
Rev. Mat. Iberoam. 32 (2016), no. 3, 971–994
doi 10.4171/rmi/904

c© European Mathematical Society

Focal points and sup-norms of eigenfunctions

Christopher D. Sogge and Steve Zelditch

Abstract. If (M, g) is a compact real analytic Riemannian manifold,
we give a necessary and sufficient condition for there to be a sequence of
quasimodes of order o(λ) saturating sup-norm estimates. In particular,
it gives optimal conditions for existence of eigenfunctions satisfying maxi-
mal sup norm bounds. The condition is that there exists a self-focal point
x0 ∈ M for the geodesic flow at which the associated Perron–Frobenius
operator Ux0 : L

2(S∗
x0
M) → L2(S∗

x0
M) has a nontrivial invariant L2 func-

tion. The proof is based on an explicit Duistermaat–Guillemin–Safarov
pre-trace formula and von Neumann’s ergodic theorem.

1. Introduction and main results

Let (M, g) be a compact boundaryless Riemannian manifold. We then let Φt(x, ξ) =
(x(t), ξ(t)) denote the homogeneous Hamilton flow on T ∗M\0 associated to the
principal symbol |ξ|g of

√−Δ, with Δ = Δg denoting the Laplace–Beltrami oper-
ator of (M, g). Since Φt preserves the unit cosphere bundle S∗M = {|ξ|g = 1}, it
defines a flow on S∗M which preserves the Liouville measure. For a given x ∈M ,
let Lx ⊂ S∗

xM denote those unit directions ξ for which Φt(x, ξ) ∈ S∗
xM for some

time t �= 0, and let |Lx| denote its surface measure dμx in S∗
xM induced by the

Euclidean metric gx. Thus, Lx denotes the initial directions of geodesic loops
through x.

In [23] it was shown that

(1.1) ‖eλ‖L∞(M) = o(λ(n−1)/2),

if
|Lx| = 0 for all x ∈M,

whenever eλ is an L2-normalized eigenfunction of frequency λ, i.e.,

(1.2) (Δ + λ2)eλ = 0, and

∫
M

|eλ|2 dV = 1.
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Here, dV = dVg denotes the volume element associated with the metric. Moreover,
there is a corresponding bound for the L2 → L∞ norm of projection operators onto
shrinking spectral bounds, i.e.,

(1.3)
∥∥χ[λ,λ+o(1)]

∥∥
L2(M)→L∞(M)

= o(λ(n−1)/2).

By this we mean that, given ε > 0, we can find a δ(ε) > 0 and Λε <∞ so that

(1.4)
∥∥χ[λ,λ+δ(ε)]f‖L∞(M) ≤ ε λ(n−1)/2 ‖f‖L2(M), λ ≥ Λε,

with χ[λ,λ+δ] : L
2(M) → L2(M) denoting projection onto frequencies (i.e., eigen-

values of
√−Δ) in the interval [λ, λ+ δ].

In [22] this result was improved by showing that if Rx ⊂ Lx ⊂ S∗
xM is the set

of recurrent directions over x and if |Rx| = 0 for all x ∈M , then we have (1.1).
We shall now give a simple and natural further refinement in the real analytic

case which involves an ergodicity condition. The real analytic case is simple to
analyze due to the fact that if x ∈M then there are just two extreme possibilities
regarding the nature of Lx ⊂ S∗

xM , the loop directions. Indeed, as shown in [23],
either |Lx| = 0 or Lx = S∗

xM . In the second case there is also a minimal time
� > 0 so that Φ�(x, ξ) ∈ S∗

xM , meaning that all geodesics starting at x loop back at
exactly this minimal time �. We call such a point a self-focal point. We note that
there may exist more than one self-focal point and the minimal common return
time � of the loops may depend on x but for simplicity of notation we do not give
it a subscript. If we then write

(1.5) Φ�(x, ξ) = (x, ηx(ξ)), ξ ∈ S∗
xM,

then the first return map

(1.6) ηx : S∗
xM → S∗

xM

above our self-focal point is real analytic. Following Safarov [17], we can asso-
ciate to this first return map the Perron–Frobenius operator Ux : L

2(S∗
xM,dμx) →

L2(S∗
xM,dμx) by setting

(1.7) Uxf(ξ) = f(ηx(ξ))
√
Jx(ξ), f ∈ L2(S∗

xM,dμx),

where Jx(ξ) denotes the Jacobian of the first return map, i.e., η∗xdμx = Jx(ξ)dμx.
Clearly Ux is a unitary operator and

(1.8) η∗x(fdμx) = Ux(f)dμx.

The key assumption underlying our results is contained in the following:

Definition 1.1. A self-focal point x ∈ M is said to be dissipative if Ux has no
invariant function f ∈ L2(S∗

xM). Equivalently, Φ� has no invariant L1 measure
with respect to dμx.

The dissipative condition is a spectral condition on Ux. If Ux has any L2

eigenfunction g then Uxg = eiθg form some eiθ ∈ L2 and then Ux|g| = |Uxg| = |g|.
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Hence the dissipative condition is the condition that the spectrum of Ux is purely
continuous. For this reason, one might prefer the term ‘weak mixing’; but that
might create the wrong impression that Φ� is weak mixing with respect to some
given invariant measure. The term ‘dissipative’ refers to the Hopf decomposition
of Φ� on S∗

xM into conservative and dissipative parts. As discussed in §1.5, lack
of an L2 eigenfunction does not necessarily imply that the conservative part is of
measure zero, so the term ‘dissipative point’ does not precisely mean that Φx is a
dissipative dynamical system.

Our main result then is the following.

Theorem 1.2. Let (M, g) be a real analytic compact boundaryless manifold of
dimension n ≥ 2. Then (1.1) and (1.3) are true if and only if every self-focal point
is dissipative.

Remark. The condition that every self-focal point is dissipative implies that

(1.9) λ−1 ‖∇eλ‖L∞(M) = o(λ(n−1)/2).

For expository simplicity we will not prove it here, but the proof is almost the
same.

On any surface of revolution, the invariant eigenfunctions have sup norms of
order � λ(n−1)/2 and achieve their suprema at the poles. The norm of the gradients
achieve the bound (1.9) at a distance C/λ away from the poles. The dissipative
condition rules out such examples.

Theorem 1.2 is stronger than the result in [22]. Indeed, if |Rx| = 0 then Ux
cannot have an invariant L2 function and so (1.3) would hold. The reason is that
existence of f ∈ L2 with Uxf = f implies (by (1.8)) that |f |2dμx is a finite invariant
measure in the class of dμx. By the Poincaré recurrence theorem, |f |2dμx - almost
every point would be recurrent, and thus the set of recurrent points would have
positive μx measure.

Theorem 1.2 is in a sense the optimal result on the problem of relating sup-
norms of eigenfunctions to properties of the geodesic flow. As will be discussed
at the end of the introduction, the result can only be sharpened by further un-
derstanding of the dynamical question of relating existence of an invariant f ∈
L2(S∗

xM,dμx) to the structure of loops of (M, g).

1.1. Geometry of loops and self-focal points

Associated to a self-focal point x is the flowout manifold

(1.10) Λx =
⋃

0≤t≤�
GtS∗

xM.

It is an immersed Lagrangian submanifold of S∗M whose projection

π : Λx →M

has a “blow-down singularity” at t = 0, t = �. For this reason self-focal points were
called blow-down points in [22].
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We may view Λx0 as the embedding of the mapping cylinder Cx of ηx, i.e., as

(1.11) Cx = S∗
xM × [0, �]/ ∼=, where (ξ, �) ∼= (Φ�(x, ξ), 0)

In [22] it is proved that the map

ιx(ξ, t) = Gt(x, ξ) : Cx → Λx ⊂ S∗
xM

is a Lagrange immersion whose image is Λx ⊂ S∗
xM . If � is the minimal period

of all loops (i.e., if there are no exceptionally short loops) then ιz |S∗
z×(0,�) is an

embedding.
Focal points come in two basic kinds, depending on the first return map ηx.

We say that x is a pole if

ηx = Idx : S∗
xM → S∗

xM.

Equivalently, the set CLx of smoothly closed geodesics based at x is all of S∗
xM ,

(1.12) x is a pole if CLx = S∗
xM, CLx = {ξ ∈ S∗

xM : Φt(x, ξ) = (x, ξ)}.

On the other hand, it is possible that ηx = Id only on a set of zero measure in Lx,
which in the analytic case means that it is almost nowhere the identity and Lx
must have codimension ≥ 1. We call such a ηx twisted. Thus,

(1.13) x is self-focal with a twisted return map if codim (CLx) ≥ 1.

Examples of poles are the poles x of a surface of revolution (in which case all
geodesic loops at x are smoothly closed). Examples of self-focal points with twisted
return map are the four umbilic points of two-dimensional tri-axial ellipsoids, from
which all geodesics loop back at time 2π but are almost never smoothly closed [13].
The only smoothly closed directions are the geodesic (and its time reversal) defined
by the middle length ‘equator’. There are topological restrictions on manifolds
possessing a self-focal point. In [1] a manifold with such a point is denoted a F x0

�

(or Y x0

� -)-manifold; if � is the least common return time for all loops it is denoted
by Lx0

� . If (M, g) has a focal point x0 from which all geodesics are simple (non-
intersecting) loops, then the integral cohomology ringH∗(M,Z) is generated by one
element [15]. For an F x0

� manifold, H∗(M,Q) has a single generator (Theorem 4
of [1]). Most results on manifolds with self-focal points consider only the special
case of Zoll metrics; see [2] for classic results and [16] for some recent results and
references.

In the case of a triaxial ellipsoid E ⊂ R3, the first return map ηx is a to-
tally dissipative expanding map of the circle with two fixed points, one a source
and one a sink. It has invariant δ-measures at the fixed points and an infinite
locally L1 invariant measure on each component of the complement. According to
Theorem 1.2, the eigenfunctions of E cannot achieve maximal sup norm bounds.
In fact, the result of [22] already rules out maximal eigenfunction growth on the
ellipsoid.
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Note also that the analog of (1.3) is automatic in the Euclidean case since, by
Plancherel’s theorem and duality,

∥∥∥
∫
{ξ∈Rn: |ξ|∈[λ,λ+δ]

eix·ξf̂(ξ) dξ
∥∥∥
L∞(Rn)

≤ cn
√
δ λ(n−1)/2 ‖f‖L2(Rn), λ ≥ 1.

Thus, by Theorem 1.2, the condition as to whether or not there is a self-focal
point x ∈M so that Uxg = g for some 0 �= g ∈ L2(S∗

xM), with Ux as in (1.7), pro-
vides a necessary and sufficient condition determining when the spectral projection
operators onM also enjoy improved sup-norm bounds over shrinking intervals. Be-
sides [23] and [22], earlier works on related problems are in [3], [4], [20], [24] and [25].
We should also point out that in (1.4) one needs that δ(ε) → 0 as ε → 0 since,
for any compact n-dimensional Riemannian manifold (M, g), by (5.1.12) in [19],
one has

lim sup
λ→∞

λ−(n−1)/2 ‖χ[λ,λ+1]‖L2(M)→L∞(M) > 0.

1.2. Coherent states associated to self-focal points

The proof of Theorem 1.2 extends beyond eigenfunctions to certain kinds of quasi-
modes, which play a fundamental role in the proof. To construct them, we fix
ρ ∈ S(R) satisfying
(1.14) ρ ≥ 0, ρ(0) = 1, 0 ≤ ρ̂ ≤ 1, and ρ̂(t) = 0 if t /∈ (−1, 1).

We set
P =

√−Δ,

and consider the operators

(1.15) ρ(T (λ− P )) =
1

T

∫
R

ρ̂
( t
T

)
eitλ e−itP dt.

If we freeze the second component of the Schwartz kernel of (1.15) at a focal
point x0 we obtain a semi-classical Lagrangian quasi-mode

(1.16) ψx0

λ,T (x) := ρ
(
T (λ−

√
Δ)

)
(x, x0)

associated to the Lagrangian submanifold (1.10) in the sense of [5] and [6]. That
is, it is a semi-classical oscillatory integral with large parameter λ whose phase
generates (1.10). More precisely, {ψx0

λ,T } is a one-parameter family of quasi-modes
depending on the parameter T (as well as the semi-classical parameter λ). We refer
to (1.16) as coherent states centered at x0. In terms of an orthonormal basis of
real valued eigenfunctions {ej}∞j=0,

ψx0

λ,T (x) = λ−(n−1)/2
∞∑
j=0

ρ
(
T (λ− λj)

)
ej(x) ej(x0).

The following lemma explains the precise sense in which (1.16) are quasi-modes:
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Lemma 1.3. For each T , ψx0

λ,T is a semi-classical Lagrangian distribution associ-
ated to the Lagrangian (1.10) whose principal symbol pulls back under ιx to

1

T
eiλt ρ̂

( t
T

)
|dt|1/2 ⊗ |dμx|1/2.

One has

(1.17) ‖ψx0

λ,T ‖L2 ≤ C,

and, moreover, for any ε there exists T0 so that for T ≥ T0,

(1.18) ||(Δ + λ2)ψx0

λ,T ||L2 ≤ C ελ.

For fixed T , (1.16) is therefore a very kind of weak quasi-mode but as a family
it behaves like a quasi-mode of order o(λ) as T → ∞.

Further, the value of ψx0

λ,T at its peak point x0 equals

(1.19) λ−(n−1)/2
∞∑
j=0

ρ
(
T (λ− λj)

)
(ej(x0))

2,

and as we will see, this peak value is of maximal growth if and only if Ux (1.7) has
an invariant L2 function.

The fact that ψλ,T is a semi-classical Lagrangian quasi-mode is an immediate
consequence of the well-known parametrix construction for e−itP (see (2.4)), from
which it is clear that one may express (1.16) as an oscillatory integral with large
parameter λ. The symbol can also be evaluated as in the Lemma directly from
this expression and the principal symbol of e−itP computed in [7]. Note that
the symbol is invariant under the geodesic flow on the long time interval where
ρ̂(t/T ) ≡ 1. As T → ∞ one gets a kind of time average over orbits and we will
see that the family (1.16) behaves as a family of approximate quasi-modes with
invariant symbols. It is natural to ask whether the invariant L2 function can be
‘quantized’ to construct a quasi-mode of order o(λ); we discuss this in §1.6.

It is also not hard to see that (1.18) is valid. Indeed, since ρ ∈ S(R), we have
for any N = 1, 2, . . . ,∫

M

∣∣(Δ + λ2)ψx0

λ,T (x)
∣∣2 dV = λ−(n−1)

∑
j

(λ2 − λ2j )
2
(
ρ(T (λ− λj))

)2
(ej(x0))

2

≤ CN λ
−(n−1)

∑
j

(λ2 − λ2j )
2 (1 + T |λ− λj |)−N (ej(x0))

2

≤ CN T
−2 λ−(n−1)

∑
j

(λ + λj)
2 (1 + T |λ− λj |)−N (ej(x0))

2

≤ CN T
−2 λ2,

if N − 2 > n, using in the last step the fact that∑
λj∈[μ,μ+1]

(ej(x))
2 ≤ C (1 + μ)n−1, μ ≥ 0.

Using this fact one also easily obtains (1.17).
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1.3. Outline of the proof of Theorem 1.2

We now outline the strategy we shall employ in proving Theorem 1.2 and explain
the role of the quasi-modes (1.16).

First, we shall prove the o(λ(n−1)/2) bounds (1.1) and (1.3) under the assump-
tion that every self-focal point is dissipative. As we pointed out before, because of
our real analyticity assumption, there are two extreme cases: self-focal points and
non-focal points (where |Lx| = 0). Thus, it is natural to split our estimates for
eigenfunctions or quasi-modes into two cases. The first, which is new, is to prove
favorable bounds in a ball around each dissipative self-focal point. The second,
which was dealt with in [23], is to prove such bounds near a non-focal point.

After we prove (1.3), we shall prove the converse direction: the o(λ(n−1)/2)
bounds at self-focal points for which Ux (1.7) has no nonzero invariant L2 functions
can be turned around to show that there are Ω(λ(n−1)/2) bounds if nontrivial
invariant functions do exist.

The main estimate is as follows: If all focal points are dissipative, then for
any ε > 0, we prove that there are finite T0 = T0(ε) and Λ0 = Λ0(ε) so that
(as in (1.19))

(1.20)
∞∑
j=0

ρ
(
T0(λ− λj)

)
(ej(y))

2 ≤ ε λn−1 λ ≥ Λ0, y ∈M,

Since ρ(0) = 1, it is plain that this estimate implies the first assertion, (1.1), of the
theorem. As mentioned above, we split the proof of (1.20) into two very different
cases: (i) (1.20) is valid in a neighborhood of a given dissipative self-focal point,
and (ii) (1.20) is valid in a neighborhood of any non-focal point.

The role of the quasi-modes (1.16) in the proof of the first part of Theorem 1.2
is explained by the following.

Proposition 1.4. Let x be a dissipative self-focal point in our real analytic compact
boundaryless manifold of dimension n ≥ 2. Then for any ε > 0, we can find a
neighborhood N (x, ε) of x and finite numbers T = T (x, ε) and Λ = Λ(x, ε) so that

(1.21)

∞∑
j=0

ρ
(
T (λ− λj)

)
(ej(y))

2 ≤ ε λn−1, if y ∈ N (x, ε), and λ ≥ Λ.

The proof of the estimate (1.21) at a self-focal point y uses the dissipative
assumption and the von Neumann mean ergodic theorem. To extend the estimate
to points y in a neighborhood of a self-focal point, we use the rather explicit
formula for the wave trace formula for large times T of Safarov [17], [18], which
shows the leading part of the left side of (1.21) varies smoothly. Consequently, if
the inequality in (1.21) holds at the self-focal point, it holds in some neighborhood
of the self-focal point when λ is sufficiently large.

Remark. The proof of Theorem 1.2 and Proposition 1.4 shows that the suprema
of |eλ(x)|, respectively |∇eλ(x)|, is obtained in a ball of radius O(1/λ) around a
self-focal point. But it does not show that the suprema are obtained at a self-focal
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point, and obviously both suprema cannot be attained at the same point. Since eλ
oscillates on the scale 1/λ, it is a priori possible that it vanishes at the self-focal
point and takes its suprema in a ball of radius C/λ around the self-focal point.
Thus, Proposition 1.4 shows that not only is |eλ(y)| small at the dissipative self-
focal point but also that there is “propagation of smallness” to a neighborhood of
such a point.

The other case, which we need to handle in order to prove the first part of
Theorem 1.2, is to show that we also have these types of bounds near every non-
focal point:

Proposition 1.5. Let x ∈ M and assume that |Lx| = 0. Then, given any ε > 0,
we can find a neighborhood N (x, ε) of x and finite numbers T = T (x, ε) and Λ =
Λ(x, ε) so that (1.21) is valid.

Proposition 1.5 is a special case of Theorem 1.1 in [23], but we shall present its
simple proof for the sake of completeness. As in [23], it uses an idea coming from
Ivrii’s [12] proof of his generalization of the Duistermaat–Guillemin theorem [7].

Before outlining the proofs of the propositions, let us see how they imply (1.3).
We first claim that (1.20) is valid if and only if, given ε > 0, there are numbers
δ0 = δ0(ε) and Λ0 = Λ0(ε) so that, for every y ∈M ,

(1.22)
∑

{j: |λ−λj |≤δ0}

(
ej(y)

)2 ≤ ε λn−1, if λ ≥ Λ0.

This clearly implies (1.3) since∥∥χ[λ,λ+δ]

∥∥2
L2(M)→L∞(M)

= sup
y∈M

∑
{j: λj∈[λ,λ+δ]}

(
ej(y)

)2
.

We shall also make use of this fact when we prove the first part of Corollary 1.6.
To prove our claim that (1.20) is equivalent to (1.22), we first note that,

by (1.14), ρ(s) ≥ 1/2 when |s| ≤ δ, for some fixed δ > 0. From this it is clear
that (1.20) implies (1.22). Since ρ ∈ S(R), it follows that for any N = 1, 2, 3, . . .
there is a constant CN so that

∞∑
j=0

ρ(T0(λ− λj))(ej(y))
2 ≤ CN

∞∑
j=0

(
1 + T0|λ− λj |

)−N
(ej(y))

2.

As a result if we take δ0 in (1.22) to be 1/T0 and N = n+1, we conclude that (1.22)
implies (1.20).

We now use a compactness argument to show that the propositions imply (1.22).
Proposition 1.4 implies that, if ε > 0 is given and if x is a self-focal point then there
must be a neighborhood N (x, ε) of x and numbers δx > 0 and Λx <∞ so that

(1.23)
∑

|λj−λ|≤δx

(
ej(y)

)2 ≤ ε λn−1, if y ∈ N (x, ε), and λ ≥ Λx.

Proposition 1.5 implies the same conclusion for any non-focal point x. Since
{N (x, ε)}x∈M is an open covering ofM , by Heine–Borel, there must be a finite sub-



Focal points and sup-norms of eigenfunctions 979

covering. In other words, there must be points xj ∈ M , 1 ≤ j ≤ N , so that M ⊂⋃N
j=1 N (xj , ε). By (1.23), if Λ0 = max{Λx1, . . . ,ΛxN}, and δ0 = min{δx1, . . . , δxN},

then we must have (1.22). As discussed above, this implies (1.20), hence (1.3), and
therefore (1.1).

1.4. Generalization to fat quasi-modes

With a small additional effort, the proof of Theorem 1.2 establishes a more general
result for growth rates of “fat quasi-modes” or quasi-modes of order o(λ). They
are defined as follows: when n = 2 and n = 3, we say that a sequence {φλk

} of
quasi-modes of order o(λ) if

(1.24)

∫
M

|φλk
|2 dV = 1, and ‖(Δ + λ2k)φλk

‖L2(M) = o(λk).

In higher dimensions, n ≥ 4, as explained in [22], pp. 164–165, one needs to modify
this definition in order to get natural results by requiring that

(1.25)

∫
|φλk

|2 dV =1, and ‖S[2λk,∞)φλ‖L∞(M) + ‖(Δ+λ2)φλk
‖L2(M) = o(λk)

if S[2λk,∞) : L
2(M) → L2(M) denotes the projection onto the [2λk,∞) frequen-

cies. As was shown in [22], condition (1.24) automatically implies (1.25) if n = 2
or n = 3, and, moreover, if |Rx| = 0 for each x ∈M , then

(1.26) ‖φλ‖L∞(M) = o(λ(n−1)/2)

whenever φλ is a sequence of quasi-modes of order o(λ).
As we shall see, an equivalent formulation of Theorem 1.2 is the following.

Corollary 1.6. Let (M, g) be a compact real analytic boundaryless manifold of
dimension n ≥ 2. Then (1.26) holds for quasi-modes of order o(λ) if and only if
every self-focal point of M is dissipative.

We shall prove this easy consequence of Theorem 1.2 in the final section of
the paper and also state a natural problem about whether the above quasi-mode
condition can be weakened if the sup-norms are Ω(λ(n−1)/2).

1.5. Hopf decomposition and existence of a finite invariant measure in
the class of dμx

In this section we explain the term ‘dissipative’ in Definition 1.1.
Let Φ be an invertible measurable map of a measure space (X,μ). A set W

is called wandering if the sets Φ−kW for k ≥ 0 are disjoint, i.e., if no point of W
returns to W . Φ is called conservative if there exists no wandering set of positive
measure. Φ is called recurrent if for all Borel sets A, almost every point of A
belongs to the set Arec of points returning at least once to A,

Arec := A ∩
∞⋃
k=1

Φ−k(A).
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It is called infinitely recurrent if almost all points of A belong to

Ainf := {x ∈ A : Φk ∈ A, for infinitely many k ≥ 1} = A ∩
∞⋂
n=1

∞⋃
k=n

Φ−k(A).

The recurrence theorem ([14], Theorem 3.1) states that the following are equivalent:

• Φ is conservative;

• Φ is recurrent;

• Φ is infinitely recurrent;

The Hopf decomposition states:

Theorem 1.7 ([14], Theorem 3.2). If Φ is null-preserving and non-singular, then
there exists a decomposition of X into two disjoint measurable sets C and D
(the conservative and dissipative parts), so that

• C is Φ-invariant;

• Φ|C is conservative;

• There exists a wandering set W so that D =
⋃∞

−∞ ΦkW.

We are of course interested in the Hopf decomposition for Φ = Φ�, X = S∗
xM

and μ = μx. The term ‘dissipative’ in Definition 1.1 is intended to suggest that
(Φ�, S

∗
xM,dμx) is dissipative if there exists no invariant f ∈ L2(S∗

xM,dμx) for the
unitary operator Ux. It is obvious that if such an invariant f exists, then μx(C) > 0.
However, in the class of measurable dynamical systems, there exist examples (due
to Halmos) of conservative systems without finite invariant measures. The recent
review [8] contains several equivalent criteria for existence of a finite invariant
measure in the class of μ. It is not clear to us whether μx(C) > 0 in our setting
implies existence of an invariant L2 function, and we do not claim that Φ� is
dissipative if x is a dissipative self-focal point.

1.6. Potential further improvements

There are three potential avenues for improvement of Theorem 1.2.
The first is purely geometric or dynamical. It is possible that existence of

an invariant L2 function for Ux at some self-focal point x implies that x is a
pole.1 Furthermore, it is possible that there do not exist real analytic Riemannian
manifolds (M, g) with dimM ≥ 3 which have self-focal points with twisted first
return maps. For instance, it does not appear that ellipsoids of dimension ≥ 3
have self-focal points.

It would also simplify the proof if we knew that there are only a finite number of
self-focal points with twisted first return maps for analytic (M, g). It is not hard to
prove that if there does exist an infinite number of such points, then the first return
times tend to infinity as they approach a limit point. All known examples have
only a finite number of self-focal points with twisted first return maps. For further
comments on the geometry we refer to [27].

1In the two-dimensional case this is proven in an addendum, [26]; however, the case of higher
dimensions remains open.
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Second, it is a natural question if one can use an invariant L2 function f
in L2(S∗

xM) to construct a better quasi-mode. The classical construction of a
quasi-mode satisfying

||(Δ + λ2)ψλ||L2 ≤ C

as an oscillatory integral [6] requires a smooth invariant density on (1.10). On the
one hand, it is possible that the invariant f is always C∞. On the other hand, it is
possible that one can quantize a ‘rough’ density to construct a quasi-mode. In the
real analytic case, there is a possible construction using the FBI transform which
we plan to investigate in future work. See the discussion in §4 for further details.

Finally, it is natural to generalize the argument of this article to general C∞

metrics. Our assumption that g is real analytic is only to simplify the geometric
analysis of loopsets. In general, they can be badly behaved, and that requires
further approximations and arguments. We plan to give the general proof in a
subsequent article. However, the present one contains the main analytical ideas.

1.7. Organization

The paper is organized as follows. In the next section we shall prove that we
have the o-bounds (1.3) provided that the Perron–Frobenius operators (1.7) above
every self-focal point have no nonzero invariant functions. Then in §3, we shall see
that this proof can be easily modified to give the remaining part of Theorem 1.2,
by showing that we cannot have (1.22) if y = x is a self-focal point where the
operator U in (1.7) has a nontrivial L2(S∗

xM) function. Finally, in §4 we shall give
the simple argument showing that Theorem 1.2 implies Corollary 1.6 and discuss
further problems for quasi-modes.

2. Proof of o(λ(n−1)/2) bounds

As we noted above, to prove the o-bounds posited in Theorem 1.2, it is natural to
split the analysis into two cases: bounds near self-focal points and near non-focal
points. Let us start by giving the argument for the former.

2.1. Analysis near self-focal points with no invariant L2 functions

In this subsection we shall prove Proposition 1.4. So let us assume that x is
a self-focal point, and that � > 0 is the first return time for the geodesic flow
through x. Thus, Φ�(S

∗
xM) = S∗

xM , with � being the minimal such time. We also
are assuming that the associated Perron–Frobenius U has no nontrivial invariant
L2(S∗

xM) functions.
Our assumption about � does not rule out the existence of subfocal times

0 < t0 < � and directions ξ ∈ S∗
xM with Φt0(x, ξ) ∈ S∗

xM (i.e., loops through x of
length shorter than �). On the other hand, the set Ex ⊂ S∗

xM of such directions
must be closed and of measure zero. As a result, it will be a simple matter to
modify the argument for the case of no subfocal times to handle the general case.
We shall do so at the end of this subsection.
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To simplify the notation, we note that, after possibly rescaling the metric, we
may, and shall take � to be equal to one. We then let η = ηx : S∗

xM → S∗
xM , as

in (1.5), be the first return map and U = Ux, as in (1.7), the associated unitary
operator on L2(S∗

xM). Assuming that the operator U in (1.7) has no nonzero
invariant functions, we must show that there is a neighborhood N (x) of x in M so
that we have (1.21).

Using the Fourier transform, we can rewrite the left hand side of (1.21) as

(2.1)
∑
j

ρ(T (λ− λj))ej(x) ej(y) =
1

2πT

∫
ρ̂(t/T )

(
eitP

)
(x, y) e−itλ dt,

and, because of our assumptions, the integrand vanishes if |t| /∈ (−T, T ). Here(
eitP

)
(x, y) denotes the kernel of the half-wave operator eitP . It follows from

Hörmander’s theorem [9] on the propagation of singularities and our temporary
assumption that there are no subfocal times, that (t, y) → (

eitP
)
(y, y) is smooth

when y = x and t ∈ R\Z.
On the other hand,

(
eitP

)
(x, x) will be singular when t = ν ∈ Z. We recall

that for t near a given such ν and y near x, one can write down a parametrix for
this half-wave operator which is a finite sum of terms of the form

(2.2) (2π)−n
∫
Rn

eiSν,j(t,y,ξ)−iz·ξ aν,j(t, y, z, ξ) dξ, j = 1, . . . , N(ν),

where, up to Maslov factors, isν (see [7], p. 68), the principal symbols of the aν,j
are nonnegative zero order symbols and the phase functions Sν,j(t, y, ξ) are real-
valued, homogeneous of degree one in ξ and generating functions for portions of the
canonical relation associated with P . That means that, if p(x, ξ) is the principal
symbol of P , then

(2.3) ∂tSν,j(t, y, ξ) = p(y,∇xSν,j(t, y, ξ)).

We therefore can write, for |t| ≤ T and y in a small neighborhood of x,

(2.4)
(
eitP

)
(y, y) = (2π)−n

∑
|ν|≤T

N(ν)∑
j=1

∫
Rn

eiSν,j(t,y,ξ)−iy·ξ aν,j(t, y, y, ξ) dξ +OT (1),

where, because of our assumption that there are no subfocal points, we may assume
that

(2.5) aν,j(t, x, x, ξ) = 0, if t /∈ (ν − δ, ν + δ),

with δ > 0 small but fixed.
By the Hamilton–Jacobi equations associated with p(x, ξ), this means that if

t = ν� = ν and we have that aν,j(ν, x, x, ξ) �= 0 for some ν = 0,±1, . . . ,±T , then
(2.6) ∇xSν,j(ν, x, ξ) = ην(ξ), ξ ∈ S∗

xM,

where η(ξ) is as in (1.5), and ην = η◦η◦· · ·◦η is the ν-fold composition of η if ν > 0,
while ην = η−ν if η < 0, and η0(ξ) = ξ. Additionally, since eiνP ◦ (eiνP )∗ = I, one
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sees, by a theorem of Hörmander (see e.g., [19], Theorem 6.1.4) that we must also
have that for ν as above

N(ν)∑
j=1

|aν,j
(
ν, x, x, ην(ξ)

)| = √
Jν(ξ) mod S−1

1,0 ,(2.7)

Jν(ξ) = | det(dην(ξ)/dξ)|, ξ ∈ S∗
xM.

Based on this, we conclude that in order to prove (1.21), it suffices to show that,
given ε > 0, there is a neighborhood N (x, ε) of x so that if T is large and fixed,
we have

T−1

∣∣∣∣
∑
|ν|≤T

N(ν)∑
j=1

λn
∫∫

ρ̂(t/T ) eiλ(Sν,j(t,y,ξ)−y·ξ−t) aν,j(t, y, y, λξ) dξ dt
∣∣∣∣(2.8)

≤ ε λn−1 +Oε,T (λ
n−2), y ∈ N (x, ε).

To prove this, as in [7] and [17]–[18], we shall use stationary phase in the r
and t variables, if we write ξ = rω, where ω ∈ S∗

yM . Given our assumption that
ην(S∗

xM) = S∗
xM , ν = 0,±1,±2, . . . , this is all we can do. In view of this, it is

natural to rewrite (2.8) in the equivalent form

(2.9) T−1
∣∣∣ ∑
|ν|≤T

N(ν)∑
j=1

Aν,j(y)
∣∣∣ ≤ ε λ−1 +Oε,T (λ

−2), y ∈ N (x, ε),

where

(2.10) Aν,j(y) = (2π)−1

∫∫
ρ̂(t/T ) eiλ(Sν,j(t,y,ξ)−x·ξ−t) ak(t, y, y, λξ) dξ dt.

We shall get the gain λ−1 in the right side of (2.9) from stationary phase in
these two variables, while an additional gain of O(ε) at y = x will come from von
Neumann’s ergodic theorem if T = T (ε) is large and fixed. Uniformity over a
small neighborhood of x (depending on ε and T ) will come from stationary phase
with parameters, due to the fact that the Hessian of the phase function in the t, r
variables is nondegenerate for every fixed direction ω ∈ S∗

xM at x. We shall use
the fact that if the leading coefficient in the stationary phase expansion is small at
a self-focal point, then it is small in a neighborhood of this point.

Let

(2.11) ψν,j(t, y, ξ) = Sν,j(t, y, ξ)− y · ξ − t

denote the phase function in (2.10). Let us first argue that (2.9) is valid when y is
our self-focal point x. We follow an argument in [17], [18].

If we fix a direction ω ∈ S∗
xM (so that p(x, ω) = 1) and write ξ = rω, then by

the Euler homogeneity relations we have

(2.12) ∂rψν,j(t, x, rω) = 0 ⇐⇒ Sν,j(t, x, ξ) − x · ξ = 0.
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In other words,

(2.13) ∂rψν,j(t, x, ξ) = 0 =⇒ ψν,j(t, x, ξ) = −t.
Additionally, by (2.3),

(2.14) ∂tψν,j(t, y, ξ) = 0 =⇒ p(y,∇xSν,j(t, y, ξ)) = 1,

meaning that if aν,j(ν, x, x, ξ) �= 0 and if ην(ξ) = ∇xSν,j(t, x0, ξ)) is as in (2.6),
then ην(ξ) ∈ S∗

xM . The Hessian of ψν,j in the t, r variables therefore must be of
the form

(2.15) H(x) =

(
0 p(x, ην(ξ))

p(x, ην(ξ)) 0

)
,

in view of (2.3) and the fact that p(x, ην(ξ)) is homogeneous of degree one. Thus,

(2.16) detH(x) = −1.

Therefore, by stationary phase (e.g., Theorem 7.7.5 in [11]), we have

Aν,j(x) = (2π)−1

∫ ∫ ∞

0

∫ T

−T
eiλψν,j(t,x,rω)ρ̂

( t
T

)
aν,j(t, x, x, λrω)r

n−1dr dt dω(2.17)

= λ−1

∫
e−iλν ρ̂

( t
T

)
aν,j(ν, x, x, λω) dω +OT (λ

−2).

By (2.7),

(2.18)

N(ν)∑
j=1

|aν,j(ν, x, x, λω)| =
√
Jν(ω) +OT (λ

−1).

By (2.17), (2.18) and the fact that 0 ≤ ρ̂ ≤ 1, we have

T−1
∑
|ν|≤T

N(ν)∑
j=1

|Aν,j(x)| ≤ λ−1T−1
∑
|ν|≤T

N(ν)∑
j=1

∫
S∗
xM

|aν,j(ν, x, x, ω)| dω +OT (λ
−2)

= λ−1 T−1
∑
|ν|≤T

∫
S∗
xM

√
Jν(ω) dω + OT (λ

−2).(2.19)

Therefore, we would have (2.9) if we could show that, given ε > 0, we can
chose T � 1 so that

(2.20) T−1
∑
|ν|≤T

∫
S∗
x0
M

√
Jν(ω) dω <

ε

2
.

If 1 denotes the function on S∗
xM which is identically one, and if U : L2(S∗

xM) →
L2(S∗

xM) is as in (1.7), then we can rewrite the left hand side of (2.20) as〈
T−1

∑
|ν|≤T

Uν1, 1
〉
.
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Since U : L2(S∗
xM) → L2(S∗

xM) is unitary, by von Neumann’s ergodic theorem,

1

2T

∑
|ν|≤T

Uν 1→ Π(1), in L2(S∗
xM), as T → +∞,

where Π(1) denotes the projection of 1 onto the U -invariant subspace of L2(S∗
xM).

Our assumption that this operator has no nonzero invariant functions means that
〈Π(1), 1〉 = 0, and therefore we have (2.20) if T = T (ε) is sufficiently large.

We have shown that

(2.21) T−1
∑
|ν|≤T

N(ν)∑
j=1

|Aν,j(x)| ≤ ελ−1/2 + OT (λ
−2).

Let us now argue that because of (2.16), this implies that we can find a neighbor-
hood N (x, ε) of x so that (2.9) is valid which would finish the proof of (2.8).

The situation at x was simple since the phase functions ψν,j , as a function of r
and t, only had critical points on the support of the amplitudes exactly at r = 1
and t = ν. If we assume that y is sufficiently close to x, and, as we may, that the aν,j
satisfy (2.5) with δ > 0 sufficiently small, it follows from (2.16) and the implicit
function theorem that there are unique pairs (tν,j(y, ω), rν,j(y, ω)), which depend
smoothly on y and ω ∈ S∗

yM so that if we replace x by y in the oscillatory integral
in (2.17), the unique stationary point of the phase (t, r) → ψν,j(t, y, rω) occurs at
this point. Also, assuming that y is close to x we will have that rν,j(y, ω) is very
close to 1 and tν,j(y, ω) is very close to ν if aν,j(ν, x, rω) �= 0. Let Hν,j(y, ω) =
Hν,j(tν,j(y, ω), rν,j(y, ω)) denote the Hessian of the phase function at the stationary
point. It then follows that detHν,j is close to −1 if y is close to x. Therefore by
stationary phase (e.g. [11], Theorem 7.7.6), for y close to x, we have the following
analog of (2.17):

Aν,j(y) =

∫ ∫ ∞

0

∫ T

−T
eiλψν,j(t,y,rω)ρ̂(t/T )aν,j(t, y, y, λrω)r

n−1dr dt dω

= λ−1

∫
| detHν,j |−1/2 e−iλtν,j(y,ω) ρ̂(tν,j(y, ω)/T )(2.22)

× aν,j(tν,j(y, ω), y, y, λrν,j(y, ω)ω) rν,j(y, ω)
n−1dω +OT (λ

−2),

where the constant in the OT (λ
−2) error term can be chosen to be uniform for y

sufficiently close to x. We conclude that

∣∣∣∣
∑
|ν|≤T

N(ν)∑
j=1

(|Aν,j(y)| − |Aν,j(x)|
)∣∣∣∣

≤ λ−1
∑
|ν|≤T

N(ν)∑
j=1

∫ ∣∣∣ | detHν,j(y, ω)|−1/2ρ̂(tν,j(y, ω))

× |aν,j(tν,j(y, ω), y, y, λrν,j(y, ω)ω)| rν,j(y, ω)n−1

− ρ̂(ν)|aν,j(ν, x, x, λω)|
∣∣∣ dω + OT (λ

−2).
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Since aν,j ∈ S0
1,0 and tν,j(y, ω) and rν,j(y, ω) are smooth functions for y near x

which satisfy tν,j(x, ω) = ν and rν,j(x, ω) = 1, it follows that each of the preceding
integrals is a smooth function of y near x, which vanishes when y = x. Therefore,
by (2.21), we deduce that (2.9) must be valid if N (x, ε) is a sufficiently small
neighborhood of x, since at this point, T has been fixed.

Handling the contribution of sub-focal times

To complete the proof of Proposition 1.4, we must remove the assumption that at
our self-focal point we have Φt(x, ξ) /∈ S∗

xM for any ξ if t is not an integer multiple
of the return time �. As before, we may assume that � = 1.

We note that if δ > 0 is smaller than the injectivity radius of (M, g), it follows
that we can never have Φt(x, ξ) ∈ S∗

xM for some t ∈ [ν − δ, ν+ δ] with ν ∈ Z since
Φν(x, ξ) ∈ S∗

xM . Thus, in any such time interval, (t, y) → (
eitP

)
(y, y) is smooth

at y = x if t ∈ [ν − δ, ν + δ]\{ν}.
To use this, fix β ∈ C∞

0 (R) satisfying

(2.23) β(s) = 1, |s| ≤ 3

4
δ, and supp β ⊂ (−δ, δ).

We then can write

ρ
(
T (λ− P )

)
(y, y) = K(T, λ; y) +R(T, λ; y),

where

(2.24) K(T, λ; y) =
1

2πT

∑
|ν|≤T

∫
β(t− ν) ρ̂(t/T )

(
eitP

)
(y, y) e−itλ dt,

and

(2.25) R(T, λ; y) =
1

2πT

∑
|ν|≤T

∫ (
1− β(t− ν)

)
ρ̂(t/T )

(
eitP

)
(y, y) e−itλ dt.

Since for every ν ∈ Z, |ν| ≤ T , β(t − ν)
(
eitP

)
(y, y) can be written as in the

right side of (2.4) where the amplitude satisfies (2.5) and (2.7), it is clear that the
proof of (1.21) under the assumption that there are no subfocal times shows that,
given T = T (ε) large enough and fixed, there is a neighborhood N0 of x so that

(2.26) |K(T, λ; y)| ≤ ελn−1 +OT (λ
n−2), y ∈ N0.

As a result, the proof of Proposition 1.4 would be complete if we could show that
for a given fixed T there is a a neighborhood N1 = N1(ε, T ) of x so that

(2.27) |R(T, λ; y)| ≤ ελn−1 +OT (λ
n−2), y ∈ N1.

For if we take N = N0 ∩ N1, we then have

ρ
(
T (λ− P )

)
(y, y) ≤ 2ελn−1 +OT (λ

n−2), y ∈ N ,

which implies (1.21), as ε > 0 is arbitrary.
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To prove (2.27), we note that the set

Ex=
{
(x, ξ) ∈ S∗

xM : Φt(x, ξ) = (x, η), some η, t ∈ [−T, T ] \ ⋃

|ν|≤T

(ν−δ/2, ν+δ/2)
}

is closed. Moreover, since we are assuming that (M, g) is real analytic and we
are avoiding the focal times ν ∈ Z, this subset of S∗

xM must have measure zero
(see [23], p. 416). Therefore, working in local coordinates in the cotangent bundle,
given ε0 > 0, we can choose a C∞(Rn\0) function b(ξ) which is homogeneous of
degree zero so that if B(ξ) = 1− b(ξ), then

(2.28) 0 ≤ b ≤ 1,

∫
Sn−1

b dω < ε0, Ex ∩ supp B = ∅.

The last condition means that if we write Φt(x, ξ) = (x(t), ξ(t)) then if ξ ∈ supp B

γξ =
{
x(t) : t ∈ [−T, T ] \ ⋃

|ν|≤T

(ν − δ/2, ν + δ/2)
}

is a union of geodesic segments all of which are disjoint from x. Since the geodesic
distance from γξ to x is a continuous function of ξ ∈ S∗

xM , it follows that

min
ξ∈supp B

dg(x, γξ) > 0.

Similarly, there must be a neighborhoodN of x such that for y ∈ N if (y(t), ξ(t)) =
Φt(y, ξ) then

(2.29)
{
y(t) : t ∈ [−T, T ] \ ⋃

|ν|≤T

(ν − δ/2, ν + δ/2)
}
/∈ N , if ξ ∈ supp B.

Therefore, by Hörmander’s propagation of singularities theorem [9], if Ψ ∈ C∞
0

equals one near x but is supported in N , it follows that if we let B(y,D) be the
operator with symbol B(y, ξ) = Ψ(y)B(ξ), then

∑
|ν|≤T

(
1− β(t− ν))

(
B(y,D) ◦ eitP )(y, y) ∈ C∞([−T, T ]×M),

due to the fact that β(t− ν) equals one on [ν − 3
4δ, ν +

3
4δ]. Consequently,

1

2πT

∑
|ν|≤T

∫ (
1− β(t− ν)

)
ρ̂(t/T )

(
B(y,D) ◦ eitP )(y, y) e−itλ dt = OT,B(1).

Since, if b(y,D) is the operator with symbol Ψ(y)b(ξ), we have

Ψ(y)R(T, λ; y)

=
1

2πT

∑
|ν|≤T

∫ (
1−β(t−ν)) ρ̂(t/T ) ((B(y,D) + b(y,D)) ◦ eitP )(y, y) e−itλ dt,
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we would therefore obtain (2.27) if we could show that

1

2πT

∣∣∣
∫ ∑

|ν|≤T

(
1− β(t− ν)

)
ρ̂(t/T )

(
b ◦ eitP )(y, y) e−itλ dt∣∣∣

≤ ελn−1 +OT,b(λ
n−2).(2.30)

If

mT,β(τ) =
∑
|ν|≤T

∫ (
1− β(t − ν)

)
ρ̂(t/T )e−itτ dτ,

then the quantity in the left side of (2.30) is

∣∣∣
∞∑
j=0

mT,β(λ− λj) (bej)(y) ej(y)
∣∣∣.

Since mT,β ∈ S(R), it follows that
|mT,β(τ)| ≤ CT,β,N (1 + |τ |)−N , N = 1, 2, 3, . . . .

As a result, the left side of (2.30) is bounded by

CT,β,N

∞∑
j=0

(1 + |λ− λj |)−N |bej(y)| |ej(y)|

≤ CT,β,N

( ∞∑
j=0

(1 + |λ− λj |)−N |bej(y)|2
)1/2 ( ∞∑

j=0

(1 + |λ− λj |)−N |ej(y)|2
)1/2

,

using the Cauchy–Schwarz inequality in the last step. Recall that, by the gener-
alized local Weyl formula (see, e.g., Theorem 5.2.3 in [21]), there is a constant C
depending only on (M, g) so that if A is a classical zero order pseudodifferential
operator with principal symbol a(x, ξ), we have

(2.31)
∑

λj∈[λ,λ+1]

|Aej(y)|2 ≤ Cλn−1

∫
p(y,ξ)≤1

|a(y, ξ)|2 dξ +OA(λ
n−2).

Combining this with the preceding inequality implies that the left side of (2.30) is

≤ CM,T,β λ
n−1

(∫
Sn−1

|b|2 dω
)1/2

+OM,T,β,b(λ
n−2),

and, therefore, if ε0 in (2.28) is small enough, we obtain (2.30), which completes
the proof.

2.2. Analysis near non-focal points

We shall now give the proof of Proposition 1.5. It is very similar to the argument
that we just gave to prove bounds for the contribution of subfocal times for the
estimate near self-focal points.
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We are assuming that at a given x ∈ M we now have |Lx| = 0, and we need
to show that (1.21) is valid. Recall that Lx ⊂ S∗

xM is the set of unit directions
such that Φt(x, ξ) ∈ S∗

xM for some t �= 0. In other words, the set of initial unit
directions for geodesic loops through x.

Note that we then have that

LTx =
{
ξ ∈ S∗

xM : Φt(x, ξ) ∈ S∗
xM for some t ∈ [−T, T ]\{0}}

is closed and of measure zero. It follows that, given ε0 > 0, we can find a b ∈
C∞(Rn\0) which is homogeneous of degree zero so that we have the following
analog of (2.28):

(2.32) 0 ≤ b ≤ 1,

∫
Sn−1

b dω < ε0, LTx ∩ supp β = ∅.

The last condition means that if ξ ∈ supp B and δ > 0 the geodesic two segments
given by

γξ = {x(t) : δ ≤ |t| ≤ T }
are disjoint from x if Φt(x, ξ) = (x(t), ξ(t)). As before, this yields

min
ξ∈supp B

dg(x, γξ) > 0,

and so there must be a neighborhood N of x so that if y ∈ N and (y(t), ξ(t)) =
Φt(y, ξ) then

{y(t) : δ ≤ |t| ≤ T } /∈ N , if ξ ∈ supp B.

Therefore, if Ψ ∈ C∞
0 equals one near x but is supported in N and if we let B(y,D)

be the operator with symbol B(y, ξ) = Ψ(y)B(ξ), by propagation of singularities,

(2.33)
(
B ◦ eitP )(y, y) ∈ C∞({δ ≤ |t| ≤ T } ×M).

To use this, fix β ∈ C∞
0 (R) which equals one on [−2δ, 2δ]. Since for T ≥ 1 we

have the uniform bounds∣∣∣ 1

2πT

∫
β(t)ρ(t/T ) eitτ dt

∣∣∣ ≤ CN T
−1(1 + |τ |)−N , N = 1, 2, 3, . . . ,

it follows from the sharp local Weyl law that

∣∣∣ 1

2πT

∫
β(t)ρ(t/T )

(
eitP

)
(y, y) e−itλ dt

∣∣∣
≤ C T−1

∞∑
j=0

(1 + |λ− λj |)−n−1(ej(y))
2 ≤ C T−1 λn−1.

Therefore, by (2.1), and the fact that if b(y, ξ) = Ψ(y)b(ξ), then B(y,D)+b(y,D) =
Ψ(y), with Ψ equal to one near x, we conclude that we would have (1.21) if we
could show that for fixed T ≥ 1 we have

(2.34)
1

2πT

∫ (
1− β(t)

)
ρ(t/T )

(
B ◦ eitP )(y, y) e−itλ dt = OB,T (1),
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and

(2.35)
∣∣∣ 1

2πT

∫ (
1−β(t))ρ(t/T ) (b◦eitP )(y, y) e−itλ dt∣∣∣ ≤ CT

√
ε0 λ

n−1+Ob,T (λ
n−2).

The first bound (2.34) just follows from (2.33) and the fact that β equals one
on [−2δ, 2δ]. If

mT,β(τ) =
1

2πT

∫ (
1− β(t)

)
ρ(t/T ) eitτ dt,

then the left side of (2.35) equals

∣∣∣
∞∑
j=0

mT,β(λ− λj) (bej)(y) ej(y)
∣∣∣.

Since mT,β ∈ S(R), we can use the Cauchy–Schwarz inequality to see that for
every N = 1, 2, 3, . . . this is dominated by a constant depending on T , β and N
times ( ∞∑

j=0

(1 + |λ− λj |)−N |bej(y)|2
)1/2 ( ∞∑

j=0

(1 + |λ− λj |)−N |ej(y)|2
)1/2

.

Thus, (2.35) follows from (2.31), which completes the proof of Proposition 1.5.

3. Ω(λ(n−1)/2) bounds at self-focal points with U -invariant
functions

In this section we shall finish the proof of Theorem 1.2. Since we have just shown
that we have (1.3) when at every self-focal point x ∈ M the associated Perron–
Frobenius operator U = Ux in (1.7) has no nonzero L2(S∗

xM)-invariant functions,
we would be done if we could establish the following.

Proposition 3.1. Let (M, g) be a compact boundaryless real analytic Riemannian
manifold of dimension n ≥ 2. Assume that x is a self-focal point and that � > 0 is
the first return time for the geodesic flow. Suppose further that, if U : L2(S∗

xM) →
L2(S∗

xM) is the associated Perron–Frobenius map over x, we have

(3.1) Ug = g, some 0 �= g ∈ L2(S∗
xM).

Let β denote the number of conjugate points counted with multiplicity along γ(t),
0 < t ≤ �, with γ(t) being a unit speed geodesic starting at x. Then if

(3.2) μk =
2π

�

(
k + β/4

)
,

there is a c = c(M) > 0 so that

(3.3) lim inf
k→∞

μ
−(n−1)
k

( ∑
λj∈[μk,μk+δ]

(
(ej(x)

)2 ) ≥ c, if δ > 0.

The number β here is independent of the geodesic starting at x, and it is also
commonly referred to as the Maslov index of the geodesic.
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Since ∥∥χ[μk,μk+δ]

∥∥2

L2(M)→L∞(M)
= sup

y∈M

∑
λj∈[μk,μk+δ]

(
ej(y)

)2
,

it is clear that if (3.3) is valid then we cannot have (1.4), which is the remaining
part of Theorem 1.2.

To prove the Proposition, as above, let ρ ∈ S(R) be as in (1.14). Then clearly,
we would have (3.3) if we could show that there is a uniform constant c > 0 so
that whenever T � 1 is fixed we have

(3.4)

∞∑
j=0

ρ
(
T (μk − λj)

) (
(ej(x)

)2 ≥ c μn−1
k , k ≥ NT ,

for some NT < ∞. One obtains (3.3) from this by taking T = δ−1 after recalling
that ρ ≥ 0 and ρ(0) = 1.

To prove (3.4), as before, we may assume that � = 1. For the sake of simplicity,
we shall also assume that there are no sub-focal times, since by the argument at
the end of §2.1, their contributions to (3.4) will be o(νn−1

k ). We therefore, are
assuming that

Φt(ξ, ξ) �= (x, ξ), ∀ξ ∈ S∗
xM, if t /∈ Z.

Then, by (2.17), we have that

(2π)n
∞∑
j=0

ρ
(
T (μk − λj)

) (
(ej(x)

)2

= μn−1
k T−1

∞∑
ν=−∞

∫
e−iνμk ρ̂(ν/T )

N(ν)∑
j=1

aν,j(ν, x, x, μkω) dω +OT (μ
n−2
k ).

Since (see §3 of [7], (3.2.15) in [10] and [2]) we have the more precise version
of (2.18)

(3.5)

N(ν)∑
j=1

aν,j(ν, x, x, μkω) = iνβ
√
Jν(ω) + OT (μ

−1
k ),

if ρ̂(ν/T ) �= 0, and since μk is given by (3.2) with � = 1, we conclude that, modulo
OT (μ

n−2
k ) terms, the left side of (3.4) equals (2π)−n times

μn−1
k

(
T−1

∞∑
ν=−∞

∫
ρ̂(ν/T )

√
Jν(ω) dω

)
= μn−1

k

(
T−1

∞∑
ν=−∞

ρ̂(ν/T ) 〈Uν1, 1〉
)
.

Since ρ̂ is nonnegative and ρ̂(0) > 0, it follows that there is a constant c0 > 0,
which is independent of T , so that

T−1
∞∑

ν=−∞
ρ̂(ν/T ) 〈Uν1, 1〉 ≥ c0M

−1
M∑

ν=−M
〈Uν1, 1〉, M = c0T.
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By von Neumann’s ergodic theorem we have that

lim
M→∞

1

2M

M∑
ν=−M

〈Uν1, 1〉 = 〈Π(1), 1〉,

where Π(1) denotes the projection of 1 onto the U -invariant subspace of L2(S∗
xM).

Since our assumption (3.1) gives that

〈Π(1), 1〉 > 0,

we conclude that (3.4) must be valid, which completes the proof of Proposition 3.1.

4. Bounds for quasi-modes

In this section, we shall prove Corollary 1.6. Recall that we are assuming that φλ
are quasi-modes satisfying (1.25), i.e.,

(4.1)

∫
|φλ|2 dV = 1, and ‖S[2λ,∞)φλ‖L∞(M) + ‖(Δ + λ2)φλ‖L2(M) = o(λ),

with S[2λ,∞) denoting the projection on to frequencies in [2λ,∞). By Theorem 1.2,
if there is a a self-focal point x for which the operators in (1.7) have a nontrivial
invariant function satisfying (3.1), then we know that there is a uniform constant
c > 0 so that, given any δ > 0 we have

lim sup
λ→∞

λ−(n−1)/2
∥∥χ[λ,λ+δ]

∥∥
L2(M)→L∞(M)

≥ c.

Thus, in this case, if δj → 0, we can find φλj with spectrum in [λj , λj+δ] satisfying

‖φλj‖2 = 1 and ‖φλj‖∞ ≥ c λ
(n−1)/2
j . Consequently since the {φλj} are clearly

quasi-modes of order o(λ), to finish the proof we just need to prove that (1.26) is
valid when all the self-focal points are dissipative.

To do this, we just use the fact that, by Lemma 2.5 in [22], we must have

‖φλ‖L∞(M) = o(λ(n−1)/2)

in this case, which completes the proof.

Remark. As we mentioned in §1.6, it would be interesting to see whether we

can obtain Ω(μ
(n−1)/2
k ) bounds for quasi-modes of order zero whenever there is

a self-focal point x ∈ M satisfying (3.1). We recall these are ones satisfying the
stronger variant of (1.25), which says that

‖(Δ + μ2
k)φμk

‖L2(M) = O(1), and

∫
|φμk

|2 dV = 1.

Such quasi-modes were constructed in [22] when the map ξ → η(ξ) equals the
identity map on an open subset of S∗

xM , which, of course, is a stronger condition
than (3.1). It is plausible that in the real analytic setting, one may construct
quasi-modes of order zero corresponding to a self-focal point such that Ux has an
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invariant L2 function. The idea is to use |f |2dμx as the ‘symbol’ or invariant
measure in the quasi-mode construction. In the real analytic setting, one can try
to ‘quantize’ (Λx, |f |2dμx) using Toeplitz quantization in a Grauert tube aroundM ;
we plan to investigate this in future work.
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