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Well-posedness and scattering for nonlinear

Schrödinger equations on R
d × T in the

energy space

Nikolay Tzvetkov and Nicola Visciglia

Abstract. We study the Cauchy problem and the large dataH1 scattering
for energy subcritical NLS posed on R

d × T.

1. Introduction

In our previous work [19], we considered the nonlinear Schrödinger equation on a
product space R

d ×Mk, where Mk is a k-dimensional compact Riemannian man-
ifold. We have seen this problem as a kind of vector valued nonlinear Schrödinger
equation on R

d and we were able to get small data scattering results (cf. also [12]
for small data modified scattering results).

Our goal here is to extend this view point to a large data problem in the very
particular case when M is the one dimensional torus.

Therefore, our aim in this paper is the study of the local (and global) well-
posedness and scattering of the following family of Cauchy problems:

(1.1)

⎧⎨
⎩
i∂tu−Δx,yu+ u|u|α = 0, (t, x, y) ∈ R× R

d × T, d ≥ 1,

u(0, x, y) = f(x, y) ∈ H1
x,y,

where

Δx,y =
d∑

i=1

∂2xi
+ ∂2y .

Concerning the Cauchy theory we shall assume 0 < α < 4/(d − 1), and for
scattering we assume 4/d < α < 4/(d− 1).

Our first result deals with the Cauchy problem.
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Theorem 1.1. Let d ≥ 1 and 0 < α < 4/(d− 1) be fixed. Then we have:

1. for any initial datum f ∈ H1
x,y, the problem (1.1) has a unique local solution

u(t, x, y) ∈ C((−T, T );H1
x,y),

where T = T (‖f‖H1
x,y

) > 0;

2. the solution u(t, x, y) can be extended globally in time.

Remark 1.2. Property (2) follows by (1) due to the defocusing character of the
nonlinearity (a standard approximation argument is needed to justify the energy
conservation). Hence, along the paper, we focus mainly on the proof of (1), i.e.,
the existence of a unique local solution for any given initial datum. We also notice
that the proof of (1) in Theorem 1.1 works also for the focusing NLS.

The proof of the local existence given by Theorem 1.1 goes as follows. First we
prove the existence of one unique solution in the space

(1.2) Lq
tL

r
xH

1/2+
y ∩ Ct(H1

x,y),

where (q, r) are Strichartz Ḣ1/2−-admissible for the propagator eitΔx . It is of
importance for our analysis that a H1/2 sub-critical nonlinearity in dimension d
is a H1 sub-critical nonlinearity in dimension d + 1. Therefore at the x level we
perform aH1/2− analysis and at the y level, we perform the (trivial)H1/2+ analysis
which at the end enables us to perform a H1 theory in the full sub-critical range of
the nonlinearity. Incorporating in a non-trivial way the y dispersive effect in this
analysis is a challenging problem. Its solution may allow to extend our analysis
to higher dimensional y dependence. A key tool in order to perform a fixed point
argument in the space (1.2) are the inhomogenous Strichartz estimates associated
with eitΔx (see [5], [8], [20]). The second step is the proof of the unconditional
uniqueness in the space Ct(H1

x,y). We underline that the proof of Theorem 1.1 in
the range of nonlinearity 0 < α < 4/d, can be obtained following [18], where it is
not needed the use of inhomogeneous Strichartz estimates for eitΔx .

In the cases d = 1 for every α > 0 and d = 2, 3 for the H1-critical nonlinearity
α = 4/(d− 1), the proof of Theorem 1.1 can also be deduced respectively from the
analysis in [2] and [14]. The main point in our approach is that it works in R

d ×T

for every d ≥ 1 and moreover it gives some crucial controls of space-time global
norms which are of importance for the scattering analysis.

The main result of this paper concerns the long-time behavior of the solutions
given by Theorem 1.1.

Theorem 1.3. Assume d ≥ 1 and 4/d < α < 4/(d − 1), f(x, y) ∈ H1
x,y and

let u(t, x, y) ∈ C(R;H1
x,y) be the unique global solution to (1.1). Then there exist

f± ∈ H1
x,y such that

lim
t→±∞ ‖u(t, x, y)− e−itΔx,yf±‖H1

x,y
= 0.
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Remark 1.4. Concerning scattering results for NLS in product spaces we quote [11],
where it is studied the quintic NLS on R × T

2. We also underline that using the
arguments of [14] (see also [11]) one may obtain that for d = 2, 3, the result of
Theorem 1.3 also holds for the H1 critical nonlinearity α = 4/(d− 1). One may
also expect that these arguments provide an alternative (and more complicated)
proof of Theorem 1.3 for d = 2, 3. For d ≥ 4, the extension of Theorem 1.3 to
the H1 critical nonlinearity α = 4/(d− 1) is an open problem (even for the H1

local theory).

Remark 1.5. Notice that if one considers (1.1) on R
d × R, then it is well-known

that H1-scattering is available for 4/(d + 1) < α < 4/(d − 1) (in contrast with
Theorem 1.3 where we require the extra restriction α > 4/d). On the other hand
the restriction α > 4/d in Theorem 1.3 is quite natural. Indeed, if we choose
f(x, y) = f(x) and 0 < α < 4/d then the Cauchy problem (1.1) reduces to L2-
subcritical NLS in R

d, and at the best of our knowledge no H1-scattering result is
available in this situation.

It is well known, since the very classical work [9], that a key tool to prove
scattering for NLS in the euclidean setting R

d, with nonlinearities which are both
energy subcritical and L2-supercritical, is the proof of the time-decay of the po-
tential energy. In Proposition 1.6 below we prove that this property persists for
solutions to NLS on R

d × T in the energy subcritical regime (in particular we do
not need to require to the nonlinearity to be L2-supercritical, see also Remark 1.7
on this point).

A basic tool that we will use is a suitable version in the partially periodic setting
of the interaction Morawetz estimates, first introduced in [7] to study the energy
critical NLS in the euclidean space R

3. Starting from this work the interaction
Morawetz estimates have been exploited in several other papers ([6], [10], [16],
[17], [21]), in particular they have been used to provide new and simpler proofs of
the classical scattering results from [9] and [15].

We emphasize that we make use of the interaction Morawetz estimates from a
different point of view compared with the results above. In particular along the
proof of Proposition 1.6 below we are able to treat in a unified and simple way
NLS on R

d × T for every d ≥ 1, without any distinction between the cases d ≤ 3
and d > 3. This distinction is typical in previous papers involving interaction
Morawetz estimates in the Euclidean setting (see Remark 1.8 for more details on
this point). Moreover it is unclear to us how to proceed, following the approach
developed in previous papers related with interaction Morawetz estimates, to prove
Proposition 1.6 in the case d ≥ 4 (see Remark 1.9).

Next we state the key proposition needed to prove Theorem 1.3.

Proposition 1.6. Let u(t, x, y) ∈ C(R;H1
x,y) be a global solution to defocusing NLS

posed on R
d × T and with pure power nonlinearity u|u|α, with 0 < α < 4/(d− 1).

Then

(1.3) lim
t→±∞ ‖u(t, x, y)‖Lq

x,y
= 0, 2 < q <

2(d+ 1)

d− 1
.



1166 N. Tzvetkov and N. Visciglia

Remark 1.7. Notice that in contrast with Theorem 1.3, in Proposition 1.6 we do
not assume any lower bound on α. Notice also that Proposition 1.6 is not true for
the focusing NLS on R

d×T for α < 4/d, even if the initial data are assumed to be
arbitrarily small in H1

x,y. To prove this fact one can think about the solitary waves

associated with the L2 subcritical focusing NLS posed on R
d, and notice that the

corresponding H1
x,y norm can be arbitrary small.

Remark 1.8. As already mentioned above, the proof of Proposition 1.6 is based
on the use of interaction Morawetz estimates in the partially periodic setting. Let
us recall that the interaction Morawetz estimates allow to control the following
quantity (see for instance [10]):

(1.4)

∫
R

∫
Rd

∣∣|Dx|(3−d)/2(|u|2)∣∣2 dx dt <∞

for u solution to NLS posed in the Euclidean space Rd. Notice that via the Sobolev
embedding it implies some a priori bounds of the type

‖u(t, x, y)‖Lp
tL

q
x
<∞

in the case d = 1, 2, 3. This estimate is sufficient to deduce scattering on R
d for

d = 1, 2, 3 in the case of the nonlinearity 4/d < α < 4/(d − 2). Notice also that
in higher dimensions d ≥ 4 we get in (1.4) the control of a negative derivative
of |u|2. In this case some extra work is needed in order to retrieve the needed
space-time summability that allows to get scattering. Typically the main strategy
to overcome this difficulty is to retrieve some information on negative derivative
of u via the following estimate (see [17]):

(1.5) ‖|Dx|(3−d)/4f‖2L4
x
≤ C‖ |Dx|(3−d)/2|f |2‖L2

x
.

Once a negative derivative of u is estimated, then it can be interpolated with the
bound ‖u‖L∞

t H1
x
, and hence we get the needed space-time integrality necessary to

prove scattering for d ≥ 4.

Remark 1.9. We underline that arguing as in [1], where it is studied NLS with
a partially confining potential, one can prove the following version of interaction
Morawetz estimate:

(1.6)

∫
R

∫
Rd

∣∣∣ |Dx|(3−d)/2
( ∫

T

|u(t, x, y)|2dy
)∣∣∣2 dx dt <∞

provided that u(t, x, y) solves NLS posed on R
d × T. Hence via the Sobolev em-

bedding one can deduce some a priori bounds

‖u(t, x, y)‖Lp
tL

q
xL2

y
<∞

in the case d = 1, 2, 3. This estimate is sufficient to deduce scattering for 4/d <
α < 4/(d− 1) and d = 1, 2, 3 (see the computations in [1] in the case of a partially
confining potential). However, as far as we can see, it is unclear how to exploit (1.6)
in the case d ≥ 4.
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Remark 1.10. Estimate (1.6) is obtained by controlling a suitable family of mul-
tiple integrals of the type:∫

R

∫
Rd

∫
Rd

∫
T

∫
T

· · · dx1 dx2 dy1 dy2 dt ,

where the integrand function depends on a test function ϕ and on the solution u
to NLS. Once this test function is suitably chosen then it allows to contract the
variables x1, x2, y1, y2 to x, y, hence we get (1.6). The main point in our analysis
is that we combine an argument by the absurd in conjunction with the finiteness
of the following quantity

∫
R

(
sup

x0∈Rd

∫∫
Qd(x0,r)×(0,2π)

|u(t, x, y)|2 dx dy
)(α+4)/2

dt <∞(1.7)

that in turn follows by

(1.8)

∫
R

∫
Rd

∫
Rd

∫
T

∫
T

Δxϕ(x1−x2)|u(x1, y1)|α+2|u(x2, y2)|2 dtdx1dy1dx2dy2 <∞,

where ϕ is any convex function. In this estimate we choose ϕ = 〈x〉. Notice
that this choice does not allow contraction of the variables (x1, x2, y1, y2) in (x, y);
however it implies (1.7), which is sufficient to conclude the time decay of the
potential energy for solutions to NLS in a simpler way and in a more general
setting compared with (1.6). We believe that this part of our argument is of
independent interest.

Acknowledgement. The authors are grateful to the referee for interesting re-
marks and suggestions.

2. Some useful functional inequalities

In this section we collect some a-priori estimates for the propagator e−itΔx,y and the
associated Duhamel operator. At the end we also present an anisotropic Gagliardo–
Nirenberg inequality that will be useful in the sequel.

We define Hs
xH

γ
y as

Hs
xH

γ
y = (1−Δx)

−s/2(1− ∂2y)
−γ/2 L2

x,y,

endowed with the natural norm.
In the sequel we shall make extensively use of the argument introduced in [19],

that we recall shortly. In [19] it is obtained a suitable version of Strichartz es-
timates for the linear Schrödinger propagator on the product space R

d
x × Mk

y .
The smoothing is measured in the spaces Lp

tL
q
xL

2
y. The basic idea is to project the

equation along the eigenfunctions of the Laplace–Beltrami operator on Mk
y , hence

getting a sequence of Schrödinger equations on R
d. At the end we can sum-up

the corresponding classical Strichartz estimates thanks to a combination of the
Minkowski inequality and the Plancherel identity.
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Proposition 2.1. Let γ ∈ R, 0 ≤ s < d/2 and d ≥ 1. Then we have the following
homogeneous estimates:

(2.1) ‖e−itΔx,yf‖Lq
tL

r
xH

γ
y
≤ C ‖f‖Hs

xH
γ
y
,

provided that the following conditions hold:

(2.2)
2

q
+
d

r
=
d

2
− s, q ≥ 2, (q, d) 
= (2, 2).

Proof. We claim that by combining the Sobolev embedding with the usual Strichartz
estimates on R

d we get

(2.3) ‖e−itΔxh‖Lq
tL

r
x
≤ C ‖h‖Hs

x
,

where q, r, s are as in the assumptions. By the same argument as in [19], the
estimate (2.3) implies

‖e−itΔx,yf‖Lq
tL

r
xL

2
y
≤ C ‖f‖Hs

xL
2
y
.

We can conclude by using the fact that
(√

1− ∂2y
)γ

commutes with the linear
Schrödinger equation on R

d × T.
Next we give a few details about the proof of (2.3). Given any q ≥ 2 for d ≥ 3

(or q > 2 for d = 2, q ≥ 4 for d = 1), we fix the unique 2 ≤ r̃ <∞ such that

(2.4)
2

q
+
d

r̃
=
d

2
.

Hence by the usual Strichartz estimates (see [13]) we get:

‖e−itΔxh‖Lq
tL

r̃
x
≤ C ‖h‖L2

x
.

In turn this implies
‖e−itΔxh‖Lq

tW
s,r̃
x

≤ C ‖h‖Hs
x
.

Notice that if s·r̃ < d then we conclude by the sharp Sobolev embeddingW s,r̃
x ⊂ Lr

x

(here r is precisely the one that appears in (2.2) once q and s are fixed). In the
case s · r̃ ≥ d we conclude again by the Sobolev embedding W s,r̃

x ⊂ Lp
x for every

r̃ ≤ p <∞, and in particular W s,r̃
x ⊂ Lr

x. �

Proposition 2.2. Let γ ∈ R and d ≥ 1. Indicate by D both ∂xj , j = 1, . . . , d
and ∂y. Then we have for k = 0, 1 the following estimates:

‖Dke−itΔx,yf‖L�
tL

p
xH

γ
y
+
∥∥∥Dk

∫ t

0

e−i(t−τ)Δx,yF (τ)dτ
∥∥∥
L�

tL
p
xH

γ
y

(2.5)

≤ C
(‖Dkf‖L2

xH
γ
y
+ ‖DkF‖

L�̃′
t Lp̃′

x Hγ
y

)
,

provided that

2

�
+
d

p
=

2

�̃
+
d

p̃
=
d

2
, � ≥ 2 , (�, 2) 
= (2, 2) .

Proof. The proof follows by the Strichartz estimates associated with the propaga-
tor e−itΔx , in conjunction with the argument in [19]. �
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Proposition 2.3. Let γ ∈ R be fixed and d ≥ 3. Then we have the following
extended inhomogeneous estimates:

(2.6)
∥∥∥
∫ t

0

e−i(t−τ)Δx,yF (τ)dτ
∥∥∥
Lq

tL
r
xH

γ
y

≤ C ‖F‖
Lq̃′

t Lr̃′
x Hγ

y

provided that

0 <
1

q
,
1

r
,
1

q̃
,
1

r̃
<

1

2
(2.7)

1

q
+

1

q̃
< 1 ,

d− 2

d
<
r

r̃
<

d

d− 2
(2.8)

1

q
+
d

r
<
d

2
,

1

q̃
+
d

r̃
<
d

2
,

2

q
+
d

r
+

2

q̃
+
d

r̃
= d .(2.9)

The same conclusion holds for d = 1, 2 provided that we drop the conditions (2.8).

Proof. In the case that f and F do not depend on y, the estimates above are special
cases of the inhomogeneous extended Strichartz estimates proved in Theorem 1.4
of [8] (see also [20]). Its extension to the case that we have explicit dependence
on y (in f and/or F ) follows arguing as in [19]. We underline that in order to
apply the technique in [19] we need (2.7), which is not required in [8]. �

Remark 2.4. The interest of using the estimates of [8] is that it allows to avoid
to differentiate at a fractional order the nonlinearity |u|αu with respect to the x
variable. Therefore the only fractional Leibniz rule we need is Lemma 4.1 below.

The following result will be useful in the sequel.

Lemma 2.5. Let d ≥ 1 and let un(x, y) be a sequence such that ‖un‖H1
x,y

= O(1)

and ‖un‖Lp
x,y

= o(1) for some 2 < p < ∞. Then for every 2 < r < 2d/(d − 1)
there exists δ > 0 such that ‖un‖Lr

xH
1/2+δ
y

= o(1).

Proof. By combining the assumption with the Sobolev embedding we obtain that

‖un‖Lq
x,y

= o(1) ∀ 2 < q <∞ for d = 1, 2 ,(2.10)

∀ 2 < q <
2d

d− 2
for d ≥ 3 .

First we prove the following estimate, that will be useful in the sequel:

(2.11) ∀γ > 0 , ∃C = C(γ) > 0 such that ‖v‖
L

2d/(d−1)
x H

1/2−γ
y

≤ C ‖v‖H1
x,y
.

To prove this estimate we develop v(x, y) in Fourier series with respecto to the y
variable:

v(x, y) =
∑
n∈Z

vn(x) e
iny .
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Hence, by the Minkowski inequality, we get

‖v‖2
L

2d/(d−1)
x H

1/2−γ
y

= ‖
∑
n∈Z

〈n〉1−2γ |vn(x)|2‖Ld/(d−1)
x

≤
∑
n∈Z

〈n〉1−2γ‖vn(x)‖2L2d/(d−1)
x

,

and by the Hausdorff–Young inequality,

· · · ≤ C
∑
n∈Z

〈n〉1−2γ ‖v̂n(ξ)‖2L2d/(d+1)
x

≤ C
∑
n∈Z

〈n〉1−2γ
(∫

|v̂n(ξ)|2〈ξ〉1+2γdξ
)
·
(∫

〈ξ〉−d−2γddξ
)1/d

≤ C ‖v‖2H1
x,y
.

Next, we shall prove

(2.12) ∃ 2 < r0 <
2d

d− 1
such that ‖un‖

L
r0
x H

4d−1
4d

y

= o(1) .

Once (2.12) is proved then we conclude by interpolation between (2.12) and (2.11)
in the case r0 ≤ r < 2d/(d − 1). In the case 2 < r < r0 then we can interpolate
between (2.12) and the estimate ‖un‖L2

xH
1
y
= O(1) (that follows by the assump-

tions). Next we focus on (2.12). Notice that we have the following Gagliardo–
Nirenberg inequality:

‖v(x, .)‖Hs0
y

≤ C ‖v(x, .)‖1−s0
L2

y
‖v(x, .)‖s0H1

y
,

where we have fixed s0 = (4d− 1)/(4d). In turn, by the Hölder inequality, it gives∥∥‖v(x, .)‖Hs0
y

∥∥
L

r0
x

≤ C
∥∥‖v(x, .)‖1−s0

L2
y

∥∥
L

p0
x

∥∥‖v(x, .)‖s0H1
y

∥∥
L

2/s0
x

,

where
1

r0
=

1

p0
+
s0
2

and p0 = 8(d+1). Since (1−s0)p0 > 2 we can use the trivial estimate ‖v(., y)‖L2
y
≤

‖v(., y)‖
L

(1−s0)p0
y

, and we get

∥∥‖v(x, .)‖Hs0
y

∥∥
L

r0
x

≤ C ‖v(x, .)‖1−s0

L
(1−s0)p0
x,y

∥∥‖v(x, .)‖H1
y

∥∥s0
L2

x

≤ C ‖v(x, .)‖1−s0

L
(1−s0)p0
x,y

‖v‖s0H1
x,y
.

Since 2 < (1 − s0)p0 < 2d/(d− 2) for d ≥ 3, and 2 < (1 − s0)p0 < ∞ for d = 1, 2,
we conclude by (2.10). �

3. Fixing the admissible exponents for the well-posedness
analysis

We collect in this section some preparations, useful in the sequel to construct
suitable functional spaces in which we shall perform a contraction argument to
guarantee existence and uniqueness of solutions to (1.1).
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The next proposition will be useful to study the Cauchy problem associated
with (1.1) in the regime 0 < α < 4/d.

Proposition 3.1. Let d ≥ 1 and 0 < α < 4/d be fixed. Then there exist (q, r) ∈
[2,∞]× [2,∞] such that

2

q
+
d

r
=
d

2
, (q, d) 
= (2, 2),

1

q′
>
α+ 1

q
,

1

r′
=
α+ 1

r
.

Proof. Choose (1q ,
1
r ) = ( dα

4(α+2) ,
1

α+2 ). �

To study the Cauchy problem (1.1) in the regime 4/d ≤ α < 4/(d− 1) we shall
need the following proposition.

Proposition 3.2. Let d ≥ 3 and 4/d ≤ α < 4/(d− 1) be fixed. Then there exists
0 < s < 1/2 and (q, r, q̃, r̃) such that:

(3.1) 0 <
1

q
,
1

r
,
1

q̃
,
1

r̃
<

1

2

and

1

q
+

1

q̃
< 1,

d− 2

d
<
r

r̃
<

d

d− 2
(3.2)

1

q
+
d

r
<
d

2
,

1

q̃
+
d

r̃
<
d

2
(3.3)

2

q
+
d

r
=
d

2
− s,

2

q
+
d

r
+

2

q̃
+
d

r̃
= d(3.4)

1

q̃′
>
α+ 1

q
,

1

r̃′
=
α+ 1

r
.(3.5)

For d = 1, 2 we get the same conclusion, provided that we drop conditions (3.2).
Moreover, we can assume

(3.6)
α

q
+
αd

2r
< 1 ,

α

r
< 1 .

In order to ease the reading we postpone its proof to the Appendix, since
the (numerological) computations involved are not directly related to the analysis
of NLS.

Next we shall also need the following result.

Proposition 3.3. Let d ≥ 1 and 4/d ≤ α < 4/(d − 1) be fixed.Then there exist
2 < � ≤ ∞, 2 ≤ p ≤ ∞ such that:

2

�
+
d

p
=
d

2
,(3.7)

1

p′
=

1

p
+
α

r
,(3.8)

1

�′
>

1

�
+
α

q
,(3.9)

where (q, r) is any couple given by Proposition 3.2.
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Proof. The conditions (3.7) and (3.8) imply

1

�
=
αd

4r
,

1

p
=

1

2
− α

2r
,

and hence the condition (3.9) becomes

(3.10)
αd

2r
+
α

q
< 1,

which is verified by (3.6). The last condition to be checked is that if �, p are as
above then �, p > 0. Indeed � > 0 is trivial and p > 0 is equivalent to α/r < 1,
which follows by (3.6). �

4. Proof of Theorem 1.1

Along this section we need the following lemma to treat the nonlinear term.

Lemma 4.1. For every 0 < s < 1, α > 0 there exists C = C(α, s) > 0 such that

‖u|u|α‖Ḣs
y
≤ C ‖u‖Ḣs

y
‖u‖αL∞.

Proof. First we prove the following identity:

(4.1)

∫ 2π

0

∫
R

|u(x+ h)− u(x)|2
|h|1+2s

dx dh = c ‖u‖2
Ḣs

y

for a suitable c > 0. We apply the Plancherel identity and we get
∫ 2π

0

|u(x+ h)− u(x)|2 dx =
∑
n

|einh − 1|2 |û(n)|2,

and hence∫ 2π

0

∫
R

|u(x+ h)− u(x)|2
|h|1+2s

dxdh =
∑
n

|û(n)|2
∫
R

|einh − 1|2 dh

|h|1+2s
.

Next notice that∫
R

|einh − 1|2 dh

|h|1+2s
=

∫
R

|einh − 1|2 |n|
1+2s|n| dh

|n||nh|1+2s

= |n|2s
∫
R

|eir − 1|2 dr

r1+2s
= c |n|2s,

and hence by combining the identities above we get (4.1). Based on (4.1) we get:

‖u |u|α‖2
Ḣs

y
= c

∫ 2π

0

∫
R

∣∣u |u|α(x+ h)− u |u|α(x)∣∣2
|h|1+2s

dx dh

≤ C

∫ 2π

0

∫
R

|u(x+ h)− u(x)|2‖u‖2αL∞

|h|1+2s
dx dh ≤ C ‖u‖2

Ḣs
y
‖u‖2αL∞.

�
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Proof of Theorem 1.1.

First case: 4/d ≤ α < 4/(d− 1).

In the sequel we shall denote by X
1/2+δ
T (q, r) the space whose norm is defined as

(4.2) ‖u‖
X

1/2+δ
T (q,r)

= ‖u(t, x, y)‖
Lq

TLr
xH

1/2+δ
y

,

with δ > 0, T > 0. Here we use the notation Lq
T (X) = Lq((−T, T );X).

From now on (q, r) will be any couple given by Proposition 3.2 and δ > 0 will be
in such a way that 1/2+δ+s ≤ 1, where 0 < s < 1/2 is defined by Proposition 3.2.

We shall also need the following localized norms Y
(1)
T (�, p) and Y

(2)
T (�, p):

‖u‖
Y

(1)
T (�,p)

=
∑
k=0,1

d∑
j=1

‖∂kxj
u(t, x, y)‖L�

t((−T,T ),Lp
xL2

y)
,

‖u‖
Y

(2)
T (�,p)

=
∑
k=0,1

‖∂kyu(t, x, y)‖L�
t((−T,T ),Lp

xL2
y)
,

where (�, p) are associated with (q, r) via Proposition 3.3.
We also set the global norm

‖w‖
Z

1/2+δ
T

= ‖w‖
X

1/2+δ
T (q,r)

+ ‖w‖
Y

(1)
T (�,p)

+ ‖w‖
Y

(2)
T (�,p)

,

and we introduce the integral operator:

(4.3) Afu = e−itΔx,yf + i

∫ t

0

e−i(t−τ)Δx,y
(
u(τ)|u(τ)|α) dτ .

We split the proof in four steps.

Step 1. For all f ∈ H1
x,y, there exist T = T (‖f‖H1

x,y
) > 0 and R = R(‖f‖H1

x,y
)

> 0 such that Af (BZ
1/2+δ

T ′
) ⊂ B

Z
1/2+δ

T ′
, for any T ′ < T.

Let q̃, r̃ be the ones given by Proposition 3.2. We start by noticing that

‖u|u|α‖
Lq̃′

T Lr̃′
x H

1/2+δ
y

≤ C
∥∥‖u(t, x, .)‖α+1

H
1/2+δ
y

∥∥
Lq̃′

T Lr̃′
x
,(4.4)

where we used Lemma 4.1. By combining this estimate with (3.5) and with the
Hölder inequality we get

‖u|u|α‖
Lq̃′

T Lr̃′
x H

1/2+δ
y

≤ C
∥∥‖u‖α+1

Lr
xH

1/2+δ
y

∥∥
Lq̃′

T

≤ C T β(α) ‖u‖α+1

Lq
TLr

xH
1/2+δ
y

,(4.5)

with β(α) > 0 and for some constant C > 0 independent on T. By combining this
nonlinear estimate with Propositions 2.1 and 2.3, we conclude the following:

‖Afu‖X1/2+δ
T (q,r)

≤ C ‖f‖
Hs

xH
1/2+δ
y

+ C T β(α) ‖u‖α+1

X
1/2+δ
T (q,r)

.(4.6)
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A combination of Proposition 2.2 with Proposition 3.3, in conjunction with the
Hölder inequality, yield the following estimate:

‖Afu‖Y (i)
T (�,p)

≤ C
∑
k=0,1

(‖Dkf‖L2
x,y

+ ‖Dk(u|u|α)‖
L�′

T Lp′
x L2

y

)

≤ C
∑
k=0,1

(‖Dkf‖L2
x,y

+
∥∥‖Dku(t, x, y)‖L2

y
‖u(t, x, y)‖αL∞

y

∥∥
L�′

T Lp′
x

)

≤ C
∑
k=0,1

(‖Dkf‖L2
x,y

+
∥∥‖Dku(t, x, y)‖L2

y
‖u(t, x, y)‖α

H
1/2+δ
y

∥∥
L�′

T Lp′
x

)

≤ C
∑
k=0,1

(‖Dkf‖L2
x,y

+ T β(α)‖Dku(t, x, y)‖L�
TLp

xL2
y
‖u(t, x, y)‖α

Lq
TLr

xH
1/2+δ
y

),(4.7)

where D stands for ∂y, ∂xj , j = 1, . . . , d, k = 0, 1, and in the third inequality we

used the embedding H
1/2+δ
y ⊂ L∞

y . Hence we get

‖Afu‖Y (i)
T (�,p)

≤ C ‖f‖H1
x,y

+ C T β(α) ‖u‖
Y

(i)
T (�,p)

‖u‖α
X

1/2+δ
T (q,r)

.(4.8)

We can conclude the proof of this step by combining (4.6) and (4.8).

Step 2. Let T,R > 0 be as in the Step 1. Then there exist T = T (‖f‖H1
x,y

) < T

such that Af is a contraction on B
Z

1/2+δ

T

(0, R), equipped with the norm ‖.‖Lq

T
Lr

xL
2
y
.

Given any v1, v2 ∈ B
X

1/2+δ
T (q,r)

(0, R) we achieve, by an use of estimate (2.6),

the chain of bounds

‖Afv1 −Afv2‖Lq
TLr

xL
2
y
≤ C ‖v1|v1|α − v2|v2|α‖Lq̃′

T Lr̃′
x L2

y

≤ C
∥∥‖v1 − v2‖L2

y
(‖v1‖αL∞

y
+ ‖v2‖αL∞

y
)
∥∥
Lq̃′

T Lr̃′
x

≤ C
∥∥‖v1 − v2‖Lr

xL
2
y
(‖v1‖αLr

xH
1/2+δ
y

+ ‖v2‖αLr
xH

1/2+δ
y

)
∥∥
Lq̃′

T

,

where we used the Sobolev embedding H
1/2+δ
y ⊂ L∞

y and (3.5) at the last step.
Again by the Hölder inequality in conjunction with (3.5), we can continue the
estimate as follows:

· · · ≤ CT β(α)
(
‖v1‖αLq

TLr
xH

1/2+δ
y

+ ‖v2‖αLq
TLr

xH
1/2+δ
y

)
‖v1 − v2‖Lq

TLr
xL

2
y

(4.9)

and we can conclude.

Step 3. The solution exists and is unique in Z
1/2+δ

T
, where T is as in Step 2.

We are in position to show existence and uniqueness of the solution by applying
the contraction principle to the map Af defined on the complete metric space
B

Z
1/2+δ

T

(0, R), equipped with the topology induced by ‖.‖Lq

T
Lr

xL
2
y
.

Step 4. u(t, x, y) ∈ C((−T, T );H1
x,y).
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Arguing as in the proof of (4.7), we get

‖Afu‖L∞((−T,T ),L2
x,y)

+

d∑
j=1

‖∂xjAfu‖L∞((−T,T ),L2
x,y)

+ ‖∂yAfu‖L∞((−T,T ),L2
x,y)

≤C ‖f‖H1
x,y
+ CT β(α)‖u‖

Z
1/2+δ
T

‖u‖α
X

1/2+δ
T (q,r)

.(4.10)

This estimate it is sufficient to guarantee that u(t, x, y) ∈ C((−T, T );H1
x,y).

The last step is the proof of unconditional uniqueness of solutions to (1.1).

Step 5. If u1, u2 ∈ C((−T, T );H1
x,y) are fixed points of Af , then u1 = u2.

By a continuity argument it is sufficient to show that u1(t) = u2(t) for a short
time (−T̃ , T̃ ), where T̃ depends only on the H1

x,y norms of f .
By taking the difference of the integral equations satisfied by u1 and u2 we get

(u1 − u2)(t, x, y) =

∫ t

0

e−i(t−τ)Δx,y(u1(τ)|u1(τ)|α − u2(τ)|u2(τ)|α) dτ .(4.11)

By an application of Proposition 2.2 we get

‖u1 − u2‖L�
TLp

xL2
y
≤ C ‖|u1|αu1 − |u2|αu2‖L�′

T Lp′
x L2

y

(4.12)

provided that 2/� + d/p = d/2, � ≥ 2, (�, d) 
= (2, 2). We can continue (4.12) as
follows:

· · · ≤ C‖u1 − u2‖L�
TLp

xL2
y

( ∑
j=1,2

‖uj‖α
L

α�
�−2
T L

αp
p−2
x L∞

y

)
(4.13)

≤ C‖u1 − u2‖L�
TLp

xL2
y
T

�−2
�

( ∑
j=1,2

‖uj‖α
L∞

T L
αp
p−2
x H

1/2+δ
y

)
,

where we used H
1/2+δ
y ⊂ L∞

y . We conclude the proof of uniqueness by selecting T
small enough and δ, p in such a way that

‖v‖
L

αp
p−2
x H

1/2+δ
y

≤ C ‖v‖H1
x,y
.

Indeed the estimate above follows by combining (2.11) and the trivial estimate

‖v‖
L2

xH
1/2+γ
y

≤ ‖v‖H1
x,y

∀γ > 0

provided that we can select p in such a way that

(4.14) 2 <
αp

p− 2
<

2d

d− 1
.

Notice that the values allowed to p are the following:

p ∈ [2,∞] for d = 1, p ∈ [2,∞) for d = 2, p ∈ [2, 2d/(d− 2)] for d ≥ 3 .
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Hence for d = 1 we can trivially satisfy (4.14) for a suitable p. For d = 2 notice
that limp→2

αp
p−2 = ∞ and limp→∞ αp

p−2 = α, and we can guarantee (4.14) for

a suitable p since 0 < α < 4/(d − 1) = 2d/(d − 1) for d = 2. In the case
d ≥ 3 we get limp→2

αp
p−2 = ∞ and limp→2d/(d−2)

αp
p−2 = αd/2. We conclude since

αd/2 < 2d/(d− 1) (indeed it is equivalent to the assumption α < 4/(d− 1)).

Second case: 0 < α < 4/d.

The proof is similar to the case 4/d ≤ α < 4/(d − 1) with minor changes.

In this case the space X
1/2+δ
T (q, r) is selected with a couple (q, r) given by Propo-

sition 3.1. Indeed we use Proposition 3.1 instead of Proposition 3.2, and we use
on the Duhamel operator the estimates in Proposition 2.2 instead of the ones in
Proposition 2.3. On the linear propagator we use Proposition 2.2 instead of Propo-
sition 2.1. The proof of the unconditional uniqueness provided in the previous step
works for every 0 < α < 4/(d− 1). �

5. Interaction Morawetz estimates and the proof of Proposi-
tion 1.6

Along this section we shall denote by
∫
the integral with respect to dxdy, and by∫∫

the integral with respect to dx1dy1dx2dy2. For x ∈ R
d and r ≥ 0, we define

Qd(x, r) to be a r dilation of the unit cube centered at x, namely

Qd(x, r) = x+ [−r, r]d .
The next lemma contains the key global information needed for our analysis.

Lemma 5.1. Let u(t, x, y) ∈ C(R;H1
x,y) be as in Proposition 1.6. Then for any

ψ ∈ C∞
0 (Rd) we get

(5.1)
d

dt

∫
ψ(x)|u(t, x, y)|2 dx dy = −2 Im

∫
ū∇xψ · ∇xu dx dy .

Moreover, we have

− 2
d

dt
Im

∫
ū∇x(〈x〉) · ∇xu dx dy(5.2)

= 4

∫
∇xuD

2
x(〈x〉)∇xū dxdy−

∫
Δ2

x(〈x〉)|u|2 dxdy +
2α

α+2

∫
Δx(〈x〉)|u|α+2 dxdy .

Moreover, for every r > 0, there exists C such that
∫
R

(
sup

x0∈Rd

∫∫
Qd(x0,r)×(0,2π)

|u(t, x, y)|2 dx dy
)(α+4)/2

dt ≤ C ‖f‖4H1
x,y
.(5.3)

Remark 5.2. We underline that Lemma 5.1 can be extended to the case that the
transverse factor is any compact manifold Mk

y and the flat measure dy is replaced
by the intrinsic measure dvolMk

y
.



NLS on R
d × T 1177

Remark 5.3. By analyzing the rather classical proof of (5.1), then one can deduce
that the identity (5.1) can be generalized as follows, to the more general case of a
function ψ(t, x) that depends on the variables (t, x):

(5.4)

∫
ψ(t, x)

d

dt
|u(t, x, y)|2 dx dy = −2 Im

∫
ū∇xψ(t, x) · ∇xu dx dy .

Remark 5.4. By (5.1) we see that the left-hand side in (5.2) can be considered,
at least formally, as the second derivative of

∫∫ 〈x〉|u(t, x, y)|2 dxdy with respect
to time, which is not a well-defined quantity for u ∈ H1

x,y. However, the quantity
involved on the left-hand side in (5.2) is well-defined since ∇x〈x〉 ∈ L∞

x and u ∈
H1

x,y. For this reason we have decided to write in terms of first derivative (5.1)
and (5.2). In view of the comments above we can also write the following formal
identity, that will be exploited in the sequel along an heuristic computation leading
to (5.3):

d2

dt2

∫∫
〈x〉|u(t, x, y)|2 dx dy(5.5)

= 4

∫
∇xuD

2
x(〈x〉)∇xū dx dy −

∫
Δ2

x(〈x〉)|u|2 dx dy

+
2α

α+ 2

∫
Δx(〈x〉)|u|α+2 dx dy .

Proof. The proof of (5.1) and (5.2) follows by standard considerations, and we
skip it. Concerning the proof of (5.3) we follow [7]. From now on we define
ϕ(x) = 〈x〉 and we make some formal computations. At the end of the proof we
shall explain how to make rigorous the arguments below. Write

d

dt

∫∫
|u(t, x1, y1)|2ϕ(x1 − x2)|u(t, x2, y2)|2 dx1 dx2 dy1 dy2

=

∫ (∫
d

dt
|u(t, x1, y1)|2ϕ(x1 − x2) dx1 dy1

)
|u(t, x2, y2)|2 dx2 dy2

+

∫ (∫
d

dt
|u(t, x2, y2)|2ϕ(x1 − x2) dx2dy2

)
|u(t, x1, y1)|2 dx1dy1 .

From now on we shall drop the variable t for simplicity and hence we shall write
u(t, xi, yi) = u(xi, yi). By combining the identity above with (5.1) we get

d

dt

∫∫
|u(x1, y1)|2ϕ(x1 − x2)|u(x2, y2)|2dx1dx2dy1dy2

= −2 Im

∫∫
ū(x1, y1)∇x1u(x1, y1) · ∇xϕ(x1−x2)|u(x2, y2)|2dx1dy1dx2dy2

+ 2 Im

∫∫
ū(x2, y2)∇x2u(x2, y2) · ∇xϕ(x1−x2)|u(x1, y1)|2dx1dy1dx2dy2.(5.6)
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Next notice that

d2

dt2

∫∫
|u(x1, y1)|2ϕ(x1 − x2)|u(x2, y2)|2 dx1dx2dy1dy2

=

∫ ( ∫
d2

dt2
|u(x1, y1)|2ϕ(x1 − x2) dx1dy1

)
|u(x2, y2)|2 dx2dy2(5.7)

+

∫ (∫
d2

dt2
|u(x2, y2)|2ϕ(x1 − x2)dx2dy2

)
|u(x1, y1)|2 dx1dy1

+ 2

∫ ( d
dt

∫
|u(x1, y1)|2ϕ(x1 − x2)dx1dy1

) d
dt
|u(x2, y2)|2 dx2dy2

= I + II + III.

By combining (5.1) and (5.4) we get the following identity

III= −4

∫
d

dt
|u(x2, y2)|2

(
Im

∫
ū(x1, y1)∇x1ϕ(x1−x2)·∇x1u(x1, y1) dx1dy1

)
dx2dy2

= 8 Im

∫
ū(x2, y2)∇x2u(x2, y2) · ∇x2( Im

∫
F (x1, x2, y1)dx1dy1) dx2dy2(5.8)

= −8

∫∫
V (x1, y1)D

2
xϕ(x1 − x2)V (x2, y2) dx1dy1dx2dy2,

where

F (x1, x2, y1) = ū(x1, y1)∇x1ϕ(x1 − x2) · ∇x1u(x1, y1)

V (x, y) = Im(ū(x, y)∇xu(x, y)) .

Moreover the term I in the right-hand side of (5.7) can be rewritten as follows
(this is based on the formal identity (5.5)):

I = 4

∫∫
∇x1u(x1, y1)D

2
xϕ(x1 − x2)∇x1 ū(x1, y1)|u(x2, y2)|2 dx1dy1dx2dy2

−
∫∫

Δ2
xϕ(x1 − x2)|u(x1, y1)|2|u(x2, y2)|2 dx1dy1dx2dy2

+
2α

α+ 2

∫∫
Δxϕ(x1 − x2)|u(x1, y1)|α+2|u(x2, y2)|2 dx1dy1dx2dy2 ,

that by the following identity (obtained by integration by parts, see [16]),

−
∫∫

Δ2
xϕ(x1 − x2)|u(x1, y1)|2|u(x2, y2)|2 dx1dy1dx2dy2

=

∫∫
∇x1(|u(x1, y1)|2)D2

xϕ(x1 − x2)∇x2(|u(x2, y2)|2) dx1dy1dx2dy2,
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becomes

I = 4

∫∫
∇x1u(x1, y1)D

2
xϕ(x1 − x2)∇x1 ū(x1, y1)|u(x2, y2)|2 dx1dy1dx2dy2(5.9)

+

∫∫
∇x1(|u(x1, y1)|2)D2

xϕ(x1 − x2)∇x2(|u(x2, y2)|2) dx1dy1dx2dy2

+

∫∫
2α

α+ 2
Δxϕ(x1 − x2)|u(x1, y1)|α+2|u(x2, y2)|2 dx1dy1dx2dy2 .

By exchanging indices, the term II in the right-hand side of (5.7) can be rewritten
as follows:

II = 4

∫∫
∇x2u(x2, y2)D

2
xϕ(x1 − x2)∇x2 ū(x2, y2)|u(x1, y1)|2(5.10)

+

∫∫
∇x1 |u(x1, y1)|2D2

xϕ(x1 − x2)∇x2 |u(x2, y2)|2

+
2α

α+ 2

∫∫
Δxϕ(x1 − x2)|u(x2, y2)|α+2|u(x1, y1)|2 dx1dy1dx2dy2 .

Next we introduce the vectors A(t, x1, y1, x2, y2) and B(t, x1, y1, x2, y2), defined as
follows:

A(t, x1, y1, x2, y2) := u(x1, y1)∇x2 ū(x2, y2) + ū(x2, y2)∇x1u(x1, y1)

and

B(t, x1, y1, x2, y2) := u(x1, y1)∇x2u(x2, y2)− u(x2, y2)∇x1u(x1, y1) .

By direct computation we get

2AD2
xϕ(x1−x2)Ā+ 2BD2

xϕ(x1 − x2)B̄(5.11)

= 4∇x1u(x1, y1)D
2
xϕ(x1−x2)∇x1 ū(x1, y1)|u(x2, y2)|2

+ 4∇x2u(x2, y2)D
2
xϕ(x1 − x2)∇x2 ū(x2, y2)|u(x1, y1)|2

− 8
(
Imū(x1, y1)∇x1u(x1, y1)

)
D2

xϕ(x1−x2)
(
Imū(x2, y2)∇x2u(x2, y2)

)
,

and also

2AD2
xϕ(x1−x2)Ā+ 2BD2

xϕ(x1−x2)B̄(5.12)

+ 2∇x1|u(x1, y1)|2D2
xϕ(x1−x2)∇x2|u(x2, y2)|2)=4AD2

xϕ(x1−x2)Ā≥0 .

By combining (5.11) and (5.12) we get

4∇x1u(x1, y1)D
2
xϕ(x1−x2)∇x1 ū(x1, y1)|u(x2, y2)|2(5.13)

+ 4∇x2u(x2, y2)D
2
xϕ(x1−x2)∇x2 ū(x2, y2)|u(x1, y1)|2

− 8(Im ū(x1, y1)∇x1u(x1, y1))D
2
xϕ(x1−x2)(Im ū(x2, y2)∇x2u(x2, y2)

+ 2∇x1(|u(x1, y1)|2)D2
xϕ(x1−x2)∇x2(|u(x2, y2)|2) ≥ 0 ,
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and hence by (5.8), (5.9), (5.10) and (5.13) we obtain

d2

dt2

∫∫
|u(x1, y1)|2ϕ(x1 − x2)|u(x2, y2)|2dx1dx2dy1dy2 = I + II + III

≥ 4α

α+ 2

∫∫
Δxϕ(x1 − x2)|u(x1, y1)|α+2|u(x2, y2)|2 dx1dy1dx2dy2 .

Integration in time gives

d

dt

(∫∫
|u(x1, y1)|2ϕ(x1 − x2)|u(x2, y2)|2dx1dx2dy1dy2

)
t=∞

(5.14)

− d

dt

(∫∫
|u(x1, y1)|2ϕ(x1 − x2)|u(x2, y2)|2dx1dx2dy1dy2

)
t=0

=

∫
(I + II + III) dt

≥ 4α

α+ 2

∫∫ ∫
Δxϕ(x1 − x2)|u(x1, y1)|α+2|u(x2, y2)|2dtdx1dy1dx2dy2 .

Notice that by (5.6) the left-hand side can be controlled by C‖f‖4H1
x,y

provided

that we choose ϕ = 〈x〉. On the other hand we have infQd(0,2r) Δx(〈x〉) > 0, hence
we get∫

R

sup
x0∈Rd

(∫∫
(Qd(x0,r))2×(0,2π)2

|u(x2, y2)|α+2|u(x1, y1)|2dx1dx2dy1dy2
)
dt

≤ C ‖f‖4H1
x,y
,

where we used the notation A2 = A × A for any general set A. In turn by the
Hölder inequality we get∫
Qd(x0,r)×(0,2π)

|u(x2, y2)|α+2 dx2dy2 ≥ Cr

(∫
Qd(x0,r)×(0,2π)

|u(x2, y2)|2 dx2dy2
)α+2

2

and we conclude the proof of (5.3).
Indeed, the computation above is formal since the quantity∫∫

|u(x1, y1)|2〈x1 − x2〉|u(x2, y2)|2 dx1dx2dy1dy2

appearing in (5.6) it is not well-defined for u ∈ H1
x,y. Following the Remark 5.4,

we can make rigorous the argument above by writing the following identity:

d

dt
J(t) = I + II + III ,

where the quantity

J(t) = −2 Im

∫∫
ū(x1, y1)∇x1u(x1, y1) · ∇xϕ(x1 − x2)|u(x2, y2)|2 dx1dy1dx2dy2

+2 Im

∫∫
ū(x2, y2)∇x2u(x2, y2) · ∇xϕ(x1 − x2)|u(x1, y1)|2 dx1dy1dx2dy2

is meaningful for u ∈ H1
x,y. �
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Proof of Proposition 1.6. We follow the approach in [21]. First, we write the fol-
lowing localized Gagliardo–Nirenberg inequality (see [18], page 93, eq. (A-5)):

(5.15) ‖v‖
L

2+4/(d+1)
x,y

≤ C sup
x∈Rd

(‖v‖L2

Qd(x,1)×(0,2π)

)2/(d+3) ‖v‖(d+1)/(d+3)
H1

x,y
.

Of course it is sufficient to show that

(5.16) lim
t→±∞ ‖u(t, x, y)‖

L
2+4/(d+1)
x,y

= 0 .

In fact the decay of the Lq
x,y norm for 2 < q < 2(d+ 1)/(d− 1) follows by combin-

ing (5.16) with the bound

(5.17) sup
t∈R

‖u(t, x, y)‖H1
x,y

<∞ .

Next, assume by the absurd that (5.16) is false, then by (5.15) and by (5.17) we
deduce the existence of a sequence (tn, xn) ∈ R × R

d with |tn| → ∞ and ε0 > 0
such that

(5.18) inf
n

‖u(tn, x, y)‖L2

Qd(xn,1)×(0,2π)
= ε0 .

For simplicity we can assume that tn → ∞ (the case tn → −∞ can be treated by
a similar argument).

Notice that by (5.1) in conjunction with (5.17) we get

sup
n,t

∣∣ d
dt

∫
χ(x− xn)|u(t, x, y)|2 dxdy

∣∣ <∞ ,

where χ(x) is a smooth and non-negative cut-off function taking values in [0, 1]
such that χ(x) = 1 for x ∈ Qd(0, 1) and χ(x) = 0 for x /∈ Qd(0, 2). By combining
this fact with (5.18) then we get the existence of T > 0 such that

(5.19) inf
n

(
inf

t∈(tn,tn+T )
‖u(t, x, y)‖L2

Qd(xn,2)×(0,2π)

) ≥ ε0/2 .

Notice that since tn → ∞ then we can assume (modulo subsequence) that the
intervals (tn, tn + T ) are disjoint. In particular we have

∑
n

T (ε0/2)
α+4 ≤

∑
n

∫ tn+T

tn

(∫∫
Qd(xn,2)×(0,2π)

|u(t, x, y)|2dx dy
)(α+4)/2

dt

≤
∫ (

sup
z∈Rd

∫∫
Qd(z,2)×(0,2π)

|u(t, x, y)|2dx dy
)(α+4)/2

dt

and hence we get a contradiction since the left hand side is divergent and the right
hand side is bounded by (5.3). �
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6. Fixing the admissible exponents for the scattering analysis

In this section we prepare some result useful to prove Theorem 1.3.

Proposition 6.1. Let d ≥ 1 and 4/d < α < 4/(d − 1) be fixed, and s = αd−4
2α .

Then there exists θ ∈ (0, 1) and (qθ, rθ, q̃θ, r̃θ), in such a way that

(6.1) 0 <
1

qθ
,
1

rθ
,
1

q̃θ
,
1

r̃θ
<

1

2

1

qθ
+

1

q̃θ
< 1,

d− 2

d
<
rθ
r̃θ
<

d

d− 2
(6.2)

1

qθ
+

d

rθ
<
d

2
,

1

q̃θ
+

d

r̃θ
<
d

2
(6.3)

2

qθ
+

d

rθ
=
d

2
− s,

2

qθ
+

d

rθ
+

2

q̃θ
+

d

r̃θ
= d,(6.4)

1

(α+ 1)q̃′θ
=

θ

qθ
,

1

(α+ 1)r̃′θ
=

θ

rθ
+

2(1− θ)

αd
.(6.5)

For d = 1, 2 we get the same conclusion provided that we drop conditions (6.2).
Moreover we can also assume that

(6.6)
α

qθ
+
αd

2rθ
= 1 ,

α

rθ
< 1 .

Remark 6.2. By combining Propositions 2.1 and 2.3, we get the following esti-
mate: for every γ ∈ R,

‖e−itΔx,yf‖Lqθ
t L

rθ
x Hγ

y
+
∥∥∥
∫ t

0

e−i(t−τ)Δx,yF (τ)dτ
∥∥∥
L

qθ
t L

rθ
x Hγ

y

(6.7)

≤ C
(‖f‖Hs

xH
γ
y
+ ‖F‖

L
q̃θ

′
t L

r̃′
θ

x Hγ
y

)
.

Proof of Proposition 6.1. For the moment we let θ to be free, and at the end
we shall select it according with a continuity argument. We fix (qθ, rθ) = (q, r)
(where q, r are given in Lemma 8.1) and we choose q̃θ and r̃θ as follows:

1

(α+ 1)q̃′θ
=
θ

q
,

1

(α + 1)r̃′θ
=
θ

r
+

2(1− θ)

αd
.

By this choice, (6.4) and (6.5) turn out to be satisfied for every θ. On the other
hand, by (8.5) we have

lim
θ→1

1

q̃θ
=

1

q̃
, lim

θ→1

1

r̃θ
=

1

r̃
,

where q̃, r̃ are given by Lemma 8.1. Hence conditions (6.2) and (6.3) follow by (8.2)
and (8.3) provided that we choose θ close enough to the value θ = 1. �

The next proposition, which is a version of Proposition 3.3 where we replace
inequality by identity in the last condition, will be useful in the sequel.
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Proposition 6.3. Let d ≥ 1 and 4/d < α < 4/(d − 1) be fixed. Then there exist
2 < � ≤ ∞, 2 ≤ p ≤ ∞ such that

(6.8)
2

�
+

1

p
=

1

2
,

1

p′
=

1

p
+
α

rθ
, and

1

�′
=

1

�
+
α

qθ
,

where (qθ, rθ) is any couple given by Proposition 6.1.

The same proof as in Proposition 3.3 can be repeated.

7. Proof of Theorem 1.3

Proposition 7.1. Let (qθ, rθ) be as in Proposition 6.1 and u(t, x, y) ∈ C(R;H1
x,y)

be the unique global solution to (1.1), with 4/d < α < 4/(d− 1). Then

(7.1) u(t, x, y) ∈ Lqθ
t L

rθ
x H

1/2+δ
y

for some δ > 0.

Proof. We will apply a H
1/2+δ
y valued version of the analysis Hs

x critical analysis
of [4]. Notice that in Proposition 6.1 we have 0 < s < 1/2 and hence by choosing
δ > 0 small, we can control ‖.‖

Hs
xH

1/2+δ
y

by ‖.‖H1
x,y

. By combining this fact with

Remark 6.2 we get

‖u(t, x, y)‖
L

qθ
t>t0

L
rθ
x H

1/2+δ
y

≤ C
(‖u(t0)‖H1

x,y
+ ‖u|u|α‖

L
q̃θ

′
t>t0

L
r̃′
θ

x H
1/2+δ
y

)
(7.2)

≤ C
(‖u(t0)‖H1

x,y
+ ‖u‖1+α

L
(1+α)q̃θ

′
t>t0

L
(1+α)r̃′

θ
x H

1/2+δ
y

)
,

where we have used Lemma 4.1 and we have denoted by ‖f(t)‖Lp
t>t0

the integral∫∞
t0

|f(t)|pdt for any given time-dependent function. By combining (6.5) with the

Hölder inequality we can continue the estimate (7.2) as follows:

· · · ≤ C
(‖u(t0)‖H1

x,y
+ ‖u‖θ(1+α)

L
qθ
t>t0

L
rθ
x H

1/2+δ
y

‖u‖(1−θ)(1+α)

L∞
t>t0

L
αd/2
x H

1/2+δ
y

)
.

By combining Proposition 1.6 with Lemma 2.5, we deduce that

lim
t0→∞ ‖u‖

L∞
t>t0

L
αd/2
x H

1/2+δ
y

= 0 ,

and hence for every ε > 0 there exists t0 = t0(ε) > 0 such that

‖u(t, x, y)‖
L

qθ
t>t0

L
rθ
x H

1/2+δ
y

≤ C ‖u(t0)‖H1
x,y

+ ε‖u‖θ(1+α)

L
qθ
t>t0

L
rθ
x H

1/2+δ
y

.

We conclude by a continuity argument that ‖u(t, x, y)‖
L

qθ
t>0L

rθ
x H

1/2+δ
y

< ∞. By a

similar argument we get ‖u(t, x, y)‖
L

qθ
t<0L

rθ
x H

1/2+δ
y

<∞. �

Proposition 7.2. Let (�, p) be as in Proposition 6.3 and let u(t, x, y) be the unique
solution to (1.1) with 4/d < α < 4/(d− 1). Then

(7.3) ‖u(t, x, y)‖L�
tL

p
xL2

y
+ ‖∂yu(t, x, y)‖L�

tL
p
xL2

y
+ ‖∇xu(t, x, y)‖L�

tL
p
xL2

y
<∞ .
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Proof. We show ‖∂yu(t, x, y)‖L�
tL

p
xL2

y
<∞, the other estimates are similar. By (2.5),

‖∂yu(t, x, y)‖L�
t>t0

Lp
xL2

y
≤ C(‖u(t0)‖H1

x,y
+ ‖(∂yu)|u|α‖L�′

t>t0
Lp′

x L2
y

).

By Proposition 6.3 we can apply the Hölder inequality and we get

· · · ≤ C(‖u(t0)‖H1
x,y

+ ‖(∂yu)‖L�
t>t0

Lp
xL2

y
‖u‖α

L
qθ
t>t0

L
rθ
x L∞

y
)

≤ C(‖u(t0)‖H1
x,y

+ ‖(∂yu)‖L�
t>t0

Lp
xL2

y
‖u‖α

L
qθ
t>t0

L
rθ
x H1/2+δ ).

We conclude by choosing t0 large enough and by recalling Proposition 7.1. �

Proof of Theorem 1.3.It follows by Proposition 7.2 via a standard argument (see [3]).
In fact by using the integral equation associated with (1.1) it is sufficient to prove
that

(7.4) lim
t1,t2→∞

∥∥∥
∫ t2

t1

e−isΔx,y (u|u|α)ds
∥∥∥
H1

x,y

= 0.

By combining Proposition 2.2 with a duality argument we get
∥∥∥
∫ t2

t1

e−isΔx,yF (s)ds
∥∥∥
L2

x,y

≤ C ‖F‖
L�′

(t1,t2)
Lp′

x L2
y
,

where (l, p) are as in Proposition 6.3. Hence (7.4) follows provided that

lim
t1,t2→∞

(‖u|u|α‖
L�′

(t1,t2)
Lp′

x L2
y
+‖∂y(u|u|α)‖L�′

(t1,t2)
Lp′

x L2
y
+‖∇x(u|u|α)‖L�′

(t1,t2)
Lp′

x L2
y

)
=0 .

This estimate can be proved following the same argument used along the proof of
Proposition 7.2, in conjunction with (7.1) and (7.3). �

8. Appendix

This Appendix is devoted to the proof of Proposition 3.2. We need the following.

Lemma 8.1. Let d ≥ 3, 4/d ≤ α < 4/(d− 1) be fixed and s = αd−4
2α . Then there

exist (q, r, q̃, r̃) such that:

(8.1) 0 <
1

q
,
1

r
,
1

q̃
,
1

r̃
<

1

2

and

1

q
+

1

q̃
< 1,

d− 2

d
<
r

r̃
<

d

d− 2
(8.2)

1

q
+
d

r
<
d

2
,

1

q̃
+
d

r̃
<
d

2
(8.3)

2

q
+
d

r
=
d

2
− s,

2

q
+
d

r
+

2

q̃
+
d

r̃
= d,(8.4)

1

q̃′
=
α+ 1

q
,

1

r̃′
=
α+ 1

r
.(8.5)

For d = 1, 2 we get the same conclusion, provided that we drop conditions (8.2).
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Moreover we can also assume that

(8.6)
α

q
+
αd

2r
= 1,

α

r
< 1.

Remark 8.2. Compared with Proposition 3.2, in Lemma 8.1 we have fixed s and
moreover we put identity in (8.5) (compare with (3.5) where we have inequality).

Proof. First we show that by our choice of s (8.6) follows. Indeed we get

α

q
+
αd

2r
=
α

2

(2
q
+
d

r

)
=
α

2

(d
2
− s

)
= 1,

where we used (8.4). Notice also that by the second identity in (8.5) we get α/r < 1;
in fact, α/r < (α+ 1)/r + 1/r̃ = 1.

Moreover the first condition in (8.2) follows by (8.1), and the first condition
in (8.3) follows by the first identity in (8.4). Hence since now on we can skip those
conditions. It is easy to check that thanks to our choice of s, the identities in (8.4)
and (8.5) are not independent. Moreover by (8.4) and (8.5), and by recalling
s = (αd− 4)/(2α), we get

(8.7)
1

q̃
= − 1

α
+

(α + 1)d

2r
,

1

r̃
= 1− α+ 1

r
,

1

q
=

1

α
− d

2r
.

Next we consider two cases:

First case: d ≥ 3.

Thanks to (8.7), the conditions (8.1), (8.2) (where we skip the first one), (8.3)
(where we skip the first one) can be written as follows:

αd

2
< r <

αd

(2− α)
, r > 2,

α(α+ 1)d

α+ 2
< r <

α(α+ 1)d

2
,

α+ 1 < r < 2(α+ 1), r <
α(α+ 1)d

αd− 2
,
d− 2

d
+ α+ 1 < r <

d

d− 2
+ α+ 1

Hence we conclude tat we can select a suitable r if the condition

max
{αd

2
, 2,

α(α + 1)d

α+ 2
, α+ 1,

d− 2

d
+ α+ 1

}

< min
{ αd

(2− α)
,
α(α+ 1)d

2
, 2(α+ 1),

α(α+ 1)d

αd− 2
,

d

d− 2
+ α+ 1

}

is satisfied. Since we are assuming 4/d ≤ α < 4/(d− 1), this condition is equiva-
lent to

max
{α(α + 1)d

α+ 2
,
d− 2

d
+ α+ 1

}
(8.8)

< min
{ αd

(2− α)
,
α(α+ 1)d

αd− 2
,

d

d− 2
+ α+ 1

}
.

Next we notice that

(8.9)
α(α+ 1)d

α+ 2
= max

{α(α+ 1)d

α+ 2
,
d− 2

d
+ α+ 1

}
.
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In fact it follows by direct computation for d = 3, 4 and for d ≥ 5 it comes
by the following argument. Notice that α(α + 1)d/(α + 2) ≥ (d − 2)/d + (α + 1)
is equivalent to (α + 1)

(
αd/(α + 2) − 1

) ≥ (d − 2)/d, that under the constrain
4/d ≤ α < 4/(d− 1) can be written as

inf
α∈[4/d,4/(d−1))

(α+ 1)
( αd

α+ 2
− 1

)
≥ d− 2

d
.

In turn this inequality follows provided that (1 + 4/d)
( d·4/d
4/(d−1)+2 − 1

) ≥ (d− 2)/d,

and by elementary computations it is equivalent to (d+4)(d− 3) ≥ (d+1)(d− 2),
which is satisfied for every d ≥ 5. Hence by (8.8) and (8.9) we conclude provided
that we show

α(α + 1)d

α+ 2
<

αd

(2 − α)
,
α(α + 1)d

α+ 2
<
α(α + 1)d

αd− 2
,
α(α+ 1)d

α+ 2
<

d

d− 2
+ α+ 1 .

The first and second inequalities are satisfied for any 0 < α < 4/(d − 1) and the
last one follows by

(8.10) sup
α∈[4/d,4/(d−1))

(α+ 1)
( αd

α+ 2
− 1

)
<

d

d− 2
.

On the other hand we have

sup
α∈[4/d,4/(d−1))

(α+ 1)
( αd

α+ 2
− 1

)
≤ (1 + 4/(d− 1))

(4d/(d− 1)

4/d+ 2
− 1

)

=
(d+ 3)(d2 − d+ 2)

(d− 1)2(d+ 2)
.

Hence (8.10) follows provided that (d+3)(d2−d+2)
(d−1)2(d+2) < d

d−2 , which is always satisfied.

Second case: d = 1, 2.

Arguing as above (recall that we drop (8.2)) we conclude provided that we can
select r such that

r >
αd

2
, r > 2 ,

α(α+ 1)d

α+ 2
< r <

α(α + 1)d

2
,

α+ 1 < r < 2(α+ 1) , r <
α(α + 1)d

αd − 2
.

By elementary computations (see the case d ≥ 3) and by recalling 4/d ≤ α <
4/(d− 1), the conditions above are equivalent to the following inequality:

(8.11) max
{
(α+ 1),

α(α + 1)d

α+ 2

}
< r <

α(α + 1)d

αd − 2
.

On the other hand, by explicit computation we get

max
{
(α+ 1),

α(α + 1)d

α+ 2

}
=
α(α+ 1)2

α+ 2
for d = 2 ,

max
{
(α+ 1),

α(α + 1)d

α+ 2

}
= α+ 1 for d = 1 ,

and (8.11) follows by elementary considerations. �
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Proof of Proposition 3.2. We focus on the case d ≥ 3 (the cases d = 1, 2 can be
treated by a similar argument). We argue by a continuity argument based on
Lemma 8.1. In fact we fix (1/q, 1/r, 1/q̃, 1/r̃, s) as in Lemma 8.1 and we look for
(1/(q + ε), 1/r, 1/q̃ε, 1/r̃, sε) that satisfy conditions of Lemma 3.2, for some ε > 0
small enough and q̃ε, sε will be properly chosen in dependence of ε. By our choice
it will be clear that limε→0 sε = s and limε→0 q̃ε = q̃. Notice that with this choice
the identity in (3.5) is satisfied (compare with (8.5)). Also (3.1), (3.2), (3.3) are
satisfied by a continuity argument provided that ε > 0 is small enough (recall that
r, r̃, q, q̃ satisfy (8.1), (8.2), (8.3)). Notice also that since q + ε > q then the first
identity in (3.4) is satisfied provided that we choose sε > s (recall that q, r, s satisfy
the first identity in (8.4)) and also (3.6) follows by (8.6).

Next we impose that 1/(q+ε), 1/r, 1/q̃ε, 1/r̃ satisfy the second identity in (3.4),
i.e., 1/(q + ε)+1/q̃ε =

d
2 (1−1/r−1/r̃) = β. We claim that (α+1)/(q+ε)+1/q̃ε < 1

(notice this is equivalent to the inequality in (3.5)) and it will conclude the proof.
Indeed we write 1

q+ε = 1
q − ε

q(q+ε) and hence 1
q̃ε

= β − 1
q + ε

q(q+ε) = 1
q̃ + ε

q(q+ε) ,

where we used 1/q + 1/q̃ = β (see the second identity in (8.4)). Hence we get, by
the first identity in (8.5),

α+ 1

q + ε
+

1

q̃ε
=
α+ 1

q
− ε(α+ 1)

q(q + ε)
+

1

q̃
+

ε

q(q + ε)
= − εα

q(q + ε)
+ 1 < 1 . �
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Largo Bruno Pontecorvo 5, 56127 Pisa, Italy.

E-mail: viscigli@dm.unipi.it

N. Tzvetkov is supported by the ERC grant Dispeq, and N. Visciglia by the FIRB project
Dispersive Dynamics.

mailto:nikolay.tzvetkov@u-cergy.fr
mailto:viscigli@dm.unipi.it

	Introduction
	Some useful functional inequalities
	Fixing the admissible exponents for the well-posedness analysis
	Proof of Theorem 1.1
	Interaction Morawetz estimates and the proof of Proposition 1.6
	Fixing the admissible exponents for the scattering analysis
	Proof of Theorem 1.3
	Appendix

