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Parabolic BMO and global integrability
of supersolutions to doubly

nonlinear parabolic equations

Olli Saari

Abstract. We prove that local and global parabolic BMO spaces are equal
thus extending the classical result of Reimann and Rychener. Moreover,
we show that functions in parabolic BMO are exponentially integrable in
a general class of space-time cylinders. As a corollary, we establish global
integrability for positive supersolutions to a wide class of doubly nonlinear
parabolic equations.

1. Introduction

In 1993, Lindqvist [13] proved that positive Ap-superharmonic functions bounded
away from zero are globally integrable to some small power ε > 0 on Hölder
domains, that is, on domains satisfying a quasihyperbolic boundary condition (de-
fined in [8], see also Definition 2.6). This was qualitatively the most general result
in a series of papers investigating global integrability of harmonic functions, start-
ing from Armitage’s result on balls [4], and leading via Lipschitz domains [15] and
generalizations [16] to Hölder domains of Stegenga and Ullrich [23]. Hölder do-
mains were characterized as the ones with exponentially integrable quasihyperbolic
metric in [20], and this was proved to imply exponential integrability of functions
BMO in [20] and [10]. Noting the well-known fact visible in Moser’s proof [17] for
Harnack inequality of elliptic partial differential equations, i.e. that − logu ∈ BMO
for positive supersolutions, Lindqvist composed the general result. For more about
research related to global integrability, see also [24], [9] and [1].

Contrary to the elliptic theory, in the parabolic case very little or nothing has
been done, even in the case of heat equation, at least to the author’s knowledge.
In this paper, we prove many parabolic analogues of the above mentioned resuls.
We will use a version of parabolic BMO, originally introduced by Moser [18]. Then,
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using the John–Nirenberg type inequalities known from [3], we will establish a
global version of John–Nirenberg type lemma in space-time cylinders that are
Hölder domains in spatial dimensions (corresponding to the non-parabolic results
from [10] and [20]). Once we have global John–Nirenberg inequality, we can
prove the equivalence of local and global norms generalizing the classical result
of Reimann and Rychener [19].

As an application, we will consider equations of the form

(1.1)
∂(up−1)

∂t
= divA(x, t, u,Du),

where the function A satisfies certain p-Laplace type growth conditions to be spec-
ified in Section 6. This class of equations has been studied for instance in [25]
and [11]. The key fact we will use is of course the parabolic BMO-condition, and
our results will apply to any equation whose solutions are exponentials of functions
in parabolic BMO according to Definition 2.2 or even Definition 2.3.

We conclude the introduction by briefly describing how the parabolic case differs
from the elliptic one. The mean oscillation of a function u ∈ Lloc(R

n) is defined as

1

|B|
∫
B

|u− uB| dx,

with B a ball, and a function is in BMO if its mean oscillation is uniformly bounded.
In the definition of parabolic BMO, there is a time lag between the domains where
we measure the upper and lower deviation from some constant. Thus the picture
to have in mind about parabolic oscillation of u ∈ L1

loc(R
n+1) is

1

|B×(θ + I)|
∫
θ+I

∫
B

(u(x, t)− aB×I)+ dx dt+
1

|B×(I)|
∫
I

∫
B

(u(x, t)− aB×I)− dx dt,

where aB×I is a constant, I an interval so that B × I respects the appropriate
geometry, θ+ I is the interval translated forward in time by the lag parameter θ >
length(I), and |·| denotes the n+1 dimensional Lebesgue measure. The appearance
of time lag is a deep fact originating from the time lag phenomenon of parabolic
partial differential equations, and it results in that parabolic BMO differs quite a
lot from the classical BMO.

The paper is organized as follows: Section 2 introduces notation and known
results, Section 3 develops a chaining technique, Section 4 contains the proof of
global John–Nirenberg inequality, Section 5 consists of the formulations of its most
important consequences, and in Section 6 we apply the results to parabolic differ-
ential equations.

2. Definitions and preliminaries

We will start with general conventions. We will work in R
n+1. The first n-coordi-

nates will be called spatial (usually denoted x) and the last one temporal (usually
denoted t). We will use the standard notation |E| for the Lebesgue measure of E.
In most cases we do not specify its dimension, but it must be clear from the context.
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When it comes to integrating, we denote dμ = dx dt. The letter C without sub-
script will be a constant depending only on the quantities we are not keeping track
of, and we denote f � 1 if f ≤ C. Occasional subscripts in this notation, such
as �n, will emphasize the dependencies of the constant. The positive part of a
function u is denoted (u)+ = (u)+ = χ{u>0}u; the negative part is defined by
(u)− = (u)− = −χ{u<0}u.

•

R

R+(γ)

R−(γ)

S+

S−

U+

U−

2γLp

Lp

t

R
n

Figure 1. A parabolic rectangle R and the arrangement of its subsets U+ ⊂ S+ ⊂ R+(γ).
The lengths are not in correct scales.

The definition of classical BMO is stated in terms of Euclidean cubes. In the
parabolic context, the class of cubes must be replaced by that of parabolic rectan-
gles. The notation introduced in the next definition is illustrated in Figure 1.

Definition 2.1 (Parabolic rectangle). Let Q(x, L) ⊂ R
n be a cube with side-

length L and center x, and let p > 1 be fixed. We define a parabolic rectangle
centered at (x, t) with sidelength L, its upper half and its upper quarter as

R = Q× (t−Lp, t+Lp), R+= Q× (t, t+Lp), S+=
{
(y, τ) ∈ R : τ > t+ 1

2L
p
}
.

The corresponding lower parts R− and S− are defined analogously. The parabolic
scaling of a rectangle and its quarter are defined as

λR = (λQ)× (t− (λL)p, t+ (λL)p),

λS+ = (λQ)× (t+ 3
4L

p − 1
4 (λL)

p, t+ 3
4L

p + 1
4 (λL)

p).
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A special but technical role is played by the sets

U+ =
1

8
S+,

called upper fragments. From now on, the symbols Q, R±, S± and U± will be
reserved for sets introduced in this definition.

It may be useful to notice that S+ is a metric ball with respect to

(2.1) d((x, t), (y, τ)) := max{‖x− y‖∞ , Cp|t− τ |1/p}.
This motivates the way we define its scaling. Moreover, the centers of vari-
ous n+ 1 dimensional sets mean centers of the corresponding metric balls with
respect to (2.1).

The parabolic BMO spaces arise from partial differential equations, and the
scaling properties of the equation determine the number p specifying the shape of
parabolic rectangles. Since parabolic BMO condition is stated in terms of parabolic
rectangles, different values of p lead to different function spaces. In what follows,
p > 1 is considered to be fixed. The following definition is different from the one
given in [7], but it seems to be more suitable when investigating local-to-global
phenomena.

Definition 2.2 (Parabolic BMO). Let Ω ⊂ R
n be a domain and T ∈ (0,∞]. Given

σ ≥ 1, a function u ∈ L1
loc(Ω× (0, T )) is in parabolic BMO, denoted PBMOσ(Ω×

(0, T )) if for each parabolic rectangle R there is a constant aR such that

(2.2) sup
σR⊂Ω×(0,T )

(
−
∫
S+

(u − aR)
+ dμ+−

∫
S−

(aR − u)+ dμ
)
=: ‖u‖PBMOσ < ∞.

In case σ = 1, it will be omitted in the notation.

The starting point for our considerations is the John–Nirenberg inequality sat-
isfied by u ∈ PBMO. In sufficient generality it was proved by Aimar [3], who
studied BMO-spaces with lag maps. His aim was to develop a unified approach
to both classical and parabolic BMO on spaces of homogeneous type. The next
technical definition is a special case of Definition 1.4 in [3], and it is included in
order to demonstrate that Aimar’s results apply to all BMO-type spaces discussed
in this paper.

Definition 2.3 (BMO spaces with certain lag mappings). Let r ∈ R and b ∈ (0, 1].
For an L-sided parabolic rectangle R centered at (y, τ), define

TR(x, t;L) = (x, t− Lp;L), TS(x, t;L) =
(
x, t− 3

2L
p;L

)
, h(r) = (r)b+.

A function u ∈ L1
loc(R

∗) is said to belong to BMO space with lag mapping TB

(B = S or B = R) with respect to h if for each parabolic subrectangle R ⊂ R∗,
there is a constant aR such that

sup
R⊂R∗

(
−
∫
B+

h(u− aR) dμ+−
∫
B−

h(aR − u) dμ
)
< ∞.
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Note that the lag maps TB take a center and a radius of a ball with respect to a
metric (2.1), and map them to a new center and a new radius. It is easy to see
that with these choices of TR and TS, B

− is the metric ball corresponding to the
data from TB and B+.

The choice b = 1 and B = S gives the condition (2.2). Any space of Def-
inition 2.3 satisfies the following John–Nirenberg inequality (Lemma 3.4 in [3])
with certain modifications, but we will state it for the case of PBMOσ. Aimar’s
approach allows us to use general p > 1 instead of p = 2 of [7].

Lemma 2.4 (Aimar [3]). Let u ∈ PBMOσ(Ω×(0, T )). Then there are constants A
and B depending only on ‖u‖PBMOσ , p and n such that for each parabolic rectan-
gle R with σR ⊂ Ω× (0, T ) the following holds:

|U+ ∩ {(u− aR)
+ > λ}| ≤ Ae−Bλ |U+| and(2.3)

|U− ∩ {(aR − u)+ > λ}| ≤ Ae−Bλ |U−|.(2.4)

Remark 2.5. The general BMO space with lag mapping (in sense of Defini-
tion 2.3) satisfies the same inequalities but U± from Definition 2.1 are replaced
by 1

8B
± from Definition 2.3. This difference is not essential, and all the following

arguments will work also in that case. The factor 1/8 is small enough to make the
inequalities (2.3) and (2.4) hold, but its role is not important in this paper. In fact,
our final result in R

n+1 will make the technical notion of fragments unnecessary.

Finally, we will need a geometric condition that ensures that the domains we
consider are reasonable enough. The following class of (bounded) domains was
first defined by Gehring and Martio in [8].

Definition 2.6 (Quasihyperbolic boundary condition). Let Ω ⊂ R
n be a domain.

We define its quasihyperbolic metric as

k(x, y) := inf
γxy

∫
γxy

1

d(z,Ωc)
ds(z),

where the infimum is over curves connecting x and y. A domain is said to satisfy
a quasihyperbolic boundary condition if there is a fixed x0 ∈ Ω and a constant K
such that, for all y ∈ Ω,

k(x0, y) ≤ K log
K

d(y,Ωc)
.

3. Chain lemma

When proving a local-to-global result for a function u on some domain, the most
crucial part is to get information about the behavior of u close to the boundary
of the domain. We will use a chaining technique composing various ideas from the
known results in [14], [22] and [5]. The original chaining techinques do not work
as such since the parabolic BMO condition compells us to take into account the
special role played by the time variable.
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The new problem is that the rectangles in the chain cannot be located as freely
as they could in the classical case. The chain has to have a direction in time,
each step in spatial dimensions forcing us to take certain step in time. Thus the
first challenge is to ensure that for each point in the space-time cylinder there is
enough time to move to the spatial point we consider the center. This problem can
be solved by imposing an artificial upper bound on the size of spatial steps, which
is reflected as the pth power to the time variable due to the parabolic scaling.

Lemma 3.1. Let Ω ⊂ R
n be a domain and Δ = Ω× (0, T ), 0 < β < 1; α, α′, δ > 0

and let U+
(x,t) be an upper fragment of a parabolic rectangle centered at (x, t) ∈

Ω× (δ, T ) with spatial sidelength l′x,t = min{lx,t, α′q}. Here,

(3.1) lx,t := min{βd(x,Ωc), β(T − t)1/p, αq},

where q = supx∈Ω length(γxz) is the maximal length of quasihyperbolic geodesics
connecting points x to a fixed z ∈ Ω.

Under these assumptions, the parameter α can be chosen so that there is a

chain of parabolic rectangles P(U+
x ) = {Ri}k(x,t)

i=1 with the following properties:

(i) R1 = R(x,t), Rk(x,t)
is centered at (z, τ(x, t)) and it has spatial sidelength

lz,τ(x,t). For all j we have that β−1Rj ⊂ Δ.

(ii) |U−
i ∩ U+

i+1| �p,n,β max{|Ri|, |Ri+1|} as 1 ≤ i < kx.

(iii) 0 ≤ t− τ(t, x) ≤ qpη, where η �n,β α.

(iv) k(x,t) �p,n,β k(x, z) + log(T/(T − t)) + log (α/α′ + 1) + 1/α+ 1.

Proof. We start by assuming that α′q ≥ lx,t. The first rectangle R1 is obviously
given. We denote its center p1, and we denote the center of its upper fragment p′1.
Suppose that Rj (centered at pj = (yj , tj)) has been chosen. We connect its spatial
center yj to z with the quasihyperbolic geodesic γ and find the point yj+1 where γ
exits Qj = Q(yj, lyj ,tj ). Set

t′j+1 = tj − 3
4 l

p
j ,

p′j+1 = (yj+1, t
′
j+1),

lj+1 = l(yj+1,t′j+1)
,

tj+1 = t′j+1 − 3
4 l

p
j+1 = tj − 3

4 (l
p
j + lpj+1),

pj+1 = (yj+1, tj+1).

We define Rj+1 by extending the spatial cube Qj+1 to a parabolic rectangle Rj+1

centered at pj+1 with sidelength lj+1 so that its upper fragment is centered at p′j+1,

which is also the temporal center of U−
j (see Figure 2). One of the two consecutive

fragments (U−
j and U+

j+1) has its temporal projection contained in the other, and
yj+1 ∈ ∂Q(yj , lj), so in order to establish (ii), it suffices to prove that lj �β,n lj+1.
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•

•

•

•

p′
j

pj

pj+1

p′
j+1

Rj

Rj+1

U+
j

U−
j

U+
j+1

U−
j+1

t

R
n

Figure 2. Schematic picture on position of two subsequent rectangles in the chain. For
clarity, the lengths and distances are not in scale.

We define an auxiliary metric

d′((x1, t1), (x2, t2)) = max{|x1 − x2|, |t1 − t2|1/p}.
Denoting Ξ = Ωc×R∪Ω×(T,∞), the choice condition (3.1) can be reformulated as

lx,t = min{βd′((x, t),Ξ), αq}.
If li = αq = li+1, there is nothing to prove, so assume that both li = βd′(p′i,Ξ)
and li+1 = βd′(p′i+1,Ξ). Then

(3.2) li ≤ β(d′(p′i, p
′
i+1) + d′(p′i+1,Ξ)) ≤ β li + li+1

and

(3.3) li+1 ≤ β(d′(p′i, p
′
i+1) + d′(p′i,Ξ)) ≤ (β + 1) li.

If, in turn,
li+1 = β d′(p′i+1,Ξ) ≤ α q = li,

then one direction is clear, and for the other, (3.2) still holds. The last alternative
li = β d′(p′i,Ξ) ≤ αq = li+1 is done similarly by (3.3). Thus (ii) holds.
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For (iii), note that since ∑
i

li ≤ Nq,

where N depends only on n and β, the choice αp−1 ≤ η/(2N) yields the same
bound for all (li/q)

p−1, and consequently

t− τ(x, t) ≤
∑
i

2 lpi ≤ η qp−1

N

∑
j

lj ≤ η qp.

To prove (iv), assume first that α does not affect the chain length. It is straight-
forward to check that for all pairs of consecutive indices (i, i+1) where both side-
lengths li are not determined by the temporal dimension (that is, one or both of
them are determined by the spatial dimensions); li, li+1, d(x,Ω

c) and |γyiyi+1 | are
all comparable for x ∈ γyiyi+1 . We call subchains with this kind of center points pi
mixed and label the corresponding segments of γ by γij ,ij+1. Then

k(x, z) =

∫
γ

1

d(y,Ωc)
ds(y) =

∑
i

∫
γyiyi+1

1

d(y,Ωc)
ds(y)

≥
kx∑
j=1

∫
γij ,ij+1

1

d(y,Ωc)
ds(y) � kx.

Multiplying kx by 2, we may assume that it controls the actual number of points pi
in mixed subchains.

It remains to estimate the gaps between mixed subchains. These are filled
by purely temporal subchains, where the sidelengths of consecutive rectangles are
determined by the distances from Ω×{T }. Here the fact t′i+1 = ti− 3

4 l
p
i = t′i− 3

2 l
p
i

implies

lpi+1 = βp(T − t′i+1) = βp(T − t′i) +
3

2
βplpi =

(
1 +

3

2
βp

)
lpi =: Mlpi .

Given two temporal subchains with no temporal subchain in between, the succes-
sor will start with a rectangle greater than the ending rectangle of the predecessor.
Moreover, the last rectangle in a purely temporal subchain is also a starting rect-
angle for the following mixed subchain. By the convention on kx, these will be
counted to both mixed and temporal chains. Without decreasing the actual num-
ber of counted rectangles, we may join the temporal subchains by replacing the
starting rectangles of the purely temporal subchains by the ending rectangles of
the predecessors.

This new chain of rectangles with centers {(yiι , tiι)}kι=0 satisfies

T �
k∑

ι=0

2 lpiι ≥ 2 lpi0
Mk+1 − 1

M − 1
� C lpi0 M

k−C ,
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where all dependencies are on β. Especially,

k � log
T

lpi0
+ 1.

Adding now the worst contribution of αq-sided rectangles, we have established

kx,t � k(x, z) + log
T

T − t
+

1

α
+ 1.

Up to the additional assumption on α′ ≥ lx,t, this is (iv).
To get rid of the assumption α′q ≥ lx,y, we just start the construction by

doubling the sidelength at each step until the choice condition of ly,t becomes
active. It can be checked that this does not affect other bounds than the number
of rectangles, and here the effect is at worst the claimed log(α/α′ + 1) + 1. �

Remark 3.2. Given two parabolic rectangles R = Q× (t− Lp, t+ Lp) and R′ =
Q × (t′ − Lp, t′ + Lp) such that T ≥ t′ − t ≥ ML for some big M (say M ≥ 100),
then R′ can be connected to R with a chain {Ri}ki=1 satisfying (ii) of Lemma 3.1
(with dimensional constant) and k ≤ CM where C is a numerical constant. This
is practically done by looking at chains constructed as in Lemma 3.1, but using
a constant spatial cube Q, and choosing the midpoint of Ri+1 asking only that
|prt Ri ∩Ri+1| ≥ Lp/M is satisfied (prt means the projection on the temporal
variable). This gives us flexibility to squeeze or stretch the chain in order to
synchronize the endpoint rectangles provided by the previous lemma.

4. A global John–Nirenberg inequality

In this section we will prove one of the main results of this paper, the global
John–Nirenberg inequality.

Theorem 4.1. Let Ω satisfy a quasihyperbolic boundary condition. If u is a func-
tion in PBMOσ(Ω × (0, T )), then for every δ > 0 there is c ∈ R and constants A
and B depending on δ, σ, p, n, ‖u‖PBMOσ and the data of Ω, such that

|Ω× (δqp, T ) ∩ {(u− c)+ > λ}| ≤ Ae−Bλ |Ω× (δqp, T )|.

Here q is again the maximal length of quasihyperbolic geodesics.

Proof. Choose σ < β−1 and let α > 0 be a constant to be determined later.
For each y ∈ Ω, let 5ly = min{βd(y,Ωc), αq} and denote Qy = Q(y, ly). Using
5-covering lemma, we may extract a countable collection Wα = {Qi}i := {5Qyi}i
so that the cubes {Qi}i cover Ω and 1

5Qi are pairwise disjoint. Moreover, we may
ask Q1 to be centered at z, the distinguished point of Ω. The symbols Wζ will
refer to similar constructions with additional size bounds 5ly ≤ ζq. We denote
δ0 = δqp.
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First look at a fixed time level Ω × {δ0}. We extend every cube Qi to be an
upper fragment of a parabolic rectangle Ri having its lower face on Ω×{δ}. Using
Lemma 3.1, we may construct chains P(U+

i ) connecting these U+
i , upper fragments

of Ri, to rectangles with spatial projections coinciding with Q1. These rectangles
may, however, be centered somewhere in Ω× (−∞, 0), since in the construction of
the parabolic chain, connecting the lower fragments of rectangles with the upper
fragments of their successors makes the chain flow down to the past. To deal with
this, we choose η in (iii) of Lemma 3.1 to be (10σ)−10δ so that the final rectangle
will definitely be in Ω× (12δ0, T ) and admissible in the definition of PBMOσ. This
imposes an upper bound b on α (depending only on δ and σ).

Next we slice the cylinder Ω× (δ0, T ) both spatially and temporally. We begin
with the time. Denote

τj = T − 2−j(T − δ0), as j ≥ 0, and Zj = Ω× (τj , τj+2).

The union of these Zj is included in Ω× (δ0, T ) and their overlap is bounded by 2.
When it comes to space, we define

Ωk = Ω ∩ {d(x,Ωc) < 2−k}.

This lets us partition Wα so that

Wk
α = {Qx ∈ Wα : x ∈ Ωk \ Ωk+1}.

Since for each y ∈ Q(x, l) ∈ Wk
α we have that

d(y,Ωc) ≤ |x− y|+ d(x,Ωc) ≤ (β + 1) d(y,Ωc) ≤ 2−k+1,

the inclusion ⋃
Q∈Wk

α

Q ⊂ Ωk−1

will follow.
Then we cover Ω× (τj , τj+1). These subsets of Zj will in turn cover the whole

space-time cylinder Ω× (δ0, T ). Choose

αj = min
{
b,
β

q

(T − δ0
2j+2

)1/p}
.

Take the cover Wαj , extend its cubes to upper fragments of parabolic rectan-

gles U j+
i . At each spatial Qi, stack these parabolic fragments pairwise disjointly

minimal amount to cover the temporal interval (τj , τj+1). At the future end, the

stack will not exceed τj+2. Label the fragments as Zj = {U jk+
i }ijk.

For each U jk+
i we form the chain of Lemma 3.1 with α = b and α′ = αj . It

has mj
i rectangles. We want, however, to make all final rectangles coincide not only

spatially but also temporally at, say, R. In order to do that, we must continue the
chain of U jk

i withmj rectangles. According to Remark 3.2, recalling the choice of η,
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and carefully checking the interdependence of j and temporal slicing of Ω×(δ0, T ),
we see that this can be done with bound

mj �
j∑

ι=0

2−j (T − δ0)

(αj q)p
� j

δ
.

Call these continued chains C(U jk+
i ).

Now we are in position to prove the claim. Recall that aR is always a constant
from the PBMOσ condition (2.2). Let C0 be the constant in part (ii) of Lemma 3.1.

For a while, we denote C(U jk+
i ) = {Pι}m

j
i+mj

ι=1 . We will use an argument from [22].
By a suitable choice of λ0 (depending only on ‖u‖PBMOσ , β, and the dimension)
in John–Nirenberg inequalities (2.3) and (2.4), we get

|E−
λ0,ι

| := |U−
ι ∩ {(aPι − u)+ > λ0}| ≤ C0

2
|U−

ι |,

|E+
λ0,ι+1| := |U+

ι+1 ∩ {(u− aPι+1)
+ > λ0}| ≤ C0

2
|U+

ι+1|,

and
|(U−

ι ∩ U+
ι+1) \ (E−

λ0,ι
∪ E+

λ0,ι+1)| > 0.

This indicates that there is pι ∈ (U−
ι ∩U+

ι+1) \ (E−
λ0,ι

∪E+
λ0,ι+1), and consequently

(aP1 − aR)
+ ≤

mj
i+mj−1∑
ι=1

(aPι − aPι+1)
+

≤
mj

i+mj−1∑
ι=1

(aPι − u(pι))
+ + (u(pι)− aPι+1)

+ �λ0 mj
i +mj .

Now for every λ > 0, we get

|U jk+
i ∩ {(u− aR)+ > λ}| ≤ |U jk+

i ∩ {(u− aRjk
i
)+ + (aPι − aR)

+ > λ}|
� |U jk+

i ∩ {(u− aRjk
j
)+ > λ/2}|

+ |U jk+
i ∩ {C(mj

i +mj) > λ/2}|.(4.1)

By John–Nirenberg, the first term can be estimated by

|U jk
i ∩ {(u− aRjk

i
)+ > λ/2}| � |U jk

i | e−Bλ.

Moreover, ∑
i,j,k

|U jk
i | =

∑
j

∑
U∈Zj

|U jk
i | �

∑
j

|Zj| � |Ω× (δ0, T )|,

so

(4.2)
∑
i,j,k

|U jk
i ∩ {(u− aRjk

i
)+ > λ/2}| � e−Bλ |Ω× (δ0, T )|.
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We then turn to the second one. Since U jk
i ⊂ Zj , by Lemma 3.1 we have that

(4.3) mj
i +mj �α k(yi, z) +

j

δ
+ j log

q

(T − δ0)1/p
+ 1.

Denote

|U jk+
i ∩ {k(yi, z) + 1 > Cλ}|+ |U jk+

i ∩ {j > Cλ}| = Iijk + IIijk .

Since Ω satisfies a quasihyperbolic boundary condition, it holds that |Ωk| � 2−νk|Ω|
for some ν > 0 (see [5] and [12]). On the other hand, the quasihyperbolic boundary
condition itself,

k(yi, z) � log
K

d(yi, z)
,

gives that if Qi ∈ Wk
αj
, then k(yi, z) � 1 + k. Denoting tjki = |prt U jk+

i |, we may
compute (since Qi have bounded overlap)

∑
i,j,k

Iijk ≤
∑
i,j,k

tjki · |Qi ∩ {k(yi, z) + 1 > Cλ}|

� (T − δ0)
∑

l>Cλ−C′
|Ωl| � (T − δ0)

∑
l>Cλ−C′

2−νl|Ω| � |Ω× (δ0, T )|e−Bλ.(4.4)

For the term IIijk , we note that since 1
5Qi are pairwise disjoint

∑
i,j,k

IIijk =
∑
j>Cλ

∑
i,k

|U jk+
i | �

∑
j>Cλ

|Zj |

�
∑
j>Cλ

2−j |Ω× (δ0, T )| � |Ω× (δ0, T )| e−Bλ.(4.5)

Summing over i, j and k in (4.1), and plugging in the estimates (4.2), (4.4) and (4.5),
we get the claimed

|Ω× (δqp, T ) ∩ {(u− aR)+ > λ}| ≤ Ae−Bλ |Ω× (δqp, T )|. �

Note that if Ω = Q is a Euclidean cube and T = 2l(Q)p, we have a parabolic
rectangle. In this simple case, one may compute the bounds coming from the
quasihyperbolic boundary condition explicitly (compare to [14]). Replacing the
quasihyperbolic geodesics by straight lines, and repeating the previous proof, it
will be clear that the dependence on the data of Ω will become a dimensional
constant. Thus we get a slightly stronger statement for these domains.

Corollary 4.2. Let R be a parabolic rectangle centered at (x, τ). If u is in
PBMOσ(R), then for every δ > 0 there is c ∈ R and constants A and B depending
on δ, PBMOσ-norm of u, σ, p and n such that

|R+
δ ∩ {(u− c)+ > λ}| ≤ Ae−Bλ |R|.

Here, R+
δ = Q× (τ − (1− δ)Lp, τ + Lp).
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5. Consequences of the global inequality

In the classical context, the global John–Nirenberg inequality can be regarded
as the strongest local-to-global result of BMO. By this we mean that most other
results can be deduced directly from it. In this section we state and prove parabolic
analogues of the exponential integrability of functions in BMO (see [20] and [10])
and the equivalence of local and global norms (see [19]).

Theorem 5.1. Let Ω ⊂ R
n satisfy the quasihyperbolic boundary condition of

Definition 2.6. If u ∈ PBMOσ(Ω × (0, T )) with σ ≥ 1, then for every δ > 0
there is γ > 0 and c ∈ R such that

∫
Ω×(δ,T )

eγ(u−c)+ dμ < ∞.

Proof. We may write

∫
Ω×(δ,T )

eγ(u−c)+ dμ =

∫ ∞

0

|{Ω× (δ, T ) : eγ(u−c)+ > ν}| dν

= |Ω× (δ, T )|+
∫ ∞

1

|{Ω× (δ, T ) : eγ(u−c)+ > ν}| dν,

so it suffices to estimate the second term. By Theorem 4.1 we have

|{Ω× (δ, T ) : (u − c)+ > λ}| ≤ Ae−Bλ |Ω× (δ, T )|.
Using this, we get

∫ ∞

1

|{Ω× (δ, T ) : eγ(u−c)+ > ν}| dν

=

∫ ∞

0

eλ|{Ω× (δ, T ) : (u − c)+ > λ/γ}| dλ ≤ A|Ω× (δ, T )|
∫ ∞

0

eλ(1−B/γ) dλ.

Taking γ small enough, we see that this integral is finite. �

Of course, we have a corresponding result for the negative part of the function.
Here the gap between the domain of integration and the temporal boundary will
be at the positive end.

Corollary 5.2. Let Ω ⊂ R
n satisfy the quasihyperbolic boundary condition of

Definition 2.6. If u ∈ PBMOσ(Ω× (0, T )) with σ ≥ 1, then for every δ > 0 there
is γ > 0 and c ∈ R such that

∫
Ω×(0,T−δ)

eγ(u−c)− dμ < ∞.

Proof. From the proof of Theorem 5.1 it is clear that once we have

(5.1) |{Ω× (0, T − δ) : (u− c)− > λ}| ≤ Ae−Bλ |Ω× (δ, T )|,
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the claim will follow. In the proof of Theorem 4.1 we used Lemma 3.1. It gave
chains {Ri}i where U−

i ∩ U+
i+1 had large measure. The same construction could

have been done to the reversed direction, that is, so that U+
i ∩ U−

i+1 would have
been a large set. Repeating the proof of Theorem 4.1 with this orientation, we
get (5.1), and we are done. �

The next result, originally due to Reimann and Rychener [19] (see also Sta-
ples [21]), tells that even if we originally assume the PBMOσ(Ω) condition with
σ > 1 we actually have the condition with σ = 1. In other words, even if our
original assumption is absolutely local, we still have complete information about
the behaviour of a function up to the boundary.

Theorem 5.3. Let Ω ⊂ R
n+1 be an arbitrary domain and let σ > 1. Let u ∈

PBMOσ(Ω). Then u ∈ PBMO(Ω).

Proof. Take a parabolic rectangle R ⊂ Ω. By Corollary 4.2, we have

|R+
δ ∩ {(u− c)+ > λ}| ≤ Ae−Bλ |R|.

Integrating this, we get∫
Rδ

(u − c)+ dx =

∫ ∞

0

|R+
δ ∩ {(u− c)+ > λ}| dλ ≤ |R|

∫ ∞

0

e−Bλ dλ � |R|.

Reasoning as in the previous proof, we see that the corresponding inequality holds
for R−

δ . Moreover, choosing δ = 5/4 and making the final rectangles R in the
proof of Theorem 4.1 coincide, we ensure that the constants c associated to plus
and minus parts coincide. �

6. Integrability of supersolutions

In this section we apply the results about PBMO to partial differential equations.
More precisely we study equations of the form

(6.1)
∂(up−1)

∂t
= divA(x, t, u,Du), 1 < p < ∞,

where A(x, t, u,Du) is a Caratheodory function (see [6]) satisfying the growth
conditions

A(x, t, u,Du) ·Du ≥ C0 |Du|p,(6.2)

|A(x, t, u,Du)| ≤ C1 |Du|p−1.(6.3)

We denote by Lp(0, T ;W 1,p(Ω)) the space of p-integrable functions on (0, T )
having their values in the Sobolev space W 1,p(Ω). More concretely, u is in the
parabolic space Lp(0, T ;W 1,p(Ω)) if

u(t, ·) ∈ W 1,p(Ω) for a.e. t ∈ (0, T ) and

∫ T

0

‖u(t, ·)‖pW 1,p(Ω) dt < ∞.
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Definition 6.1. A function u ∈ Lp
loc(0, T ;W

1,p
loc (Ω)) is a supersolution to (6.1) if

∫ T

0

∫
Ω

(
A(x, t, u,Du) ·Dφ− up−1∂φ

∂t

)
dx dt ≥ 0

for all non-negative φ ∈ C∞
c (Ω× (0, T )).

If the integral in the above definition vanishes for all φ ∈ C∞
c (Ω×(0, T )), then u

is a weak solution. For our purposes, however, it suffices to consider supersolutions.

Following [11] (see also [25] and [18]) one can show that a positive supersolu-
tion f of (6.1) that is bounded away from zero has the negative of its logarithm
in PBMO. This will imply that f is globally integrable to some small power ε > 0,
which is a delicate fact since both the equation (6.1) and the definition of super-
solution are very local assumptions, that is, they do not say anything about the
behavior of f near ∂Ω × (0, T ). But still, in terms of integrability, f behaves at
worst as a power function.

We will use Lemma 6.1 of [11], which is stated for positive supersolutions of
doubly nonlinear equation, that is (6.1) with A(x, t,Du, u) = |Du|p−2Du, but as
the authors of [11] mention, the assumptions that the proof actually requires are
the conditions (6.2) and (6.3).

Lemma 6.2 (Kinnunen–Kuusi [11]). Let f > γ > 0 be a supersolution to (6.1)
on σR where σ > 1 and R is a parabolic rectangle. Then there are constants C
and C′ depending only on C0, C1, σ, p and n such that

|{(x, t) ∈ R− : log f > λ+ β + C′}| ≤ C

λp−1
|R−|

and

|{(x, t) ∈ R+ : log f < −λ+ β − C′}| ≤ C

λp−1
|R+|,

where β depends on R and f , and λ > 0 is arbitrary.

A short calculation shows that this estimate leads to the parabolic BMO-space
similar to the one first defined in Moser [18]. The difference here is again the
p-scaling of time variable. However, having the John–Nirenberg type inequalities
of [3] and Theorem 5.3, we will be able to prove that − log f ∈ PBMO.

Lemma 6.3. Let f > γ > 0 be a supersolution to (6.1) on Ω × (0, T ) and let
u = − log f . Then u ∈ PBMO with norm depending only on C0, C1, p and n.

Proof. Let R be a parabolic rectangle such that σR ⊂ Ω× (0, T ). Set

b = min{(p− 1)/2, 1}.
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Then a straightforward integration gives∫
R+

(u+ β)b+ dμ = b

∫ ∞

0

λb−1|{(x, t) ∈ R+ : u+ β > λ}| dλ

= b

∫ ∞

0

λb−1|{(x, t) ∈ R+ : − log f + β > (λ− C′) + C′}| dλ

≤ |R+|(1 + C′)b + b

∫ ∞

1

(λ+ C′)b−1|{(x, t) ∈ R+ : − log f + β > λ+ C′}| dλ

≤ |R+|(1 + C′)b + Cb|R+|
∫ ∞

1

(λ+ C′)b−p dλ,

and∫
R−

(u+ β)b− dμ = b

∫ ∞

0

λb−1|{(x, t) ∈ R− : −u− β > λ}| dλ

= b

∫ ∞

0

λb−1|{(x, t) ∈ R− : log f − β > (λ− C′) + C′}| dλ

≤ |R−| (1 + C′)b + b

∫ ∞

1

(λ+ C′)b−1 |{(x, t) ∈ R− : log f − β > λ+ C′}| dλ

≤ |R−| (1 + C′)b + C b |R−|
∫ ∞

1

(λ+ C′)b−p dλ,

so u satisfies Definition 2.3:

sup
σR⊂Ω×(0,T )

(
−
∫
R+

(u− aR)
b
+ dμ+−

∫
R−

(aR − u)b+ dμ
)
< ∞.

According to Remark 2.5, we get a John–Nirenberg lemma. Even if this differs
from (2.3) and (2.4), all the arguments of the previous sections are still valid up
to change of some dimensional constants. Thus we may apply Theorem 5.3 to
conclude that u ∈ PBMO(Ω× (0, T )). �

Having established the fact u ∈ PBMO(Ω × (0, T )), global integrability of
positive supersolutions follows easily.

Theorem 6.4. Let f > γ > 0 be a supersolution to (6.1) on Ω × (0, T ), where
Ω ⊂ R

n is a domain satisfying a quasihyperbolic boundary condition. Then for
each δ > 0 there is ε > 0 depending only on p, n, δ, Ω, C0 and C1 such that

(6.4)

∫
Ω×(0,T−δ)

f ε dμ < ∞.

Proof. By Lemma 6.3 − log f ∈ PBMO(Ω × (0, T )), so by Corollary 5.2 there
are c ∈ R and ε > 0 such that

∞ >

∫
Ω×(0,T−δ)

eε(− log f−c)− dμ ≥
∫
Ω×(0,T−δ)

eε((− log f)−−(c)−) dμ

= C

∫
Ω×(0,T−δ)∩{f>1}

f ε dμ+ C,

so the finiteness of the integral in (6.4) follows. �
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The assumption f > γ > 0 coming from Lemma 6.2 can be replaced by the
assumption that f > 0 is lower semicontinuous. Indeed, for a lower semicontinuous
f > 0 it actually holds that f > γR > 0 in all parabolic rectangles R. Since
Lemma 6.2 provides an estimate uniform in γ, we can actually apply it, and get
that − log f ∈ PBMOσ. Thus the previous theorem can also be stated in the
following form.

Theorem 6.5. Let f > 0 be a lower semicontinuous supersolution to (6.1) on Ω×
(0, T ), where Ω ⊂ R

n is a domain satisfying a quasihyperbolic boundary condition.
Then for each δ > 0 there is ε > 0 depending only on p, n, δ, Ω, C0 and C1 such
that ∫

Ω×(0,T−δ)

f ε dμ < ∞.

Another extension is to consider increasing limits of positive supersolutions.
In this case it suffices to note that, in addition to finiteness, the integral in (6.4) has
an upper bound uniform in the supersolutions f except for the quantity ec. Indeed,
in addition to ec the only dependence is on ‖− log f‖PBMO, which is determined by
the structural constants C0, C1, p and n. Thus the global integrability of increasing
limits of positive supersolutions follows from the monotone convergence theorem
provided that the functions in the sequence are uniformly bounded in Ω×(T−δ, T ).
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