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Sharp Lp estimates for Schrödinger groups

Piero D’Ancona and Fabio Nicola

Abstract. Consider a non-negative self-adjoint operator H in L2(Rd).
We suppose that its heat operator e−tH satisfies an off-diagonal algebraic
decay estimate, for some exponents p0 ∈ [0, 2). Then we prove sharp
Lp → Lp frequency truncated estimates for the Schrödinger group eitH for
p ∈ [p0, p

′
0].

In particular, our results apply to every operator of the form H =
(i∇+A)2+V , with a magnetic potential A ∈ L2

loc(R
d,Rd) and an electric

potential V whose positive and negative parts are in the local Kato class
and in the Kato class, respectively.

1. Introduction

It is well known that the Schrödinger group eitΔ is bounded on Lp(Rd) only for
p = 2 (if t �= 0). However, frequency truncated estimates still hold, which can for
instance be phrased in the form

(1.1) ‖eitΔϕ(2−kD)f‖Lp � (1 + 22k|t|)s ‖f‖Lp, k ∈ Z, t ∈ R,

for 1 ≤ p ≤ ∞, s = d |1/2 − 1/p|, where ϕ ∈ C∞
c (Rd) is a cut-off function. This

result follows at once from the stationary phase theorem and is sharp, both for the
growth in t and for the loss of derivatives, i.e., the factor 22k in the right-hand side
(see [5], [29], and [41]).

In this paper we show a far-reaching generalization of this result, to every self-
adjoint non-negative operator H in L2(Rd), whose heat operator e−tH satisfies a
mild smoothness effect and a mild off-diagonal decay.

Concerning strong (p, p) estimates of spectral multipliers, recently much at-
tention has been devoted to minimal assumptions on H . A condition which is
nowadays common in the literature, after [18], [21], and that already covers a
lot of interesting operators, is a pointwise Gaussian estimate for the heat kernel
pt(x, y) of e

−tH , namely

(1.2) |pt(x, y)| � t−d/m exp
(
− b

(
t−1/m |x− y|)m/(m−1)

)
, t > 0, x, y ∈ R

d,
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for some b > 0, m > 1. For example, every Schrödinger operator with an elec-
tromagnetic potential, under very natural assumptions, satisfies such estimate
with m = 2 ([6], [13]). As another example, the operator H = (−Δ)k, with
k ≥ 1 integer, satisfies (1.2) with m = 2k.

Recently, motivated by Schrödinger operators with bad potentials [37] or higher
order operators with measurable coefficients [16], the assumptions on H were fur-
ther weakened in the form of the so-called generalized Gaussian estimates, namely

‖1B(x,t1/m) e
−tH1B(y,t1/m)‖Lp0→Lp′0

� t−
d
m (1/p0−1/p′

0) exp
(
− b

(
t−1/m |x− y|)m/(m−1)

)
,(1.3)

for some p0 ∈ [1, 2) and every t > 0, x, y ∈ Rd, where b > 0 and m > 1; see [2],
[3], [27], and [28]. When p0 = 1, (1.3) is in fact equivalent to (1.2) [4].

In the present paper we will consider even weaker estimates, allowing off-
diagonal algebraic decay.

For every j ∈ Z, let Qj be the collection of all dyadic cubes in Rd with side-
length 2−j.

Assumption (H)Assume that H is a self-adjoint non-negative operator in L2(Rd),
whose heat operator satisfies the following estimates. There exist p0 ∈ [1, 2), m > 0
such that for every t > 0 and j ∈ Z, with 2−j ≤ t1/m < 2−j+1, we have

(1.4) sup
Q′∈Qj

∑
Q∈Qj

‖1Qe
−tH1Q′‖

Lp0→Lp′0 � 2jd (1/p0−1/p′
0)

and

(1.5) sup
Q′∈Qj

∑
Q∈Qj

(1 + 2jdist (Q,Q′))N‖1Qe
−tH1Q′‖L2→L2 � 1, N = �d/2	+ 1.

Of course, if the pointwise bound (1.2) holds, then (1.4) is satisfied with p0 = 1,
as well as (1.5). Also, (1.3) implies (1.4) and (1.5). Notice however that there are
operators satisfying (1.4) and (1.5) but not (1.3). For example, for the fractional
Laplacian H = (−Δ)α, α > 0, (1.4) is satisfied with p0 = 1 for every α > 0,
whereas (1.5) holds for 2α > �d/2	+ 1 (both with m = 2α); see Section 5 below.

Now, we can state our main result.

Theorem 1.1. Assume the hypothesis (H). Let p ∈ [p0, p
′
0] and s = d|1/2− 1/p|.

Then the operator e−itH satisfies the estimate

(1.6) ‖e−itHϕ(2−kH)f‖Lp � (1 + 2k|t|)s ‖f‖Lp, k ∈ Z, t ∈ R,

uniformly for ϕ in bounded subsets of C∞
c (R).

This result is sharp both for the growth in t and for the loss of derivatives, in the
sense that when H = −Δ (and k is replaced by 2k) it reduces to that mentioned
above, which is sharp. Moreover, it is new even for operators satisfying (1.2)
with m = 2.
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Besides the case of the free Laplacian, estimate (1.6) was first proved for
H = −Δ + V in Theorem 1.4 of [25], and in Theorem 5.2 of [25], under sev-
eral assumptions on V . Actually, we shall see in Theorem 5.2 below that we can
consider any operator for the form

H = (i∇+A) + V,

with a magnetic potential A ∈ L2
loc(R

d;Rd), and an electric potential V with
positive and negative parts V+ ∈ Kloc(R

d), V− ∈ K(Rd), where K(Rd) is the Kato
class (see Definition 5.1 below). Although this operator is just bounded from below,
the conclusions of Theorem 1.1 still hold for H at least for k ≥ 0.

The proof is inspired by [25]. In short, by duality and interpolation we are
reduced to prove the result for p = p0. Then we exploit the smoothing effect (1.4)
of the heat operator to reduce matters to a continuity result in certain amalgam
spaces of functions with an upgraded L2 local regularity (p0 < 2) and an �p0 decay
at infinity (on average). Technically, we need a version of these spaces adpapted to
different scales, as in [42]. Then, the off-diagonal decay (1.5) of the heat operator
is used to prove the desired estimates in such spaces.

As an intermediate step, we prove strong (p0, p0) estimates for ϕ(H), ϕ∈C∞
c (R).

It would be interesting to know whether the assumption (H) (or a variant of it)
is still sufficient for more general spectral multipliers theorems, where ϕ satisfies
Hörmander type conditions ([6], [18], [21], [27]). We plan to investigate this issue
in a subsequent work.

As another remark, we observe that we could allow an exponential factor
exp(ct), c > 0, in the right-hand sides of (1.4) and (1.5), provided the conclu-
sion of Theorem 1.1 is restricted to k ≥ 0 (see Section 5.1).

As a consequence of Theorem 1.1 we obtain, by a standard scaling argument
(see [24], p. 193), an estimate in Sobolev spaces adapted to the operator H .

Corollary 1.2. Assume the hypothesis (H). Let p ∈ [p0, p
′
0] and s = d|1/2− 1/p|.

Then for every ε > 0 the operator e−itH satisfies the estimates

(1.7) ‖e−itH(I +H)−s−εf‖Lp � (1 + |t|)s ‖f‖Lp, t ∈ R.

This result improves Theorem 1.4 in [24], and (at least in the Euclidean setting)
Theorem 5.2 in [7], and Theorem 1.3 (b) in [3], where an additional ε-loss occurred
in the exponent of t (and moreover the stronger estimates (1.3) were assumed).

Another interesting issue is the validity of (1.7) with ε = 0. Indeed, forH = −Δ
in R

d and 1 < p <∞, the estimate (1.7) was proved with ε = 0 (and t = 1) in [31],
but this sharp form seems out of reach in the present generality, even for fixed t.
However, using some results of time-frequency analysis we will see that estimates
such as (1.7) with ε = 0 indeed hold for a large class of propagators, essentially
any operator which is bounded in the so-called modulation spaces (see Section 5
for the definition). This is just a remark, which however seems to be new. Details
and examples are given in Section 5.

The paper is organized as follows. In Section 2 we prove some preliminary
results and we define the above mentioned amalgam spaces, together with a cri-
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terion of boundedenss. In Section 3 we prove strong (p, p) estimates for the op-
erator ϕ(H), for p ∈ [p0, p

′
0], and ϕ ∈ C∞

c (R). This will be used in the proof of
Theorem 1.1, which is given in Section 4. Finally in Section 5 we discuss examples
of operators which Theorem 1.1 applies to, and the above mentioned connection
with time-frequency analysis.

2. Preliminary results

2.1. Some remarks on assumption (H)

For future reference, we collect here some comments on the assumption (H).

Remark 2.1. Let us notice that for a linear operator A and 1 ≤ p, q ≤ ∞ we have

‖1QA‖Lp→Lq ≤ ‖1Q′A‖Lp→Lq , ‖A1Q‖Lp→Lq ≤ ‖A1Q′‖Lp→Lq

if Q ⊂ Q′ are measurable sets. Moreover, if 1Q =
∑m

k=1 1Qk
(pointwise almost

everywhere) then

‖1QA‖Lp→Lq ≤
m∑

k=1

‖1Qk
A‖Lp→Lq , ‖A1Q‖Lp→Lq ≤

m∑
k=1

‖A1Qk
‖Lp→Lq .

This implies that, for any givenM ∈ N the estimates (1.4) and (1.5) hold for every j
with 2−j−M ≤ t1/m < 2−j+M , where the constant implicit in the notation � will
depend on M .

Remark 2.2. The estimate (1.4) is equivalent to the couple of estimates

(2.1) sup
Q′∈Qj

∑
Q∈Qj

‖1Qe
−tH1Q′‖Lp0→L2 � 2jd (1/p0−1/2)

and

(2.2) sup
Q∈Qj

∑
Q′∈Qj

‖1Qe
−tH1Q′‖Lp0→L2 � 2jd (1/p0−1/2).

Indeed, (2.1) follows from (1.4) and Hölder’s inequality, because |Q| = 2−jd. More-
over, if (1.4) holds as stated then it also holds, by duality, with Q and Q′ exchanged
in the sum and supremum, so that (2.1) holds with the same exchange, which
is (2.2).

Viceversa, assume (2.1) and (2.2). Then we have

‖1Qe
−tH1Q′‖

Lp0→Lp′0 ≤
∑

Q′′∈Qj

‖1Qe
−(t/2)H1Q′′e−(t/2)H1Q′‖

Lp0→Lp′0

≤
∑

Q′′∈Qj

‖1Qe
−(t/2)H1Q′′‖

L2→Lp′
0
‖1Q′′e−(t/2)H1Q′‖Lp0→L2 ,

and (1.4) follows from Remark 2.1, (2.1) and the dual version of (2.2).
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Remark 2.3. The estimate (1.5) implies, by duality,

(2.3) sup
Q∈Qj

∑
Q′∈Qj

(1 + 2jdist (Q,Q′))N‖1Qe
−tH1Q′‖L2→L2 � 1.

Remark 2.4. Let
Sλf(x) = f(λx), λ > 0.

Observe that if the assumption (H) holds for the operator H then it also holds for
the operator

Hk := 2kSλk
HS−1

λk
, λk = 2k/m, k ∈ Z,

uniformly with respect to k.
Indeed, by the spectral calculus we have

e−tHk = Sλk
e−2ktHS−1

λk

and for Q,Q′ ∈ Qj, with 2−j ≤ t1/m < 2−j+1, we have

1Q e
−tHk 1Q′ = Sλk

1λkQ e
−2ktH 1λkQ′ S−1

λk
,

with λQ := {λx : x ∈ Q}.
Moreover, for a linear operator A and 1 ≤ p, q ≤ ∞ we have

‖SλAS
−1
λ ‖Lp→Lq = λd (1/p−1/q), λ > 0.

Hence, it is sufficient to apply the assumption (H) with t replaced by 2kt. More
precisely, the involved cubes should be those dyadic having sidelength 2−M , with
2−M ≤ (2kt)1/m < 2−M+1, but one can cover each of the cubes λkQ

′ and λkQ
′

(whose sidelength is exactly (2kt)1/m) by using 2d of such dyadic cubes (cf. Re-
mark 2.1).

2.2. Amalgam spaces

Let us recall some useful results concerning amalgam spaces ([16], [22], [24], [42]).
For 1 ≤ p, q ≤ ∞, j ∈ Z, consider the space Xp,q

j of measurable functions in R
d

equipped with the norm

‖f‖Xp,q
j

:=
( ∑

Q∈Qj

‖1Qf‖pLq

)1/p

(with obvious changes if q = ∞). As above Qj denotes the collection of dyadic
cubes of sidelength 2−j. We also set Xp,q = Xp,q

0 .
Notice that Xp,p

j = Lp for every j and p. Moreover we will need the following
embeddings.

Proposition 2.5. For 1 ≤ p ≤ q ≤ ∞, j ∈ Z, we have

(2.4) ‖f‖Xp,q ≤ max{1, 2−jd (1/p−1/q)}‖f‖Xp,q
j
.
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Proof. Consider first the case j < 0. Then we prove that, if Q̃ ∈ Qj ,( ∑
Q0�Q⊂Q̃

‖1Qf‖pLq

)1/p

≤ 2−jd (1/p−1/q)‖1Q̃f‖Lq .

Since

‖1Q̃f‖Lq =
( ∑

Q0�Q⊂Q̃

‖1Qf‖qLq

)1/q

,

the result follows from Hölder’s inequality for finite sequences, with N = 2−jd

elements.
Consider now the case j ≥ 0. We prove that, if Q̃ ∈ Q0,

‖1Q̃f‖Lq ≤
( ∑

Qj�Q⊂Q̃

‖1Qf‖pLq

)1/p

.

Again, the left-hand side is equal to
(∑

Qj�Q⊂Q̃ ‖1Qf‖qLq

)1/q
, and the result fol-

lows, because p ≤ q. �

Here is an elementary criterion for boundedness on Xp,q.

Proposition 2.6. Let A be a linear operators satisfying, for some 1 ≤ q1, q2 ≤ ∞,
and j ∈ Z,

sup
Q′∈Qj

∑
Q∈Qj

‖1QA1Q′‖Lq1→Lq2 =M1 <∞ ,

and
sup
Q∈Qj

∑
Q′∈Qj

‖1QA1Q′‖Lq1→Lq2 =M2 <∞ .

Then, for every 1 ≤ p ≤ ∞,

‖Af‖Xp,q2
j

≤M1−θ
1 Mθ

2 ‖f‖Xp,q1
j

,
1

p
= 1− θ .

Proof. The desired estimate follows at once from the definition of the spaces Xp,q
j

and Schur’s test for operators acting on sequences. �

2.3. A criterion for boundedness on Xp,2

We recall here a result from [24] which gives a sufficient condition for a linear
operator A to be bounded on the spaces Xp,2, 1 ≤ p ≤ 2.

Theorem 2.7. Let A be a bounded operator on L2, and for any l = 1, . . . , d, define
the commutator Adl(A) = [xl, A]. Suppose that for some M ≥ 1 we have

‖Adkl (A)‖L2→L2 ≤Mk, 0 ≤ k ≤ �d/2	+ 1, 1 ≤ l ≤ d .

Then, for 1 ≤ p ≤ 2,

(2.5) ‖Af‖Xp,2 ≤ C0M
d (1/p−1/2) ‖f‖Xp,2,

where the constant C0 depends only on d and upper bounds for ‖A‖L2→L2 .
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Proof. The proof can be found in [24], but the result is not explicitly stated there
in the present form. Hence, for the benefit of the reader we point out detailed
references of the main steps.

By the computations at the end of page 261 in [25], the assumption implies
the L2 weighted estimate

‖〈· − n〉kA〈· − n〉−k‖L2→L2 �d M
k, ∀n ∈ Z

d, k = �d/2	+ 1,

By formula (3.7) in [25], this last formula implies that

|||A|||k := ‖A‖L2→L2 + sup
n∈Zd

‖〈· − n〉kA1Qn‖L2→L2 �d M
k, k = �d/2	+ 1,

where Qn = n + [0, 1]d. Since k > d/2 we can apply the interpolation inequality
in Theorem 2.4 of [25], with β = k, and we obtain

‖Af‖X1,2 �d ‖A‖1−d/(2(�d/2	+1))
L2→L2 Md/2‖f‖X1,2 .

By interpolation with the L2 → L2 estimate, we deduce (2.5). �

3. Boundedness of ϕ(H)

This section is devoted to the proof of the following result, which is an intermediate
step for Theorem 1.1.

Theorem 3.1. Let H satisfy the assumption (H). Then for every p ∈ [p0, p
′
0] we

have

(3.1) ‖ϕ(2kH)f‖Lp � ‖f‖Lp .

uniformly for ϕ in bounded subsets of C∞
c (R) and k ∈ Z.

First of all we observe that it suffices to consider the case k = 0. Indeed, as
observed in Remark 2.4, the same assumption (H) holds for the operator

Hk := 2kSλk
HS−1

λk
, λk = 2k/m, k ∈ Z ,

uniformly with respect to k. On the other hand, by the spectral calculus

ϕ(Hk) = Sλk
ϕ(2kH)S−1

λk

and intertwining with Sλk
preserves the (p, p) norm.

Let us therefore prove (3.1) for k = 0.
We begin with an easy lemma, which is definitively based on the assump-

tion (1.4).

Proposition 3.2. We have the estimates

‖e−tHf‖Xp0,2 � (1 + t−
d
m (1/p0−1/2)) ‖f‖Lp0 , t > 0 .
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Proof. By (1.4), Remark 2.2 and Proposition 2.6 we have, for 2−j ≤ t1/m < 2−j+1,

‖e−tHf‖
X

p0,2
j

� 2dj (1/p0−1/2) ‖f‖Xp0,p0
j

.

Since Xp0,p0

j = Lp0 , the embedding in Proposition 2.5 gives the desired conclusion.
�

Consider now the resolvent operator

R = (I +H)−1.

Proposition 3.3. If β > d
m (1/p0 − 1/2), we have

‖Rβf‖Xp0,2 � ‖f‖Lp0 .

Proof. It is sufficient to use the formula

(3.2) Rβ =
1

Γ(β)

∫ +∞

0

tβ−1 e−t e−tH dt,

together with Proposition 3.2 and Minkowski’s inequality for integrals. �

The criterion in Theorem 2.7 allows one to transfer estimates in amalgam spaces
from R to e−iξR, ξ ∈ R. Here we will use the assumption (1.5).

Proposition 3.4. We have

‖e−iξRf‖Xp0,2 � (1 + |ξ|)d(1/p0−1/2) ‖f‖Xp0,2 , ξ ∈ R .

Proof. By the criterion in Theorem 2.7, it is sufficient to prove that

‖Adkl (e−iξR)f‖L2 � (1 + |ξ|)k ‖f‖L2

for k = 0, 1, . . . , �d/2	+ 1, l = 1, . . . , d.
Using the formula

Ad1l (e
−iξR) = −i

∫ ξ

0

e−isR Ad1l (R) e
−i(ξ−s)R ds

repeatedly, we are reduced to prove that

(3.3) ‖Adkl (R)u‖L2 � ‖u‖L2

for k = 0, 1, . . . , �d/2	+ 1.
Now, setting R(x, y) for the distribution kernel of R, that of the operator

Adkl (R) is (xl − yl)
kR(x, y). Using the integral representation (3.2) with β = 1,

and Minkowski’s inequality for integrals we see that it is sufficient to prove that,
for 2−j ≤ t1/m < 2−j+1, the operator

Af(x) := 2jk
∫
Rd

(xl − yl)
k pt(x, y) f(y) dy



Sharp Lp
estimates for Schrödinger groups 1027

is bounded on L2 = X2,2
j uniformly with respect to j ∈ Z, for k = 1, 2, . . . , �d/2	+1

where pt(x, y) denotes the distribution kernel of e−tH (in fact, the exponential
factor in (3.2) compensates the factor 2−jk ≤ tk/m which has been introduced).

Now, to prove the boundedness of A on L2 = X2,2
j , we use Proposition 2.6.

Hence, by self-adjointness we are reduced to prove that

(3.4) sup
Q′∈Qj

∑
Q∈Qj

‖1QA1Q′‖L2→L2 ≤ C

for a constant C independent of j.
To this end, observe that, if Q = zQ + 2−j [0, 1]d, Q′ = zQ′ + 2−j[0, 1]d, then

(3.5) 1QA1Q′ =
∑

α+β+γ=k

k!

α!β!γ!
(2j(zQ,l − zQ′,l))

α

× (2j(xl − zQ,l))
β 1Qe

−tH 1Q′(2j(zQ′,l − yl))
γ .

Formula (3.4) then follows from the assumption (1.5) and the elementary estimates

‖(2j(xl − zQ,l))
β1Q‖L2→L2 � 1, ‖1Q′(2j(zQ′,l − yl))

γ‖L2→L2 � 1. �

Now we continue with the proof of Theorem 3.1. Writing

ϕ(R) = (2π)−1

∫ +∞

−∞
eiξR ϕ̂(ξ) dξ

and using Proposition 3.4 we deduce that

(3.6) ‖ϕ(R)f‖Xp0,2 � ‖(1 + |ξ|)d(1/p0−1/2) ϕ̂‖L1 ‖f‖Xp0,2 .

Now, given ϕ ∈ C∞
0 (R) we can find ψ ∈ C∞

0 (R+) such that ψ((λ + 1)−1) = ϕ(λ)
for λ ≥ 0, so that ϕ(H) = ψ(R). Moreover, for β > d

m (1/p0 − 1/2), write

R−βϕ(H) = R−βψ(R) =: ψ̃(R).

The operator Rβ is then bounded Lp0 → Xp0,2 by Proposition 3.3, whereas ψ̃(R)
is bounded on Xp0,2 by (3.6). Since Xp0,2 ↪→ Lp0 , f(H) = ψ̃(R)Rβ is bounded
on Lp0 , and therefore on every Lp, p ∈ [p0, p

′
0], by duality and interpolation with

the L2 case.
The uniformity of the estimate when ϕ varies in bounded subsets of C∞

c (R)
also follows from (3.6) and this last argument.

This concludes the proof of Theorem 3.1.

4. Proof of the main result (Theorem 1.1)

By using the same scaling argument as in the proof of Theorem 3.1 it is sufficient
to prove that

(4.1) ‖e−itHϕ(H)‖Lp→Lp ≤ C (1 + |t|)d|1/2−1/p|,

uniformly for ϕ in bounded subsets of C∞
0 (R).



1028 P. D’Ancona and F. Nicola

We will adopt the notation Ad(A) = [xj , A], j = 1, . . . , d, for the commutator
[xj , A], as in Theorem 2.7, omitting the subscript j for simplicity. Below we will
prove that, for k = �d/2	+ 1,

(4.2) ‖Adl(R2k+1−2e−itH)‖L2→L2 ≤ C (1 + |t|)l, l ≤ k .

This implies, from Theorem 2.7, that

‖R2k+1−2e−itH‖Xp0,2→Xp0,2 ≤ C (1 + |t|)d(1/p0−1/2).

Combining this estimate with Proposition 3.3 and Theorem 3.1 we obtain

‖e−itHϕ(H)‖Lp0→Xp0,2

� ‖R2k+1−2e−itH‖Xp0,2→Xp0,2‖Rβ−2k+1+2‖Lp0→Xp0,2‖R−βϕ(H)‖Lp0→Lp0

� (1 + |t|)d(1/p0−1/2),

where we choose

β > 2k+1 − 2 +
d

m

( 1

p0
− 1

2

)
in order to apply Proposition 3.3. Using the inclusion Xp0,2 ↪→ Lp0 we deduce (4.1)
for p = p0. By duality and interpolation with the L2 case we get (4.1).

It remains to prove (4.2). We will use induction on k = 0, 1, . . . , �d/2	 + 1.
First we prove the following result.

Proposition 4.1. For every k = 1, . . . , �d/2	+1, the operator Ad(R2k+1−2e−itH)
is given by a (finite) linear combination of operators of the following type:

Rμ1 R2k−2e−itHAd(Rμ2)Rμ3 , μ1, μ2, μ3 ∈ N,

Rμ1 Ad(Rμ2)R2k−2e−itH Rμ3 , μ1, μ2, μ3 ∈ N,

and ∫ t

0

R2k−2 e−isH Ad(R)R2k−2e−i(t−s)H ds .

Proof. The result is obtained by induction on k. It is true for k = 1. Indeed,

Ad(Re−itHR) = Ad(R)e−itHR+Re−itHAd(R)−i
∫ t

0

e−isHR[xj , H ]Re−i(t−s)H ds .

Now, R[xj , H ]R = [R, xj ] = −Ad(R), so that the result for k = 1 is verified.
Let us assume it holds for k − 1 and compute

Ad(R2k+1−2e−itH) = Ad(R2k−1

(R2k−2e−itH)R2k−1

)

= Ad(R2k−1

) R2k−2e−itH R2k−1

+R2k−1

Ad(R2k−2e−itH)R2k−1

+R2k−1

R2k−2 e−itH Ad(R2k−1

) .

The first and the last term are of the desired form. The second one is also of the
desired form by the inductive hypothesis, because

R2k−1

R2k−1−2 = R2k−2. �
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Let us now prove (4.2) by induction on k = 0, 1, . . . , �d/2	 + 1. The result is
trivially true for k = 0. Assume it holds for k − 1, and write, for l ≤ k,

Adl(R2k+1−1e−itH) = Adl−1
(
Ad(R2k+1−1e−itH)

)
.

Using the above Proposition 4.1, the formula

Adl−1(A1 · · ·An) =
∑

m1+...+mn=l−1

(l − 1)!

m1! · · ·mn!
Adm1(A1) · · ·Admn(An),

as well as the inductive hypothesis and (3.3), we obtain (4.2).

5. Examples and concluding remarks

5.1. Schrödinger operators

Here is our main example. We recall the definition of the Kato class from page 453
of [39].

Definition 5.1. A real-valued measurable function in Rd is called to lie in the
Kato class K(Rd) if and only if

a) if d = 3,

lim
r↓0

sup
x∈Rd

∫
|x−y|<r

|V (y)|
|x− y|d−2

dy = 0 ;

b) if d = 2,

lim
r↓0

sup
x∈Rd

∫
|x−y|<r

log |x− y|−1|V (y)| dy = 0 ;

c) if d = 1,

sup
x∈Rd

∫
|x−y|<1

|V (y)| dy <∞ .

We moreover define Kloc(R
d) as the space of functions V such that V 1B ∈

K(Rd) for every ball B.

It follows from Hölder’s inequality that Lp
unif (R

d) ⊂ K(Rd) if p > d/2 (d ≥ 2),
where the uniform Lp spaces are defined by the norm

‖V ‖p
Lp

unif
= sup

x∈Rd

∫
|x−y|<1

|V (y)|p dy <∞ .

For example, 1/|x|α belongs to K(Rd) if 0 < α < 2.

Now, we have the following result.
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Theorem 5.2. Consider the operator

H = (i∇−A)2 + V,

where A ∈ L2
loc(R

d;Rd), V = V+ − V− (positive and negative parts),

V+ ∈ Kloc(R
d), V− ∈ K(Rd) .

Then H has a self-adjoint extension in L2(Rd), bounded from below.

Moreover for 1 ≤ p ≤ ∞, and for s = d |1/p− 1/2|, the operator e−itH satisfies
the estimate

(5.1) ‖e−itHϕ(2−kH)f‖Lp � (1 + 2k|t|)s ‖f‖Lp, k ≥ 0, t ∈ R ,

uniformly for ϕ in bounded subsets of C∞
c (R).

Proof. The first part of the statement is proved in Sections B1 and B13 of [39].
Moreover, combining the estimates for the heat kernel in Proposition B.6.7 of [39]
(case A ≡ 0) with the diamagnetic inequality (Theorem B.13.2 in [39]), one sees
that the operator e−tH has a measurable kernel pt(x, y) satisfying

|pt(x, y)| � t−d/2 exp(ct) exp
(
− |x− y|2

4t

)
, t > 0, x, y ∈ R

d,

for some c > 0. Hence, for some c′ > 0, the operator H + c′I in non-negative and
satisfies the assumption (H) with p0 = 1, m = 2. We can then apply Theorem 1.1
to the operator H + c′I, with the cut-off ϕ(x − 2−kc′) and obtain the desired
conclusion for k ≥ 0, since the functions ϕ(x− 2−kc′) for k ≥ 0 vary in a bounded
subset of C∞

c (R) if ϕ does. �

5.2. Operators with variable coefficients

Following [13], consider the operator

−Hf = ∇b · (a(x)∇bf)− c(x)f, ∇b = ∇+ ib(x)

where a(x) = [ajk(x)]
d
j,k=1, b(x) = (b1(x), . . . , bd(x)) and c(x) satisfy:

a, b, c are real-valued, ajk = akj and NI ≥ a(x) ≥ νI for some N ≥ ν > 0 .

Suppose moreover d ≥ 3, and the following conditions in terms of Lorentz spaces:

a ∈ L∞, b ∈ L4
loc ∩ Ld,∞, ∇ · b ∈ L2

loc, c ∈ Ld/2,1, ‖c−‖Ld/2,1 < ε .

Then if ε > 0 is sufficiently small the operator H extends to a non-negative self-
adjoint operator in L2(Rd) and its heat kernel e−tH satisfies the Gaussian bound

|pt(x, y)| � t−d/2 exp
(
− |x− y|2

Ct

)
, t > 0, x, y ∈ R

d,

for some C > 0; see Propositions 6.1 and 6.2 in [13]. Hence Theorem 1.1 applies
with p0 = 1.

We also refer to [15], [14], and [34] for early results on Gaussian bounds for
variable coefficient second-order operators.
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5.3. Higher order operators (constant coefficients)

Consider the operator

H = (−Δ)k, k ∈ N, k ≥ 1.

Let us verify that the assumption (H) is verified with p0 = 1, m = 2k. It is
sufficient to show that the heat kernel pt(x, y) satisfies the estimate

|pt(x, y)| � t−d/(2k) exp
(− b(t−1/(2k)|x− y|) 2k

2k−1

)
, t > 0, x, y ∈ R

d,

for some b > 0. This is known, but we provide here a proof for the sake of complete-
ness and also because this method of proof extends to any elliptic, homogeneous
and non-negative constant coefficient operator. We leave this generalization to the
interested reader.

By homogeneity we are reduced to prove that, if f(ξ) = exp
(−|ξ|2k), then its

inverse Fourier transform verifies

|f∨(x)| � exp
(− b|x| 2k

2k−1
)
, x ∈ R

d.

It is easy to see that this inequality is equivalent to

|xαf∨(x)| ≤ C|α|+1(α!)1−
1
2k , α ∈ N

d, x ∈ R
d,

for some constant C > 0 independent of α (see e.g. Proposition 6.1.7 in [33]). This
in turn follows if we prove that

(5.2) ‖∂αf‖L1 ≤ C|α|+1(α!)1−
1
2k , α ∈ N

d.

This can be verified by means of the Cauchy estimates, as follows.
Observe that f has an entire extension f(ζ) = exp(−(ζ21 + · · · + ζ2d)

k), for
ζ = (ζ1, . . . , ζd) ∈ Cd, satisfying

(5.3) |f(ζ)| ≤ exp
(−(1/2)|Re ζ|2k + C |Im ζ|2k), ζ ∈ C

d.

Therefore, given ξ = (ξ1, . . . , ξd) ∈ Rd, we consider the polydisk

B̃(ξ, R) =

d∏
j=1

B(ξj , R) = {ζ ∈ C
d : |ζj − ξj | ≤ R},

with R = (1 + |α|)1/(2k), α ∈ Nd. Observe that (5.3) implies

(5.4) sup
ζ∈B̃(ξ,R)

|f(ζ)| ≤ e−(1/2)(|ξ|−R)2k+ +C(
√
dR)2k ,

where (·)+ denotes the positive part.
The Cauchy integral formula

∂αξ f(ξ)=
α!

(2πi)d

∫
...
∫
∂B(ξ1,R)×...×∂B(ξd,R)

f(ζ1, ..., ζd)

(ζ1 − ξ1)α1+1... (ζd − ξd)αd+1
dζ1 ... dζd



1032 P. D’Ancona and F. Nicola

and the estimate (5.4) yield

(5.5) |∂αξ f(ξ)| ≤ e−(1/2)(|ξ|−R)2k+
α! eC(

√
dR)2k

R|α| ≤ e−(1/2)(|ξ|−R)2k+
C

|α|+1
1 α!

(1 + |α|)|α|/(2k)
.

Using Stirling’s formula, we have

1

(1 + |α|)|α|/(2k) ≤ C
|α|
2

(α!)1/(2k)
,

which combined with (5.5) gives

|∂αξ f(ξ)| ≤ C|α|+1 (α!)1−1/(2k) e−(1/2)(|ξ|−R)2k+ , α ∈ N
d.

Integrating separately for |ξ| > R and |ξ| ≤ R gives the desired estimate (5.2)
(the factor coming from the volume of the ball of radius R is absorbed by taking
a slightly bigger constant C in (5.2)).

5.4. Higher order operators (measurable coefficients)

Following [16], let k ≥ 1 and consider the operator

H =
∑

|α|≤k, |β|≤k

Dα(aα,β(x)D
βf),

where aα,β(x) = aβ,α(x) are complex-valued, bounded measurable functions. The
associated quadratic form is

Q(f, f) =

∫
Rd

∑
|α|≤k, |β|≤k

aα,β(x)D
βf(x)Dαf(x) dx.

We suppose that Q = Q0 +Q1 +Q2 where Q0, Q1, Q2 have the same form as Q,
but Q0 is homogeneous and elliptic of degree 2k and has constant coefficients, Q1

is homogeneous of degree 2k and is non-negative in the sense that∑
|α|=k, |β|=k

a1,α,β(x) vβ vα ≥ 0

for all vα ∈ C, x ∈ Rd, whereas Q2 contains lower order terms.
We distinguish two cases. If 2k > d then it was proved in Lemma 19 of [16]

that the heat kernel satisfies the estimate

|pt(x, y)| � t−d/(2k) exp(ct) exp
(− b(t−1/(2k)|x− y|) 2k

2k−1
)
, t > 0, x, y ∈ R

d,

for some b, c > 0.
In the case 2k < d the above estimate can fail. However, let

p0 =
2d

d+ 2k
.
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Then p0 < 2, and

‖1B(x,t1/(2k))e
−tH1B(y,t1/(2k))‖L2→Lp′0

� t−
d
2k (1/2−1/p′

0) exp(ct) exp
(
− b

(
t−1/(2k)|x− y|) 2k

2k−1

)
,

for some b, c > 0; see Lemma 24 in [16]. Hence, by arguing as in Remark 2.2 we see
that (1.3) holds with m = 2k except for a further factor exp(ct) in the right-hand
side.

By the same arguments as in Section 5.1 we deduce that in both cases the
conclusion of Theorem 3.1 holds (if 2k > d with p0 = 1, if 2k < d with p0 =
2d/(d+ 2k)) at least for all k ≥ 0.

5.5. Fractional Laplacian

Consider the fractional Laplacian

H = (−Δ)α, α > 0 .

By using standard results on homogeneous distributions it is easy to see that its
heat kernel satisfies

0 < pt(x, y) � t−d/(2α) (1 + t−1/(2α) |x− y|)−(d+2α),

Hence we see that (1.4) is satisfied with p0 = 1 for every α > 0, whereas (1.5)
holds for 2α > �d/2	+ 1 (both with m = 2α).

5.6. Sharp estimates in Sobolev spaces

In this section we investigate the validity of (1.7) with ε=0 (and for fixed t �=0),
namely with the optimal loss of derivatives. We rely on results from time-frequency
analysis, so that we start by recalling the relevant function spaces.

For 1 ≤ p ≤ ∞, s ∈ R, let Lp
s stand for the usual Sobolev (or Bessel potential)

space, i.e.,
‖f‖Lp

s
:= ‖(1−Δ)sf‖Lp .

We also recall the definition of modulation spaces ([19], [20], [36], [43]). They can
be defined similarly to the Besov spaces, but for a different geometry: the dyadic
annuli in the frequency domain are replaced by isometric boxes which allows a
finer analysis in many respects. The construction goes as follows (cf. [43]).

Let ρ ∈ S(Rd) be a smooth function, with values in the interval [0, 1], ρ(ξ) = 1
on the box {|ξj | ≤ 1/2, j = 1, . . . , d}, and ρ(ξ) = 0 away from the box {|ξj | ≤ 1,
j = 1, . . . , d}. Let Qk the the unit cube centered in k ∈ Zd and let ρk be the
translation of ρ:

ρk(ξ) = ρ(ξ − k), k ∈ Z
d.

We have ρk(ξ) = 1 on Qk, so that
∑

k∈Zd ρk(ξ) ≥ 1 for every ξ ∈ Rd. We then
define the functions (symbols)

σk(ξ) = ρk(ξ)
( ∑

m∈Zd

ρm(ξ)
)−1

,
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and the corresponding Fourier multipliers

�k = F−1σk F ,

where F denotes the Fourier transform in Rd.
Now, for 1 ≤ p, q ≤ ∞, s ≥ 0, one defines the modulation spaces

(5.6) Mp,q
s =

{
f ∈ S ′(Rd) : ‖f‖Mp,q

s
:=

( ∑
k∈Zd

〈k〉sq‖�kf‖qLp

)1/q

<∞
}

(with obvious changes if q = ∞). We also set Mp,q for Mp,q
0 . We recapture

in particular the L2-based Sobolev spaces M2,2
s = Hs, whereas the space M∞,1

coincides with the so-called Sjöstrand’s class ([30], [40]).
The inclusion relations with the Besov spaces are well understood, see e.g. [43].

The results below instead rely in an essential way on the sharp inclusion relations
with the Sobolev spaces, which were recently proved in Theorem 1.3 of [26]:

(5.7) Lp
s ↪→Mp ↪→ Lp for 1 < p ≤ 2, s = 2d

(1
p
− 1

2

)
.

As a direct consequence of these embeddings we have the following result.

Theorem 5.3. Let A be a linear bounded operator Mp →Mp, for some 1 < p ≤ 2.
Then A extends to a bounded operator Lp

s → Lp, with s = 2d (1/p− 1/2), and

‖A‖Lp
s→Lp � ‖A‖Mp→Mp .

The interesting fact is that this simple result gives optimal estimates in many
cases.

Example 5.4. Consider the operator eitΔ, t ∈ R. It was proved, e.g. in Proposi-
tion 6.6 of [43], that the following estimates in modulation spaces hold true:

‖eitΔ‖Mp→Mp � (1 + |t|)d |1/p−1/2|, 1 ≤ p ≤ ∞ .

Combining this result with Theorem 5.3 we therefore have

‖eitΔ‖Lp
s→Lp � (1 + |t|)d |1/p−1/2|

for 1 < p <∞, s = 2d
∣∣1/p− 1/2

∣∣ (the case p > 2 follows by duality).

The estimates in the previous examples are sharp, and certainly known. How-
ever one can treat similarly a class of Fourier integral operators A, generalizing
the propagator eiΔ and defined as follows.

Consider an operator A of the form

(5.8) Af(x) = (2π)−d

∫
Rd

eiΦ(x,η) a(x, η) f̂(η) dη,
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with a phase Φ ∈ C∞(Rd × Rd), real-valued and satisfying

(5.9) |∂αz Φ(z)| ≤ Cα |α| ≥ 2, z ∈ R
2d

as well as

(5.10)
∣∣∣det( ∂2Φ

∂xj∂ηj

)∣∣∣ ≥ δ > 0 in R
d × R

d,

and a symbol a in the class S0
0,0, i.e.,

(5.11) |∂αz a(z)| ≤ Cα, α ∈ N
d, z ∈ R

2d.

Operators of this type arise as propagators for Schrödinger equations with an
Hamiltonian having quadratic growth (see [23]), in contrast with Fourier integral
operators with a phase positively homogeneous of degree 1 in η, which are instead
applied in the study of hyperbolic problems. For the latter class, the problem of
the local and global Lp continuity is well understood ([8], [11], [17], [38]). Instead,
we are not aware of similar results for operators A of the above form, except for
the L2 results in [1] and [35]. Now, it was proved in [9] that, under the above
assumption, A and its adjoint are bounded on Mp, for every 1 ≤ p ≤ ∞. As a
consequence of Theorem 5.3, we have therefore the following result.

Theorem 5.5. Let A be a Fourier integral operator as in (5.8)–(5.11). Then for
every 1 < p <∞, s = 2d

∣∣1/p− 1/2
∣∣, we have

‖Af‖Lp � ‖f‖Lp
s
, 1 < p ≤ 2 ,

‖Af‖Lp
−s

� ‖f‖Lp , 2 ≤ p <∞ .

In general none of the estimates in the above theorem holds for every 1 < p <∞.
We refer to [32] for counterexamples and for applications of this circle of ideas to
the study of Lp-boundedness of Feynman path integrals.

Similarly, one can consider Schrödinger operators with rough Hamiltonians.
We consider here a simple case, to avoid technicalities.

Theorem 5.6. Consider a potential V (x) satisfying ∂αV ∈ M∞,1, |α| = 2. Let
H = −Δ+ V (x), 1 < p <∞, s = 2d

∣∣1/p− 1/2
∣∣. Then

‖eiHf‖Lp � ‖f‖Lp
s
, 1 < p ≤ 2,

‖eiHf‖Lp
−s

� ‖f‖Lp, 2 ≤ p <∞.

Indeed, it was proved in [10] that the propagator eitH is bounded in Mp,
1 ≤ p ≤ ∞, t ∈ R. Much more general Hamiltonians can be treated similarly;
we refer to [10] and the bibliography therein for more details.

Finally we point out that ideas strictly related to those in this last section, but
involving the so-called Wiener amalgam spaces rather than modulation spaces,
have been recently employed in [12] to prove the Lp-boundedness, with optimal
loss of derivatives, of pseudodifferential operators with non-smooth symbols.
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