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Interpolatory estimates, Riesz transforms

and wavelet projections

Paul F.X. Müller and Stefan Müller

Abstract. We prove that directional wavelet projections and Riesz trans-
forms are related by interpolatory estimates. The exponents of interpola-
tion depend on the Hölder estimates of the wavelet system. This paper
complements and continues previous work on Haar projections.

1. Introduction

This paper is concerned with wavelet systems, directional wavelet projections and
their estimates in terms of Riesz transforms. We continue and extend the methods
introduced in [18] and [13].

LetF denote the L2(Rn) normalized Fourier transform. The Riesz transformRi

is the Fourier multiplier defined by

(1.1) F(Ri(u))(ξ) = −√−1
ξi
|ξ| F(u)(ξ), where 1 ≤ i ≤ n, ξ = (ξ1, . . . , ξn).

Let A = {0, 1}n \ {(0, 0, . . . , 0}, and let S be the collection of dyadic cubes
in R

n. We let
{ϕ(ε)

Q : Q ∈ S, ε ∈ A}
denote an admissible wavelet system of Hölder exponent 0 < α ≤ 1 and decay
estimates of order δ > 0. (The definition is given in (1.2) below.) For a fixed
direction ε ∈ A the associated orthogonal wavelet projection is defined as

W (ε)(u) =
∑
Q∈S

〈u, ϕ(ε)
Q 〉ϕ(ε)

Q |Q|−1, u ∈ L2(Rn).

The results of this paper give pointwise estimates for the directional wavelet pro-
jection W (ε) in terms of the Riesz transforms.
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Admissible wavelet systems. We specify now the wavelet systems we use in
this paper. Recall that I ⊂ R is a dyadic interval if there exist natural numbers
k,m ∈ Z so that I = [(k − 1)2m, k2m[. Let I1, . . . , In be dyadic intervals in R so
that |Ii| = |Ij |. Define the dyadic cube Q ⊂ R

n, as

Q = I1 × · · · × In.

We let s(Q) denote the side length of Q, thus s(Q) = |I1|. Let S denote the
collection of all dyadic cubes in R

n and put A = {ε ∈ {0, 1}n : ε �= (0, . . . .0)}.
We say that

{ϕ(ε)
Q : Q ∈ S, ε ∈ A}

is an admissible wavelet system if {ϕ(ε)
Q /

√|Q| : Q ∈ S, ε ∈ A} is an orthonormal

basis in L2(Rn) and there exists C > 0, δ > 0 and 0 < α ≤ 1 so that the following
conditions hold:

1) Localization with decay estimates:

(1.2a) |ϕ(ε)
Q (x)| ≤ C

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

, x ∈ R
n.

2) Hölder estimates of order α: if x, t ∈ R
n, and |x− t| ≤ s(Q), then

(1.2b) |ϕ(ε)
Q (x) − ϕ

(ε)
Q (t)| ≤ Cs(Q)−α|x− t|α

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

.

3) Sectional oscillation for i ∈ {j ≤ n : εj = 1}:

(1.2c) |Ei(ϕ
(ε)
Q )(x)| ≤ Cs(Q)

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

,

and for t ∈ R
n, with |x− t| ≤ s(Q),

|Ei(ϕ
(ε)
Q )(x) − Ei(ϕ

(ε)
Q )(t)| ≤ C|x− t|αs(Q)1−α

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

,

where Ei denotes integration with respect to the variable xi,

(1.2d) Ei(f)(x) =

∫ xi

−∞
f(x1, . . . , s, . . . , xn) ds, x = (x1, . . . , xi, . . . xn).

We refer to δ > 0 and 0 < α ≤ 1 as the decay and Hölder exponents of a wavelet
system satisfying (1.2).

Directional wavelet projections. We fix an admissible wavelet system {ϕ(ε)
Q :

Q ∈ S, ε ∈ A}. For a given direction ε ∈ A, let W (ε) denote the associated
projection on L2(Rn),

W (ε)(u) =
∑
Q∈S

〈
u, ϕ

(ε)
Q

〉
ϕ
(ε)
Q |Q|−1, u ∈ L2(Rn).

We summarize next the main estimates in [18] and [13], and relate them to the
results of the present paper.
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Review of [18]. If the Hölder exponent of the wavelet system satisfies 0 < α < 1,
the following Hilbertian estimates for W (ε) are obtained with the method intro-
duced in [18]:

(1.3) ‖W (ε)(u)‖2 ≤ A ‖u‖1−α
2 ‖Ri0(u)‖α2 +A

‖u‖1−α
2 ‖Ri0(u)‖α2 − ‖Ri0(u)‖2

21−α − 1
,

whenever ε=(ε1, . . . εn) and εi0 =1. We have A=A(α, δ) → ∞ as α→ 0 or δ → 0.
The Lipschitz case when α = 1 is of particular interest. It appears as the limit
as α→ 1 of the estimates (1.3). By L’Hôpital’s rule, (1.3) implies

(1.4) ‖W (ε)(u)‖2 ≤ A(1, δ)
(
1 + log

‖u‖2
‖Ri0u‖2

)
‖Ri0u‖2.

If 0 < α < 1, is fixed and if one is not interested in the limiting behavior as α→ 1,
then a simplified form of (1.3) is as follows:

(1.5) ‖W (ε)(u)‖2 ≤ A(α, δ)

1− α
‖u‖1−α

2 ‖Ri0u‖α2 ,

The estimates (1.3), (1.4) and (1.5) were proven in [18] by cotlarization of the
operator W (ε).

The present paper extends the L2(Rn) estimates (1.3) to the scale of Lp(Rn)
spaces. We use below the abbreviation ‖Ri0‖p = ‖Ri0 : Lp(Rn) → Lp(Rn)‖. Our
main result asserts that, for Hölder exponents 0 < α < 1 and 1 < p <∞,

(1.6)

‖W (ε)(u)‖p

≤ C‖Ri0‖−α
p ‖u‖1−α

p ‖Ri0(u)‖αp + C
‖Ri0‖1−α

p ‖u‖1−α
p ‖Ri0(u)‖αp − ‖Ri0(u)‖p

21−α − 1

whenever ε = (ε1, . . . εn) and εi0 = 1. The asymptotic behavior of the constants
C = C(p, α, δ) is as follows:

C(p, α, δ) =
p2C(α, δ)

p− 1
and C(α, δ) → ∞ as α → 0 or δ → 0 .

Again the estimates for the Lipschitz case α = 1 appear as limit of (1.6) by using
L’Hôpital’s rule:

(1.7) ‖W (ε)(u)‖p ≤ C
(
1 + log

‖u‖p‖Ri0‖p
‖Ri0u‖p

)
‖Ri0u‖p ,

where C = C(p, 1, δ). For fixed 0 < α < 1, a simplified version of (1.6) is the
following:

(1.8) ‖W (ε)(u)‖p ≤ C

1− α
‖u‖1−α

p ‖Ri0u‖αp .

Specializing (1.6), (1.7) and (1.8) to the case p = 2 gives back (1.3), (1.4) and (1.5).
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Review of [18] and [13]. We next compare the inequalities (1.7) and (1.8) to
the interpolatory estimates for directional Haar projections [13]. Let

{h(ε)Q : Q ∈ S, ε ∈ A}
be the isotropic Haar system supported on dyadic cubes. (See Section 4 for the
definition.) The directional Haar projection is defined by

P (ε)(u) =
∑
Q∈S

〈u, h(ε)Q 〉h(ε)Q |Q|−1, u ∈ L2(Rn) .

In [13] we proved that for 1 < p <∞ and τp = max{1/2, 1/p},
(1.9) ‖P (ε)(u)‖p ≤ C(p) ‖u‖τpp ‖Ri0u‖1−τp

p ,

when ε = (ε1, . . . , εn) and εi0 = 1. Comparing (1.9) to (1.8) we observe that:

1. In (1.8) the interpolation exponents for W (ε) depend just on the order α of
the Hölder estimates, and not on the value of p.

2. By contrast in (1.9), the P (ε) estimates show a critical transition at p = 2.
The exponents in (1.9) are best possible, as shown in Section 8 of [13].
Hence (1.9) does not arise as the limit of α→ 0 from the estimates (1.8).

3. As Hölder estimates are not available for the Haar system we exploit in [13]
that the discontinuities of Haar functions are concentrated at an (n − 1)
dimensional set, and that

(1.10)

∫
Rn

|h(ε)Q (x − s)− h
(ε)
Q (x)|p dx ≤ C |s| · |Q|(n−1)/n.

4. It remains an open problem to prove interpolatory estimates for directional
projections W (ε) when the underlying wavelets satisfy decay estimates only.
The particular interest in this question comes from theorems of G. Gripen-
berg [10] and P. Wojtaszczyk [22] who proved that wavelets with decay (1.2a)
form an unconditional basis in Lp, (1 < p <∞) –without using assumptions
on smoothness.

Outlook. In [18] and [13], proving weak semi-continuity of separately convex
functionals – as conjectured by J. Ball and F. Murat [1] and L. Tartar [21] – pro-
vided the initial motivation for estimating Haar projections in terms of Riesz trans-
forms. For further motivation we refer to the analysis of Sverak’s counterexamples
to quasi-convexity in [19].

In the course of development [18] and [13], the inequalities (1.9) gave rise to
general questions of ordering singular integral operators on a given space by means
of interpolatory estimates. This includes the following problems:

1. Determination of the best possible exponents in interpolatory estimates.
See Section 8 in [13] for the sharp exponents between Haar projections and
Riesz transforms.

2. Extensions to vector valued singular integral operators. R. Lechner [12] ob-
tained the UMD version of [18], [13].
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3. Presently interpolatory estimates between singular integral operators are
known only for the setting of Rn. For singular integrals over non commutative
groups (e.g., Heisenberg group, homogeneous Lie groups) such estimates are
open. See M. Christ [2], [3], M. Christ and D. Geller [4], P.G. Lemarie [14],
and Folland and Stein [8].

The results of the present paper and [18], [13] are the first steps in this direction.

2. The main results

Theorem 2.1 is the main result of this paper. The partial coercivity of Riesz trans-
forms (2.3) follows immediately from Theorem 2.1. We use below the abbreviation
‖Ri0‖p = ‖Ri0 : Lp(Rn) → Lp(Rn)‖, to denote the norm of the Riesz transform
on Lp(Rn).

Theorem 2.1. Let 1 < p <∞, 1 ≤ i0 ≤ n, and ε = (ε1, . . . εn) ∈ A with εi0 = 1.
If 0 < α < 1, then for any u ∈ Lp(Rn),

(2.1)

‖W (ε)(u)‖p

≤ C‖Ri0‖−α
p ‖u‖1−α

p ‖Ri0(u)‖αp + C
‖Ri0‖1−α

p ‖u‖1−α
p ‖Ri0(u)‖αp − ‖Ri0(u)‖p
21−α − 1

,

where C = C(p, α, δ) and

C(p, α, δ) =
p2C(α, δ)

p− 1
with C(α, δ) → ∞ as α → 0 or δ → 0.

If α = 1, then

(2.2) ‖W (ε)(u)‖p ≤ C ‖Ri0‖−1
p ‖Ri0(u)‖p + C log

(‖u‖p‖Ri0‖p
‖Ri0(u)‖p

)
‖Ri0(u)‖p ,

where C = C(p, 1, δ). The estimate (2.2) appears as the limit of (2.1) as α→ 1.

Remark 2.2. Clearly (2.1) implies that

‖W (ε)(u)‖p ≤ C

1− α
‖u‖1−α

p ‖Ri0(u)‖αp ,

and (2.2) yields

‖W (ε)(u)‖p ≤ C log
(
1 +

‖u‖p
‖Ri0(u)‖p

)
‖Ri0(u)‖p .

Partial coercivity of Riesz transforms. The estimates of Theorem 2.1 imply
partial coercivity for the Riesz transforms. On the closure of W (ε)(Lp(Rn)), the
Riesz transformRi0 is invertible provided that ε = (ε1, . . . , εn) and εi0 = 1. Indeed,
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since W (ε) is a projection, Theorem 2.1 gives

(2.3) ‖v‖p ≤ C(p, α, δ)‖Ri0v‖p, v ∈ W (ε)(Lp(Rn)) .

By (1.9) the same holds when W (ε) is replaced by P (ε). For the concept and
background we refer to T. Kato [11], F. Murat [20], B. Dacorogna [6]. The inter-
pretation of Theorem 2.1 as a partial coercivity estimate for Riesz transforms (2.3)
emphasizes the connection to [3].

The outline of the proof. We use the pattern of reduction applied previously
in [18] and [13]. In the present paper we exploit properties of the discrete Calderón
reproducing formula going back to Frazier and Jawerth [9]. We start the proof of
Theorem 2.1 with a multi-scale analysis ofW (ε) using a discrete Calderón reproduc-
ing formula. See [9]. We fix v, w ∈ C∞(Rn) so that suppFv, suppFw ⊆ [1/2, 2]
and

1 =
∑
�∈Z

(Fv)(2�ζ) (Fw)(2�ζ) .

For any multi-index γ ∈ N
n and N ∈ N, there exists A = A(γ,N) so that

|∂γv(x)| + |∂γw(x)| ≤ A (1 + |x|)−N .

Put v�(x) = 2�nv(2�x), w�(x) = 2�nw(2�x), and form the convolution product

d�(x) = v� ∗ w�(x), � ∈ Z .

For any multi-index γ ∈ N
n and N ∈ N, there exists A = A(γ,N) so that

(2.4) |∂γd�(x)| ≤ A 2(n+|γ|)(�) (1 + 2�|x|)−N .

Finally we put

(2.5) Δ�(u) = u ∗ d� .
Then, as obtained by Frazier and Jawerth [9],

u =

∞∑
�=−∞

Δ�(u), u ∈ Lp(Rn) ,

where convergence holds in Lp(Rn).
We denoted by S the collection of all dyadic cubes in R

n. Let j ∈ Z and consider
the following subcollection of S:
(2.6) Sj = {Q ∈ S : |Q| = 2−nj} .
The cubes in Sj are pairwise disjoint. For � ∈ Z, ε ∈ A, and Q ∈ Sj , define

(2.7) f
(ε)
Q,� = Δj+�(ϕ

(ε)
Q ) ,

and

(2.8) T
(ε)
� (u) =

∑
Q∈S

〈
u, f

(ε)
Q,�

〉
ϕ
(ε)
Q |Q|−1.
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Thus we arrive at our basic Littlewood–Paley decomposition for the directional
wavelet projection,

W (ε)(u) =

∞∑
�=−∞

T
(ε)
� (u) .

Let 1 ≤ i0 ≤ n and Ai0 = {ε ∈ A : ε = (ε1, . . . , εn) and εi0 = 1}. As ob-
served in [18] and [13], for ε ∈ Ai0 we get

T
(ε)
� R−1

i0
= T

(ε)
� Ri0 +

n∑
i=1
i�=i0

T
(ε)
� Ei0∂iRi ,

where Ri denotes the i-th Riesz transform, ∂i denotes the differentiation with
respect to the xi variable and Ei0 the integration with respect to the xi0 -th coor-
dinate. See (1.2d). Hence, putting

(2.9) k
(�,i)
Q = Δj+�

(
Ei0∂iϕ

(ε)
Q

)
, Q ∈ Sj ,

we obtain the representation

(2.10) T
(ε)
� R−1

i0
(u) = T

(ε)
� Ri0(u) +

∑
Q∈S

n∑
i=1
i�=i0

〈Ri(u), k
(�,i)
Q 〉ϕ(ε)

Q |Q|−1.

The following two theorems record the norm estimates for the operators T
(ε)
�

and T
(ε)
� R−1

i0
by which we obtain Theorem 2.1. First we treat the case � > 0. It

displays the crucial dependence on the Hölder exponent of the admissible wavelet
system. Below and throughout the paper the constants C(p, α, δ) > 0 satisfy the
conditions

C(p, α, δ) =
p2C(α, δ)

p− 1
, where C(α, δ) → ∞, as α → 0, or δ → 0.

Theorem 2.3. Let δ > 0 and 0 < α ≤ 1 be the decay and Hölder exponents of
the admissible wavelet system specified in (1.2). Let 1 < p < ∞, � ≥ 0 and ε ∈ A.
Then T

(ε)
� satisfies the norm estimate

(2.11) ‖T (ε)
� ‖p ≤ C(p, α, δ) 2−�α.

Let 1 ≤ i0 ≤ n, and ε ∈ Ai0 . Then,

(2.12) ‖T (ε)
� R−1

i0
‖p ≤ C(p, α, δ) 2�−�α.

When � < 0 we get exponents independent of the Hölder condition.

Theorem 2.4. Let δ > 0 and 0 < α ≤ 1 be the decay and Hölder exponents of the
admissible wavelet system specified in (1.2). Let 1 < p < ∞. Let � ≤ 0. Then for

ε ∈ A, the operator T
(ε)
� satisfies the norm estimate

(2.13) ‖T (ε)
� ‖p ≤ C(p, α, δ) 2−|�| |�|.
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If moreover 1 ≤ i0 ≤ n, and ε ∈ Ai0 , then

(2.14) ‖T (ε)
� R−1

i0
‖p ≤ C(p, α, δ) 2−|�| |�|.

Proof of Theorem 2.1. Theorems 2.3 and 2.4 yield the proof of Theorem 2.1 as
follows. Fix u ∈ Lp(Rn). Define M ∈ N by the relation

(2.15) 2M−1 ≤ ‖u‖p‖Ri0‖p
‖Ri0(u)‖p

≤ 2M .

First we fix the Hölder exponent wavelet system as 0 < α < 1. Thereafter we
consider the limit as α→ 1. By Theorems 2.3 and 2.4, there exists C = C(p, α, δ)
so that

∞∑
�=M

‖T (ε)
� ‖p ≤ C 2−Mα,

and
M−1∑
�=−∞

‖T (ε)
� R−1

i0
‖p ≤ C

(M−1∑
�=0

2�−α�
)
= C

2M−αM − 1

21−α − 1
.

The constants C(p, α, δ) stay bounded as α→ 1. Since W (ε)(u) =
∑∞

�=−∞ T
(ε)
� (u),

triangle inequality gives

(2.16)

‖W (ε)(u)‖p ≤
∞∑

�=M

‖T (ε)
� ‖p‖u‖p +

M−1∑
�=−∞

‖T (ε)
� R−1

i0
‖p ‖Ri0(u)‖p

≤ C
(
2−Mα‖u‖p + 2M−αM − 1

21−α − 1
‖Ri0(u)‖p

)
.

Inserting the value of M specified in (2.15) gives the following upper bound
for (2.16):

(2.17) C ‖Ri0‖−α
p ‖u‖1−α

p ‖Ri0(u)‖αp +C
‖Ri0‖1−α

p ‖u‖1−α
p ‖Ri0(u)‖αp − ‖Ri0(u)‖p

21−α − 1
.

The term arising in (2.17) has a well defined limit as α→ 1. Indeed, by L’Hôpital’s
rule,

lim
α→1

2M−αM − 1

21−α − 1
=M ,

and hence

(2.18) lim
α→1

(2.17) = C ‖Ri0‖−1
p ‖Ri0(u)‖p + C log

(‖u‖p‖Ri0‖p
‖Ri0(u)‖p

)
‖Ri0(u)‖p,

where C = C(p, 1, δ). �



Interpolatory estimates, Riesz transforms and wavelet projections 1145

Remark 2.5. The somewhat complicated form of (2.17) was used to obtain the
limit estimate (2.18). For fixed α < 1 we may simplify the upper bound (2.17) as
follows

(2.19) ‖W (ε)(u)‖p ≤ C

1− α
‖u‖1−α

p ‖Ri0(u)‖αp , 1 < p <∞.

Also (2.18) may be simplified further,

(2.20) ‖W (ε)(u)‖p ≤ C log
(
1 +

‖u‖p
‖Ri0(u)‖p

)
‖Ri0(u)‖p , 1 < p <∞ .

Remark 2.6. An alterative proof of (2.18) may be deduced directly from Theo-
rem 2.3 and Theorem 2.4. Define M ∈ N by (2.15). Then

∞∑
�=M

‖T (ε)
� ‖p ≤ C(p, δ) 2−M and

M−1∑
�=−∞

‖T (ε)
� R−1

i0
‖p ≤ C(p, δ)M .

Hence, by the triangle inequality,

(2.21) ‖W (ε)(u)‖p ≤ C(p, δ) 2−M ‖u‖p + C(p, δ)M ‖Ri0(u)‖p .
As M is given by (2.15), the right hand side of (2.21) is dominated by

C(p, δ)
(
‖Ri0‖−1

p ‖Ri0(u)‖p + log
(‖u‖p‖Ri0‖p

‖Ri0(u)‖p
)
‖Ri0(u)‖p

)
, 1 < p <∞ .

The paper is organized as follows. In Section 3 we prove point-wise estimates

for the decay and smoothness of the systems {f (ε)
Q,�} and {k(�,i)Q } defined in (2.7)

and (2.9). The cases � > 0 and � ≤ 0 are given different treatment.
In Section 4 we present two general tools used to reduce estimates for integral

operators to those of rearrangements.
In Section 5 we combine the preparatory theorems of Section 3 and Section 4

to prove Theorem 2.3. Section 6 contains the proof of Theorem 2.4.

3. Wavelets and convolution

Our basic concern are the norm estimates for the operators T
(ε)
� and T

(ε)
� R−1

i0
as

formulated in Theorem 2.3 and Theorem 2.4. We showed in the introduction that
this amounts to proving estimates for operators of the following form: first,

X(u) =
∑
Q∈S

〈u, k(�,i)Q 〉ϕ(ε)
Q |Q|−1,

where
k
(�,i)
Q = Δj+�(Ei0∂iϕ

(ε)
Q ),

with Q ∈ Sj , and ε ∈ Ai0 , with i �= i0.
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And second,

Y (u) =
∑
Q∈S

〈u, f (ε)
Q,�〉ϕ(ε)

Q |Q|−1,

where f
(ε)
Q,� = Δj+�(ϕ

(ε)
Q ), with Q ∈ Sj . We recall also that in (2.5) the opera-

tor Δj+� is defined as convolution with dj+�, where for any multi-index γ ∈ N
n

and N ∈ N there exists A = A(γ,N) so that

(3.1) |∂γdj+�(x)| ≤ A 2(n+|γ|)(j+�) (1 + 2j+�|x|)−N .

In Lemma 3.1 through Lemma 3.5 we record the point-wise estimates for the

systems {f (ε)
Q,�} and {k(�,i)Q } as needed for the purpose of this paper. Those are the

basis for the norm inequalities of the operators X and Y defined above.

3.1. Point-wise estimates for Δj+�(ϕ
(ε)
Q )

The following lemma records basic point-wise estimates for f
(ε)
Q,�, � ≥ 0 and its

gradient.

Lemma 3.1. Assume that {ϕ(ε)
Q : Q∈S} satisfies (1.2). The system {f (ε)

Q,� : Q∈S,
� ≥ 0} defined by (2.7) satisfies these basic estimates:

(3.2a) |f (ε)
Q,�(x)| ≤ C 2−α�

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

, x ∈ R
n.

(3.2b) |∇f (ε)
Q,�(x)| ≤ C 2−α� 2j+�

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

, x ∈ R
n.

(3.2c)

∫
Rn

f
(ε)
Q,�(x)dx = 0.

Proof. Let x ∈ R
n, Q ∈ Sj and � > 0. Let Ax = {t : |x − t| ≤ C 2−j−�}. Since∫

dj+�(x− t)dt = 0 and t→ dj+�(x− t) is centered at Ax we get

|dj+� ∗ ϕ(ε)
Q (x)| =

∣∣∣∣
∫
Rn

dj+�(x− t)(ϕ
(ε)
Q (t)− ϕ

(ε)
Q (x)) dt

∣∣∣∣
≤

∫
Rn

|dj+�(x− t)| · |ϕ(ε)
Q (t)− ϕ

(ε)
Q (x)| dt

≤ C

∫
Rn

|dj+�(x− t)| dt diam(Ax)
α

s(Q)α

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

.

Invoking that diam(Ax) ≤ C 2−j−�, s(Q) = 2−j and
∫
Rn |dj+�(x − t)|dt ≤ C

yields (3.2a).
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In a similar fashion we obtain the remaining estimates (3.2b). Put d̃j+� =

2−(j+�)∇dj+�. Repeating the above argument with dj+� replaced by d̃j+� we get

|∇dj+�∗ϕ(ε)
Q (x)| = 2j+�

∣∣∣ ∫
Rn

d̃j+�(x− t)(ϕ
(ε)
Q (t)− ϕ

(ε)
Q (x)) dt

∣∣∣
≤ 2j+�

∫
Rn

|d̃j+�(x− t)| · |ϕ(ε)
Q (t)− ϕ

(ε)
Q (x)| dt

≤ C 2j+�

∫
Rn

|d̃j+�(x− t)| dt diam(Ax)
α

s(Q)α

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

≤ C 2−α� 2j+�
(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

.
�

Compactly supported wavelets. Let {ψ(β)
K /

√|K| : K ∈S, β ∈A} be an ortho-

normal basis in L2(Rn), satisfying
∫
ψ
(β)
K = 0 and the following structure condi-

tions:

(3.3) suppψ
(β)
K ⊆ C ·K, |ψ(β)

K | ≤ C, Lip(ψ
(β)
K ) ≤ C s(K)−1.

We often write in place of {ψ(β)
K } just {ψK}. The existence of compactly supported

wavelets was proven by I. Daubechies, see [15].

Low frequency slices of Δj+�(ϕ
(ε)
Q ). Here we prove point-wise estimates for

decay and regularity of the low frequency slices of f
(ε)
Q,� when � ≥ 0. We define

those slices using a compactly supported wavelet basis {ψK} satisfying (3.3). Fix
k ∈ Z \ N and define

(3.4) pQ =
∑

K∈Sj+k

〈
f
(ε)
Q,�, ψK

〉
ψK |K|−1, Q ∈ Sj , j ∈ Z .

Note that for k ∈ Z\N and Q ∈ Sj , j ∈ Z, there exists a unique cube K0 = K0(Q)
so that

(3.5) K0 ⊇ Q , K0 ∈ Sj+k .

Pointwise estimates for pQ and ∇pQ are as follows.

Lemma 3.2. Let � ∈ N and k ∈ Z \ N. Let γ0 = min{δn/2, 1}. Then the system
of slices defined by (3.4) satisfies the following estimates:

(3.6a) |pQ(t)| ≤ C 2−α� 2k(n+γo)
(
1 +

dist(t,K0)

s(K0)

)−n(1+δ)

,

(3.6b) |∇pQ(t)| ≤ C s(K0)
−1 2−α� 2k(n+γo)

(
1 +

dist(t,K0)

s(K0)

)−n(1+δ)

,

where Q ∈ S and K0 = K0(Q) is defined by (3.5).
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Proof. Fix a dyadic cube Q ∈ Sj , j ∈ Z. Determine K0 ∈ Sj+k so that Q ⊆ K0.
For any μ ∈ Z

n and K = K0 + μ · s(K0) we prove the coefficient estimate

(3.7) |〈f (ε)
Q,�, ψK〉||K|−1 ≤ 2−α� 2−|k|(n+γ0) (1 + |μ|)−n(1+δ).

Consider first the case |μ| ≥ 4. Then Lemma 3.1 gives

(3.8) |〈f (ε)
Q,�, ψK〉| |K|−1 ≤ 2−α� |μ|−n(1+δ) 2kn(1+δ).

Note that (3.8) implies (3.7) by arithmetic.

Next consider |μ| ≤ 4. We use that f
(ε)
Q,� is of vanishing mean and rewrite

(3.9) 〈f (ε)
Q,�, ψK〉 =

∫
Rn

f
(ε)
Q,�(t)(ψK(t)− ψK(tQ)) dt,

where tQ ∈ Q.We decompose the domain of integration as follows. Let A0(Q) = Q
and Ai(Q) = 2i ·Q \ 2i−1 ·Q where 2i ·Q is the cube with side-length 2is(Q) and
the same center as Q. Thus defined the sets Ai(Q) = 2i · Q \ 2i−1 · Q form a
decomposition of Rn. Hence the right hand side of (3.9) is bounded by

(3.10)

|k|∑
i=0

∫
Ai(Q)

|f (ε)
Q,�(t)(ψK(t)− ψK(tQ))| dt+

∞∑
i=|k|+1

∫
Ai(Q)

|f (ε)
Q,�(t)| dt .

For i ≤ |k| we exploit the Lipschitz estimates for ψK and use that diam(Ai(Q)) ≤
C 2is(Q) ≤ Cs(K). Thus we get

|ψK(t)− ψK(tQ)| ≤ C(2is(Q))γ0(LipψK)γ0 , t ∈ Ai(Q) .

Invoking also the basic estimates of Lemma 3.1 gives

(3.11)

∫
Ai(Q)

|f (ε)
Q,�(t) (ψK(t)− ψK(tQ))| dt

≤ 2−α� 2−in(1+δ) (2is(Q))γ0 (LipψK)γ0 |2i ·Q| .
We take the sum over i ≤ |k| in (3.11) and get the following upper bound for the
first sum in (3.10):

2−α� (s(Q))γ0 |Q|
(s(K))γ0

k∑
i=0

2−inδ+iγ0 ≤ C 2−α� (s(Q))n+γ0

(s(K))γ0
.

On the other hand, if i ≥ |k| we have again by Lemma 3.1 that∫
Ai(Q)

|f (ε)
Q,�(t) ≤ C |Q| 2−α� 2−inδ.

Since |K|2−n|k| = |Q|, summing over i ≥ |k| gives

|Q|
∞∑

i=|k|+1

2−α� 2−inδ ≤ C |K| 2−α� 2−|k|n(δ+1).
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Recall now that we are treating the case |μ| ≤ 4. Hence we may rephrase the
above as

|〈f (ε)
Q,�, ψK〉| |K|−1 ≤ C 2−α� 2−|k|(n+γ0) (1 + |μ|)−n(1+δ).

By the definition (3.4) of the slices, we obtain the pointwise estimates (3.6) from the
estimate (3.7). �

The scalar products 〈Δj+�(ϕ
(ε)
Q ),ΨK〉, K ∈ Sj+k, 0 ≤ k ≤ �. Here we

record a short but crucial consequence of Lemma 3.1. It is here where we explic-
itly exploit that our multi-scale analysis {d�} is based on Calderón’s reproducing
formula and admits a factorization as

d� = v� ∗ w�.

Lemma 3.3. Let j ∈ Z, � ∈ N, and 0 ≤ k ≤ �. For Q ∈ Sj , K ∈ Sj+k,

(3.12) |〈Δj+�(ϕ
(ε)
Q ),ΨK〉| ≤ C 2−α� 2k−� |K|

(
1 +

dist(K,Q)

s(Q)

)−n(1+δ)

.

Proof. Recall that Δj+�(ϕ
(ε)
Q ) = dj+� ∗ ϕ(ε)

Q where dj+� = vj+� ∗ wj+�. Hence

〈Δj+�(ϕ
(ε)
Q ),ΨK〉 = 〈wj+� ∗ ϕ(ε)

Q , vj+� ∗ΨK〉 .

By Lemma 3.1 we get

(3.13) |wj+� ∗ ϕ(ε)
Q (x)| ≤ 2−α�

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

.

Similarly, using that j + � ≥ j + k ≥ j, the proof of Lemma 3.1 gives routinely the
estimate

(3.14) |vj+� ∗ ψK(x)| ≤ 2k−�
(
1 +

dist(x,K)

s(K)

)−4n

.

Taking into account that s(K) ≤ s(Q) we get∫
Rn

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ) (
1 +

dist(x,K)

s(K)

)−4n

dx

≤ C |K|
(
1 +

dist(K,Q)

s(Q)

)−n(1+δ)

.

Combining this with the pointwise estimates (3.13) and (3.14) gives (3.12). �

3.2. Point-wise estimates for Δj+�

(
Ei0∂iϕ

(ε)
Q

)
We turn to the analysis of the system k

(�,i)
Q = Δj+�

(
Ei0∂iϕ

(ε)
Q

)
as defined by (2.9).

The cases � ≥ 0 and � ≤ 0 will be treated separately. We begin with the case � ≥ 0.
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Lemma 3.4. Let ε ∈ Ai0 . The system {k(�,i)Q : Q ∈ S, i �= i0, � ≥ 0} defined
by (2.9) satisfies the structural conditions

(3.15a) |k(�,i)Q (x)| ≤ C 2�−α�
(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

,

(3.15b) |∇k(�,i)Q (x)| ≤ C 2j+�2�−α�
(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

,

(3.15c)

∫
Rn

k
(�,i)
Q (x)dx = 0 ,

with C > 0 independent of Q ∈ S, i �= i0, or � ≥ 0.

Proof. Fix Q ∈ S, and x ∈ R
n. Put eQ = Ei0ϕ

(ε)
Q , then

k
(�,i)
Q (x) =

∫
Rn

∂idj+�(x− t) eQ(t) dt .

By (1.2) for admissible wavelets we get for x ∈ R
n,

(3.16) |eQ(x)| ≤ C s(Q)
(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

,

and for t ∈ R
n, with |x− t| ≤ s(Q),

(3.17) |eQ(x)− eQ(t)| ≤ C |x− t|αs(Q)1−α
(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

.

Hence, with (3.1) and (3.17), we obtain (3.15a) and (3.15b) by repeating the proof
of Lemma 3.1. It remains to check (3.15c). Since Δj+� commutes with differenti-

ation, k
(�,i)
Q = ∂iΔj+�(eQ). Hence the decay of eQ and Δj+�eQ imply∫

Rn

k
(�,i)
Q (x) dx = 0 ,

that is (3.15c). �

Next we treat the case � ≤ 0.

Lemma 3.5. The family {k(�,i)Q : Q ∈ S, i �= i0, � ≤ 0} satisfies the conditions

(3.18a) |k(�,i)Q (x)| ≤ C 2−(n+1)|�|
(
1 + 2−|�| dist(x,Q)

s(Q)

)−n(1+δ)

,

(3.18b) |∇k(�,i)Q (x)| ≤ C 2j−|�| 2−(n+1)|�|
(
1 + 2−|�| dist(x,Q)

s(Q)

)−n(1+δ)

,

(3.18c)

∫
Rn

k
(�,i)
Q (x) dx = 0 ,

where C > 0 is independent of Q ∈ S, i �= i0, or � ≤ 0.
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Proof. Fix Q ∈ S, and x ∈ R
n. Put again eQ = Ei0ϕ

(ε)
Q so that

k
(�,i)
Q (x) =

∫
Rn

eQ(x − t)∂idj+�(t) dt .

By (1.2) we have

(3.19) |eQ(x)| ≤ C (1 + dist(x,Q)/s(Q))
−n(1+δ)

s(Q)

By (3.1) we get

(3.20) ‖∂idj+�‖1 ≤ C 2j−|�|, and ‖∂idj+�‖∞ ≤ C 2n(j−|�|) 2j−|�|.

We distinguish between the following cases:

1. dist(x,Q) ≥ 2|�|s(Q).

2. dist(x,Q) ≤ 2|�|s(Q).

In the first case select μ ∈ Z
n so that x ∈ 2|�| · Q + μ2|�|s(Q). Then we have

with (3.19) and (3.20)

(3.21)

∫
Rn

eQ(x− t)∂idj+�(t)dt ≤ 2−|�||μ|−n(1+δ)2−n|�|(1+δ)

≤ (
1 + 2−|�| dist(x,Q)/s(Q)

)−n(1+δ)
2−n|�|(2+δ).

In the second case we have dist(x,Q) ≤ 2|�|s(Q). Select k0 so that

2k0s(Q) ≤ dist(x,Q) ≤ 2k0+1s(Q) .

We may assume that k0 ≥ 1. Define the disk

A0 = {y ∈ R
n : |y − x| ≤ dist(x,Q)}

and the annuli

Ak = {y ∈ R
n : 2k−1( dist(x,Q)) ≤ |y − x| ≤ 2k( dist(x,Q))} .

Use (3.19) and (3.20) to obtain

(3.22)

∫
Rn

|eQ (x− t)∂idj+�(t)| dt ≤
∞∑
k=0

∫
Ak\Ak−1

|eQ(x− t)∂idj+�(t)| dt

≤ C

∞∑
k=0

|Ak|
(
1 + 2k dist(x,Q)/s(Q)

)−n(1+δ)
s(Q)‖∂idj+�‖∞

≤ C
∞∑
k=0

(2k 2k0)−nδ 2−(n+1)|�|.

Clearly (3.22) gives (3.18a). The gradient estimates (3.18b) follow from (3.1)
and (3.18a). �
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4. Review of basic dyadic operations

In this section we prove two auxiliary results on rearrangement operators. The

norm estimates for the operators T
(ε)
� , T

(ε)
� R−1

i0
will be obtained as applications of

Proposition 4.2 and Theorem 4.3.

4.1. The Haar system

We recall the definition of the isotropic Haar system and its equivalence to ad-
missible wavelet systems. We use [7], [15], [17] as sources. Let I be a dyadic
interval and hI be the L∞ normalized Haar function supported on I. Thus hI = 1
on the left half of I and hI = −1 on the right half of I. Given a dyadic cube
Q = I1 × · · · × In and a direction ε = (ε1, . . . , εn) ∈ A we define the Haar function

h
(ε)
Q (x) =

n∏
i=1

hεiIi (xi), x = (x1, . . . , xn).

The Haar system {h(ε)Q : Q ∈ S, ε ∈ A} is a complete orthogonal system in L2(Rn).
Given f ∈ Lp(Rn),

(4.1) C−p
p ‖f‖pLp(Rn) ≤

∫ ( ∑
ε∈A, Q∈S

〈f, h(ε)Q 〉2 1Q |Q|−2
)p/2

≤ Cp
p ‖f‖pLp(Rn),

where Cp ≤ Cp2/(p − 1). As is well known, wavelets, Calderón–Zygmund oper-
ators and Haar functions are related by Lp equivalence. Any admissible wavelet

system {ϕ(ε)
Q : Q ∈ S, ε∈A} is equivalent to the Haar system {h(ε)Q : Q∈S, ε∈A}

in Lp(Rn). For any choice of finite sums,

f =
∑

ε∈A, Q∈S
a
(ε)
Q h

(ε)
Q and g =

∑
ε∈A, Q∈S

a
(ε)
Q ϕ

(ε)
Q ,

we have equivalent norms

(4.2) C(p, α, δ)−1 ‖f‖Lp(Rn) ≤ ‖g‖Lp(Rn) ≤ C(p, α, δ) ‖f‖Lp(Rn) .

where C(p, α, δ) ≤ C(α, δ)p2/(p− 1). See [15], [7], and [17].

4.2. Rearrangements I

We present two quick applications of Semenov’s theorem. The aim is to estimate
series formed by block bases of compactly supported wavelets, Proposition 4.2.

Semenov’s theorem. Let 1 < p < ∞, and let μ ∈ Z
n. Semenov’s theorem

(see [17] and [16]) asserts that the rearrangement operator defined as the linear
extension of

Tμ : h
(ε)
Q → h

(ε)
Q+μs(Q)
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gives rise to a bounded operator on Lp(Rn) with

‖Tμ‖p ≤ C(p) log(2 + |μ|),
where C(p) ≤ Cp2/(p− 1). For our purposes, the logarithmic dependence on |μ| is
crucial.

Proposition 4.1. Let {ϕ(ε)
Q : Q ∈ S, ε ∈ A} denote the wavelet system defined

by (1.2). Let 1 < p <∞, let μ ∈ Z
n, and f ∈ Lp(Rn). Then

∥∥∥( ∑
Q∈S

〈f, ϕ(ε)
Q 〉21Q+μs(Q)|Q|−2

)1/2∥∥∥
p
≤ C(p, α, δ) log(2 + |μ|)‖f‖p .

Proof. By Semenov’s theorem and (4.1), we have square function estimates as
follows:

(4.3)
∥∥∥( ∑

Q∈S
〈f, ϕ(ε)

Q 〉21Q+μs(Q)|Q|−2
)1/2∥∥∥

p
≤ C

∥∥∥( ∑
Q∈S

〈f, ϕ(ε)
Q 〉21Q|Q|−2

)1/2∥∥∥
p
,

where C = C(p) log(2+ |μ|). By (4.2) the Haar and wavelet systems are equivalent,
so that with (4.1), the right hand side of (4.3) is bounded by

C(p, α, δ) log(2 + |μ|)‖f‖p . �

Block bases of compactly supported wavelets. We consider again a com-

pactly supported wavelet system {ψ(β)
K : K ∈ S, β ∈ A} in L2(Rn) satisfying the

structure conditions (3.3).
Let {cK(Q) : K,Q ∈ S} be a sequence of coefficients. Define the following

block basis:

(4.4) ψ̃Q =
∑

K∈Sj+k

cK(Q)ψ
(β)
K , Q ∈ Sj , j ∈ Z , k ∈ N ,

and form the operator

S0(f) =
∑
Q∈S

〈f, ϕQ〉 ψ̃Q |Q|−1.

Our aim is to prove that S0 is bounded on Lp(Rn) whenever {cK(Q) : K,Q ∈ S}
satisfies (4.5). To this end we split the block basis along integer translates of Q
and estimate with Semenov’s theorem. To be precise, let μ ∈ Z

n. Then put

A(Q,μ) = {K ∈ Sj+k : K ⊆ Q+ μs(Q)} and ψ̃Q,μ =
∑

K∈A(Q,μ)

cK(Q)ψ
(β)
K .

Define next
Sμ(f) =

∑
Q∈S

〈f, ϕQ〉 ψ̃Q,μ |Q|−1.
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Proposition 4.2. Let δ > 0, j ∈ Z, k ∈ N. Assume that the sequence of coefficients
{cK(Q) : K,Q ∈ S} defining (4.4) satisfies

(4.5) |cK(Q)| ≤
(
1 +

dist(K,Q)

s(Q)

)−n(1+δ)

, Q ∈ Sj , K ∈ Sj+k .

Then for any μ ∈ Z
n,

‖Sμ‖p ≤ C(p, α, δ)(1 + |μ|)−n(1+δ) log(2 + |μ|) ,
and consequently

(4.6) ‖S0‖p ≤ C(p, α, δ) .

Proof. Put

σ2(ψ̃Q,μ) :=
∑

K∈A(Q,μ)

|cK(Q)|2 |ψ(β)
K |2.

By (4.5) we have

(4.7) σ2(ψ̃Q,μ) ≤ C(1 + |μ|)−2n(1+δ)
∑

|μ−ν|≤C

1Q+νs(Q) .

By the unconditionality of wavelet-bases,

(4.8) ‖Sμ(f)‖p ≤ C(p, α, δ)
∥∥∥( ∑

Q∈S
〈f, ϕQ〉2σ2(ψ̃Q,μ)|Q|−2

)1/2∥∥∥
p
.

By (4.7) and Proposition 4.1, the right-hand side of (4.8) is bounded by

C(p, α, δ)(1 + |μ|)−n(1+δ) log(2 + |μ|)‖f‖p .
Since

S0(f) =
∑
μ∈Zn

Sμ(f),

this gives

‖S0‖p ≤ C(p, α, δ)
∑
μ∈Zn

log(2 + |μ|)(1 + |μ|)−n(1+δ)

and (4.6) holds true. �

4.3. Rearrangements II

We review here an auxiliary result on a rearrangement operator S that is induced
by mapping a dyadic cube to one of its dyadic predecessors. The operator was
introduced and studied in [13]. We define S in (4.10) and record its norm estimates.
Let λ ∈ N and let Q ∈ S be a dyadic cube. The λ-th dyadic predecessor of Q,
denoted Q(λ), is given by the relation

Q(λ) ∈ S, |Q(λ)| = 2nλ|Q|, Q ⊂ Q(λ).
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Let τ : S → S be the map that associates to eachQ ∈ S its λ-th dyadic predecessor.
Thus

τ(Q) = Q(λ), Q ∈ S .
Clearly τ : S → S is not injective. We canonically split S = Q1 ∪ · · · ∪ Q2nλ such
that the restriction of τ to each of the collections Qk, is injective: given Q ∈ S,
form

U(Q) =
{
W ∈ S :W (λ) = Q

}
.

Thus U(Q) is a covering of Q and contains exactly 2nλ pairwise disjoint dyadic
cubes. We enumerate them, rather arbitrarily, as W1(Q), . . . ,W2nλ(Q). For 1 ≤ k
≤ 2nλ, define

Qk = {Wk(Q) : Q ∈ S} .
Note that τ : Qk → S is a bijection, and

τ(Wk(Q)) = Q , Wk(Q) ∈ Qk , Q ∈ S .

Let 1 ≤ k ≤ 2nλ and let {F (k)
Q : Q ∈ S} be any family of functions satisfying∫

F
(k)
Q (x) dx = 0 and the following structural conditions: there exists C>0, δ>0

and 0 < α ≤ 1 so that, for each Q ∈ S,

(4.9a) |F (k)
Q (x)| ≤ C

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

,

and for |x− t| ≤ s(Q),

(4.9b) |F (k)
Q (x)− F

(k)
Q (t)| ≤ Cs(Q)−α|x− t|α

(
1 +

dist(x,Q)

s(Q)

)−n(1+δ)

.

We emphasize that F
(k)
Q may depend on k, by contrast the structural condi-

tions (4.9) are independent of the value of k. Define the operator S by the equation

(4.10) S(g) =

2nλ∑
k=1

∑
Q∈Qk

〈
g, F

(k)
τ(Q)

〉
ϕQ |Q|−1 ,

where {ϕQ} is an admissible wavelet system satisfying (1.2). The operator S is the
transposition of the rearrangement operator defined by τ followed by a Calderón–
Zygmund integral. The next theorem records the operator norm of S, particularly
its joint (n, λ)-dependence, on Lp(Rn).

Theorem 4.3. Let 1 < p < ∞. The operator S defined by (4.10) is bounded
on Lp(Rn). The norm estimates depend on the value of λ ∈ N and the dimension
of the ambient space R

n as follows:

(4.11) ‖S‖p ≤ C(p, α, δ)λ1/2 2nλ .

Proof. Just transfer Theorem 5.2 in [13] from compactly supported wavelets to
those satisfying (4.9). �
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5. Proof of Theorem 2.3

In this section we prove Theorem 2.3. Section 5.1 is devoted to the estimates (2.11)

for the operator T
(ε)
� , � ≥ 0. Thereafter we discuss the reduction of the esti-

mates (2.12) for T
(ε)
� R−1

i0
, ε ∈ Ai0 , to those of T

(ε)
� .

5.1. Estimates for T
(ε)
�

We prove here (2.11) asserting that T
(ε)
� , � ≥ 0 satisfies the norm estimates

(5.1) ‖T (ε)
� ‖p ≤ C(p, α, δ) 2−�α.

We do this by performing a further decomposition of the operator T
(ε)
� .

The decomposition of T
(ε)
� , � ≥ 0. We decompose the operator T

(ε)
� , � ≥ 0

into a series of operators T�,m,m ∈ Z using a compactly supported wavelet system

{ψ(β)
K : K ∈ S, β ∈ A}. We assume that {ψ(β)

K /
√|K|} is an orthonormal basis in

L2(Rn), satisfying
∫
ψ
(β)
K = 0 and the structure conditions

suppψ
(β)
K ⊆ C ·K , |ψ(β)

K | ≤ C , Lip(ψ
(β)
K ) ≤ C diam(K)−1.

We suppress the superindices (β) and, in place of {ψ(β)
K }, we write just {ψK}.

Fix m ∈ Z, j ∈ Z, and Q ∈ Sj . Put

(5.2) ψ̃Q =
∑

K∈Sj+�+m

〈
Δj+�(ϕ

(ε)
Q ), ψK

〉
ψK |K|−1

and

(5.3) T�,m(f) =
∑
Q∈S

〈f, ψ̃Q〉ϕ(ε)
Q |Q|−1.

By construction,

T� =

∞∑
m=−∞

T�,m .

For fixed � ≥ 1 we consider below three cases:

−∞ < m ≤ −�− 1 , −� ≤ m ≤ 0 , and m ≥ 0 .

We prove accordingly that

(5.4)

−�−1∑
m=−∞

||T�,m||p ≤ C(p, α, δ) 2−�α ,

0∑
m=−�

‖T�,m‖p ≤ C(p, α, δ) 2−�α
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and

(5.5)

∞∑
m=0

‖T�,m‖p ≤ C(p, α, δ) 2−�α.

The estimates (5.4) and (5.5) yield ‖T�‖p ≤ C(p, α, δ)2−�α as claimed.

Proposition 5.1. Let 1 < p < ∞. Let δ > 0 and α > 0 be fixed in the definition
of the admissible wavelet system. Put γ0 = min{nδ/2, 1}. For � ≥ 0, and m < −�
the operator T�,m satisfies the norm estimate

(5.6) ‖T�,m‖p ≤ C(p, α, δ) 2−�α 2−|m+�|γ0
√
|m+ �| .

Proof. Let j ∈ Z and fix a dyadic cube Q ∈ Sj . Since � + m < 0 there exists
a unique cube K0 ∈ Sj+�+m, so that Q ⊆ K0. Lemma 3.2 gives the pointwise
estimates

(5.7a) |ψ̃Q(t)| ≤ C 2−α� 2−|m+�|(n+γo)
(
1 +

dist(t,K0)

s(K0)

)−n(1+δ)

,

and

(5.7b) |∇ψ̃Q(t)| ≤ C diam(K0)
−1 2−α� 2−|m+�|(n+γo)

(
1 +

dist(t,K0)

s(K0)

)−n(1+δ)

.

We next invoke rearrangement operators. Let τ : S → S be the map that
associates to Q ∈ S its |m+ �|-th dyadic predecessor, denoted Q|m+�|. Thus

τ(Q) = Q|m+�|.

In section 4.3 we defined the canonical splitting of S as

S = Q1 ∪ · · · ∪ Q2n|m+�| ,

so that for each fixed k ≤ 2n|m+�|, the map τ : Qk → S is a bijection. Fix now

k ≤ 2n|m+�| and define the family of functions {F (k)
W :W ∈ S} by the equations

(5.8) F
(k)
τ(Q) = 2α� 2|m+�|(n+γ0) ψ̃Q, Q ∈ Qk.

Let A = 2n|m+�| and define the rearrangement operator S by

S(f) =
A∑

k=1

∑
Q∈Qk

〈
f, F

(k)
τ(Q)

〉
ϕQ |Q|−1.

By (5.7), {F (k)
W : W ∈ S} satisfies the structure estimates (4.9). Apply Theo-

rem 4.3 with λ = |m+ �|, to obtain

‖S‖p ≤ C 2n|m+�|√|m+ �| ,
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where C = C(p, α, δ). Hence with (5.8) we get

(5.9)
‖T�,m(f)‖p ≤ C 2−α�−|m+�|(n+γ0) ‖S(f)‖p

≤ C 2−α�−|m+�|γ0
√

|m+ �|‖f‖p ,

where again C = C(p, α, δ). �

We treat next the case m ≥ 0 and � ≥ 0. Here we estimate the transposed
operator of T�,m which is given by

(5.10) T ∗
�,m(f) =

∑
Q∈S

〈
f, ϕ

(ε)
Q

〉
ψ̃Q |Q|−1.

Proposition 5.2. Let 1 < p <∞. For m ≥ 0 and � ≥ 0, we have

(5.11) ‖T�,m‖p ≤ C(p, α, δ) 2−m 2−�α.

Proof. Fix � ≥ 0 and m ≥ 0. Let j ∈ Z and choose a dyadic cube Q ∈ Sj . The

structure estimates for Δj+�(ϕ
(ε)
Q ) in Lemma 3.1 translate into coefficient estimates

as follows. If K ∈ Sj+�+m, then

(5.12) |〈Δj+�(ϕ
(ε)
Q ), ψK〉| · |K|−1 ≤ C 2−m 2−α�

(
1 +

dist(K,Q)

s(Q)

)−n(1+δ)

.

Using (5.12) and applying Proposition 4.2 to T ∗
�,m gives the norm estimate

‖T�,m‖p ≤ C(p, α, δ) 2−m 2−�α. �

Next consider � ≥ 0, −� ≤ m ≤ 0. The ingredients of the previous proof are
applied again.

Proposition 5.3. Let 1 < p <∞. Let � ≥ 0 and −� ≤ m ≤ 0. Then,

(5.13) ‖T�,m‖p ≤ C(p, α, δ) 2m 2−�α.

Proof. We estimate the transposed operator T ∗
�,m given by (5.10). Fix � ≥ 0 and

−� ≤ m ≤ 0. Let j ∈ Z and choose dyadic cubes Q ∈ Sj and K ∈ Sj+�+m. Next
we apply Lemma 3.3 and get

|〈Δj+�(ϕ
(ε)
Q ), ψK〉| · |K|−1 ≤ C 2m 2−α�

(
1 +

dist(K,Q)

s(Q)

)−n(1+δ)

.

Applying Proposition 4.2 to T ∗
�,m gives ‖T ∗

�,m‖p ≤ C(p, α, δ) 2m 2−�α. �
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The proof of Theorem 2.3. Part 1. The estimate (2.11) is now obtained as
follows. The assertions of Proposition 5.1, Proposition 5.2 and Proposition 5.3
imply

(5.14)
∞∑

m=−∞
||T�,m||p ≤ C(p, α, δ) 2−�α,

Since

(5.15) T
(ε)
� (f) =

∞∑
m=−∞

T�,m(f) ,

we get (2.11).

5.2. Estimates for T
(ε)
� R−1

i0

Here we prove (2.12). We fix � ≥ 0, 1 ≤ i0 ≤ n, and ε ∈ Ai0 . We now prove the

norm estimates for T
(ε)
� R−1

i0
by reduction to the estimates for the operator T

(ε)
�

Let j ∈ Z and Q ∈ Sj . Recall that we put

k
(�,i)
Q = Δj+�

(
Ei0∂iϕ

(ε)
Q

)
.

Proposition 5.4. Let 1 < p < ∞. Let 1 ≤ i �= i0 ≤ n and ε ∈ Ai0 . For � ≥ 0 the
operator X defined by

X(f) =
∑
Q∈S

〈f, k(�,i)Q 〉ϕ(ε)
Q |Q|−1,

satisfies the norm estimates

(5.16) ||X ||p ≤ C(p, α, δ) 2+�−α�.

Proof. It remains to compare the structure conditions (3.15) for the system k
(�,i)
Q

defining X with those for f
(�,i)
Q defining the operator T

(ε)
� . This gives

||X ||p ≤ 2� ‖T (ε)
� ‖p ,

which implies (5.16). �

The proof of Theorem 2.3. Part 2. The estimate (2.12) is obtained as follows.
Proposition 5.4, in combination with the norm estimate (2.11) and the represen-
tation (2.10), imply that for � > 0,

||T (ε)
� R−1

i0
||p ≤ C(p, α, δ) 2+�−α�.
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6. Proof of Theorem 2.4

In this section we prove Theorem 2.4. For � ≤ 0 we obtain the norm estimates

for T
(ε)
� R−1

i0
and T

(ε)
� by the same method. Let i �= i0 and ε ∈ Ai0 and let � ≤ 0.

We show that then

||T (ε)
� ||p + ||T (ε)

� R−1
i0

||p ≤ C(p, α, δ) 2−|�| |�|.
We use the representations (2.8) and (2.10), and recall that we put

f
(ε)
Q,� = Δj+�(ϕ

(ε)
Q ) , and k

(�,i)
Q = Δj+�(Ei0∂iϕ

(ε)
Q ) , Q ∈ Sj .

We showed in Lemma 3.5 that {k(�,i)Q : Q ∈ S , � ≤ 0} satisfies conditions (3.18).

It is easy to see that also the family {f (ε)
Q,� : Q ∈ S , � ≤ 0} satisfies the structural

conditions (3.18).
Now we choose {gQ,� : Q ∈ S} satisfying the structure conditions (3.18). Define

the operator

X(f) =
∑
Q∈S

〈u, gQ,�〉ϕ(ε)
Q |Q|−1.

In view of the preceding discussion, the Lp estimates for X will apply to both T
(ε)
�

and T
(ε)
� R−1

i0
.

To estimateX, we consider again the rearrangement τ : S → S that mapsQ ∈ S
to its |�|-th dyadic predecessor. Let Q1, . . . ,Q2n|�| be the canonical splitting of S
so that for fixed k ≤ 2n|�| the map τ : Qk → S is bijective. Fix k ≤ 2n|�|. Determine

the family {F (k)
W :W ∈ S} by the equations

(6.1) F
(k)
τ(Q) = 2(n+1)|�|gQ,� , Q ∈ Qk .

Define the operator

S(u) =
2n|�|∑
k=1

∑
Q∈Qk

〈
u, F

(k)
τ(Q)

〉
ϕ
(ε)
Q |Q|−1 .

Apply Theorem 4.3 to S with λ = |�|. This yields
(6.2) ‖S‖p ≤ C(p, α, δ) 2n|�| |�| .
Comparing the structure conditions gives

(6.3) ‖X‖p ≤ C(p, α, δ) 2−(n+1)|�| ‖S‖p .
Consequently, our upper bounds for ‖X‖p follow from (6.2). Indeed,

‖X‖p ≤ C(p, α, δ) 2−|�| |�|.
The above estimate for X gives finally

||T (ε)
� ||p + ||T (ε)

� R−1
i0

||p ≤ C(p, α, δ) 2−|�| |�| . �
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