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Fitting a Sobolev function to data III

Charles Fefferman, Arie Israel, and Garving K. Luli

Abstract. In this paper and two companion papers, we produce efficient
algorithms to solve the following interpolation problem: Let m > 1 and
p >n > 1. Given a finite set E C R™ and a function f : E — R, compute
an extension F of f belonging to the Sobolev space W™P (R™) with norm
having the smallest possible order of magnitude; secondly, compute the
order of magnitude of the norm of F. The combined running time of our
algorithms is at most CNlog N, where N denotes the cardinality of E,
and C depends only on m, n, and p.

1. Introduction

In our previous papers [3] and [4], we provided efficient algorithms to interpolate
data by a function F: R™ — R whose Sobolev norm has the least possible order of
magnitude. More precisely, let m > 1 and p > n > 1. Given a function f: E - R
with E C R™ finite, we compute a function F € W™P(R™) such that F = f on E,
and ||Fllwm.» < C|[F|lwm.» for any competing function F € W™P(R™) such that
F=fonE. Here, C depends only on m, n, and p.

Our computations consist of efficient algorithms, to be implemented on an
(idealized) von Neumann computer. In the model of computation assumed in [3]
and [4], our computer deals with exact real numbers, without roundoff error. In
this paper, we explain how the algorithms, theorems and proofs in [3] and [4] may
be modified to allow our algorithms to run successfully on a computer that handles
only S-bit machine numbers, for some large, fixed S.

2. Modifications for finite-precision

2.1. The finite-precision model of computation

Our model of computation in finite-precision is a slight variant of that described
in Section 38 of [2]. We spell out the details.
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For an integer S > 1, we work with “machine numbers” of the form k - 2~5,
with k an integer and |k| < 2725, Our model of computation consists of an
idealized von Neumann computer [5], able to handle machine numbers. We make
the following assumptions:

¢ Given two distinct non-negative machine numbers x and y, we can compute
the most significant digit in which the binary expansions of x and y differ.
(That is, for x = 3 ;5 ¢ %;2) and' y = ij—s y;2) with each x; and y; equal
to 0 or 1, we compute the largest j for which x; does not equal y;.) We assume
this takes one unit of “work”. See also the paragraph following (2.76).

This assumption is reasonable, since presumably a machine number is en-
coded in the computer as the sequence of its binary digits.

¢ Two machine numbers x and y satisfying [x| < 2¢ and |Jy| < 2¢" with ¢,¢' >0
and { + £’ < S can be “multiplied” to produce a machine number x @ y
satisfying [x @ y —xy| < 275.

We suppose it takes one unit of “work” to compute x ® y.
We assume that 0@ x =x® 0 =0 and that x® 1 =1T® x = x.
We assume that if [x| < 2¢ and [y| < 2¢', for £, ¢’ integers, then [x@y| < 2¢+¢".

e If x is any machine number other than zero, then we suppose we can produce
a machine number “1/x” in one unit of “work”, such that |“1/x"—1/x| <275,

We assume that “1/x” =1 when x = 1.
We assume that if [x| > 2¢, for an integer £, then |“1/x"| < 27%.

e Two machine numbers x and y satisfying |x| < € and |y| < ¢’ for integers {
and £’ such that £+ ¢’ < 2% may be added to produce their exact sum x +y,
which is again a machine number.

We assume it takes one unit of “work” to compute x +y.
e If x is any machine number, then —x is again a machine number.
We assume it takes one unit of “work” to compute —x.

e If x and y are machine numbers, then we can decide whether x <y, y < x,
or x =y.

We assume this takes one unit of “work”.

e If x is a machine number other than zero, then we can compute the greatest
integer ¢ such that 2¢ < |x|.

We assume this takes one unit of “work”

e Ifx is a machine number and { is an integer with [{| < S, then we can compute
the greatest integer < 2¢x. (If this integer lies outside [—2%, +2%], then we
produce an error message, and abort our computation.)

We assume this takes one unit of “work”.
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e We assume we can add, subtract, multiply and divide integers of absolute
value < 25, in one unit of “work”.

If we compute x/y in integer arithmetic, for integers x,y (y # 0) of absolute
value at most 25, then we obtain the greatest integer < the real number x/y.
If our desired answer lies outside [—25, +25], then we produce an error mes-
sage and abort our computation.

o Given integers x, y of absolute value < 25, we can decide whether x < v,
Yy <Xx,orx=1y.

We assume this takes one unit of “work”.

e If £ is an integer, with [{| < S, then we can compute exactly the machine
number 2¢.

We assume this takes one unit of “work”.

e If x and y are machine numbers satisfying 27¢ < x < 2% and |y| < ¢
for integers £ and ¢’ such that £-¢’ < S, then we can compute a machine
number “xY” in one unit of “work”, such that |“x¥” —xY| <275,

e If x is any positive machine number, then we can compute a machine number
“logx” in one unit of “work”, such that |“logx” —logx| < 275. Here, logx
is the base two logarithm.

e We assume we can read or write a machine number from (to) the RAM with
one unit of “work”.

e We assume we can read a machine number from input or write a machine
number to output in one unit of “work”.

e We assume we can store a single S-bit word in memory using one unit of
“storage”.

e We assume we can store the address of any memory cell in a single S-bit
word.

Under these assumptions, we say that our computer can process “S-bit machine
numbers” (though the actual implementation of those machine numbers seems to
require at least 2S + 2 bits.) We call Apin = 2-3 the “machine precision” of our
computer.

We fix an integer S > 1. We assume that our computer can process S-bit

machine numbers for S = Kax -+ S, where K. € N satisfies
(2.1) Kmax > C, for a large enough universal constant C.

We will show that when our algorithms receive their input as S-bit machine
numbers, then the output produced by our algorithm is accurate to at least S
bits. We will verify that the work and storage required are as promised: at most
CN log N operations for the one-time work, and at most Clog N operations for the
query work, with CN storage, where the constant C depends only on m, n, and p.

Throughout the remaining sections, Ay, = 2-5 will denote the precision of
our computer, as just described.
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2.2. Algorithms in finite-precision

We recall that a universal constant is one that depends only on the parameters
m, n, and p. We impose the following assumptions in this section.
Main assumptions:

o We set Ay := 2-S for an integer S > 1.

e We assume our computer can process S-bit machine numbers, with S =
Kinax-S, where Kpax satisfies (2.1). Then Apin = 275 represents the “machine
precision” of our computer. A “machine number” will always denote an S-bit
machine number.

e Weset Ag = 27K1S and Ae = 2K2S fop integers Ky, Ky > 1.

e We assume that A, < AS and A < Ag for a large enough universal
constant C.

Assume that w € R satisfies [w| < 25. We may not be able to represent w
perfectly on a computer, but we can always store an approximation to w. We
introduce the relevant notation below.

e We say that w is specified to precision A¢ if a machine number wg, is given
with [w —wgy| < Ae.

e We say that w is computed to precision A if there is a finite-precision algo-
rithm that computes a machine number wg, with [w —wg,| < Ac.

* We say that w is specified (computed) with parameters (Ag, Ac) if [w| < A;l,
and if w is specified (computed) to precision Ae.

We illustrate this terminology in the next result, which establishes the numer-
ical stability of arithmetic operations.
Lemma 1. Suppose that Ao, Amin, Ag, and A are as in the Main assumptions.

Let x,y € R be specified with parameters (Ag,Ac). Then the following hold.

* We can compute x +y with parameters (cAg, C A¢).

e We can compute x -y with parameters (Aé, CAc Ag] ).

o If ly| > Ag, we can compute x/y with parameters (Aé, CA. AQS).

e Ifxe [Ag,A?], we can compute logx with parameters (cAg, C Ac AE]),

* Suppose that x € [Ag, Ag]] and |y| < A with A > 1, and suppose that Kiax >

5A -max{Ki,Ky}. Then we can compute x¥ with parameters (Ag\, A A;C'A).

The above computations require work at most C.
Here, the constants ¢ and C are independent of all the parameters.

Proof. By hypothesis, we suppose we are given machine numbers X, § with |x — x| <
Ac and [y — Y| < Ac. Moreover, we have |x| < A? and |y| < A?.
Since Ae < AE], we learn that [X| < ZAa1 and [g] < ZAE].
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min
(S-bit) machine number A =X + Y. This computation requires one unit of work,
by assumption on our model of computation. Then

A—(x+y) <|x—x|+y—y| <2A..

(1) Since |x+y| < 4A;1 < Al and since A! = 25 we can compute the

Moreover, [x +y| < |x[ +[y] < 2A4".
Thus, we can compute the sum x +y with parameters (%Ag,ZAe).

(2) Since |x-y| < 4Ag2 < A_l . we can compute a machine number P with

min’

[P —X Y| < Amin < Ac. (Recall that Apyy is the “machine precision”.) We have
oy =%-g| < =Xyl + Yy =T 7] < Ac- Ay F A (2457) =3Ac - Ay
Hence, [P —x-y| < A€+3A€A;1 <4A. A?. Moreover, |x - y| < A? ~A;1 = A;z.

Therefore, we can compute the product x -y with parameters (Aé,4A€ Ag] ).
Here, we have only used the assumptions Apiy < ]IAQZJ and Apin < Ac

(3) Suppose that |[y| > Ag. Since we may assume A, < A;O, we have
Ul >yl — [y =Tl > Ag —Ac > Ag — AL,

Since Ag < 1/2, we conclude that [g] > %Ag.
Thus, we can compute a machine number A with ’A — (! ’ < Apmin < Ac.
We have

1 ——1 ly — 1 Ae 2
y - = = < =2A. A2
| | yl- gl ~ A 1A, ©e

Hence, |A —y! | < Ae +2A¢ Agz < 3Ac Agz. Moreover, |y*] | < A?.

Therefore, we can compute y~' with parameters (Ag,4Ac Aaz).

(4) Suppose that |y| > Ag. According to (3), we can compute y~' with pa-

rameters (Ag, At™), where A2 = 4A, A;z. We have A¥™ < 4A§J < 1 (since
Ac < A;O) and A" > A > Anpin. Hence, applying (2), we can compute x -y~
with parameters (Aé,4A’€‘eW AEI) = (Aé, 16 A A§3).

(5) Suppose that Ay < x < A?. Since |x —X| < A¢ < A;O, we have %Ag <
X < ZAE‘ )

We can compute a machine number L satisfying |L —logX| < Apin < Ac. Then
we have

- | - S . —1
llogx —log x| < h [x —x[-max {x"',(x)7'} < CA: A,
(Recall that logx denotes the base two logarithm.) Hence, |L —logx| < Ac +
CA. A? < C’'Ac Ag]. Moreover, |logx| < logA;1 < CA?.
Therefore, we can compute logx with parameters (cAg, C'A¢ A;] ).

(6) Suppose that Ay < x < Ag] and |y|] < A for some A > 1.
Since |[x —X| < A¢ < A;O and |y — Y| < A¢ < 1, we conclude that %Ag <x<
273" and [g] < |y + [y — | < 2A.
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We have

Apin = 2~ KmaxS and Kmax = 4AK;. Thus, we can compute a machine num-
ber B with

x| < (2 A = 22A-(K25+1) < A—1 - due to the assumption that

min’

|B _ig| § Amin § Ae-

This requires work at most C.
We have

|Xy _ig| § |Xy _iy| + !%y _%ﬁ! = |ey Inx _ ey ln?| + !ey InX egln¥|
<yl [x—%| - max {x "', (%)~} - max {e¥*, ey ¥}
+ |y — 7 - [InX| - max {e¥ Inx e‘jln?}

SA A 2A;T AN F A I (2877) AN < AA SN

In the above, we use the estimates |e" — e*| < |w — z|-max{e", e*} and |Inx — InX| <
|x — X| - max {x*] , (%) }; both C and C’ are numerical constants.

Hence, |[B —x¥| < Ac + A AEC/A < Ae A;CNA. Moreover, [xY| < A;A.

. — ” .
Therefore, we can compute x¥ with parameters (AQ, Ac Ay CA) for a numerical
constant C”.

Thanks to (1)—(6), the conclusions of the lemma are verified. This completes
the proof. O

We finish the section with a technical lemma concerning the evaluation of the £P
norm by a finite-precision algorithm.

Lemma 2. Let A € [Ag,1] be a given machine number. Fix an S-bit machine
number p > 1. Given real numbers x; (1 <j < J) with parameters (Ag, Ac), where

] < A?, we define

A= ( Yy |x]-|p+AP)”p.
1<55<]

Then there is a finite-precision algorithm, requiring work and storage at most C-J,
which computes a machine number A that satisfies 17 CA<SAL2AA.

Proof. All constants in the proof denoted by C,C’, etc., will depend only on p.
We write A7 < A, to indicate that Ay < AZC for a sufficiently large universal
constant C. We set A; = ASO for a sufficiently large universal constant Co € N
that will be determined later. Thus, in the recently introduced notation, we have
Ay < Ag. By hypothesis, we are given a machine number xj with ’X;‘ — xj’ < A,
and we guarantee that |x;| < A; for each j. We define

(2.2) B:—( > kP +AP>VP.

1<j<]
Ixj'[=Aq
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Note that

AP B Y [l =T+ Y Il

1<5<] 1<j<]
PHES

Since |x]- —x;"| < Ag and |x4], |x;"| < Aac, the first sum is bounded by CJA. ~A§C'.
Since |xj| < Ay + Ae < 2A; whenever !Xﬂ < Ay, the second sum is bounded by
CJAY. Thus, we have |AP —BP| < CJA. - A;C + CJA}. We obtain the bound
|AP —BP| < AQCNA]]’ for a universal constant C”, because | < A? and because
we may assume that A, < Agop = AV. Note that AP and BP are at least AP.
Thus, by the mean value theorem, we have

1

A—B|<|A? —BP|- max i(tup) < A-C AP L ATp < AppC
1 1
te[Ar,00) | dt 9 P g

Here, in the last estimate we use that A > Ag4. Note that C’,C”,C"" above are
independent of Cy.

All the summands inside the parentheses in (2.2) are at least A} (recall that
A > Ag > Av). Also, the number of summands is at most J41 < CA;1 < CA]q.

Therefore, by the numerical stability of arithmetic (see Lemma 1) we can compute
a machine number Bg, such that

B — Bpn| < Ac A7C.

We conclude that |A — Bgy,| < A?Agcm + Ac ATC. We recall that Ay = ASO
and A < Ag. So, if we pick a sufficiently large universal constant Cop € N then we
can guarantee that |A — Bgy,| < %Ag. Note that A > A > Ag4. Thus, we conclude
that A and Bg, differ by at most a factor of 2. We can therefore define A = Bgy
and the conclusion of the lemma follows. O

2.3. Short form

Let E ={z1,...,2n} C ;—ZQO, where Q° =[0,1)™.

We write X(E) for the space of all real-valued functions f on E, equipped with
the trace norm induced by X = L™P(R").

Recall that P denotes the set of all polynomials on R™ of degree at most m—1,
and M denotes the set of all multiindices o« = (ot1,...,0n) with |a| < m —1T.

We let Apin < Ae < Ag < Ag be defined as in the Main assumptions in
Section 2.2. In particular, recall that Ay, = 2~ denotes the machine precision
of our computer. When we refer to a “machine number” we will always mean an
S-bit machine number.

Any linear functional w : X(E) — R can be expressed in the form

L
(2.3) w(f) =) A flz,).
=1
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We call (2.3) a short form of w. We do not promise that the coefficients A are non-
zero. Thus, in contrast to the notation in infinite-precision, a functional can have
more than one short form. The depth of w, denoted depth(w), is the number L.
Note that depth(w) depends on the short form (2.3) of w, and not on w alone.
This abuse of notation should cause no confusion.

The short form (2.3) is given with parameters (Ag,Ac) if the numbers A, are
given with parameters (Ag,Ac), and if the list jq,...,ji is given. Recall that this
means we specify machine numbers A, with |7\g ?\g| < A¢, and we promise that
Ae] < Ag ! for each €. The indices j1,...,jL may be represented as pointers to the
memory 1ocat10ns in which the corresponding points of E are stored. We assume
that each of these pointers is stored using a single unit of memory.

Let Q ={wq,...,wnm} be a list of linear functionals on X(E).

A functional &: X(E) — R has Q-assisted depth d provided that it can be
written in the form

Vmax

(2.4) Ef)=n(f)+ ) - w(f),
v=1

where 1 is a linear functional and depth(n) 4+ Vimax < d. We call (2.4) a short form
of &. Note that perhaps we can write a given & in many different ways in short
form.

The short form (2.4) is given with parameters (Ag,Ac) in terms of assists Q if
the functional n is given in short form with parameters (Ag, A¢), the numbers p,
are given with parameters (Ag, A¢), and a list of the indices kv, ..., Ky, is given.

A functional &: X(E) ® P — R has Q-assisted depth d provided that it can be

written in the form

Vmax

(2.5) E(f,P) =n(f) + Z By Wi, () + D 0 —a“P 0),

xeM

where 1 is a linear functional and depth(n) + Viax + #(M) < d. We call (2.5) a
short form of &.

The short form (2.5) is given with parameters (Ag, Ac) in terms of assists Q if
the functional n is given in short form with parameters (Ag, A¢), the numbers p,
and 04 are given with parameters (Ag,Ac), and a list of the indices kv ,...,k
is given.

A linear map T: X(E)®P — P is given in short form with parameters (Ag, A¢)
in terms of assists Q, if for each 3 € M we exhibit a formula

Vmax

Vmax 1

P (T(£,P))(0) +me%)+2%wﬁ@m
xeM :

where the functional ng is given in short form with parameters (Ag,Ac), the
numbers pg and O« are given with parameters (Ag, A¢), and a list of the indices
kiy...,k is given.

Vmax
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Similarly, a linear map T: X(E) — P is given in short form with parameters
(Ag,A¢) in terms of assists Q, if for each B € M we exhibit a formula

Vmax

OF(T(M))(0) =mp(f) + ) npv - wi, (f),
v=1

where the functional ng is given in short form with parameters (Ag, A¢), the num-
bers ngy are given with parameters (Ag, A¢), and a list of the indices k1,...,ky,..
is given.

We say we have computed a linear map T: X(E) — X in short form with
parameters (Ag, A¢) in terms of assists Q if for each S-bit machine point x € Q°
and each multiindex & € M, we can compute a short form of the linear functional

f— 0%Tf(x)

with parameters (Ag, A¢) in terms of the assists Q. If the functional f — 0%(Tf)(x)
has Q-assisted depth d, for all x € R™ and &« € M, then we say that the map T
has Q-assisted depth d. We extend this notation to linear maps T: X(E) P — X
in the obvious way. We only answer queries if x € Q° because enormous x’s might
lead to overflow errors.

2.4. Main algorithms in finite-precision

Our main theorem concerns extension operators for homogeneous Sobolev spaces
and is stated below. Later, in Section 2.18.2, we will present a corresponding result
for inhomogeneous Sobolev spaces (see Theorem 2).

We write ¢, C, C’, etc., to denote universal constants, which depend only on
m, n, and p.

Let x = (x1,...,xn) € R™ We call x an Sp-bit “machine point” if each
coordinate xy is an Sp-bit machine number.

Theorem 1. There exists a universal constant C > 1 such that the following holds.

Let S > 1 be an integer. We fix an S-bit machine number p > n.

We also fiz a subset E C ;—ZQO consisting of S-bit machine points, with #(E) =
N > 2, where Q° =1[0,1)™.

We assume we are given constants Apin = Z*K“‘axs, AD = 2K S, AZ = 2—K257
and A;’unk = 27KsS, for integers Ki,Kz2, K3, Kpax > 1 such that Kpax > C- Ky >
C?.K; > C3~K3 > C4.

We assume that our computer can perform arithmetic operations on S-bit ma-
chine numbers with precision Amin = 2*5, where S = KiaxS.

We compute (see below) lists Q and =, consisting of linear functionals on
X(E) ={f: E — R}, with the following properties.

e The sum of depth(w) over all w € Q is bounded by CN, and # [Z] < CN.

o Fach & in = has Q-assisted depth at most C.

e We compute each w € Q in short form with parameters (A;,A‘;), and we
compute each & € = in short form with parameters (AZ,AZ) wn terms of the
assists Q).
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e For every f € X(E), we have

1/p
CMfllxce) < | Y_JEAIP]
&e=
< Cinf {||Fllx + AYllFllir (o) : FEX, F=fonE}

Moreover, there exists a linear map T: X(E) — X with the following properties.
e T has Q-assisted depth at most C.
e Tf=fonkE, and

[ Tf]lx < Cinf {||Fllx + Afyucl[Fllir(@o) : FEX, F=f onE}

for every f € X(E).
o We produce a query algorithm with the following properties.

Given an S-bit machine point x € Q°, and given & € M, we compute a short
form of the linear functional f+ 0% (Tf) (x) in terms of the assists Q). This

linear functional is computed with parameters (A;,AZ), This computation
requires work at most Clog N.

The above computations require one-time work at most CNlog N in space CN.

2.5. Bases for the space of polynomials

We discuss the first algorithm in the infinite-precision text, namely the algorithm
FIT BASIS TO CONVEX BODY from Section 2.7.3 of [3]. This is a preparatory
algorithm that will be used later in the text. Our finite-precision version of FIT
BASIS TO CONVEX BODY will require several additional assumptions, stated below.

We impose the assumptions in Theorem 1. In particular, A, < Ae <Ay < Ap
are as in the Main assumptions in Section 2.2. Our computer can perform
arithmetic operations on S-bit machine numbers with precision Ayin = 2~5, where
S = Kuax - S-

We introduce a few conventions that are used in the rest of the paper. A
machine number will mean an S-bit machine number, and a machine point will
mean an S-bit machine point. A bounded interval I C R is called a machine
interval if its endpoints are machine numbers.

We assume

(2.6) P > 1 is an S-bit machine number,
while
(2.7) x € R™ is an (S-bit) machine point.

Recall that P is the vector space of polynomials on R™ of degree at most m — 1,
and we denote D = dimP. We identify P with RP, by identifying P € P with
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(% 6"‘P(x)) wEM where M denotes the set of all multiindices of order at most m—1.

We define .
Ph=( X o*Pe)P) "
xeM

We assume we are given A > 1. We write c(A), C(A), etc. to denote constants
depending on m, n, p, and A. We write c, ¢, C, etc. to denote constants depending
only on m, n, and p.

We are given a quadratic form q on P. We assume that q is specified as a
D x D matrix (qgy)g,yem acting on the above coordinates:

(2:8) qa(P)= 3 dpy - 0PP(x) - 0"P(x).
B,yeM
We assume that the matrix (q«p)«,pem satisfies the following conditions:
(2.9) lqap| < A;], and qup is specified to precision A, for all &, 3 € M.
(2.10)  (qapla,pem = Ag - (dap)a,per-
From (2.10) we learn that
(2.11) |q(P)| > cAg - |Pz for all P € P,

for a universal constant ¢ > 0.
We fix a multiindex set A C M. The main result of the section is as follows.

ALGORITHM: FIT BASIS TO CONVEX BODY (FINITE-PRECISION VERSION)

Given ¢, x, A as above: We compute a partition of [AQ,A?] into machine
intervals Iy, and for each £ we compute machine numbers A¢, ¢ with c¢ > 0, such
that the function n, : [Ag, AE]] — R, defined by

N.(8) :=cg - 8™ for & € Iy,
has the following properties.
e Let G satisfy {q < A~} € T C {q < A}. Then, for any 6 € [AQ,A;],
— T has an (A, x,m'/2,8)-basis for any 1 > C(A) - 1.(5),
— T does not have an (A,x,n'/2,§)-basis for any 1 < c(A) - 1..(8).
(See Section 2.7.1 of [3] for the definition of a basis for a convex set of
polynomials.)
e Moreover, ¢ - N4 (87) <14(02) < C-14(87) whenever ]]—061 <87 <100,.
e Also, n.(8) > Agc for any 6 € [AQ,A;].

e The numbers ¢; belong to the interval [AC, A%, and the exponents Ay are
of the form p+ v/p for integers w, v with |u|,|v| < C.

¢

e The computation of Iy, A¢, and c¢¢, requires work and storage at most C.

Here, ¢ > 0 and C > 1 are constants determined by m, n, and p, while ¢(A) and
C(A) are constants determined by mmn,p, and A.
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Explanation. We recall the basic structure of the argument given in Section 2.7.3
of [3]. We first define a rational function 1,y (8) with nice properties, and then
we explain how to compute an approximation 1. (8) for Nmin(d). The structure of
our argument here is quite similar. The main difference being that we need to take
additional care to ensure the numerical stability of our computations with respect
to rounding error.

We consider the quadratic form

(212)  M3P):=) q (61“ n/p-lalp ) ) (5If5\*|fx\af5p“(x))2

xEA xEA,BEM
B>
=Y ) smen/elalgy PPy (x) -0V Pa(x)
xEAB,YEM
Y (8PP () (for P = (Pa)aen),
x€A,BEM
B>a

restricted to the affine subspace
H:= {13 = (Po)oea : 0PP4(x) = dpo for o, p € .A}.

Let

Mmin () —mln Mé( )
PeH

which is regarded as a function of & € [Ag, AE]].
Recall from Section 2.7.3 of [3], we showed that

B 2m
(213) T]min(51) < T]min(52) < (i) T]min(él) for 6] < 52)
and
(2.14) T has a (A,x,1'/2,6)-basis if 1 > C(A) - Nmin(8),
’ but not ifT] < C(/\) T]mln( )

Using (2.11), we see that

(2.15) IMB(P)| > cAZ™ - 3 |Po|2 forany PEH, 8¢ [Ag,A,'].
xeA

Furthermore, if P e Hand « € A then 0%Px(x) =1, hence |Py|x > 1. Thus, by
definition of Nmin(8) as the minimum of M?(-) on H, we have

(2.16) Nmin(8) > CAZ™ T,

for a universal constant ¢ > 0.
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Next, we compute a piecewise-rational function Myin(8) that approximates
nmin(é)' For w = (W“B)“EA‘BEM\A S RI we set

(2.17) Hﬁﬂ::%~&—ﬂ“+ > %~wm~&—xw (x € A).
BeM\A
This gives a coordinate mapping w — PY = (P¥)aea € H, and we set
(2.18) M®(w) := M®(P™)
= (A°w,w) —2(b%,w) + m® (weRJ).
5

Here, A® is a matrix, b® is a vector, m® is a scalar - all functions of & - and (-, -)

denotes the standard Euclidean inner product on RJ. The entries of A%, b®, and

m? are all sums of monomials of the form a - §**Y/P with u,v € Z and a € R.

We have [w]|* = 3 slwap|* < CZEJJPZH,Z(, since wyp = 0PPY(x) for o € A,
B € M\ A. Thus, from (2.15) we have [M®(w)| > cAZ™"" - |w||?, hence
(2.19) AS > AT (5y),

for a universal constant ¢ > 0. In particular, the matrix A® is invertible.
Recall that A® = (Af]-), b® = (b?), and m® are given in the form

Af =) el 8P (1<, <),
u‘)v
(2.20) bj =) el (1< <)),
w,v
m® = Z Cun SR/,
u‘)v

There are at most C pairs (i, v) € Z X Z relevant to the above sums, and we have
Iul, [vl < C for each pair. (See (2.53)—(2.55) in [3].)

We insert the formula (2.17) for the polynomials Py = PX (& € A) in the
second line of the definition (2.12) of Mjs to produce the expression M‘S(w) =
(ASw,w) —2(b®% w) + m®. We compute each of the numbers CEV, CLV, and Cpy
as a linear combination of the entries of (q«p) (and the constant 1). Hence, since
the qup are given with parameters (Ag,Ae), the numbers CEV, cjm,, Cuv can be
computed with parameters (AQC, A;CA@_).

We can compare exponents of the form A = w+v/p and A = T+ V/p by
expressing A, A as a ratio of integers and cross-multiplying (recall that p is an
S-bit machine number). This comparison requires at most C units of work. By
summing the coefficients of the monomials with the same exponent, we may assume
that the exponents w+ v/p in (2.20) are pairwise distinct.

We compute a formula for the inverse matrix (A%)~! by applying Cramer’s
rule. Hence,

7. Y, ghe
(221) (A‘S)f] _ [A ]1] _ Zk ClkJ 5

ij det(Aé) - Zzbf .o (] Sla] S I))
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where [A‘S]ij denotes the (i,j)-cofactor of the matrix A®. The number of terms in
the sums in the numerator and denominator of (2.21) is bounded by C.

We compute the numbe.r.s a) and bg in (2.21) by evaluating a polynomial
function of the coefficients ¢}y arising in the entries of the matrix (Afj) in (2.20).

The numbers CHV are given with parameters (AgC, AECA@_), SO we can compute aE
and by with parameters (AQC, A;CA@_).

The exponents A and v in (2.21) have the form p+ v/p, where p,v € Z are
bounded in magnitude by a universal constant C.

We compute an expression for Nmi,(8) = min,, M®(w) as follows. Note that
the quadratic function M®(w) in (2.18) achieves its minimum at w® := (A®)~1b%.
Thus,

N J
Mmin(8) = M®(W?) = —(b® (A®)7'b%) + m® = ) b) - (A®)5 - bd +m°.
i,j=1

Inserting the expressions for the entries of (A%)~', b®, and the expression for m®,

we compute (see below) a rational expression
o Zk Clk'é}\k N(é)

n Zebg SoYe D(8)

(2.22) Nmin (8)

The number of terms in the sums in the numerator and denominator of (2.22) is
bounded by C.

The denominator D(8) = ) ,be - 8Y¢ in (2.22) is the same as the common
denominator in the expression for (A"S);j1 in (2.21), namely det(A?%). From (2.19)

we have det(A%) > Agc, hence

(2.23) D be- 8= AS.
¢

The exponents y¢ and Ay in (2.22) have the form p+ v/p, where w,v € Z
are bounded in magnitude by a universal constant. We can assume that the vy,
are distinct, as are the Ax. (We combine all the monomials in the numerator or
denominator that have the same exponent.)

The numbers ay in the numerator in (2.22) are defined by evaluating a poly-
nomial function on the coefficients a]ij, be in (A‘S)fj] (see (2.21)), and the coef-
ficients ¢,y and Cuv in bf and m® (see (2.20)). Thus, we can compute ay with
parameters (Ag‘ R Aac’ Ac) for a large enough universal constant Cj.

As explained before, the numbers b, are given with parameters (Ag‘ R Aac’ Ae).

The exponents Ay in (2.22) are pairwise distinct and have the form p+v/p for
integers w, v € Z with |u|,|v| < C. The same is true of the exponents y,. Hence,

(2.24) |7\k —7\k/| >co and |’Yg —’Yg/| > Co
for all k # k/ and € # ¢'.1

IThe constant ¢y here depends only on m,n,p, but it may depend sensitively on the approxi-
mation of 1/p by rationals with low denominators.
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We now perform a crucial rounding step.

We introduce a parameter A = 2751 of the form A = Agz, for C; € N that is
assumed to be greater than a large enough universal constant. We will later fix C,
to be a universal constant, but not yet. We assume A, < Agc‘ +C2 hence

(2.25) A A < A.

The numbers ay and by are given with parameters (Agc‘ ,AEC‘ A¢), SO we can

compute Sq-bit machine numbers ax and Bg with

(226 {|ak—ﬁk| <A, [bg—be| <A,
a| < A, be| < AC.
We set
~ )\k =
(227) ﬁmin(é) Zk T ° = N (6)

Ty, ot D(8)

We use (2.26) and the fact that Ay and y¢ are bounded by C to estimate the
difference between Mmin (6) and Mmin(8). For § € [Ag, AE]], we have

la 8™ — @ 5™ < AAC.

Hence,

IN(8) — N(8)| = ‘Zakskk ~ Y @ <can,C <aac
k k

Moreover,

IN(S)| = ’ S s <Y Jal [ < €A €A, < A S
k k
Similarly,

ID(5) — D(5)] = ‘Zb( Ve~ besve| <an,c.
¢ ¢

Moreover,

(2.23)
D(8) =) b8 > A§, and
¢

1

[D(8)] > [D(8)| — [D(8) = D(8)] = AT — AL > 5AG,

since AA;C/ = AQCZ*C’ < %AQC, for large enough C,.
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Using the previous estimates, we have

~ N(6 N(é N(8) - (D(d) —D(6 N(8) — N(d
Min(8) — ()] = [ S1) - ROV o WO (DO = DN\ RO - N(E)
D(3) D(s) D(3) - D(3) D(3)
7C/ 7C’ 7C’
Ay ~?Ag A]Ag < AA=C"
= = g
AG - 74§ 74§
Thus,
~ _c" ~ A2m+2 (2.16) ]
|nmin(5) _nmin(6)| S AAQ S CAg S z 'nmin(é))
where we may choose C, large enough so that AAQC” = AQCZ*C” < EAéerz,

with ¢ as in (2.16). We fix C, € N to be a universal constant satisfying the
previous bounds.
Therefore, thanks to (2.16) we have

1 - _
(228) Ag S z 'nmin(é) S nmin(é) S 2 'nmin(é) (Ag S 5 S Ag ! )
We assume that none of the coefficients in the expression (2.27) are equal to
zero, for otherwise we could discard the vanishing terms. Since ax and by are
S1-bit machine numbers and A = 2751, this means that

(2.29) @ > A=A, [o] >A=A5? forallk,L.

We will now explain how to compute a piecewise monomial function 1,(8) that
differs from 1, (0) by at most a universal constant factor. The first, second,
and third bullet points in FIT BASIS TO CONVEX BODY (finite-precision) will then
be consequences of (2.14), (2.13), and (2.16), respectively. The guarantees in the
fourth bullet point will follow by examining the construction below.

PROCEDURE: APPROXIMATE RATIONAL FUNCTION

We are given machine numbers ak,E@ satisfying
~ 7 C A—C
laxl, [be| € [AQ’AQ ]
We are given numbers Ay and vy of the form pu + v/p, for integers w,v with
[l |v|] < C, such that
Ak —Ax/| > coy [Ye—ver| > co forallk #Kk', €10,
Let _
. Zk ax A
Z({ ‘6851/44 ’
Assume that the number of summands in the numerator and denominator is

bounded by a universal constant C. Suppose that there exists a function My, ()
satisfying (2.13) and (2.28).

ﬁmin(é)
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We compute machine intervals Ip, machine numbers d;, and numbers wy,
such that [Ag,A?] is the disjoint union of the Iy, and such that the function

e [Ag,Ag]] — R, defined by
MN«(8) :=dg - 8%t for b € I,

satisfies
¢ Mu(8) <Mmin(8) < C-m.u(8) for all 5 € [Ag,A'].

Here, ¢ and C are universal constants.
The numbers w; are of the form pw+ v/p for integers p, v with |p| |v| < C.
The machine numbers d; are contained in the interval [AC A* 1.
This computation requires work and storage at most C.

Ezplanation. We define

B = U Ik, where
k#£k’
T == {8 € [Ag, Ay "] 57T+ |y 8™ < [y 8™/ <5+ @ 8™},

and similarly

= U Jeer, where
(A

Jeor = {8 € [Ag,Ag'] 1571 [be 8| < [be 8| <5-[be 8|}
For any interval I C [AQ,A;] \ (BUC), we have

there exist unique k = k(I)€{1,...,K}and ¢ = £(I) €{1,..., L} such that

(2.30) |dx 57\k| ) Z |ak,5?\k/| and |E55W| >2 Z |Eg/6W/| for all 6 € 1.
K/ £k £

Moreover, fBuc dt/t < 2A for a universal constant A. (The proof is by the same
reasoning used in [3].)
To compute the endpoints of a nonempty interval Lixr = [hy ./, ] (kK # k)
we solve the equations
oMM — g1 19k lax/|

|ax|”
The solutions 6 = 64 are given by
A—Ap,) !
oy = (Sﬂ ||C(l1k ||) s (for each choice of £).
k

From the lower / upper bound on |ay| by Aic we see that we can compute |dy/dx|
to precision Ay CAe, and |dy//dx| € [ AC] Since |(7\k — Axr) ]| < (301 <C,
we can compute 0, and 6_ to precision A Ae, due to the numerical stability of
exponentiation.
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Now, note that
My = min{s_, 8., Agl, hi =max{s_,5,,A;").

Both hy,, and h;, can be computed with parameters (AQ,A;CAe). Thus, we
can compute a machine interval Iy, C [AQ,AE]] with Iy C Ixxs and

(2.31) diSt(Ikk/,Tkk/) < A;C A,

where dist(-,-) is the Hausdorff distance. Due to the previous inclusion, we know
that the union of the intervals Iyi/ contains the set B = Ui/ Iiik/.
Similarly, we compute a machine interval Je¢r C [Ag, Ag]] with Jeer C Jeer and

(2.32) dist(Jeer, Jeer) < Ay Ae.

Again, note that the union of the intervals TM/ contains the set C.
We next compute pairwise disjoint machine intervals %> C [AQ,A?] such
that

Vmax

U I = U T U U Teer-
v=1

k£k’ I

We form the intervals 15** by concatenating the intersecting intervals among o
and J¢e/. Note that the union of the I%** contains the set BUC.
Because the intervals below are contained in [Ag, Aal], for each v we have

dt dt dt
< ke ket
L%ad t - J~ t + Z J~ t

Ik Tk 0,0 e
(2.31),(2.32) dt 1 _c dt 1._C
U] Featacal e D[] Seasagca.
Kk’ Tiyor 0,0/ Jeor

dt :
(2.33) < J ~ A S A <3A.
BUC

Recall that A > 1 is a universal constant.
We compute pairwise disjoint machine intervals I, C [Ag, AE]] such that

Hmax Vmax
U L= [ag,4,"]\ | 13
=1 v=1

Thus, since the union of the I5* contains BUC, we have I,, C [Aq, AE]] \ (BUC)
for each p. By (2.30), there exist k = k() € {1,...,K} and € = &(pn) € {1,...,L}
such that

@ 5™ >2 ) [@ed™| and [be8Y|>2 ) [be8Y| forall § €I,
k/#k /4L

We compute k = k(p) and £ = £(u), for each w, by searching over all k, £ to deter-
mine the maximal value of |ﬁk 61‘“! and !bg 61’“| for any fixed &, € I,. Then, by
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the definition of My,in(8) we see that

(2.34) € Mmin(d) < = < C Mmin(d) for all & € I,,.

According to (2.28), we also have ¢ - fmin(8) > ¢ - Ag.

We compute machine numbers d,, such that |du — ﬁk/gd < A;CAe, and
numbers w, = Ax —Y¢, where k =k(p) and ¢ = €(p). We claim that

C Mmin(0) < dp - 0% < C - Mpin(d) forall & € I,,.

Indeed, d,, -5+ differs from akéh/(ﬁgém by at most an additive error of AECA@_,
since Ag < 6 < A; and |wy| < C. This additive error is bounded by %c . Agc <
C - Nmin(8) since, by assumption, A, < %CAEC. Hence, (2.34) implies the above
claim.

We compute a machine number 8+ in each interval I:*!. We know that e 3* <
8/8y < €3 for all § € 15, due to (2.33). Hence, (2.13) implies that

(2.35) C Mmin(0) < Mmin(8v) < C-NMmin(8)  for all & € 12,

We then compute a machine number Iy such that [Ty —TNmin(0+)] < AQCAE. Thus,
from (2.28) and (2.35) we conclude that

¢ NMmin(8) <Ty < C" Nmin(8) for all § € 15,
We define .. : [Ag,Ay'] = R by

[ d-sen ifsely,
(2.36) n*(é){ S

As shown above, we have ¢ - 14(8) < Mmin(8) < C -1 (d) for & € [AQ,A?], hence
we obtain the main estimate in the conclusion of the procedure APPROXIMATE
RATIONAL FUNCTION (finite-precision). This completes the explanation. O

As mentioned before, by applying the procedure APPROXIMATE RATIONAL
FUNCTION we compute a function 1,(d) satisfying the conditions of the algo-
rithm FIT BASIS TO CONVEX BODY (finite-precision). This completes the ex-
planation. O

2.6. Compressing norms in finite-precision

We assume that A, <A <Ay < Ap <1 are as in the Main assumptions in
Section 2.2. In particular, Apin =275 (S = KipaxS) denotes the machine precision
of our computer, and Ay = 275. We assume that A, < AgC for a large enough
universal constant C.

Let it be a linear functional on RP given in the form pu(v) = v-w, where w € RP
is given as w = (wq,...,wp). We define

el = masc "y
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We say that  is specified with parameters (Ag, Ac) if [[uf] < Ag] and if wj is spec-
ified to precision A for each i =1,...,D. This means that machine numbers W?n
are given with !Wi —w‘;‘“! < A, for each 1 <1< D.

We assume that the following data are given.

e We fix a machine number A € [Ag, 1] of the form A = 27%5 for an integer
K>1.

e We specify linear functionals 1;,..., I on RP with parameters (Ag,Ae).
We assume that L < Ag], and that D < C for a universal constant C.

e We fix an S-bit machine number p > 1.
We denote [v| = (X, |vi|‘f’)1/19 for v = (vi,...,vp) € RP.

ALGORITHM: COMPRESS NORMS (FINITE-PRECISION VERSION)

Fix T < p < o0, and fix an integer D > 1 as above. Let {ty,- -+ ,fir be linear
functionals on RP, and let A € [Ag, 1] be as above.
We compute linear functionals i, ..., u5 on RP such that

D T D
(2.37) ¢ ) WP <) [MW)P+APWP <C- ) [wi ()P forallv e RP.
i=1 =1

i=1

The p} are represented as v — v - wi, where wi = (W} ,,...,w} ) and the w}
are computed with parameters (AgC, A;CA@_). ’ ’ ’
This computation requires work and storage at most CL.
Here, ¢ > 0 and C > 1 are universal constants.

Ezxplanation. We proceed by induction on D.

First consider the base case D = 1. The given functionals on R' have the form
L (v) =we-v (1 <€ <L), where the numbers wg are specified with parameters
(Ag,Ac). We define y := (jwq P + -+ + |Wﬂp + Ap)]/p. Using Lemma 2, we
compute a machine number ¥ such that y/2 < ¥ < 2y. Define the functional
wi(v) =¥ -von R'. Then the estimate (2.37) holds with ¢ = 1/2 and C = 2.

We now treat the induction step. Fix an integer D > 2. We assume by
induction that the algorithm COMPRESS NORMS has been established when D is
replaced by D — 1.

We write ¢, ¢/, C, C’, etc., to denote constants depending only on p and D.

We define the functionals

(2.38) wi(v):=A-v; forv=(vi,...,vp) e RP, foreachi=1,...,D.

Let {w1,...,uL} denote the collection {It;,-- - H, w1,...,wp} of linear func-
tionals on RP. Except for minor modifications, we mimic the computation in the
infinite-precision version of COMPRESS NORMS (see Section 2.8 of [3]), using the
collection {Wy,...,ur} as input. We include the extra functionals w; in order to
ensure that we never encounter division by a small number. This leads to the
required numerical stability. We provide details of the computation below.
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For each 1 <1 <L, we write

(2.39) wi(vi,...,vp) == B - vp + pi(vi,...,vp-1,0)

=ei- [Bivp — Hi(vi,...,vD-1)],
where Bi = [B]], ei = sgn(B}), and pi(v1,...,vp-1) = —€i - wi(v1,...,vp-1,0).
Here, sgn(-) denotes the “signum” function: sgn(a) =1 if o« > 0, and sgn(x) = —1
if a0 < 0.

The numbers B} in (2.39) are given with parameters (Ag, A ), since the func-
tionals 11, are given with parameters (Ag, Ac) and the wy are given exactly. Hence,
we can compute 3; with parameters (Ag, 10A) for each i. We cannot compute €
or [y with any accuracy unless |B| > A¢, but this remark will not cause much
difficulty.

We set Ay = AQCO, for a universal constant Co € N that will be determined
later. Recall that (i is specified to precision A¢, and that A < %Ago = JTA1.
Hence, we can compute a subset Ii* ¢ {1,..., L} such that

(2.40) Bi <2A; fori¢ I and B; > A forie I2,

(Just compare the machine approximation of each f; to %A1 2

We compute €; = sgn(B}) exactly if i € I", since then we have |B:| = i >
Ay > 2 A.. (We do not attempt to compute €; for i ¢ I1".) Hence, we can compute
the functional [; with parameters (Ag,A¢) for each i € Ifin,

Alternatively, for each i ¢ 1" we define the functional {;(v1,...,vp_1) =
ui(vi,...,vp_1,0), which is given with parameters (Ag, Ac). We have either p; =
—lq or 1y = Ky, though we do not guarantee which case occurs.

We have i, = wp for some ip € {1,...,L}. From (2.38), we see that i, =
A > Ay > 2Aq, since By, is the magnitude of the coefficient of vp in i, = wp.
Hence, ip € 1", thanks to (2.40). Therefore,

(2.41) B:= ) [Bil" >|Bi,[" = AP.
ieIfin

Each f; in (2.41) is given with parameters (Ag,Ac). Hence, we can compute B
to precision L - AacAe < A;C/Ae, since #(Ii?) < L < AEC (note: the error
invoked in computing each exponentiation |B¢|" is bounded by AacAe). Clearly,
also B € [Ag,AgC]. Hence, for each i € 1" we can compute Prob(i) := |Bi|? /B
with parameters (1, AgcAe ).

Recall that the coefficients of [i; : RP~! — R are bounded by A? ,and D < C.
Therefore,

(2.42) [Hi(viy..oyvp1)|P < A;C vP.

The list {p1,..., 1} consists of the functionals it, and w; (defined in (2.38)).
Hence,

T L
(2.43) D vy vp)[P AP P =D fui(vi,.. ., vp) [P
=1

i=1
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which differs by at most a factor of C from
(2.44) B- |VD —L_l(V],...,va]Hp

{ - Prob(i) - [iv1,...,vp_1) — By "Hi(v1,...,vp)|”

ieIfin
+ { > B _ﬁi("la---)VDlﬂp}})
iglf}u
where
(2.45) H(viy...,vp 1) = Y Prob(i)- {B; ' Hi(vi,...,vp 1)}
i€ Ifin
=B ) Bl vy, Vo)

ieIfin

We prove these estimates by the same argument used in the estimations following
equation (2.67) in [3]. (In contrast to the prior setting, we no longer guarantee
here that B; = 0 for i ¢ 1", which is why the third line in (2.44) contains an extra
term of the form Bivp.)

Note that Z0* £ (), as we saw just before (2.41). Recall that |Prob(i)] < 1 for
each i, and that By > Ay = Agc" for each i € I, Therefore, from (2.45) we see
that ,

1) < #0085 - masc () < 43S

Moreover, we can compute Tt in (2.45) to precision A;CAe. Hence, we can com-
pute t with parameters (Agc, A;CAe).

We next estimate the term inside the brackets in (2.44). Applying the estimate
[ +yl” = xIP| <yl (Ix] + [y)P~T, we have

‘ D> IBwvp —mivi,..vo )P = Y |F~li(vh~-~>VD71)|p‘

igIfin ig Ifin
- -1
<p- > [Bwvol-{IBvo|+ [, vo1)}
-'Lelﬁll
< CLAGCA [P < ASC P
The constant C’ is independent of Cy. Here, we use estimate (2.42), that |Bi] <

2A; for i ¢ 1" (see (2.40)), and that the number of relevant i is bounded by
L< Agc. Hence,

G- Agofc' [v[P < [bracketed expression in (2.44)] < & + Agofc’ P,

where & := Z ||,~J.'1(V] yeeoyVD—1 )|p .
iQIﬁ“

We now fix the constant Cy used to define A; = Agc". We take Co much larger
than C’ above, so that the junk term AQCO*C' [v[P is bounded by 15(C) A} [v|” <
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11—0(6)*]Ap [v[P. Hence, we can replace the expression inside square brackets
in (2.44) with &, and we can absorb the junk term Agofcl [v[¥ into the junk

term AP [v|P in (2.43). Consequently, ZE:1 [Ee(Viy...,vp)|[P + AP [v|P differs by
at most a factor of C” from

B- |VD —E(V],...,VD71)|p
+ {B : Z PI‘Ob(I) : |E(VI)---)VD71) - B;]ﬁi(‘)la---)vaﬂw
{efin
+ { > |ﬁi(V1,---,VD1)|p}}
ielﬁn
We add AP |(v1,...,vp_1)|" to both expressions in the previous sentence. Note
that AP [(v1,...,vD1 )|P + AP |[v|P differs by at most a factor of 2 from AP |v|.
Therefore, Z}F:] [Ee(v1,...,vD)[P + AP |v|? differs by at most a factor of C" from
(2.46) B |vp —(viy...,vp_1)|P
+ { D> BV, -y VD) = Bi(viy ey vp )P
iEIﬁ“

+ Z |ﬁi(v1a---)VD71)|p +AP |(V1)---)VD1)|p}
iglfin

(Recall that Prob(i) = |Bi|" /B and that [1; = iﬁi.) We consider the functionals
arising inside the curly brackets above, namely

ﬁip_l(V],...Lva])—ﬁi(V],...,VDfﬂ ifiGIﬁn,

Hi(vi,... VD1)1={ = oo s 5 1fin
' ’ ’ Ui(Vh-“)va]) lflélﬁ .

Note that ||Hi]| < Aac, since the same upper bound holds for T, ﬁi = +ui,
and Bi. Moreover, each [1; can be computed to precision AQCAE. Hence, we can
compute [ (1 <1< L) with parameters (AQC,AECAe).

The functionals [; are given with parameters (Agc,AacAe) and Agc <Ay <
A <1. By the induction hypothesis, we can compute functionals puj,...,uj_; :

RP—T — R such that
D-1

Z (v, vp1) [P
i=1
differs by at most a factor of C from the expression in curly brackets in (2.46).
The uj,...,u5_, are specified with parameters (Ag ,Aac Ae).
We define

uh (viy...,vp) =B!/P. Vb —&(vi,...,vb_1)].

We can compute pj, with parameters (Ag,AECAe), since the same is true of B
and T, and since B > AP > Al (see (2.41)).



1062 C. FEFFERMAN, A. ISRAEL, AND G. K. LULI

Thus, from (2.46), we see that

L D1
¢ [Z [fe(v1,...,vD)[” + AP |V|p} < up vy vp)l” +Z|H§(V1,-~-»VD71)|p
=1 i=1

T
<C-[ Y W1y vo) P+ AP P .
=1

This completes the explanation of the finite-precision version of COMPRESS
NORMS. O

2.7. Algorithm: Optimize via matrix

We define Apjn < Ae < Ag < Ag <1 as in the Main assumptions in Section 2.2.
In particular, Anim = 2-S (S = Kmaxg) denotes the machine precision of our
computer, and Ag = 275, We assume that Ae < Ag for a large enough universal
constant C.

We are given the following data:

¢ We fix a machine number A € [Ag, 1] of the form A = 2S5 for an integer
K>1.

e We are given a matrix A = (agj Ji<e<t ,1<j<j- The numbers ay; are specified
with parameters (Ag,Ac). We have 1 < L < A? and 1 < J < C for a
universal constant C.

e We fix an S-bit machine number p > 1.

ALGORITHM: OPTIMIZE VIA MATRIX (FINITE-PRECISION)

Given 1 < p < oo, given A, and given a matrix A = (a¢j)1<e<1,1<j<] as above,
we compute a matrix B = (bje)i<j<j,1<e<t. We guarantee that the following
conditions hold.

Let y1,...,yc be real numbers, and set xj = Z;T:1 bjeye for each j =1,...,].
Then

L ] L ] J
Do+ agxilP < Cre | Y lyet Y agxl” A7 Y |xl?]
=1 =1

j=1 j=1 j=1

for any real numbers x1,...,Xj.
The numbers bje are computed with parameters (Agc‘ ,A;C‘ Ae).
The algorithm requires work and storage at most Cy - L.
Here, C; is a universal constant.

Ezxplanation. We write ¢, C, C’, etc., to denote universal constants.

We proceed by induction on J. We first handle the case ] = 1.

Assume that an L x 1 matrix (ag¢)1<e<r is given, with each number a; specified
with parameters (Ag, Ac).

Let y1,...,yrL be given real numbers.

We define yo = 0 and ap = A.
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We compute an index set £ C {0,...,L} such that |a¢| > A;O for £ € £, and
lae| <2 A]go for £ €{0,...,L}\£L. To do so, we compare the machine approximation
of each |ae| to the machine number 3A1°.

Note that ag = A > Ag > 2A1°, which implies that 0 € £. In particular,
L #0.

If |ae| < 2Al° then the quantities [y| +2A° - |x| and [ye + aex|+2A1° - ||
differ by at most a factor of 2, thanks to the triangle inequality. Thus,

e+ aex” + AP X7~ JyeP + AP - x[P for £ €{0,..., LI\ L,

where A ~ B indicates that ¢ - A < B < C - A for some universal constants ¢ > 0
and C > 1. Therefore, we have

(2.47) Z e+ aexP+E0) ~ ) yetaxP+ Y " +E(x),
—o tec €€(0,...L\L

where £(x) = #({0,...,L}\ £) - AP - [x|7.
Since L < Ay, it follows that £(x) < A-[x[” < AP-[x|” = |yo + aox|”. Therefore,

because [yo + apx|? is a summand on both sides of (2.47), we can discard the error
term £(x) and obtain

Z|ye tarx[P~Y etacxP+ Y [y

el 0€{0,...,L\L

We write this estimate in the form

(2.48) Z|U€+06X|p S e+ lal®+ D>y,

tel eefo,...,L\L
— Ye
where we define y, := =—.
Qe
2 2
Now, we want to minimize the expression 7(x) = 3, [§, +x[" - [ae|" up to

a universal constant factor. We define
-1
x* = —ng -Prob(£), where Prob(l):= ( Z |Cl@l|p) “lagl? for Le L.
el ver

Recall that £ # (). Hence, Prob({) is a well-defined probability measure on L.
From equation (2.65) in [3], we conclude that T (x.) < C- T (x) for all x € R.
Therefore, we have

Z|‘Je+a¢x*|p<C' Z|y€+aex|p for any x € R.
=0 —

Because yo =0 and ap = A, this 1mphes that

L L
Y et a3 fyet aoxl” a7 7,
=1 =1
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as desired in the case ] =1 of our algorithm. Note that

X" = —le@ - Prob({) = Z yg - by, where

el teL\{0}
-1
be=—( Y lacl) lad”-a forte £\ (0}
Lt'el

It is safe to discard the £ =0 term in the sum, because by definition yo =Yy, = 0.
Note that |ae| and |ae|, for {,£’ € £, belong to the interval [A;O, Ag]]. Therefore,
P

we can compute |ae/|” and |ae|” to precision A;CAE; moreover, we can compute

the expression (--- )7] —in the formula for by— with precision A;CAE. Thus,
we can compute the coefficients by, for each £ € £\ {0}, with precision AECA@_.

Furthermore, note that each |be| is bounded by Aac for a universal constant C > T.
All the remaining coefficients bg, for £ € {1,...,L}\ £, are defined to be 0.

Thus, x* = ZKL:] Y¢ - be, and by can be computed with the desired parameters.
Thus, we have established the case ] =1 of our algorithm.

For the general case, we use induction on J.
Let ] > 2, and let 1 < p < oo and assume that we are given an L x | matrix A =
(agj)i<e<t,1<j<j. We assume that the numbers ayj are specified with parameters

(Ag,Ae).
Let real numbers yy,...,yr be given. We have
L J . L J—1 .
(2.49) Z‘ye+Zaerj‘ :Z’ge-i-Zaszj’ ((x1y.00yxy) €R]),
=1 j=1 =1 j=1

j=

using new variables
(2.50) Yo=ye+ag-xy for1 <t<L

By applying the algorithm OPTIMIZE VIA MATRIX recursively to T < p < oo
and the submatrix (agj)1<e<r,1<j<j—1, we compute a matrix (bje)1<j<j—1,1<0<L
such that the following holds.

e We compute the numbers /5]- ¢ with parameters (Agc,AgcAe) for a universal
constant C.

e Let U1,...,yr be given, and set

L

(2.51) i\jzzgjggg fOI‘]S)S]—]
=1

Then, for any real numbers x1,...,%j_1, we have

L 71 L J—1 J—1
(252) Y [Ge+ ) agXlP<C- [Zhje +5 agxlP + AP Zmﬂ.
=1 j=1 0=1 j=1 j=1
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Using (2.49)—(2.52), we draw the following conclusion.

Let real numbers y1,...,yr be given, and let x1,...,%) be arbitrary. We define
U1,...,Yr by (2.50), next define X1,...,Xj—1 by (2.51), and finally set
(2.53) 3(\] =XJ.
Then

L j L j J1
Dlye+ Y agXP < C-[ X e+ Y agxl+A" 3 [P,
=1 =1 =1 =1 =1
hence
L J L j j
(2.54) D |ye+ ) agXj|P+AP-[xP < C- [ZM +Y agx;|P+AP lejﬂ»
=1 j=1 =1 j=1 j=1

and moreover

L
(2.55) X5 =) bie-(Yetagxy) forj=1,...,]—1.
=1
Thus,
L ~
(2.56) Xj = Z bjeye + gj Xy, where
=1
L ~
(2.57) 9j Z:ij((lg] fOI‘jI],...,]—].
=1

We compute the numbers g; with parameters (Agcl, AEC'AE) using work at most CL.
This is possible because L < A? and because of parameters with which Bj ¢ and agj
are specified. In the above discussion, the numbers x1,...,X; are arbitrary, the
numbers X1, ...,Xj—1 are defined from Xj by (2.55), and Xj = x;.
Next, note that
J T Lo
Ye+ Z QX =Ye+ Z Qej { Z bjeryer + giil} + agXy
j=1 j=1 =1
- L J—1
{Uz + Z ayj Z b]e'ye'} {ae] + Z a¢; g; }% =y + he - Xy.
=1 j=1

Here,

(258) yxéuch —

L
Z gjf’y@’)

i I\/]T

and
J-1

(2.59) hg:ag]—i—Zagjgj fort=1,...,L
=1
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Thus,
L J L
(2.60) Z|ye + Z ag ;P = Z|U?"C]’ + hexy|P.
=1 j=1 =1
Here, (2.60) holds whenever X1,...,Xj_1 are determined from Xy via (2.56).

We compute the numbers h, with parameters (AS,A;CAE), using work at
most CL.

Note that it is too expensive to compute y§** for all £ (1 < € < L); that
computation would require ~ L?] work. However, the ys'" defined above are
independent of our choice of Xj.

Applying the known case ] = 1 of our algorithm OPTIMIZE VIA MATRIX, we
compute from the hg a vector of coefficients v (1 < € <L), for which the following
holds.

¢ We compute the numbers vy, with parameters (Ag,AgCAe) for a universal

constant C.
o Let
L
(261) %= ) vewp
=T
Then
L L
Sl +hexgP < C [ 3 e+ heRIP 4 AT - Ry
=1 =1

for any real number Xj.

We thus learn the following.
Let X1,...,Xj—1 be defined from X; as in (2.56), i.e.,

L
(2.62) %= bjye+gixy forj=1,...,]—1.

=1
Let Xj be any real number, and let X1,...,Xj—1 be determined from Xj by (2.56).
Then

L ] L )
(2.63) D lye+ ) agxlP<C- [ZM +) agx;|P AP |§J|p}
=1 =1 =1

j=1

(See (2.60).)
From (2.54) and (2.63), we see that

L J L J J
(2.64) D lye+ ) agxlP<C- [Z|ye +) ayx|P + AP Z|Xj|p}~
=1 i=1 =1 i=1 i=1

Here, X1,...,% are computed from (2.61),(2.62); and x1,...,xj are arbitrary.
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We produce efficient formulas for the %;. Putting (2.58) into (2.61), we find
that

L J—1 L L LoJj-1 L
X =) ye { Z ije'yz/}:ZW'yz-F ZZ[ZW%]bje/yw
(=1 j=1 =1 (=1 0=1j=1 t=1
L -1 L R
= Z {W + Z [ Z Yer az/j}bje} “Ye.
(=1 j=1 =1
Therefore, setting
L
(2.65) Ay =) yeay forj=1,...,]—1
=1
and
-1
(2.66) bl =ve+ ) Ajbye fort=1,...,L
j=1
we find that
L
(2.67) Xy = Zbﬁ#yg.
=1

Substituting (2.67) into (2.62), we find that

L
gj:Z{Bngjbﬁ#}yg forj=1,...,]—1.

=1
Thus, setting
(2.68) b # =bje+ g bl for j=1,...,7-1, t=1,...,L
we have
L
(2.69) %= biTye forj=1,...,]—1.
=1

Recalling (2.67), we see that (2.69) holds for j = 1,...,]. Thus, with Xq,...,%;
defined by (2.69), we have

L J L ] J
Y et Y auxlP <[ Yot Y ansl APy yl?]
=1 j=1 =1 j=1 j=1

for any real numbers x1,...,xj. (See (2.64).)
So the matrix B = (bﬁ#hgjg ,1<¢<1 is as promised in our algorithm.
We make a few additional remarks on the computation of (bﬁ#hgjg ,1<e<L-

* Recall the numbers vy, ayj, and gjg are given with parameters (Ag, AECAe).
Also recall that L < A?.



1068 C. FEFFERMAN, A. ISRAEL, AND G. K. LULI

e Thus, the numbers A; (1 < j < J—1) in (2.65) can be computed with
parameters (Ag,AgCAE).

¢ Consequently, the numbers bﬁ# (1 <€<1)in (2.66) can be computed with
parameters (Ag,AgCAE).

e Recall that the numbers g; (1 <j <J—1) in (2.57) can be computed with
parameters (AgC,AgCAE).

e Therefore, the numbers bﬁ# (1<j<J—=1,1<¢<1)in (2.68) can be
computed with parameters (Ag, AECAE).

e Thus, the matrix B = (bﬁ#) can be computed to the accuracy promised in
the algorithm. O

2.8. Statement of main technical results

We next state a modified version of the main technical results for A (see Section 3
in [3]) that accounts for the rounding errors that may arise in our computation.

We define a norm |P| := (Z“€M|8“P(O)|p)]/p for P € P. Thus, |P| denotes
the £P-norm of the vector (0%P(0)) xe-

We fix an integer S > 1.

We are given a finite set E C ;—ZQO, with Q° = [0,1)™. We assume that
N = #(E) > 2. We additionally assume that E consists of S-bit machine points.
Thus,

(2.70) [x —x'| > Ao for distinct x,x’ € E,
where Ag := 2-S. Hence,
(2.71) #(E)=N< A

For A1, A, € (0,1], we write A7 < A to indicate that A7 < AZC for a sufficiently
large universal constant C.

We introduce constants A2 = 2~ K15 Ag = 27K25 and Ak = 27KsS ag
in Theorem 1. Here, Ky,K;, K3 are positive integers, which are assumed to be

sufficiently well-separated in the sense that Ky > C - Ky > CZ. K3 for a large
enough universal constant C.

For each A C M, we will use parameters Ac(A) = Ag' (A), Ag(A) = AgZM),
and Ajunk(A) = Ag3(’4) for integer exponents Kj(A) > K(A) > K3(A) > 1. We

assume the exponents are chosen so that

(2.72) AcM) < - < A(D) < A2
KA < AG(0) < - < Ag(IM)
L Ajunk(M) < -+ L Ajunk(0) < A
< Ap.
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In particular,

(2.73) Ay < (Ag(0))€

and
Ac(A7) < A (AM)E
Ag(AT) < Ag(AT)C
(274) AJ“nk(Ai) < Ajunk(»A )C
Ac(0) < Ag(0)©
Ag(M) < Ajunk(M)©
Ajunk(0) < A§

for any A" > A~ and for a large enough universal constant C. We refer the reader
to Section 2.6 in [3] for the definition of our order relation on sets of multiindices.
The conditions in (2.72), (2.73), and (2.74) are clearly consistent with one another.
We will use these conditions throughout the course of the proof.

We assume throughout the course of the proof that we can perform arithmetic
operations on S-bit machine numbers to precision Ay, = 275, where S = KipaxS.
Here, the parameter Kp.x € N is larger than all the exponents K;(.A) (for all
AC Mandj=1,2,3).

The main technical results for A are as in Section 3 of [3], with the following
modifications.

e We define a dyadic decomposition CZ(.A) of Q°. We continue to guarantee
the properties (CZ1)—(CZ5). We additionally guarantee that

(275) 6Q > 3]—2 - Ao  for all Q S CZ(.A)

Hence, each cube in CZ(.A) has S-bit machine points as corners, where S <
S +100. Thus, we can store each cube in CZ(A) on our computer using at
most C units of storage (for a universal constant C). However, we will not
compute all the cubes in CZ(A) for this would require too much work.

e We let CZpain(A) consist of all the cubes Q € CZ(.A) such that g—iQﬂE # 0.
For each Q € CZpain(A), we will compute Q(Q, A), 2(Q, A), and T(g, 4) as

in the three bullet points below.

e The assists w € Q(Q,.A) are to be given in short form with parameters

(Ag(A), Ac(A)).

e The functionals & € Z(Q,.4)) are to be given in short form with parameters
(Ag(A),Ac(A)) in terms of the assists Q(Q,.A).
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We define

Mg (f,P)=( Y |£(f,P)|p)1/p.
£€Z(Q,A)

For each (f,P) € X(Z& 65 2QNE) ® P, we guarantee that

¢ [(f,P)[(1+a(a)Q < M(qu(f,P) < C- {H(f)P)H%Q + Ajunk(A) - [P[] .

The operators T(g, 4) map X(g—iQ NE) @ P into X.

(E1) T(g,4)(f,P)=fon (1+a(A))QNE for each (f,P).

(E2) HT(Q,A)(f» P)||§((]+Q(A))Q) + 56mp”T(Q,A)(f) P) — P||Ev((1+q(A))Q) <
C [M(q,a)(f,P)]" for each (f,P).

(E3) T(g,4) has Q(Q, A)-assisted depth at most C.

The only modification to the algorithm CZ-ORACLE is as follows:
We assume that the query x € Q° is an S-bit machine point. We compute a
list of all the cubes Q € CZ(.A™) such that x € &

(Recall that S = KmaxS is the maximum bit length of a machine number
representable on our computer.)

The algorithm COMPUTE MAIN-CUBES is unchanged. We compute and store
all the cubes in CZai0(A).

The only modifications to the algorithm COMPUTE FUNCTIONALS are as
follows.

The functionals w € Q(Q,.A) are computed in short form with parameters
(Ag(A),Ac(A)). The functionals & € Z(Q,.A) are computed in short form
with parameters (Ag(A), Ac(A)) in terms of the assists Q(Q,.A).

The only modifications to the algorithm COMPUTE EXTENSION OPERATORS
are as follows.

Let x € Q° be an S-bit machine point, and let « € M. We compute the
linear functional (f,P) — 0%(T(q, 4)(f,P))(x) in short form with parameters
(Ag(A),Ac(A)) in terms of the assists Q(Q,.A). This requires work at most
ClogN, as before.

All the constants c.(A),S(A),e1(A),e2(A),a(A),c,C depend on m,n,p,
and A. The constant S(A) > 1 is an integer. We further assume that a(.A)
is an integer power of 2. (This is a new assumption in the finite-precision
case.)

We perform the above computations using one-time work at most CN log N
and storage at most CN.
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2.9. Algorithms for dyadic cubes

We make the following assumptions.

¢ We are given machine numbers A, = 27K15 and Ay = Z*Kzg, for integers
K1, Kz > 1.

e We assume that our computer can perform arithmetic operations on S-bit
machine numbers with precision Apin = 275, where S = Kpax - S.

e We assume that Api, < AS, Ae < Ag, and Ay < 2-CS for a large enough
universal constant C.

Whenever we refer to a machine number in this section, we mean an S-bit
machine number, with S as above.

We call a dyadic cuboid Q = H?:1 I; € R™ a “machine cuboid” if each I is
an interval of the form [aj, bj), where aj and b; are machine numbers. Recall that
each Ij is contained in [0, 00), by definition of cuboids (see Section 4.1.1 in [3]).

Let Q and Q' be given machine cuboids. The following task can be performed
using one unit of “work”:

(2.76)  Compute the smallest machine cuboid Q containing both Q’ and Q”.

Let us explain why we charge only one unit of work to perform the task (2.76).
We suppose that a non-negative machine number x is represented in the com-
puter by its binary digits (xi)_s<i<s, where

+S
X = Z xi2Y  and each x; € {0, 1}.
i=—S$

We suppose that the bit pattern (xi)—s<i<s fits in a single machine word. Given
two distinct non-negative machine numbers x,y with binary digits (xi)—s<i<s,
(yi)—s<i<s respectively, we return the largest i, for which x;, # yi,. Recall
that in our model of computation for finite-precision arithmetic, we assume that
the computation of i, from (xi) and (yi) takes one unit of “work”. (See Sec-
tion 2.1.) Moreover, there are computers in use today for which the computation
of i, from (x;) and (yi) may be accomplished by executing O(1) assembly language
instructions.

Note that the smallest smallest dyadic interval containing x and y has length 21+,
It follows easily that the task (2.76) may be accomplished using at most C opera-
tions. That is why we consider it reasonable to charge one unit of “work” to carry
out (2.76).

Therefore, we can determine whether Q < Q’, Q' < Q, or Q = Q’, using O(1)
computer operations. We refer here to the order relation on dyadic cuboids defined
in Section 4.1.1 of [3].

We should point out that the task (2.76) appears to require more than O(1)
operations in several standard models of computation (not used here). See the
discussion of “quad trees” and “segment trees” in [1].

We will obtain versions of the algorithms in Section 4.1.2 of [3] which are
adapted to our finite-precision model of computation.
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A modification we will make throughout is that all the cuboids that are input
data to an algorithm will be assumed to be machine cuboids, while all the cuboids
that are produced as output data are guaranteed to be machine cuboids. We can
clearly store a machine cuboid on our computer using O(1) units of storage.

e Modification 1. We introduce a bit of notation relevant to the notion of
DTrees and ADTrees. See the discussion in Section 4.1.2 of [3].

Recall that each node x of a DTree T is marked with a dyadic cuboid Q. When
we speak of a DTree T in this section, it is assumed that Qy is a machine cuboid
for each x € T.

Recall that each node x of an ADTree T is marked with linear functionals
wry ..., 1l on RP. We write u¥ @ (vi,...,vp) = Z]P:] 03v;-

We will assume that D < C for a universal constant C, in what follows.

We say that py,...,uf are specified with parameters (Ag, A¢) if |6f]| < Ag]
and if each 6% is specified to precision Ac. If that’s the case for each node x and if
the number of nodes of the ADTree is at most A? , then we say that the ADTree T
is specified with parameters (Ag, Ac).

e All of the algorithms that involve BTrees are combinatorial in nature, hence
they remain the same in our finite-precision model of computation. In particular,
BTREE]1 and MAKE CONTROL TREE (deluxe edition and paperback edition) are
unchanged.

e Modification 2. We make the following changes to the algorithm MAKE
CONTROL TREE (HYBRID VERSION) (see Section 4.1.3 of [3]).

Assume that an ADTree T is given with parameters (Ag, A ), with each node x
in T marked by linear functionals u¥,..., w5 on RP. Also, we are given a machine
number A € [Ag, 1] of the form A = 27KS for an integer K > 1.

Then we compute the control tree CT(T), with all its markings except for the
trees BT (&) (§ € CT(T)). For each node & € CT(T), we compute functionals
p‘]{,...,p]‘g :RP — R of the form

D
pf :(Viye..yvp) ZQf].vj.
j=1

The numbers foj are computed with parameters (Agc, AacAe). That is, we guaran-

tee that |6§| < Aac and each Gf- is computed to precision AacAe. We guarantee
that for each & € CT(T) we have

D D D

(2.77) cY [P < > Y WP +APRP <CY [ubM)P.
i=1 XEBT(E) i=1 i=1

Recall that we denote [v[P =} ;|v;j|P for v= (vi,...,vD).

The work and storage requirements are the same as before.
That completes the list of modifications to the hybrid version of MAKE CON-
TROL TREE.
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To obtain this result, we apply the finite-precision version of COMPRESS NORMS
(see Section 2.6) where before we used its infinite-precision counterpart. The proof
of (2.77) is exactly as before.

e Modification 3. In the algorithm ENCAPSULATE: Assume that T is a DTree
with N nodes such that each node x in T is marked with a machine cuboid Q.
We perform CN(1 4+ log N) one-time work in space CN after which we can answer
queries. A query consists of a machine cuboid Q. The response to a query is an
encapsulation S of Q, consisting of at most C+ Clog N nodes of CT(T). The work
and storage used to answer a query are at most C + ClogN, where C denotes a
constant depending only on the dimension n.

For the explanation of the algorithm, just note that one can compare two
machine cuboids to determine whether one contains the other, using at most C
units of work. Thus, we can proceed as in the infinite-precision version of the
algorithm ENCAPSULATE using our finite-precision computer.

e Modification 4. In the algorithm ADPROCESS (see Section 4.1.4 of [3]):
We assume our ADTree T is given with parameters (Ag,Ac). We are given a
machine number A € [Ag, 1] of the form A =275 for an integer K > 1.

A query consists of a machine cuboid Q. The response to a query is a list of
; i Q Q D
linear functionals pu;°,..., w3 on R* such that

D D
278) ) WP < D> D WP + AP log(Ay [P
i=1 xe€T i=1
QxCQ

D
< C[Z“l? (V)|P + AP 1og(Ag] )v[P| for allv e RP.
i=1

Each p.iQ has the form p.iQ :(viy...,vD) — Z].z] Bgvj. We compute each 9%
with parameters (Agc, A;CAE).

The work and storage requirements remain the same as before. That completes
the list of modifications to the statement of ADPROCESS.

We present the modifications needed in the explanation of the algorithm. We
use the finite-precision versions of the algorithms MAKE CONTROL TREE (HYBRID
VERSION) and COMPRESS NORMS in place of the infinite-precision counterparts.
In the one-time work, we compute the control tree CT(T). Each node & € CT(T)
is marked with linear functionals p‘]z, . ..,p]‘g satisfying (2.77). We compute the
functionals p.{z with parameters (AS,A;CAe).

Using the algorithm ENCAPSULATE, we respond to a query as follows.

Given a machine cuboid Q, we produce a set S of at most C+ Clog N nodes in
CT(T) such that {x € T: Qx C Q}is the disjoint union over & € S of BT(&). There-
fore, by the finite-precision version of MAKE CONTROL TREE (HYBRID VERSION)
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(see Modification 2 above), the expression

D D
SEDEDNHGIETICRARED WD WD WSS

xeT i=1 £€S xeBT(&) i=1
QxCQ

differs by at most a factor of C from

D
¢ = ZZWE(VHP-

£esSi=1

Applying COMPRESS NORMS (finite-precision) (see Section 2.6) to the expres-
sion &;, we compute linear functionals p.?, ceey p.8 such that &, + AP - [v|P differs
by at most a factor of C from Z?:] |uf2 (v)|P. Each functional uiQ is computed
with parameters (Agc, A;CAE).

Therefore, 2?11 |p.f2 (v)|P differs by at most a factor of C from

D
E +APRP = D D [WFW)P + (#(S) + 1) - AP - P

xeT i=1
QxCQ
Note that
#(S) < C+ Clog(#(T)) < Clog(Ay),

so the junk term
(#(S)+1)- AP - |v[P

is bounded by C AP log(A;1 Jv|[P. That concludes the proof of (2.78).
The work and storage requirements are as promised.

e Modification 5. In the algorithms MAKE FOREST, FILL IN GAPS, and MAKE
DTREE: All dyadic cuboids are assumed to be machine cuboids. The explanations
of these algorithms require no modification.

e Modification 6. In COMPUTE NORMS FROM MARKED CUBOIDS:

We suppose our cuboids Q1, ..., Qn have corners whose coordinates are S-bit
machine numbers, with S < CS for a universal constant C. Hence, N < 20nS <
ASC, where we set Ag = 2-S,

We are given a machine number A € [Ag, 1] of the form A = 27K for an integer
K>1.

Each linear functional pR®* is given as u®t : (vi,...,vp) — Z]p:] 6;v;. The
numbers 9}]. are specified with parameters (Ag, Ac). We assume that N:= Z?; (Ly
+1) < A;‘.

A query consists of a dyadic cuboid Q whose corners are machine points.
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The response to a query Q is a list of linear functionals ﬁ] N pD RP 5 R
for which we guarantee the estimate

D Li
¢ REMIP < > Y [ )P+ APA; Clog(Ay ") - [P
j=1

QiCQj=1

D
C[ng(vﬂp +APAG S log(Ag") - [vP|  for all v € RP.

Each ﬁ? has the form p.iQ

: (viy...,vp) = Z] 1 0:5v;. The numbers GQ
computed with parameters (Ag,Ag Ae).
That completes the list of modifications to the algorithm COMPUTE NORMS

FROM MARKED CUBOIDS.
The explanation of the algorithm is as follows.

For eachi=1,..., N we apply the finite-precision version of COMPRESS NORMS
(see Section 2.6) to produce linear functionals E].Q‘ on RP for 1 <j < D such that

g

Ly

D
@79) e ) [N <) Ju " +aT-pP <) [E )’
j=1 j=1

j=1

Note that each L; < A*] by assumption, so the algorithm may be applied as

i

stated. The functionals [t u are given with parameters (Ag, A;CA@_).

Using the algorithm MAKE DTREE, we construct a DTree T with at most CN
nodes, such that each Qj is a node of T. We mark each Qi in T with the list
of functionals E?i, . ,Egi, and we mark all the other nodes in T with a list of
linear functionals that are all zero. When equipped with these markings, T forms

an ADTree. Note that #(T) < CN < CA;C < Ag]. Hence, the ADTree T is
specified with parameters (Ag,AgCAe) (recall that E].Q‘ are specified with such
parameters).

We apply the algorithm ADPROCESS to the ADTree T. Thus, given a machine
cube Q, we can compute a list of linear functionals ﬁ?, ceny ﬁg on RP such that

D D
¢ Y BRI 3 3 [+ AP log(a,€) - v
j=1

1<i<N j=1
QiCQ

g

<C [ Y [RRW)[" + AP log(a;€) - [vP .

Note that A € [Agc, 1], so the algorithm may be applied as stated. Using (2.79),
we determine that

D L
e YR < ¥ 3 ol rew <c- [ [ake)” +ew)
j=1

1<i<N j=1 =1
QiCQ

g
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where
€)= Y AP P+ APlog(ASC) - v[P.
1<i<N
QiCQ

Since N < ASC, we conclude that
E(v) < APA; Clog(A;C) - v|P < APA; log(Ag") - v
The previous estimate implies the desired condition on the functionals ﬁ?, RN ﬁg

This completes the explanation of the finite-precision version of the algorithm
COMPUTE NORMS FROM MARKED CUBOIDS.

e The algorithm PLACING A POINT INSIDE TARGET CUBOIDS requires minor
changes in finite-precision. We assume that Qq,...,Qn are machine cuboids, and
that the query x is a machine point. The response to a query x is either one of
the Qi containing x, or else a promise that no such Q; exists. The work to answer
a query is at most C - (1 4+ logN). The explanation of the algorithm requires no
modification.

This concludes the description of the changes required in Section 4.1 of [3].
Aside from the following modifications, all the algorithms in Sections 4.2-4.5
of [3] are unchanged in our finite-precision model of computation.
* Each point x € E is an S-bit machine point (i.e., the coordinates of x are
S-bit machine numbers).

* All numbers are S-bit machine numbers and all given points are S-bit machine
points, where S = Kp,axS.

¢ Each dyadic cuboid has S-bit machine points as corners, where S < CS.

2.10. CZ decompositions

We describe the modifications required in Section 4.6 of [3]. We let Apin = 2-3
denote the machine precision of our computer, where S = KyaxS.

We call a dyadic cube Q = [[_; Ix € R™ a “machine cube” if each Iy is an
interval of the form [ay, by ), where ax and by are machine numbers.

* In Sections 4.6.2 and 4.6.3 of [3], we assume we given a subset E C Q° =
[0,1)™. We assume that each point in E is an S-bit machine point. Hence,

Ix —y| > Ao = 25 for distinct x,y € E.
e In Section 4.6.3 of [3], we assume we are given a list A= (A(x))xeE consisting
of positive real numbers. We assume that the numbers A(x) are S-bit machine

numbers, where S < CS for a universal constant C > 1. Hence, A(x) > 275 >
A§ for all x € E.

We recall the definition of the Calderén—Zygmund decomposition CZ(&):

o CZ(&) consists of the maximal dyadic cubes Q C Q° such that either #(EN
3Q) < TorA(x) > dq for all x € EN3Q.
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For all Q € CZ(&), either Q = Q° or #(9Q NE) > #(3Q" NE) > 2. Fur-
thermore, |x —y| > Ao for any distinct x,y € E. Hence, g > c- Ao for any

Q € CZ(&). It follows that the cubes in CZ(A) have S-bit machine points as
corners, where S < CS.

The PLAIN VANILLA CZ-ORACLE in finite-precision operates as follows. Given
an S-bit machine point x € Q°, return the cube Q € CZ(A) that contains x. The
work to answer a query is at most Clog N. The explanation is identical as before.

Now, suppose we are given a dyadic decomposition CZ,, of the unit cube Q°,
satisfying the properties laid out in Section 4.6.3 of [3]. Suppose in addition that
each Q € CZ,, is a machine cube. Suppose we have available a CZ,4-ORACLE
that operates as follows: given an S-bit machine point x € Q°, return the cube
Q € CZ,, that contains x.

We recall the definition of the Calderén—Zygmund decomposition CZ,,.:

¢ (CZ,.., consists of the maximal dyadic cubes Q C Q¢ such that either Q €
CZ,4 or A(x) > 8¢ for all x € EN3Q.

Note that CZ,,, is a refinement of CZ,.,. Since the cubes in CZ,, are machine
cubes, it follows that the cubes in CZ,.,, are also machine cubes.

The GLORIFIED CZ-ORACLE in finite-precision operates as follows: A query
consists of an S-bit machine point x € Q°. The response to a query is a list of
the cubes Q € CZ,., such that x € %Q. The work to answer a query is at most
Clog N computer operations, as well as at most C calls to the CZ,,4-ORACLE. The
explanation of the finite-precision version of the algorithm is unchanged.

This concludes the description of the finite-precision versions of the algorithms
in Sections 4.6.2 and 4.6.3 of [3].

We now turn to Sections 4.6.4 and 4.6.5 of [3].

We are given a set E C ;—ZQO, with #(E) = N > 2. We assume that E consists
of S-bit machine points.

We are given a locally finite collection CZ, consisting of dyadic cubes, that
partitions Q° (or R™). We do not list all the cubes in CZ. Instead, we have
available a CZ-ORACLE that operates as follows: given an S-bit machine point
x € Q° (or x € R™), the oracle responds with a list of all Q € CZ such that
X € g—iQ. We guarantee that every such Q is an S-bit machine cube with S < CS.
We charge at most Clog N units of work to answer a query.

Under these assumptions, we have versions of the algorithms FIND NEIGHBORS
and FIND MAIN-CUBES (see Section 4.6.4 of [3]) for our finite-precision model of
computation. The explanations are unchanged. Since it will be used in the next
section, we record here the statement of the latter algorithm:

ALGORITHM: FIND MAIN-CUBES (FINITE-PRECISION)

After one-time work at most CN log N in space CN, we produce the collection
of cubes CZpain :=={Q € CZ: %Q NE # 0}. We mark each cube Q € CZyain with
a point x(Q) € %Q NE.

We also have a version of COMPUTE CUTOFF FUNCTION for our finite-precision
model of computation.
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ALGORITHM: COMPUTE CUTOFF FUNCTION (FINITE-PRECISION)

Given machine numbers A and Ag, which are large integer powers of Ag = 2-5,
given a machine number ¥ € (Ap,1/64], given an S-bit machine point x € Q°,
and given a machine cube Q € CZ, we compute the numbers %a“(]&éQ)(O)
(all @ € M) with parameters (Ag,Ac). (See Section 4.6.5 of [3] for statement of

the properties of the cutoff functions 6q.)

2.11. Starting the induction

We begin the proof of the finite-precision version of the Main Technical Results
for A. (See Section 2.8.) We follow the line of reasoning in [4], used to prove the
infinite-precision version of the Main Technical Results for A.

We proceed by induction on the collection of multiindex sets A C M with
respect to the total order relation <.

For the base case of the induction, we must prove the Main Technical Results
for A =M. B

Recall that Ag(M) and Ac (M) are assumed to be integer powers of Ay = 2-3
that satisfy Ae(M) < Ag(M) (see (2.72)). We denote Ay = Ag(M) and A =
Ac(M) in the course of this section. Thus, we may assume that A, < Agc for a
sufficiently large universal constant C.

We define CZ(M) to be the collection of the maximal dyadic cubes Q C Q°
such that #(EN3Q) < 1.

From (2.70), we know that

(2.80) dmin = min{|x —y| : x,y € E, x £y} > Ao.

With at most CN log N computer operations, we can compute a machine number &
with ¢ 0min < 6 < ”W‘Smin using the BBD Tree (see Theorem 35 in [3]). This data
structure requires no modifications in the finite-precision model of computation.
We shall use the PLAIN VANILLA CZ-ORACLE (see the description in Section 2.10)
with A defined by A(x) := 6 for all x € E. This yields the CZ(M)-ORACLE, as
described in the Main Technical Results for M; see Remark 47 in [3] for further
explanation.

Note that #(EN3Q™") > 2 for each Q € CZ(M), where Q7 is the dyadic parent
of Q. We can thus choose distinct points x,x" € EN3Q™. From (2.70) we know
that [x —x'| > Ag. Hence, 60 = 83¢q+ > Ao. In particular,

dg > 31_2A0 for each Q € CZ(M).

Thus the decomposition CZ(M) satisfies the additional property (2.75) required
in finite-precision.

Using the algorithm FIND MAIN-CUBES (see Section 2.10), we list all the cubes
Q € CZmain(M), and we compute a point x(Q) € EN g—iQ associated to each
Q S CZmain(M)-

We define linear maps T(q,aq) and functionals £q as before, in (1.3) and (1.4)
of [4]. We take the assist set Q(Q, M) to be empty for each Q € CZpain(M).
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For each Q € CZpain(M), the linear functional £q is computed in short form
with parameters (Ag, Ac). Furthermore, given an S-bit machine point x € Q° and a
multiindex o € M, we compute the linear functional (f, P) + 0%(Tq, a0 (f, P))(x)
with parameters (Ag,Ac). This completes the description of the changes to the
algorithm COMPUTE MAIN-CUBES AND COMPUTE EXTENSION OPERATORS (BASE
CASE). The explanation of the algorithm is obvious once we examine the formulas
for Tio,m) and &q.

That concludes the proof of the finite-precision version of the Main Technical
Results for A = M. This completes the base case of our induction. Next, we turn
to the induction step.

2.12. The induction step

Let A C M be a given multiindex set. Let A~ < A be maximal with respect
to the order on multiindex sets. Our goal is to prove the Main Technical Results
for A. By induction we assume that the Main Technical Results for A~ hold. We
list below a few consequences of these results. (See Section 2.8.)

We denote Ag := Ag(A7), Ae := Ac(A7), and Ajunk := Ajunk (A7), which are
the parameters arising in the Main Technical Results for A~. These parameters
are all large integer powers of Ay = 275. These parameters are not fixed just
yet. Hence, in the course of the proof of the Main Technical Results for A we
may impose additional assumptions on the relationships between these parameters.
From (2.74), we may assume estimates of the form

(2.81) Ac < AgC, Ag < Ajcunk, and  Ajunk < Ag, for a universal constant C.

For example, the first estimate in (2.81) is derived from (2.74) as follows:
Ae(A7) S Ac(l) < Ag(0)C < Ag(AT)E.

The other conditions can be derived in a similar fashion.

By the induction hypothesis, we have defined a dyadic decomposition CZ(A™)
of the unit cube Q°, which satisfies conditions (CZ1)—(CZ5) in the Main Technical
Results for A~. Furthermore, from the finite-precision version of these results, we
have

dg > 31—2 - Ao for each Q € CZ(A ™).

Recall that CZmain(A7) is the collection of all the cubes Q € CZ(.A™) such that
SEQNE#.

According to the Main Technical Results for A~, we have computed a list of
all the cubes in CZpyain(A ). Furthermore, we have access to a CZ(.A™)-ORACLE
that operates as follows: given an S-bit machine point x € Q°, we list all the cubes
Q € CZ(A™) such that x € % , using work at most Clog N.

We have computed a list of assists Q(Q,.47), and a list of assisted func-
tionals =(Q, A7) for each Q € CZpain(A7). Each w € Q(Q, A7) is a linear
functional on X(g—iQ N E), and is given in short form with parameters (Ag,Ac);
each & € Z(Q,.A7) is a linear functional on X(g—iQ NE) @ P, and is given in short
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form with parameters (Ag,A¢) in terms of the assists Q(Q,.A™). We guarantee
that

¢ Pl vaa o < Migua (6P < C- [, Pllggq + AP

where

/
M(q,a)(f,P) 1:( > |E(fal’)|p>1 "
£EZ(Q,A )

We recall that [P| = (3 cq |8°‘P(O)|p)]/p.

We have computed a linear map Tig 4 : X(g—iQ NE)® P — X for each
Q € CZmain(A7) in the following sense: given an S-bit machine point x € Q° and
a multiindex o € M, we compute the linear functional

(f,P) = 0%(T(q,a (f,P))(x)

in short form with parameters (Ag,A¢) in terms of the assists Q(Q,.A7). This
computation requires work at most Clog N.

The above computations are carried out using one-time work at most CN log N
in space at most CN, thanks to the induction hypothesis.

The finite-precision version of the algorithm APPROXIMATE OLD TRACE NORM
is as follows.

ALGORITHM: APPROXIMATE OLD TRACE NORM (FINITE—PRECISION)

For each Q € CZmain(A~) we compute linear functionals E,?,...,E,g on P,
such that

D D
c- Y JEZPIP < > [EO,P)P+AD PP <C- Y [EQ(P)P
i=1

£€2(Q,A ) i=1

The functionals E,iQ have the form &g 2(P) =) sem 0% -19%P(0). The numbers

i ol
BiQ‘X are computed with parameters (AQC, AECAe).

Explanation. The explanation proceeds just as in infinite-precision. We simply
apply the finite-precision version of the algorithm COMPRESS NORMsS (with A =
Ag) instead of the infinite-precision version of this algorithm. See Section 2.6. O

That completes the description of the main technical results for A~
We now begin the proof of the main technical results for A.

2.12.1. The non-monotonic case. Section 1.3.1 of [4] requires no change in
finite-precision. For a non-monotonic set A C M, we can simply define CZ(A) =

CZ(A7), and
Q(Q)A) = Q(Q)Ai)) E(Q)A) = E(QwAi)) and
T(Q,.A) = T(Q,.A ) for each Q S CZmain (-A) = CZmain(Ai)-

As before, the Main Technical Results for A (finite-precision) follow from the
Main Technical Results for A~ (finite-precision).
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We can compute everything to the desired precision provided that A¢(A) >
Ac(A7), Ag(A) < Ag(A7), and Ajunk(A) > Ajunk(A~). These conditions are
allowed in view of the assumptions in (2.74),

This proves the Main Technical Results for a nonmonotonic set \A.

2.12.2. The monotonic case. Henceforth, we assume that A is a monotonic
set.

The statement and proof of Proposition 1 of [4] is the same in finite-precision,
except for the following changes.

* Given a query consisting of an S-bit machine point x € R™ such that [x| < 2§,
the CZ(A )-ORACLE returns a list of the cubes Q € CZ(A ") such that
PSS g—ZQ. The work required to answer a query is at most ClogN.

One can check that the explanation for the CZ(.A™)-ORACLE given in Proposi-
tion 1 of [4] applies equally well in the finite-precision setting (under the additional
hypotheses on x stated above). Indeed, since |x| < 2%, we see that each of the
dyadic cubes that is relevant to the explanation of the algorithm is contained in
the rectangular box [—2¢5,2C5]" and has sidelength in the interval [2~ 5, 2€5] for
a universal constant C. Therefore, the relevant dyadic cubes have CS-bit machine
points as corners. We may assume that CS < S, and therefore all the relevant
dyadic cubes are S-bit machine cubes and can be processed on our finite-precision
computer, which allows the previous explanation to apply in the current setting.

This concludes the description of changes needed in Section 1.3.2 of [4].

2.12.3. Keystone cubes. Section 1.3.3 of [4] is unchanged in finite-precision.
We define integer constants So,S1,S2 as in (1.17) of [4]. The KEYSTONE-ORACLE
is unchanged. The explanation follows just as before from the MAIN KEYSTONE
CUBE ALGORITHM and the algorithm LIST ALL KEYSTONE CUBES.

2.13. An approximation to the sigma
Given a polynomial P € P, we define

Pl=( X po)r) .

xeM

Recall that the parameters Ac (A7), Ag(A™), and Ajunk(A™), are denoted by
Ac, Ag, and Ajynk, respectively.

We denote A,.., = Ajunk(A), which is the constant arising in the Main Technical
Results for A. We assume that A, satisfies

5 C
(282) {Ae < Ag < Ajunk < AS,, < A, < AS,

C- A, <1 foralarge enough universal constant C.

The conditions in (2.82) are easily derived from (2.74).
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We have the following estimates from the finite-precision version of the Main
Technical Results for A7. Let a = a(A~) denote the geometric constant arising
therein. Then for each Q € CZmain(A ™), the functional

/
(2.83) Mq,a(f,R) = ( Z |E(faR)|p>] ’
€2(Q,A7)

satisfies
284) ¢ [(f,R)l1+a)Q £ M(qu(f,R) < C- |:H(f>R)||%Q +Ajunk|R|} .

Estimate (2.84) holds additionally for all Q € CZ(A~) \ CZmain(A~), because
then by definition Z(Q, A7) = 0 and so M(q,4-)(f,R) = 0; also, ||(f,R)[|(1+a)0 =
|(f,R) ”%Q =0, since £QNE = (. Thus, (2.84) holds for all Q € CZ(A™).

We set

Z(Q*) = {Q € TZ(A™) : QN SoQ* #0}.

(Recall that So = S(A7).)

Lemma 9 of [4] is unchanged in finite-precision. Similarly, the conditions (1.24)
and (1.25) in [4] continue to hold.

The finite-precision version of the algorithm MAKE NEW ASSISTS AND ASSIGN
KEYSTONE JETS is as follows.

ALGORITHM: MAKE NEW ASSISTS AND ASSIGN KEYSTONE JETS (FIN—PREC)

For each keystone cube Q#, we compute a list of new assists Q“EW(Q#) and we

compute an Q" (Q#)-assisted bounded depth linear map R :X($1Q7¥ NE) @
P —P.
Each of the new assists w € Q" (Q#) is given in the form

w:fHZ?\X~f(x)

xX€ES

Here, the set S C E may depend on w. The coefficients A, are computed with
parameters (AgC,AgCAe). The sum of depth(w) = #(S) over all the new assists
w € Q" (Q#) and over all keystone cubes Q7 is bounded by CN.

Similarly, the maps (f,P) — R# = Rg# (f,P) are such that

(f,P) — d*R¥(0) (for any « € A) has the form

Z)\ch(x)—i— Z Lew - w(f) + Z GB—aBP

xX€ES we’ pemM

Here, the subsets S € E and Q' € Q may depend on Q#, and the coefficients
Axy Hw, Op are computed with parameters (Ag,AgcAe). The number #(S) +
#(Q') + #(M) is bounded by a universal constant C.

The polynomial R¥ satisfies the following properties.
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e 0%(R# —P) = 0 for all « € A. (This condition is natural because A is
monotonic; see (1.1) in [4].)

e Let Re P with 0%(R—P) =0 for all x € A. Then

(2.85) > > lERRAP<C Y > [IEfR)[P + APRPP].

QEZ(Q#) £€Z(Q,A7) QEZ(Q#) £€Z(Q,A7)

Ezxplanation. As before, we define coordinates on Vp, which is the space of all
polynomials R € P such that 0% [R —P] = 0 for all x € A. The coordinate map
w — Ry, is given by

1 1 ,
Ry (x) = Z aao‘P(O) -x% +Z oc_jle x% forw = (wrq,...,wx) € R¥,
xeA j=1

where M\ A ={o1,...,ax}. Note that

k k
(2.86) RuwlP =D [wiP+ Y [3FPO)P > > |wylP.
j=1 j=1

peA

We compute a list £ of all the Q € CZpain(A~) such that Q N SOQ# £ (.
We produce this list by the same method used in infinite-precision (recall that
So = S(A7) € N is a universal constant, as stated in the Main Technical Results
for A7)

From the Main Technical Results for A~ (finite-precision), we can compute
a list of the functionals &p : (f,Ry,) — &(f,Ry), with 1T < £ < L, where & is an
arbitrary element of the list Z(Q,.A7) for some Q € £. FEach &, is expressed
in short form with parameters (Ag,A¢) in terms of the assists Q(Q,.A7). This
expression is given in (1.28) of [4], where

* The numbers [i¢j are specified with parameters (Ag, Ac);

o The functionals A¢, A¢, and the coefficients f1pq are specified with parameters
(Ag,Ae).

¢ We have L < CN < AEC for a large enough universal constant C. (Recall
that N < A;™ < A;l; see (2.71) and (2.81).)

We process the functionals w +— &¢(f, Ry, ), with f and (0%P(0))«ec.4 held fixed,
using the algorithm OPTIMIZE VIA MATRIX (finite-precision), where we set A = Ay
(see Section 2.7). Thus, we can compute (see below) numbers bje, such that, for

L L,
w}‘ew(f) = Z bje |:7\g(f) + Z Hfawfa(f)}
(2.87) . T
N (0°P(O0)aea) = ) _bye - Ae((0*P(0))aca),
=1
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we have

k
(2.85) <c [|a(f, Rw)I” 45 3 fwy P,
QEZ(Q#) E€Z(Q, A~ j=1
for all w = (w1,..., W) € R¥, where
(2.89) w* = (w7,...,wy), with

Wi = @I () + A ((0%P(0))aea) forall 1 <j <k

This is a consequence of the finite-precision version of the algorithm OPTIMIZE VIA
MATRIX. We compute the numbers bj, with parameters (Ag, AECA@_).

Recall that w +— R,, parametrizes the space Vp of all polynomials R € P with
0%[R —P] = 0. Thus, using (2.86) and (2.88) we see that

>ooY ERRelP<C ] Y Y EGRIP AR,

QEZ(Q#) £€Z(Q, A7) QEZ(Q#) £€Z(Q,A )

for any polynomial R € Vp. We can thus set Ré# = Ry+ and we obtain the
estimate (2.85).

We now produce a numerically accurate formula for the new assists wj*” (=
1,...,k) and for the functionals A;‘ew((ao‘P(O))aeA). We examine the relevant
definitions.

In the expression for ?\g‘ew in (2.87), the numbers bj, are given with parameters
(AQC, A;CAe), the functionals A¢ are given with parameters (Ag,Ae),and L < Aac.
Thus, we can compute the functionals Ay with parameters (Ag, AECAe).

We will review our computation of a short form representation of each w;‘e“’(f)
in (2.87), following the infinite-precision text. We need to document roundoff errors
at each stage of the computation, and estimate the size of the relevant numbers.

We write wiev = wren! + w;‘ew’z, with w;‘ew’] and w;‘ew’z defined via (1.33)
and (1.34) of [4], respectively.

We first review the computation of w;‘ew’]:

e The numbers c¢(x) (x € S¢ C E) are given with parameters (Ag, Ac), since
each Ag is given with the same parameters by assumption The weights dj(x)
are computed by evaluating the sum d;(x) = Y, bje - c¢(x). Each term bjg -
ce¢(x) is computed to precision Ag CA.. Hence each weight d (x) is computed

to precision LAgcAe < CNAECA€ < A;ClAeg we compute each dj(x) by
sorting, just as before. Moreover, each dj(x) satisfies |d;(x)| < LAEC <
A;C/. Therefore, we can compute each d;(x) with parameters (Ag, AgcAe).
The bounds on the work and storage required by this computation are the
same as before.
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We can thus express the functionals w;‘ew’] in the form in (1.33) of [4], where
the coefficients d;(x) are given with parameters (Ag, AacAe). Thus, by definition,
we can compute the functional w;‘ew‘] with parameters (Ag, AgcAe).

We now review the computation of w;‘e‘"’z.

The coefficients qjq in (1.34) of [4] are computed using qjw = 2 (¢ 4) bje - Hea-
The numbers bj, are given with parameters (AS,A;CAE), the numbers ¢, are
given with parameters (Ag, Ac), and the number of terms in the sum is bounded
by CN < Agc. Hence, the numbers qgo can be computed with parameters
(Ag, AgcAe).

We finally express w;‘ew‘z in the form in (1.34) of [4]. As before, the coefficients
kj(x), which we compute by sorting, are given with parameters (Agc, A;CAE).

We have shown how to compute the new assists Wy = w;‘ew’] + w;ew’j in
short form with parameters (Ag, A;CAe). We have seen that computation follows
by the same method as in infinite-precision, and by making careful note of the
roundoff errors and the size of numbers involved in the computation, we verified
that the computation could be carried out on our finite-precision computer.

The functionals (f,P) — 6“[R#Q#(f, P)] (0) can be computed in short form in
terms of the assists w?™ (j = 1,...,k) with parameters (Ag, AECAE), as desired.
(See (1.30) of [4].)

This completes the explanation of the algorithm MAKE NEW ASSISTS AND
ASSIGN KEYSTONE JETS (finite-precision). O

For each (f,R) € X(S$1Q7# NE) @ P we set
(290) [MEL(ER)]P = 3 > ERRP =Y [Mgua(fR)]".
QeZ(Q¥) £€2(Q,AT) QeZ(Q¥)

Let P € P. From the previous algorithm, we see that the polynomial R¥ =

R7_, (f, P) satisfies

Q#

O%(R* —P)=0 for all x € A,
(2.91)

ME, (£,R%) < C- [MZ, (f,R) + Ajuni R[],

for any polynomial R € P such that 0¥ [R—P] = 0 for all « € A. (Recall that
Ag < Ajunk-)
Instead of Lemma 10 of [4], we have the following result.

Lemma 3. Let Q% be a keystone cube. Then
¢ [[(f,R)[[s;o# < Mé#(ﬂR) < C-[[I(F,R)]ls, o# + AjunklR]] -
for all (f,R) € X($1Q#* NE) @ P. Here, c >0 and C > 1 are universal constants.

Proof. We prove the first inequality cl|(f,R)[[s,q# < Mg#(f, R) by the same ar-
gument as before. We use the approximation (2.84) in place of (1.20) of [4].
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To prove the second inequality, we start from (2.84), which implies

# P _
(M, (,R)]” = . IZ(Q#)[M(Q A (HR]P < ¢ IZQ#) (16, RIE o + ARRIP]
S S

Since ©2Q ¢ $;Q* and & o# < 8g < Cdg# for each Q € Z(Q#), and since
#[Z(Q # )] < C, by Lemma 14 of [3], we can estimate the above line by

C-[IIF,R)E s, T4 unk|R|p] < C"-[II(F,R)ls, q# +Ajunk|R|]p
This completes the proof of Lemma 3. O

Proposition 2 of [4] requires a few changes in finite-precision. Here is the
modified statement:

Proposition 1. Let Q be a dyadic subcube of Q°, such that 3Q is tagged with
(A, €). Assume also that Q% € CZ(A™) is a keystone cube, and that S1 Q% C 65 2Q.

IfHeX, H=f on ENS1Q%, and 0%H(xq#) = 0%P(xq#) for all x € A, then
(2.92) S H=RE e (s,0%) < C- [IHllxs, o) + AjunklTx g4 HI-

Here, C > 1 is a universal constant; and R#Q# = Rg#(f,P). (See the algorithm

MAKE NEW ASSISTS AND ASSIGN KEYSTONE JETS.)

Proof. The argument that (1.47),(1.48) of [4] imply (1.49) of [4] is unchanged in
the finite-precision setting. We restate the result here: If d*R(xg#) = 0 for all
x € A, then

(2.93) R € 0(S0Q#) = [0PR(xq#)l < ng;“/p*'ﬁ‘ for all B € M,

where W = W(m,n,p).

We need only examine and fix the last paragraph in the proof of Proposition 2
of [4]. We modify the text that begins after the sentence “We now prove the main
assertion in Proposition 2”7. The revised text is as follows.

Suppose that H € X satisfies H = f on E N S;Q% and 0 H(xq#) = 0%P(xq#)
for x € A. Then a“(]XQ# H—P) =0 for all @ € A. (Recall, A is monotonic.) We
apply the estimate in (2.91), and then we apply Lemma 3. Therefore,

ME (£, RE) < CIME L (£, T H) + Ajunil T g H]
< C'[|I(f, Jxou H)llsy @# + AjunklJx 4 H|] < C"[IH]lx(s, o#) +Ajunk|]xQ#H|]-

Thus,
Mé#(@ Ré# —Jx o H) < C[HHHX(S,Q#) +Ajunk|IxQ#H|]~

Lemma 3 implies that

100, R4 = Txgu Wllso# < ClIHIx(s, %) + AjunilTx . HIJ,
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hence
~Jxgu H € ClIH[Ix(s, @#) + AjunklTx g, HI] - o(SoQ%).
Since 0%(R é# - ]XQ# ) =0 for o« € A, we can apply (2.93) to show that
(2.94) 08 [Jxyu H=RE ] (xq#)| < C-855™"7*1- [ Hllxs, @#) + AjunilJx o HI]
for all p € M.

Hence, by the Sobolev inequality we have
O IH=RE o (s, 0%) < ClIH ks, %) + AT HI]

This is the desired estimate. (See (2.92).) This completes the proof of Proposi-
tion 1. O

We derive a few consequences of Proposition 1. First note

g MRl = ( T [0%0nge =R I
xe

<C- ) 0P (xgu H=REO)] <C" Y (8P (W H=RE ) (xq#)l.
pem Bem

where the last inequality is due to the fact that [xg#| < C (see Lemma 7 of [3]).
Also, recall that g% < 1. Thus, we can use (2.94) to obtain

Txgu H—REx1 < C"[IHlx(s, Q) + AjunilTx s HIJ-
Hence,
|]XQ#H| < |Ré#| +C”- [”HHX(SIQ#) +Ajunk|IXQ#H|]
= Jxgu Hl < 2-[REL|+2C - [H]x(s, %),

where we have used that C-Ajunk < 1/2. By using the previous estimate in (2.92),
we have

QP IH=RE Il (s, %) < C'[IMllxcs, @#) + Ajunk|RE 4] + Ajumid Hllx (s, o)
< CN[”HHX (S1Q#) +AJUUk|RQ#|]
In summary, we have proven the following result.
Lemma 4. Under the assumptions of Proposition 1, we have
(2.95) oFIH— RQ#”LP (s10#) < C"[IHllx(s, #) +AJunk|RQ#|]

We will prove one more lemma before returning to the main line of our argu-
ment.

Lemma 5. Under the assumptions of Proposition 1, we have
[R* —P| < C- [[I(f,P)ls, g# + Ajunk[P]]

where R# = R”.

Q#(f, P) for a keystone cube Q7.
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Proof. Let Q¥ be a keystone cube, and denote R¥ = Rg#(f, P).
Since 0(SoQ#) is the unit ball of the norm ||(0,-)||s,g# on P, we can use (2.93)

to show the following: If R € P satisfies 9*R = 0 for all & € A, then for any € M
we have

10PR(xq#)| < C - (8q#)™ ™P~IBL|(0,R)[|ls, 0 < C - [[(0,R)][s, 0%

(Here, we have used that 8g# < 1.) From the above estimate and Lemma 3, we
deduce that

R=(XY ‘a“ﬁm)’p)”p <C- Y |0PRxqu)| < C-ME,L(O,R).

xeM pem

Taking R = P in (2.91), we see that the polynomial R# = Ré# (f, P) satisfies

O¥(R#* —P)=0 forallx e A
ME, (F,R%) < C- M, (f, P) + Ajuuic - [P

Thus, the A-derivatives of R=R#_P vanish, so we may apply the previous
estimate to give

[R# —P| < C'- M, (0,R* —P) < C"- [ME, (f,R¥) + ME (£, P)]
< C"- [ME, (1, P) + Ajunk[PI] < C- [[[(F,P)ls, o + Ajuni|PI] -
In the last estimate, we use Lemma 3. This completes the proof of Lemma 5. O

In Section 1.4.2 of [4], all of the marked cubes are assumed to be S-bit machine
cubes, with S < CS. All the functionals are to be given in short form with param-
eters (Ag, AECAE). This concludes the description of the changes to Section 1.4.2
of [4].

Recall the notion of a testing cube (see Section 1.4.3 in [4]): A dyadic cube
Q C Q° is a testing cube if it can be written as a disjoint union of cubes in CZ(.A™).

Remark 1. Recall that each cube Q in CZ(.A™) satisfies 5q > ¢-Ap with Ag = 2-3

for a universal constant ¢ > 0, by the Main Technical Results for A™. Hence, every

testing cube Q has S-bit machlne points as corners, where S < CS for a universal
constant C.

Recall, in (1.62) of [4], we introduce a parameter tg, which is an integer power
of 2. Furthermore, we assume that

(2.96) tg = 2-S for an integer S with 1 < S < CS.

In finite-precision, we must make a slight change to Lemma 11 of [4]. We will
need to assume that the constant a,., is picked to satisfy

(2.97) Apowy = 27,5 for an integer S with 1 < S < CS.
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To see that this is possible, we examine the proof of the lemma. Observe that it
suffices to choose a,., = a-tg/512, where a = a(A ) is as in the Main Technical
Results for A7. Recall that a is a universal constant and an integer power of 2.
Because tg satisfies (2.96), the constant a,., satisfies (2.97).

We are finished describing the changes required in Section 1.4.3 of [4].

2.13.1. Testing functionals. We continue on to Section 1.4.4 of [4].
Recall that A,., is a machine number that satisfies (2.82). We will make use
of the condition

(2.98) Ao < cleyta),

where c(e,tg) € (0,1) is a small constant depending on m,n,p,tg, and e. We
later choose € and tg to depend only on m, n, and p - hence, (2.98) is consistent
with our previous assumptions (2.74), (2. 81) and (2.82).

We assume we are given a testing cube Q cQ°.

For Q € CZ(A™) with Q C (1 + 100tg)Q, we define the map

A P 0o > tgds
Q._J) D Q="6%
(2.99) (f,P) = R = { R0 (.P), 50 < tobe,
for any (f,P) € X( Q NE) @ P. Recall that the mapping R X(S$1Q#¥NE) o P

— P is defined in the algorithm MAKE NEW ASSISTS AND ASSIGN KEYSTONE JETS
(finite-precision version); see Section 2.13. Recall that the mapping Q — K(Q)

satisfies S1KC(Q) C CQ; hence, if 8g < tgéé and tg is sufficiently small, then
S1K(Q) C g—iA (see the proof of (1.64) in [4] for more details), and hence the

mapping RQ is well-defined on X( Q NE)®P.
¢ Recalling the precision with which we compute the maps Rg#, we see that

(f,P) — 6“[R8(f, P)] (0) has the form

(2.100) D AR+ ) mow(f)+ ) 8- —aBP (0),

x€E w BpeM

where the possibly nonzero coefficients Ay, pw, 0 are computed with param-
eters (Ag,AgCAe). The number of possibly nonzero coefficients is at most
a universal constant.

¢ Recalling the precmon with which we compute each & in Z(Q,.47), we see
that (f,P) — &(f, Rg) has the form

(2.101) > AF)+ ) Fow(f)+ Y 0p- —aBP (0),
x€E w BpeM

where the possibly nonzero coefficients ?\X, Beow, 9[3 are computed with param-
eters (Ag,AECAe). The number of possibly nonzero coefficients is at most
a universal constant.
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We will need to modify the definition of Mé(f, P) in (1.65)—(1.68) of [4].

We define [Mé(f, P)]" to be the sum of the terms (I)~(IV) (see (1.65)—(1.68)
of [4]) plus the sum of the terms

(2.102) (V)=422Z, >  [f(x)=PX)", and
xeg—iﬁmE
(VI) - new|P|~p = new Z |aI3P

pem

Recall that A,.,, is a machine number satisfying (2.82).

Each of the linear functionals arising in (I)—(IV) and in (V)—(VTI), will be com-
puted with precision (AQC, JAYS Aac). In Section 2.13.2, we give further explanation
of this remark, and we analyze the work required to compute all the functionals.

As in the infinite-precision text, we define

5(Q):={Pe P:Mg(0,P) < T}

We replace the algorithm APPROXIMATE NEW TRACE NORM from the infinite-
precision text with the finite-precision version below.

APPROXIMATE NEW TRACE NORM (FINITE—PRECISION)

We are given a machine number tg > 0 as in (2.96).
We perform one-time work at most C(tg)N log N in space C(tg)N, after which
we can answer queries as follows. R R
- A query consists of a testing cube Q. The response to the query Q is a list

p?, AN pg of linear functionals on P such that
(2.103) c(tg) Z“ll )P < Q(O,P)] < C(tg) [Z”H }

The functionals u?, ceey ug have the form
1
P Y coeﬂgaaBP(O)
pem

where the coefficients coeffg are computed with parameters (Agc, AacAe).
We define a quadratic form on P by

D ~
(2.104) g (P) =D [u2(P)?
i=1
This quadratic form satisfies
(2.105) clta) - [Mg(0,P)]* < qg(P) < Clta) - [Mg(0,P)]".

In particular,

(2.106) lag < clte)} € T(Q)  {qq < Clta)k
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The quadratic form 45 is given in the form

GQP) = 3 dup: 3;0P(0): Z10PP(0)
o, REM : :
The q«p form a symmetric matrix. For each «,3 € M we compute the number
qu«p With parameters (AgC,AacAe).
The work required to answer a query is at most C(tg)log N.
Here, c(tg) > 0 and C(tg) > 1 are constants depending on tg, m, n, and p.

Ezplanation. The explanation is more or less the same as that in [4]. We make sure
to use the finite-precision versions of the algorithms APPROXIMATE OLD TRACE
NORM, COMPUTE NORMS FROM MARKED CUBOIDS, and COMPRESS NORMS, where
before we used the infinite-precision versions. Below, we make a few additional
comments on discrepancies that arise.

Given a keystone cube Q#, the polynomial map P Ré#(o, P) in (1.74) of [4]
is given with parameters (AQC,AECAQ); indeed, the functionals X(Q#,B) are given
with such parameters, as in the statement of the algorithm MAKE NEW ASSISTS
AND ASSIGN KEYSTONE JETS (finite-precision).

We apply a marking procedure, just as in the explanation in [4]. We provide
details below.

e For each Q € CZmain(A" ) and 1 =1,...,D, we mark Q with the functional
E(q0)(P) = E2(RE (0, P)).

Note that each functional R +— &g(R) is given with parameters (Ag, AgcAe);
see the statement of the algorithm APPROXIMATE OLD TRACE NORM (finite-
precision). Also, the polynomial map P — Rﬁ(Q)(O, P) is given with parame-
ters (Ag, A;CA@_). We can stably compute the composition of a linear func-
tional on RP with a linear map on RP, hence we can compute each &(Q,1)
with parameters (Ag, A;CA@_), for a possibly larger constant C.

e For each (Q/,Q”) € BD(A ™) and € M, we mark Q’ with the functional
/p—m-+|B]
£ (P) = 8/ ™ P 0P {RE () (0,P) = RE ) (0,P)} (xq).

This functional is given with parameters (AS,A;CAe) because the polyno-
mial maps P — Rfé(Q,)(O, P) and P — Rt(Q,,)(O, P) are given with the same
parameters, because dg/ is a machine number with ¢ - Ay < 8g+ < 1 (this
is a consequence of the Main Technical Results for A™; see (2.75)), and
because xq- is an S-bit machine point with S < CS.

Each of the functionals & that is associated to a marked cube has the form
P E(P)= ) coeffg - 9PP(0),
pem

where the coefficients coeffg are specified with parameters (Ag, A;CAe). We per-
form one-time work for the algorithm COMPUTE NORMS FROM MARKED CUBES
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(finite-precision) on the marked cubes described in the above bullet points. (See
Modification 6 in Section 2.9.) All of the marked cubes belong to CZ(A™). By
assumptlon all cubes in CZ(A~) have sidelength in the interval [c - Ag, 1], where
Aoy = 2-5. Hence, the marked cubes have S-bit machine points as corners, where
S < CS. Thus, the finite-precision version of the algorithm applies.

This concludes the description of the one-time work. Next, we explain the
query work for the algorithm APPROXIMATE NEW TRACE NORM.

We are given a testing cube Q As in in the infinite-precision text, we partition

+tg into dyadic cubes Q1,...,Qr C such that tg A ence,
(1 ) dyadi b R™ such that g, = ( /4)6 H
dg, =227 CS for a universal constant C, for each £ =1,...,L, thanks to (2.96) and

Remark 1. Consequently, each Qg is a S-bit machine cube with S < CS. Moreover,
note that L < C(tg).

We apply the query algorithm in COMPUTE NORMS FROM MARKED CUBOIDS
(finite-precision) with A = A4 for each cube Qg (1 <€ < L). We refer the reader
to Modification 6 in Section 2.9 for a statement of the algorithm. According to
this, with work at most C(tg)log N we compute linear functionals p?“, ceey ug“
such that

D
¢ PP > {|a )P :Q C Qe, Q marked with £} + AD/?[P|P
k=1

QeCZ(A—

lin. func. &

D
(2.107) < C| Y Iu (PP + Ap2 PP,

where each p, = is given with parameters (AC A* A¢). Here, we use the estimate

AJALC log(Ag h< Ap/z which follows because A < Ao.

We sum (2.107) from £ = 1,...,L. The sum of the junk terms is equal to
LAE/2|P|p < C(tg)Ag/2|P|P. Hence, as in infinite-precision, in analogy with (1.77)
of [4], we obtain the estimate

L D
(2.108)  cltc)) D [n2i (PP < [&1+ &a) + AF/2P[P

=1 k=1
L D
S XX PP +az2pPp].

=1 k=1

For the definition of the terms &1 and &;, see (1.77) in [4].

To compute a list of the functionals in (F1)—(Fg), we follow the explanation
n [4] that proceeds (1.77). In the above text, we have described how to com-
pute the functionals in (F1)—(Fy4); all these functional are given with parameters
(AgC,AgCAe). Additionally, the maps P — RS (O P) are given with parameters
(AQC, AECA@,) see (2.99). Hence, we can compute the functionals in (Fg) and (Fg)
with parameters (Agc,AacAe).



FITTING A SOBOLEV FUNCTION TO DATA III 1093

Therefore, the functionals listed in (F1)—(Fg) are given in the form
P Y dg- —aﬁP (0),
pem

where the numbers dg are given with parameters (Ag, AECAe).
In addition, we consider the functionals

(F7) |Ag(P) := A,.., - 9PP(0) for p € M.

Recall that A,.,, < 1 is a machine number. Thus, the functionals in (Fr) are given
with parameters (AgC,Ag Ae).
We define [X(P)]P to be the sum of p-th powers of all functionals in (Fy)-(F7).
Note that 3" 5.1 [Ap(P)[P = AP_IPIP = (VT) (see (2.102)). Hence, we have

[X(P)]p - [Xold(P)]p + (VI)>

where [X,,4(P)]P is the sum of p-th powers of all functionals in (F1)—(Fg).
‘We have

(2.109)  clte) - X (PP < fsum of terms (I)~(IV) with £ = 0] + A}/2 [P[?
< Clte) - |Xaa(P)IP 4 AP/2 PP

To obtain the above estimate, we reason as in the two paragraphs containing and
following (1.78) of [4], making sure to use estimate (2.108) in place of (1.77) of [4].
(Recall that X, here corresponds to X in the notation of [4].)

Consider the term (V) (see (2.102)) that arises in the definition of MQ(O, P).
When f =0 in (V), we have

V=0 =A%, > [PEP<CAZN Y [0fP0)" <ar, > [afP(0)|".
xe85QnE BeM BeM

Here, we use the estimates N < A;™ < A P/10 (see (2.71) and (2.82)) and
CA!P/10 < AP (see (2.82)). Hence, we have (V)|j—o < (VI). Thus, up to
constant factors, [MQ(O, P)]p is equivalent to the sum of the terms (I)-(IV) and
(VI) (with f =0).

Therefore, by adding the term (VI)—i—Ag/2|P|‘D to the chain of inequalities (2.109),
we learn that

c(te) - { [Xaa(P)]” + (VD) + AF2[PP} < [Mg(0,P)]” + AD/2 P[P

< Clte) - { KaalP)IP + (VI) + AF/Z [P[" }.
Note that the middle term above is comparable to [MQ(O, P)]p, since

[Mg(0,P)]" > (VD) = AF_[PP > AF/2 - |P|P.
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Here, we use that Ag < AZ_ (see (2.82)). Since
X(P)P = Xoa(P)IP + (VI),
we conclude that
c(tc) - {[X(P)]" +AD2 [P} < [M5(0,P)]” < Cltg) - {[X(P)]" +AL/2|P]” }.

Recall that [X(P)] P is the sum of the pth powers of the functionals in (F1)—(F7).
Processing the functionals in (F1)—(F7) using COMPRESS NORMS (finite-precision),

we compute functionals u?, ceey p.8 on P such that
D D
¢ Y PP < [X(P))” + A5 PP < C- 3 (PP
= i=1
Q

The functionals p;~ are given with parameters (Agc, AacAe).

The previous two estimates establish (2.103).

Moreover, properties (2.105) and (2.106) are immediate from the definition
of q o in (2.104) and the equivalence of the £, and {; norms on a finite-dimensional

space. Each of the piQ is given with parameters (AgC, AECA@_), hence the coefficients
q«p of the quadratic form g can be computed with parameters (Ag, A;CAE) (for
a possibly larger constant C).

This concludes the explanation of the query algorithm. It is easy to check that
the query work at most C(tg)log N. O

2.13.2. Supporting data. We assume we are given a testing cube Q C Q°.
We explain the main modifications to Section 1.4.5 of [4] needed here.

e Modification 1. As part of the supporting data for Q, we include a list of
all the points x € £ QNE, in addition to all the other data, namely (SD1)—-(SD5).

We call this the modified supporting data for Q

~

The list Q(Q) of the new assist functionals is defined as in (1.79) of [4].

e Modification 2. The algorithm COMPUTE NEW ASSISTS operates as follows.
Given a testing cube Q, and given the supporting data for Q, we compute a list
of all the functionals in Q(Q). We compute a short form of each w € Q(Q) with
parameters (Ag,AgCAe).

e Modification 3. We make only minor changes to the algorithm COMPUTE
SUPPORTING MAP. The linear maps Rg are to be computed in short form in terms

of the assists Q(Q) with precision (Ag, A;CAE). The explanation of the algorithm
is unchanged.

e Modification 4. The algorithm COMPUTE NEW ASSISTED FUNCTIONALS is
replaced with the finite-precision version below.
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ALGORITHM: COMPUTE NEW ASSISTED FUNCTIONALS (FINITE—PRECISION)

Given a testing cube Q and its modified supporting data, we define

(2.110) Wi(Q) = QUz(QHC(tG)#(g—ZQﬂE)
and
(2.111) Gi(Q) = Gz(Q)+C(tG)~#(g—ZQﬂE>,

~ o~

where 20,(Q), &,(Q) are defined as in (1.83), (1.84) of [4], respectively.
We compute a list =Z(Q) of functionals on X(E) @ P, such that

Mg (£,P)]" = > [&(f,P)P.
£€2(Q)

Each functional & in E(Q) is given in short form in terms of assists Q(Q) with
parameters (AQC,AECAQ).
This computation requires work at most QU‘;‘“(Q) in space GQH(Q).

~

Ezplanation. We include in the list Z(Q) all the same functionals as before, namely,
the “assisted functionals” in (1.85)—(1.88) of [4], as well as additional functionals
described in the next paragraph. Each “assisted functional” is given in short form

~

with parameters (AQC,AECAQ) in terms of the assists Q(Q). That is because all

the functionals & and the maps Rg, Rg,, Rg,,, Rgsp that are relevant to (1.85)—

(1.88) of [4], have been computed in short form with parameters (Ag,AgCAe).
See (2.100) and (2.101).
We also include in the list Z(Q) the additional functionals

A (f, P) = A2

new

- (f(x) = P(x)) for each x € %?Q NE

and
Ap(f,P) :=A,., - 0PP(0) for each p € M.

These are the new functionals needed in finite-precision. That completes the defi-
nition of Z(Q). Note that A, <1< A;l. Hence, each functional A, and Ag can
be expressed in short form (without assists) using coefficients that are bounded in
magnitude by A;C. Moreover, each coefficient can be computed to precision A,
which is within the precision available to our computer. (Recall: the computer
works with precision Apnin < Ae.) Hence, the functionals A and Ag can be com-
puted in short form with parameters (AQC, Ac) (without assists).

The sum of |&(f, P)|P over all & in E(Q) is equal to [MQ(f, P)]p, by definition.

The additional term #(%Q NE) in (2.110) and (2.111) accounts for the addi-
tional work and space, respectively, needed to compute the functionals Ay, Ag.
This completes the explanation of the algorithm. O
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As before, given a testing cube Q, the covering cubes are defined by
I(‘ov - {Q S CZ( ) Q C +tG Q}

As before, we define a family of cutoff functions GQ (for Q € T...(Q)) that satisfy
(1.92)-(1.94) of [4].
The finite-precision version of the algorithm CoMPUTE POU is as follows.

CoMPUTE POU (FINITE-PRECISION)

After one-time work at most CNlog N in space CN, we can answer queries as
follows.

A query consists of a testing cube Q and an S-bit machine point x € Q°.

Notice that Q has S-bit machine points as corners, with S < CS for a universal
constant C, so we can safely process Q on our finite-precision computer. (See
Remark 1.)

We respond to the query with a list of all the cubes Q1,...,Qr € Z, COV(Q) (with
Q1,...,Qr all distinct) such that x € g—ng. Futhermore, we compute the numbers
%afx]&ege (0) (for all € =1,...,L and o« € M) with parameters (Agc,AacAe).

To answer a query requires work and storage at most Clog N.

Ezplanation. The explanation is the same as in the infinite-precision case. O

The definition of the local extension operator Té(f, P) given in (1.95)—(1.98)
of [4] is unchanged. As before, COMPUTE POU, COMPUTE SUPPORTING MAP,
and the Main Technical Results for A~ (finite-precision versions) yield the algo-
rithm COMPUTE NEW EXTENSION OPERATOR (finite-precision), with the following
modification:

e Modification 5: In finite-precision, we assume x € Q° is an S-bit machine
point and f € M. We compute the functional (f,P) — 63(]XTQ(f,P))(O) which
has the form

L
ZYg~wg +Z}\ fX] +Ze aVP (0),
=1

YeM

where each wy is in _O.(Q) and each x; isin EN 62 Q; the real numbers y¢, A, and 0,
are computed with parameters (AC Ag CAc); and L+J+#(M) < C, for aumversal
constant C. Namely, we compute the functlonal (f,P) — 0B (]&Té(f, P))(0) in short

form with parameters (Ag, A;CAE) in terms of assists _O.(Q) The explanation of
the algorithm is the same as before.

2.14. Inequalities for testing functionals

Let pe = Quew(tg) be the constant from Lemma 11 of [4]. We recall that a,., =
275 for an integer S with 1 < S < CS. (See (2.97).)

First, in Proposition 3 of [4], we state and prove some properties of the extension
operator (f,P) — Té(f, P) defined in (1.98) of [4]. The assertion and proof of the
proposition are unchanged in the current setting.
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Next, we prove a few estimates that show that the testing functional MQ (f,P)

well-approximates the trace seminorm associated to a dilate of the testing cube Q
Such estimates were stated before in Proposition 4 of [4] (the conditional and
unconditional inequalities). In the present setting, the statement and proof of the
corresponding estimates will need to be modified. The next result contains the
relevant estimates.

Proposition 2. Let Q be a testing cube, and let (f,P) € X(6—4Q E)® P. Then
the following estimates hold.
(Unconditional inequality) ||(f, P)”(Hamw)Q < Cl(tg) - Mé(f, P).

(Conditional inequality) If 3(3 is tagged with (A, €), then

Mg(f,P) < Cltg) - (1/€) - [, P) g3 + Aweu - PI] -

As in [4], the unconditional inequality is a direct consequence of Proposition 3
of [4] (which still holds in the present setting).

To prove the conditional inequality, we first state and prove a finite-precision
version of Lemma 12 of [4]:

Lemma 6. Suppose that the testing cube Q is n-simple for somen > tg. Then

Mg (f,P) < Clte) - [I(f, Pl ssg + Ao - PI]

Q
where C(tg) depends only on m, n, p, and tg.

Proof. The proof is more or less the same as the proof of Lemma 12 in [4]. If Q
is m-simple (n > tg), then the terms (II), (III), (IV) vanish, as explained in the
outset of the proof of the lemma. This leaves us with the original term (I), and the
new terms (V), and (VI). Recall, the definition of (I) is given in equation (1.65)

of [4], and the definitions of (V) and (VI) are given in (2.102).
An arbitrary summand in the term (I) has the form [M(Q,Af)(f,P)]p, for

Q € CZmain(A™) with Q C (1 +t¢)Q. From (2.84), we have
Miqua ) (£,P)]” < C- [, P)][% o +A%ulPIP] -

From Lemma 11 of [4] and Q C (1 + tg)Q we conclude that g—ZQ - g—i@. Due
to the fact that Q is M-simple with n > tg, we know 8¢ > tg 6@. From Lemma 5
of [4], we therefore conclude that H(f>P)Hg—§Q < C(tG)H(f»P)Hg_gQ- So

Mg, (f,P)]” < Clte) [II (f,P) II’ZSQ +Aunk|P|p:|

The number of cubes Q relevant to the sum in (I) is at most C(tg). Therefore,
(D) < Clta) - [P, o +ALulPIP] -

The term (VI) is equal to AP__|P|P.
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It remains to estimate the term (V). Recall that #(6—4Q E) < N <A™
(see (2.71)). Hence,

XE%QHE
(2.113) < ||(f,P) H@
caQ

(2.112) (V) =42 > |f(x) = P(x)]” < A2 ASC|(f,P) Mes

We explain below the previous two estimates. B
We deduce the estimate in (2.112) by picking a function F that satisfies

6

IFIZ s, + 5™ IF = Pllio sz <2||fP||55Q
(&2Q

and F = f on EN 65Q For each x € EN £2Q, we apply estimate (2.4) from
Lemma 10 of [3] to the function F = F — P, Hence, we have

—_|E —n/pE /
[f(x) = P(x)| = ’F(X) - P(X)| <C-: 5Qn p”F_ P”Lp(%(g) +5A o pHF”x (£3Q

Recall that 5A > cAp, since Q is a testing cube. Hence, we have |f(x) — P(x )

| <
CAy |(f,P)| 653 Summing over x € Eﬂ Q and using the fact that #(EO 22 ) <
Ay C, we obtaln the stated estimate.

We deduce the estimate in (2.113) from the estimate A, .., < A(():/(ZP); see (2.82).
Therefore,

Mg, = (D) + (V) + (VD) < Clta) - [[(F, )%, o + A7

65 Q new

PP + A%, PP -

Since Ajunk < A, (see (2.82)), the above estimate implies the conclusion of
Lemma 6. O

Lemma 6 implies the conditional inequality if Q is n-simple for
n = min{c, (A), [100S(A )] '}

So we may assume that Q is not n-simple, for n as above (as in (1.107) of [4]).

Both Proposition 5 and 6 of [4] hold in the present setting, without change.
The proofs are as before.

We now prove the conditional inequality. We describe how the estimates from
before will need to be changed in the present setting.

On the right-hand side of (1.142) of [4] we add the terms (V) and (VI). Note
that

(V) + (VD) = A, 3 [f(x) = P[P + AP PP
x€£2QNE
< ||(f,P) Hp ~ +AP_|P|P  (thanks to (2.112))

65 Q new

< [RHS of the conditional inequality]”

Therefore, the extra terms do not hurt.
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Our inductive assumption now states that

M(q,u)(f,R3) < C- [|| RS s —I—AJunk|RQ|}

C - [IMllxs3) + 5™ IH = RSl s ) + Arun RS

64

Hence, in place of (1.143) of [4], we now have
. < P —mp |y _ p|IP ~
Mg(£P)]” < Clta) - [IHID o5+ 3™ IH=PIP, o2,
Y Mg, Q™ IH=RIIE, e )
QC(1+100tg)Q
(2.114) +AP > RSP (= &)
QC(1+100tg)Q
+ [RHS of conditional inequality]p}.
The third and fourth lines contain new terms not present in the original estimate.

We will now estimate the extra term & in the third line of (2.114)
We write 6 = &1 + 63, with

6 Aqunk Z |R8|p’ and 62 Junk Z |R8|p
QC(1+100t¢)Q QC(14+100t¢)Q
5Q2tGé/Q\ 5Q<t05/Q\

We estimate the term &7. The number of cubes in CZ(A™) is at most Aac.

Moreover, by definition, RS = P for each Q € CZ(A") relevant to the &;
(see (2.99)). Hence,

(2.115) S <AL AC (PP

< AP - [P[P < [RHS of conditional inequality]p.

new

(Here, we use that Ajynk < A2 <A, WA C/p. ; see (2.82).)

new —

We next estimate the term S,. Let Q € CZ(.A*) satisfy Q C (1 +100tg)Q
and dg < tgéé. Then the keystone cube Q# = K(Q) associated to Q satisfies
$1Q7 ¢ CQ c (1 + Ctg)(AQ C %Q, where the first inclusion is a property of
the map K (see the statement of the KEYSTONE-ORACLE), the second inclusion is
due to 8g < tgéé, and the last inclusion follows if we take tg sufficiently small.

By definition (2.99) we have Rg = Ré#. Moreover, since the number of cubes in
CZ(A™) is at most Ay ©, we have
65

P —Cp# |p. #~ 220
(2.116) ngQ#r&%one{Ajunk RE[7:$1Q% ¢ Z2Q ).
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Let Q7 be a keystone cube with $;Q% C g—iQ. Lemma 5 states that
IRG+ =Pl < C-[[I(£,P)lls, o + AjunkPl] -
Hence,
(2.117) RELIP < C- [P, gu + [PIP].

We define B
F=P+ >  6c-(f(x) = P(x))
x€S1Q#NE

where 0x(y) (x € E) are cutoff functions satisfying (a) 6x = 1 on a neighborhood
of x, (b) O is supported on a ball B(x,cAp) for a small universal constant ¢, and
(c) [|0%0x |1 < A€ for all |af < m. Indeed note that we may take Ox(y) =
O(y — x) for a fixed cutoff function 6 supported on a small ball about the origin.
From (a) and (b) we deduce that 0x(z) = 0 for any z € E \ {x}, since |[x —y| > Ao
for distinct points x,y € E. Thus, we have F(X) = f(x) for each x € E. Moreover,

IFIE s, gu <86C D ) =PRPP
x€S1Q#NE

and B
IF=PlPyis,on <85S Y [ =PRI,
x€ST1Q#NE
Hence, by definition of the trace seminorm, ||(f, P)HIS’] o# < A C S [f(x)—P(x)|P.

Thus, estimate (2.117) implies that
(2.118) RELP<Clags” > 1) =PRI +IPP].
x€S1Q#NE

Therefore, returning to (2.116), we have

6, < A}’unkAgC”[ D> ) —=PEIP + IPI"}-

x€£3QNE

. P —C” 4 —Cc” 4
Since AjunkAO S Anfw : I:A}ljewAO :l S Ak

new

(see (2.82)), we conclude that
& <AR, Y ) —PR)P + AR PP < AR, [Mg(f,P)]"
x€83QNE

S#[MA

ety Ma(h P

where C(tg) is the constant in (2.114). To obtain the previous estimates, we make
sure to choose

" = 2Clte)

(see (2.98)).
This completes our estimation of the term &,.
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In the estimate (2.114), we consider the term C(tg)-& = C(tg)-&1+C(tg) 62
on the right-hand side, and note that C(tg)-&; is irrelevant since it is bounded by
a half of the left-hand side; moreover, the term C(tg) - & is bounded from above
by C(tg) - [RHS of conditional inequality]”, thanks to (2.115). Therefore, in place
of (2.114), we have the simpler estimate:

Mg (f,P)P < Clte)-[IHI g5, + 85" IH=PIF, es )
(53Q (63 Q)

0 Mg 8™ MRS,
Qc(1+100tG)Q

(2.119) + [RHS of conditional inequality]”

(%Q)]

The difference between the estimates (2.119) and (1.143) of [4] is that the right-
hand side of (2.119) contains an extra term: [RHS of conditional inequality]®.

The estimates in Stage IT are unchanged. Using these estimates in (2.119),
we obtain

65A
(62Q)

—mp _p# P
+ ) Q™I =RE 1Ty
QC(1+100tg)Q

5Q<tG 56

(21200 Mg(f,P)” < C(tg) <||H|p +5"IH=PIF,,

m|m

$Q)

+ [RHS of conditional inequality]p>
< cta): (M g5, + 3™ IH = PIE, g,
64 64

+ Z (5Q#)7mp”H_R##”Lp (S, Q%)
Q# keystone
S1Q*c&Q

+ [RHS of conditional inequality]p>.

The difference between the estimates (2.120) and (1.144) of [4] is the extra term
[RHS of conditional inequality]p that appears in (2.120).

We now examine the estimates in Stage III.
In place of the inequality (1.145) of [4], which reads

||H RY #HLP (S1Q#) = C||HH§(51Q#)’

we now apply (2.95) which reads

mp”H R #H[_P (S1Q#) — C[HH||§(51Q#) unk|RQ#|p]
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Thus, from (2.118) we have

SoiIH R | < CIHIZ,

#HLP S1Q# S]Q#)

+CALL[AS Y I =PRI+ PP

x€S1Q#NE

There are at most CN < Agc keystone cubes in CZ(A~). Hence, since the collec-
tion {S1Q# : Q¥ keystone} has bounded overlap, we have

Y S IH=RE s, qe < CIHIZ g
Q7 keystone
$1Q*CcgQ
+CAP L AC [ S )~ PP+ |P|P]
x€83QNE
We have CAY | Ay C<calr < 2C[1 )A due to assumptions (2.82) and (2.98).
Thus, the term inside the curly braces in the above estimate is bounded by

new?

1 1
A% VI ——M; (f,P)P.
We put the previous estimates into (2.120) to obtain
1
Mg (f,P)P < C(t H|IP ..~ 6impH—Pp ~ Mg (f, P)P
Q1P < Clta)[IHIZ o) + 85 IH =PI, a5, + 5007 Ma ()]

+ [RHS of conditional inequality] .
Thus, from the third bullet point in Proposition 5 of [4], we deduce that

Mg (f,P)P < Ctg)APPHIP||(£,P)||P 635 + [RHS of conditional inequality]”.

Since A?P+1 < 1/e, this estimate implies the conditional inequality in Proposi-
tion 2. This completes the proof of Proposition 2.

We fix tg > 0 to be a universal constant, small enough so that the preced-
ing results hold. We define the universal constant a(A) = a,.,, with a,., as in
Lemma 11 of [4].

For a moment, we fix € = € in Proposition 2 for a small universal constant €g.
This implies the following result.

Proposition 3. There exist universal constants €g > 0 and C > 1 such that the
following estimates hold.

(Unconditional inequality) [|(f, P} 1,44 Ao <C- MQ(f,P).
(Conditional inequality) If 3@ is tagged with (A, €o), then

Mg (f,P) < C [[I(F,P)ll g3 + B - [P
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We no longer fix € = €p. Once again, we assume that € is a small parameter,
less than a small enough universal constant.
We assume that

(2.121) Ao < cle),

for a small enough constant c(e), depending only on €, m, n, and p.
We will need new proofs of Propositions 8, 9, and 10 of Section 1.5 of [4]. We
recall these results below (see Propositions 4, 5, and 6) and give the new proofs.

Proposition 4. Let Q be a testing cube. If
OGNE) <1 or 5(Q) has an (A’ xq, €,85)-basi A< A
[#(QQO ) <1 or o(Q) has an ( X5 € Q)' asis for some A" < A,

then (1 + a(.A))Q is tagged with (A, €*). Otherwise, no cube containing 3(5 18
tagged with (A, e'/*). Here, k > 0 is a universal constant.

Proof. 1f #( Q NE) <1, then (1+a(A ))Q is tagged with (A, €).

Suppose G(Q) has an (A’,x Q,e,éé)-basis with A" < A. Call this basis
(Pa)aear- Then

e Pyce- é‘f‘Hn/pfm .5(Q) forall x e A
o PP, (x )fécxﬁ for all o, € A".
. \aﬁpa(xé)\ge-sg"*‘ﬁ' forall a € A', B € M, B > «.

Since 5(Q) = {P: Mg (0,P) < 1}, we have Mg (0, Po) < eélgwn/p*m for x € A’.

So, the unconditional inequality gives

(0, Po) 5 < C'e 5g‘+n/p ™ forallae A’

H(1+ (A ))Q

Thus,
Py € C/eég“’*/p*mcm +a(A4)Q) forallaxe A

Thus, combined with the second and third bullet points above, we have that
(Po)xear is an (A’ ,XQ,C’e,éé)—basis for o((1 + a(A))Q). Hence, (Px)xecar is
an (A’ X5 €501, 4 A))Q)—basis for o((1T+ a(A))Q), for a small enough universal
constant k. Since A’ < A, it follows that (1 + a(.A))Q is tagged with (A, e*), as
claimed. That proves the first half of Proposition 4.

On the other hand, suppose Q D SQ and suppose Q is tagged with (A, el/x"),
for a small enough universal constant k’ > 0, to be chosen below (not any pre-
vious k’). Then SQ is tagged with (A, €*/%") for some universal constant k > 0,
thanks to Lemma 28 of [3]. Hence, as long as € is small enough so that ex/x < €0,
the conditional inequality applies:

Mg (0,P) <c[|\ (0,P)ll s A,,SW|P|} for any P € P.
4
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By Lemma 28 of [3], we also know g—i@ is tagged with (A, e*/%"). So either
#(%Q NE) <1 (in which case we have finished the proof of Proposition 4) or else
0(2—2 ) has an (.A/,XQ, e*/%' §=)-basis for some A’ < A.

In the latter case, Lemma 25 of [3] gives an (AN,XQ, ex/x’ 6@, A)-basis, with

A" <A< A K<K< i, with ?,% > 0 universal constants independent of k’,
and e?/Kl/\]OOD < €?/2Kl.
Call this basis (Py)xeca- Then
o Pyce /<. 6g‘+n/p7m . G(E—EQ) for all x € A”.
. aBP“(xQ) =08qp forall o,p e A”.

0PPalxg)l < /<55 1Pl forallae A", B e M, B> o

o [0PPu(x)l g/\.é'g‘*'m for all x € A", B € M.

We deduce a few conclusions from the above bullet points. The first bullet point
implies that ||(O,P‘,()HQ(2 < e?/K/éan/pfm; the last bullet point implies that
64

\aﬁPa(xQ)\ < /\~A5C for all x € A”, B € M (since Ay < 6@ < 1), hence

|P| = ( Z |aBPa(O)|p)1/p <C-: ( Z |65Pa(xé)|1’)1/p (since |XQ| < Q)

BeM pem
< C'A-AGC.

Hence, the (known) conditional inequality implies the estimate

Mg (0,Pa) < C- [0, el 3 + A - [P

(2.122) < Ce¥/H B S PTT  CAN A, < CTeR/ B EPT,

new —

for « € A”, where we have used that 6@ <1and || +n/p—m<0, and

121)

AAGCA, SN A2 ST AL 2R < R

new

Here, in the last inequality, we use that A < A100D < e*?/ZK/, where K < K.
Now, the estimate (2.122) implies that

P« € C'ei/'(légprn/p*m . E(Q) forall c € A”.

This estimate, together with the second and third bullet points above, shows that

(Pa)acar is an (.A",XQ, CeX/*’, dg)-basis for Q).

We ensure that C e/ <e by choosing k’ to be a small enough universal constant.
Hence, (Q) has an (.A”,XQ, 6,56)-basis with A” < A’ < A. This completes the
proof of Proposition 4. O
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Proposition 5. . Suppose Q1 - Qz are testing cubes with #(3@2 NE)>2, and
(1+a(A)Q1 NE =3Q2NE. Suppose 5(Q1) has an (A’ XG0 € 5@2)-ba5i3. Then

SQZ is tagged with (A’, €*) for a universal constant K.

Proof. By Lemma 27 of [3], 5(61) has an (.AH,XQZ, ex, 6@2)—basis, with A7 < A,

for some universal constant k. Call that basis (Py)xea. Then for each «x € A",
we have

e Pycer- %Wpfmi(@)-
. aBP“(xQZ) =04 forallpe.A”.
. 1AB R k. slal=IBl
[0PPa(xg, ) < e 6@2 forpe M, B>«

The first condition here gives MQ] (0,Py) < eKéan/p*m. So, by the uncondi-
2
tional inequality,

<C Ké‘a|+n/p m

H(O>ch)H(1+a(A))Q Q2

Hence, P, € CeKéan/p*mG(ﬂ +a(A ))(51) By Lemma 15 of [3], we know
2

G(SQZ) is comparable to o((1 4+ a(A ))Q1)+B( Xg,» Q ), S0

o((1+a(A)Q1) € Co(3Qa).
Thus, Py € Ce"él‘an/p*m (3Q2) for all o € A”. With the second and third

bullet points above thls shows that 0(3Q2) has an (A", x Xg, ,Ce" 6A ) basis, with

A" < A’. Therefore, 3Q2 is tagged with (A’, e*/2), if € is less than a small enough
universal constant. This completes the proof of Proposition 5. O

Corollary 1 of [4] is a direct consequence of Proposition 5, just as before.

Pr0p051t10n 6. Suppose that Q1 C Qz are testing cubes, #(3Q2 NE) > 2, and
(1+a(A ))Q1 ﬂE = 3Q2 NE. Suppose 3Q2 18 tagged with (A, €). Then G(Q1) has
an (A’ X9, , €S ,6Q )-basis for some A" < A and for some universal constant k'

Proof. Since 3Q1 C 3Q2 and SQZ is tagged with (A, €), Lemma 28 of [3] shows
that 3Q1 is tagged with (A, €*) for a universal constant k. Hence, the Conditional
Inequality holds for Qq. Hence,

(2.123) Mg, (0,P) < C [H(o,P)H Anew|P|} for P € P.

655, +
€3 Qi

Now, since 2 Q1 NE= 3Q2 NE and & Q1 C 3Q2, we know from Lemma 15 of [3]
that

N 65 ~

0(3Q2) € €+ [0( Q1) + B(xg,853,)]
(We have B(xg ,855,) C CB(xg,,055,), because [x5 —xg,[ < 85,. Hence, the
above 1nc1us1on follows from Lemma 15 of [3].)
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Recall that SQZ is tagged with (A, €) and #(3@2 NE) > 2. Hence, 0(362) has

an (A',XQZ, e,SSQZ)—basis, for some A’ < A. By Lemma 25 of [3], there exist a
multiindex set A” < A’ < A and numbers A > 1, k1 <K < K3, such that

0(362) has an (AH,XQZ, e, 63QZ,A)—baSis, where eXAT00P < ¢F/2)

for some universal constants k1, k2 € (0, 1]. Therefore,

65 ~ , _ '
G(aQ]) + B(xg,,055,) has an (A7, xg , Ce®, 855, A)-basis.

From Lemma 23 of [3], we see that 0(361) has an (AH,XQZ, C'e®A, 835, CA)-

basis. Here, C'e®A < C’e¥/? < /4, for sufficiently small €. Let (Py)aca be
that basis. Thus, for each o € A",

o Pyce/t. 6'5?“/1’7”1 : 0'(2—2(31 ).

. aBP“(XQZ) =04p forall pe A”.

o [0PPy(xq,)l < /4 TR for all p e M, B> o
2 Q2

o ‘aﬁp“(xézﬂ < C/\.élglflm for all B € M.

< ®/4glal+n/p—m
%Q] < C€ 6Q2

The first and fourth bullet points imply that ||(0, Ps)|]
and |[Py| < CAALC, hence (2.123) gives

(2.124) Mg, (0,Pa) < c'e?/“zsg*“/p*m +CAACA,., <Ce¥* 5‘5"*“/‘”*“1,

2

which implies that
(2.125) Py € C/eF/4 6'5“*“/7”*“1 .5(Qq) forae A
2
Here, to prove (2.124), we use that 6@2 <1and|x|+n/p—m<0, and

(2.121) _
1/2 < A- €2Kz < ek,

c (2.82)
AAGTAL. < ACALL
Here, in the last inequality, we use that A < AT00D < ¢=K/2 where ® < k,.

With the second and third bullet points, (2.125) shows that (Py)xe.a~ forms an
(AN’XQZ’ CeX/4, 6@2)—basis for 5(Q1). Hence, by Lemma 26 of [3], it follows that
T(Q1) has an (A”/,XQ],GK/,5QZ)—baSiS for some A" < A" < A" < A and for a
small enough universal constant k’. This completes the proof of Proposition 6. O

The statements and proofs of Propositions 11 and 12 of [4] are unchanged.

The statement of the algorithm OPTIMIZE BASIS requires modification.

ALGORITHM: OPTIMIZE BASIS (FINITE-PRECISION)

We perform one time work at most CNlog N in space CN, after which we can
answer queries as follows. R
A query consists of a testing cube Q and a set A C M

We respond to the query (Q, A) by producing the following.
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e A collection of machine intervals Iy (1 < € < {ax). The intervals I, are
pairwise disjoint, the union of the I is [AQ,A;1], and £y < C.

e A list of non-negative machine numbers a; ({ = 1,...,{pax). The numbers
a¢ are bounded in magnitude by AEC.

e A list of numbers Ay. Each A has the form py + vy /p, with pe, vy € Z and
ttely [ve| < C.

e Let T](Q‘A)(é) = ap 8™ for & € I;. Then we have:

(A1) For each b € [Ag,A;1] there exists A’ < A such that E(Q) has an
(A’,xé,nvz,é)-basis for all m > C -n(QA)(5).

(A2) For each b € [AQ,A?] and any A" < A, E(Q) does not have an
(A’,XQ,nVZ,(S)—basis for any n < ¢ - n(QA)(3).

(A3) Moreover, c ~n(Q’A)(61) < n(Q’A)(éz) < C ~n(Q’A)(61) whenever
7501 < 82 <1087 and 871,82 € [Ag, Ay,

(A4) Also, n(@A)(8) > AS, for all § € [Ag, Ay'].

e To answer a query requires work at most Clog N.

Ezxplanation. Recall that we can perform arithmetic operations to within preci-
sion Ae.

We denote Z[1/p] = {?\ =k+¢- % 1k, L e Z}. IfA=k+(- % € Z[1/p], with k
and { bounded by a universal constant, then we say that A is a machine element of
Z[1/pl. Such a A can be stored on our computer using at most C units of storage.

Recall that we defined |P|x = (ZcxeM|6"‘P(x)|‘”)1/p for P € P and x € R™, and
[P| = |Plo. The vectors (0P (x))xem and (0%P(0))xem are related by multiplica-
tion against an invertible matrix A(x) = (Axp(x))«,pem. This is a consequence
of Taylor’s formula. Note that the operator norm of the matrix A(x) is bounded
by a universal constant if [x| < 1. Thus,

(2.126) C'"IPly <|P|<C|P|x forPePand|x <T.

Using APPROXIMATE NEW TRACE NORM (see Section 2.13.1), we compute a
quadratic form qg on P such that {q(2 <c}CcT(Q)c {q(2 < C}, where ¢ > 0 and
C > 1 are universal constants.? The quadratic form 45 is given in the form

~ 1 1
daP) =D Tap- —0P(0) - ;0P P(0),
o,peEM & B!

where we compute the numbers (g with parameters (Ag, AgcAe). Using a linear
change of basis, we write

L 1
4o(P) = D dap- 570"Plxg)- 57 - 9°Plxg)-
o, REM

2Recall that by now we have fixed tg to be a universal constant; hence, the constants c(tg)
and C(tg) in APPROXIMATE NEW TRACE NORM are now universal constants c, C.
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Each qqp is a linear combination of all the numbers G«p. Thus, we can compute
each qup with parameters (Ag,AgCAe).

From the conditions in the algorithm APPROXIMATE NEW TRACE NORM (finite-
precision), we know that qQ(P) >c- (MQ(O,P))Z. Furthermore, the term (VI) =
AP__-|P[P is a summand in [M Q(O, P)]p, hence MQ(O,P) > A,ew - |P| (see (2.102)).

Hence, using (2.126), we see that
g (P) = /A% [P* = ¢"AZ IPIS,.

new new

(Note that |xA| <1, since Q € Q° =1[0,1)™))
Therefore, the matrix (qqp) satisfies

(%qa) > CAHEW : (5a[3) > Ag : (6oc[3)~
This means that we can apply the finite-precision version of FIT BASIS TO CONVEX

BODY to the matrix (qqp) and the convex body E(Q) (see Section 2.5). We can

therefore compute a piecewise monomial function niQ‘Al) (8) for each A" < A. We
guarantee that

e For any 0 € [Ag,Agl],

- (P1) E(Q) has an (.A’,XA,nVZ,S)—basis for any 1 > C ~n£Q‘Al)(6)
Q

i

— (P2) ©(Q) does not have an (A’,x5,n'/2,8)-basis, for any n < c -
Q
n£Q7A/)(6

—

. (P3) Moreover, ¢ - n* A" (8 ) < 1. QA/)(SZ) <C .niQ»A/)((S]), whenever
181 <8, < 108, for 51,52 € [Ag, 2571,

o (P4) Also, n*Q‘A (8) > A§ for any b € [Ag, Ay,
e The function niQ‘A/) : [Ag, A?] — R is given in the form

T]&Q’A/)(é) =dagA’- dMear ford e I 4.
To represent n*Q’ we store the following data: pairwise disjoint machine
intervals Iy 4 (1 < € < €,0x(A’)) that form a partition of [Ag, Ag]]; machine

numbers ag, 4/ € [Ag,AgC]; and exponents A¢ 4- that are machine elements
of Z[1/p]. We guarantee that £.x(A’) < C for each A" < A.

By computing all the nonempty intersections of the intervals I 4/, we write each
T]£<Q A )(5) in the form

QA% 5)

M =cCqA’ dYear fordely (0=1,2,...,lnax).

Here, we compute the following: machine intervals Iy (1 < £ < £,,y) that partition
[AQ,A;]; machine numbers c¢ 4/ € [AQC,AQ ]; and exponents y¢ 4/ that are

machine elements in Z[1/p]. Moreover, £y < C.
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We define

(2.127) n(3) := gﬁ&niQ’A (s).

We will compute a piecewise-monomial approximation to the function n(8) using
the following procedure.

PROCEDURE: PROCESS MONOMIALS

Assume that we are given the following: A machine interval I C [AQ,AE]],
machine numbers aj,a; € [AS,A;C], and machine elements y1,v, € Z[1/pl. We
define monomial functions m;(8) = a18Y" and m,(8) = a28Y2. Then we produce
one of three outcomes:

1. We guarantee that mq(8) < my(8) + Al;/z for all b € I.
2. We guarantee that m,(6) < mq(d) + AL/Z for all b € L.

3. We compute a machine number 6. € I, and distinct indices j, k € {1, 2}, such

that
{ m;(8) < my(8) + A2 for §€1n(0,5.],

mi(8) < my(8) + A2 for § € 1N [5.,00).
This computation requires work and storage at most C.

Ezplanation. If y1 = 2 then outcome (1) occurs if a; < a,, and outcome (2)
occurs if a; > a,. Thus, we can respond in the case when y; = vy
Assume instead that y; # y2. In this case we have co < |[y1 —v2| < Co for
universal constants co and Cy, since y7 and vy, are machine elements in Z[1/p].?
We define a monomial function m(d) := my(8)/m2(8) = a-0Y, where a = a;/az
and vy = v1 —Yy2. The unique solution to the equation m(d) =1 is given by

(2.128) 8501 :=a' /Y.

Since monomial functions are monotonic, we have either

(a) m(8) < 1 for Ag <6 < ds01, and m(8) > 1 for do < 8 < Aa]; or

(b) m(8) > 1 for Ag < 8 < 801, and M(8) < T for do1 < 8 < AT
We know that (a) holds if v > 0, and (b) holds if y < 0. We can determine which
case occurs because the rational number y is given to exact precision.

Since a € [AS,A;C] and ¢y < |y] < Co, due to the numerical stability of
exponentiation we can compute a machine number &, such that

(2.129) 5. € 1A, Ay and [5, — 8s01| < AyCAc (see (2.128)).

From (2.129) and the Lipschitz continuity of m(d), we have |[m(8) — 1] < A;CAe
for all & in the interval between &, and 0.

3The constant ¢y here depends only on m, n, and p, but it may depend sensitively on the
approximation of 1/p by rationals with low denominators.
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Therefore, in case (a) we have m(d) = my(8)/m2(8) < 1+ A;CA@_ for all
Ag <8 <8y, and m(8) = my(8)/m2(8) > 1 —A;CA€ for all b, <6 < A;l. Note
that both my(8) and m,(8) are in the range [AQC,AEC] ifd € [Ag,AE]]. Thus, in
case (a) we determine that

mi(8) < ma(8)- (1445 Ae) < ma(8) 44,7 Ac < ma(8)+AY? for Ag <5 <8,

and similarly, m;(8) > m,(8) — Al/z for 6, <6 < A?. Thus, we can respond as
follows:

e If 6, is to the left of the interval I then outcome (2) occurs.
e If 6, is to the right of the interval I then outcome (1) occurs.
e If 5. belongs to the interval I then outcome (3) occurs with j = 1 and k = 2.

Similarly, in case (b) we determine that m;(8) > m;(8) — Al;/z for all Ay <

5 < 3., and similarly, m(8) < m2(d) + Al/z for all &, <& < Ag]. Thus, we can
respond as follows:

e If &, is to the left of the interval I then outcome (1) occurs.
e If &, is to the right of the interval I then outcome (2) occurs.
e If 5, belongs to the interval I then outcome (3) occurs with j =2 and k = 1.

This completes the explanation of procedure PROCESS MONOMIALS. Clearly,
the work and storage of this algorithm are at most C for a universal constant C. O

We return to the setting before the above procedure.

Fix ¢ € {1,...,lnax}. Applying the procedure PROCESS MONOMIALS, for each
pair (A’, A”) such that A’ < A and A" < A, we produce one of three outcomes.

In outcome (1), we guarantee that QAT < ql@AT L AL
interval I;.

, uniformly on the
In outcome (2), we guarantee that n&Q‘A”) < n&Q‘A/) + Al/z
interval I;.

In outcome (3), we divide the interval I, at the point 8¢ 4/, 47 = 8. € I to
obtain split subintervals I, = Iy N (0,8,] and I] = Iy N (84,00). (A subinterval

may contain only a single point or be empty.) We guarantee that T]*(FQ’A’) <
n&Q‘A by Al_/z on one of the split subintervals, and niQ‘A ) < n&Q‘A by Al_/z on
the other. We determine which inequality is satisfied on each subinterval.

For each pair (A’, A”) such that outcome (3) occurs, we have computed a
machine number 8¢ 4/, 4~ in I;. We sort these numbers and remove duplicates to

obtain a list

, uniformly on the

01 <0y < - < Ok,

Note that K¢ < #{(A’, A"): A" < A, A” < A} < C for a universal constant C.
We define 6o and dk,+1 to be the left and right endpoints of I, respectively. We let
I‘g = [0k, dk41] for each 0 < k < Kg. We thus obtain a (possibly trivial) partition
of Iy into subintervals 19, ..., I}f“.
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For each interval I} and each pair (A’, A”) such that A’ < A and A” < A, we
guarantee either that niQ‘A/) < niQ‘A”) +AY? on I¥ (A’ beats A” on If), or that

n&Q‘Aﬁ) < n&Q‘A/) +AY? on I§ (A” beats A’ on If). To make such a guarantee,
we look at the previous outcomes. If outcome (1) occurs, then A’ beats A” on If.
If outcome (2) occurs, then A” beats A’ on If. If outcome (3) occurs, then we
determine which of the split subintervals of I; contains I][. Once we have done that,
we can make a correct guarantee by using the guarantee made in outcome (3) for
the split subinterval.

For each of the intervals I‘g we perform the following computation. We initialize
S={A"c M: A" < A}). We initialize A to be any member of S. Then we run
the following loop.

o WHILE: S # {A}

e — Select an arbitrary A’ € S\ {A}.
— If we guarantee that A’ beats A on I¥, then discard A from S and set
A=A
— If we guarantee that A beats A’ on I§, then discard A’ from S. Do not
modify A.

— (Note that we make at most one guarantee.)

Let A; denote the sole member remaining in S once the loop is complete. For
any A’ C M with A" < A, there is a sequence of “competitors” Aj, ..., A; with
Aj = A, such that A; beats Aj;1 on If forj = 1,...,J—1. This is clear because A’
is selected in the loop at some iteration, and as long as A’ # A; we can be certain
that A’ is beaten by some competitor, who in turn is beaten by another competitor,
and so on until the loop terminates with the final competitor A;. Clearly, the
number of competitors ] is bounded by a universal constant C. By combining the

estimates coming from each competition, we learn that niQ’fh ) < niQ’A’) —|—]A]€/2.

Therefore, n&Q‘A” < niQ‘Al) +cal?,
Thus, for each 0 < k < K¢, we can compute a multiindex set .A}f < A such that

2.130) 1240 (5) < Q@4 (5) 1 CAV2 forall s € 1§, for all A’ < A.

We repeat the previous construction for each £ € {1,...,{yax}
We therefore obtain machine intervals I}f (0 <k <Kg, 1 <1< lyax), which
form a partition of [Ag, Ag]], and multiindex sets Af as in (2.130).

We define a function 7 : [Ag, A?] — R by

A k
(8) =l @A (8) = ¢ g 874 5 €I

Since {ax < C, the previous construction can be executed using work and
storage at most a universal constant C’.

We will make use of the properties (P1)—(P4) of the functions T]*(FQ’A’) that
were stated earlier in this section.
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Recall that n(6) is the minimum of nﬁQ’A/)(é) over all A" < A (see (2.127)).
Since Af < A for all (k,{), we have 17(8) > n(8). Moreover, taking the minimum

with respect to A’ in (2.130), we conclude that 1(8) < n(d) + CA]/Z. Thanks

to (P4), we have n(d) > AC > CAlYZ Thus, we learn that

(2.131) n(8) <#(5) <2-n(s).

We next prove that the the function 1 (Q4) J(8) =7(0) satisfies (A1)-(A4).

Proof of (A1). Let 6 € [Ag,Ag]]. Also, let 1> C-1(8), with C as in (P1). Then,
thanks to (2.131), we have

) (Q,A")
n>C-n(d)=C- mirhn (8).

Hence, 1 > C - n. (Q Al)( ) for some A’ < A. According to (P1), we learn that
(Q) has an (A, X’\,T]]/Z d)-basis. This completes the proof of (A1).

Proof of (A2). Let b € [AQ,A?]. Also, let n < §-1(8), with ¢ > 0 as in (P2).
Then, thanks to (2.131), we have
(A9 5),

< . 6:
n<c-n@d)=c- f{{lglf‘n

Hence, n < ¢ - n*Q A" (6) for all A’ < A. According to (P2), we learn that ?(Q)
does not have an (A',XQ,T]]/Z, 5)-basis for any A’ < A. This completes the proof
of (A2).

Proof of (A3). Let 81,02 € [AQ,AE ], with —61 < 6y < 108;.
According to (P3), for each A’ < A we have

¢ -1l (51) < @4 (5,) < €1\ Q(5:).

Taking the minimum with respect to A’ < A, we learn that ¢ -n(d7) < n(62) <
C-1(81). According to (2.131), we therefore have ]Ic 1(67) <M(62) <4C-7(d7).
This completes the proof of (A3).

Proof of (A4). We have

_ (2.131) . (Q,A/) (Pa) C
o) > d) = X 8) > Ay
n()_n()gg}‘n (8)
This completes the proof of (A4).
Thus, conditions (A1), (A2), (A3), and (A4) hold for n(Q4)(§) =1(8).
This concludes the explanation of the algorithm. O
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2.15. Computing lengthscales

Each point x € E is assumed to be an S-bit machine point. Recall that Ay = 275,
Hence,

(2.132) Ix' —x"| > Ao for distinct x’,x" € E.

Recall that CZ(A™) consists of disjoint dyadic cubes that form a partition of
Q° = [0,1)™. According to the Main Technical Results for A™, we have dg > ¢-Ag
for each Q in CZ(A™), for a universal constant c¢. Therefore, each Q in CZ(A™)
is an S-bit machine cube, where S < CS for a universal constant C.

Recall that a testing cube is a dyadic cube Q C Q° that can be written as
a disjoint union of cubes in CZ(A~). We then have 65 > ¢ - Ao for a universal
constant ¢ > 0 (see Remark 1). We set A := 1/40.

ALGORITHM: COMPUTE INTERESTING CUBES (FINITE-PRECISION)

We compute a tree T consisting of testing cubes. The nodes in T consist of all
the cubes Q € CZ(A™) that contain points of E, all the testing cubes Q for which
diam(SQ NE)>A- 6@, and the unit cube Q°.

Here, T is a tree with respect to inclusion. We mark each internal node Q in T
with pointers to its children, and we mark each node Q in T (except for the root)
with a pointer to its parent.

The number of nodes in T is at most CN, and T can be computed with work
at most CNlog N in space CN.

Ezplanation. We follow the explanation in Section 1.6 of [4]. We need to check
that the computation is valid in our finite-precision model of computation.

We compute representative pairs from the well-separated pairs decomposition
of E using the algorithm MAKE WSPD (see Section 4.2 of [3]). The representative
pairs (x,,xY) € ExX EN{(x,x) : x € B} (1 < v < vpax) satisfy |x{, — x| > Ao,
thanks to (2.132).

Next, we loop over all v and list all the dyadic cubes Q with x,x” € 5Q
and |x, — x| > %6@. We call this list Q1,...,Qk. Since 5Qy contains some
representative pair (x{,x}), we have dq, > 1§|x<, —xJ > 1ng for each k =
1,...,K.

Note that the “BBD Tree algorithm” in Theorem 35 of [3] is unchanged in
finite-precision, so we can compute diam(3Qyx N E) for each k = 1,..., K. We
remove any cubes from our list that satisfy diam(3Qyx NE) < Adq, , which occurs
if and only if 8g, > 40 - diam(3Qx N E). We also compute the cube in CZ(A™)
that contains the center of each Qy, using the CZ(A~)-ORACLE. If Qy is strictly
contained in this cube, then we remove Qx from our list. Denote the surviving
cubes by Q1,...,Qg-

We list all the cubes Q € CZ(.A™) that contain points of E (take all the cubes Q
in CZmain (A™) that satisfy ENQ # 0), the cubes Q1 ..., QR’ and the unit cube Q°.
We sort this list to remove duplicates, and organize it in a tree T using the algorithm
MAKE FOREST (see Section 4.1.5 of [3]). That completes the explanation of the
algorithm. O
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ALGORITHM: COMPUTE CRITICAL TESTING CUBES (FINITE-PRECISION)

Given € > 0, which is less than a small enough universal constant, we produce
a collection Q. of testing cubes with the following properties.

(a) Each point x € E belongs to some cube Qy € Q..
(b) The cardinality of Q. is at most C - N.
(

c) If Q € O, strictly contains a cube in CZ(A7), then (1 + a(.A))Q is tagged
with (A, e*).

(d) 1f Q € O, and 5@ < c¢*, then no cube containing S(AQ is tagged with (A, e'/*).
(e) Each cube Q in Q. satisfies dg > ¢ - Ao.

The algorithm requires work at most CNlog N in space CN.
Here, ¢* > 0 and S > 1 are integer powers of 2, which depend only on m, n, p;
also, k € (0,1) and C > 1 are universal constants.

Ezxplanation. The main change to the explanation is that we use the finite-precision
version of OPTIMIZE BASIS instead of the infinite-precision version. We also need
to show that the roundoff errors that can arise have little effect.

Note that condition (e) will hold for each Q in Q¢, since we promise that Q.
contains only testing cubes. (See Remark 1.)

We let A > 1 be a sufficiently large integer power of two, as before. We will
later choose A to be bounded by a universal constant, but not yet. We assume
that A is a machine number.

We construct a tree T of interesting cubes with the algorithm COMPUTE IN-
TERESTING CUBES (finite-precision).

We next explain the construction of the collection @e.

We proceed with Steps 0-6. The construction is almost identical to that in
infinite-precision. We refer the reader to the earlier text. We will only record the
necessary changes

We assume we have carried out the one-time work of the BBD Tree. Thus,
given an S-bit machine cube Q, with S < CS, we can compute # (g—iQ N E) using
work at most C - log N.

Therefore, we can compute # (g—iQ n E) for each Q in T.

For each cube Q1 in T we perform Steps 0-3.

Step 0 is unchanged: We find the parent Q, of Qq in T.

In Step 1 in the infinite-precision text, it says “We determine whether or not
there exists a number § € [A'%8q,,A"1%8q,] with the property that e'/*s <
Q1" A)(§) < 5. If such a b exists, we can easily find one.” We can no longer
make such an accurate determination because of inevitable roundoff errors. We
will need to make the modifications listed below.

e Step 1 (modified). In finite-precision, we compute a piecewise-monomial rep-
resentation for the function n(Qi">4)(§) using the finite-precision version of Op-
TIMIZE BASIS, where Qy” is the dyadic cube with Q1 C Q7" and 8w = A - dq.
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We produce one of two outcomes. Either we guarantee that there does not exist a
5 ¢ [/\106Q1 ,/\*105Q2] such that

up

(2.133) el/ks < QA (§) < eXs,

or else we compute a machine number & € [/\]OéQ] , /\*1°6Q2] satisfying
] up
(2.134) zc-;‘/KS < QA (5) < 2e*.

The number 6 is computed exactly.
The factors of 2 in the above estimate arise because of roundoff errors in the

computation of §. Indeed, we can bound any roundoff error by A, A;C, which
is at most 100~ - €!/%5 since A A;C < Al/z (see (2.81)) and Al/z < A, <
10071 - e!/%s (see (2.82) and (2.121)).

As in the proof of (1.159) of [4], in the second alternative we can find a dyadic
cube Q with Q1 € Q C Q2, /\]05Q, <dg < /\*]OéQZ, and such that

(2.135) [el/Ks Sn(Q‘,’p,A)((SQ)] and [n(Qﬁ""A)(éQ) < eKG].

Here, by choosing k¢ sufficiently small, we can make the extra factors of 2
disappear. R

In the second alternative, we add Q to the collection Q.. That completes the
computation in Step 1.

Note that [6g,,0q,] C [Ag,Ag]], since each cube in T has sidelength in [c -
Ao, 1], and since Ay < ¢ - Ag. This comment justifies the previous computation,
since the function n(Q1"4)(8) is defined only for & € [Ay, Ag]].

Similarly, in Steps 2—-6, we make the following changes.

e Step 2 (modified). We examine each dyadic cube Q with Q7 € Q C Q2,0 <
A0 and [8g < A198q, or 8g > A7198q,]. We compute a piecewise-monomial
function n{Q""4)(8) using the finite-precision version of OPTIMIZE BASIS. We
produce one of two outcomes. Either we guarantee that

(2.136) [ > Q" A (5quw)] or {#(E—ZQ N E) > 2and n(QA(50) > eﬂ,

where Q" is the unique dyadic cube with Q C Q" and dquw = Adq, or else we
guarantee that

up 65
(2.137) [Le5' < @74 (5qu)] and [#(anE) <Torn @A (50) < 2eK5].
The extra factors of 2 allow for small additive errors in the computation of

n(Q“”,A)((sQup). R
We add Q to the collection Q. in the second alternative.
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e Step 3 (modified). We examine each dyadic cube Q with Q1 € Q C Q2 and
dg 2> A% We apply the finite-precision version of OPTIMIZE BASIS to compute
a function Q) (5). We produce one of two outcomes. Either we guarantee that

(2.138) [#(E—ZQHE) >2 and 1@ (5q) > €K5},

or else we guarantee that
65
(2.139) {#(anQ <1 or 0@ (50) < Zeﬂ.

The extra factors of 2 allow for roundoff errors in the computation of n(Q4) (8Q)-
We add Q to the collection Q¢ in the second alternative.
e Step 4 (modified). We apply the finite-precision version of OPTIMIZE BASIS

to compute a function n(Q°4)(§). We produce one of two outcomes. Either we
guarantee that

(2.140) QA (5q0) > €],
or else we guarantee that
(2.141) M54 (5q0) < 2e*°].

We add Q° to the collection Qe in the second alternative.

e Step 5 (modified). We examine all dyadic cubes Q C Q° such that 6 > AT,
We add Q to the collection Q. if and only if Q € CZ(A™).

e Step 6 (modified). We examine all cubes Q € CZ(A™) such that 6o < AT
and QNE # (). We apply the finite-precision version of OPTIMIZE BASIS to
compute a function n(Q""4)(3), where Q* is the dyadic cube with Q C Q» and
dqguw = Adg. We produce one of two outcomes. Either we guarantee that

(2.142) [e5s " > Q™A (5qu)],
or else we guarantee that

1 up
(2.143) [Tess <n Q@A (5qw)].

We add Q to the collection Qe in the second alternative.

As before, we see that #(@e) < C(A) - N, hence property (b) holds.

Recall that Propositions 8 and 12 of [4] are unchanged in the finite-precision
case —only their proofs required modification. Hence, the analysis that the above
algorithm works proceeds as before. In place of the conditions (1.159)—(1.163) we
use the conditions (2.135), (2.137), (2.139), (2.141), and (2.143).

The proof of properties (c) and (d) requires minor changes to reflect the loss
of factors of 2. By choosing smaller values for ki,...,K20, we arrange that the
extra factors of 2 can be absorbed into relevant estimates in the proof. Thus, we
can prove properties (c) and (d) for each cube in Q. using the same argument as
before.
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The proof of property (a) requires minor changes to reflect the loss of factors
of 2. We fix a point x € E.

As before, we consider the increasing chain of cubes Qo C Q1 C -+- C Q+,..
in T, such that Q41 is a parent of Qg in T, x € Qo, and Qo € CZ(A™).

To prove (a), we will show that there exists a cube Q € Q. such that x € Q.

As before, we consider the first extreme case (A), the second extreme case (B),
and the main case (C).

In the first extreme case, we assume that 3Q° is tagged with (A, €) and deduce
that n(QO’A)(SQo) < €*5. Hence, according to the above construction in Step 4,

we included Q° in Q..

In the second extreme case, we assume that 3Qo is not tagged with (A4, €) and
we deduce that n(Qop’A)(éQgp) > e!/%5_ Hence, according to the construction in

Step 6, we included Qq in @e.

In the GI subcase of the main case, from the assumptions in the GI subcase we
prove (1.172) and (1.173) of [4] (see the analysis in infinite-precision). This means
that (2.136) does not hold for the cube Q. Hence, according to the construction
in Step 2, we included Q in Q..

In the GUI subcase of the main case, from the assumptions in the GUI subcase
we prove (1.174) and (1.175) of [4]. Hence, (2.133) holds with = 8g. Thus, we
pass to the second alternative in our construction in Step 1 (for the cube Q- € T).
Hence, we decided to include in Q. a cube Q' with Qv C Q' C Qv41-

In the NM subcase of the main case, from the assumptions in the NM subcase
we prove (1.176) of [4]. Hence, (2.138) fails to hold for the cube Q. Hence, in the
construction in Step 3, we included Q in @e. R

Thus, as in infinite-precision, we see that there exists Q’ € Q. with Qo C Q' C
Q... and hence x € Q’. This completes the proof of (a).

We choose A > 1 to a be a large enough universal constant so that the above
holds. That concludes the explanation of the algorithm. O

According to our construction, each Q in Q. satisfies g > ¢-Ap. Furthermore,
by hypothesis, each x € E is an S-bit machine point.

Thus, we can apply the algorithm PLACING A POINT INSIDE TARGET CUBOIDS
to compute a cube Qyx € Q. containing each x € E. This requires work at most
CNlogN in space CN. Thus, the algorithm COMPUTE LENGTHSCALES is un-
changed in finite-precision (see Section 1.6.2 of [4]).

Proposition 13 of [4] still holds in the finite-precision setting.

2.16. Passing from lengthscales to CZ decompositions

We explain how to define a decomposition CZ(A) of Q° into machine cubes, and
how to define a CZ(.A)-ORACLE.
For each x € E, we compute the machine numbers

AA(X) = 6Qx'
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We say that a testing cube Q € Q° is OK(A) if either Q € CZ(A™~) or A 4(x)
Kbdq for all x € EN3Q, where K := 239/a(A) (here, the constant 107 in Section 1
of [4] is replaced by 23°).

We define a Calderén—Zygmund decomposition CZ(.A) of the unit cube Q° to
consist of the maximal dyadic subcubes Q C Q° that are OK(.A).

Clearly, CZ(A™) refines the decomposition CZ(.A), namely, each cube in CZ(.A)
is a disjoint union of the cubes in CZ(A™). Since dg > 31—2 A for each Q € CZ(A7)
(by the finite-precision version of the Main Technical Results for A~), we have

2
7

(2.144) 5g > 3]—2 Ay for each Q € CZ(A).
This implies an additional property of CZ(.A) that is required in the finite-precision
version of Main Technical Results for A.

We construct a CZ(A)-ORACLE using the GLORIFIED CZ-ORACLE, where we
take A(x) := A4(x)/K = Aa(x)-a(A)-273°. Note that a(A) = a,., =25, where
S < CS for a universal constant C (see (2.97)). Note also that A4(x) = dq, is an
S-bit machine number (recall that Qy is a testing cube, and use Remark 1). Thus,
A(x) is an S-bit machine number for each x € E, where S < C’S for a universal
constant C’. Thus, the extra hypotheses required for the finite-precision version
of the GLORIFIED CZ-ORACLE are valid (see Section 2.10).

We refer the reader to Section 1.7 of [4] for a proof of the remaining properties
(CZ1)—-(CZ5) of the decomposition CZ(.A). See Propositions 14, 15, and 16 of [4],
and equations (1.179) and (1.180) of [4].

We have thus proven all the properties of the decomposition CZ(.A) stated in
the Main Technical Results for A.

2.17. Completing the induction

In executing the algorithm PRODUCE ALL SUPPORTING DATA in finite-precision,
we need to produce extra stuff, since we added stuff to the definition of modified
supporting data (see Modification 1 in Section 2.13.2). For each Q € CZyain(A),
we need to list all the points x € EN g—ZQ. However, it’s easy to do that. The
procedure is as follows: we loop over all points x € E. For each x, we use the CZ(.A)-
ORACLE to find all the Q € CZmain(A) such that x € %Q, and we then add x to a
list associated to each relevant Q. Any given x is associated to at most C cubes Q,
and we can find each cube in the list CZyain(A) by binary search that requires
work at most ClogN. Therefore, this procedure requires work at most CN log N
in space CN. Thus, the work and storage used by the finite-precision version of
the algorithm PRODUCE ALL SUPPORTING DATA are bounded as required.
In place of (1.182) and (1.183) of [4], we have to prove the estimates

1Py agang < CMg(F,P) and  Mg(f,P) < CI|(f, P)l|ss g + C Aueu|P).

65
64

We prove these estimates using the finite-precision unconditional and conditional
inequalities, just as in the infinite-precision case.
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We separately treat the simple and non-simple cubes Q € CZ(A) as in Sec-
tions 1.8.1 and 1.8.2 of [4]. We make a few small changes to the analysis. which
are documented below.

e In Section 1.8.1 of [4]: We defined lists E(Q,A) and Q(Q,A) of linear func-
tionals, and a linear map T(Q,A) for each of the non-simple cubes Q € CZ(A). The
definitions are unchanged. See the versions of the algorithms COMPUTE NEW AS-
SISTS, COMPUTE NEW ASSISTED FUNCTIONALS, and COMPUTE NEW EXTENSION
OPERATOR in Section 2.13.2. The linear functionals and linear maps here are all
computed with parameters (AgC, AECA@_).

e In Section 1.8.1 of [4]: We need to control an extra sum when evaluating the
upper bound on the work and storage. Namely, we have to control the sum

X {#(Geng)
QECZumain(A)

This extra term arises from the work of applying the finite-precision version of
COMPUTE NEW ASSISTED FUNCTIONALS (see Section 2.13.2). This sum is bounded
by CN, thanks to the bounded overlap of the cubes 2—2@, for Q € CZ(A). Hence,
the work and storage needed to compute all the functionals defined in Section 1.8.1
of [4] are bounded as required.

e In Section 1.8.2 of [4]: We defined lists E(Q, A) and Q(Q, A), and a linear map
T(Q,A) for each of the simple cubes Q € CZ(A). The definitions are unchanged.
See the relevant text. The linear functionals and linear maps here are all computed
with parameters (Agc, A;CAE).

e In Section 1.8.2 of [4]: The finite-precision version of (1.185) (from the Main
Technical Results for A™) states that

(2145)  CT(6,R) (140 < Miguany (P < C [0, P)lss. + AgunklPI].

e In Section 1.8.2 of [4]: The statement and proof of Prop. 17 are unchanged.

e In Section 1.8.2 of [4]: The finite-precision version of Lemma 15 states that

T+ anew) Q Q,A)
We prove this estimate as follows. From (2.145) we have

MagaHP] <C Y [||(f,P)||g_3Q +A}’unklP|P] :
QECZmain (A7)

QC(1+tg)Q

CIEP 14 annd < Mg (BP) = C [P ggg + AuenlPl] -

65
64

The number of Q arising in the above sum is at most C. Hence,
Mg, (1 P) < C I, P)lss g+ Awu P

as in the proof in the infinite-precision setting. Here, we use that Ajunk < A,..;
see (2.82).
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e In the Closing Remarks: We fix € to be a small enough universal constant.
The parameters Ag = Ag(A7), Ae = Ac(A7), and A,.,, are assumed to satisfy
(2.82), (2.98) and (2.121).* We also impose the assumptions Ajunk(A) > A,
Ag(A) < Ag, and Ac(A) > A;CAe, for a large enough universal constant C.
Thus, we obtain the Main Technical Results for A from the above bullet points.

o If A ={ (the maximal multiindex set) then the induction is complete. We
do not fix a choice of the parameters A¢(A), Ag(A), Ajunk(A) (for A C M) just
yet. These parameters are determined later in the proofs of our Main Theorems.

2.18. Main theorems

2.18.1. Homogeneous Sobolev spaces. In this section we prove Theorem 1
using the Main Technical Results for A = (). B _
We assume we are given parameters Api, = 2 KmaxS A7 = =2-Ki5 AO =

2-K2S , and Aounk —27KsS , for integers Ki, Kz, K3, Kpax > 1 as in Theorem 1.

The proof is identical to the argument in Section 2.1 of [4], except for minor
changes, which we describe below.

We start from the sentence “By translating and rescaling, we may assume - - -.”

We let the parameters Ac = Ac(0), Ag = Ag(0), and Ajunk = Ajunk(?) be as in
the Main Technical Results for A = {).

According to the Main Technical Results for A = (), we are given the following
objects.

There is a dyadic decomposition CZ of the unit cube Q°. The CZ-ORACLE
operates as before, except that the query point x € Q° is required to be an S-bit
machine point. We can list all the cubes Q € CZ such that x € %Q, using work
at most Clog N.

For each Q € CZ with g—iQ NE # 0, we are given a collection Q(Q) C

[ (EN GE‘Q)]* of assist functionals, a collection Z(Q) ¢ [X(E N 6iQ) @73] of
assisted functionals, and a linear map Tq : X(E ZQ) oP—X
We recall some of the main properties of these objects in the points below.

e Modification 1. For each Q € CZ with & Q NE # 0, the linear func-
tionals w € Q(Q) are given with parameters (Ag, A ); also, the linear function-
als & € Z(Q) are given in short form with parameters (Ag,Ac) in terms of the
assists Q(Q).

Given Q € CZ with & Q NE # (), given an S-bit machine point x € Q°,
given o € M, we Compute the linear functional (f, P) — 0%(Tq(f, P))(x) in Short
form with parameters (Ag,A¢) in terms of the assists Q(Q).

e Modification 2. We replace (2.1) of [4] with the corresponding estimate
from the finite-precision version of the Main Technical Results for A = (), namely:

AP
(2.146) E;(q)|a (£,P)IP < C[II(F, P)I%s o + ARl PI7]

4Recall that we have fixed tg and e to be universal constants. Hence, the conditions (2.98)
and (2.121) state that Asew is less than a small enough universal constant. These are among the
conditions (2.73) and (2.74) imposed before.
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e The linear maps Tq satisfy (2.2) and (2.3) of [4] just as before.

e From the conditions in the Main Technical Results we learn that dq > c.
for every Q € CZ, for the universal constant ¢, = c.(@). Using the CZ-ORACLE,
we can list all the cubes in CZ using work at most ClogN. The algorithm is as
before.

e Modification 3. As before, we let a denote the universal constant a(f).
According to the finite-precision version of the Main Technical Results, we know
that a is an integer power of 2. Thus, a is a machine number. We define a
family of cutoff functions éQ (for Q € CZ) as before. For a statement of the
relevant properties of éQ, we refer the reader to the text following (2.4) of [4]. The
finite-precision version of the algorithm COMPUTE AUXILIARY FUNCTIONS requires
slight modification to allow for roundoff errors. Given Q € CZ and given an S-
bit machine point x € Q°, we compute the numbers a“(eQ)( x) for all & € M.
We guarantee that the numbers a“(eQ)( x) have magnitude at most Ay € and are
computed to precision Ay CA. for a universal constant C. For the explanatlon we
define a spline function 9 (depending on a) with 6 >1/2on Q°=1[0,1)m, =0
outside (1+ a)Q°, 0 < GQ <1 onR™ and |866Q )| < C (for p € ./\/l, x € RM).
We also assume that the derivatives of 8 at a general S-bit machine point in R™
can be computed to precision Ac. This is possible because the machine precision
of our computer is Api, < Ac. We define éQ to be an appropriately shifted and
rescaled version of 0 that is supported on the cube (14 a)Q. Since dg > c* for
all Q € CZ, we learn that |aB§Q(x)| <C' < Aacl for a large enough universal
constant C’. We can compute 6"‘§Q (x) (for « € M) with precision AacAe by

rescaling the a-derivative of 0 at a suitable machine point in R™ (determined by x).

e Modification 4. We modify CoMPUTE POU?2 to take into account round-
off errors. Given Q € CZ and given an S-bit machine point x € Q°, we compute
the numbers a“(eQ)( x) for each @« € M. The numbers a“(eQ)( x) are bounded
in magnitude by A* and are computed to precision Ay CA. for a universal con-

stant C. Here, 09 is defined in terms of 5Q as in the inﬁnite-precision text. The
explanation is obvious. We choose the function 1(t) to be a spline function whose
derivatives can be computed to precision A, and we compute the derivatives of 0¢g
using the Leibniz rule. Of course, we still have properties (1)—(4) of the partition
of unity (6¢q).

e The definitions of =°, Q° and T°, are unchanged. We define =Z° to be the

union of the lists Z(Q), and we define Q° to be the union of the lists Q(Q). We
define T°(f, P) as in (2.5) of [4], namely:

T°(f,P)= Y 0q-To(f,P)+ > 0q-P.

QeCz QeCz
L2 QNE#D £2QNE=0

e Modification 5. The second bullet point in Proposition 18 of [4] is changed
to account for roundoff errors. Given an S-bit machine point x € Q° and given
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x € M, we compute the linear functional (f,P) — 0%(T°(f,P))(x) in short form
with parameters (Ag, AgcAe) in terms of the assists Q°. The explanation is an ob-
vious consequence of the Leibniz rule, since the functionals (f, P) — 9P (To(f,P))(x)
can be computed with parameters (Ag, AgcAe), and the numbers 0f (0q)(x) can
be computed with parameters (Ag, A;CAE).

e Modification 6. The fourth bullet point of Proposition 18 of [4] is changed
to instead consist of the estimate

(2.147) Y JERPIP<C- {H (F,P) 5 o + funk|p|v} .
Eeze
Next, we explain how to modify the proof of Proposition 18.
e Modification 7. We replace (2.10) of [4] with

> Z PP < C- >[I PG g+ ARlPF]

QeCZ Eez QeCz
3 QNE#£D 3 QNE#£D
which follows from (2.146).
Now, the cardinality of CZ is at most a universal constant and | (f, P)|| s5g <
CJ|(f, P)||%Qo, just as before. Hence, we have

> Z £, PP < C- [P oo + ATulPIP]

Q€CZ ez

£2 QNE#£D
But this is just the estimate in the modified fourth bullet point (see Modifica-
tion 6). The remainder of the proof of Proposition 18 of [4] is unchanged. This
completes the proof of the modified version of Proposition 18 of [4].

e Modification 8. Now we introduce a linear map R : X(E) — P using the
finite-precision version of OPTIMIZE VIA MATRIX with A = Ajynk. We compute
the map R in short form with parameters (Ag, A¢) in the following sense: for each
« € M, we compute the linear functional f — 9%(93(f))(0) in short form with
parameters (AC,A*CAQ) (without assists). We guarantee that

(2.148) Y JE(RR(P < C- { 3 JE(f,R)P + AP L [R]P] for any R € P.
geze geze
(This estimate is the finite-precision analogue of (2.14) of [4].)
We can answer slightly more general queries: given an S-bit machine point
x € Q°, and given o« € M, we compute the linear functional f — 9%(R(f))(x).
This follows because of Taylor’s formula, which allows us to express the functional
f— 0%(R(f))(x) as a weighted combination

Y g W EER)(0)
[Bl<m—T—|e| =

of the linear functionals f — 0Y(9R(f))(0) (y € M). The coefficients in this combi-
nation can be computed to precision (Ag,A¢), and so the claim follows.
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e Modification 9. The list = consists of all the functionals & : f — &°(f, R(f))
with £° € =°. We compute each & € = with parameters (Ag, A;CAE) by composing
a linear functional £° € =Z° with the linear map f — 2R(f).

e Modification 10. The cutoff function 0° is defined as before. The same
properties (1)—(4) hold. For the construction, we choose 6° to be an appropriate
spline function. The computation of 8° is modified to take into account roundoff er-
rors. Given an S-bit machine pomt x € Q°, we compute the numbers 9%(6°)(x) (all
o« € M) to within precision Ag Ae; these numbers have magnitude at most Ay
This computation requires work at most C.

e Modification 11. Just as before, we define T: X(E) — X by the formula
Tf = 0° - T°(f,R(f)) + (1 — 0°) - R(f). We need to modify the query algorithm
for T to take into account roundoff error. Given an S-bit machine point x € Q°,
and given & € M, we compute the linear functional f +— 0%(T(f))(x) in short form
with parameters (AgC,AgCAe) in terms of the assists Q. The explanation is an
obvious consequence of the Leibniz rule, since the linear maps R, T°, and the cutoff
function 0° have been computed with parameters (Agc,AacAe), as described in
the previous bullet points.

e For the same reason as before, we have
ITeE < C- D (&P
&e=
(As in the proof of (2.17) of [4]).

e Modification 12. The estimate (2.18) of [4] no longer holds. Instead, we
have

2O = 3 e <cint { 3 EGRIP + AR}

fez gog=o
< .
< C]%Iégj{” f R Hé) Qo JuIlk|R| }

(As in the proof of (2.20) of [4].)
For an arbitrary F € X with F = f on E, set R = J4F, and estimate ||F —
Rilir s30) < C||F|lx using the Sobolev inequality. Also, by the Sobolev inequality,

] F| < [Fllx 4 [IFllLr (qe)- So the last infimum above is dominated by C - [||F|[§ +
JunkHF”Lp o ] Hence,

> 1enP < Coinf {IIFIE + AR IFIFy o) FEX, F=fonEf,
£e=
e Just as before, we prove that
¢ ”fHSE(E) = Z E()]P.
£e=
(As in the proof of (2.20) of [4].)

Recall that we have set Ag = Ag(0), Ae = Ac(0), and Ajynk = Ajunk(?) in the
above bullet points.
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From (2.73), we may impose the assumption Ajuk < Afnk- Thus, from the
last three bullet points we learn that

1/p . o
c|fllxce) < (Z |a(f)|p) < Cinf {|[Fllx + A%l Flir(ge) s FEX, F=fonE}
Ee=

and
ITf||x < C-inf {||Fllx + Afyp - [[Fllv(@e) s FEX, F=fonE},

as desired (see Theorem 1).
All of the functionals f — w(f), f — &(f), and f — 0%(Tf)(x) in the above bullet
points, which arise in the statement of Theorem 1, are specified with parameters

(AQCO,AQCOA@_) for a universal constant Co. According to (2.73) and (2.74), we

may assume that Ag < (AQ)CO and AECOAe < Al_/z < A%. Thus, we can compute

all of the functionals relevant to Theorem 1 with parameters (Ag, A2).
This completes the proof of Theorem 1.

2.18.2. Inhomogeneous Sobolev spaces. Once we pass from Homogeneous
L™P(R™) to Inhomogeneous W™P (R™), the error terms Ajf’unkHF||]_p(Qo) in Theo-
rem 1 will become irrelevant.
Our main result for inhomogeneous Sobolev spaces is Theorem 2 written below.
We follow the argument in Section 2.2 of [4], with the following changes.

e Modification 1. We let T°,=° Q° be defined as in the previous section. We
will use the finite-precision version of Proposition 18 of [4], which guarantees the
following:

e We list the functionals in Q°. Each w® € Q° is specified in short form with
parameters (AQC,AECAE).
e We list the functionals in Z°. Each &° € =° is specified in short form in

terms of the assists (Q° with parameters (Ag, AECA@_). The functionals in =°
satisfy the modified estimate (2.147).

¢ Given an S-bit machine point x € Q° and given o« € M, we compute the

linear functional (f,P) — 0%(T°(f,P))(x) in short form with parameters
(AQC, AECAE) in terms of the assists Q°, using work at most Clog N.

e Modification 2. We introduce a cutoff function 8°. Let x € Q° be a
given point with S-bit machine numbers as coordinates. We compute the numbers
0%(0°)(x) (all @ € M) up to an additive error of absolute value at most AgcAeg

these numbers have absolute value at most Agc. This requires work at most C.

e Modification 3. In the proof of (2.23) of [4], we use the modified esti-
mate from the fourth bullet point in the finite-precision version of Proposition 18.
(See (2.147).) This gives

EZH £(6,0)1” < Cinf {IFIP,. , 65 o)+ IFITh (63 ey s FEX, F= fonEf.
ez=°

The junk term in (2.147) disappears because we set P = 0.
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e Modification 4. The rest of the content of the section is unchanged. In
particular, the collections = and Q consisting of linear functionals on X(E), and
the linear map T: X(E) — X are defined as before. The functionals in Q are
computed in short form with parameters (Ag,AECAe), and the functionals in =
are computed in short form with parameters (Ag, A;CAe) in terms of the assists Q.
Given an S-bit machine point x € Q° and given o € M, we can compute the linear
functional f — 0%(T(f))(x) in short form with parameters (AQC,AacAe) in terms

of the assists ), using work at most Clog N.

All the functionals in the above bullet points are computed with parameters
(AgCO,A;COAe) for a universal constant Co. According to (2.73) and (2.74), we
may assume that Ag < (Ag)CO and A§C°A€ < Al/z < A2, for parameters Ay and
A? as in the statement of Theorem 1. Thus, we can compute our functionals with
parameters (Ag, Ag) for suitable A and Ag (see below).

We have proven the following theorem, which is our main extension theorem
for inhomogeneous Sobolev spaces in a finite-precision model of computation.

Theorem 2. There exists C = C(m,n,p) > 1 such that the following holds.

Let S>1 be an integer.

Assume E C ;—ZQO satisfies #(E) = N > 2, where Q° = [0,1)". Assume that
the points of E have S-bit machine numbers as coordinates.

Assume that Ky, Kz, Kpax € N satisfy Kpax > C- Ky > C2.K; > C3.
Let A2, =2 KmaxS A :=27KiS gpnq Ay = 27K2S,

We assume that our computer can perform arithmetic operations on S-bit ma-
chine numbers with precision Ay, where S = Kpax .S,

Then we compute lists Q and =, consisting of linear functionals on W™P(E) =
{f: E — R}, with the following properties.

e The sum of depth(w) over all w € Q is bounded by CN. The number of
functionals in = is at most CN.

o Fach functional & in = has Q-assisted bounded depth.

e The functionals w € Q and & € = are computed in short form with parame-
ters (Ag, AZ).

e For all f € W™P(E) we have

1/p
C Mflwmrey < [ X IEOP] T < Cliflwmorce).
Ee=

Moreover, there exists a linear map T: W™P(E) — W™P(R™) with the follow-
ing properties.
e T has Q-assisted bounded depth.
e Tf=f onE and
[Tf[wmoe rny < C - [[flwm.p )

for all f € X(E).
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e We produce a query algorithm that operates as follows.

Given an S-bit machine point x € Q° and given o« € M, we compute
a short form description of the Q-assisted bounded depth linear functional
WM™P(E) 5 f — 0%(Tf)(x). We compute this functional in short form with
parameters (AZ,AZ). This requires work at most ClogN.

The computations above require one-time work at most CNlog N in space CN.
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