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Focal points and sup-norms of eigenfunctions II:
the two-dimensional case

Christopher D. Sogge and Steve Zelditch

Abstract. We use a purely dynamical argument on circle maps to improve
a result in our accompanying article, [5], on real analytic surfaces possess-
ing eigenfunctions that achieve maximal sup norm bounds. The improved
result is that there exists a ‘pole’ p so that all geodesics emanating from p
are smoothly closed.

1. Introduction and main results

In the accompanying article [5], the authors gave a dynamical characterization of
compact real analytic Riemannian manifolds (Mn, g) of dimension n possessing
Δg-eigenfunctions

(Δ + λ2
jk )ejk = 0, ||ejk ||L2 = 1

of maximal sup norm growth,

(1.1) ‖ejk‖L∞(M) ≥ Cg λ
(n−1)/2
jk

.

Here, Cg is a positive constant independent of λj . The main result of [5] (recalled
more precisely below) is that if (M, g) possesses such a sequence {ejk}, then there
must exist self-focal points p at which all geodesics from p loop back to p at some
time. The minimal such time is called the first return time Tp. Moreover, there
must exist a self-focal point for which the first return map

ηp : S∗
pM → S∗

pM

preserves an L1 measure on the unit co-sphere S∗
pM at p. The purpose of this

addendum is to add a purely dynamical argument to the main result of [5] to
prove the stronger:
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Theorem 1.1.Let (M, g)be a compact real analytic compact surface without bound-
ary. If there exists a sequence of L2-normalized eigenfunctions, (Δ + λ2

jk
)ejk = 0,

satisfying ‖ejk‖L∞(M) ≥ Cg λ
1/2
jk

, then (M, g) possesses a pole, i.e., a point p so
that every geodesic starting at p returns to p at time 2Tp as a smoothly closed
geodesic.

Thus, (M, g) is a Cp
2Tp

-manifold in the terminology of [1] (Definition 7.7(e)).

Theorem 1.1 proves the conjecture stated on page 152 of [3] in the case of real
analytic surfaces. We also remark that the conclusion of the theorem remains
valid if there exists a sequence of quasimodes of order o(λ) saturating the sup-
norms (see [5] for the terminology).

Theorem 1.1 follows by combining the main result of [5] with the following:

Proposition 1.2. Let (S2, g) be a two-dimensional real analytic Riemannian sur-
face. Suppose that p ∈ S2 is a self-focal point and that the first return map
ηp : S∗

pS
2 → S∗

pS
2 preserves a probability measure which is in L1(S∗

pS
2). Then η2p

is the identity map, and in particular all geodesics through p are smoothly closed
with the common period 2Tp.

The proof only involves dynamics and not eigenfunctions of Δg. To explain how
Theorem 1.1 follows from Proposition 1.2, we first recall some of the definitions and
main result of [5] to establish notation. We then give the proof of Proposition 1.2.

A natural question is whether all real analytic Riemannian surfaces with max-
imal eigenfunction growth are surfaces of revolution. There are many Pm

� metrics
besides surfaces of revolution. A second question is whether the proposition has
some kind of generalization to higher dimensions.

We thank Keith Burns for reading an earlier version of this note and for his
comments.

2. Background on maximal eigenfunction growth

Let ηt(x, ξ) = (x(t), ξ(t)) denote the homogeneous Hamilton flow on T ∗M\0 gen-
erated by H(x, ξ) = |ξ|g. Since ηt preserves the unit cosphere bundle S∗M =
{|ξ|g = 1}, it defines a flow on S∗M which preserves Liouville measure. For a
given x ∈ M , let Lx ⊂ S∗

xM denote the set of loop directions, i.e., unit directions ξ
for which ηt(x, ξ) ∈ S∗

xM for some time t �= 0. Also, let dμx denote the measure
on S∗

xM induced by the Euclidean metric gx and let |Lx| = μx(Lx).

We say that p is a self-focal point if there exists a time � > 0 so that η�(p, ξ) ∈
S∗
pM for all ξ ∈ S∗

pM , i.e., if

Lp = S∗
pM.

We let Tp be the minimal such time, and write

(2.1) ηTp(p, ξ) = (p, ηp(ξ)), ξ ∈ S∗
pM.
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Under the assumption that g is real analytic, the first return map

(2.2) ηp : S∗
pM → S∗

pM

is also real analytic.

The key property of interest is that ηp is conservative in the following sense:

Definition 2.1. We say νp is conservative if it preserves a measure ρdμp on S∗
pM

which is absolutely continuous with respect to μp and of finite mass:

(2.3) ∃ρ ∈ L1(μp), η∗pρ dμp = ρ dμp.

Theorem 2.2 ([5]). Suppose that (M, g) is a compact real analytic manifold with-
out boundary which possesses a sequence {ejk} of eigenfunctions satisfying (1.1).
Then (M, g) possesses a self-focal point p whose first return map ηp is conservative.

3. Proof of Proposition 1.2

It is not particularly important to the proof, but we may assume with no loss of
generality that M is diffeomorphic to S2. The proof is a standard one on manifolds
with focal points; we refer to [4] for background. We also assume throughout
that ηp is real analytic, since that is the case in our setting; most of the statements
below are true for smooth circle maps.

We note that ηp is the restriction of the geodesic flow GT to the invariant
set S∗

pS
2. This circle is contained in a symplectic transversal Sp to the geodesic

flow. On the symplectic transversal GT is a symplectic map which is invertible.
Hence ηp is invertible. Thus, (Dηp)ω is non-zero for all ω ∈ S∗

pS
2. It follows that ηp

is either orientation preserving or orientation reversing.
Next we use time reversal invariance of the geodesic flow to show that ηp is

conjugate to its inverse.

Lemma 3.1. ηp is reversible (conjugate to its inverse).

Proof. Let τ(x, ξ) = (x,−ξ) on S∗M . Then on all of S∗M , we have τGtτ = G−t.
Indeed, let ΞH be the Hamilton vector field of H(x, ξ) = |ξ|g. Then H ◦ τ = H ,
i.e., H is time reversal invariant. We claim that

τ∗ΞH = −ΞH .

Written in Darboux coordinates,

ΞH =
∑
j

∂H

∂ξj

∂

∂xj
− ∂H

∂xj

∂

∂ξj
.

If we let (x, ξ) → (x,−ξ) and use invariance of the Hamiltonian we see that the
vector field changes sign. Now, G−t is the Hamilton flow of −ΞH and that is τ∗ΞH .
But the Hamilton flow of the latter is τGtτ .

Since S∗
pM is invariant under τ , we just restrict the identity τGtτ = G−t

to S∗
pM to see that ηp is reversible. �
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3.1. Orientation preserving case

First let us assume that ηp is orientation preserving. Then it has a rotation number.
We recall that the rotation number of a circle homeomorphism is defined by

r(f) =
(

lim
n→∞

Fn(x)− x

n

)
mod 1.

Here, F : R → R is a lift of f , i.e., a map satisfying F (x+1) = F (x) and f = π ◦F ,
where π : R → R/Z is the standard projection. The rotation number is independent
of the choice of F or of x. It is rational if and only if f has a periodic orbit. For
background, see [2].

Lemma 3.2. The rotation number of ηp is either 0 or π.

Proof. For a circle homeomorphism, the rotation number τ(f−1) is always −τ(f).
Since ηp is reversible, τ(ηp) = −τ(ηp), i.e., its rotation number can only be 0, π. �

Lemma 3.3. η2p has fixed points.

Proof. The rotation number of η2p is 0. But it is known that τ(f) = 0 if and only
if f has a fixed point. See [2], Theorem 2.4. �

We now complete the proof that η2p = Id if ηp is orientable. Since ηp is real
analytic, this is the case if η2p has infinitely many fixed points, so we may assume
that Fix(η2p) is finite (and non-empty). We write #Fix(η2p) = N and denote the
fixed points by pj.

If N = 1, i.e., η2p has one fixed point Q, then S1\{Q} is an interval and η2p
is a monotone map of this interval. So every orbit is asymptotic to the fixed point
of η2p.

Let μ be the L1 invariant measure for η2p and let K = suppμ. We can decom-
pose K into N subsets Kj such that η2p(Kj) → pj . Kj is the basin of attraction
of pj. Then

μ(Kj) = μ(η2p(K)j) → μ({pj}).
But pj ∈ Kj so it must be that Kj = {pj}. This shows that μ cannot be L1,
concluding the proof.

3.2. Orientation reversing case

The square η2p of an orientation reversing diffeomorphism of S∗
pS

2 is an orientation
preserving diffeomorphism. If ηp preserves the measure dμ then so does η2p. Thus
we reduce to the orientation preserving case.

Remark. Keith Burns pointed out to us that the orientation reversing case cannot
occur. If ηp is orientation reversing, so is −ηp. An orientation reversing homeomor-
phism of the circle must have a fixed point ξ ∈ S∗

pM . But then GT (p, ξ) = (p,−ξ)
for some T > 0, which is impossible.
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