, finally, the support and normalization of the atom, for each (z′, t) ∈
Γκ(x

′) we may estimate

|(PL
t ∗ a)(z′)| =

∣∣∣ ∫
Rn−1

[
KL(z′ − y′, t)−KL(z′ − x′Q, t)

]
a(y′) dy′

∣∣∣
≤
∫
Q

∣∣KL(z′ − y′, t)−KL(z′ − x′Q, t)
∣∣ |a(y′)| dy′

≤ C
�(Q)(

t+ |z′ − x′Q|
)n ∫

Q

|a(y′)| dy′

≤ C
�(Q)(

t+ |z′ − x′Q|
)n |Q|1/q′‖a‖Lq(Rn−1) ≤

C�(Q)(
t+ |z′ − x′Q|

)n .(4.7)

In turn, (4.7) implies that for each x′ ∈ R
n−1 \ 2

√
nQ we have

(4.8)
(
Nκu

)
(x′)= sup

(z′,t)∈Γκ(x′)
|(PL

t ∗ a)(z′)|≤ sup
(z′,t)∈Γκ(x′)

C�(Q)(
t+|z′−x′Q|

)n ≤ C�(Q)

|x′−x′Q|n
,

hence

(4.9)

∫
Rn−1\2

√
nQ

Nκu dL
n−1 ≤ C

∫
Rn−1\2

√
nQ

�(Q)

|x′ − x′Q|n
dx′ = C,

for some constant C ∈ (0,∞) depending only on n, L. From (4.4) and (4.9) we
deduce that whenever u is as in (4.3) then

(4.10)

∫
Rn−1

Nκu dL
n−1 ≤ C,

for some constant C ∈ (0,∞) independent of the atom.
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To conclude, for each p ∈ [1,∞) define the tent spaces

(4.11) T p(Rn
+) :=

{
u : Rn

+ → C
M : u measurable and Nκu ∈ Lp(Rn−1)

}
equipped with the norm ‖u‖T p(Rn

+) := ‖Nκu‖Lp(Rn−1). It may be actually checked

that the pair
(
T p(Rn

+) , ‖ · ‖T p(Rn
+)

)
is a Köthe function space, relative to the

backgroundmeasure space (Rn
+,L

n). In this context, with q ∈ (1,∞) the exponent
intervening in (4.1), consider the assignment

(4.12)
T : Lq(Rn−1) −→ T q(Rn

+) given by Tf := u,

where u is associated with f as in (3.2).

Thanks to Theorem 3.1, T is a well-defined linear and bounded operator and, given
what we have just proved in (4.10), it has the property that ‖Ta‖T 1(Rn−1) ≤ C
for every (1, q)-atom a, for some constant C ∈ (0,∞) independent of the atom in
question. Granted these, it follows (see [4] for very general results of this nature)
that T extends as a linear and bounded operator fromH1(Rn−1) into T 1(Rn−1). In
light of (4.12), this shows that the implication in (1.15) is indeed true if X,Y are as
in (1.16). This proves that, for each system L as in (1.1)–(1.2), the corresponding
(H1, L1)-Dirichlet boundary value problem in Rn

+,

(4.13)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C∞(Rn
+),

Lu = 0 in Rn
+,

Nκu ∈ L1(Rn−1),

u
∣∣n.t.
∂Rn

+

= f ∈ H1(Rn−1),

has a unique solution. Moreover, the above argument also shows that the following
naturally accompanying estimate holds:

(4.14) ‖Nκu‖L1(Rn−1) ≤ C ‖f‖H1(Rn−1),

for some C = C(n, L, κ) ∈ (0,∞). Hence, (4.13) is well-posed.
In closing, we note that one can give a proof of (4.14), and also of (1.15), which

avoids working with tent spaces by reasoning directly as follows (incidentally, this
is also going to be useful later on, in the proof of Corollary 1.3). Let f ∈ H1(Rn−1)
and consider a quasi-optimal atomic decomposition, say f =

∑
j∈N

λjaj , with

(4.15)
1

2

∑
j∈N

|λj | ≤ ‖f‖H1(Rn−1) ≤
∑
j∈N

|λj |.

For each N ∈ N, write fN :=
∑N

j=1 λjaj . Clearly, fN → f in L1(Rn−1) as N → ∞,
hence also a.e. after eventually passing to a subsequence. To prove (4.14) in the
case when u is defined as in (1.10) we proceed as follows. For eachN ∈ N, introduce

uN(x′, t) := (PL
t ∗ fN )(x′) for all (x′, t) ∈ R

n
+
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(this makes sense since fN ∈ L1(Rn−1)). Then, using (3.4), we may write

‖Nκu−Nκ(uN )‖L1,∞(Rn−1) ≤ ‖Nκ(u − uN)‖L1,∞(Rn−1)

≤ C ‖M(f − fN)‖L1,∞(Rn−1) ≤ C ‖f − fN‖L1(Rn−1) −→ 0 as N → ∞.(4.16)

Thus, Nκ(uN ) → Nκu in L1,∞(Rn−1) as N → ∞ and, by passing to a subsequence
{Nj}j∈N, we may ensure that Nκ(uNj) → Nκu pointwise a.e. in Rn−1 as j → ∞
(cf., e.g., the discussion in [28], Example 6, pp. 4776-4777). In turn, if for each
j ∈ N we set vj(x

′, t) := (PL
t ∗ aj)(x′) for (x′, t) ∈ R

n
+, this readily gives

(4.17) Nκu ≤
∑
j∈N

|λj | Nκ(vj) a.e. in R
n−1.

From (4.17), (4.10), and (4.15) we then conclude that

(4.18) ‖Nκu‖L1(Rn−1) ≤ C
∑
j∈N

|λj | ≤ C ‖f‖H1(Rn−1),

finishing the alternative proof of (4.14) and the implication in (1.15). �

As a preamble to the proof of Corollary 1.3 we first properly define the spaces
intervening in (1.17). Given p ∈ (1,∞) define the Beurling space Ap(Rn−1) as the
collection of p-th power locally integrable functions f in Rn−1 satisfying (with p′

denoting the Hölder conjugate exponent of p)

(4.19) ‖f‖Ap(Rn−1) :=
∞∑
k=0

2k(n−1)/p′ ‖f 1Ck
‖Lp(Rn−1) <∞,

where C0 := Bn−1(0
′, 1) and Ck := Bn−1(0

′, 2k) \ Bn−1(0′, 2k−1) for each k ∈ N.
This readily implies that

(4.20)

(
Ap(Rn−1), ‖ · ‖Ap(Rn−1)

)
is a Banach space, which is a function

lattice, and embeds continuously into L1(Rn−1).

Next, call a function a ∈ L1
loc(R

n−1) a central (1, p)-atom provided there exists a
cube Q in Rn−1, centered at the origin and having side-length �(Q) ≥ 1 such that

(4.21) supp a ⊆ Q, ‖a‖Lp(Rn−1) ≤ |Q|1/p−1 and

∫
Rn−1

a(x′) dx′ = 0.

Then, following [16], we define the Beurling–Hardy space as

(4.22) HAp(Rn−1) :=
{
f ∈ L1(Rn−1) : f =

∑
j∈N

λj aj a.e. in R
n−1, for some

central (1, p)-atoms {aj}j∈N and {λj}j∈N ∈ �1
}
,

and for each f ∈ HAp(Rn−1) set ‖f‖HAp(Rn−1) := inf
∑

j∈N
|λj | with the infimum

taken over representations of f =
∑

j∈N
λj aj as in (4.22). Various alternative

characterizations of HAp(Rn−1) may be found in Theorem 3.1, p. 505, of [16]. Here
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we only wish to note that, as is apparent from definitions,

(4.23) HAp(Rn−1) ↪→ H1(Rn−1).

Given a system L as in (1.1)–(1.2) and having fixed some κ > 0 and p ∈ (1,∞),
the (HAp,Ap)-Dirichlet boundary value problem for L in R

n
+ is then formulated as

(4.24)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C∞(Rn
+),

Lu = 0 in Rn
+,

Nκu ∈ Ap(Rn−1),

u
∣∣n.t.
∂Rn

+

= f ∈ HAp(Rn−1).

We are now ready to present the proof of Corollary 1.3 dealing with the well-
posedness of (4.24) for each p ∈ (1,∞).

Proof of Corollary 1.3. Fix p ∈ (1,∞). Granted Theorem 1.1, we are left with ver-
ifying that the implication in (1.15) holds if X = HAp(Rn−1) and Y = Ap(Rn−1)
(since (1.7) and the first condition in (1.8) are clear for this choice, thanks to (4.20)).
With this goal in mind, pick a Lebesgue measurable function a : Rn−1 → C

M whose
scalar components are as in (4.21) and define u as in (4.3). Also, with the cube
Q ⊂ Rn−1 centered at the origin and side-length �(Q) ≥ 1 as in (4.21), let Na

be the smallest nonnegative integer which is larger than or equal to log2(n �(Q)).
Using (3.4), the Lp-boundedness of the Hardy–Littlewood maximal function, and
the normalization of the central (1, p)-atom we obtain

Na∑
k=0

2k(n−1)/p′∥∥(Nκu
)
1Ck

∥∥
Lp(Rn−1)

≤ C
∥∥Ma

∥∥
Lp(Rn−1)

Na∑
k=0

2k(n−1)/p′

≤ C‖a‖Lp(Rn−1)2
Na(n−1)/p′ ≤ C|Q|1/p−1

(
2log2(n�(Q))

)(n−1)/p′
= C <∞,(4.25)

where the constant C is independent of the central (1, p)-atom a. Next, fix an
arbitrary integer k ≥ Na + 1 along with some point x′ ∈ Ck. This choice entails
|x′| > 2k−1 ≥ 2Na ≥ n�(Q) which, in turn, forces x′ ∈ Rn−1 \2

√
nQ. Granted this,

the same type of estimates as in (4.7)–(4.8) (this time with x′Q = 0′) yield that
there exists a constant C ∈ (0,∞) depending only on n, L, κ such that

(4.26)
(
Nκu

)
(x′) ≤ C�(Q)

|x′|n whenever x′ ∈ Ck with k ≥ Na + 1.

Having established this we may then estimate
∞∑

k=Na+1

2k(n−1)/p′∥∥(Nκu
)
1Ck

∥∥
Lp(Rn−1)

≤ C�(Q)
∞∑

k=Na+1

2k(n−1)/p′(∫
Ck

|x′|−np dx′
)1/p

≤ C �(Q)

∞∑
k=Na+1

2k(n−1)/p′
2−n(k−1) 2k(n−1)/p

≤ C �(Q)

∞∑
k=Na+1

2−k ≤ C �(Q) 2−Na = C <∞,(4.27)
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for some constant C independent of a. In concert, (4.25) and (4.27) prove that
there exists some constant C ∈ (0,∞) such that whenever u is as in (4.3) for some
central (1, p)-atom a then

(4.28)
∥∥Nκu

∥∥
Ap(Rn−1)

≤ C.

Going further, we shall make use of (4.28) in order to show that, if for an
arbitrary function f ∈ HAp(Rn−1) we set u(x′, t) := (PL

t ∗f)(x′) for all (x′, t) ∈ Rn
+,

then

(4.29) ‖Nκu‖Ap(Rn−1) ≤ C ‖f‖HAp(Rn−1),

for some finite constant C > 0 independent of f . Specifically, (4.29) is justified
with the help of (4.28), (4.23), and (4.20) by reasoning almost verbatim as in
(4.15)–(4.18). This proves the implication in (1.15) in the current context, and
shows that (4.24) is well-posed. �

The proof of Theorem 1.5 requires some prerequisites, and we begin by dis-
cussing rearrangement invariant spaces. To set the stage, let μf denote the distri-
bution function of a given f ∈ M, i.e.,

(4.30) μf (λ) :=
∣∣{x′ ∈ R

n−1 : |f(x′)| > λ}
∣∣, ∀λ ≥ 0.

Call two functions f, g ∈ M equimeasurable provided μf = μg. A rearrangement
invariant space (r.i. space, for short) is a Köthe function space X with the property
that equimeasurable functions have the same function norm in X (i.e., if ‖f‖X =
‖g‖X for all f, g ∈ X such that μf = μg). In particular, if X is an r.i. space, one
can check that its Köthe dual space X′ is also rearrangement invariant.

Given f ∈ M, the decreasing rearrangement of f with respect to the Lebesgue
measure in Rn−1 is the function f∗, with domain [0,∞), defined by

(4.31) f∗(t) := inf {λ ≥ 0 : μf (λ) ≤ t}, 0 ≤ t <∞.

The decreasing rearrangement of the original function f satisfies, for each λ ≥ 0,

(4.32)
∣∣{x′ ∈ R

n−1 : |f(x′)| > λ}
∣∣ = ∣∣{t ∈ [0,∞) : f∗(t) > λ}

∣∣.
Applying the Luxemburg representation theorem yields the following: given

an r.i. space X, there exists a unique r.i. space X on [0,∞) such that for each
f ∈ M one has f ∈ X if and only if f∗ ∈ X and, in this case, ‖f‖X = ‖f∗‖

X
.

Furthermore, (X)′ = X′, and so ‖f‖X′ = ‖f∗‖
X
′ for every f ∈ M.

Using this representation we can now introduce the Boyd indices of an r.i.
space X. Given f ∈ X, consider the dilation operator Dt, 0 < t < ∞, by setting
Dtf(s) := f(s/t) for each s ≥ 0. Writing

(4.33) hX(t) := sup
{
‖Dtf‖X : f ∈ X with ‖f‖

X
≤ 1
}
, t ∈ (0,∞),

the lower and upper Boyd indices may, respectively, be defined as

(4.34) p
X
:= lim

t→∞

log t

log hX(t)
= sup

1<t<∞

log t

log hX(t)
,



950 J.M. Martell, D. Mitrea, I. Mitrea, and M. Mitrea

and

(4.35) q
X
:= lim

t→0+

log t

log hX(t)
= inf

0<t<1

log t

log hX(t)
.

By design, 1 ≤ p
X
≤ q

X
≤ ∞. The Boyd indices for X and X′ are related via

(4.36) p
X′ = (q

X
)′ and q

X′ = (p
X
)′.

Remark 4.1. Some authors (including [6]) define the Boyd indices as the recip-
rocals of p

X
and q

X
defined above. We have chosen the present definition since it

yields p
X
= q

X
= p if X = Lp(Rn−1).

The importance of Boyd indices stems from the fact that they play a significant
role in interpolation (see, e.g., [6], Chapter 3). For example, the classical result
of Lorentz–Shimogaki states that the Hardy–Littlewood maximal operator M is
bounded on an r.i. space X if and only if p

X
> 1. Additionally, Boyd’s theorem

asserts that the Hilbert transform is bounded on an r.i. space X on R if and only
if 1 < p

X
≤ qX <∞. See Chapter 3 of [6] for the precise statements and complete

references.
Given an r.i. space X on R

n−1, we wish to introduce a weighted version X(w)
of X via an analogous definition in which the underlying measure in Rn−1 now is
dμ(x′) := w(x′) dx′. These spaces appeared in [13] as an abstract generalization
of a variety of weighted function spaces. Specifically, fix a weight w ∈ A∞(Rn−1)
(in particular, 0 < w < ∞ a.e.). Given f ∈ M, let wf denote the distribution
function of f with respect to the measure w(x′) dx′:

(4.37) wf (λ) := w
(
{x′ ∈ R

n−1 : |f(x′)| > λ}
)
, λ ≥ 0.

We also let f∗
w denote the decreasing rearrangement of f with respect to the mea-

sure w(x′) dx′, i.e.,

(4.38) f∗
w(t) := inf

{
λ ≥ 0 : wf (λ) ≤ t

}
, 0 ≤ t <∞.

Granted these, define the weighted space X(w) by

(4.39) X(w) :=
{
f ∈ M : ‖f∗

w‖X <∞
}
.

This may be viewed as a Köthe function space, but with underlying measure
w(x′) dx′, and with the function norm

(4.40) ‖f‖X(w) := ‖f∗
w‖X.

Note that if X is the Lebesgue space Lp(Rn−1), p ∈ (1,∞), it follows that X(w) =
Lp(Rn−1, w), the Lebesgue space of p-th power integrable functions in the measure
space

(
R

n−1, w(x′) dx′
)
.

The boundedness of the Hardy–Littlewood maximal operator on these weighted
r.i. spaces was considered in [13], [12], from which we quote the following result.

Lemma 4.2 ([13]). Let X be an r.i. space whose lower Boyd index satisfies p
X
> 1.

Then for every w ∈ Ap
X

(Rn−1), the Hardy–Littlewood maximal operator M is

bounded on X(w).
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At the heart of the proof of Theorem 1.5 there is an analog of (1.42) valid in
the context of weighted rearrangement invariant function spaces. We are going
to derive this in Lemma 4.5 below, by relying on the following Rubio de Francia
extrapolation for r.i. spaces obtained in [12].

Theorem 4.3 ([12]). Let F be a given family of pairs (f, g) of non-negative,
measurable functions that are not identically zero. Suppose that for some fixed
exponent p0 ∈ [1,∞) and every weight w0 ∈ Ap0(R

n−1), one has

(4.41)

∫
Rn−1

f(x′)p0 w0(x
′) dx′ ≤ Cw0

∫
Rn−1

g(x′)p0 w0(x
′) dx′, ∀ (f, g) ∈ F .

Then if X is an r.i. space such that 1 < p
X
≤ q

X
< ∞, it follows that for each

weight w ∈ Ap
X

(Rn−1) there holds

(4.42) ‖f‖X(w) ≤ Cw‖g‖X(w), ∀ (f, g) ∈ F .

Remark 4.4. As discussed in [12], inequalities of the form (4.41) or (4.42) (both
in hypotheses and in the conclusion) are assumed to hold for any (f, g) ∈ F for
which the left-hand side is finite.

Lemma 4.5. Let X be an r.i. space with the property that its lower and upper
Boyd indices satisfy 1 < p

X
≤ q

X
< ∞. For every w ∈ Ap

X

(Rn−1), there exists

C = C(n,X, w) ∈ (0,∞) such that for each h ∈ X(w) there holds

(4.43)

∫
Rn−1

|h(x′)|M(2)
(
1Bn−1(0′,1)

)
(x′) dx′ ≤ C

∥∥1Bn−1(0′,1)
∥∥−1

X(w)
‖h‖X(w).

In particular, from (4.43) and Lemma 2.1 one has the continuous inclusion

(4.44) X(w) ↪→ L1
(
R

n−1 ,
1 + log+ |x′|
1 + |x′|n−1

dx′
)
.

Proof. We obtain this result via extrapolation using Theorem 4.3. Fix a sufficiently
large integer N and, for every h ∈ M, set hN := h1{x′∈Bn−1(0′,N): |h(x′)|≤N}.
In particular,

IN (h) :=

∫
Rn−1

|hN (x′)|M(2)
(
1Bn−1(0′,1)

)
(x′) dx′(4.45)

≤ N |Bn−1(0
′, N)| = CN <∞.

We now consider the family of pairs:

(4.46) FN :=
{
(F1, F2) =

(
IN (h)1Bn−1(0′,1) , |hN |

)
: h ∈ M

}
.

Given p ∈ (1,∞) and w ∈ Ap(R
n−1), there exists C = C(n, p, w) ∈ (0,∞) such

that for every N ≥ 1 we may write (as in (1.42) with hN replacing h)

IN (h) ≤ C ‖hN‖Lp(Rn−1, w) w
(
Bn−1(0

′, 1)
)−1/p

.(4.47)
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Thus, for every (F1, F2) ∈ FN we have∫
Rn−1

F1(x
′)p w(x′) dx′ = IN (h)p w

(
Bn−1(0

′, 1)
)
≤ C ‖hN‖pLp(Rn−1, w)(4.48)

= C

∫
Rn−1

F2(x
′)p w(x′) dx′,

where C ∈ (0,∞) is independent of N . Notice that the left-hand side of the previ-
ous estimate is finite thanks to (4.45). Granted this, we may invoke Theorem 4.3
to conclude that for X as in the statement and every w ∈ Ap

X

(Rn−1) we have

IN (h)
∥∥1Bn−1(0′,1)

∥∥
X(w)

=‖F1‖X(w)≤C‖F2‖X(w)=C‖hN‖X(w)≤C‖h‖X(w),(4.49)

with C ∈ (0,∞) independent of N . This estimate holds for every h ∈ M since the
left-hand side is always finite by (4.45). Consequently, (4.43) follows from (4.49)
and Lebesgue’s monotone convergence theorem upon letting N → ∞. �

We are finally ready to present the proof of Theorem 1.5.

Proof of Theorem 1.5. The idea is to invoke Theorem 1.1 with X = Y = X(w).
Note that (4.44) takes care of the second embedding in (1.7) from which, as pointed
out before, the first embedding in (1.7) also follows. The two conditions in (1.8) are
verified upon noting that, by design, X(w) is a function lattice, and by referencing
Lemma 4.2. As such, Theorem 1.1 applies and yields existence and uniqueness
for the Dirichlet problem (1.46) in the desired manner. To complete the proof
of Theorem 1.5 there remains to observe that the bound in (1.47) is a direct
consequence of (1.11) and Lemma 4.2. �

5. Return to the Poisson kernel

One aspect left open by Theorem 2.4 is the uniqueness of the Agmon–Douglis–
Nirenberg Poisson kernel in the conceivably larger class of such kernels outlined
by Definition 2.2. The goal here is to address this issue and also establish the
semigroup property for this unique Poisson kernel.

Theorem 5.1. Let L be a second-order elliptic system with complex coefficients
as in (1.1)–(1.2). Then there exists a unique Poisson kernel PL for L in Rn

+ in
the sense of Definition 2.2. Moreover, this Poisson kernel satisfies the semigroup
property

(5.1) PL
t1 ∗ P

L
t2 = PL

t1+t2 for every t1, t2 > 0.

The convolution between the two matrix-valued functions in (5.1) is understood
in a natural fashion, taking into account the algebraic multiplication of matrices.
On this note, one significant consequence of identity (5.1) is the commutativity of
the convolution product for the matrix-valued functions PL

t1 and P
L
t2 , i.e., P

L
t1∗PL

t2 =
PL
t2 ∗PL

t1 for each t1, t2 > 0. We shall further elaborate on this topic after discussing
the proof of Theorem 5.1. Here we only wish to remark that, in the classical case
L = Δ, the semigroup property (5.1) is proved in [37], (vi) p. 62, making use of the
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the explicit formula for the Fourier transform of PΔ. Instead, in the case of an
arbitrary system L as in (1.1)–(1.2), our strategy is to rely on the well-posedness
of the Lp-Dirichlet problem (1.39).

Proof of Theorem 5.1. Let PL stand for the Agmon–Douglis–Nirenberg Poisson
kernel for L from Theorem 2.4 and assume that QL is another Poisson kernel
for L in Rn

+ in the sense of Definition 2.2. Fix an arbitrary vector-valued function
f ∈ C∞

0 (Rn−1) and define for each (x′, t) ∈ Rn
+

(5.2) u1(x
′, t) := (PL

t ∗ f)(x′) and u2(x
′, t) := (QL

t ∗ f)(x′).
Then Theorem 3.1 and (3.31) in Remark 3.4 imply that, for any given p ∈ (1,∞),
both u1 and u2 solve the L

p-Dirichlet boundary value problem in Rn
+ as formulated

in (1.39). The well-posedness of this boundary value problem (cf. the discussion
in Example 1 in §1) then forces u1 = u2 in Rn

+ which further translates into
(PL

t ∗ f)(x′) = (QL
t ∗ f)(x′) for all (x′, t) ∈ Rn

+ and all f ∈ C∞
0 (Rn−1). In turn,

this yields PL = QL a.e. in Rn−1, hence everywhere by the continuity of PL

and QL (see part (ii) in Remark 2.3). This finishes the proof of the first claim in
the statement of theorem.

Consider now the semigroup property (5.1). To get started, fix t2 > 0 and pick
an arbitrary vector-valued function f ∈ C ∞

0 (Rn−1). Let PL be the unique Poisson
kernel for L and, for each (x′, t) ∈ Rn

+, define this time

(5.3) u1(x
′, t) :=

(
PL
t ∗
(
PL
t2 ∗ f)

)
(x′) and u2(x

′, t) := (PL
t+t2 ∗ f)(x

′).

Fix some p ∈ (1,∞) and observe that PL
t2 ∗f ∈ Lp(Rn−1) by (3.8). Finally, consider

the Lp-Dirichlet boundary value problem

(5.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C∞(Rn
+),

Lu = 0 in Rn
+,

Nu ∈ Lp(Rn−1),

u
∣∣n.t.
∂Rn

+

= PL
t2 ∗ f ∈ Lp(Rn−1).

From the discussion in Example 1 in §1 we know that u1 is the unique solution
of (5.4) and we claim that u2 also solves (5.4). Assuming this momentarily, it
follows that u1 = u2 in Rn

+, hence
(
(PL

t ∗ PL
t2) ∗ f

)
(x′) = (PL

t+t2 ∗ f)(x′) for all
x′ ∈ Rn−1, all t ∈ (0,∞), and each f ∈ C∞

0 (Rn−1). Much as before, this readily
implies PL

t ∗ PL
t2 = PL

t+t2 in Rn−1 for each t ∈ (0,∞), and (5.1) follows from this
by taking t := t1.

To finish the proof, there remains to check that, as claimed, u2 from (5.3) is a
solution of (5.4). To this end, introduce v(x′, t) := (PL

t ∗ f)(x′) for (x′, t) ∈ Rn
+

and note that, by Theorem 3.1, v satisfies

(5.5) v ∈ C∞(Rn
+), Lv = 0 in R

n
+, Nv(x′) ≤ CMf(x′) for all x′ ∈ R

n−1.

Since, by design, u2(x
′, t) = v(x′, t + t2) for all (x′, t) ∈ Rn

+, we easily deduce
from (5.5) that

(5.6) u2 ∈ C ∞(Rn
+), Lu2 = 0 in R

n
+, Nu2(x

′) ≤ CMf(x′) for all x′ ∈ R
n−1.
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Hence, Nu2 ∈ Lp(Rn−1) and since for each x′ ∈ Rn−1 we have

(5.7)
(
u2
∣∣n.t.
∂Rn

+

)
(x′) = u2(x

′, 0) = v(x′, t2) = (Pt2 ∗ f)(x′),

it follows that u2 solves (5.4). This finishes the proof of Theorem 5.1. �

Theorem 5.1 has several consequences of independent interest, and here we
wish to single out the following result.

Corollary 5.2. Let L be a homogeneous second-order elliptic system with (com-
plex) constant coefficients, and let PL denote its unique Poisson kernel in Rn

+

(cf. Theorem 5.1). Also, let X be a Köthe function space with the property that M
is bounded on X. Then the family {Tt}t>0, where for each t ∈ (0,∞),

(5.8) Tt : X → X, Ttf(x
′) := (PL

t ∗ f)(x′) for every f ∈ X, x′ ∈ R
n−1,

is a semigroup of bounded linear operators on X which satisfies

(5.9) sup
t>0

∥∥Tt∥∥L(X)
<∞,

where L(X) is the Banach space of linear and bounded operators on X.
Furthermore, under the additional assumption that the function norm in X is

absolutely continuous, meaning that for any given f ∈ X there holds

(5.10)
(Aj)j∈N measurable subsets of Rn−1

with 1Aj → 0 a.e. in R
n−1 as j → ∞

}
=⇒ lim

j→∞

∥∥ |f | · 1Aj

∥∥
X
= 0,

it follows that {Tt}t>0 is a strongly continuous semigroup in the sense that

(5.11) lim
t→0+

Ttf = f in X, for each f ∈ X.

Proof. From (1.12), (1.25), the assumptions on X, and (3.7)–(3.8) in Lemma 3.3
it follows that for each t ∈ (0,∞) the operator Tt : X → X is well-defined, linear,
and bounded. Moreover, there exists a finite constant C > 0 with the property
that for each x′ ∈ Rn−1,

(5.12) sup
t>0

∣∣(Ttf)(x′)∣∣ ≤ CMf(x′), ∀ f ∈ X ⊆ L1
(
R

n−1 ,
1

1 + |x′|n dx
′
)
.

Bearing in mind the assumptions on X, this readily gives (5.9). The semigroup
property for the family {Tt}t>0 is then a consequence of (5.1), (1.12), and (3.7).

Concerning the strong continuity property of the semigroup {Tt}t>0, fix an
arbitrary f ∈ X and note that, as a consequence of the last condition in (3.3),
we have Ttf → f a.e. in Rn−1 as t→ 0+. In addition, |Ttf | ≤ CMf ∈ X by (5.12)
and the assumptions on X. From these and Lebesgue’s dominated convergence
theorem in X (itself equivalent to the absolute continuity of the function norm
in X; cf. [6], Proposition 3.6, p. 16), it follows that (5.11) holds. �

For a thorough discussion pertaining to the absolute continuity of the function
norm in a Köthe X the interested reader is referred to [6] (Chapter 1, § 3). We con-
clude by giving a list of examples of scales of spaces satisfying all the hypotheses in
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Corollary 5.2 (i.e., Köthe spaces with an absolutely continuous function norm on
which the Hardy–Littlewood maximal operator is bounded):

(i) Ordinary Lebesgue spaces Lp(Rn−1) with p ∈ (1,∞).

(ii) Variable exponent Lebesgue spaces Lp(·)(Rn−1) on which the Hardy–Little-
wood maximal operator is bounded (see Theorem 2.62, p. 47, in [10] for the
absolute continuity of the function norm in this setting).

(iii) Lorentz spaces Lp,q(Rn−1) with 1 < p, q <∞ (which in this range are reflex-
ive, hence have absolutely continuous function norms by [6], Chapter 1, § 4).

(iv) Orlicz spaces LΦ(Rn−1), where Φ is a Young function.

For technical reasons, the weighted Lebesgue spaces Lp(Rn−1, w(x′) dx′), with
p ∈ (1,∞) and w ∈ Ap(R

n−1), do not fall directly under the scope of Corollary 5.2
(since they fail to be Köthe spaces in the ordinary sense adopted in this paper,
i.e., with respect to the background measure space (Rn−1, dx′)). Nonetheless, the
same type of conclusions as in Corollary 5.2 hold, and this is actually the case for
a more general scale of weighted spaces. Specifically, consider

(5.13)
a rearrangement invariant space X with lower Boyd index p

X
> 1

and also fix some Muckenhoupt weight w ∈ Ap
X

(Rn−1).

Finally, recall the weighted version X(w) of X defined in (4.39), and consider the
condition that for every f ∈ X(w) one has

(5.14)
(Aj)j∈N measurable subsets of Rn−1

with 1Aj → 0 a.e. in Rn−1 as j → ∞

}
=⇒ lim

j→∞

∥∥ |f | · 1Aj

∥∥
X(w)

= 0.

Then a cursory inspection of the proof of Proposition 3.6, p. 16, in [6] reveals
that (5.14) implies Lebesgue’s dominated convergence theorem in X(w). Based on
this, Lemma 3.3, and Lemma 4.2, the same type of reasoning as in the proof of
Corollary 5.2 works and yields the following result.

Corollary 5.3. Assuming (5.13) and that the system L is as in (1.1)–(1.2), the
family {Tt}t>0, where for each t ∈ (0,∞),

(5.15) Tt : X(w) → X(w)

and

(5.16) Ttf(x
′) := (PL

t ∗ f)(x′) for every f ∈ X(w), x′ ∈ R
n−1,

is a semigroup of bounded linear operators on X(w), satisfying

(5.17) sup
t>0

∥∥Tt∥∥L(X(w))
<∞.

Moreover, under the additional assumption that (5.14) holds, this semigroup is
strongly continuous.

Of course, Corollary 5.3 contains as particular cases the scale of weighted
Lebesgue spaces Lp(Rn−1, w) with p ∈ (1,∞) and w ∈ Ap(R

n−1), as well as
the scales of weighted Lorentz spaces that are reflexive (cf. Corollary 4.4 in p. 23
of [6]), and weighted Orlicz spaces, discussed in the last part of §1.
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6. A Fatou type theorem

The goal in this section is to use the tools developed in §3 in order to prove the
following Fatou type result.

Theorem 6.1. Let L be a system as in (1.1)–(1.2) and let PL be its Poisson kernel
in Rn

+. Assume that

u ∈ C∞(Rn
+), Lu = 0 in Rn

+, Nu ∈ L1
(
Rn−1 ,

1+log+ |x′|
1+|x′|n−1 dx

′), and

there exists a sequence {tj}j∈N ⊂ (0,∞) satisfying limj→∞ tj = 0

and such that Mu(·, tj) ∈ L1
(
Rn−1 ,

1+log+ |x′|
1+|x′|n−1 dx

′) for every j ∈ N.

(6.1)

Then

u
∣∣n.t.
∂Rn

+

exists a.e. in Rn−1,

u
∣∣n.t.
∂Rn

+

∈ L1
(
Rn−1 ,

1+log+ |x′|
1+|x′|n−1 dx

′
)
,

u(x′, t) =
(
PL
t ∗
(
u
∣∣n.t.
∂Rn

+

))
(x′), ∀ (x′, t) ∈ Rn

+.

(6.2)

In particular, the conclusions in (6.2) hold whenever

u ∈ C∞(Rn
+), Lu = 0 in R

n
+, M

(
Nu
)
∈ L1

(
R

n−1 ,
1 + log+ |x′|
1 + |x′|n−1

dx′
)
.(6.3)

Prior to presenting the proof of Theorem 6.1, we isolate a useful weak compact-
ness result. To state it, denote by Cvan(R

n−1) the space of continuous functions
in Rn−1 vanishing at infinity.

Lemma 6.2. Let v : Rn−1 → (0,∞) be a Lebesgue measurable function. Consider
a sequence {fj}j∈N ⊂ L1(Rn−1 , v) such that F := supj∈N |fj| ∈ L1(Rn−1 , v). Then

there exists a subsequence
{
fjk
}
k∈N

of {fj}j∈N and a function f ∈ L1(Rn−1 , v)
with the property that

(6.4)

∫
Rn−1

fjk(x
′)ϕ(x′)v(x′) dx′ −→

∫
Rn−1

f(x′)ϕ(x′)v(x′) dx′ as k → ∞,

for every ϕ ∈ Cvan(R
n−1).

Proof. Set f̃j := fjv for each j ∈ N, and F̃ := Fv. Then

(6.5) |f̃j | ≤ F̃ ∈ L1(Rn−1) for each j ∈ N.

Let M be the space of finite Borel regular measures in Rn−1, viewed as a Banach
space when equipped with the norm induced by the total variation. Then

(6.6) L1(Rn−1) ↪→ M =
(
Cvan(R

n−1)
)∗
.
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From (6.5)–(6.6) and Alaoglu’s theorem it follows that there exists a subsequence{
f̃jk
}
k∈N

and some μ ∈ M with the property that

(6.7)

∫
Rn−1

f̃jk(x
′)ϕ(x′) dx′ −→

∫
Rn−1

ϕ(x′) dμ(x′) as k → ∞,

for every ϕ ∈ Cvan(R
n−1). We claim that

(6.8) μ� L n−1.

To justify the claim, fix a Lebesgue measurable set E0 ⊂ Rn−1 with L n−1(E0) = 0.
Given the goals we have in mind, there is no loss of generality in assuming that E0

is bounded. To proceed, pick an arbitrary ε > 0. Since F̃ is a nonnegative function
in L1(Rn−1), there exists δ > 0 such that

(6.9)

∫
U

F̃ dL n−1 < ε, for each measurable set U ⊂ Rn−1 with L n−1(U) < δ.

By the outer regularity of L n−1, there exists an open and bounded subset U0

of Rn−1 containing E0 and such that L n−1(U0) < δ. For any ϕ ∈ C (Rn−1)
supported in U0 we may then use (6.7) and (6.9) to estimate∣∣∣ ∫

Rn−1

ϕdμ
∣∣∣ = lim

k→∞

∣∣∣ ∫
Rn−1

f̃jkϕdL
n−1
∣∣∣(6.10)

≤ ‖ϕ‖L∞(Rn−1)

∫
U0

F̃ dL n−1 ≤ ‖ϕ‖L∞(Rn−1) ε.

In turn, this forces |μ|(U0) ≤ ε, hence |μ|(E0) ≤ ε. Since ε > 0 is arbitrary, we
conclude that |μ|(E0) = 0 and (6.8) follows. Next, from (6.8) and the Radon–

Nikodym theorem we conclude that there exists f̃ ∈ L1(Rn−1) such that

(6.11) dμ = f̃ dL n−1.

Now, (6.4) follows with f := f̃/v ∈ L1(Rn−1 , v) based on (6.7) and (6.11). �

We are now ready to tackle the proof of Theorem 6.1.

Proof of Theorem 6.1. By assumption, the function u satisfies

Nu ∈ L1(Rn−1 , v) where v(x′) :=
1 + log+ |x′|
1 + |x′|n−1

, ∀x′ ∈ R
n−1.(6.12)

For each j ∈ N consider the function uj defined by uj(x
′, t) := u(x′, t+ tj) for each

(x′, t) ∈ R
n
+. Observe that, for each j ∈ N, the function uj belongs to C ∞(

Rn
+

)
,

thus

(6.13) fj := uj
∣∣n.t.
∂Rn

+

= uj
∣∣
∂Rn

+

= u(·, tj)

exists and satisfies

|fj | ≤ Nuj ≤ Nu in R
n−1.(6.14)
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In particular, we conclude from (6.12)–(6.14) that

fj , Nuj ∈ L1(Rn−1 , v) for each j ∈ N.(6.15)

Keeping in mind (6.12)–(6.15), we may then invoke Lemma 6.2 (with F ≤ Nu)
to conclude that there exists a subsequence

{
fjk
}
k∈N

of
{
fj
}
j∈N

and a function

f ∈ L1(Rn−1 , v) with the property that

(6.16)

∫
Rn−1

fjk(x
′)ϕ(x′)v(x′) dx′ −→

∫
Rn−1

f(x′)ϕ(x′)v(x′) dx′ as k → ∞,

for every ϕ ∈ Cvan(R
n−1).

To proceed, let us observe that for each k ∈ N the function fjk clearly satis-
fies (3.1), by (6.12) and (6.15). Next for each k ∈ N define

Uk(x
′, t) :=

(
PL
t ∗ fjk

)
(x′), ∀ (x′, t) ∈ R

n
+.(6.17)

Note that, thanks to Theorem 3.1, this entails

(6.18)
Uk ∈ C ∞(Rn

+), LUk = 0 in Rn
+,

Uk

∣∣n.t.
∂Rn

+

= fjk a.e. in Rn−1, NUk ∈ L1(Rn−1 , v),

where the last condition is a consequence of (6.17), (3.4), (6.13), and the last line
in (6.1). On the other hand, for each k ∈ N, the function ujk satisfies the same
quartet of conditions as Uk in (6.18) (where, this time, the condition Nujk ∈
L1(Rn−1 , v) is seen straight from (6.15)). As such, Theorem 3.2 applies to the
difference ujk − Uk and yields ujk = Uk in Rn

+ for each k ∈ N. Hence,

u(x′, t+ tjk) = ujk(x
′, t) =

(
PL
t ∗ fjk

)
(x′), ∀ (x′, t) ∈ R

n
+, ∀ k ∈ N.(6.19)

Going further, fix (x′, t) ∈ Rn
+ and consider the function

(6.20) ϕx′,t(y
′) :=

1

v(y′)
PL
t (x′ − y′) =

1 + |x′|n−1

1 + log+ |x′|P
L
t (x′ − y′), ∀ y′ ∈ R

n−1,

and note that, from part (a) in Definition 2.2 and part (ii) in Remark 2.3, it follows
that ϕx′,t ∈ Cvan(R

n−1). Granted this, by combining (6.19), (6.20), (6.16), and
also bearing in mind that u is continuous in R

n
+ and limk→∞ tjk = 0, we conclude

that for each x′ ∈ Rn−1 and each t ∈ (0,∞),

u(x′, t) = lim
k→∞

u(x′, t+ tjk) = lim
k→∞

∫
Rn−1

PL
t (x′ − y′)fjk(y

′) dy′(6.21)

= lim
k→∞

∫
Rn−1

ϕx′,t(y
′)fjk(y

′)v(y′) dy′

=

∫
Rn−1

ϕx′,t(y
′)f(y′)v(y′) dy′ = (PL

t ∗ f)(x′).
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Hence, u(x′, t) = (PL
t ∗ f)(x′) for each (x′, t) ∈ Rn

+ for some f ∈ L1(Rn−1 , v).
Having established this, Lemma 3.3 (with P = PL) yields that the non-tangential
limit of u on ∂Rn

+ exists and equals f , proving the first conclusion in (6.2). The
second conclusion in (6.2) is immediate from (6.21) and (3.9)–(3.10), keeping in
mind that L1(Rn−1 , v) ⊆ L1

(
Rn−1 , 1

1+|x′|n dx
′). Finally, the third conclusion

in (6.2) is implicit in (6.21).
There remains to show that (6.3) implies (6.1) (parenthetically, we note that M

acts in a meaningful way on M, hence on the lower semicontinuous function Nu).
Indeed, the membership in (6.3) implies that M

(
Nu) < ∞ a.e. in Rn−1, which

further entailsNu ∈ L1
loc(R

n−1). From this and Lebesgue’s differentiation theorem
we then deduce thatNu ≤ M

(
Nu
)
a.e. in Rn−1 which, in light of the last condition

in (6.3), ultimately yields the membership in the first line of (6.1). Moreover, the
fact that |u(·, t)| ≤ Nu in R

n−1 for each t ∈ (0,∞) implies Mu(·, t) ≤ M
(
Nu
)
in

Rn−1 for each t ∈ (0,∞), so the last condition in (6.1) also follows from (6.3). �

It is clear that the Fatou-type result from Theorem 6.1 (cf. (6.3), in particular)
is valid in the class of null-solutions u of L for which Nu belongs to weighted
Lebesgue spaces as in Example 2, variable exponent Lebesgue spaces as in Exam-
ple 3, weighted Lorentz spaces as in Example 4, as well as weighted Orlicz spaces as
in Example 5. Indeed, the discussion in §1 shows that the Fatou type result from
Theorem 6.1 holds in the settings of Theorem 1.4 and Theorem 1.5. The case of
ordinary Lebesgue spaces deserves special mention, and a precise statement, which
also includes the end-point case p = 1, is presented below.

Corollary 6.3. Assume the system L is as in (1.1)–(1.2). Then for each p∈ [1,∞),

u ∈ C∞(Rn
+)

Lu = 0 in Rn
+

Nu ∈ Lp(Rn−1)

⎫⎪⎬⎪⎭ =⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u
∣∣n.t.
∂Rn

+

exists a.e. in R
n−1,

belongs to Lp(Rn−1),

and u(x′, t) =
(
PL
t ∗
(
u
∣∣n.t.
∂Rn

+

))
(x′),

for every (x′, t) ∈ Rn
+,

(6.22)

where PL is the Poisson kernel for L in Rn
+.

Proof. For p ∈ (1,∞), the desired conclusion follows directly from the implication
(6.3)⇒(6.2) in Theorem 6.1, the boundedness of the Hardy–Littlewood maximal

operator on Lp(Rn−1), and the fact that Lp(Rn−1) ⊂ L1
(
Rn−1 ,

1+log+ |x′|
1+|x′|n−1 dx

′) by
Hölder’s inequality. There remains to treat the case p = 1, and this will follow
from the implication (6.1)⇒(6.2) in Theorem 6.1 as soon as we check that, un-

der the current assumptions, Mu(·, t) ∈ L1
(
Rn−1 ,

1+log+ |x′|
1+|x′|n−1 dx

′) for every fixed

t ∈ (0,∞). To this end, from interior estimates (cf. Theorem A.5) we first de-
duce that ‖u(·, t)‖L∞(Rn−1) ≤ CL,n,t‖Nu‖L1(Rn−1). Since we also have |u(·, t)| ≤
Nu ∈ L1(Rn−1), it ultimately follows that u(·, t) ∈ L∞(Rn−1) ∩ L1(Rn−1) ⊂
L2(Rn−1). Hence, given that M is bounded on L2(Rn−1), we conclude that

Mu(·, t) ∈ L2(Rn−1) ⊂ L1
(
Rn−1 ,

1+log+ |x′|
1+|x′|n−1 dx

′), as wanted. �
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A. Auxiliary results

We begin by recording a suitable version of the divergence theorem recently ob-
tained in [27]. To state it requires a few preliminaries which we dispense with first.
As usual, let D′(Rn

+) denote the space of distributions in Rn
+ and write E ′(Rn

+) for
the space of distributions in Rn

+ that are compactly supported. Hence,

(A.1) E ′(Rn
+) ↪→ D′(Rn

+) and L1
loc(R

n
+) ↪→ D′(Rn

+).

For each compact set K ⊂ Rn
+, define E ′

K(Rn
+) :=

{
u ∈ E ′(Rn

+) : suppu ⊂ K
}
and

consider

E ′
K(Rn

+) + L1(Rn
+) :=

{
u ∈ D′(Rn

+) : ∃ v1 ∈ E ′
K(Rn

+) and ∃ v2 ∈ L1(Rn
+)(A.2)

such that u = v1 + v2 in D′(Rn
+)
}
.

Also, introduce C∞
b (Rn

+) := C∞(Rn
+) ∩ L∞(Rn

+) and let
(
C ∞
b (Rn

+)
)∗

denote its

algebraic dual. Moreover, we let (C∞
b (Rn

+))∗
〈
· , ·
〉

C∞
b (Rn

+)
denote the natural duality

pairing between these spaces. It is useful to observe that for every compact set
K ⊂ Rn

+ one has

(A.3) E ′
K(Rn

+) + L1(Rn
+) ⊂

(
C ∞
b (Rn

+)
)∗
.

Theorem A.1 ([27]). Assume that K ⊂ Rn
+ is a compact set and that �F ∈

L1
loc(R

n
+,C

n) is a vector field satisfying the following conditions:

(a) div �F ∈ E ′
K(Rn

+) + L1(Rn
+), where the divergence is taken in the sense of dis-

tributions;

(b) NKc

κ
�F ∈ L1(Rn−1), where κ > 0 and Kc := Rn

+ \K;

(c) there exists �F
∣∣n.t.
∂Rn

+

a.e. in Rn−1.

Then, with en := (0, . . . , 0, 1) ∈ Rn and “dot” denoting the standard inner
product in Rn,

(A.4) (C∞
b

(Rn
+))∗
〈
div �F , 1

〉
C∞

b (Rn
+)

= −
∫
Rn−1

en ·
(
�F
∣∣n.t.
∂Rn

+

)
dL n−1.

The theorem below summarizes properties of a distinguished fundamental so-
lution for constant (complex) coefficient, homogeneous systems. A proof of the
present formulation may be found in Theorem 11.1, pp. 347-348 of [26], and Theo-
rem 7.54, pp. 270-271 of [26], (cf. also [29] and the references therein). Below, Sn−1

is the unit sphere centered at the origin in Rn, σ is its canonical surface measure,
and ωn−1 := σ(Sn−1) denotes its area.

Theorem A.2. Fix n,m,M ∈ N with n ≥ 2, and consider an M ×M system of
homogeneous differential operators of order 2m,

(A.5) L :=
∑

|α|=2m

Aα∂
α,

with matrix coefficients Aα ∈ CM×M .
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Assume that L satisfies the weak ellipticity condition

(A.6) det
[
L(ξ)

]
�= 0, ∀ ξ ∈ R

n \ {0},

where

(A.7) L(ξ) :=
∑

|α|=2m

ξαAα ∈ C
M×M , ∀ ξ ∈ R

n.

Then the M ×M matrix E defined at each x ∈ Rn \ {0} by

(A.8) E(x) :=
1

4(2π i)n−1(2m−1)!
Δ(n−1)/2

x

∫
Sn−1

(x · ξ)2m−1sgn (x · ξ)
[
L(ξ)

]−1
dσ(ξ)

if n is odd, and

(A.9) E(x) :=
−1

(2π i)n(2m)!
Δn/2

x

∫
Sn−1

(x · ξ)2m ln |x · ξ|
[
L(ξ)

]−1
dσ(ξ)

if n is even, satisfies the following properties.

(1) Each entry in E is a tempered distribution in Rn, and a real-analytic function
in Rn \ {0} (hence, in particular, it belongs to C∞(Rn \ {0})). Moreover,

(A.10) E(−x) = E(x) for all x ∈ R
n \ {0}.

(2) If IM×M is the M ×M identity matrix, then for each y ∈ Rn

(A.11) Lx

[
E(x− y)

]
= δy(x) IM×M

in the sense of tempered distributions in Rn, where the subscript x denotes
the fact that the operator L in (A.11) is applied to each column of E in the
variable x.

(3) Define the M ×M matrix-valued function

(A.12) P(x) :=
−1

(2π i)n(2m− n)!

∫
Sn−1

(x·ξ)2m−n
[
L(ξ)

]−1
dσ(ξ), ∀x ∈ R

n.

Then the entries of P are identically zero when either n is odd or n > 2m,
and are homogeneous polynomials of degree 2m− n when n ≤ 2m. Moreover,
there exists a CM×M -valued function Φ, with entries in C∞(Rn \ {0}), that is
positive homogeneous of degree 2m− n such that

(A.13) E(x) = Φ(x) +
(
ln |x|

)
P(x), ∀x ∈ R

n \ {0}.

(4) For each β ∈ Nn
0 with |β| ≥ 2m−1, the restriction to Rn\{0} of the matrix dis-

tribution ∂βE is of class C∞ and positive homogeneous of degree 2m− n− |β|.
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(5) For each β ∈ Nn
0 there exists Cβ ∈ (0,∞) such that the estimate

(A.14)

|∂βE(x)| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cβ

|x|n−2m+|β| if either n is odd, or n > 2m, or if |β| > 2m− n,

Cβ(1 + | ln |x||)
|x|n−2m+|β| if 0 ≤ |β| ≤ 2m− n,

holds for each x ∈ Rn \ {0}.
(6) When restricted to Rn \{0}, the entries of Ê (with “hat” denoting the Fourier

transform) are C∞ functions and, moreover,

(A.15) Ê(ξ) = (−1)m
[
L(ξ)

]−1
for each ξ ∈ R

n \ {0}.

(7) Writing EL in place of E to emphasize the dependence on L, the fundamental
solution EL with entries as in (A.8)–(A.9) satisfies

(A.16)

(
EL
)�

= EL�
, EL = EL ,

(
EL
)∗

= EL∗
,

and EλL = λ−1EL for each λ ∈ C \ {0},

where L�, L, and L∗ = L
�
denote the transposed, the complex conjugate, and

the Hermitian adjoint of L, respectively.

(8) Any fundamental solution E of the system L in Rn, whose entries are tempered
distributions in Rn, is of the form E = E + Q where E is as in (A.8)–(A.9)
and Q is an M ×M matrix whose entries are polynomials in Rn and whose
columns, Qk, k ∈ {1, . . . ,M}, satisfy the pointwise equations LQk = 0 ∈ CM

in Rn for each k ∈ {1, . . . ,M}.
(9) In the particular case when M = 1 and m = 1, i.e., in the situation when

L = divA∇ for some matrix A = (ajk)1≤j,k≤n ∈ Cn×n, and when in place
of (A.6) the strong ellipticity condition

(A.17) Re
[ n∑
j,k=1

ajkξjξk

]
≥ C |ξ|2, ∀ ξ = (ξ1, . . . , ξn) ∈ R

n,

is imposed, the fundamental solution E of L from (A.8)–(A.9) takes the explicit
form

(A.18) E(x) =

⎧⎪⎪⎨⎪⎪⎩
− 1

(n− 2)ωn−1

√
det (Asym)

[(
(Asym)

−1x
)
· x
] 2−n

2 if n ≥ 3,

1

4π
√
det (Asym)

log
[(
(Asym)−1x

)
· x
]

if n = 2.

Here, Asym := 1
2 (A + A�) stands for the symmetric part of the coefficient

matrix A = (ars)1≤r,s≤n and log denotes the principal branch of the complex
logarithm function (defined by the requirement that zt = et log z for all z ∈
C \ (−∞, 0] and all t ∈ R).
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Before introducing the notion of Green function we discuss several pieces of
notation. First, diag := {(x, x) : x ∈ R

n
+} denotes the diagonal in the Carte-

sian product Rn
+ × Rn

+. Second, given a function G(·, ·) of two vector variables,
(x, y) ∈ Rn

+×Rn
+ \diag, for each k ∈ {1, . . . , n} we agree to write ∂Xk

G and ∂Yk
G,

respectively, for the partial derivative of G with respect to xk, and yk (the k-th
components of x and y, respectively). This convention may be iterated, lending

a natural meaning to ∂αX∂
β
YG, for each pair of multi-indices α, β ∈ Nn

0 . Also, we
shall interpret ∇XG, and ∇YG, as the gradients of G with respect to x, and y.
Third, for each point y ∈ Rn

+ define

(A.19) By := B
(
y, 12 dist (y, ∂R

n
+)
)

and, as usual, set Bc
y := R

n
+ \By.

Given a function u which is absolutely integrable over bounded subsets of Rn
+,

define (whenever meaningful) the Sobolev trace as

(A.20)
(
Tru
)
(x′) := lim

r→0+
−
∫
B((x′,0), r)∩Rn

+

u dL n, x′ ∈ ∂Rn−1.

For each p ∈ (1,∞) let W 1,p(Rn
+) be the classical Lp-based Sobolev space of order

one in Rn
+, and use the symbol W̊ 1,p(Rn

+) for the closure of C ∞
0 (Rn

+) in W
1,p(Rn

+).
Then for each function u ∈ W 1,p(Rn

+), 1 < p < ∞, the trace Tr u exists a.e. on
∂Rn

+ and belongs to Bp,p
1−1/p(R

n−1), where for each p ∈ (1,∞) and s ∈ (0, 1) the

Besov space Bp,p
s (Rn−1) is defined as the collection of all measurable functions f

in Rn−1 with the property that

(A.21) ‖f‖Bp,p
s (Rn−1) := ‖f‖Lp(Rn−1)+

(∫
Rn−1

∫
Rn−1

|f(x′)−f(y′)|p
|x′−y′|n−1+sp

dx′dy′
)1/p

<∞.

In fact, for each p ∈ (1,∞) the operator

(A.22) Tr :W 1,p(Rn
+) −→ Bp,p

1−1/p(R
n−1)

is well-defined, linear and bounded, and has a linear and bounded right-inverse.

Definition A.3. Let L be a constant coefficient, second-order, elliptic differential
operator as in (1.1). Call G(·, ·) : Rn

+×Rn
+ \diag → CM×M a Green function for L

in R
n
+ provided for each y ∈ R

n
+ the following properties hold:

G(· , y) ∈ L1
loc(R

n
+),(A.23)

G(· , y)
∣∣n.t.
∂Rn

+

= 0 a.e. in R
n−1,(A.24)

NBc
y G(· , y) ∈

⋃
1<p<∞

Lp(Rn−1),(A.25)

L
[
G(· , y)

]
= δy IM×M in D′(Rn

+),(A.26)

where L acts in the “dot” variable on the columns of G.
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We remark that, in the context of Definition A.3, we always have

(A.27) G(· , y) ∈ C ∞(Rn
+ \ {y}) for each y ∈ R

n
+,

by (A.23), (A.26), and elliptic regularity (see [26], Theorem 10.9, p. 318). Other
basic properties of the Green function are collected in our next result.

Theorem A.4 ([24]). Assume that L is a constant (complex) coefficient, second-
order, elliptic differential operator as in (1.1). Then there exists a unique Green
function G(·, ·) = GL(·, ·) for L in Rn

+, in the sense of Definition A.3. Moreover,
this Green function also satisfies the following additional properties:

(1) Given κ > 0, for each y ∈ Rn
+ and each compact neighborhood K of y in Rn

+

there exists a finite constant C = C(n, L, κ,K, y) > 0 such that for every
x′ ∈ Rn−1 there hold

(A.28) NKc

κ

(
G(·, y)

)
(x′) ≤ C

1 + log+ |x′|
1 + |x′|n−1

(if the fundamental solution EL of L from Theorem A.2 is a radial function in
Rn \ {0}, then the logarithm in (A.28) may actually be omitted ). Moreover,
for any multi-indices α, β ∈ Nn

0 such that |α| + |β| > 0, there exists C =
C(n, L, κ, α, β,K, y) ∈ (0,∞) such that

(A.29) NKc

κ

(
(∂αX∂

β
YG)(·, y)

)
(x′) ≤ C

1 + |x′|n−2+|α|+|β| .

In particular,

(A.30) NKc

κ

(
(∂αX∂

β
YG

L)(· , y)
)
∈

⋂
1<p≤∞

Lp(Rn−1), ∀α, β ∈ N
n
0 .

(2) For each fixed y ∈ Rn
+, there holds

(A.31) GL(· , y) ∈ C∞(
Rn

+ \B(y, ε)
)

for every ε > 0.

(3) The function GL(·, ·) is translation invariant in the tangential variables in
the sense that

(A.32)
GL
(
x− (z′, 0), y − (z′, 0)

)
= GL(x, y) for every

(x, y) ∈ Rn
+ × Rn

+ \ diag and z′ ∈ Rn−1.

(4) With Tr denoting the Sobolev trace on ∂Rn
+ (cf. (A.20)–(A.22)), one has

(A.33)
GL(· , y) ∈

⋂
k∈N

⋂
n/(n−1)<p<∞

W k,p(Rn
+ \K) and Tr

[
GL(· , y)

]
= 0,

for every y ∈ R
n
+ and any compact K ⊂ R

n
+ with y ∈ K◦.

(5) If GL�
(·, ·) denotes the (unique, by the first part of the statement) Green

function for L� in Rn
+, then

(A.34) GL(x, y) =
[
GL�

(y, x)
]�
, ∀ (x, y) ∈ R

n
+ × R

n
+ \ diag.
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Hence, as a consequence of (A.34), (A.24), and (A.31), for each fixed x ∈ Rn
+

and ε > 0,

(A.35) GL(x, ·) ∈ C ∞(
Rn

+ \B(x, ε)
)

and GL(x, ·)
∣∣
∂Rn

+

= 0 on R
n−1.

(6) If EL denotes the fundamental solution of L from Theorem A.2, then the
matrix-valued function

(A.36) RL(x, y) := EL(x− y)−GL(x, y), ∀ (x, y) ∈ R
n
+ × R

n
+ \ diag,

extends to a function RL(·, ·) ∈ C∞(Rn
+ × Rn

+

)
which satisfies the follow-

ing estimate: for any multi-indices α, β ∈ Nn
0 there exists a finite constant

Cαβ > 0 with the property that for every (x, y) ∈ Rn
+ × Rn

+,
(A.37)∣∣(∂αX∂βY RL

)
(x, y)

∣∣ ≤ {Cαβ |x− y|2−n−|α|−|β| if |α|+ |β| > 0, or n ≥ 3,

C + C
∣∣ln |x− y|

∣∣ if |α| = |β| = 0 and n = 2,

where C ∈ (0,∞), and y := (y′,−yn) if y = (y′, yn) ∈ R
n
+.

(7) For any multi-indices α, β ∈ N
n
0 there exists a finite constant Cαβ > 0 such

that

(A.38)

∣∣(∂αX∂βYGL
)
(x, y)

∣∣ ≤ Cαβ |x− y|2−n−|α|−|β|,

∀ (x, y) ∈ R
n
+ × R

n
+ \ diag, if either n ≥ 3, or |α|+ |β| > 0,

and, corresponding to |α| = |β| = 0 and n = 2, there exists C ∈ (0,∞) such
that

(A.39)
∣∣GL(x, y)

∣∣ ≤ C + C
∣∣ln |x− y|

∣∣, ∀ (x, y) ∈ R
2
+ × R

2
+ \ diag.

(8) For each α, β ∈ Nn
0 one has

(A.40) sup
y∈Rn

+

∥∥(∂αX∂βYGL
)
(·, y)

∥∥
L

n
n−2+|α|+|β| , ∞(Rn

+)
< +∞,

if either n ≥ 3, or |α|+ |β| > 0. In particular,

GL(·, y) ∈ L
n

n−2 ,∞(Rn
+), uniformly in y ∈ R

n
+, if n ≥ 3,(A.41)

∇XG
L(·, y),∇YG

L(·, y) ∈ L
n

n−1 ,∞(Rn
+), uniformly in y ∈ R

n
+,(A.42)

and

(A.43)
∇2

XG
L(·, y),∇X∇YG

L(·, y), and ∇2
YG

L(·, y)
belong to L1,∞(Rn

+), uniformly in y ∈ Rn
+.

(9) If p ∈ [1, n/(n− 1)), then for each ζ ∈ C∞
0 (Rn) one has

(A.44)
ζGL(·, y) ∈ W̊ 1,p(Rn

+) for each y ∈ Rn
+

and sup
y∈Rn

+

∥∥ζGL(·, y)
∥∥
W 1,p(Rn

+)
<∞.
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(10) If the fundamental solution EL for L from Theorem A.2 is a radial function
in R

n \{0}, then (with y ∈ R
n
− denoting the reflection of y ∈ R

n
+ across ∂Rn

+)

(A.45) GL(x, y) = EL(x− y)− EL(x − y), ∀ (x, y) ∈ R
n
+ × R

n
+ \ diag.

(11) If n ≥ 3, then for every x = (x′, t) ∈ Rn
+ and every y ∈ Rn

+ \ {x} one has
(with PL denoting the Agmon–Douglis–Nirenberg Poisson kernel for L in R

n
+

from Theorem 2.4)

(A.46) GL(x, y) = EL(x− y)− PL
t ∗
([
EL(· − y)

]∣∣
∂Rn

+

)
(x′),

with the convolution applied to each column of the matrix inside the round
parentheses.

(12) The Agmon–Douglis–Nirenberg Poisson kernel PL =
(
PL
γα

)
1≤γ,α≤M

for L

in Rn
+ from Theorem 2.4 is related to the Green function GL for L in Rn

+ as
follows: for each α, γ ∈ {1, . . . ,M},

(A.47) PL
γα(z

′) = −aβαnn
(
∂YnG

L
γβ

)(
(z′, 1), 0

)
, ∀ z′ ∈ R

n−1,

In particular, formulas (A.47) and (A.45) imply that whenever the fundamen-
tal solution EL =

(
EL

γβ

)
1≤γ,β≤M

of L from Theorem A.2 is a radial function

then for each α, γ ∈ {1, . . . ,M} one has

(A.48) PL
γα(z

′) = 2 aβαnn(∂nE
L
γβ)(z

′, 1), ∀ z′ ∈ R
n−1.

We shall now record the following versatile version of interior estimates for
higher-order elliptic systems. A proof may be found in [26], Theorem 11.9, p. 364.

Theorem A.5. Consider a homogeneous, constant coefficient, higher-order sys-
tem L as in (A.5), satisfying the weak ellipticity condition (A.6). Then for each
null-solution u of L in a ball B(x,R) (where x ∈ Rn and R > 0), 0 < p < ∞,
λ ∈ (0, 1), � ∈ N0, and 0 < r < R, one has

(A.49) sup
z∈B(x,λr)

|∇�u(z)| ≤ C

r�

(
−
∫
B(x,r)

|u|p dL n
)1/p

,

where C = C(L, p, �, λ, n) > 0 is a finite constant.

Finally, we discuss the dependence of the size of the nontangential maximal
function, corresponding to various apertures, in weighted Lp spaces.

Proposition A.6. For every κ, κ′ > 0, p ∈ (0,∞) and w ∈ A∞(Rn−1), there exist
finite constants C0, C1 > 0 such that

(A.50) C0 ‖Nκu‖Lp(Rn−1, w) ≤ ‖Nκ′ u‖Lp(Rn−1, w) ≤ C1 ‖Nκu‖Lp(Rn−1, w),

for each function u : Rn
+ → C.
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Proof. As in the unweighted case, the proof of this result is based on a point-of-
density argument. Fix λ > 0 and for every κ > 0 write

(A.51) Oκ =
{
x′ ∈ R

n−1 :
(
Nκu

)
(x′) > λ

}
.

It is easy to show that Oκ is open. Pick 0<γ<1 so that 1−
(
κ/(κ+κ′)

)n−1
<γ<1

and write Aκ := R
n−1 \Oκ. Also, for every γ ∈ (0, 1) introduce

(A.52) Aγ
κ :=

{
x′ ∈ R

n−1 :
|Aκ ∩Bn−1(x

′, r)|
|Bn−1(x′, r)|

≥ γ for each r > 0
}
.

We are going to show that Oκ′ ⊂ Rn−1 \Aγ
κ. Given x′ ∈ Oκ′ , we can take (y′, t) ∈

Γκ′(x′) such that |u(y′, t)| > λ. Note that Bn−1(y
′, κ t) ⊂ Bn−1

(
x′, (κ + κ′) t

)
.

On the other hand, we have that Bn−1(y
′, κ t) ⊂ Oκ: if z′ ∈ Bn−1(y

′, κ t) then
(y′, t) ∈ Γκ(z

′) and, therefore, Nκu(z
′) ≥ |u(y′, t)| > λ. All these show that

Bn−1(y
′, κ t) ⊂ Oκ ∩Bn−1

(
x′, (κ+ κ′) t

)
. This implies that∣∣Bn−1

(
x′, (κ+ κ′) t

)
∩ Aκ

∣∣∣∣Bn−1

(
x′, (κ+ κ′) t

)∣∣ = 1−
∣∣Bn−1

(
x′, (κ+ κ′) t

)
∩Oκ

∣∣∣∣Bn−1

(
x′, (κ+ κ′) t

)∣∣
≤ 1− |Bn−1(y

′, κ t)|∣∣Bn−1

(
x′, (κ+ κ′) t

)∣∣ = 1−
( κ

κ+ κ′

)n−1

< γ,(A.53)

which forces x′ /∈ Aγ
κ in light of (A.52). In turn, this shows that

(A.54) Oκ′ ⊂ R
n−1 \Aγ

κ ⊆
{
x′ ∈ R

n−1 : M(1Oκ)(x
′) ≥ cn(1− γ)

}
,

for some dimensional constant cn ∈ (0,∞) (whose appearance is due to the fact
that the Hardy–Littlewood maximal operator has been defined in (2.9) using cubes
rather than balls). Since w ∈ A∞(Rn−1), we can take q ∈ (1,∞) such that
w ∈ Aq(R

n−1). Thus, M is bounded on Lq(Rn−1, w) and, consequently,

w(Oκ′ ) ≤ w
({
x′ ∈ R

n−1 : M(1Oκ)(x
′) ≥ cn(1 − γ)

})
≤ [cn(1 − γ)]−q ‖M(1Oκ)‖

q
Lq(Rn−1, w) ≤ C w(Oκ),(A.55)

where C ∈ (0,∞) depends only on n, κ, κ′, q, w. The level set estimate just derived
readily yields (A.50). �

It follows from Proposition A.6 and (2.6) that, for every κ, κ′ > 0 and p ∈
(0,∞), there exist finite constants C0, C1 > 0 such that

C0‖NE
κ u‖Lp(Rn−1) ≤ ‖NE

κ′ u‖Lp(Rn−1) ≤ C1‖NE
κ u‖Lp(Rn−1),(A.56)

C0‖N (ε)
κ u‖Lp(Rn−1) ≤ ‖N (ε)

κ′ u‖Lp(Rn−1) ≤ C1‖N (ε)
κ u‖Lp(Rn−1),(A.57)

for each function u, set E ⊂ R
n, and number ε > 0.
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[18] Helms, L. L.: Introduction to potential theory. Pure and Applied Mathematics 22,
Wiley-Interscience, New York-London-Sidney, 1969.

[19] Hofmann, S., Mitrea, M. and Morris, A.: The method of layer potentials in Lp

and endpoint spaces for elliptic operators with L∞ coefficients. Proc. Lond. Math.
Soc. (3) 111 (2015), no. 3, 681–716.

[20] Kenig, C.E.: Harmonic analysis techniques for second order elliptic boundary value
problems. CBMS Regional Conference Series in Mathematics 83, American Mathe-
matical Society, Providence, RI, 1994.

[21] Kozlov, V.A., Maz’ya, V.G., and Rossmann, J.: Spectral problems associated
with corner singularities of solutions to elliptic equations. Mathematical Surveys and
Monographs 85, American Mathematical Society, Providence, RI, 2001.

[22] Lindenstrauss, J. and Tzafriri, L.: Classical Banach spaces. I and II. Springer-
Verlag, Berlin-New York, 1977, 1979.

[23] Lions, J. L. and Magenes, E.: Non-homogeneous boundary value problems and
applications. Volume 1. Die Grundlehren der mathematischen Wissenschaften 181,
Springer, Berlin, Heidelberg, 1972.

[24] Martell, J.M., Mitrea, D., Mitrea, I., and Mitrea, M.: Poisson kernels and
boundary problems for elliptic systems in the upper half-space. Preprint, 2016.

[25] Maz’ya, V.G. and Shaposhnikova, T.O.: Theory of multipliers in spaces of differ-
entiable functions. Monographs and Studies in Mathematics 23, Pitman (Advanced
Publishing Program), Boston, MA, 1985.

[26] Mitrea, D.: Distributions, partial differential equations, and harmonic analysis.
Universitext, Springer, New York, 2013.

[27] Mitrea, D., Mitrea, I. and Mitrea, M.: A sharp divergence theorem with
nontangential pointwise traces and applications. Preprint, 2014.

[28] Mitrea, D., Mitrea, I., Mitrea, M. and Ziadé, E.: Abstract capacity esti-
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