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A characterization of the Gaussian Lipschitz space

and sharp estimates for the Ornstein–Uhlenbeck
Poisson kernel

Liguang Liu and Peter Sjögren

Abstract. The Gaussian Lipschitz space was defined by Gatto and Ur-
bina, by means of the Ornstein–Uhlenbeck Poisson kernel. We give a char-
acterization of this space in terms of a combination of ordinary Lipschitz
continuity conditions. The main tools used in the proof are sharp estimates
of the Ornstein–Uhlenbeck Poisson kernel and some of its derivatives.

1. Introduction and main results

Let γ be the Gauss measure on R
n with n ≥ 1, that is, dγ(x) = π−n/2e−|x|2 dx.

The Gaussian analog of the Euclidean Laplacian is the Ornstein–Uhlenbeck opera-
tor L = − 1

2Δ+x ·∇, where ∇ = (∂x1 , . . . , ∂xn). The operator L is the infinitesimal
generator of the Ornstein–Uhlenbeck semigroup Tt = e−tL, t > 0, given by

Ttf(x) = π−n/2

∫
Rn

Me−t(x, y)f(y) dy

for all f ∈ L2(γ) and x ∈ R
n, where Me−t is the Mehler kernel defined by

Mr(x, y) =
e
− |y−rx|2

1−r2

(1− r2)n/2
x, y ∈ R

n, 0 < r < 1 .

The Ornstein–Uhlenbeck Poisson semigroup {Pt}t>0 is defined by subordination
from {Tt}t>0 as

Ptf(x) =
1√
π

∫ ∞

0

e−u

√
u
Tt2/(4u)f(x) du .

There is a corresponding Ornstein–Uhlenbeck Poisson kernel Pt(x, y), for which

Ptf(x) =

∫
Rn

Pt(x, y)f(y) dy ,
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and it is obtained from the Mehler kernel by similar subordination. Transforming
variables s = t2/(4u) and inserting the expression for the Mehler kernel Me−s ,
one gets

(1.1) Pt(x, y) =
1

2π(n+1)/2

∫ ∞

0

t

s3/2
e−

t2

4s
e
− |y−e−sx|2

1−e−2s

(1 − e−2s)n/2
ds .

Gatto and Urbina [3] introduced the Gaussian Lipschitz spaces; see also [2]
and [5]. Let α ∈ (0, 1), which will be fixed throughout the paper. A measurable
function f in R

n is said to be in the Gaussian Lipschitz space GLipα if it is bounded
and satisfies

(1.2) ‖∂tPtf‖L∞ ≤ Atα−1, t > 0,

for some A > 0. The norm in f ∈ GLipα is

‖f‖GLipα
= ‖f‖L∞ + inf{A : A satisfies (1.2)}.

The standard Euclidean Lipschitz space Lipα(R
n) consists of all bounded func-

tions f such that for some C > 0,

(1.3) |f(x)− f(y)| ≤ C|x− y|α, x, y ∈ R
n.

It is known that the space Lipα(R
n) can be characterized by means of the standard

Poisson kernel

Pt(x, y) = cn
t

(t2 + |x− y|2)(n+1)/2
,

where cn is a dimensional constant that makes
∫
Rn Pt(x, y) dy = 1; see Sec-

tion V. 4. 2 in Stein [6]. To be precise, an L∞ function f coincides a.e. with a
function in Lipα(R

n) if and only if

‖∂tPtf‖L∞ ≤ C tα−1

for all t > 0. The main aim of this paper is to describe the Gaussian Lipschitz
space by means of a condition like (1.3), as follows.

Theorem 1.1. Let α ∈ (0, 1). The following statements are equivalent:

(i) f ∈ GLipα;

(ii) there exists a positive constant K such that for all x, y ∈ R
n,

(1.4) |f(x)−f(y)| ≤ Kmin
{
|x−y|α,

( |x− y|
1 + |x|+ |y|

)α/2

+((|x|+|y|) sin θ)α
}
,

after correction of f on a null set. Here θ denotes the angle between the
vectors x and y; if x = 0 or y = 0, then θ is understood as 0.

Moreover, the norm ‖f‖GLipα
is equivalent to |f(0)|+inf{K > 0 : K satisfies (1.4)}.



Characterization of the Gaussian Lipschitz space 1191

In one dimension, the inequality (1.4) reads

|f(x)− f(y)| ≤ Kmin
{
|x− y|α,

( |x− y|
1 + |x|+ |y|

)α/2 }
.

This is a combined Lipschitz condition, with exponent α for short distance |x− y|
(in fact, shorter than 1/(1+|x|+|y|)), and exponent α/2, with a different coefficient,
for long distance. In higher dimension, the expression (|x|+ |y|) sin θ describes the
“orthogonal component” of the vector x− y, since it is the distance from y to the
line in the direction x plus the vice versa quantity. To make this more clear, we
state an unsymmetric inequality equivalent to (1.4). For x, y ∈ R

n with x �= 0,
we decompose y as y = yx + y′x, where yx is parallel to x and y′x orthogonal to x.
If x = 0, we let yx = y and y′x = 0, and this holds for all x in case n = 1. As proved
in Lemma 2.1 below, (1.4) is equivalent to

(1.5) |f(x)− f(y)| ≤ K ′ min
{
|x− y|α,

( |x− yx|
1 + |x|

)α/2

+ |y′x|α
}

in any dimension, with a constantK ′ > 0 comparable with K. This means that the
combined Lipschitz condition applies in the radial direction, but in the orthogonal
direction the exponent is always α. In the proof of Theorem 1.1, we shall use (1.5)
instead of (1.4).

Gatto and Urbina defined GLipα for all α > 0. In analogy with the Euclidean
case, it seems likely that there are versions of Theorem 1.1 that hold for α ≥ 1.

In a forthcoming paper [4], the authors obtain a result analogous to Theorem 1.1
but where the Lipschitz space is defined without the boundedness assumption.

The proof of Theorem 1.1 relies on pointwise estimates of the Ornstein–Uhlen-
beck Poisson kernel Pt(x, y) and its derivatives, which also have independent in-
terest. Before stating these results, we need some notation.

Throughout the paper, we shall write C for various positive constants which
depend only on n and α. Given any two nonnegative quantities A and B, the
notation A � B stands for A ≤ CB (we say that A is controlled by B), and A � B
means B � A. If B � A � B, we write A 	 B. For positive quantities X , we shall
write

exp∗(−X)

meaning exp(−cX) for some constant c = c(n, α) > 0 whose value may change
from one occurrence to another. Then we have for instance te−t 	 exp∗(−t) for
t > 1, since we allow different values of c in the two inequalities defining the 	
relation. We shall often use inequalities like exp∗(−X) � exp∗(−X) exp∗(−X).

Theorem 1.2. For all t > 0 and x, y ∈ R
n,

Pt(x, y) ≤ C[K1(t, x, y) +K2(t, x, y) +K3(t, x, y) +K4(t, x, y)] ,
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where

K1(t, x, y) =
t

(t2 + |x− y|2)(n+1)/2
exp∗ (−t(1 + |x|)) ;

K2(t, x, y) =
t

|x|
(
t2 +

|x− yx|
|x| + |y′x|2

)−(n+2)/2

exp∗
(
− (t2 + |y′x|2)|x|

|x− yx|
)

× χ{|x|>1, x·y>0, |x|/2≤|yx|<|x|} ;

K3(t, x, y) =min{1, t} exp∗(−|y|2);

K4(t, x, y) =
t

|yx|
(
log

|x|
|yx|

)−3/2

exp∗
(
− t2

log(|x|/|yx|)
)
exp∗(−|y′x|2)

× χ{x·y>0, 1<|yx|<|x|/2}.

In Section 6, we consider the sharpness of Theorem 1.2. In particular, we
exhibit for each of the four kernels Ki(t, x, y) a set Ẽi of points (t, x, y) in which
Pt(x, y) 	 Ki(t, x, y) but where the other three terms Kj(t, x, y) are much smaller;
see the proof of Theorem 6.1(b). Thus none of the four terms can be suppressed
in Theorem 1.2. It can also be verified that for each i there exist (many) points
(t, x) such that the integral of Ki(t, x, y) with respect to y, taken over those y for

which (t, x, y) ∈ Ẽi, is comparable to 1 =
∫
Rn Pt(x, y) dy. This means that for

these (t, x), the kernel Ki(t, x, ·) contains a substantial part of Pt(x, ·).
We make some comments about the four terms Ki in Theorem 1.2, focusing on

large values of |x|.
Consider first small values of t. The term K1(t, x, y) is for t < 1/(1+ |x|) essen-

tially the standard Poisson kernel. For us, the most significant term is K2(t, x, y),
since it is the key to the term with exponent α/2 in (1.4) and (1.5). In one dimen-
sion, one has

K2(t, x, y) � K̃2(t, x, y) :=
1

t2|x|
(
1 +

|x− y|
t2|x|

)−3/2

for all (t, x, y), and

(1.6) Pt(x, y) 	 K2(t, x, y) 	 K̃2(t, x, y)

in the set where x > 1 and 3x/4 < y < x − t2x (see Section 6). Notice that

K̃2(t, x, y) is a Poisson-like kernel but with a dilation parameter t2|x| which de-
pends on x, and with a slower decay as y → ∞. Further, for x > 1 and t > 0 fixed,
the integral in y of each of the three kernels in (1.6) over the interval (3x/4, x−t2x)
is of order of magnitude 1 =

∫
R
Pt(x, y) dy. In higher dimension, K2(t, x, y) has,

as a function of y, a different behavior in the x direction and in the directions
orthogonal to x.

Our Poisson kernel Pt can be compared with the standard Poisson kernel Pt

in the following way. Roughly speaking, the main part of the standard Poisson
integral Ptf(x) is essentially the mean value of the function f in a ball of radius t,
centered at x. The analog for Ptf(x) is the mean value in a cylinder in the x
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direction of length t2|x|, radius t and center x − t2x. This displacement from x
of the center is not very significant, since the displacement is not larger than the
length.

This displacement comes from the Mehler kernel; the subordination formula
says that Pt is a weighted mean in the t variable of values of the Mehler kernel.
For small t, the Mehler kernel gives essentially the mean value of the function in a
ball of radius

√
t and center e−tx ≈ x − tx. So for t << 1/|x|2, the displacement

is significant here, since it is much larger than the radius. Actually, it is only this
displacement that makes the Mehler kernel essentially different from the standard
heat kernel, for small t. Observe that the displacement is in the negative x direction
in both cases.

For large t, the Mehler kernel has a dilation factor which is essentially 1, and
the displacement is to the origin. As a result, we get for Pt the terms K3(t, x, y)
and K4(t, x, y), which are large for small y only.

After finishing this paper, we learned that Garrigós et al. [1] (see their Lem-
mas 4.1 and 4.2) also estimated the kernel Pt(x, y). Their estimates are rather
different from ours and intended for other purposes.

From the proof of Theorem 1.2, it will be seen that t∂tPt and t∂xiPt with
1 ≤ i ≤ n satisfy the same estimates as Pt, as follows.

Theorem 1.3. Let i ∈ {1, 2, . . . , n}. Then for all t > 0 and x, y ∈ R
n,

|t∂tPt(x, y)|+|t∂xiPt(x, y)|
≤ C [K1(t, x, y) +K2(t, x, y) +K3(t, x, y) +K4(t, x, y)] .

For the derivative of Pt(x, y) with respect to x in the radial direction, i. e., along
the vector x, we obtain a sharper estimate than that of Theorem 1.3. This result
will be of fundamental importance in the proof of Theorem 1.1. To state it in a
simple way, we first observe that Pt is invariant under rotation in the sense that
Pt(Ax,Ay) = Pt(x, y) for any orthogonal matrix A. The same is true for all the
kernels we use. This means that in our estimates, we can assume without restriction
that x = (x1, 0, . . . , 0) with x1 ≥ 0. Then we will write the decomposition of y as
y = (y1, y

′) ∈ R× R
n−1.

Theorem 1.4. For all t > 0, x = (x1, 0, . . . , 0) ∈ R
n with x1 ≥ 0 and y =

(y1, y
′) ∈ R

n,

|∂x1Pt(x, y)| ≤ C[Z1(t, x, y) + Z2(t, x, y) + Z3(t, x, y) + Z4(t, x, y)],
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where

Z1(t, x, y) =
t

(t2 + |x− y|2)(n+2)/2
exp∗(−t(1 + |x|));

Z2(t, x, y) =
t

x2
1

(
t2 +

x1 − y1
x1

+ |y′|2
)−(n+4)/2

exp∗
(
− (t2 + |y′|2)x1

x1 − y1

)
× χ{x1>1, x1/2≤y1<x1};

Z3(t, x, y) =
min{t, t−2}

1 + |x| exp∗(−|y|2) ;

Z4(t, x, y) =
t

x1 y1

(
log

x1

y1

)−5/2

exp∗
(
− t2

log(x1/y1)

)
exp∗(−|y′|2)χ{1<y1<x1/2} .

The paper is organized as follows. In Section 2, we prove the equivalence
between the conditions (1.4) and (1.5) and then give some basic estimates needed
later. Section 3 contains the proof of Theorem 1.1, assuming Theorems 1.2, 1.3
and 1.4. The proofs of Theorems 1.2 and 1.3 are given in Section 4. Section 5
contains the proof of Theorem 1.4, which is based on that of Theorem 1.2 but now
exploiting also some cancellation in the integral estimates. Finally, Section 6 deals
with the sharpness of our estimates for Pt.

2. Auxiliary results

Lemma 2.1. Let α ∈ (0, 1). The conditions (1.4) and (1.5) are equivalent, and
each of them implies that the function f is bounded. More precisely,

(2.1) sup
x∈Rn

|f(x)− f(0)| � infK 	 infK ′.

Proof. To see that each of the two conditions implies boundedness, it is enough
to take y = 0 in either condition. This also gives the inequality in (2.1) and the
analogous inequality for K ′.

Let A and B denote the minima appearing in (1.4) and (1.5), respectively. If
|x|+ |y| ≤ 2, one finds that A 	 |x−y|α 	 B. Assume next that |y|/2 < |x| < 2|y|.
Then |y′x| 	 (|x| + |y|) sin θ and it is obvious that B � A. The converse A � B is
easy when |y′x| ≤ |x− yx|. When |y′x| > |x− yx|, we have

A ≤ |x− y|α 	 |y′x|α ≤ B .

Thus it only remains to consider the case when |x|+ |y| > 2 and |x|/|y| /∈ (1/2, 2).
But then A, B � 1, and via the boundedness we just proved, we see that each of
the inequalities (1.4) and (1.5) implies the other for these x, y.

Altogether, this proves the equivalence, and (2.1) also follows. �
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Lemma 2.2. Let a, T, A ∈ (0,∞), X ∈ [0,∞) and β ∈ (1,∞). Then

J :=

∫ a

0

1

σβ
exp∗

(
− T 2

σ

)
exp∗

(
− A2

σ

)
exp∗(−σX2) dσ

≤ M
exp∗(−AT/a) exp∗(−T X)

(T 2 +A2)β−1
,

where M > 0 is independent of a, T, A and X.

Proof. Notice that exp∗(−T 2/σ) exp∗
(−σX2

)
� exp∗ (−T X). Via a change of

variable u = (T 2 +A2)/σ, we see that

J � exp∗(−T X)

∫ a

0

1

σβ
exp∗

(
− T 2

σ

)
exp∗

(
− A2

σ

)
dσ

� exp∗(−T X)
1

(T 2 +A2)β−1

∫ ∞

T2+A2

a

uβ−2 exp∗ (−u) du.

Since (T 2 + A2)/a ≥ 2AT/a and since β > 1, the last integral here is controlled
by exp∗ (−AT/a). �

Proposition 2.3. For all x ∈ R
n and t > 0, the Ki from Theorem 1.2 satisfy∫

Rn

[K1(t, x, y) +K2(t, x, y)] dy ≤ C,(2.2) ∫
Rn

[K3(t, x, y) +K4(t, x, y)] dy ≤ Cmin{1, t} .(2.3)

Proof. Since K1 is dominated by the standard Poisson kernel, it follows that∫
Rn K1(t, x, y) dy � 1. Also, it is obvious that

∫
Rn K3(t, x, y) dy � min{1, t}.

For the estimates of K2 and K4, we can make a rotation and assume that
x = (x1, 0, . . . , 0) with x1 > 1 and write y = (y1, y

′). Then∫
Rn

K2(t, x, y) dy �
∫
R

∫
Rn−1

t

x1

(
t2 +

|x1 − y1|
x1

+ |y′|2
)−(n+2)/2

dy′ dy1

�
∫
R

t

x1

(
t2 +

|x1 − y1|
x1

)−3/2

dy1 � 1,(2.4)

and (2.2) is proved.
In the case of K4, we have∫

Rn

K4(t, x, y) dy

�
∫
1<y1<x1/2

∫
Rn−1

t

y1

(
log

x1

y1

)−3/2

exp∗
(
− t2

log(x1/y1)

)
exp∗(−|y′|2) dy′ dy1

	
∫
1<y1<x1/2

t

y1

(
log

x1

y1

)−3/2

exp∗
(
− t2

log(x1/y1)

)
dy1

�
∫ ∞

log 2

t√
τ
exp∗

(
− t2

τ

) dτ

τ
� min{1, t}.

This proves (2.3). �



1196 L. Liu and P. Sjögren

3. Proof of Theorem 1.1

In this section, we assume Theorems 1.2, 1.3 and 1.4 and prove Theorem 1.1.
Combining Proposition 2.3 with the pointwise estimates for the x derivatives of
the Poisson kernel in Theorems 1.3 and 1.4, we first deduce bounds for the L1

norms of those derivatives.

Proposition 3.1. (i) For all i ∈ {1, 2, . . . , n}, t > 0 and x ∈ R
n,

(3.1)

∫
Rn

|∂xiPt(x, y)| dy ≤ Ct−1.

(ii) For all t > 0 and x = (x1, 0, . . . , 0) ∈ R
n with x1 ≥ 0,

(3.2)

∫
Rn

|∂x1Pt(x, y)| dy ≤ Ct−2(1 + x1)
−1.

Proof. Notice that (i) follows from Theorem 1.3 and Proposition 2.3.
To prove (ii), we have from Theorem 1.4,

|∂x1Pt(x, y)| � Z1(t, x, y) + Z2(t, x, y) + Z3(t, x, y) + Z4(t, x, y).

It is easy to see that∫
Rn

Z1(t, x, y) dy �
∫
Rn

t exp∗(−t(1 + |x|))
(t2 + |x− y|2)(n+2)/2

dy

� t−1 exp∗(−t(1 + |x|)) � t−2(1 + x1)
−1

and ∫
Rn

Z3(t, x, y) dy 	
∫
Rn

min{t, t−2}
1 + |x| exp∗(−|y|2) dy

� min{t, t−2}
1 + |x| � t−2(1 + x1)

−1.

Integrating Z2 first in y′ and then in y1, we get∫
Rn

Z2(t, x, y) dy � t

x2
1

∫ x1

x1/2

∫
Rn−1

( x1

x1−y1

)(n+4)/2

exp∗
(
− (t2+|y′|2)x1

x1 − y1

)
dy′ dy1

� t

x2
1

∫ x1

x1/2

( x1

x1 − y1

)5/2

exp∗
(
− t2x1

x1 − y1

)
dy1 � t−2x−1

1 .

Similarly,∫
Rn

Z4(t, x, y) dy � t

x1

∫ x1/2

0

(
log

x1

y1

)−5/2

exp∗
(
− t2

log x1

y1

)
dy1
y1

� t

x1

∫ ∞

log 2

u−5/2 exp∗
(
− t2

u

)
du � t−2x−1

1 ,

where u = log(x1/y1). Combining these estimates and noticing that Z2 and Z4

are non-zero only if x1 > 1, we obtain (3.2). �
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From this proposition, we deduce two pointwise bounds for the x derivatives
of Ptf , with f a Gaussian Lipschitz function.

Proposition 3.2. Let α ∈ (0, 1) and f ∈ GLipα with norm 1.

(i) For all i ∈ {1, 2, . . . , n}, t > 0 and x ∈ R
n,

(3.3) |∂xiPtf(x)| ≤ C tα−1.

(ii) For all t > 0 and x = (x1, 0, . . . , 0) ∈ R
n with x1 ≥ 0,

(3.4) |∂x1Ptf(x)| ≤ C tα−2 (1 + x1)
−1.

Proof. To prove (i), we use the semigroup property of the Poisson integral and
take derivatives, obtaining

∂xi∂tPs+tf(x) = ∂xi∂t

∫
Rn

Ps(x, y)Ptf(y) dy =

∫
Rn

∂xiPs(x, y) ∂tPtf(y) dy

for s, t > 0 and x ∈ R
n. Now let s = t, to get

1

2
∂xi∂tP2tf(x) =

∫
Rn

∂xiPt(x, y) ∂tPtf(y) dy .

By (3.1) and the definition of GLipα, this implies that for all t > 0,

(3.5) |∂xi∂tPtf(x)| � tα−2.

Since f is bounded, it follows from (3.1) that ∂xiPtf(x) → 0 as t → ∞. Thus

∂xiPtf(x) = −
∫ ∞

t

∂xi∂τPτf(x) dτ ,

and (i) is a consequence of this and the preceding inequality.
We prove (ii) by a similar argument, using now (3.2). The only difference is

that (3.5) is replaced by |∂x1∂tPtf(x)| � tα−3(1 + x1)
−1. �

Proof of Theorem 1.1. To prove that (i) implies (ii), we let f ∈ GLipα with norm 1
and verify (1.5), using Lemma 2.1. We start by modifying f on a null set. Since
f ∈ L∞(Rn) and {Pt}t>0 is a semigroup to which the Littlewood-Paley-Stein
theory applies (see Stein [7]), we know that Ptf(x) → f(x) as t → 0 for almost all
x ∈ R

n. For each t > 0 and all x ∈ R
n, one has

Ptf(x) = P1f(x)−
∫ 1

t

∂τPτf(x) dτ ,

and this integral has a limit as t → 0 for all x. We define f(x) as P1f(x) −∫ 1

0
∂τPτf(x) dτ for all x ∈ R

n.
Let x, y ∈ R

n. For any t > 0, one has

(3.6) |f(x)− f(y)| ≤ |f(x)− Ptf(x)|+ |Ptf(x)− Ptf(y)|+ |Ptf(y)− f(y)| .
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Writing the first difference to the right here as an integral and applying the defi-
nition of GLipα, we see that

|f(x)− Ptf(x)| =
∣∣∣ ∫ t

0

∂τPτf(x) dτ
∣∣∣ ≤ ∫ t

0

τα−1 dτ 	 tα.

The same applies to the third difference. For the second difference, Proposi-
tion 3.2 (i) yields that

|Ptf(x)− Ptf(y)| ≤ |x− y| sup
θ∈(0,1)

|∇Ptf(x+ θ(y − x))| � |x− y| tα−1.

Thus
|f(x)− f(y)| � tα + |x− y| tα−1.

Taking t = |x− y|, we get

(3.7) |f(x)− f(y)| � |x− y|α.

To complete the proof of (1.5), we first make a rotation so that x = (x1, 0, . . . , 0)
with x1 ≥ 0. Because of (3.7), it is then enough to show that for all y = (y1, y

′) ∈
R× R

n−1,

(3.8) |f(x)− f(y)| �
( |x1 − y1|

1 + x1

)α/2

+ |y′|α.

Notice that if |x| = x1 ≤ 2, then (3.8) follows directly from (3.7), since |f | is
bounded by 1. If x1 > 2 and |x1 − y1| ≥ x1/2, the right-hand side of (3.8) is
greater than a positive constant, so (3.8) follows again. It only remains to consider
the case x1 > 2 and |x1 − y1| < x1/2. For such x and y, we write

|f(x)− f(y)| ≤ |f(x)− f(y1, 0)|+ |f(y1, 0)− f(y)| ,

and (3.7) implies that |f(y1, 0) − f(y)| � |y′|α. To estimate |f(x) − f(y1, 0)|, we
apply (3.6) again and proceed as before, but now using (3.4) to estimate the x1

derivative. This gives that for any t > 0,

|f(x)− f(y1, 0)| � tα + |x1 − y1| tα−2 sup
θ∈(0,1)

|x1 + θ(y1 − x1)|−1.

Since |x1 − y1| < x1/2, the supremum here is no larger than 2x−1
1 . Letting t =√|x1 − y1|/x1, we obtain

|f(x)− f(y1, 0)| �
( |x1 − y1|

x1

)α/2

	
( |x1 − y1|

1 + x1

)α/2

,

so (3.8) follows, and (1.5) is verified.
We now prove that (ii) implies (i) in Theorem 1.1. Because of Lemma 2.1, we

can assume that (1.5) holds with K ′ ≤ 1; we must then verify (1.2). Using the
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fact that
∫
Rn ∂tPt(x, y) dy = 0 and Theorem 1.3, we can write

|t ∂tPtf(x)| =
∣∣∣ ∫

Rn

t ∂tPt(x, y) [f(y)− f(x)] dy
∣∣∣

�
4∑

i=1

∫
Rn

Ki(t, x, y) |f(y)− f(x)| dy .

Since the condition (1.5) implies that f ∈ Lipα(R
n), we have∫

Rn

K1(t, x, y) |f(y)− f(x)| dy �
∫
Rn

t

(t+ |x− y|)n+1
|x− y|α dy � tα.

From (1.5), we deduce that∫
Rn

K2(t, x, y) |f(y)− f(x)| dy

�
∫
Rn

t

|x|
(
t2 +

|x− yx|
|x| + |y′x|2

)−(n+2)/2[( |x− yx|
1 + |x|

)α/2

+ |y′x|α
]
dy

�
∫
Rn

t

|x|
(
t2 +

|x− yx|
|x| + |y′x|2

)−(n+2−α)/2

dy .

After a rotation of coordinates, we can treat the last integral like the one in (2.4);
only the exponent is different, and the resulting bound will be Ctα. Finally, Propo-
sition 2.3 implies that∫

Rn

[K3(t, x, y) +K4(t, x, y)] |f(y)− f(x)| dy

� ‖f‖L∞

∫
Rn

[K3(t, x, y) +K4(t, x, y)] dy � min{1, t} � tα.

We have verified (1.2). �

4. Proof of Theorems 1.2 and 1.3

Since Pt(x, y) and the Ki(t, x, y) are invariant under rotation, we only need to
consider x = (x1, 0 . . . , 0) with x1 ≥ 0 and write y = (y1, y

′) as before. Theorem 1.2
is a consequence of the slightly sharper result in Proposition 4.1 below.

A change of variables σ = 1− e−s in (1.1) leads to

(4.1) Pt(x, y) =
1

2π(n+1)/2

∫ 1

0

t

s(σ)3/2
e−

t2

4s(σ)
e
− |y−x+σx|2

1−e−2s(σ)

(1− e−2s(σ))n/2
es(σ) dσ ,

where s(σ) = log 1
1−σ . In the sequel, we will split the interval of integration into

various subintervals, and in each subinterval we use either s or σ as variable of
integration.

When 0 < y1 < x1, the quantity

|y − e−sx|2 = |y − x+ σx|2 = |y1 − x1 + σx1|2 + |y′|2
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has a minimum at the point

(4.2) σ0 :=
x1 − y1

x1
∈ (0, 1) ,

and
|y − e−sx|2 = (σ − σ0)

2x2
1 + |y′|2, 0 < s < +∞ .

This will be used repeatedly in what follows.

Proposition 4.1. Let t > 0, x = (x1, 0, . . . , 0) ∈ R
n with x1 ≥ 0 and y =

(y1, y
′) ∈ R× R

n−1.

(i) If y1 /∈ (0, x1), then

(4.3) Pt(x, y) ≤ C [K1(t, x, y) +K3(t, x, y)] .

(ii) If y1 ∈ [x1/2, x1), then

(4.4) Pt(x, y) ≤ C [K1(t, x, y) +K2(t, x, y) +K3(t, x, y)] .

(iii) If y1 ∈ (0, x1/2), then

(4.5) Pt(x, y) ≤ C [K1(t, x, y) +K3(t, x, y) +K4(t, x, y)] .

Proof. To prove (i), let y1 /∈ (0, x1). We split the integral in (4.1) into integrals
over (0, 1/2) and [1/2, 1), called J1 and J2.

For J1, noticing that σ ∈ (0, 1/2) is equivalent to s(σ) ∈ (0, log 2), we have
1− e−2s(σ) 	 s(σ) 	 σ and es(σ) 	 1. As a result,

J1 	
∫ 1/2

0

t

σ(n+3)/2
exp∗

(
− t2

σ

)
exp∗

(
− |y − x+ σx|2

σ

)
dσ.

It follows from y1 /∈ (0, x1) and σ < 1/2 that |y1−x1+σx1| � max{σx1, |x1−y1|},
and thus

(4.6) |y − x+ σx| � max{σ|x|, |x− y|}.
Notice that for σ ∈ (0, 1), one has

(4.7) exp∗
(
− t2

σ

)
� exp∗(−t2) � exp∗(−t) .

Combined with Lemma 2.2, this yields that

J1 � exp∗ (−t)

∫ 1/2

0

t

σ(n+3)/2
exp∗

(
− t2 + |y − x|2

σ

)
exp∗(−σ|x|2) dσ(4.8)

� t

(t2 + |y − x|2)(n+1)/2
exp∗(−t(1 + |x|)) 	 K1(t, x, y).

For J2 we use the variable s, getting

(4.9) J2 	
∫ ∞

log 2

t

s3/2
exp∗

(
− t2

s

)
exp∗(−|y − e−sx|2) ds .
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Since y1 /∈ (0, x1) and s ≥ log 2, one has |y − e−sx| 	 |y1 − e−sx1| + |y′| �
|y1|+ |y′| 	 |y| and hence

(4.10) exp∗(−|y − e−sx|2) � exp∗(−|y|2) .
Thus,

J2 � exp∗(−|y|2)
∫ ∞

log 2

t

s3/2
exp∗

(
− t2

s

)
ds

� min{1, t} exp∗(−|y|2) 	 K3(t, x, y) .

(4.11)

We have proved (4.3) and (i).

Next, we assume y1 ∈ [x1/2, x1) and prove (ii). With σ0 given by (4.2) and now
satisfying 0 < σ0 ≤ 1/2, we split the integral in (4.1) into integrals over the three
intervals (0, 3

4σ0), [
3
4σ0,

5
4σ0] and (54σ0, 1), denoted J1,1, J1,2 and J1,3, respectively.

In J1,1 we have 1− e−2s(σ) 	 s(σ) 	 σ and e2s(σ) 	 1, and also

|y − x+ σx|2 = (σ − σ0)
2x2

1 + |y′|2 	 σ2
0x

2
1 + |y′|2 = |x− y|2.

We get

(4.12) J1,1 	
∫ 3σ0/4

0

t

σ(n+3)/2
exp∗

(
− t2

σ

)
exp∗

(
− |x− y|2

σ

)
dσ .

Since |x − y| � σ0x1 ≥ σx1, the last exp∗ expression here allows us to introduce
also a factor exp∗(−σ|x|2) in the integrand. Because of (4.7), we can argue as
in (4.8) to get J1,1 � K1(t, x, y).

In the integral J1,2, we have 3
4σ0 ≤ σ ≤ 5

4σ0 ≤ 5
8 and so 1 − e−2s(σ) 	 s(σ) 	

σ 	 σ0 and es(σ) 	 1. Thus,

J1,2 	
∫ 5

4σ0

3
4σ0

t

σ
(n+3)/2
0

exp∗
(
− t2

σ0

)
exp∗

(
− (σ − σ0)

2x2
1 + |y′|2

σ0

)
dσ

	 t
( x1

x1−y1

)(n+3)/2

exp∗
(
− (t2+|y′|2)x1

x1 − y1

)∫ 5
4σ0

3
4σ0

exp∗
(
− x3

1(σ−σ0)
2

x1 − y1

)
dσ,(4.13)

where we inserted the expression (4.2) for σ0. The last integral, even extended to
the whole line, is O(((x1 − y1)/x

3
1)

1/2). The exp∗ expression preceding it is now
estimated by a product of two factors. This leads to

J1,2 � t
( x1

x1 − y1

)(n+3)/2

min
{
1,

( (t2 + |y′|2)x1

x1 − y1

)−(n+2)/2}

× exp∗
(
− (t2 + |y′|2)x1

x1 − y1

)(x1 − y1
x3
1

)1/2

	K2(t, x, y)

for x1 = |x| ≥ 1.



1202 L. Liu and P. Sjögren

The last integral in (4.13) is also O(σ0) = O((x1−y1)/x1), and we get similarly

J1,2 � t
( x1

x1 − y1

)(n+1)/2

min
{
1,

((t2 + |y′|2)x1

x1 − y1

)−(n+1)/2}
exp∗

(
− t2x1

x1 − y1

)
� t min

{( x1

x1 − y1

)(n+1)/2

,
1

(t2 + |y′|2)(n+1)/2

}
exp∗(−t2),(4.14)

where we estimated the exp∗ factor by means of the inequality x1/(x1 − y1) > 1.
For x1 < 1, one has x1 − y1 < 1 and so (x1/(x1 − y1))

(n+1)/2 ≤ (x1 − y1)
−(n+1),

and also exp∗(−t2) � exp∗(−t(1 + |x|)). As a result, J1,2 � K1(t, x, y).

To treat J1,3, we split it into integrals over the intersection of ( 54σ0, 1) with each

of the intervals (0, 1/2] and (1/2, 1), and denote these by J
(1)
1,3 and J

(2)
1,3 , respectively.

For J
(1)
1,3 , we may assume that 5

4σ0 < 1
2 ; otherwise J

(1)
1,3 = 0. Since here σ ∈

(54σ0,
1
2 ], we again have 1−e−2s(σ) 	 s(σ) 	 σ and es(σ) 	 1. Further, (σ−σ0)x1 	

σx1 ≥ σ0x1 = x1 − y1. Thus (σ− σ0)x1 	 max{σx1, x1 − y1}, which implies (4.6),

and the argument of (4.8) leads to J
(1)
1,3 � K1(t, x, y).

Next, we estimate J
(2)
1,3 . For max{ 5

4σ0,
1
2} < σ < 1, we have |σ−σ0|x1 	 σx1 	

x1 	 y1 and so |y − x + σx|2 � |y|2. This means that (4.10) holds and, arguing

as in (4.11), we conclude that J
(2)
1,3 � K3(t, x, y). Altogether, we obtain (4.4) and

hence (ii).

Finally, we consider (iii), where y1 ∈ (0, x1/2) and σ0 ∈ (1/2, 1). We split the
integral in (4.1) into integrals over the intervals (0, σ0 − y1

4x1
), [σ0 − y1

4x1
, σ0 +

y1

4x1
]

and (σ0+
y1

4x1
, 1), and denote them by J2,1, J2,2 and J2,3, respectively. Notice that

0 < σ0 − y1

4x1
< σ0 +

y1

4x1
< 1.

For J2,1, we observe that σ < σ0− y1

4x1
corresponds to s = s(σ) < log x1

y1
− log 5

4 .

For such s and σ, one has e−s > 5y1

4x1
and |y − x+ σx| = |y− e−sx| 	 e−sx1 + |y′|.

With s as variable of integration, we have

J2,1 	
∫ log

x1
y1

−log 5
4

0

t

s3/2
exp∗

(
− t2

s

) exp∗
(
− e−2sx2

1+|y′|2
1−e−2s

)
(1− e−2s)n/2

ds .

Splitting the interval of integration here by intersecting it with (0, log 2] and

(log 2,∞), we obtain two integrals denoted J
(1)
2,1 and J

(2)
2,1 . For 0 < s ≤ log 2,

one has 1 − e−2s 	 s 	 σ and e−sx1 	 x1 	 x1 − y1. This implies (4.6) and,

arguing as before, we obtain J
(1)
2,1 � K1(t, x, y).

If log 2 < s < log x1

y1
− log 5

4 , then 1 − e−s 	 1 and e−sx1 � y1, which im-

plies (4.10) and then also J
(2)
2,1 �K3, as before. We have proved that J2,1�K1+K3.

For J2,2, we integrate in s, getting

J2,2 	
∫ log

x1
y1

+log 4
3

log
x1
y1

−log 5
4

t

s3/2
exp∗

(
− t2

s

) exp
(
− |y−e−sx|2

1−e−2s

)
(1− e−2s)n/2

ds .
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Since now x1 > 2y1, we see that log x1

y1
− log 5

4 � 1, which implies that s 	 log x1

y1

and 1 − e−2s 	 1 in this integral. Let τ = log x1

y1
− s, so that − log 4

3 ≤ τ ≤ log 5
4

and

|y − e−sx| 	 |y1 − e−sx1|+ |y′| = |(1 − eτ )y1|+ |y′| 	 |τ |y1 + |y′|.
It follows that

J2,2 	 t

(log x1

y1
)3/2

exp∗
(
− t2

log x1

y1

)
exp∗ (−|y′|2)

∫ log 5
4

− log 4
3

exp∗ (−τ2y21) dτ

� t

(log x1

y1
)3/2

exp∗
(
− t2

log x1

y1

)
exp∗ (−|y′|2) 1

y1
	 K4(t, x, y)(4.15)

when y1 > 1. If y1 ∈ (0, 1], we control the integral in (4.15) by 1 and obtain

J2,2 	 t

(log x1

y1
)3/2

exp∗
(
− t2

log x1

y1

)
exp∗ (−|y′|2)

� min{1, t} exp∗(−|y′|2) 	 K3(t, x, y).(4.16)

In J2,3, we have s > log x1

y1
+ log 4

3 > log 2 and thus y1 − e−sx1 	 y1, which

once more leads to (4.10) and J2,3 � K3.

Summing up, we obtain (4.5) and (iii). �

Proof of Theorem 1.3. By differentiating with respect to t in (1.1), we have

t ∂tPt(x, y) =
1

2π(n+1)/2

∫ ∞

0

t

s3/2
e−

t2

4s

(
1− t2

2s

) e
− |y−e−sx|2

1−e−2s

(1− e−2s)n/2
ds.

This expression is similar to that in (1.1), only with an extra factor 1 − t2/2s.
Since ∣∣∣1− t2

2s

∣∣∣e− t2

4s � exp∗
(
− t2

s

)
,

we see that all our estimates for Pt in Proposition 4.1 remain valid for |t∂tPt|.
For i ∈ {1, 2, . . . , n}, we have

t ∂xiPt(x, y) =
1

π(n+1)/2

∫ ∞

0

t

s3/2
e−

t2

4s
te−s(yi − e−sxi)

1− e−2s

e
− |y−e−sx|2

1−e−2s

(1− e−2s)n/2
ds.

Compared with (1.1), the integrand here has an extra factor

te−s(yi − e−sxi)

1− e−2s
=

t√
s

√
s e−s

√
1− e−2s

yi − e−sxi√
1− e−2s

.

Since the middle factor to the right here is bounded, we can suppress the extra
factor if we replace

e−
t2

4s e
− |y−e−sx|2

1−e−2s by exp∗
(
− t2

s

)
exp∗

(
− |y − e−sx|2

1− e−2s

)
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in the integral. Thus

|t∂xiPt(x, y)| �
∫ ∞

0

t

s3/2
exp∗

(
− t2

s

) exp∗(− |y−e−sx|2
1−e−2s )

(1− e−2s)n/2
ds,

so the estimates for Pt are valid also for |t∂xiPt|. �

5. Proof of Theorem 1.4

Notice that

(5.1) ∂x1Pt(x, y) =
1

π(n+1)/2

∫ ∞

0

t e−
t2

4s

s3/2
e−s

√
1− e−2s

y1 − e−sx1√
1− e−2s

e
− |y−e−sx|2

1−e−2s

(1− e−2s)n/2
ds .

We consider the same cases (i), (ii) (iii) as in Proposition 4.1, and exactly as in the
proof of that proposition, we split the integral into parts by splitting the interval of

integration. The parts will again be denoted by J1, J2, J
(1)
2,1 , etc. For all these parts

except J1,2 and J2,2, we follow closely the arguments in Section 4; in particular we
often use σ = 1− e−s instead of s.

Since
|y − e−sx|√
1− e−2s

e
− |y−e−sx|2

1−e−2s � exp∗
(
− |y − e−sx|2

1− e−2s

)
,

the absolute value of the integrand in (5.1) is controlled by

t e−
t2

4s

s3/2
e−s

√
1− e−2s

exp∗
(
− |y−e−sx|2

1−e−2s

)
(1− e−2s)n/2

.

Switching to integration with respect to σ, we get instead, since dσ = e−sds,

t e−
t2

4s

s3/2
1√

1− e−2s

exp∗
(
− |y−x+σx|2

1−e−2s

)
(1− e−2s)n/2

,

where s = s(σ) = log(1/(1− σ)). Compared with the integral treated in the proof
of Proposition 4.1, we now have an extra factor which for s < log 2, i.e., σ < 1/2,
is controlled by s−1/2 	 σ−1/2, and for s > log 2 by e−s.

For the integrals J1, J1,1, J
(1)
1,3 and J

(1)
2,1 , we integrate in σ and argue as in

Section 4. Because of the extra factor σ−1/2, the exponent (n+ 3)/2 of σ in (5.1)
will now be (n+4)/2 in the analogous estimates. As a result, the bound obtained
will be Z1(t, x, y) instead of K1(t, x, y).

For J2, J
(2)
1,3 and J

(2)
2,1 and J2,3, we use s as variable of integration. Arguments

similar to those in Section 4 show that the integrand is now dominated by

t

s3/2
e−

t2

4s e−s exp∗(−|y1 − e−sx1|2) exp∗(−|y|2).



Characterization of the Gaussian Lipschitz space 1205

The interval of integration is (log 2,+∞) or a subset of it. Since

t

s3/2
exp∗

(
− t2

s

)
� min{t, t−2},

the integrals considered are controlled by

min{t, t−2} exp∗(−|y|2)
∫ ∞

log 2

e−s exp∗(−|y1 − e−sx1|2) ds

� min{t, t−2} exp∗(−|y|2) min
{
1,

1

x1

}
� Z3(t, x, y) .

It remains to estimate J1,2 and J2,2, in which y1 is as in (ii) and (iii) of Propo-
sition 4.1, respectively.

For J1,2, we thus assume y1 ∈ [x1/2, x1). When 0 ≤ x1 ≤ 1, we can estimate
|J1,2| as in (4.14). But now the four exponents (n + 1)/2 will be replaced by
(n+2)/2, and in the next step, we estimate (x1/(x1−y1))

(n+2)/2 by (x1−y1)
−(n+2).

The result will be |J1,2| � Z1(t, x, y).
When x1 > 1, we shall estimate

J1,2 = C

∫
|σ−σ0|≤ 1

4σ0

t

s(σ)3/2
exp

(
− t2

4s(σ)

) (σ − σ0)x1

1− e−2s(σ)

e
− |σ−σ0|2|x|2+|y′|2

1−e−2s(σ)

(1− e−2s(σ))n/2
dσ.

Here σ0 ≤ 1/2, and s(σ) 	 σ ≤ 5/8 in the integral. Let us make a change of
variable u = (σ − σ0)x1. Then σ = σ(u) = σ0 + u/x1, and we write s(u) for
s(σ(u)) so that

(5.2) s(u) = log
1

1− σ(u)
= log

1

1− σ0 − u/x1
= log

x1

y1 − u
.

Thus

J1,2 =
C

x1

∫
|u|≤x1−y1

4

t

s(u)3/2
exp

(
− t2

4s(u)

) u

1− e−2s(u)

e
− u2+|y′|2

1−e−2s(u)

(1− e−2s(u))n/2
du

=
C

x1

∫
|u|≤x1−y1

4

uF (s(u), u) du,

where for τ ∈ (0,∞) and w ∈ R,

F (τ, w) =
t

τ3/2[1− e−2τ ](n+2)/2
exp

(
− t2

4τ

)
exp

(
− w2 + |y′|2

1− e−2τ

)
.

Notice that F (·, w) = F (·,−w) for w ∈ R. We can write

(5.3) J1,2 =
C

x1

∫ x1−y1
4

0

u [F (s(u), u)− F (s(−u), u)] du,
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and here

(5.4) |F (s(u), u)− F (s(−u), u)| ≤ |s(u)− s(−u)| sup
s(−u)<τ<s(u)

|∂τF (τ, u)| .

From (5.2) and the mean value theorem, we deduce that for 0 < u ≤ (x1 − y1)/4,

(5.5) |s(u)− s(−u)| ≤ 2u sup
−u<v<u

1

y1 − v
.

With s(−u) < τ < s(u), we have

∂τF (τ, u) = F (τ, u)
[
− 3

2τ
− (n+ 2)e−2τ

1− e−2τ
+

t2

4τ2
+

2(u2 + |y′|2)e−2τ

(1− e−2τ )2

]
.

Here (n+ 2)e−2τ/(1−e−2τ) � τ−1, and t2

4τ2 exp
(− t2

4τ

)
� τ−1 exp∗

(− t2

τ

)
. Further,

(u2 + |y′|2)e−2τ

(1− e−2τ )2
exp

(
− u2 + |y′|2

1− e−2τ

)
� e−2τ

1− e−2τ
exp∗

(
− u2 + |y′|2

1− e−2τ

)

� 1

τ
exp∗

(
− u2 + |y′|2

1− e−2τ

)
,

and so

(5.6) |∂τF (τ, u)| � t

τ5/2[1− e−2τ ](n+2)/2
exp∗

(
− t2

τ

)
exp∗

(
− u2 + |y′|2

1− e−2τ

)
.

Recall that x1/2 ≤ y1 < x1. In (5.5) we have |v| < u ≤ (x1 − y1)/4 < y1/2 so
that y1 − v 	 y1 	 x1, and we conclude that

|s(u)− s(−u)| � u

x1
.

Since all occurring values of s(±u) and τ satisfy s(±u) 	 τ 	 σ0, (5.6) implies

sup
s(−u)<τ<s(u)

|∂τF (τ, u)| � t

σ
(n+7)/2
0

exp∗
(
− t2

σ0

)
exp∗

(
− u2 + |y′|2

σ0

)
.

Inserting the last two estimates in (5.4), we obtain

|F (s(u), u)− F (s(−u), u)| � u

x1

t

σ
(n+7)/2
0

exp∗
(
− t2

σ0

)
exp∗

(
− u2 + |y′|2

σ0

)
,

which combined with (5.3) implies that

|J1,2| � t

x2
1 σ

(n+7)/2
0

exp∗
(
− t2

σ0

) ∫ x1−y1
4

0

u2 exp∗
(
− u2 + |y′|2

σ0

)
du

� t

x2
1

1

σ
(n+4)/2
0

exp∗
(
− t2 + |y′|2

σ0

)

� t

x2
1

1

σ
(n+4)/2
0

min
{
1,
( σ0

t2 + |y′|2
)(n+4)/2}

exp∗
(
− t2 + |y′|2

σ0

)
.

Since σ0 = (x1 − y1)/x1, we see that the last expression amounts to Z2(t, x, y).
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We shall finally estimate J2,2, in which y1 ∈ (0, x1/2). When 0 < y1 ≤ 1,
we have an upper estimate for |J2,2| like (4.16), but now with an extra factor
exp(− log x1

y1
) � (1 + x1)

−1 coming from e−s; recall that |s− x1

y1
| � 1. Thus

|J2,2| � t

(log x1

y1
)3/2

exp∗
(
− t2

log x1

y1

) 1

1 + x1
exp∗ (−|y′|2).

The first exp∗ factor here is controlled by

min
{
1,
( t2

log(x1/y1)

)−3/2}
.

Since log x1

y1
�1, this is seen to lead to |J2,2| � Z3(t, x, y).

When y1 > 1, we estimate J2,2 by modifying the preceding argument for J1,2.
Instead of (5.3), we get now

(5.7) J2,2 =
C

x1

∫ y1/4

0

u [F (s(u), u)− F (s(−u), u)] du ,

and we still have (5.2), (5.4), (5.5) and (5.6). Since now 0 ≤ u ≤ y1/4 in (5.5), it
follows that y1 − v 	 y1 for any |v| < u, and thus

|s(u)− s(−u)| � u

y1
.

In the estimate for J2,2 in Section 4, we saw that s 	 log x1

y1
, which now means

that s(u) 	 s(−u) 	 log x1

y1
, and log x1

y1
> log 2. In (5.6), we thus have τ 	 log x1

y1

so that 1− e−2τ 	 1, which implies that

sup
s(−u)<τ<s(u)

|∂τF (τ, u)| � t
(
log

x1

y1

)−5/2

exp∗
(
− t2

log x1

y1

)
exp∗(−u2 − |y′|2).

Inserting the last two estimate in (5.4), we see that

|F (s(u), u)−F (s(−u), u)|

� t u

y1

(
log

x1

y1

)−5/2

exp∗
(
− t2

log x1

y1

)
exp∗

(−u2 − |y′|2) ,
which combined with (5.7) implies that

|J2,2| � t

x1 y1

(
log

x1

y1

)−5/2

exp∗
(
− t2

log x1

y1

)
exp∗

(−|y′|2) ∫ y1
4

0

u2 exp∗
(−u2

)
du

� t

x1 y1

(
log

x1

y1

)−5/2

exp∗
(
− t2

log x1

y1

)
exp∗

(−|y′|2) 	 Z4(t, x, y) .

Theorem 1.4 is proved. �
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6. Sharpness arguments

We let Kj(t, x, y), j = 1, 2, 3, 4, be as in Theorem 1.2. Let R+ = (0,∞).

Theorem 6.1. (a) The estimate Pt(x, y) 	 K1(t, x, y) holds uniformly in the set

E1 =
{
(t, x, y) ∈ R+ × R

n × R
n :

|x| > 1, x · y > 0, t2|x| < |x| − |yx| < 1

4|x| , |y′x| < |x| − |yx|
}
.

Similarly, Pt(x, y) 	 K2(t, x, y) uniformly in

E2 =
{
(t, x, y) ∈ R+ × R

n × R
n : |x| > 1, x · y > 0,

t|x| > 1, t2|x| < |x| − |yx| < |x|/4, |y′x| <
√
(|x| − |yx|)/|x|

}
,

and Pt(x, y) 	 K3(t, x, y) uniformly in

E3 =
{
(t, x, y) ∈ R+ × R

n × R
n : t > 1, |x| < 1, |y| < 1

}
.

Finally, Pt(x, y) 	 K4(t, x, y) uniformly in

E4 =
{
(t, x, y) ∈ R+ × R

n × R
n : |x| > e16,

t =
√
log |x|/2, |x|2/3 ≤ |yx| ≤ |x|3/4, |y′x| < 1

}
.

(b) In the estimate in Theorem 1.2, none of the terms Ki(t, x, y), i = 1, 2, 3, 4,
can be suppressed.

Proof. To prove (a), we only need to consider x = (x1, 0, . . . , 0) with x1 ≥ 0 and
write y = (y1, y

′). We shall use several estimates from the proof of Proposition 4.1.
Observe that points of E1 and E2 belong to (ii) of Proposition 4.1 and satisfy
t < 1/2.

Assume (t, x, y) ∈ E1. Then

x1 > 1, t2x1 < x1 − y1 < x−1
1 /4 and |y′| < x1 − y1.

Transforming variables in the integral in (4.12), we get

J1,1 	 t

(t2 + |x− y|2)(n+1)/2

∫ B

0

1

u(n+3)/2
exp∗

(
− 1

u

)
du ,

with B = 3(x1 − y1)/(4x1(t
2 + |x − y|2)). One easily verifies that B−1 � 1, so

that the value of the integral here stays away from 0. Since also t(1 + |x|) � 1, it
follows that J1,1 	 t/(t2 + |x− y|2)(n+1)/2 	 K1(t, x, y). Consequently, Pt(x, y) �
K1(t, x, y) in E1.

To obtain the converse inequality, we notice that Proposition 4.1(ii) applies, and
its proof shows that Pt(x, y) � J1,1 + J1,2 + J1,3 � K1(t, x, y) + J1,2 +K3(t, x, y).



Characterization of the Gaussian Lipschitz space 1209

The inequalities (4.14) now imply that J1,2 � K1(t, x, y), since x1/(x1 − y1) <
(x1 − y1)

−2 in E1. Further,

K3(t, x, y) 	 t exp∗ (−|y|2) � t exp∗ (−|x|2) � K1(t, x, y).

We conclude that Pt(x, y) 	 K1(t, x, y) in E1.
Now assume (t, x, y) ∈ E2 so that

x1 > 1, tx1 > 1, t2x1 < x1 − y1 < x1/4 and |y′| <
√
(x1 − y1)/x1 .

Then K2(t, x, y) 	 tx
n/2
1 (x1 − y1)

−(n+2)/2. Since x1(x1 − y1) > t2x2
1 > 1, a

simple scaling shows that the second integral in (4.13) has order of magnitude
((x1 − y1)/x

3
1)

1/2. The exp∗ factor preceding it is essentially 1, and we conclude
that

J1,2 	 t
( x1

x1 − y1

)(n+3)/2(x1 − y1
x3
1

)1/2

	 K2(t, x, y).

Thus Pt(x, y) � K2(t, x, y). In E2 one also has K1(t, x, y) � t/(x1 − y1)
n+1 and

K3(t, x, y) � t exp∗ (−x2
1), and these quantities are controlled byK2(t, x, y). Propo-

sition 4.1(ii) then shows that Pt(x, y) � K2(t, x, y). Thus Pt(x, y) 	 K2(t, x, y)
in E2.

Assume next that (t, x, y) ∈ E3 so that K3(t, x, y) 	 1. Now (4.11) is sharp
and leads to J2 	 1 	 K3. Also, K2(t, x, y) = K4(t, x, y) = 0, and K1(t, x, y) �
t−n � 1. It follows that Pt(x, y) 	 K3(t, x, y) in E3.

Finally let (t, x, y) ∈ E4. Then the estimate (4.15) is sharp since y1 > 1, and

so J2,2 	 K4(t, x, y). Further, one verifies that K4(t, x, y) � x
−3/4
1 (log x1)

−1 and
also that K1(t, x, y) and K3(t, x, y) are controlled by exp∗ (−x1) � K4(t, x, y). It
now follows from Proposition 4.1(iii) that Pt(x, y) 	 K4(t, x, y) in E4.

This completes the arguments for (a).

We prove (b) by finding for each ε > 0 and i = 1, 2, 3, 4 a nonempty subset Ẽi

of Ei in which Kj < εPt for j �= i. In the proof below, we fix ε and denote by Cε

various large positive constants which may depend on ε.
Let

Ẽ1 =
{
(t, x, y) ∈ E1 : |x| > Cε, t =

1

|x|2 ,
1

|x|2 < |x| − |yx| < 2

|x|2
}
.

In this set, Pt(t, x, y) 	 K1(t, x, y) 	 |x|2n but also K2(t, x, y) 	 |x|3n/2 and
K3(t, x, y) � 1, whereas K4(t, x, y) vanishes. A suitable choice of Cε yields the
desired inequalities.

In a similar way, we define

Ẽ2 =
{
(t, x, y) ∈ E2 : |x| > Cε, t = |x|−1/2, 1 < |x| − |yx| < 2

}
,

and it is enough to observe that in this set Pt(t, x, y) 	 K2(t, x, y) 	 |x|(n−1)/2,
but K1(t, x, y) � exp∗ (−|x|1/2) and K3(t, x, y) � exp∗ (−|x|2) and K4(t, x, y) = 0.
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The next set is
Ẽ3 = {(t, x, y) ∈ E3 : t > Cε} ,

in which Pt(t, x, y) 	 K3(t, x, y) 	 1 but K1(t, x, y) � t−n and K2(t, x, y) =
K4(t, x, y) = 0.

Finally,
Ẽ4 = {(t, x, y) ∈ E4 : |x| > Cε}.

To compare the kernels Ki(t, x, y) on this set, it is enough to consider the last part
of the proof of (a).

This ends the proof of (b) and that of the theorem. �
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