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Bi-Lipschitz parts of quasisymmetric mappings

Jonas Azzam

Abstract. A natural quantity that measures how well a map f: R* — R”
is approximated by an affine transformation is

wr(@,r) = inf (]i(m ("Li\f' )

where the infimum ranges over all non-zero affine transformations A. This
is natural insofar as it is invariant under rescaling f in either its domain
or image. We show that if f: R? — RP is quasisymmetric and its image
has a sufficient amount of rectifiable structure (although not necessarily
H%-finite), then ws(x,7)2dxdr/r is a Carleson measure on R? x (0, 00).
Moreover, this is an equivalence: if this is a Carleson measure, then, in
every ball B(z,r) C R, there is a set E occupying 90% of B(z,r), say,
upon which f is bi-Lipschitz (and hence guaranteeing rectifiable pieces in

the image).

En route, we make a minor adjustment to a theorem of Semmes to
show that quasisymmetric maps of subsets of R? into R? are bi-Lipschitz
on a large subset quantitatively.

1. Introduction

1.1. Background

Recall that a non-constant map f: RY — RP is n-quasisymmetric if there is an
increasing homeomorphism 7: (0,00) — (0, 00) such that, for all z,y,z € R? dis-
tinct,

[f@) = fW)l _ n(lw - yl)
[f(@) = f(2)] = Nz —z|/°
The goal of this manuscript is to determine when one can detect or guarantee
that a quasisymmetric embedding is bi-Lipschitz on some portion of its support.
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Recall that a subset of R” is d-rectifiable if it may be covered up to a set
of Hausdorff d-dimensional measure zero by Lipschitz images of R%. In general,
the image of a quasisymmetric map can be highly irregular. One example can
be obtained as follows: by Assouad’s theorem [32], for @ € (0,1) and d > 1,
there are L = L(d,a), D = D(d) and an L-bi-Lipschitz mapping of R? equipped
with the metric d(z,y) = |x — y|® into RP”. Such a map can easily be checked
to be quasisymmetric, and one can show that the image of such a map is purely
k-unrectifiable for any & = 1,2,...,d, in the sense that the image has Hausdorff
k-measure zero intersection with any Lipschitz image of R*¥. The dimension D
depends on d and can be quite larger, but see also [7] or David and Toro [16] for
particular “snowflake” embeddings of R? into R?*!. In light of these examples, a
priori conditions that rule out such examples is a natural question.

Most results in this vein typically deal with a codimension 1 situation. Specif-
ically, they deal with functions that are restrictions of a globally defined quasi-
conformal map f: R? — R? d > 2, and give conditions that guarantee f(S?1!)
s (d — 1)-rectifiable. Before discussing these results, we recall the definition of
quasiconformality. For € R?, define

) = max |Df(x)|* Iy (@)
Ky(x) = { Jg(z) 7infyegd—l |Df(m)y|d}

For a domain Q C R%, a map f: Q — R? that is a homeomorphism onto its image
with f € W’licd(Q) and [|K(x)|[p= @) < K < oo is said to be K-quasiconformal.
A surjective K-quasiconformal map f: R? — R is K-quasiconformal if and only
if it is 1 quasisymmetric, where K and 7 depend on each other (see [40]). Set
Ay={zeRV:1—t <|z| <1+t} K¢(t) =esssup {Ks(z): 2z € A} — 1. The
smaller this quantity is, the closer f is to being conformal in the ¢-neighborhood
of §4-1,

In [1], it is shown that if d = 2, f|p is conformal, and fol f(f(t)z% < 00,
then f(S) is rectifiable. This was subsequently generalized to higher dimensions
(although with a stronger condition on the integral) in [31], where it is shown that

for f: RY — R?, d > 2, if fol f(f(t)% < 00, then f(S?7!) is rectifiable. By the

recent results in [6], it is only necessary that fol (K'f(t) log(l/f{f(t)))z% < 0.
They derive this result from a similar result involving not the quasiconformal

dilatation, but the quasisymmetry: if

(@)~ )
1156 = s { 7 =)

then [6] also shows that fol Hy (t)?4 < oo implies f(S?71) is rectifiable.

Reverse implications with these quantities are not possible, as the conditions
are too stringent: most quasiconformal mappings with f(S¢~!) rectifiable do not
have lim;_,o K(t) = 0. Moreover, a result due to Astala, Zinsmeister, and Mac-
Manus seems to suggest that loosening these conditions will result in only partial
rectifiability of the image. Before stating this result, we review some terminology.

s x,y,z € Ay are distinet and |z — z| < |z — y|},
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Recall that a bounded C-chord-arc domain % C C is a scaled copy of a C-
bi-Lipschitz image of the unit ball B, and a K -quasidisk is any image of the ball
under a K-quasiconformal mapping f: C — C. A Bishop—Jones domain 2 C C
is a simply connected domain where, for all z € Q) there is a C-chord-arc domain
% C Q) containing z such that S (0% N OQ) > adist(z,0Q) > b1 (0% ). Also
recall that a measure o on R? x (0,00) is a Carleson measure on R? x (0, 00) if
there is an infimal constant C' = C(o) (the Carleson norm of o) such that for all
z € R% and r > 0,

o(B(z,r) x (0,7)) < C|B(z,r)|.

Theorem 1.1 ([3], [28]). If @ C C is a quasidisk, then Q is a Bishop-Jones
domain if and only if there is f: C — C quasiconformal, such that f(H) = Q
(where H is the upper half plane in C), f is conformal on the lower half plane, and

%dedy is a Carleson measure on R x (0,00) where puy = fz/f..

Observe that |us(z)| = (Kf(z) —1)/(Kf(2) + 1), so that if f is K-quasicon-
formal, then Kf(z)/(K +1) < |us(2)] < Kf(2), so one is a Carleson measure
exactly when the other is. See Chapters 2 and 3 in [2] for these facts about planar
quasiconformal maps and their Beltrami coefficients p, and [34] for similar results.

The above results do not establish whether when f: R¥T! — R4*1 is bi-
Lipschitz on a subset of R?, only that their images are rectifiable. For showing a
map is bi-Lipschitz on a large piece quantitatively, one typically requires some sort
of quantitative differentiability result. To explain this notion, we go by way of a
classic example due to Dorronsoro.

Theorem 1.2 ([17]). Let f € L*(R?). For x € R%, r > 0, define

oo -wi (£, (54)”

where the infimum is over all affine maps A : R* — R. Then f € Wl’Q(Rd) if and
only if
/ / Qy(x, 7" — d:c < o0,
Rd

in which case, ||V f||3 ~a Q(f)

This is not the exact phrasing of his result, and the original theorem is far more
general, but this special case has been more than sufficient for many applications.
For the reader’s convenience, we provide a well-known proof in Section 7.3 of the
appendix.

While Rademacher’s theorem, for example, says that at almost every € R? f
is approximately an affine function in small balls around the point x, it does not
tell us how soon f is within €, say, of some affine map. Using Dorronsoro’s result
and Chebyshev’s inequality, however, shows that the largest scale r > 0 for which
Qy(z,7) < € can be estimated from below in terms of ||V f||2, d, and € > 0. Results
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like this (that quantify how soon a function achieves a certain threshold of regu-
larity, or bounds how often it does not) are examples of quantitative differentiation
or coarse differentiation.

Quantitative differentiation results have been used for embedding problems
([9], [27]), geometric group theory ([18]) and the theory of uniform rectifiability
(see [11], [25], Lemma 10.11 in [14], IV.2.2 in [15], and the references therein).
While the latter results are more concerned with finding out when a function is
approximately affine, there are situations involving, say, a metric space [5], or
Carnot groups [27], where “affine” is replaced with some other form of regularity.

In [25], for example, the author shows that if f is 1-Lipschitz, then for every
§ > 0 one can partition [0,1]? into sets G, K1, ..., Ky, where M < M(§), such
that J°(f(G)) < 6 and f is %—bi—LipSChitz on each Kj;. To prove this, one can
use something like Theorem 1.2 and a clever algorithm to sort the domain of f into
the desired sets G, K1,..., Ka (see also [12], p. 62). We will not replicate this
method, but the condition in our main result will resemble Dorronsoro’s theorem.
In particular, instead of Q, we will use a similar quantity: define

(1.1) w(x,r) = inf (][J;(x,r) (|f|f;|;4|>2 )1/2,

where the infimum is over affine maps A : R? — RP with |A’| # 0. Here, A’ is
the derivative of the mapping A, so that A(x) = A’(z) + A(0). The appeal of this
quantity, as opposed to {1y, is that it is invariant under dilations in the domain
and scaling the function f in its image: if s,¢ > 0 and b € R?, then

wr(te +b,tr) =wg(x,r) if gy) = sf(te + D).

Thus, if wy(z,r) is small, then f is well-approximated by a nontrivial affine map
inside B(x,r), even if the image of f(B(z,r)) is very small.

In the main result below, much like Theorem 1.1, we do not give a sufficient
condition for when the image of f is rectifiable, but when it contains a uniform
amount of rectifiable parts within it in a sense we make precise in the following
definition.

Definition 1.3. We will say a set X contains big pieces of d-dimensional bi-
Lipschitz images with constants k > 0 and L > 1 (or BPBI(k, L, d) for short)
if, for all ¢ € ¥ and s > 0, there is £ C B(£,5) N'Y with #4(E) > ks? and
g: B — R? L-bi-Lipschitz. We will simply write BPBI(k, L) if the dimension d is
understood from context.

Note that this “big pieces” terminology is already prevalent in the literature
(see [14] and [15]), but usually includes the assumption that ¥ is Ahlfors regular,
meaning that /#4(% N B(z,)) is comparable to 7%. We emphasize, however, that
the sets we will be dealing with will not necessarily be .7 ¢-finite, let alone regular.

We can now state our main result, which obtains a classification of all qua-
sisymmetric mappings with uniformly rectifiable image in terms of the behavior
of wy, and can be considered as high dimensional analogue of Theorem 1.1:
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Theorem 1.4. Let f: R — RP be quasisymmetric, d > 2. Then the following
are equivalent:

2 dad
)"

(1) The measure wy(z,r is a C-Carleson measure on R? x (0, 00).

(2) For all T > 0, there is L > 0 such that, for all z € R? and r > 0, there is
E C B(z,r) such that

diam f(B(x,r))

B, NE| < B )| and (Sgreet

—1
) f|E is L-bi-Lipschitz.

(3) There are ¢, L > 0 such that for all * € R? and r > 0, there is E C B(x,r)
such that

diam f(B(x,r))

—1
is L-bi-Li ite.
diam B(z,r) ) flg is L-bi-Lipschitz

|E| > c|B(z,7)| and (

(4) The set f(R?) has BPBI(k, L).

The equivalences are quantitative in the sense that, the constants in each item
depend (in addition to D and n) only upon those in the other items.
If d = 1, then we just have (1) = (2) = (3) = (4).

There is no equivalence in the case of d =1 (that is, (4) # (1)), since there are
quasisymmetric maps of the real line that are uniformly oscillatory at every scale
and location. We will give a counter-example in Proposition 2.3.

We also mention that one can construct a single rectifiable piece in the image
(or bi-Lipschitz part of f) without using the full strength of the Carleson measure;
indeed, we prove a local version of (1)=(2) in Theorem 3.21 below.

A similar result appears in [4], where the authors show that if f: RP — R is

quasisymmetric, 2 < d < D, ﬂ'f(w, t)z@ is a Carleson measure on R? x (0, 00),

where

7 [f(z) — f()l -

Hy(w,t) = sup {7 cx,y,z € B(w,t) are distinct and |z—z] < |acfy|},
’ @) = 1)l

then f(R%) has big pieces of bi-Lipschitz images, though the implication only holds
with d > 2 and does not have a reverse implication. Also, while wy(z, ) is perhaps
not as simple or ideal a quantity to compute than Ky and H ¢ mentioned above, it
does handle a broader class of mappings (maps that are not restrictions of maps
f: R4 — R? to the sphere S~ for example) and, more importantly, classifies
those quasisymmetric mappings that have BPBI in their image. Moreover, the
advantage in [6] and [4] is that H; has the monotonicity property that H(x,r) <
H¢(y,s) whenever B(z,r7) C B(y,s), which does not hold for ws. On the other
hand, [4] has its own unique challenges: the main tool in our paper is Dorronsoro’s
theorem, for which wy(z,t) is naturally suited, but it is not clear whether we can
apply this using only information about the values H t(z, ).

Our final result in the vein of finding bi-Lipschitz pieces of quasisymmetric
maps is a generalization of the following result of Semmes.
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Theorem 1.5 ([37]). Suppose E C R, d > 2, and f: E — R is n-quasisymmetric
for some n. Then |E| > 0 if and only if |f(E)| > 0.

While this is a beautiful result, with just a bit more work one can actually
achieve a quantitative version that bounds how small we can make | f(F)| in terms
of only 7, d, and the density of F.

Proposition 1.6. Let E C Qo € R, p € (0,1/2), and set § = |E|/|Qo| > 0.
Let f: E — R be n-quasisymmetric. Then there is E' C E compact with |E'| >

(1—p)|E| and (diam f(E’)/diam E") _1f|E: is L-bi-Lipschitz for some L depending
onmn,d, p, and §.

We will cite several tools from [37], and with them, the modifications required
to obtain Proposition 1.6 are not too difficult, hence the above proposition should
really be credited to Semmes; in addition to Dorronsoro’s theorem, however, it is
a cornerstone to our paper, so we find it worth mentioning.

1.2. Outline of proof

Below we indicate where in the paper to find the proofs of each link in the chain
of implications implying Theorem 1.4.

(1) = (2) We prove this in Theorem 3.1 in Section 3.

(2) = (3) This case is trivial.

(3) =

(4) = (1) This is proven in Theorem 6.1 in Section 6.

(4) Although brief, we prove this implication in Theorem 5.1 in Section 5.

Section 4 is devoted to showing Proposition 1.6, a prerequisite for Theorem 5.1.
Some basic preliminaries and notation are covered in Section 2, although a few tools
will appear throughout whose proofs are delayed to the appendix in Section 7.

Acknowledgements. The author would like to thank Xavier Tolsa for his help
in understanding Dorronsoro’s theorem, Tatiana Toro for providing the inception
for this project, and Robert Shukrallah and Michael Lacey for their helpful discus-
sions. Part of this work was done while the author was attending the Interactions
Between Analysis and Geometry program at the Institute for Pure and Applied
Mathematics. The author is also very grateful for the anonymous referee for suf-
fering through a poorly written draft.

2. Preliminaries

2.1. Notation

Many of the techniques and notation in this paper, if not mentioned or proven
here, can be found in [23], [30], and [39].

For nonnegative numbers or functions A and B, we will write A < B to mean
A < CB where C is some constant, and A <; B if C' depends on some parameter t.
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Similarly, we will write A~ Bif A< BS Aand A~ Bif A<, B S A The
Euclidean norm will be denoted by | - | and the ball centered at x of radius r by
B(z,r) = {y: |z —y| < r}. Let A(R?) denote the collection of dyadic cubes in R?
of the form

d
Rd = U{H '7“ ]'L+]‘)]CRCZ (.71, . 7jd)€Zd}
nezZ i=1

and for Qo € A(RY), let A(Qp) the set of dyadic cubes contained in a dyadic
cube Qp. We will simply write A = A(RY) if the dimension is clear from the
context. For Q € A, set Q' to be the parent of ), that is, the smallest dyadic cube
properly containing @, and inductively, for N > 1, define QV to be the smallest
dyadic cube properly containing Q™! (so Q¥ is the Nth generation ancestor
of Q). We will also refer to any cube R with R' = Q! as a sibling of Q. We will
denote the side length of a cube @ by ¢(Q) and its center by zq. For A > 0, A\Q
will denote the cube with center zg and side length M(Q)

For a subset A C R%, we will let |A| denote the Lebesgue measure of A, A°
its interior, A its boundary, and 14 the indicator function for A (that is, it is
exactly one on A and zero on the complement of A). For a Lebesgue measurable
function f and a measurable set A of positive measure, we set f Wik A7 S Vi
For § > 0 and A C R?, set

ji%d(A) = wdinf {ZT? A C UB(.Z‘Z‘,T,L'),T,L' < (5} s

where wg = |B(0,1)| and define the (spherical) d-dimensional Hausdorff measure

AYA) = lim A (A).

6—0
If A, B C R%, we set

diam(A) = sup{|z —y| : x,y € A},
dist(A, B) = sup{|z —y| :x € A,y € B},
and for z € RY,
dist(z, A) = dist({z}, A).

For an affine transformation A : R? — RP | we will write A(x) = A'(z) + A(0),
where A’ is a linear transformation (and the derivative of the map A), and we will
let |A’| denote its operator norm.

2.2. Basic facts about 2y and wy

Let © C R% and f: Q — RP be a locally bounded continuous function. It will be
more convenient throughout the paper to work with dyadic versions of w; and §2;:
for Q@ C Q a cube, define

Al 2\ 12 A2\ /2
wr(Q) = mf <][ —|A|’]|Cd1am|Q> and Q(Q) = mf( li{amQ|> ;
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where again the infima are over all nonzero affine maps A. We will use the following

monotonicity property often and without mention: if R C @ and ¢(R) > 64(Q),

then w;(R) < d~%w;(Q). This is easily proven using the definition of wy.
Moreover, for any cube @,

| =

(2.1) wr(Q) <

To see this, let A; = jA+ f(xq) where A : RY — RP is a fixed nonzero affine map.
Then,

wr(Q) < hjrglogf (]é (%%)2)1/2

. = FaQ\ V2 14; = Aj(ag)l\2 /2

< JR A - 2 J N v7

—lg%f(]{g( ama ) ) rimi (f (Frrdme ) )
.. Jdiam f(Q) .. . ][ |Aj ||z — zq[\2\1/2 1

<l f———— +1 f S/ LA < —.

=5 jdiam @ * At ( Q( |A9|diamQ) ) _0+2

Lemma 2.1. Let 6 > 0. If f is an n-quasisymmetric embedding of a cube Q C R?
into RP | then there is €1 = 1(n,d, ) > 0 so that if

(2.2) ]{2|A|/J|CC1TAHI|62 <er
then
|f(z) — A(z)| < §|A'|diam Q  for z € Q.
Moreover,
(1 —2Vd6) |A'| £(Q) < diam f(Q) < (1 4 2V/d6) |A| diam Q.

We postpone the proof to Section 7.2 in the appendix, and now use it to show
that the infimum in the definition of wy(Q) is actually achieved by a nonzero affine
map if wy(Q) is small enough.

Lemma 2.2. Let n: (0,00) — (0,00) be an increasing homeomorphism, and 1 <
d < D integers. There is e’ = &'(n,d) > 0 so that if Q@ € ARY) and f: Q — RP

is n-quasisymmetric with wr(Q) < €', then there is an affine transformation A :
R? - RP s0 that

(2.3) or(@? = (ama)

Proof. Assume w;(Q) < €' := e1(n, d, d=1/2/2)/2. Let A; is a sequence of affine

maps such that
|f = Al \? 2
][Q(|A;|diamQ) = wp(Q)
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For i large enough, we know

A f— Al Y
]{2|J;|diam|Q (]{2 (|/L|diale) ) <20 << (nd ﬁg)

Hence, by Lemma 2.1, |A}| ~ diam f(Q)/diam @, so |A}| is uniformly bounded
above and below. Moreover, there is x € @ so that

() = Ai(2)] < |4 wp(Q) diam Q.

Hence, the sequence A; is uniformly bounded on ) and uniformly bi-Lipschitz,
and by Arzela—Ascoli, we may pick a subsequence converging uniformly to a non-
constant affine map A on @ satisfying (2.3). O

2.3. A counter example

Here, we show that if d = 1, then (4) # (1) in Theorem 1.4.

Proposition 2.3. There is a quasisymmetric map f: R — R such that ws(Q) 2 1
for all @ € A(R) with £(Q) < 1.

Proof. To see this, let .# be the set of triadic half-open intervals in [0, 1) obtained
inductively by taking an interval I already in .#, dividing it into three half-open
subintervals Iy, I,,, and I, (the left, middle, and right intervals) of equal size so
that I, is between the other two, and adding these to .#. Now let p € (0,1/3)
and g be the measure on R satisfying 1([0,1)) = 1, p(ly) = p(l,) = pu(I) for all
I € 7, and for any n € Z and A C [n,n + 1), set pu(A) = (A —n). This is the
so-called Kahane measure on R (although not his exact construction in [26]), and
is singular with respect to Lebesgue measure. This is a doubling measure, meaning
there is C' > 0 such that u(B(z,2r)) < Cu(B(z,r)) and singular with respect to
Lebesgue measure (see [21] for a proof of these facts).

Define f: R — R by setting f(x) = p([0,t]) for x > 0 and p([z,0]) for x < 0.
It is not hard to show this is an increasing quasisymmetric mapping since p is
doubling (see Remark 13.20 (b) in [23]). For any Q € A(R) with £(Q) < 1, we
may find a triadic interval I C 3@Q of length at least £(Q)/3, and if a,b are the
endpoints of I and a, ¢ of I, then

[f(a) = f(0)] = u(le) = pu(I) = p|f(a) = F(D)].

Let § > 0 and suppose we may find z € R and @ € A(R) with ¢(Q) < 1 so that
wr(3Q) < e1(n,d,d). We will show this results in a contradiction if § > 0 is small
enough, proving the proposition. By Lemma 2.1, there is A a nonconstant affine
map such that

diam f(Q) _ p(Q)

24 A/ ~ —
(2:4) |4 diam Q diam Q

and

(2.5) IIf — AllL=30) < 0 |A"|diam 3Q.
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Hence
olf(@) = FO) = [f(a) = £(e)] S |A(a) — A(c)] — 26/A'| diam 3Q
_ % A(a) — A(b)| — 26| 4’| diam 3Q > % 1f(a) — F(b)] — 25 4’| diam 3Q.
Thus,

(5 - 00 = (5 - 0) f(@) ~ O < 5514 diam3Q % 54(Q),

and since p is doubling, we know 1(Q) <, p(I), hence we have

(5~ #) #(1) S5 o)

which is a contradiction for § small enough. O

2.4. Dyadic Carleson conditions

Suppose now f: R? — RP is a quasisymmetric mapping such that w ¢z, )
is a Carleson measure, meaning there is an infimal C' > 0 (the Carleson norm of
this measure) such that

2 dxdr
T

¢
d

(2.6) / / wy(z,r)? & dw < C|B(z,t)] for z€ R% and t > 0.
B(z,t) J0 r

If M > 1, (2.6) is quantitatively equivalent to the condition that there is an
infimal Cj; such that

(2.7) > wr(MQ)*|Q| < Cur|Qol
QCQo

for any dyadic cube Qg. We show this in the following lemma.

Lemma 2.4. If M > 1 and either (2.6) or (2.7) hold, then the other holds, and
C~gm Cuy.

Proof. We will only show this lemma for M = 3, as the general case is similar, and
we will only show Cj; <; C as the opposite inequality is proven similarly.

Let A be a nonconstant affine map. Then, for Q € A, z € Q, and r €
[2 diam @, 4 diam Q)]

|f — A 2 r?|B(z,r)| |f — Al\?
wr(3Q)" < ][362 (|A’|diam3Q) = BQl(dam3Q)? ]{w,r)( Al )

[ —A[\?
e ]{9(3:,7«) (l |A|r |) )

and infimizing over non constant affine maps A gives

wr(3Q)? Sqwy(x,r) forx €@, r e [2diamQ,4diam Q).




BI-LIPSCHITZ PARTS OF QUASISYMMETRIC MAPPINGS 599

Thus, for any Q¢ € A,

4d1amQ dr
> wr(3Q)? |Q|<Z// 307 <
Q<Qo QCQo 7@ /2diamQ "
4d1'unQ 272 diam Qg d’l"
sy [ = % [
QCQo 2 diam Q n>0Q"=Qy 2 "+1d1amQ0

4 diam Qg dr
/ / wy(x, 7") —dm<C|B(mQO,4dlamQ0)| <a CQol.

We can prove a similar relation for Q.

Lemma 2.5. For Q CRY, f: Q = RP, and Q C Q, define

o =i f (E5)"

where the infimum is over all affine maps A : R — RP. If M > 1 and f €
WL2(RY RP), then

> QMQ)? Q| ~par IDF]]2

QeA

Proof. Note that Theorem 1.2 holds for functions f: R? — RP (with D not nec-
essarily equal to one) if we replace Vf with Df. The proof now is similar to
Lemma 2.4, so we omit it. O

3. Carleson condition implies f is bi-Lipschitz on a very large
set

In this section, we prove the first part of Theorem 1.4 by establishing that (1)
implies (2). We state this implication as a theorem below.

Theorem 3.1. Suppose f: R* — RP is n-quasisymmetric and we(w,r)? ‘i—’“ dzx is a
Carleson measure. Then for all T > 0 there is L > 1 such that for allz € R?, r > 0,
there is E C B(x,r) such that |B(z,r)\E| < 7|B(x,7)| and (%M)_lﬂ];
1s L-bi-Lipschitz.

3.1. Stopping-time regions

The ideas behind this section are taken from the theory of uniform rectifiability
(see [14] and [15], for example). Let

M = 30000d.

We will keep M fixed throughout the rest of Section 3.
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Definition 3.2 ([15], 1.3.2). A stopping-time region S C A is a collection of cubes
such that

(1) all cubes @ € S are contained in a maximal cube Q(S) € S;
(2) S is coherent, meaning R € S for all Q C R C Q(S) whenever @) € S;
(3) for all Q € S, each of its siblings of @ are also in S.

We let m(S) denote the set of minimal cubes of S, i.e. those cubes @ € S such
that there are no cubes R € S properly contained in Q. We also set

2(8) = QU HQ: Q e m(5)}
which a the set of points in Q(S) that are contained in infinitely many cubes in S.

For an 7-quasisymmetric map f: Q — R” defined on a domain Q C R? and
QeA I MQCQand wr(MQ) <e'(n,d), by Lemma 2.2 we may assign to () an
affine map Ag : R? — R such that

( lf — Aql )2_

2 _
wi(MQ) _][ Al diam MQ

MQ

Definition 3.3. For Q C R? and f: Q — RP n-quasisymmetric, € € (0,¢'(n, d)),
7 € (0,1), we will call a stopping-time region S an (g, 7)-region for f if MQ(S) C Q
and if for any Q € S,

(1) X ocrcas) wi(MR)* < &%,

(2) |A’Q(S) —Apl < T|AIQ(S)|, and

(3) all siblings of @ in S satisfy (1) and (2).

Note that, if @ is in a (g, 7)-region S, then (2) implies
(3.1) (1=7) Al <14l < (1 +7) |Ags)| forallQ € S.
The first major step toward proving Theorem 3.1 is the following.

Theorem 3.4. Let 7 € (0,1), Cpy > 0, and n: (0,00) — (0,00) be an increasing
homeomorphism. There is €9 = €9(n, D, 7,Crr) > 0 so that the following holds. If
QCRY f: Q= RP s n-quasisymmetric, 0 < € < g9, Qo € A, MQo C Q, and

(3:2) > wi(MQ)? Q| < Car |Qul,
QCQo

then we may partition A(Qo) into a set of “bad” cubes B and a collection F of
(e, 7)-stopping time regions so that

C
(33) > QI =5 1@l

QeAB
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2d+1CM
52

(34) > lees) < (4+

SeF

) 1Qol-

Proof. Step 1. We first show that for any Q1 € A(Qo), if wr(MQ@1) < e, we may
construct a (e, 7)-region S(Q1) with Q(S(Q1)) = Q1. First, enumerate the cubes
in A(Q1) as {Q;}52, so that £(Q;) > £(Q;) implies i < j. Set S = {Q1}, and for
Jj>1,set S; =5,21U{Q;} if the following hold:

(a) Qj €8S,

(b) >ocrca, wr(MR)? < &2,
(c) |AG, — Apl < 7]AG, |, and
(d) all siblings of Q; in S satisfy the above properties.
Otherwise, set S; = Sj_1. Define S(Q1) = U;’;l S;. Clearly, it is a stopping-
time region and satisfies (1), (2), and (3) in Definition 3.3. Observe that, when

constructed in this way, for @ € m(S), there is a child R of @ such that either (1)
or (2) fails.

Step 2. Next, we define the sets & and .%. Set
$={Q CQo:wr(MQ)>¢e}

and enumerate the cubes A(Qo)\Z as {Q(7)}72; so that £(Q(j)) < £(Q(7)) implies
1< j. Welet F = Ujoil F; where the sets .%; are defined inductively as follows:
set 71 = {S(Qu)} and let Zy1 = F; U{S(Q())} if Q) € S for any § € Fy:
otherwise, set %11 = .%;. Note that if ;1 # %}, then Q(j +1) € B orin S
for some S € ;.

Step 3. We now set out to verify (3.3) and (3.4) for the sets & and .%. The
first inequality follows easily, since

Y IRI<e™ > wiMQ)® < Crre™?|Qul,

QeRB QeRB

so now we focus on (3.4). For S € .Z#, set

mi(S) = {Q em(S) : Z ws(MR)? > 2 for some child Q' C Q}
Q'CRCQ(S)

ma(S) = m(S)\m1 ()

(3.5) = {Q e m(S): Z wf(MR)* < 2 for all children Q' C Q
Q'CRCQ(S)
|A,, — A/Q(S)|

but > § for some child of Q' of Q}.

1Al
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Also set
M= |J @ i=12
Qem;(S)
Then
(3.6) Q(S) = My (S) U My(S) U z(S).

Lemma 3.5. There is v = v(D) > 0 so that if
(3.7) 0 <e<eo:=min{e'(d,n),v 0&1/27},

and S is an (g,7)-region S for an n-quasisymmetric map f: Q — RP where
MQ(S) CQC R4, then

Q)

(33) Q)] < T

Let us assume this lemma and finish the proof of Theorem 3.4. Let

(3.9) F1={5 €7 :[2(9)] = |Q(9)]/4},

(3.10) Fo={Se€.F:|M(9)] >1Q(S5)|/4}.

Note that the sets z(S) intersect only at the boundaries of dyadic cubes. To see
this, observe that if S and S’ were such that they intersected in the interior of
a cube, then the interiors of Q(S) and Q(S’) intersect, so one must be contained
in the other. Suppose Q(S) C Q(S’). Then Q(S) is contained inside a minimal
cube of S’ (since otherwise Q(S) € SN S = 0), but z(S) is the complement
of these minimal cubes and so z(S") N Q(S) = @, and thus 2(S) N z(S") = 0, a
contradiction. Thus, the z(S) intersect only at the boundaries of dyadic cubes,

which have measure zero, hence the z(S) are essentially disjoint. Since they are
contained in Q(S),

(3.11) DR <4 D [2(8)] < 4(Qol.
SeF SeF
If @ € my(S), there is a child @’ of @ so that
< Y w(MRP <wp(MQ)+ Y wi(MR)*
Q'CRCQ(S) QCRCQ(S)
If wp(MQ')? < £2/2, this implies
e? 2 2
5 < > wiMR)? <&,
QCRCQ(S)
and if wp(MQ')? > £2/2, then

2
B €
2 > Z wf(MR)2 > wf(MQ)2 > 2 dwf(MQ/)2 2 9d+1’
QCRCQ(S)
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so that in any case,

2
€
(3.12) g2 > Z wi(MR)? > SaT1 for all @ € m1(S).
QCRCQ(S)

Hence, since the @ € m2(S) have disjoint interiors,

S R)<4 Y M) =4y Y

SeFa SeFs SeF2 Qem1(S)

(312) d+1
25 Y S w(MRRQ)

SeF2 Qem1(S) QCRCQ(S)

2d+
BDILITLED SICIEL S 3 JPILTOLT
SeF3 ReS QEQm%I?S) SeFy ReS
gd+1 2d+1CM
(313) <5 Y wp(MRPIR < =5 [Qol.
RCQo

By (3.8), . = %71 U %5, so that

(3 11)

d+1 d+1
S eEl= Y X)L Ao+ Z < (a4 T ool

SeF i=1,2 Se.%;

This finishes the proof of Theorem 3.4, so long as we show Lemma 3.5, which will
be the focus of the next few sections. O

2. Whitney cubes for stopping-time regions

Before attacking Lemma 3.5, we prove some general properties about stopping-time
regions. The reader may just want to familiarize themselves with the notation and
lemmas, move on to Section 3.4, and return to the actual proofs on second reading.
Many of these estimates can be found in Section 8 of [14].

Let S be a stopping-time region as in Definition 3.2. For z € R, define
Dg(z) = inf{dist(z,Q) + diam @ : Q € S}.

For Q € A, let

Ds(@) = inf Ds(a)

Let R; be the set of maximal dyadic cubes in R%\z(S) such that

1
(3.14) diaij S %Ds(R])

The R; are essentially Whitney cubes (see Chapter IV in [38]), though rather
than having diameter comparable to their distance from some prescribed set (as is
usually how a Whitney decomposition is tailored), they have diameter comparable
to their “distances” Dg from S (see (3.17) below).
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For each Rj, pick QJ— € S such that
. ~ . ~ 3
(3.15) dist(zR;, Q;) + diam Q; < 3 Ds(zrR;)-

Note that since the R; has positive diameter, Dgs(xg,;) > 0, so the above makes
sense. Next, pick a maximal parent QQ; € S of Q); so that

Lemma 3.6. Let S be a stopping-time region, and define R; and Q; as in (3.14),
(3.15), and (3.16).

1) If © € Rj, then

(3.17) 20diam R; < Dg(x) < 60diamR; for all x € R;.

2) If 2R; N2R; # 0, then

(3.18) diam R; < 2diam R;.

3) The cubes 2R; have bounded overlap, in the sense that

(3.19) Lpozey < D Tor, Sa Lpoy sy
J

4) The cubes R; and Q; are close, in the sense that

(3.20) dist(zq,, R;) < 180 diam R;.
5) For all j,
(3.21) diam @Q; < 180 diam R;.

6) If diam R; < 2diam Q(S), then
(3.22) diam R; < 2diam Q).
7) If diam R; > diam Q(S)/60, then Q; = Q(S).

Proof. 1) The lower bound in (3.17) follows by definition, so we focus on the upper
bound. Observe that, since R; is maximal, that means there is y € le so that

1
diam le- > %Ds(y).
Let x € R; be the point closest to y. Since Dg is 1-Lipschitz, we have

Ds(y) > Dg(x) — |x —y| > Dg(x) — diam R;
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and because diam le- = 2diam R;, we have by the maximality of ; that

. . 1 1 .
2diam R; = dlaijl > 2—0D5(y) > %(Ds(l‘) — diam R;),
and thus L
Ds(l‘) < 20(2 + %) diam Rj < 60 diaij.
2) If z € 2R; N 2R; then

|z, — 2R;| < |zR, — 2| + |2 — 2R;| < diam R; + diam R;,

so that
(3.17)
20diam R; < DS(-Z'Ri) < Ds(.Z‘RJ) + |mR7‘, — ij|
< 60diam R; + diam R; 4 diam R;.
Hence,

61
diam R; < 1o diam R; < 4diam R;.
Since R; and R, are dyadic cubes, diam R, /diam R; is a power of two, so in fact,
diam R; < 2diam R;, which implies (3.18).
3) Note that for any R; and z € z(.S), there are infinitely many @ € S contain-
ing z,s0 Dg(R;) < |y — z| + diam @ for all such @, and so Dg(R;) < |y — z| for all
z € z(5), and this implies

(3.17)
dist(R;,2(S)) > Dg(R;) > 20diamR;,

and so we have 2R; C R%\z(S). The rest now follows from this and (3.18).
4) For any j, if z € Q; is closest to R;, then
diam Q)

dist(zq,, Rj) < dist(z, Rj) + |zq, — 2| < dist(ij,Qj) + >

(3.15)
(3.16)

(3.17)
< 3Dg(R;) < 180diamR;.

5) This follows from (3.17) and (3.16).

6) This is trivial in the case Q; = Q(S), so we assume @; # Q(S5), in which
case, since le € S and since @Q); is a maximal cube for which diam Q; < 3Dg(R;),
we have

3Ds(R;) < diam Qj = 2diam Q;,
so that
3 (3.17)
diam @Q; > §DS(RJ-) > 30diam R;.
7) Observe that if @; # Q(S), then any cube Q € S properly containing @,
satisfies diam @ > 3Dg(xR; ), so in particular, diam Q(S) > 3Ds(xr;) Thus,

: 1 1.
diam R; < %Ds(ij) < @dlamQ(S). O
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Lemma 3.7. For all 1,
1) Qi € MR;.
2) If diam R; < 2diam Q(S), then
a) R’i g B(J)QNME(Q@)) g MQ’i; and
b) for all j, if 2R; N 2R, # 0, we have R; C MQ; and

(3.23) diam Q; ~ diam @); ~ diam R; ~ diam R;.

Proof. Before beginning the proof, we recall that we chose M = 30000d.
1) If Q; is as in (3.15), then

(3.16) - (3.15)
diSt(mRin) + diam Q’L < dlSt(meQl) + 3DS(:L'R1) < 5DS(xRL)
(3.14)
(3.24) < 300diam R;
so that

2) Assume diam R; < 2diam Q(S5).
a) By Lemma 3.6,

(3.20)
R; C B(xq,,dist(zq,, R;) + diam R;) C B(zg,,181diam R;)
(3.22)
(3.26) C  Blxq,,362Vd(Q:)) € MQ;.

b) If 2R; N 2R, # 0, then dist(R;, R;) < diam R; + diam R; and diam R; <
2diam R; by (3.18), and so
dist(zq,, R;) < dist(zq,, R;) + diam R; + dist(R;, R;)

(3.20)
< 180 diam R; + diam R; + (diam R; + diam R))

(3.18)
< (180414 2+1)diam R; = 184 diam R;.

If diam R; < 2diam Q(S5), then

(3.22)
184 diam R; < 368diam(@); and diamR; < 2diam R; < 4diamQ);;

if diam R; > 2diamQ(S) > %diamQ(S’), Lemma 3.6 implies Q; = Q(S), and
since diam R; < 2diam Q(S) = 2diam Q; by assumption,

(3.18)
184diam R; < 368diamR; < 736 diam Q(S) = 736 diam Q,
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so that in any case, we have
dist(zq,, Ri) < 184 diam R; < 736 diam Q;
and
(3.27) diam R; < 4diam Q);.
Hence,

R; C B(xq,,dist(zq,, R;) + diam R;)
C B(zq,, 736 diam Q; 4 4diam Q;) € MQ;.

Furthermore, (3.23) follows since diam R; ~4 Q; by 1) and 2a), and

(3.21) (3.18) (3.27)
diam@; < diamR; < diamR; < diam@);. O

3.3. Controlling the distances between affine maps

In this section, we show how if wy over two intersecting cubes is small, the approx-
imating affine maps in those cubes are approximately the same.

Lemma 3.8. If Ay and As are two affine maps and R is any cube, then

Ay — Ay
2 A, =y < A
(3.25) 4y Ay <0 f A2
and
A1 — Ay d
_ < 1T 2
(3.29) |A1(x) — Az(2)| Sa ( - dm R >(dlst(x R)+diam R) for all x € R™.

Proof. There is y € %R such that

Ai0) = Ax(w)] < f, 14— o] <20 141 - ol
1R R
Without loss of generality, we may assume y = 0. Then, since the norm |||A||| :=
JCB(O «(R)) (‘iign)l‘% dz is a norm on the set of linear maps, it is comparable to the usual
operator norm, and in a way that is independent of ¢(R). Thus,

Al (z) — A5(2)]
/ / < |
41— Ao 5 ][ dlamR dz

|A1 ][ |A1 ) |
d d
][ dlam R + dlam R i

(1+2d)]€%—|‘41(d3am22( dz.
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Hence, for z € RY,
|41 (z) — Ar(z)] < [Af(z) — Ay(x)] + |A1(0) — A1(0)]
< |4 7A5||m|+2d][ 41— A

Aq( Aq(
][ - dlamR || | dz +][ | L dlamR = diam ft dz
A
= ( R7| diamR 2| ) (|lx — y| + diam R).

O

Lemma 3.9. Suppose Q1,Q2 € A, f: MQ1 — MQy; — RP is an integrable
function, max;—1 2{ws(MQ;)} <e and R C MQ1NMQ2. Then

P < max; {|Q;|}\ (d+1)/d ,
(3.30) |AQ1 Ap,| NE(7|R| ) zH:L"i)éﬂA .
and for all x € RY,
max; {|Qil}

d+1)/d . .
(3.31) | Ao, (z) — Ag, (z)| <a S(T) max{|Ap [} (dist(w, R)+ diam R).

Proof. We estimate

7[ Ag, — Ag <E ZZ AQi_f<E L f—Ag,

Z |M |R| MQ;) | Ay, | diam MQ;

maxi{|Qi|})(d+1)/d
|R|

Now we invoke Lemma 3.8. O

d+1 : /
< 2M ( diam R ngzlzé{|AQ|}s

Lemma 3.10. Let f: Q — RP and S be an (e, 7)- regzon as in Definition 3.3, and
let {R;} be as in Lemma 3.6. If 2R; N2R; # 0, the

(3.32) |Ag, — Ag,| Sa €lAgs)l
and
(3.33) |[Aq, () — Ag; (#)| Sa €|Ags)| (dist(z, R;) + diam R;)

for all z € R?,

Proof. Note that if min{diam R;, diam R;} > & dlam Q(S), then Q; = Q; = Q(S)
by Lemma 3.6, and so (3.32) and (3.33) hold terlally

Otherwise, if diam R; < 61—0 diam Q(S) < 2diam Q(S), then Lemma 3.7 implies
R; C MQ; N M@, and that diam @); ~ diam R; ~ diam R; ~ diam @);. Hence, the
lemma follows from Lemma 3.9 and (3.1). O
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3.4. Extensions and the proof of Lemma 3.5

Proof of Lemma 3.5. Let f and S be as in Lemma 3.5 and let R;,Q; be as in
Lemma 3.6. Note that if R; and R; are adjacent in the sense that their boundaries
intersect, then by (3.18),

9

1
(3.34) ng n ERj = (.

Z R; =RN\z(S)

mean we can pick {¢;} a partition of unity subordinate to the collection {2R;} so
that

This and the fact that

(3.36) Z ¢j = Lpa 35 Z Vo; =0 on R%\2(8S).

and for all indices «,

(3.37) 10%¢;| Sq diam(R;) ™1 1ap,.
Observe that by (3.34), we know that

(3.38) Lig, < ¢i <l1p,). foralliszj

Now, define a map Fs : R* — RP by

(3.39) ZAQJ Lpoysi + F(2) Ty

The remainder of the proof depends on two lemmas: one showing that DFg
deviates from A% a lot near My(S), and the other showing that DFg does not
deviate from A’y much overall, thus M>(S) must have small measure.

Lemma 3.11. Fore < ¢'(d,n), f: Q@ — RP and S an (¢, 7)-region as in Lemma 3.5,

(3.40) ||DFS*AIQ(S)||2 Za A (S)| T2 |M2(S)].

Lemma 3.12. Fore < ¢'(d,n), f: Q@ — RP and S an (¢, 7)-region as in Lemma 3.5,

(3.41) Z QR (2Q)? Q] Sp € | A

QeA

We will postpone their proofs to Sections 3.5 and 3.6 for now and complete the
proof of Lemma 3.5.
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By Lemmas 2.5, 3.11, and 3.12, and since Qpg = Qrs—ay g
IDFs — A o113 Qps—a5(2Q)%|Q 2
IM2(S)| Sa Qo) o, Zgealrs asCOVIOL (5) 1),

72|A’Q(S)|2 72|A’Q(S)|2

so that for v = v(D) > 0 small enough, if e < v7, we can guarantee that |[M>(S)| <
%|Q(S’)| This proves Lemma 3.5, so long as we prove Lemmas 3.11 and 3.12, which
will be the focus of the next two sections. O

3.5. Bounding M>(S) and the proof of Lemma 3.11

Proof of Lemma 3.11. Let N = [1og2(40\/3)-‘ +2. If Q € ma(S), let R be the
dyadic cube containing z¢ such that RN = Q. Note that if Q' € S, then @’ cannot
be properly contained in @ since @ € m(S) C m(S), so either

1. Q' D Q, in which case

diam Q' + dist(R, Q') > diam Q,

2. or Q" € @Q, in which case Q" and @ have disjoint interiors, and since R C Q,
we have

“Q)
=,

Thus, if we infimize over all such Q' € S, we get Dg(R) > £(Q)/2. By our choice
of N,

diam Q' + dist(R, Q") > dist(R, Q") > £(Q) — £(R) = (1 — 27 M)¢(Q) >

(3.42) Ds(R) > 6(2—@ = 2VN"Y(R) = 2V~1¢~ /% diam R > 20 diam R,

and hence there must be R; 2 R. Since Dg(Q’) < diam @’ for all Q' O @ with
Q' € S, we know that R; C Q (otherwise (3.42) would not hold). Thus

(3.43) 27N diam Q = diam R < diam R; < diam Q.
By (3.38),

1
(3.44) Fs(z) =Y Aq,(x)p;(x) = Ag,(x) forz e S

J
Hence,
1

(3.45) DFs(y) = Ap, forallyc §Ri.

Note that Q,Q; € S, so that wr(MQ) < &€ and wy(MQ;) < e. Since R C Q C
Q(S), we have R; C Q N M@Q; by Lemma 3.7, and so

(3.46) diam Q; ~ diam R; (3ﬁ3)d diam Q.

Hence, Lemma 3.9 implies
[ A, — gl < CrelAys)l
for some C1 = Cy(d) > 0.
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Since @ € ma(S), by (3.5) we know that there is a child Q" of @ for which

(347) C(Jf(MQH) <€ and |A/Q// 7AIQ(S)| > T|A/Q(S)|
Hence, again by Lemma 3.9, there is Co = C3(d) > 0 so that

|A/Q — 'Qu| < Cse max{|A’Q|, |AG |}
This means

/ / @.1) /
|AQ~| < (14 Cqe) |AQ| < (14Cee)(1+71) |AQ(S)|

since @ € S, so that

[ — A] < Call + Cae)(1+ 7) e Agys) |-

=:C3
Thus, for e < 2771(Cy +C3) and y € %Ri,
IDFs(y) — Aygs)| P27 [, — Alpgs)| > [Aly(s) — Algn| — [l — Al| — [Aly — Ap |
sy Qs T Qi QS = 142Q(s) Q" & Q Q Qi
(3.47)

li T li
> (1= (C5+ C)e)|Ags)l = 5 |[Ags)l-

Hence,
/ 2 Y 2 —d 2 2
|DFs(y) — Ags["dy > ) (§|AQ(S)|) =2 |Ri|Z|AQ(S)|
Q sRi
(3.46) 204/ 2
Zd QT |AQ(S)|'
Thus,

IDFs — Ajys)ll5 > Z |DFs — A s)|?
Qemz(S) Q

2aT Z Q| |AIQ(S)|2 =7’ Ima (S)] |AIQ(S)|2
Qemz(S) O

3.6. The proof of Lemma 3.12

Throughout this section (and its subsections), we have the standing assumption
that 0 < e < &'(d,n), 7 € (0,1), S is an (g, 7)-region for an n-quasisymmetric map
f:Q — RP asin Lemma 3.5, and Fy is constructed as in (3.39).

To estimate (3.41), we divide the sum into three parts:

3

(3.48) > Qr20)71Q1I=)" ) Qr(2Q)°Q),

QeEA i=1 QEA;
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where

(3.49) Ar={QeA: %Ds(Q) <diamQ < diamQ(S)} 2 S,

(3.50) Ay ={Q e A:diamQ < 3 Ds( }:UV{Q€A Q C R,},
(3.51) Az ={Q € A : diam Q > max{5;Ds(Q),diam Q(S)} }.

We will estimate each one separately over the next three subsections.

3.6.1. A;. In this section, we focus on proving the following lemma.
Lemma 3.13.
(3.52) > 2r(2Q)°1Q] Sae® Al I

QeA;
Proof. We first need a few technical lemmas.

Lemma 3.14. If Q € Ay and 2R; N2Q # 0, then
(3.53) diam R; < diam @ < diam Q(S5).

Proof. The second inequality follows from the definition of A;, so we focus on the
first. Let y € @ be such that

(3.54) Ds(y) = Ds(Q) < 20diam @,

and let x € R; be closest to y. If z € 2R; N 2Q), then

(3.55) |z —y| < |z -2+ |z —y| < 2dilam R; + 2diam Q.
Thus,

_ 1 1
diam R; < %DS( z) < 2—(Ds( y) + |z —yl)
(3.54)

(3.55) ] 11 1
< 20 (20diam @ + 2diam R; + 2diam Q) = 10 diam @ + l—odiaij.

A Dbit of arithmetic shows that
11
diam R; < 9 diam @ < 2diam Q.

Since diam R;/diam @ is an integer power of two, we in fact know diam R; <
diam @), which proves the lemma. O

Lemma 3.15. If Q € Ay, then either Q € S or Q 2 R; for some R; with
120v/d diam R; > diam Q.

Proof. Let @Q € A1\S so that Dg(Q)/20 < diam @ < diam Q(SS).

Step 1. We first show that @) is not contained in any R;. If Q C R; for some R;,
then for all x € @ C Rj,

(3.17) 1

diam @ < diamR; < %Ds(m);

infimizing over all z € @, we get diam @ < ;—ODS(Q), a contradiction since @ € A;.
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Step 2. Next, we show there is R; so that zg € R; € Q. If Q° N z(S) # 0,
then @ C Q(S5) since diam@ < diam@Q(S), and there exists z € Q° N z(S).
Since z € z(9), there are arbitrarily small cubes in S containing z (otherwise the
smallest one would be a minimal cube, implying z ¢ z(S5)), infinitely many of
which intersect @°, so @ contains a cube in S and by the coherence of S, Q € S, a
contradiction since we assumed @ € A;\S. Hence, we know Q°Nz(S) = 0. Thus,
Q° C RN\z(S) = [JR;. Since Q is not contained in any R;, there is an R; such
that zg € R; € Q.

Step 3. Now we estimate the size of R;. Let Q' € S. If Q' C @, then @ C Q(S)
since diam @ < diam Q(S), and by the coherence of S, @ € S, a contradiction
since @ ¢ S. Thus, we know Q' Z @, so either @’ and @ have disjoint interiors (in
which case dist(zq, Q") > %E(Q)) or @ 2 @ (in which case diam @’ > 2 diam Q).
Hence,

(3.17)
60diam R; > Dg(zq) = Qi/nefs{dist(acQ,Q')wL diam Q'} > min{/(Q)/2,2 diam Q}

Q)  diamQ@
2 2vd
which implies the lemma. O

Lemma 3.16. For Q € Ay, pick a cube Q € S as follows. If Q € S, set Q Q.
Otherwise, let Q = Q;, where R; is as in Lemma 3.15. Then 2Q C MQ and
diam Q < 180 diam Q.

Proof. The lemma is clearly true if ) € S, since then Q = @, so suppose Q € S.
Since diam R; < diam @) < 2diam Q(S), by Lemmas 3.6 and 3.15 we have
(3.22)
diam Q < 120Vddiam R; < 240Vd diam Q; < 240d4(Q;)

and

R;CQ (3.20) (3.22)
dist(zg,,Q) < dist(zg,,R;) < 180diamR; < 360diamQ; = 360vVd((Q;).

Hence, the above two inequalities give
2Q C B(zq,,dist(zq,, Q) + diam 2Q) C B(zq,, (360Vd + 240d)¢(Q;)) € MQ;.
For the last part of the lemma, observe that since R; C @,

. (3.21)
diam @ = diam@; < 180diam R; < 180 diam Q. O

We now proceed with the proof of Lemma 3.13. For Q € Ay, let Q € S be as
in Lemma 3.16. Using the inequality (a + b)? < 2(a® + b?), we get

Qrs (2Q)1Q] _ ][ ( [Fs — Ages)| )2|Q|
AL 2 |AL o | diam 2Q
Qe Q(S) Qe Q(S)
1 |/ = Aqs)l |f —Fs| 2
330 <33 | (i Taeg) 193 2 L (@ Tda) @
2 Q%; (lAQ(S)| dlamQ) Qg; Q(S)|d1amQ>
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We will estimate the two summands separately, starting with the first.

Recall from (3.1) that for @ € Ay, since Q € S and 7 € (0,1), we have |A'Q| <
2|A’Q(S)|, and by Lemma 3.16, we know 2Q C MQ and diam@Q < 180 diam Q.
Hence diam Q ~ diam @ and so

|f — Aqs)l )2
Z ]éQ (|A’Q(S)|diamQ> <l

QEA

|A’Q|MdiamQ 2|MQ| ( |f—AQ| >2|Q|

< - _
_QeA1(|A/Q(S)|d1amQ> 12Q] Jmo |A’Q|diamMQ

~a Y wrMOPIQIS DY Y wMR)?|Q)
QeA, RES QeA:Q=R
(3.57) Sa Y wi(MR)?|R|,
ReS

where in the last line we used the fact that if R € S, then the number of cubes
Q € A such that Q = R is uniformly bounded by a number depending only on d
(since all those cubes ) have size comparable to diam R and are contained in M R
by Lemma 3.16).

Next, since S is a (e, 7)-region, we have that

Z Wf(MR)2 < é?
QERCQ(S)

for all @ € S, thus
> wMMRPIRI= [ 3w (MR L
Q

ReS (5) Res
:/ S wi(MR?1p+ Y /wa(MR)ﬂlR
2(5) Res Qem(s)” @ Res
:/ Z wr(MR)?dx + Z Z wr(MR)*|Q
2(5) zeres Qem(S) QCReES
(3.58) <29+ > 21QI=£"1Q(9)I.
Qem(S)
Thus,
|f = Agsl \2,,, BT 21y 338 5
(3.59) Fo(r—aers) el =0 S wrurrin S 21Qes)),
Qg;l 2Q(|A’Q(S)|d1amQ> d Rze;s‘

which shows that the first sum in (3.56) is at most a constant (depending on d)
times €2 |Q(9)|.
For the second sum in (3.56), set

Io = {j: 2R, N2Q # 0}.



BI-LIPSCHITZ PARTS OF QUASISYMMETRIC MAPPINGS 615

Recall that supp¢; C 2R; and by Lemma 3.6 we have Z]lgRj <a ]le\ﬁ'

Hence, by the definition of Fg, Lemma 3.7, the fact that f = Fg on z(S), and
because |Af, | < 2[4 )| by (3.1), we have

If = Fs|  \?2 ][ ( |f = Ag, | )2
— 2l ) < E Y
]éQ(|A’Q(S)|d1amQ> 20 \ &= Ay g [diam Q™
(3.19) If — Ao, | 2 (31) 1 f—Ao. 2
Sd Z][ (|A’ |d-QJ Q(bj) S 12Q)] Z/ (|A|’ | di QJ|Q)
j 9 o(s)| diam jeTe 2R o, | diam

|f —Aq,|  diam@;\?
|2Q| Z M@ MQ, (|A'Qj|diamMQj diamQ)

j€lg
M2 diam Q; \ 2
860 =51 2w 0 (Gama) 1@

Recall by Lemma 3.14 that if @ € Ay and 2R; N 2Q # 0, then diam R; <
diam Q. Hence, if n > 0 and I, ,, is the set of such cubes @ € Ay with 2R;N2Q # 0
and ((Q) = 2”€(R ), then #I; , <4 1. Thus, for a fixed j,

diam @ 2(321) 180 diam R, —om
(3.61) Z (dlamQ]) Z Z ( diam @ ) ZQ TEL

3Q%§§j¢m n>0QEl; , n>0
Therefore,
\f — Fs| (3 60) diam @ \ 2
Z S At |Q| Nd Z wa MQJ - |Q]|
QeAl]éQ ( |A,Q(S)| dlamQ) QEA, jelq ( dam @ )
diam Q) \ 2
— > wr(MQ)?1Q;1 > (diamQj>
diam R; <diam Q(S) 2RQ§2AQ1#®
J
(3.61) 5
<4 > wr(MQ;)" Q]
diam R; <diam Q(S)
< S #{j: Q; = R.diam R, < diam Q(S)}w;(MR)’|R|
ReS
(3:62)  Say wi(MR)’|R| <*[Q(S)].
ReS

where, to get to the last line, we used the fact that if diam R; < diam Q(S), then
Lemma 3.7 implies #{j : Q; = R,diam R; < Q(5)} <aq 1.
Combining (3.56), (3.59), and (3.62) together, we obtain

Qrs (2Q)° Q]

|A/ |2 Sd 82|69(S)| O
QEeA, Q(S)
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3.6.2. A,. In this section, we will focus on proving the following lemma.

Lemma 3.17.

(3.63) Y 2r(2Q)°1Q Sa €% [Ages) P 1QS)]-

QEA;

The main idea is that near a cube @ € Ay, Fg is smooth and so we can get
better control of Qp, using Taylor’s theorem.

Lemma 3.18. For all j,

(3.64) > Qr(2Q)° Q] Sa € Al s>

|R | 6H,
Proof. For normed vector spaces spaces U,V , let Z(U,V) denote the set of
bounded linear transformations from U into V' and write £ (U) = .Z(U,U). Then
Z(U,V) is also a normed space with the operator norm, which we will also denote
| - |. For vectors u,v € R4, u®@v € Z(R?) is the linear transformation defined by
(u®@v)(z) = (v,z)u; for A € RY, A v,o® A e LR L(RY)) are the linear
transformations (A ® v)(z) = (v,z) A and (v ® A)(x) = v @ (A(x)) respectively.
Let y € R%\2(S). Since FS']Rd\m is smooth,

(3.65) |D?Fs(y)| = sup

lul=|v|=

(S i iw) |

m,n=1

where Fg; denotes the Ith component of the vector function Fs and D?Fs(y) €
L (R, £ (RY)) is the derivative of the map y — DFs(y) € Z(R%RP) at y, (so
above, | - | also denotes this operator norm). Let R; be such that y € R;. Then,
if A denotes the first order Taylor approximation to Fg at z = xg, then

Qp(s) (2Q) diam 2Q < sup u - (Fs(y) — = sup Zul Fsi(y) — A(y))
vera vezq =1
D 1 d
I(Fg; — A
o> [ zul%ww»(ym i
e =170 m=1 Lm
= / / Z t“lax (x + st(y—2)) (Ym—Tm) (Yn—2y) dt ds
m,n= 1 77L n

< sup//t' Zd: O°F, Sln J:+st(y—x))(ym—mm)(yn—mn))ll;‘dtds

y€e2Q alﬂm

(3.65)
(3.66) < (diam@)? sup |D%*Fs(y)|.
ye2Q
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For y € R;, if ¢;(y) # 0, then y is also in 2R, and so we may use Lemma 3.10
and the fact that 9%¢; <. (diam R;)~1%l to estimate

ID*Fs)] = | 3 (245, @ Vo, (u) + Ao, (1) © D*6;(v)) |

|3 (2045, - 45) @ V() + (Ag, ()~ Aa, (1) © D6, () ) |

(3.32)
(3 33)

<d Z (el Ay 5| V5 ()] + €l Ay | diam Q;| D5 (y)])

)
(3.37) elAL, o] e|AL o | diam Q; G elAl o
(3.67) <4 }:( Q(s) Q(s) ) 20 el

diam R, (diam R;)? ~ 4 diam R;

YyE2R,;

Thus,

(3.66)
S 0n2021Q < S (diam Q) sup |D*Fs (1))

QCR; QCR; ¥
(3.67) 5|A’Q(S)| diam @

s Y (FhR ) @

QCR;

=& Afys)? Z Z 2720 Q| S &2 A I” | Ril -

QCR
ff(Q) 27 0(R,) O

Define
BS = B(I‘Q(S), 3 diam Q(S))
Lemma 3.19. If dist(z,Q(S)) > 2diam Q(S), then Fs(x) = Ags)(z). In par-
ticular, if 2Q N Bs = 0, then Qp,(2Q) = 0.
Proof. Let x € R;. If dist(z, Q(S)) > 2diam Q(.S), then
(317) 1

1 1
diam R; > @DS( x) > @dist(m,Q(S)) > %diamQ(S),

so if x € 2R;, then 2R; N 2R; # ), and

(3.18) 1
diam R; > —dlamR >—dlamQ( )

hence Q; = Q(S) by Lemma 3.6.
Since this holds for all j with 2R; > z, we know that

ZAQJ = Ag(s)(z) if dist(z, Q(S)) > 2diam Q(S).

If 2Q N Bs = 0, then dist(z, Q(S)) > 2diam Q(S) for all x € 2Q, hence Fglag =
AQ(S), so that Qp,(2Q) = 0. O
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Proof of Lemma 3.17. We estimate

D nQPIRI=D D 2 2Q21QI= > ) 9 (2Q)7°1Q)

QeA 7 QCR 2RjﬂBs;£Q)QgRj
(3.64) 21 A/ 2
Sa et Y. IRl
2R;NBs#0

The lemma will follow from the previous inequality once we verify

(3.68) > IR ZalQS)I-

2R;NBs#0

If 2R; N Bs # 0, then dist(2R;, Q(S)) < 3diam Q(S), so that

(3.17) 1
diam2R; = 2diam R; < -—Dg(R;) <

0 0 (dlSt(RJ,Q( )) + diam Q(S))
§ (dlamR + dist(2R;, Q(S)) +d1amQ( )
< 1—O(diamRJ— +4diam Q(S)) = % diam 2R; + %diam Q(S),

which implies

20 2
(3.69) diam2R; < l—g ‘B diam Q(S) < diam Q(S) if 2R; N Bg # 0.
Hence,
2R; C B(zg(s),3diam Q(S) + diam 2R;) C B(zg(s), 4 diam Q(S)) C 2Bs.

This and the disjointness of the R; imply

> IR <12Bs| SaQ(S)],

QRJ‘ﬁBs?é@
which proves (3.68). O
3.6.3. Aj. Finally, we estimate the third sum in (3.48).

Lemma 3.20.

(3.70) D 2 (2Q)7 Q] Sa & A I* 1Q(S)]-

QEeA;

Proof. Again, set Bs = B(z¢(g), 3diam Q(S)). For n > 0, let

By ={Q € A3 :2QN Bs # 0,£(Q) = 2"(Q(S5))}-
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Then by Lemma 3.19,

Fg— A 2
S 0n2Q Q= Y 2n2RIs Y ][ m> Q)

QeAs QEA3 QEA3

2QNBg#0 2QNBg#0
—pi2 Y Y / |FS*AQ<S>| Z/ |FS*AQ<S)|)
ot diam @ ra \27 diam Q(.5)
We claim that
[Fs —Aqs)|\2 o
e )l < / 2
(3.71) L (o) sa e lais P Q(S).

after which the lemma will follow from

|FS—AQ )|

Qp (2 <4 / s — A

;3 rs(2Q°1Q1 < Z 2" diam Q (S ))
(371)

Sd 22 2 e? | A (S)| Q)| < % |4 (S)| 1Q(S)]-

n>0

Now we prove (3.71). By Lemma 3.19 and the L? triangle inequality,
(3.72) /('FS —AQ<S>|)2 " / (|FS—AQ<S>|)2 v
' diam Q(S) Bs \ diamQ(S)
- / ( [Fs — f] )2 1/2+ / (If*Acxs)I)2 1
~ \ /gy \diam Q(S) Be \ diam Q(S)

We will estimate the two parts separately. The second part we may bound as
follows:

f—Aew N2y e [/ = Ages)| 2
B = 2a N < ar o PM2MQ(S :
/Bs (dlamQ(S)) | Q(S)| | (S)] MQ(S) (|A’Q(S)|d1amMQ(S))
= |AQs)|? MT21Q(S)| wr(MQ(S))? < |AGs)l* M2 Q(S)] €2

since Q(S) € S and hence wy(MQ(S)) < e by definition. For the first part
of (3.72), recall that if 2R; N Bg # 0, then (3.69) implies diam R; < diam Q(.S), so
Lemma 3.7 implies R; € M@Q);. This, Lemma 3.19, and the fact that supp ¢; C 2R;
(which have bounded overlap by Lemma 3.6) imply

_ (3.19) |A ; f|
/BS(dﬁsnczg))2 = zJ:/BS (dlacan( )‘%)

diam Q) 1| 2
A, P(s—Fis ) MPIM e 71
§2ijzf;5¢@| @) (diamQ(S’)> | QJ'][ |d1amMQ]>
/ di ;
(3.73) =M™ Y |AQ3|2($@%§)) 10wy (MQ,)2.

2R;NBs#0
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Next, recall from (3.21), the definition of Ag, and (3.69) that if 2R; N Bg # (), then

As (3.21) (3.69)
(3.74) diam Q(S) < diam@Q; < 180diamR; < 180diam@(9S).
Moreover, since Q; € S, we know wy(MQ;) < e and |Af, | < (147)[Af )| These
facts and (3.73) imply that

|Fs — f| \?
/ (m) Sd Z Al s)I” €% 1Q5] < 1807 Z | Al s)|” €% IR
Bs 2R;NBs#D 2R;NBs#0

(3.68)
(3.74

< ) A/ 2.2 S
Sa | Q(S)| 7 |Q(S)I- O

3.7. Finding a bi-Lipschitz part
In this section, we focus on the following theorem.

Theorem 3.21. Let Qo € A(R?) and let f: MQy — RP be n-quasisymmetric

such that

> wi(MQ)* QI < Car|Qol-

QCQo
Then for all 8 > 0, there is L = L(n,0,D,Cp) and E C Qg such that |E| >
(1-0)|Q| and (diam f(Qo)/diam Qo) " f|g is L-bi-Lipschitz.

Proof of Theorem 3.21. Recall that wy is invariant under dilations and translations
in the domain of f and under scaling of f by a constant factor. Moreover, if f
is m-quasisymmetric, the map x — rf(sz + b) is also n-quasisymmetric for any
nonzero r, s and any b € R%. Thus, it suffices to prove the theorem in the case that
diam Qo = diam f(Qo) = 1 so diam f(Qo)/ diam Qo = 1.

Let 7€ (0,1), § < d~'/?/4, and

0<e< min{EO(U»D,T, CM)7€1(77,d, 5)}

where €7 is as in Lemma 2.1 and ¢g as in Theorem 3.4. By Theorem 3.4, we may
partition A(Qo) into a set of “bad” cubes # and a collection of (e, 7)-regions .#
so that

375 Y l0l< Dol and Y Q)< (4+

QeERB SeFs

2d+1CIM
52

) 1Qol.

Let
T=1{Q(S):S e y}u( U m(S)) U .
SeF
Observe that since, for each S € .%, the cubes in m(S) have disjoint interiors, we

know > oe,(s) |Q] < [Q(S)], and hence
(3.76)

Yo=Y e+ Y (les+ Y ) L (a2t 1 8) gl

QeT Qe SeF Qem(S)
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Let N be an integer. For @ € A, define
EQ)=#{ReT:R2Q}, Tn={QeT:k(Q) <N},

=\ U @).
QETN
If x € E, let @ be the smallest cube in Ty containing . Then @ = Q(.S) for some
S € .7, for otherwise, if Q € Z or @Q € m(S) for some S € .%, then the child R of
@ containing x is either of the form Q(S’) for some S’ € Z or is in #Z and hence
is also in T, but since ) was minimal in T, R ¢ T, which means k(R) > N +1,
implying z ¢ F, a contradiction. Thus,

and

(3.77) E= |J =09
Q(S)ETN
Moreover,
ZQETN 1 ]lQ
ei=] U =] U -] T tas [Rete
QeTN k(Q)=N+1 =N+1
ZQeTN+ Q[ (3.76) ((1 +20d)CM/E +20d)
= E <
N1 < N1 |Qo| < 6]Qo

if we set N = [67" ((1+2C4)Chr/e? +2C4) ], so now it suffices to show that f is
bi-Lipschitz upon E. Define

M =Ty U U S.
Q(S)ETN
Lemma 3.22. Let Q € .#. Then

diam f(Q) < pN+1

_N—
(3.78) h = diam @

where y
12 1+2 6(177)71}.
1—2Vds
Proof. First, we will focus on the case @ € Tn. Let Q(j ) Q(j — 1) be any

sequence of cubes in Ty such that k(Q(j)) = j for j =1,2,.. N so that Q(1) =
Qo = [0,1]%. We claim that for j =1,2,..., N,

diam f(MQ(j))
diam M Q(5)

We will prove this inductively using the following lemma:

8= max{? n(2),d

(3.79) B < < p.

Lemma 3.23 (Proposition 10.8 in [23]). If Q@ C R, f: Q — RP is an n-quasi-
symmetric map, and A C B are subsets such that 0 < diam A < diam B < oo,

(3.80)

1 - diam f(A) <7<2diamA>

20 (Gama) — diam f(B) © 7L diam B
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The lemma is stated more generally in [23] for metric spaces, but this is all we
will need.

Let 1 < j < N and assume we have shown j satisfies (3.79) (also recall that we
are assuming diam f(Q) = diam Qy, and so the j = 1 case holds).

DIEQU+1) € BorQU+1) =Q(S) for some S € .Z, then Q(j + 1) is a
child of Q(j). Hence, MQ(j+ 1) C MQ(j) and diam MQ(j) = 2diam MQ(j + 1),
so that by (3.80)

diam f(MQ(j +1))  2diam f(MQ(j + 1))

diam MQ(j + 1) diam MQ(j)

. . —1

2 (20 (i) diam S(MQU))

- diam M Q(5)

_ 2diam f(MQ(j)) > diam f(MQ(j)) N 67%1
1(2) diam MQ(j) — Adiam MQ(j) —

and since MQ(j+ 1) C MQ(j),

diam f(MQ(j + 1)) _ 2diam f(MQU +1)) _ ydinm f(MQ()))

diam MQ(5 + 1) diam M Q(5) diam M Q(5)
2) If Q(j +1) € m(S) for some S, then Q(j) = Q(S), so in particular,
Q@4),Q(j+1) € S. By Lemma 2.1, Lemma 3.23, and since 1/(1 —7) > 1+ 7,
diam f(MQ(j + 1))
diam MQ(j + 1)

1+ 2V/ds
<Va——
1 —2Vds

< ﬁj-i-l_

< (1+2Vd0)| Ayl < (1+2Vd0)(1+7)| Ay s)]

(14 7y Jam FMQU)) _ dinm f(MQ()

diam MQ(5) — = diam MQ(j) <p

and

diam f(MQ(j + 1))
diamMQ(; +1) —
11 —2Vd§ diam f(MQ(j)) _ ,-qdiam f(MQ(j))
e v Lty Ry
This proves the induction step, and hence proves (3.79).

Now we prove (3.78). If Q € Ty, this follows from (3.79). If @ € S for some
Q(S) € Tn, let Q(j) € Ty be a nested chain of cubes so that k(Q(j)) = j for
all j < n := k(Q(S)), so in particular Q(n) = Q(S). Then, since S is a (&, 7)-
region, (3.1) applies, and by Lemma 2.1,

diam f(MQ)
diam M Q

A3 (1= 2Vd0) | Al ;1) > d ™2 (1= 2Vd0)(1 — 7)| Ay )|

>

< (1+2Vdo)|Ap| < (1+2Vds)(1+ 7)| Al o]

1+2Vds diam f(MQ(n))
\/E _ \/_5( +7) diam M Q(n)

and the lower bound follows similarly. O

< gt < pNFL
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Let z,y € E be distinct. We claim there is a chain of cubes @; such that
Q; = QO, and

(3.81) reQ;e# forall j>0.

Since x € E, x € 2(S) for some S € .F with Q(S) € Ty by (3.77), and hence x
is contained in a chain of cubes R; € S such that R} = Q(S). Let n be such that
Q(S)" = Qo and define Q; = R;_,, for j > n (so Q) = Rj_, = Q(S)" = Qo)
and for j < n let (); be the unique ancestor of Q(S) with Q;: = Qo. We now just
need to show (3.81). For j > n, Q; = R;_, € §; for j < n, note that since #
and the sets S’ € .F partition A(Qp), Q; is always in £ or in some S’ € .F. If
Qj € #or Q; € m(S’) for some S’ € F, then k(Q;) < k(Q(S)) < N (note that
S"#S), and so Q; € Tn C . ; otherwise, if Q; € S’ for some S’ € .Z and is not
a minimal cube, then k(Q;) < k(Q(S")) < k(Q(S)) < N, and so Q; € .#. This
proves (3.81).

Let j is the largest integer for which y € 3Q);. since y € Qo C 3Q and = # y,
this integer is well defined. Moreover,

Q)
(3.82) oyl > 1)
for otherwise, |z — y| < €(Q;)/2 = £(Q;+1) and © € Q41 imply y € 3Q,+1,
contradicting the maximality of j. Then Lemma 3.22 implies

diam f(MQ;)
If(z) = f(y)] < W

(3.82)
(3.83) < pNFTLaMVd |z —yl.

(3.78)
diam MQ; < ANTIMVANQ;)

Furthermore, by Lemma 3.23, since z,y € 3Q; € MQ);,

. . (3.78)
_ dl.amf({x,y}) dla@ f(MQj)diamMQj <3§0> . |x — y|
diam f(MQ;) - diam MQ), 20 (TR ) BV
(3.80)
(3.82) |x _ y|

— op(L)pNtr

Thus (3.83) and (3.84) imply f is AN+ max{2M+/d, n(1)}-bi-Lipschitz on E, and
this finishes the proof. O

|f(z) = f(y)l

(3.84)

3.8. The proof of Theorem 3.1

Proof of Theorem 3.1. Let 7 > 0. Suppose f: R? — R? is such that wy(z,7)? d—f dx
is a C-Carleson measure. Let B(zg,79) € R? be any ball and let Qo = [0, 1]%.
Since wy is invariant under translations and dilations in the domain, the Carleson
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T—TQq
24(Qo)
may assume without loss of generality that B(zo,r0) = B(zq,,1/2) (that is, the
largest ball contained in @Qp). By Lemma 2.4, we know

Z wr(MQ)? Q] < Car |Qol,

QCQo
where Cyy = Cp(C,d). Theorem 3.21 implies for all § > 0 there is E' C Qy with
|E'| > (1 —0)|Qo| and (diam f(Qp)/diam QO)_l f is L-bi-Lipschitz upon E’. By
Lemma 3.23, it follows that

diam f(Qo) N diam f(B(zg,r0))

diam Qq 74 " Jiam B(wo,r0)

By picking 6 small enough, we may guarantee that the set £ = E' N B(xg,10)

satisfies |E| > (1 — 7)|B(z0,70)|- Since this holds for all o € R? and ry > 0,
Theorem 3.1 is proven. O

norm remains unchanged if we replace f(z) with the function f( ), S0 we

4. Finding bi-Lipschitz pieces of a general quasisymmetric
map

In this section, we focus on proving Proposition 1.6. For the first few subsections,
however, we will recall some basic facts about A,, and BMO spaces and review
some material from [37], as well as the technical modifications of Semmes’ work
we will need.

4.1. Ao -weights

For a locally integrable function w on R?, we will write, for any measurable sub-
set A, w(A) = [, w, and wa = w(A)/|A]. We will call w an A -weight if it is
nonnegative, locally integrable, and there is ¢ > 0 such that for all cubes Q@ C R?
and measurable sets £ C Q,

w(Q)
) ) e QD
This is not how A, is described in most texts, but it is equivalent to the usual
definition equivalent (see [24]).
An important property we will use is that if w € A, then ||logw||pmo Sq 1
(where ¢ is as in (4.1)). Recall that logw € BMO(R?) implies there is an infimal
number ||logw||pmo such that for all cubes @ C R?,

42) # 1togw ~ (logw)o] < |[log ullavo.
Q

Another property is the reverse Jensen’s inequality: for w satisfying (4.1),
wo < Cq e(logw)Q)

where C;; > 0 depends on ¢ and d.
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For good references on A..-weights and BMO with proofs of these facts, see
Chapter V in [39] and Chapter VI in [20].

One last technique we will need is following lemma, which is essentially known
and is a good exercise with A,-weight theory (a similar proof appears in Theo-
rem 3.22 of [19]).

Lemma 4.1. Let w € Aoo(R?). For all T € (0,1), and Qo € A, there is Eg, C Qo

with

(1) for all Q@ C Qo with Q N Eg, # 0, we have M~ < wg/wg, < M where
M = exp(Cy + 2%||log w||pmo/7), and

(2) [Eql = (1 =17)|Qol-
Proof. Since w € Ay, g: = logw € BMO(R?). Let

Q0 ={z € Qo: Malg—gq,) <2%|lgllBmo 77},

where M is the dyadic maximal function

Mah(x) := sup ][|h|
TEQEA

Since ||[Mal|z1 o1 < 2%, we have

|Qo\Eq,| = {z € Qo : Ma(g — 90,) > 2%||9llBmo 7'}

Jo, 19 = 90|
2¢1gllBmo 771

Let Q € Qo be a dyadic cube such that @ N Eq, # 0. If x € @ N Eg,, then

(4.3) 19— 900l < Ma(g — 9q,)(2) < 27|gllBmo 7

Moreover, since w € A, we have by (4.2) that

<2¢ < 7|Qol-

(4.4) logwg < Cq + (logw)q
Using this and Jensen’s inequality, we get

(4.4)
long - longo < Cq + (logw)Q - (Ing)Qo = Cq + (g - ng)Q

(4.3) d .
< Cq+2%gllBMo T

and
4.4)
logwg, —logwg < Cy+ (logw)g, — (logw)g = Cq — (9 — 9q,)e
(43) )
< Cq+2%lgllBmo T
Thus,

‘log?’<C + 24771 |glIsmo. O
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4.2. Metric doubling measures and strong A..-weights
We recall the following definition from [35].

Definition 4.2. We say a Borel measure z on R? is C-doubling on its support if
w(B(z,2r)) < Cpp(B(z,r))

for all « € supp pv and r > 0. For E C R? closed, we say that a doubling measure s
is a metric doubling measure on E if supp 4 = E and

(4.5) W(B(z, |z —yl) UB(y, [z —y|)"/* ~ dist(z,y)
for some metric dist(x,y) on E.

In [22], Gehring showed that the pullback of Lebesgue measure under a qua-
sisymmetric map f: R? — R? is an A.-weight; Semmes observed in [35] that
this holds more generally for all metric doubling measures on R¢, with a proof
essentially the same as Gehring’s.

Lemma 4.3 (Proposition 3.4 in [35]). If v is a metric doubling measure on R?,
d > 2, then v is absolutely continuous and it is given by w(x)dx, where w € An,
and q in (4.1) depends upon d,C,, and the constants in (4.5). We call the weight w
a strong Aso-weight.

If f: R = R? then the pullback of Lebesgue measure under f is an example
of a metric doubling measure, where in this case dist(z,y) = |f(z) — f(y)|, and
Lemma 4.3 recovers Gehring’s original result.

Metric doubling measures and strong A..-weights arose in studying the so-
called “quasiconformal Jacobian problem” (see [35], [36], and [8] for discussions
of this problem). While the aforementioned papers gradually demonstrated the
intractability of this problem, its pursuit has developed many useful techniques
(and counterexamples) in the theory of quasisymmetric mappings.

4.3. Serious and strong sets
Here we recall some definitions and results from [37] about serious and strong sets.

Definition 4.4. Let Ey C E C R%. We say Ej is a serious subset of E if there is
C > 0 so that if z € Fy and 0 < t < diam Fj, then there is y € E such that

(4.6) % <|z -yl <t

We will call C the seriousness constant of the pair (Ey, E). If Ey = E, we say E
is a serious set.

In Lemma 1.8 of [37], Semmes shows that all compact subsets with positive
measure contain a serious subset whose measure is as close to the measure of the
original set as you wish, although there is no control given on the seriousness
constant of this set. Without too much effort, though, this dependence can be
determined, and allows us to make Lemma 4.9 depend quantitatively only on d, 7,
and the density of E inside a prescribed dyadic cube.
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Lemma 4.5. Let E C R? be a compact set of positive measure contained in a
dyadic cube Qo. Then for each § € (0,1), there is Ey C E compact such that

1) |Eo| = (1= 96)|E], and

2) Ey is a (5|E|/|Q0|)1/d /(8d"/?3%)-serious subset of E.

Proof. Let @; be the collection of maximal cubes contained in ()¢ for which

|E N Q| |E|
<52l
Q| |Qo

and set
Ey=E\|J@;.

Observe that this is a countable intersection of bounded closed sets and hence is
compact. Since the @); have disjoint interiors, we have

=4 |F|,

o E
E\E| = NG5l <010 1@y <6t
J
which implies the first item of the lemma. Next, set

o [Qol
(4.7) N= {MJ +1.

d

We claim that for any dyadic cube @ intersecting Ep such that QN1 C Qq, we
have

(48) (QYF1\3Q) N E #0.

If not, then since @V *! is not contained in any Q;,

N+1 )
|E] 5 < £ m}g i | < !jENﬂ ?Q| < 3d _a(n+1) ¢ < 1Bl
Qo |QNH 24N+ Q) [Qol

which is a contradiction, hence proving (4.8) and the claim.
Now let = € Ey, t < diam F. Let @ 5 x be contained in @)y such that

5274

diam QN <t < diam QN 2.

Since ¢t < diam E < diam Qp, Q! C Qo, and by (4.8) there is y € (QVNT1\3Q) N
FE, so that
[z —y| < diam QN <t
and
_N_2 . _N—2 ,— 1 o[\
ol > _9-N-2,-1/2 N+42y 5 9-N=2 j-1/24

and this finishes the second part of the lemma. O
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Definition 4.6. A closed set E C R? is a strong set if there is a constant C' > 0
so that for each x € R\ E, there is y € E so that

(4.9) |z —y| < Cdist(z, E),

(4.10) dist(y, RN\ E) > ¢~ dist(z, E).

Thus, to each point 2 € E¢, we can assign a ball in F with radius and distance
to z comparable to the distance from x to E; in Semmes’ words, this says F is at
least as big as its complement.

Lemma 4.7 (Proposition 1.16 in [37]). If E CR? is a C-strong set, then for all
r € FE andr >0,

(4.11) |E N B(z,r)| ~ac

Lemma 4.8 (Proposition 1.15 in [37]). If E C R is a C-strong set and g: E — R?
is n-quasisymmetric, then g(E) is C'-serious with C" depending on n,C, and d.

The next lemma is an amalgamation of Propositions 1.10, 1.14, 1.22, and 1.23
from [37].

Lemma 4.9. Suppose E is a compact subset of R%, Ey C E is a C-serious subset

of B, and f: E — R? is n-quasisymmetric. Then the following hold:

1) There is E D E, that is C’—sem’ous, with C > 0 depending only on C and d.

2) There is g: E — R? that agrees with f on Fy and is N-quasisymmetric, with 1
depending on C,d, and .

3) There is a C-strong set E D E, where C depends only on C and d.

4) The map g admits an 7j-quasisymmelric extension G : E — R®. Here, ij depends
only on 1, C, and d.

5) The measure p defined by u(A) = |G(A)| is a metric doubling measure on E

with data depending only on C, 1, and d.

6) There is a metric doubling measure v on R such that v(A) = |G(A)| for all
A C E. The doubling constant C,, and metric doubling constants of v depend
only on those for v, d, and C.

Corollary 4.10. If E C Qo C R? has positive measure, and f: E — R? is an
n-quasisymmetric map, then Lemma 4.9 still holds and all the implied constants
depend on d, 1, and |E|/|Qol.

Proof. This follows from Lemmas 4.5 and 4.9. g

Lemma 4.11. Withv, E, f, n, and G as in Lemma 4.9, we have that for all z € E
and r >0,

(4.12) v(B(x,7)) ~45¢.c, (dam G(E N B(x,7)))".

where C,, is the doubling constant of v.
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Proof. Let z € E, r > 0, and Q be a cube containing B(x,r) of side length 2r.
First, note that since v is an A,-weight and E is strong, (4.1) and (4.11) imply

V(E N B(z,r)) ~v(Q) ~ v(B(x,r))

with implied constants depending on d, the A, -data of v, and the constants
n (4.11). By quasisymmetry, it is not hard to show that there is p < 1 depending
only on 7] so that

G(E) N B(G(z), pdiam G(B(x,7) N E)) € G(E N B(x,))
C B(G(z),diam G(E N B(z,r))),

and since G(FE) is also serious by Lemma 4.8, Lemma 4.7 and the above contain-
ments imply

v(B(z,7)) ~ v(B(z,r) N E) = |G(E N B(x,r))| ~ diam(G(E N B(z,7)))¢. O

4.4. A slightly stronger Semmes theorem

We are now in a position to prove Proposition 1.6, which strengthens Semmes’
original result, Theorem 1.5. While Semmes shows that if £ C R? and f: E — R?
is quasisymmetric, then |E| = 0 if and only if |f(E)| = 0, we show here that f is
in fact bi-Lipschitz on a large subset of E quantitatively. We restate this below.

Proposition 1.6. Let E C Qo C RY, p € (0,1/2),d > 2, and set § = |E|/|Qo| > 0.
Let f: E — R? be n-quasisymmetric. Then there is E” C E compact with
|E"| > (1 - p)|E| and (diam f(E")/diam E”)_lf|E~ is L-bi-Lipschitz for some L
depending on 7, d, p, and 6.

Proof of Proposition 1.6. By Lemma 4.5, there FE C F that is C-serious and

B> (1-2) 2,

with C depending on d,d, and p. According to Lemma 4.9, E C E for some
C-serious set E, to which f has an fj-quasisymmetric extension G : E — R? and
a metric doubling measure v on R? with v(A4) = |G(A)| for all A € E. We can
write dv = wdx where w is an A,-density by Lemma 4.3. Applying Lemma 4.1
with 7 = p/2, there is M > 1 depending on d, p, and the A, -data of w and
E’' C Qo with |[E’| > (1 — p/2)|Qo| such that

1 wQ
— < —= <M
M_wQ -

0

(4.13)

for all Q C Qo such that QN E # 0. Let E” = E' N E, so that |E”| > (1 — p)|E|.
We will now show (diam f(E")/diam E”)~! f is bi-Lipschitz upon E".
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Let w,y € E” be distinct points and @@ C Qo be a minimal dyadic cube con-
taining = so that y € 3Q. Since E is serious, and G is fj-quasisymmetric and {z,y}
and B(z,|x — y|) N E have comparable diameters,

3.80 . ~
F(@) ~ f(y)] = 1G(z) — C(y)| X7 diam G(B(z, |z — y|) N E)
4.12
(4.14) 2 >ﬁ’d$é v(B(z, |z —y|)".
Since 3@ is minimal, we know
(4.15) %E(Q) < |z —y| < diam 3Q.

Hence, since v is doubling, v(Q) ~4.c, v(B(z, |x—y|)). Thus, continuing our chain
of estimates, (and using the fact that £(Q)™ = |Q|) we have

(4.14) ~a0, V(@Y = w(@Q)Y4 = Q) (wg)" "X 114 £(Q) (wey)
4, o — ] (wge) ' = o - y|%
~C,d |z =yl V(B(m%é?;f)n Qo))"
(4.16) ~enale =] diamG(B(x?(oé(ji)am Qo) N E)

Since E” C Qo N E C B(xg,,diam Qo) and [E”| > (1 — p)|E| > 2|Qo, we know
diam E” ~g 5 diam Qo, and so Lemma 3.23 implies

diam G(E") diam f(E")

(3.80) ~as [ = yl— Z
7Q0) ; diam F

(4.16) " ~"5 [z =y

Combining this with (4.14) and (4.16), we see |f(z) — f(y)] ~ |z — y|%
with implied constants depending on 7, C,d, M, and C,. Finally, we recall that

these constants depend only on d, 7, p, and ¢. This finishes the proof. O

In the last part of this section, we adapt Proposition 1.6 to the case where f
maps a set to a large bi-Lipschitz image of R?, which is the case we will need
later on.

Lemma 4.12. Suppose By C R?, f: By — RP is n-quasisymmetric, and there

is E' C By such that #¢(f(E')) > c(diam f(Byg))?, and there is g: f(E') — RY

that is L-bi-Lipschitz. Then there is By C E' and M = M (n,d, L,c) > 1 such that

|Eo| Zd,,n.c | Bo| and (%ﬂgﬁ))flﬂ% is M -bi-Lipschitz.

Proof. Let Eq = go f(E’). If B is a ball centered on E; with radius diam E1, then
¢ (diam f(Bp))* < 4 f(E")) < L¢|Ey| < LY|B| = LY wy (diam E; )?

(4.17) < L*% gy (diam f(E'))?,
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so that

/ 1/d
(4.18) diam f(E") > L2w1/d diam f(By).
Set

h:=fltog ':E —R%
Since f is n-quasisymmetric, f~!: f(R?) — R? is 1/-quasisymmetric with
() =n""t"H""

(see Proposition 10.6 in [23]), and it is not hard to show using the definition of
quasisymmetry that h is 1/ (L?-)-quasisymmetric.
Let Q1 be a cube containing F; with £(Q;) = diam E1, so that

c

T4 (dlam f(BO))

(4.19) > %(diam FEN > ﬁ(dlamEl) .

|B1| > L™ (F(B)) =

By Proposition 1.6, there is ] C Ey with |Ef| > %|E1| upon which (%}l(gi))_lh
1

is L’-bi-Lipschitz, with L’ depending on L, ¢, d, and the function L?7/. Let Ey =
h(E}) C Qo. Using the facts that (%}:gﬁ)flh is L'-bi-Lipschitz, g~ 1(E}) =
f(Fo), and g is L-bi-Lipschitz, it is not hard to show that (%ﬂgﬁ))_lf is I'L?-
bi-Lipschitz upon Ej.

If B’ is a ball centered upon Ff with radius diam Ff, then

_ 1 (4.19
wq(diam E4)? = |B'| > |E}| > §|E1| > 2L2d(d1amE1)
and so
/ cl/d
. i > ———di .
(4.20) diam F; > 21/dL2w;/d diam E
Then
(4.20) cl/d
. —1 79 I A N 1 / :
diam f(Ep) > L™ diamgo f(Fy) = L™ diam E]; > 721/‘%310;/‘1 diam E
(421) o () S iam £(B0)
. > ———— diam > ———— diam f(By),
21/dL4wtli/d 21/dL6w§

where in the first and penultimate inequalities we used the fact that ¢ is L-bi-
Lipschitz. By Lemma 3.23,

diam Ej diam f(By) ~1 a2y _ —6 —2/d -
4.22) S0 5 (g (S2IAZ0) > (20 (27 VA L6 M 2l
(4.22) diam By — ( " (diamf(Eo)) > (20 wg )
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Furthermore,

diam h(E{)\®, . _ 1 sdiam Eg\?, _, _
E:hE’>(71) L’dE’>—( )L’dE
1Bol = (B 2 (S ) () 1B = 5 (o) () 1
(4.19) c (4.22) ¢

. B —d
> W(diamEo)d > 5(LQL/Zn'(Q_EL_Gwd2/d02/d)) (diam By)?

c — —d
> L2Ll2 / 271/d L76 2/d 2/d Bal.
> o (B2 2 (2 L ) By ]

5. Bi-Lipschitz parts imply big-pieces of bi-Lipschitz images
The following theorem proves (3) implies (4) in Theorem 1.4

Theorem 5.1. Suppose f: R4 — RP is n-quasisymmetric and there are ¢, L > 0
such that for all x € R% and r > 0, there is E C B(x,r) such that |E| > ¢|B(z, )|
and (diam f(B(x,7))/diam B(z,r)) "' f|g is L-bi-Lipschitz. Then f(R?) has big
pieces of bi-Lipschitz images.

We first need the following lemma.

Lemma 5.2. Let : f: R — RP be n-quasisymmetric. The following are equiva-
lent:

(1) The set f(R?) has BPBI(x,L), that is, there is k > 0 such that for all ¢ €
f(RY) and s > 0, there is A C B(&,5) N f(RY) so that #4(A) > ks? and an
L-bi-Lipschitz map g: A — R<.

(2) There is ¢ > 0 such that for all x € R? and r > 0, there is E' C B(x,r) and an
L-bi-Lipschitz map g: f(E') — R? such that #%(f(E')) > c(diam f(B(z,r)))<.

Proof. Let f: RY — RP be n-quasisymmetric.
(1) = (2). Let x € RY, r > 0, and set

s =sup{t: B(f(z),t) N f(R?) C f(B(z,1))}.
Then by Lemma 3.23 and the fact that f~*(B(f(x),s)) C B(z,r),

25 _ diam f(f(B(f(),5)) 1

> .
diam f(B(z,71)) diam f(B(x,r)) 2 (diagfili;;(g(f)ﬁ))> — 2n(1)

(5.1)

IV

By assumption, we know there is E C B(f(z),s) N f(R?) and g: B — R? L-bi-
Lipschitz such that

(5.1)

HUE) > ks?

Y

4d n’zl)d (diam f(B(z,7)))".

Letting ' = f~Y(F) and ¢ = Trpya proves (2).
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(2) = (1). Let £ € f(R?) and s > 0, z = f~1(£), and set
r=sup{t: f(B(z,t)) C B(¢, s)}.

Since r is supremal, there is y € B(z,r) such that |f(y) — f(x)] = s. Also, by
assumption, there is £/ C B(z,r) so that if E = f(E’) C B(£,s) N f(R?), we have
HUE) > c(diam f(B(z,r)))* > c|f(z) = f(y)|? = s,
and so (1) holds with £ = f(E’) and k = c. O
Proof of Theorem 5.1. By Lemma 5.2, it suffices to show that there is ¢ > 0 such
that for all z € R? and r > 0, there is E/ C B(x,r) and an L-bi-Lipschitz map
g: f(E") — R? such that s#4(f(E")) > c(diam f(B(z,7)))?. Let B(z,r) C R%. By
assumption, there is B/ C B(z,r) such that |E’| > |B(x,r)| and (%M)flf

is L-bi-Lipschitz on E’ for some L. Then
diam f(B(x,r))\¢ diam f(B(x,r))\¢
AHUF(E)) ~p (———2 ) B 2 (=) |B
(FET)) ~r ( diam B(x, r) ) & ( diam B(x, r) ) |B(, )|
Za (diam f(B(z,7)))". O

~

6. Big pieces implies a Carleson estimate

6.1. Preliminaries

In this section, we focus on proving (4) implies (1) in Theorem 1.4 by showing the
following.

Theorem 6.1. Suppose f: RY — R is n-quasisymmetric, d > 2, and f(R?) has
BPBI(k,L). Then wy(z,r)* % dx is a Carleson measure, with Carleson constant
depending on D,n, and the constants in the big pieces condition.

6.2. A reduction using John—Nirenberg and the %-trick

In this section, we show how to reduce the proof of Theorem 6.1 to the following
lemma, which we will prove in the following section.

Lemma 6.2. Let d > 2, f: RY — RP be n-quasisymmetric, and suppose f(R%)
has BPBI(k,L). Then for any v € R% and every Qo € A, there is E C Qo such
that |E| Zy.4,x |Qol and

(6.1) > wn (RIR] Samn |Qol.
RCQq
RNE#(D

where f, is the function f,(z) = f(x 4+ v).
Proof of Theorem 6.1. Suppose f: R? — RP is n-quasisymmetric and the image

of f has big-pieces of bi-Lipschitz images of R.
First, we recall a version of the John—Nirenberg theorem.
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Lemma 6.3 (Section IV.1 in [15]). Let a: A — [0,00) be given, and suppose there
are N,0 > 0 such that

(6.2) ’{xeR: 3 a(Q)§N}’26|R| for all R € A.
Q3z,QCR
Then
(6.3) > al@)1Q| Sans IRl for all R e A.
QCR

If we assume Lemma 6.2, then each cube @) contains a set E for which

Bl s 0] 2 Y s RPIRIZ S wy(RPRNE| = [ 5 wy(RPs

RNE#0 C C
ned RCQ RCQ

Hence, if B = {z € E: ) cpcowr(R)? < 2C} where C is the product of the

implied constants in the above inequalities, we get that |E’| > 1|E| > |Q|, and so
Lemma 6.3 implies

(6.4) > wi(R)? Samer |Q] forall Q € A.
RCQ

Theorem 6.1 does not follow just yet. We would like to employ Lemma 2.4, but
this only works if we know

Z Wf(MR) Sdner Q|

RCQ

for some M > 1. However, (6.1) implies

(6.5) Z Wi(R)? Samer |Q forall Q€ A+v, veRY,

RCQ
ReA+v
where A+v = {Q+v : QEA} is the set of dyadic cubes translated by the vector v.
We now invoke the so-called ——trlck which says that, for any cube R with
((R) =27%/3, k € {0,1,2,...}, there is Q € A + v for some v € {0,1/3}% such
that £/(Q) =27% and R C Q. For a proof, see [33], pages 339-40. Thus, if R € A
and ¢(R) = 27"=2 for some k > 0, then ¢(3R) = 27%/3, so there is

QrelA:= |J (A+v)
vef{0,5}¢

with ¢(Qr) = 27% containing §R. Moreover, since /(Qr) = 4/(R) and Qr 2 R,

we know Qr C 12R and there there is C = C(d) > 0 such that for any Q € A,
there are at most C' many cubes R € A such that Qr = Q.
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Thus, for any Qo € A with £(Qo) < 1/4,

> s (38) 1R S0 Y wr@u?QI S YD wi(@P1Q

e e oZiin,
65)
(6.6) Z Yo wi@P1Rl S uper D 1Qol SalQol
ve{0, 3} SERLY ve{0,3}4

Note that this holds for any n-quasisymmetric embedding of R? into R” whose
image has BPBI(k, L), and since wy is dilation and translation invariant, we know
that (6.6) holds for any Qo € A, not just those with ¢(Qo) < 1/4. We can
now employ Lemma 2.4 to finish the theorem, at least if we assume Lemma 6.2
holds. O

6.3. Proof of Lemma 6.2
We now devote ourselves to the proof of Lemma 6.2.

Proof of Lemma 6.2. Note that if f(R?) has BPBI(k, L), then so does f,(R?)
(where f,(z) == f(z 4+ v)), so without loss of generality, we will assume v = 0,
since the other cases have the same proof.

Let Qo € A. By Lemma 5.2, we know there is

E C By := (xQov (QO)/2) c QO

and g: f(E') — RY L-bi-Lipschitz such that J#(f(E’")) > c(diam f(By))¢. By
Lemma 4.12, there is Eg C By such that
|Eo| - |Eol

6.7 Ll B 1
( ) |Q0| ~d |BO| ~n,d,L,c

and (%"%f‘)))flg o f|g, is bi-Lipschitz and hence (%)71]‘@0 is M-bi-
Lipschitz for some M = M (d,n, L, c) > 0. Recall that wy (and hence (6.1)) are in-
variant under a scaling of f in its image, thus we may assume diam f(Ey)/ diam Ey
= 1 without loss of generality, so that f is M-bi-Lipschitz on Ey.

The following theorem of MacManus tells us that we can extend f|g, to a

bi-Lipschitz homeomorphism of R?2P — R2P.

Theorem 6.4 ([29]). If K is a compact subset of RP and W is an M -bi-Lipschitz
map of K into R, then W has an extension to a CM? bi-Lipschitz map from R?*P
onto itself, where C is some universal constant.

Viewing Ey as being a subset of R”, we can extend f from the set Ey to a
C'M? bi-Lipschitz self-map of R?P. Let F : R* — R2P be the restriction of this
extension to R?, so that F' is C'M? bi-Lipschitz embedding of R? into R?*P that
agrees With f on Eg. By Lemma 4.5, we may find E C Ey compact such that
|E| > $|Eo| Zn.a,L.c Qo] and E is C-serious for some constant C' depending on
the Constants in (6.7). We will show E is the desired set such that (6.1) holds.
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For Q € A, let Ag be the orthogonal projection of F|g € L?(Q) onto the finite
dimensional subspace of L?(Q) consisting of linear R” valued functions. Then

Qr(Q) = (]é (%)2)1&

Let Q1,Q2 C Q be such that Q? = @ and dist(Q1,Q2) = %diam Q. Then there
are x; € (); such that

F(z;) — Ag(e))? < f P Aglt <2 P~ Aglt =2 @ (Q) diam @)

Qj
Then
L |F@) — P
cM? — |z — 29

< [F(@) = Ag(@n)| + [Ao(z1) — Ag(z2)| + [Ag(x2) — F(22)|

- %diamQ
(6.8) <2M20p(Q) +2]Ag|-
Set )

%: {Q S A . QF(Q) Z 2d+3CM2}a

and set

Y ={QeA\Z:QC Qu,QNE#0}
so that (6.8) implies

(6.9) |[Agl > for all Q € ¥g.

ZIC'M2

We now begin the process of showing (6.1) holds for the set E:

> wi@21QI< DT wr@?1Q1+ Y wr(Q)? Q)

QCQo QCQo QEYE
QNE#0 Qex
|f AQ|
<
Q%g? Qe
|F AQ|+|f F
Y o /
ng | | Qg |dlamQ )
Qe
QF lf=F| \?
10) < 2 2
(6.10) < ; wr(Q)? Q]+ Z AP |Q|+ Z/ |d1amQ)
QCQp QeYr QeYE

QEAB

We will estimate the three summands separately, starting with the first.
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Let ¢q, be a smooth bump function such that

I3g, < 6Q, < lugg, and [0°¢q,| Sd.a £(Qo) .

Then by Dorronsoro’s theorem, and since wy(Q) < 1 for all @,

Y wr @Rl < Y Q< Y @ om?)’ er(Q)? Q)

QEQq QEQq QEeQg

QeB QeERB QERB
Sd.M Z Qr(Q)?1Ql = Z Qo (F—F (20, (@) Q)]
QCQo QCQo

<o [IV(¢q, (F = F(zq,)ll3
<[V, (F = F(zq,)) + do, V(F = F(zq,))|l3

1 2 Pz 2
s o [ - FEa) s [ 90 - Fa,)
1 2 7. 2 2
(6.11) < Q)2 /4Q0(CM diam 4Q)) +AQO(CM) S |Qol-

For the second summand in (6.10), we use (6.9) and Dorronsoro’s theorem to
estimate

S GhaFel S Y aearyererial

QEYE QEYE

6.11)
(6.12) Sd.m Z Qr(Q ND M |Qol-
QCQo

Now we focus on the final sum in (6.10). For any Q C Qo such that QN E # (),
if x € QN E, then there is y € Ey such that C~ldiamQ < |z —y| < diam@
(because E is a C-serious subset of Ey). Hence, if z € Q is such that | f(z)— f(2)| >
3 diam f(Q),

o |7 (@) = f(2)|

diam £(Q) < 217(e) = ()] = 2 FE—F S @) = f1)
<on(F) W) - 1wl < 20(GTE ) 1) - P
(6.13) < 29(C)CM? |z — y| < 29(C) CM? diam Q.

We will require some estimates on the Holder continuity of f.

Corollary 6.5. Let f: R — RP be n-quasisymmetric and K C R? a bounded set.
Then there are constants C > 0 and « € (0,1), depending only on n, such that for
all x,y € K distinct,

lz —yl NV _ @) = FW _ e o Jr =yl
%(diamK) = diam f(K) =2 C(diamK) '
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We will prove this in Section 7.1 in the appendix.

Let {Q;} be the Whitney cube decomposition for E¢, comprised of those max-
imal dyadic cubes Q; C E° for which 3Q; N E = (). Then it is not too hard to
show that, for each j,

(6.14) 0Q;) <dist(z,E) <4diamQ; for all x € Q.

Let Q C Qq. For x € Q, let 2’/ denote a point in E such that |[z—z'| = dist(x, E),
and pick @; containing x. By Corollary 6.5, and since f = F on E, there are
constants o € (0,1) and C,, > 0 such that

(6.15)  [f(z) = F(2)| < [f(z) = f@)[ +|f(2") = F(&")| + |F(2') - F(x)|
[z — 2] \a

<29y ( diam Q

)" diam £(Q) + 0 + CM? |z — |

dist(z
<Gy (2

>adlamf )+ CM? dist(x, F)

* diam 5 dist(x, )
diam f(Q) + CM Q) Q)

(

_C"( (( Q) )

( 14) a Vd j
" ( £)Q > C,, diam f(Q M28 E(g?)

s ( Q " (20, 1(C) CM? + CM?) £(Q)

)
(Q

Before proceeding, we will need the following geometric lemma.

6(Q)

(6.16) = (1+2C,5(C)) 80M2( ) °Q).

Lemma 6.6. Let a >0, K C Qo € A(R?) be any compact subset, and {Q;} be a
Whitney decomposition for K¢. For Q C Qq, define

Mea@ = Y0 (R

Q;CQ €(Q)
Then, for all Q C Qo,
[Q\K]| _
(6.17) Ai,a(Q) < |K| <
(6.18) > M@ € 75 |Qo\K|.

QCQo

Proof. Fix a > 0 and set A = A\g . For the first part of the lemma, observe that
since the @; are disjoint and ¢(Q;)/4(Q) <1if Q; C Q,

x@—cz%(g(@ S py) (G8) -5 X al- gl <.

Q;CQ




BI-LIPSCHITZ PARTS OF QUASISYMMETRIC MAPPINGS 639

Now we show (6.18). By Fubini’s theorem,

Y@= X ¥ (13 = ¥ aere ¥ 0

QCQo QCQo Q; CQ Q;CQo Q;CQCQo
log, £(Q0)/4(Q;) _
SR D ST R SRS SR e
Q;CQo QJQQQQO Q;CQo Jj=0
1 1
> UQ) 5 = ——5— |Q\K|.
1—2—« 1—2-«
Q;CQo O

We continue with the proof. Since |f(z) — F(z)] = 0 on E and E° = |JQ,

since E is closed,
R

QEYr QEYR Q;CQ 7/
(6. 16) (Qj) d+2a
S ndM Z Z( J) |QJ|_Z Z( ) @l
Qe¥r Q,;CQ QeYr Q;CQ
(6.18)
6.19) = > A52(QIQl £ . 1Qol.
QEYER

and this bounds the third sum in (6.10).
Combining (6.10), (6.11), (6.12), and (6.19), we obtain

Y wr( @210l S |Qol.

QRCQo
QNE'#0

Finally, recall that M and « depend on n, ¢, D, and L. This finishes the proof. O

7. Appendix

7.1. Holder estimates: the proof of Corollary 6.5

Lemma 7.1 (Theorem 11.3 in [23]). An n-quasisymmetric embedding f: Q — RP,
where Q C R? is connected, is 7-quasisymmetric with 7 of the form

(7.1) il = C max{t®, t*/*}
where C > 1 and « € (0, 1] depend only on 7.

The original lemma is stated for A-uniformly perfect spaces (metric spaces X
such that B(z,r)\B(z,r/A) is nonempty for all x € X and r > 0), and the
constants C' and « depend also on the constant associated with being uniformly
perfect, but connected sets happen to be uniformly perfect with A = 1 (see the
beginning of Chapter 11 of [23] for a discussion and the original statement). As a
corollary, we have the following:
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Corollary 6.5. Let f: R? — RP be n-quasisymmetric and E C R? a bounded set.
Then for all z,y € E distinct,

Lle—yl\Ye _ [f@) = FWl _ a2 =yl
%(diamE) = diam f(FE) =2 C(diamE) ’

where o and C are as in Lemma 7.1.

Proof. Let xz,y € E. Pick ¢y’ € E so that |z — /| > max{%diamE, |z — y|}. Then

F@) = fW)l _ 1F@) = f@) _ vyl w—ylNe -yl
Gan ) < 1w o < "emyr) <Gamn) =0 (Gamp) -

diam F
Now, let y” € E be such that |f(z) — f(y”)| > 3 diam f(E). Then,
diam f(E) Lf(@) = fy")] lz —y"”
7= = 2w =11 = 2=yt
If | — 3| < |z — yl, then

(7.2)

(7.1) lz—y
72) < 20
72) < <M—y

If |z — y”| > |x — y, then

(7.1 |z — y"|\ /e diam E\ 1/«
2) < 2 <2 .
(7.2) < C(|xfy|) - C(|xfy|)

//|

)" <ol cac(uy

Hence, in either case,

diam f(FE) diamE)l/a
|f(z) = f(y)l [z —yl/ 7

which proves the lemma. O

gzc(

7.2. Proof of Lemma 2.1

Lemma 2.1. Let § > 0. If f is n-quasisymmetric on a cube Q C R?, then there
is e1 =¢e1(n,d,0) > 0 so that if

(7.3) ]é %#AHJQ < er.
then
() — A(w)| < 0| A"| diam Q.
Moreover,
(1 —2Vd6) |A'| £(Q) < diam f(Q) < (14 2V/d6) |A'| diam Q.
Proof. Fix K > 0 and let
Bx = {o € Q:[f(z) — Ag(w)] < Kei|Ap]| diam Q)
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so that by Chebyshev’s inequality,

Q\Bx < 2@l

Note that if B = B(x,r) is any ball contained in EY, not necessarily contained
in Q but with center z € Q\ Ex, then at least 1/2¢ percent of it is contained in @Q,

and so
d

9
wgr® = [B| < 2¢|Q\Ex| < 7 Q|

so that
r < 2(kwq) "4 (Q).

Pick K = w24, "/ so that r < ££(Q). Then

sup dist(z, Px) < 1 4(Q).
z€Q\Ex

For z € Q\Ek, let ' € Ex be such that | — 2’| = dist(x, Ex). Then by
Corollary 6.5,

[f (@) = A@)] < |f () = f(@)] + |f (&) = A@)| + [A(2") — A(2)]

apflr =N o ) ,
<2 c(m) diam £(Q) + K &, |A| diam Q + |A'| |z — /|
o~ E20@Q) N\ d_1-1/d | 41| 1. /
< —_— 77
<2 C(diamQ) diam f(Q) + wq 2% &, |A'| diam @ + 2|A"| e £(Q)

< 2% el diam f(Q) + (wa2® +2) e} /| A'| diam Q.

We claim that |A'| diam @ > 1 diam f(Q) if €1 is small enough. If |A’| diam @ <
1 diam f(Q), pick zg € Q so that |f(z0) — A(zo)| < e|A’| diam Q and pick z € Q
so that |f(z) — f(x0)| > % diam f(Q). Then

[f(2) = A(@)| = [f(2) = fzo)| = [f(20) = Alzo)| — [A(20) — A(2)]

> %diam f(Q) —e1|A| diam Q — |A'| diam Q
> (5 ) diam (@) > S diam (@)

if e; < 1/2. However,
f(z) — A(z)] < 2% C e diam £(Q) + (wa2® +2) e} /*|A’| diam Q
1 _ 1
< (2a Cef + 1 (w2 +2)e] W) diam £(Q) < 5 diam £(Q)

if e > 0 is small enough, which is a contradiction. Thus, |[A’|diam Q > 1 diam f(Q),
so that

|f(z) — A(z)] < (2°T2Ce® + (wq 2% + 2) ' ~V/9) | A'| diam Q < §|A’| diam Q

if € > 0 is picked small enough.
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For the last part of the lemma, let z,y € @ be such that diam f(Q) = |f(z) —
f(y)|. Then,

diam f(Q) = [f(z) — f(y)| < |A(z) — A(y)| + 20 |A"| diam Q
< |A'| |z — y| + 26 diam Q < (1 + 20V/d ) |A'| diam Q.

For the opposite inequality, we may assume without loss of generality that xg = 0.
Pick x € 0B(zg,4(Q)/2) so that |A(z) — A(—z)| = |A’| diam Bg. Then,

diam f(Bg) = [f(x) — f(y)| = [A(z) — A(y)| — 20 diam Q
= |A'| (1 — 26V/d) diam Bg = |A’| (1 — 20Vd) £(Q). -

7.3. Dorronsoro’s theorem

Here we prove the following special case of Dorronsoro’s theorem. We prove a
more general version than what is stated in the introduction by showing we can
replace Q¢ with a general LP-type integral for p € [1, 2] and obtain the same result.
Throughout the paper, however, we only use the p = 2 case and write 0y = s s
for short.

Theorem 1.2 ([17]). Let f € L?*(R?). For x € R%, r > 0, and p € [1,2], define

. = A\
Qp lx,r) = njf <]{3($’T) ( . ) ,

where the infimum is over all affine maps A : R4 — R. Then f € WH2(R?) if and
only if

o dr
Q,(f) := /Rd/o Qs (2,7)? 7dm < 00,

i which case,

(7.4) IVAIIZ Sa () < Qq(f) < (f) SalIVSIl2
for all g € [1,2], so in particular, ||V f||3 ~a Qq(f) for g € [1,2].

We should mention, of course, that the original result is far more general; in par-
ticular, Dorronsoro gives a characterization of the fractional Sobolev spaces WP
for all @ > 0 and p € (1,00). We provide a proof of this special case for the
interested reader, since the proof we supply avoids the interpolation theory and
reference chasing in [17]; only the basic properties of Sobolev spaces and the Fourier
transform are needed. This proof is well known, but not completely written down
anywhere to the author’s knowledge (although hints at the proof are alluded to
in [13]); part of it is also explained in [10].

Proof. Step 1. We first show ||V f[|2 <4 Q1(f) supposing that f € W12(R?) (we
will show later that ;(f) < oo implies an L? function f is actually in W12, but
we will start with this case). Let ¢ be a radially symmetric C*° function supported



BI-LIPSCHITZ PARTS OF QUASISYMMETRIC MAPPINGS 643

in B(0,1) such that [¢ = 1. Set ¢(z) = ¢(x) — 29¢(2x), so that it is also
supported in B(0,1). Then [A = 0 for any affine function A. For r > 0, set
¥y (z) = r=%p(r~1z). Then,

V5 5 ()] = [9(] — A) ()] = [(f — A) 5 Vi )
- rd=t r Hx — w |f — Al
= ‘/B(w)'f(y) Aly)lr= Ve (@ — ) dy| < d||w||oo][ 7

B(z,r) r

and infimizing over all affine maps A gives

(7.5) VI * b (@) S wa [[Vlloo Qu, 5 (7).

Observe that by Fubini’s theorem and Plancherel’s theorem,

> % 2 ﬁ_ > = 1 21,7 2 ﬂ
| [visn@pa= [ ] 9ropeores

— . dr
= [grer( [ weorT)

Since v is radially symmetric, so is z/;, thus, if e; € R? denotes the first standard
basis vector,

o d 0 o d
| 9or S = [T it F = [ 1tren F = o < oo

The reason this is finite is because 1& is a Schwartz function, 1&(0) = [¢ =0, and 1&
is differentiable at zero, so [¢(€)| < [£]/(]1 + |€]?). Thus,

> dr > dr
wal |Vl oo / / Qs L > / / IV F %y ()P do 2T
Rd J0 r 0 Rd r

—co [ IVH@Fd = ey [ 1957 do.

This proves the first inequality in (7.4).

Step 2. Now just suppose f € L?(R%), we will show that Q;(f) < oo implies f
has a weak gradient V f that is in L?. Let ¢ be a nonnegative C°>° bump function
supported in B(0,1) with [ ¢ = 1. Observe that since ||¢|| < [ ¢ =1, we have

£ * della = £ dell2 < lIF1l2 = 11£]]2
and [|V||oe < ||Ve||1 < o0, so that

190 60l = 117 = Vaulld = [ IFOF [T de

1£113
2

- / FOPR 2 [Va(te) 2 de < 72 |V oll, / P =
R4 R4

Thus, f * ¢; € WH2(R?), and so we know that

0 dr
V5 % nl 2 < / / Qg L .
Rd Jo r
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Suppose r > t. Since [ ¢ = 1, and since affine functions are harmonic, we have
¢y * A = A for any affine function, thus

M |(f A) x ¢ B
]Z;(a: ) ][ B(z,r) r ]Z;(m r)/]Rd ¢t(y Z) dZdy

_ |B(z,2r)] | FE)=AG 0 — od /() -A()|
|B €T, T /]Rd][ B(z,2r) r ( Z) dydz =7 ]{3(1,27’) r dz,

and infimizing over affine maps A gives

(7.6) Q1 fugy (2, 7) < 27Q 4(2,2r) for r >t

Now suppose r < t. Then by Taylor’s theorem, and since 0%¢; * A = 0 for any
affine map A and |a| > 1,

Qi p20,(T,7) < r? max|a|=2 ||aaf*¢t||L°°(B(x,t))

r r?
= max [|(f = A) £ 001l 1 (5.0

= max || f * 0% ¢¢|| Lo (B(a,1))
jal=2

< max sup /|f Y)|0% (2 — y)| dy

la|=2 z€B(z,t)

=12 max sup / |f(y) — AW)|(0%¢)e (2 — y)| dy
la|= =2 zeB(x,t) B(z,r+t)
0°?|| o
<t max s [ r) - ag) I
B(xz,2t)

lor]=2 z€B(x,t)

:til’wd maX”aad)Hoo][ |f(y)7A(y) dy,
loe[=2 B(x,2t) t

and infimizing over affine maps A gives

r
1, geu(2,7) < 5 wa mAx (107 6|oc .5 (@, 21).

Thus,

g dr o dr
197l 5o [ ([ potan T+ [ et da
Re N Jo r t r

t [e%¢)
r 9 o dr
<4 /Rd (/0 t_QQLf(x’Qt) d7"+/t Q f(x,2r) 7) dx
<%/Shﬂ%%ﬁ@+ﬁﬂﬁ?

Since Q1 f(x,t) <29Q f(z,t + s) for all s € [0,], we have

5 d
/Qlfm2t2dx§// Qy f(x,2t) —dm<d// Qlfxr —de
Rd Rd J2t Rd J2t r
< [ [ ot Las =i
Rd Jo r
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Hence, ||V f * ¢¢||2 <a Q1(f)2, and since ¢(t€) — 1 uniformly on compact subsets
of R% as t — 0, we have, for any R > 0 and Br = B(0, R),

/ FOP |s|2ds—hm/ O € |¢<ts>|2d£—hm/ FOL 2] t6)[? de
Br

1 2 < Q_T: 2
ti [ 19700l S0 [ [ 0usr? T -

Letting R — 0o, we get [r. [£(€)]2[€]2d€ Sa Q1(f)?, which implies f € WH2(RY).
Step 3. Note that the second and third inequalities in (7.4) follow from Jensen’s
inequality since Q,, ¢(z,7) < Qq s(x,7) if p < ¢, and hence Q,(f) < Q,(f).

Step 4. Tt remains to prove the last inequality Qa2(f) <4 ||V f|3- To do so, we
follow the hint in [13].

Assume f € W12(R?) and let ¢ be a radially symmetric nonnegative function
supported in B(0,1) such that [ ¢ = 1. Define an affine map

A r(y) = ¢r * V() (y — 2) + [ * & ().

Then by Tonelli’s theorem, change of variables, Plancherel’s theorem, and the fact
that, for p € [1,2],

—_A 2
Qg,f(l‘,’l“)Q S][ |f(y) - a:,?“| d ,
B(z,r) r
we have
Cl/"l" d
wd//ng:cr —dx<//wd][ 5 |d—rd
R4 R4 B(z,r) r

d
// /B(” G # VI(@) (=) — 2 ()P dy gy

= _ * cu— % 2 dr
/B(O 7")/0 - |f(y+m) ¢r vf(x) Y f ¢r($)| dx —Td+3 dy
=/ /’ |F(©)e™™E — d(re) f(§)(—2miy - €)

B(0,r) R4

F(©) bre)? de i d
_ —2miy-§ . 7
a1 = [ e /B o / Hre) (~2miy - €) — HrE) P dyde.
If we show

(7.8) /0 |1 < btre -2y - € - S0 gz dy S 6P

then the theorem will follow since

(7.7) /| ()1 €] de = /IVf ()2 0 = /IVf|2
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We begin proving (7.8). Again, since ¢ is radially symmetric, so is qAS, and hence
B(€) = d(|¢]) for some function ®: [0,00) — [0,00). We will abuse notation and
write ®(r) = ¢(r). By two changes of variables (once in 7, then in y), and again
writing B, = B(0,7r),

00 ) . R d
@0 [ [ bt -2miv-e ~otrieDP g dy

o0 ) . N d
— g [ N | e e~ o -2miy- &) — (o) s d
t/1€

oo ) . - dt
= [ [ e == 2miy- ) = SOP g dy
dt

Since ¢ is a Schwartz function and $(0) = J¢=1,and

d - —
5 800) = (-2t )0 = — [ 2mit o(e)dt =0
since ¢ is radially symmetric, we thus have by Taylor’s theorem,

) - 1
—2miy-&/I¢l (1 _ ind2 -
e e/ (1 = (1)) S min {2, W}.
Again by Taylor’s theorem, since 1 + a is the first two terms of the Taylor series
for e, and since we always have |y| <t in the domain of the integral, we get

1
14¢4

N N
’—mym\ STvar

’é W) (e,myf/lsl — omiy - % - 1)‘ =

so that

(79)<I£I2/OO/ (min {¢ ! b+ e >2d dt
o 0o JB,) T1 [t 1+1) Wiars

> 1 2 \2 dt
—|¢)2 . [0 ,
= [¢] /0 (mln{t,1+|t|2}+1+t4) 5 S lel?,

which proves (7.8). O
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