Rev. Mat. Iberoam. **32** (2016), no. 3, 995[–999](#page-4-0) doi 10.4171/rmi/905

-c European Mathematical Society

Focal points and sup-norms of eigenfunctions II: the two-dimensional case

Christopher D. Sogge and Steve Zelditch

Abstract. We use a purely dynamical argument on circle maps to improve a result in our accompanying article, [\[5\]](#page-4-1), on real analytic surfaces possessing eigenfunctions that achieve maximal sup norm bounds. The improved result is that there exists a 'pole' *p* so that all geodesics emanating from *p* are smoothly closed.

1. Introduction and main results

In the accompanying article [\[5\]](#page-4-1), the authors gave a dynamical characterization of compact real analytic Riemannian manifolds (M^n, g) of dimension n possessing Δ_q -eigenfunctions

$$
(\Delta + \lambda_{j_k}^2)e_{j_k} = 0, \quad ||e_{j_k}||_{L^2} = 1
$$

of maximal sup norm growth,

(1.1)
$$
||e_{j_k}||_{L^{\infty}(M)} \geq C_g \lambda_{j_k}^{(n-1)/2}.
$$

Here, C_g is a positive constant independent of λ_j . The main result of [\[5\]](#page-4-1) (recalled more precisely below) is that if (M, g) possesses such a sequence ${e_i}_k$, then there must exist *self-focal points* p at which all geodesics from p loop back to p at some time. The minimal such time is called the first return time T_p . Moreover, there must exist a self-focal point for which the first return map

$$
\eta_p: S_p^*M \to S_p^*M
$$

preserves an L^1 measure on the unit co-sphere S_p^*M at p. The purpose of this addedum is to add a purply dynamical argument to the main result of [5] to addendum is to add a purely dynamical argument to the main result of [\[5\]](#page-4-1) to prove the stronger:

Mathematics Subject Classification (2010): Primary 58J50; Secondary 35P20. *Keywords:* Eigenfunctions, L^{∞} bounds.

Theorem 1.1. *Let* (M, g) *be a compact real analytic compact surface without boundary. If there exists a sequence of* L^2 *-normalized eigenfunctions,* $(\Delta + \lambda_{j_k}^2)e_{j_k} = 0$, $satisfying \n\begin{bmatrix} e_{j_k} \end{bmatrix}_{L^\infty(M)} \geq C_g \lambda_j^{1/2}, \nthen \n(M, g) \npossesses \na \npole, \ni.e., \na \npoint \np \nso \nthat \neq \nopen \neq \n$ *that every geodesic starting at p returns to p at time* $2T_p$ *as a smoothly closed geodesic.*

Thus, (M, g) is a $C_{2T_p}^p$ -manifold in the terminology of [\[1\]](#page-4-2) (Definition 7.7(e)). Theorem [1.1](#page-0-0) proves the conjecture stated on page 152 of [\[3\]](#page-4-3) in the case of real analytic surfaces. We also remark that the conclusion of the theorem remains valid if there exists a sequence of quasimodes of order $o(\lambda)$ saturating the sup-norms (see [\[5\]](#page-4-1) for the terminology).

Theorem [1.1](#page-0-0) follows by combining the main result of [\[5\]](#page-4-1) with the following:

Proposition 1.2. Let (S^2, g) be a two-dimensional real analytic Riemannian sur*face.* Suppose that $p \in S^2$ *is a self-focal point and that the first return map* $n_p: S_p^*S^2 \to S_p^*S^2$ preserves a probability measure which is in $L^1(S_p^*S^2)$. Then n_p^2
is the identity man, and in narticular all geodesics through n are smoothly closed p *is the identity map, and in particular all geodesics through* p *are smoothly closed with the common period* $2T_p$ *.*

The proof only involves dynamics and not eigenfunctions of Δ_q . To explain how Theorem [1.1](#page-0-0) follows from Proposition [1.2,](#page-1-0) we first recall some of the definitions and main result of [\[5\]](#page-4-1) to establish notation. We then give the proof of Proposition [1.2.](#page-1-0)

A natural question is whether all real analytic Riemannian surfaces with maximal eigenfunction growth are surfaces of revolution. There are many P_{ℓ}^m metrics -besides surfaces of revolution. A second question is whether the proposition has some kind of generalization to higher dimensions.

We thank Keith Burns for reading an earlier version of this note and for his comments.

2. Background on maximal eigenfunction growth

Let $\eta_t(x,\xi)=(x(t), \xi(t))$ denote the homogeneous Hamilton flow on $T^*M\setminus 0$ generated by $H(x,\xi) = |\xi|_g$. Since η_t preserves the unit cosphere bundle S^*M $\{|\xi|_g = 1\}$, it defines a flow on S^*M which preserves Liouville measure. For a given $x \in M$, let $\mathcal{L}_x \subset S_x^*M$ denote the set of *loop directions*, i.e., unit directions ξ
for which $n(x, \xi) \in S^*M$ for some time $t \neq 0$. Also let du , denote the measure for which $\eta_t(x,\xi) \in S_x^*M$ for some time $t \neq 0$. Also, let $d\mu_x$ denote the measure on S_x^*M induced by the Euclidean metric g_x and let $|\mathcal{L}_x| = \mu_x(\mathcal{L}_x)$.

We say that p is a *self-focal point* if there exists a time $\ell > 0$ so that $\eta_{\ell}(p, \xi) \in$ S_p^*M for all $\xi \in S_p^*M$, i.e., if

$$
\mathcal{L}_p = S_p^* M.
$$

We let T_p be the minimal such time, and write

(2.1)
$$
\eta_{T_p}(p,\xi) = (p,\eta_p(\xi)), \quad \xi \in S_p^*M.
$$

Under the assumption that g is real analytic, the *first return map*

$$
(2.2) \t\t \eta_p: S_p^*M \to S_p^*M
$$

is also real analytic.

The key property of interest is that η_p is conservative in the following sense:

Definition 2.1. We say ν_p is conservative if it preserves a measure $\rho d\mu_p$ on S_p^*M
which is absolutely continuous with respect to μ_p and of finite mass: which is absolutely continuous with respect to μ_p and of finite mass:

(2.3) $\exists \rho \in L^1(\mu_p), \quad \eta_p^* \rho \, d\mu_p = \rho \, d\mu_p.$

Theorem 2.2 ([\[5\]](#page-4-1)). *Suppose that* (M,g) *is a compact real analytic manifold without boundary which possesses a sequence* $\{e_{j_k}\}\$ *of eigenfunctions satisfying* [\(1.1\)](#page-0-1)*. Then* (M, g) possesses a self-focal point p whose first return map η_p is conservative.

3. Proof of Proposition [1.2](#page-1-0)

It is not particularly important to the proof, but we may assume with no loss of generality that M is diffeomorphic to S^2 . The proof is a standard one on manifolds with focal points; we refer to [\[4\]](#page-4-4) for background. We also assume throughout that η_p is real analytic, since that is the case in our setting; most of the statements below are true for smooth circle maps.

We note that η_p is the restriction of the geodesic flow G^T to the invariant set $S_p^*S^2$. This circle is contained in a symplectic transversal S_p to the geodesic flow. On the symplectic transversal G^T is a symplectic map which is invertible. Hence η_p is invertible. Thus, $(D\eta_p)_{\omega}$ is non-zero for all $\omega \in S_p^*S^2$. It follows that η_p is other orientation programs or orientation programs is either orientation preserving or orientation reversing.

Next we use time reversal invariance of the geodesic flow to show that η_p is conjugate to its inverse.

Lemma 3.1. η_p *is reversible* (*conjugate to its inverse*).

Proof. Let $\tau(x,\xi) = (x, -\xi)$ on S^*M . Then on all of S^*M , we have $\tau G^t \tau = G^{-t}$. Indeed, let Ξ_H be the Hamilton vector field of $H(x,\xi) = |\xi|_q$. Then $H \circ \tau = H$, i.e., H is time reversal invariant. We claim that

$$
\tau_* \Xi_H = -\Xi_H.
$$

Written in Darboux coordinates,

$$
\Xi_H = \sum_j \frac{\partial H}{\partial \xi_j} \frac{\partial}{\partial x_j} - \frac{\partial H}{\partial x_j} \frac{\partial}{\partial \xi_j}.
$$

If we let $(x, \xi) \to (x, -\xi)$ and use invariance of the Hamiltonian we see that the vector field changes sign. Now, G^{-t} is the Hamilton flow of $-\Xi_H$ and that is $\tau_* \Xi_H$. But the Hamilton flow of the latter is $\tau G^t \tau$.

Since S_p^*M is invariant under τ , we just restrict the identity $\tau G^t \tau = G^{-t}$ to S_p^*M to see that η_p is reversible. \Box

3.1. Orientation preserving case **3.1. Orientation preserving case**

First let us assume that η_p is orientation preserving. Then it has a rotation number. We recall that the rotation number of a circle homeomorphism is defined by

$$
r(f) = \left(\lim_{n \to \infty} \frac{F^n(x) - x}{n}\right) \mod 1.
$$

Here, $F: \mathbb{R} \to \mathbb{R}$ is a lift of f, i.e., a map satisfying $F(x+1) = F(x)$ and $f = \pi \circ F$, where $\pi: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ is the standard projection. The rotation number is independent of the choice of F or of x. It is rational if and only if f has a periodic orbit. For background, see [\[2\]](#page-4-5).

Lemma 3.2. *The rotation number of* η_p *is either* 0 *or* π .

Proof. For a circle homeomorphism, the rotation number $\tau(f^{-1})$ is always $-\tau(f)$. Since η_p is reversible, $\tau(\eta_p) = -\tau(\eta_p)$, i.e., its rotation number can only be $0, \pi$. \Box

Lemma 3.3. η_p^2 *has fixed points.*

Proof. The rotation number of η_p^2 is 0. But it is known that $\tau(f) = 0$ if and only if f has a fixed point. See [2] Theorem 2.4 if f has a fixed point. See [\[2\]](#page-4-5), Theorem 2.4. \Box

We now complete the proof that $\eta_p^2 = Id$ if η_p is orientable. Since η_p is real lytic this is the case if n^2 has infinitely many fixed points so we may assume analytic, this is the case if η_p^2 has infinitely many fixed points, so we may assume
that $\text{Fix}(n^2)$ is finite (and non-empty). We write $\#\text{Fix}(n^2) = N$ and denote the that $\text{Fix}(\eta_p^2)$ is finite (and non-empty). We write $\#\text{Fix}(\eta_p^2) = N$ and denote the fixed points by n. fixed points by p_i .

If $N = 1$, i.e., η_p^2 has one fixed point Q, then $S^1 \setminus \{Q\}$ is an interval and η_p^2
monotone man of this interval. So every orbit is asymptotic to the fixed point is a monotone map of this interval. So every orbit is asymptotic to the fixed point of η_p^2 .

Let μ be the L^1 invariant measure for η_p^2 and let $K = \text{supp }\mu$. We can decom-
o K into N subsots K ; such that $x^2(K) \to n$; K is the basin of attraction pose K into N subsets K_j such that $\eta_p^2(K_j) \to p_j$. K_j is the basin of attraction of p_j . Then

$$
\mu(K_j) = \mu(\eta^{2p}(K)_j) \to \mu(\{p_j\}).
$$

But $p_j \in K_j$ so it must be that $K_j = \{p_j\}$. This shows that μ cannot be L^1 , concluding the proof.

3.2. Orientation reversing case

The square η_p^2 of an orientation reversing diffeomorphism of $S_p^*S^2$ is an orientation
preserving diffeomorphism. If n, preserves the measure du then so does n^2 . Thus preserving diffeomorphism. If η_p preserves the measure $d\mu$ then so does η_p^2 . Thus we reduce to the orientation preserving case.

Remark. Keith Burns pointed out to us that the orientation reversing case cannot occur. If η_p is orientation reversing, so is $-\eta_p$. An orientation reversing homeomorphism of the circle must have a fixed point $\xi \in S_p^*M$. But then $G^T(p,\xi)=(p,-\xi)$
for some $T>0$, which is impossible for some $T > 0$, which is impossible.

References

- [1] Besse, A. L.: *Manifolds all of whose geodesics are closed.* Results in Mathematics and Related Areas 93, Springer-Verlag, Berlin-New York, 1978.
- [2] Franks, J.: Rotation numbers and instability sets. *Bull. Amer. Math. Soc. (N.S.)* **40** (2003), no. 3, 263–279.
- [3] SOGGE, C.D., TOTH, J.A. AND ZELDITCH, S.: About the blowup of quasimodes on Riemannian manifolds. *J. Geom. Anal.* **21** (2011), 150–173.
- [4] SOGGE, C.D. AND ZELDITCH, S.: Riemannian manifolds with maximal eigenfunction growth. *Duke Math. J.* **114** (2002), 387–437.
- [5] SOGGE, C.D. AND ZELDITCH, S.: Focal points and sup norms of eigenfunctions. *Rev. Mat. Iberoam.* **32** (2016), 973–996.

Received June 30, 2014; revised September 10, 2014

Christopher D. Sogge: Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA. E-mail: sogge@jhu.edu

STEVE ZELDITCH: Department of Mathematics, Northwestern University, Evanston, IL 60208, USA E-mail: s-zelditch@northwestern.edu

The research of the first author was partially supported by NSF grant #DMS-1361476 and the second by #DMS-1206527. The second author was also partially supported by the Bergman trust.