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On Lp-improving measures

Anthony H. Dooley, Kathryn E. Hare and Maria Roginskaya

Abstract. We give criteria for establishing that a measure is Lp-improving.
Many Riesz product measures and Cantor measures satisfy this criteria,
as well as certain Markov measures.

1. Introduction

A measure μ on a compact abelian group G is said to be Lp-improving if there
are real numbers q > p such that μ acts by convolution as a bounded operator
from Lp(G) to Lq(G). Since every measure acts as a bounded operator from L1

to L1 and from L∞ to L∞, it follows by an interpolation argument that if μ is
Lp-improving, then for every 1 < p < ∞ there is some q > p such that μ maps Lp

to Lq boundedly.
While it is clear that Haar measure and, more generally, any absolutely con-

tinuous measure with a Radon–Nikodym derivative in L1+ε, for some ε > 0, is
Lp-improving, a number of studies have displayed singular measures that are also
Lp-improving. For instance, Stein in [11] noted that any measure on the circle
group satisfying |μ̂(n)| = O(|n|−ε

) for some ε > 0 has this property. More inter-
estingly, there are measures whose Fourier transforms do not tend to zero that also
have this property. Bonami [2] and Ritter [9], for example, showed that most Riesz
product measures have the Lp-improving property. Using a seemingly different ap-
proach, Christ [3], extending work of [1] and [8], proved that Cantor measures on
Cantor sets with ratios of dissection bounded away from zero are Lp-improving.

In [7], one of the authors characterized Lp-improving measures in terms of the
‘size’ of the level sets of the Fourier transform, where size was quantified by the
concept of Λ(p) sets. With this characterization it is easy to see that Stein’s exam-
ple and Ritter and Bonami’s Riesz product measures are Lp-improving. It is more
difficult to apply this characterization to study Cantor measures. Our objective
here is to understand the commonality between these examples of Lp-improving
measures. The approach we derive was heavily influenced by Bonami’s work. It
compliments that of [7], replacing Λ(p) sets by more flexible notions.
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All the above mentioned papers have an important combinatorial component, in
addition to analytic estimates. The analytic techniques are based on the structure
of certain orthogonal subspaces of L2(G). The purpose of this paper is to encapsu-
late this structure in a common framework and demonstrate that the Lp-improving
property holds whenever this framework is in place.

Here we show that the Lp-improving properties of many Riesz product measures
and Cantor measures are special cases of a single theorem. Indeed, with our
methods we can obtain the full range of Christ’s results for Cantor measures. In
the case of Riesz product measures, our hypotheses are more restrictive than those
imposed by Ritter and, unlike Bonami, we do not obtain the sharp choices of p, q.

From the same theorem we also deduce the new result that certain Markov
measures on infinite product spaces are Lp-improving. These generalizations of
product measures were studied in [4] and [5], and are of interest as all G-measures
are equivalent to Markov measures.

The structural combinatorial framework is outlined in section 2. In section 3 we
prove the needed analytic estimates, and in section 4 see how these apply to Riesz
product measures, Cantor measures and Markov measures with suitable properties.

2. Structural framework

We begin by introducing terminology that will be used throughout.

2.1. Index set

By an index set, I, we will mean a collection of indices with the following properties:

1) The indices are partitioned into a disjoint collection of subsets of I called
categories. We will write C(α) for the category containing the index α ∈ I.

2) There is a map g : I → {0, 1, 2, . . .} called the generation map.

3) Associated to each α ∈ I is a subset R(α) ⊆ I, known as its set of roots. If
g(α) = 0, then R(α) is empty. Otherwise, if β ∈ R(α), then g(β) < g(α). We
require that two members of the same category have no roots in common,
i.e., if C(α) = C(β), then R(α) ∩ R(β) is empty. Furthermore, at most one
member of each category has no roots. In particular, at most one member
of each category can be of generation zero.

Example 2.1. An important example is what we will call the 0-1 index set. This
index set I will consist of the infinite sequences α = (α(j))∞j=1, with α(j) = 0, 1,
and only finitely many α(j) = 1. The generation of such a sequence α will be
the number coordinates equal to 1, i.e., g(α) =

∑
j α(j). In particular, g(α) = 0

if and only if α is the sequence of all 0’s. The categories can be labelled by the
non-negative integers, with category Ck consisting of the set of sequences whose
last 1 is in coordinate k; C0 consisting of the sequence of all 0’s. If α ∈ Ck with
k �= 0, then R(α) will be the (unique) sequence whose coordinates all agree with
those of α, except for coordinate k. Obviously, if β ∈ R(α), then g(β) = g(α)− 1.
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Example 2.2. A second example we call the triadic index set. In this case, the
index set will consist of the set of triadic intervals in Z, meaning the intervals of
the form α = [m3k, (m+1)3k)∩Z where m, k ∈ Z, k ≥ 0. The generation of this α
is k. The roots of α = [m3k, (m + 1)3k) ∩ Z are the three triadic subintervals of
generation k − 1 contained in α. The categories are singletons.

2.2. Orthogonality properties

Suppose that G is a compact abelian group. By Lp(G) we will mean the usual Lp

spaces with respect to the normalized Haar measure on G.
Assume we have an index set I, as above, and a family of closed, translation

invariant subspaces Bα ⊆ L2(G), α ∈ I. We will say that Λ ⊆ I satisfies the 4-
orthogonality condition 1 if whenever α1, . . . , α4 ∈ Λ, the pairs (g(αj), C(αj)) are
pairwise disjoint and fj ∈ Bαj , then∫

f1 f2 f3 f4 = 0.

Suppose there is some integer N such that Λ ⊆ {α ∈ I : g(α) ≤ N}. We will

say that Λ satisfies the strong orthogonality condition of order J if Λ =
⋃J

j=1 Λj ,
where: (i) each set Λj satisfies the 4-orthogonality condition; (ii) for each j, the
subspaces Bα, α ∈ Λj, are mutually orthogonal in L2(G); (iii) for each category C

and non-negative integer n ≤ N , let ΛC,n
j be the set of all α ∈ Λj belonging to the

category C and of generation n. Then the set⋃
α∈ΛC,n

j

R(α)

satisfies the strong orthogonality condition of order J .
When N = 0, Λ satisfies the strong orthogonality condition of order J if con-

ditions (i) and (ii) are met. This is the base case for the inductive definition since
roots are of strictly lower generation.

We remark that if Λ satisfies the strong orthogonality condition of order J , so
does any subset of Λ.

Here is an example. The notation T denotes the circle group, [0, 1].

Lemma 2.3. Let {nj}∞j=1 be a lacunary sequence of integers with inf nj+1/nj ≥ 3.
Let I be the 0-1 index set. For α = (α(j))∞j=1 ∈ I, let

Bα = span
{
exp 2πix

∑
j

εjnjα(j) : εj = ±1
}
⊆ L2(T).

For any N ≥ 0, the set ΛN = {α ∈ I : g(α) = N} satisfies the strong orthogonality
condition of order 2.

Proof. The lacunarity condition ensures that
∑

j εjnjα(j) =
∑

j ε
′
jnjα

′(j) with
εj , ε

′
j = ±1 only if α(j) = α′(j) for all j, that is, α = α′. Thus the spaces Bα are

orthogonal.

1We could speak more generally speak about the 2q-orthogonality condition, but ‘4’ will suffice
for our application.
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Decompose ΛN as Λe
N ∪Λo

N , where Λe
N consists of the sequences which belong

to a category labelled by an even integer and Λo
N consists of those in categories

labelled by an odd integer.
If α1, . . . , α4 ∈ Λe

N and the tuples (g(αi), C(αi)) are pairwise disjoint, then
since g(αi) = N for all αi, the numbers hi = C(αi) must be distinct even integers.
Without loss of generality, assume h1 = max(h1, h2, h3, h4). Let αi = (αi(j))j .
The fact that nj+1/nj ≥ 3 again implies that for any choice of εi,j = ±1,∣∣∣∑

i,j

εi,jnjαi(j)
∣∣∣ > nh1 − 3

∑
j<h1−1

nj >
1

2
nh1 > 0.

This shows that if fj ∈ Bαj , then the 0’th Fourier coefficient of f1f2f3f4 equals 0

and therefore
∫
f1f2f3f4 = 0. A similar statement holds for Λo

N .
As Λ0 satisfies the strong orthogonality condition of order 2, and the roots of

any α∈ΛN with N > 0 are of generationN−1, the lemma follows by induction. �

2.3. Factoring map

Our main technical result, Lemma 3.3, will be proven by an induction argument
(on the generations). One step in doing this is to have a procedure to replace
convolution on one generation, with a sum of convolutions on an earlier generation.
This is the purpose of the associated factoring map, that we introduce next.

Given an index set I and subspaces Bα ⊆ L2(G) for α ∈ I, we choose functions
φα ∈ Bα for each α ∈ I. By an associated factoring map we mean a family of pairs
of linear operators, {TC = (UC

j , V C
j )Nj=1}C , UC

j : L4 → L4, V C
j : L2 → L2, such

that for each index α in category C and for any f ∈ L2,

(2.1) f ∗ φα =

N∑
j=1

UC
j

(
V C
j (f) ∗

∑
β∈R(α)

φβ

)
,

where the sum over the empty set is 1. (Note the choice of N can vary with C.) By

the norm of the factoring map {TC}C we will mean supC
∑N

j=1 ‖UC
j ‖4,4‖V C

j ‖2,2,
where ‖ · ‖p,p denotes the operator norm as a map from Lp to Lp. (We use ‘norm’
only as suggestive terminology and will not be concerned with whether or not this
is truly a norm.)

We remark that the choice of functions in a particular application will depend
on the measure we are studying.

Example 2.4. Assume nj+1/nj ≥ 3. Choose the 0-1 index set and the sets Bα

as defined in Lemma 2.3. For α = (α(j))j ∈ I, take

φα =

∞∏
j=1

(cos 2πnjx)
α(j)

.

Define TCh = (UCh

j , V Ch

j )j=1,2, where UCh
1 , UCh

2 are multiplication by (1/2)e2πihx

and (1/2)e−2πihx respectively, and V Ch
1 , V Ch

2 are multiplication by e±2πihx. This
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is an associated factoring map and its norm is 1. It will be important in the Riesz
product example of section 4.

Example 2.5. Let I denote the triadic index set. For α ∈ I, let Bα = {f : suppf̂
⊆ α} and let φα be the L2 function whose Fourier transform is 1 on α and 0
otherwise. For all categories C, take N = 1 and UC

1 = V C
1 = Id. When g(α) > 0,⋃

β∈R(α) β = α, thus U1(V1(f) ∗
∑

β∈R(α) φβ) = f ∗φα. The norm of this factoring
map is also 1.

3. Analytic estimates

3.1. A variation on the Λ(p) set concept

Let p > 2. A subset E of Ĝ, the dual group of G, is called a Λ(p) set if there

is a constant K such that ‖f‖p ≤ K ‖f‖2 whenever suppf̂ ⊆ E. The infimum of
such constants is called the Λ(p) constant of E. In [7] it was shown that μ is an

Lp-improving measure if and only if the sets {γ ∈ Ĝ : |μ̂(γ)| > ε} are Λ(p) sets for
all p > 2 and the Λ(p) constants have a suitable growth rate in terms of ε and p.

It is known ([10], [6]) that if E = {nj} ⊆ Z and∫
T

exp 2πix(na + nb − nc − nd) dx = 0

whenever na, nb,nc, nd are distinct integers, then E is a Λ(4) set. Hence∥∥∥∑
j

aj e
2πinjx

∥∥∥
4
≤ K0

(∑
j

|aj |2
)1/2

= K0

(∑
j

∥∥ aj e2πinjx
∥∥2
4

)1/2

for the Λ(4) constant, K0. The following lemma, whose hypotheses inspired the
4-orthogonality condition, is a variation on this.

Lemma 3.1. Suppose {Fj} is a finite set of integrable functions on G with the
property that for any set of distinct indices, a, b, c, d, the integral

∫
G FaFbFcFd

vanishes. Then ∥∥∥∑
j

Fj

∥∥∥
4
≤ 3

(∑
j

‖Fj‖24
)1/2

.

Proof. Let f =
∑

Fj . The hypothesis ensures that

‖f‖44 =
∑

a,b,c,d

∫
Fa Fb Fc Fd

=
∑
a

∫
|Fa|4 +

∑
a �=b

∫
|Fa|2 |Fb|2 +

∑
a �=b

∫
F 2
a F 2

b

+
∑
a;c �=d

∫
F 2
a Fc Fd + F 2

a Fc Fd + |Fa|2 Fc Fd.(3.1)
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Holder’s inequality gives | ∫ F 2
aF

2
b | ≤ ∫ |Fa|2 |Fb|2 ≤ ‖Fa‖24 ‖Fb‖24, thus

2
(∑

a

‖Fa‖24
)2

= 2
∑
a,b

‖Fa‖24 ‖Fb‖24

≥
∑
a

∫
|Fa|4 +

∑
a �=b

∫
|Fa|2 |Fb|2 +

∣∣∣∑
a �=b

∫
F 2
aF

2
b

∣∣∣.
Next, consider∣∣∣ ∑
a;c �=d

∫
F 2
a Fc Fd

∣∣∣ = ∣∣∣∑
a,c

∫
F 2
a Fc (f − Fc)

∣∣∣ = ∣∣∣∑
a

∫
F 2
a f2 −

∑
a,c

∫
F 2
a F 2

c

∣∣∣
≤

∑
a

∫
|Fa|2 |f |2 +

∑
a,c

∫
|Fa|2 |Fc|2

≤
∑
a

‖Fa‖24 ‖f‖24 +
(∑

a

‖Fa‖24
)2

.

Now use the elementary inequality, xy ≤ x2/5 + 5y2/4, which holds whenever
x, y ≥ 0, to get ∑

a

‖Fa‖24 ‖f‖24 ≤ 1

5
‖f‖44 +

5

4

(∑
a

‖Fa‖24
)2

.

Thus ∣∣∣ ∑
a;c �=d

∫
F 2
a Fc Fd

∣∣∣ ≤ 1

5
‖f‖44 +

9

4

(∑
a

‖Fa‖24
)2

.

A similar argument with the other terms in (3.1) gives that

‖f‖44 ≤ 3

5
‖f‖44 +

35

4

(∑
a

‖Fa‖24
)2

.

Now simplify. �

3.2. Main results

Recall that a linear map M on L2(G) is called a multiplier if M(f ∗ g) = M(f) ∗ g
= f ∗ M(g). Equivalently, M is a multiplier if and only if there are bounded,

complex numbers Mγ such that M̂(f)(γ) = Mγ f̂(γ) for all γ ∈ Ĝ and f ∈ L2(G).
An example of a multiplier is the action of convolution by a measure μ; in this
case Mγ = μ̂(γ) for all γ ∈ Ĝ.

Let ρ < 1. A map M is called ρ-contractive on B ⊆ L2 if ‖M(f)‖2 ≤ ρ ‖f‖2
for all f ∈ B. An example of a ρ-contractive multiplier is multiplication by the
constant ρ.

Definition 3.2. A multiplier M is said to be Lp-improving if there are real num-
bers 1 < p < q < ∞ such that M extends to a bounded operator from Lp(G) to
Lq(G). If the multiplier is convolution by the measure μ, we say μ is Lp-improving.
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Assumptions and terminology. For the remainder of this section we will
assume that I is an index set, Bα for α ∈ I are a collection of closed, translation
invariant subspaces, functions φα ∈ Bα have been chosen for each α ∈ I, and
{TC = (UC

j , V C
j )Nj=1}C is an associated factoring map.

Given Λ ⊆ I, we will write PΛ for the orthogonal projection onto ⊕α∈ΛBα.
We will call multiplier M compatible if it commutes with Pα for each α ∈ I and
commutes with each UC

j .

Here is the key technical theorem.

Theorem 3.3. Suppose mj, for j = 1, . . . , n, are compatible multipliers that are
contractions on L2(G) and ρ-contractive on ⊕g(α)=jBα. Assume {TC} is a fac-
toring map of norm A and Λn ⊆ {α ∈ I : g(α) ≤ n} is a finite set that satisfies the
strong orthogonality condition of order J . If ρ ≤ 1/(3AJ) and Mn = m1 ◦ · · ·◦mn,
M0 = Id, then for all f ∈ L2(G),

(3.2)
∥∥∥f ∗Mn

( ∑
α∈Λn

φα

)∥∥∥
4
≤ 3AJ ‖PΛn(f)‖2 .

Before proving this, we state the main corollaries we need for later application.
We continue to use the notation of the theorem and assume its hypotheses hold.

Corollary 3.4. The measures Qn = Mn

(∑
α∈Λn

φα

)
are uniformly bounded op-

erators from L2 to L4. Any measure that is a weak* cluster point of the set of
measures {Qn} is Lp-improving.

Remark 3.5. By measure Qn we mean the absolutely continuous measure whose
Radon–Nikodym derivative is Qn.

Proof. It is immediate from the theorem that ‖Qn ∗ f‖4 ≤ 3AJ ‖f‖2 for all f ∈ L2.
Let μ be the weak* limit of the subnet {Qβ}. As ‖Qn ∗ f‖4 is uniformly bounded

for each (fixed) f ∈ L2, a further subnet of {Qβ ∗ f} converges weakly in L4 to
some gf satisfying ‖gf‖4 ≤ lim supβ ‖Qβ∗f‖4 ≤ 3AJ‖f‖2. A comparison of Fourier
transforms shows that gf = μ ∗ f . Thus μ : L2 → L4 is a bounded operator. �

Corollary 3.6. Suppose that for each n, Ωn ⊆ {α ∈ I : g(α) ≤ n} satisfies the
strong orthogonality condition of order J . Fix 0 < r < 1. For each finite subset
F ⊆ I, let

μF =

|F |∑
n=0

rn Q(F )
n (x), where Q(F )

n (x) = Mn

( ∑
α∈Ωn∩F

φα

)
.

The multiplier M defined by Mγ = limF μ̂F (γ) for all γ ∈ Ĝ (with the partial
ordering on the net being inclusion) is Lp-improving.

Proof. The proof is similar. Applying the theorem with Λn = Ωn∩F gives ‖Q(F )
n ∗

f‖4 ≤ 3AJ ‖f‖2 for each f ∈ L2. Thus

‖μF ∗ f‖4 ≤
|F |∑
n=0

rn
∥∥Q(F )

n ∗ f∥∥
4
≤ 3AJ

1− r
‖f‖2 .
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Comparing Fourier transforms, one sees that a weak limit of {μF ∗ f} coincides
with M(f) and therefore ‖M(f)‖4 ≤ 3AJ ‖f‖2 /(1− r). �

Proof of Theorem 3.3. We proceed to prove (3.2) by induction on n.

Base case: n = 0. As R(α) is empty for any element of generation 0, the fac-
toring map defining property (2.1) implies that whenever α belongs to category C,
then for all f ∈ L2,

f ∗ φα =

N∑
j=1

UC
j

(
V C
j (f) ∗ 1) .

Further,
∑N

j=1 ‖UC
j ‖4,4‖V C

j ‖2,2 ≤ A.

Since each Bα is translation invariant, so is B⊥
α , hence if g ∈ Bα and h ∈ B⊥

α ,
then h ∗ g = 0. In particular, f ∗ φα = Pαf ∗ φα ∈ Bα for all f ∈ L2. Thus

‖f ∗ φα‖4 = ‖Pαf ∗ φα‖4 ≤
N∑
j=1

∥∥UC
j

(
V C
j (Pαf) ∗ 1

)∥∥
4

≤
N∑
j=1

∥∥UC
j

∥∥
4,4

∥∥V C
j (Pαf) ∗ 1

∥∥
4

Since ∥∥V C
j (Pαf) ∗ 1

∥∥
4
≤ ∥∥V C

j (Pαf)
∥∥
1
‖1‖4 ≤ ∥∥V C

j (Pαf)
∥∥
2
,

it follows that for all α,

(3.3) ‖f ∗ φα‖4 ≤
N∑
j=1

∥∥UC
j

∥∥
4,4

∥∥V C
j

∥∥
2,2

‖Pαf‖2 ≤ A ‖Pαf‖2 .

As Λn satisfies the strong orthogonality condition of order J , we can write
Λn =

⋃J
j=1 Λ

j
n, where each Λj

n satisfies the 4-orthogonality condition and the

subspaces Bα for α ∈ Λj
n are orthogonal. If αk ∈ Λj

n are distinct indices of gen-
eration zero, then they belong to different categories, so the tuples (g(αk), C(αk))
are distinct. The definition of 4-orthogonality ensures that if fk ∈ Bαk

, then∫
f1f2f3f4 = 0 and thus Lemma 3.1 implies that

(3.4)
∥∥∥ ∑

α∈Λj
n

fα

∥∥∥
4
≤ 3

(∑
‖fα‖24

)1/2

whenever fα ∈ Bα.
We apply this with fα = f ∗ φα, so that combining (3.3) and (3.4) yields∥∥∥f ∗

∑
α∈Λj

n

φα

∥∥∥
4
≤ 3

(∑
‖f ∗ φα‖24

)1/2

≤ 3A
( ∑

α∈Λj
n

‖Pαf‖22
)1/2

.

As the spaces Bα, α ∈ Λj
n, are orthogonal,∑

α∈Λj
n

∥∥Pαf
∥∥2
2
=

∥∥∥ ∑
α∈Λj

n

Pαf
∥∥∥2
2
=

∥∥PΛj
n
f
∥∥2
2
.
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Thus
∥∥f ∗ ∑

α∈Λj
n
φα

∥∥
4
≤ 3A‖PΛj

n
f‖2, and summing over j = 1, . . . , J gives

the desired bound ∥∥∥f ∗
∑
α∈Λn

φα

∥∥∥
4
≤ 3AJ ‖PΛnf‖2 .

Induction step: assume (3.2) holds for n− 1, n ≥ 1. The strong orthogonality

condition ensures we can write Λn =
⋃J

j=1 Λ
j
n, where each Λj

n satisfies the three

defining conditions. Temporarily fix j and f ∈ L2. For each category C and
non-negative integer k ≤ n, let

XC,k = {α ∈ Λj
n : C(α) = C and g(α) = k}.

Provided this set is non-empty, let

FC,k = f ∗Mn

( ∑
α∈XC,k

φα

)
.

Our first step will be to prove that

(3.5) ‖FC,k‖4 ≤ A
∥∥PXC,k

(f)
∥∥
2
.

We begin with k ≥ 1. Essentially as before,

f ∗
∑

α∈XC,k

φα = PXC,k
(f) ∗

∑
α∈XC,k

φα.

Since each mj is a multiplier,

FC,k = Mn

(
f ∗

∑
α∈XC,k

φα

)
= Mn

(
PXC,k

(f) ∗
∑

α∈XC,k

φα

)

= PXC,k
(f) ∗Mn

( ∑
α∈XC,k

φα

)
.

Thus without loss of generality we can assume f = PXC,k
(f).

With the notation Mn,k = mk+1 ◦ · · · ◦mn, we can write

FC,k = Mk−1

(
mk

(
Mn,k(f) ∗

∑
α∈XC,k

φα

))
.

Again, we can replaceMn,k(f) by its orthogonal projection onto⊕α∈XC,k
Bα, which

we denote by fC,k for notational ease, suppressing the dependence on n as this is
fixed. Using the factoring maps and the compatibility assumption we have

FC,k = Mk−1

(
mk(fC,k) ∗

∑
α∈XC,k

φα

)

= Mk−1

( N∑
i=1

UC
i

(
V C
i (mk(fC,k)) ∗

∑
α∈XC,k

∑
γ∈R(α)

φγ

))

=
( N∑

i=1

UC
i

(
V C
i (mk(fC,k)) ∗Mk−1

( ∑
α∈XC,k

∑
γ∈R(α)

φγ

)))
.
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Let YC,k denote the set of all roots of α ∈ XC,k, that is, YC,k =
⋃

α∈XC,k
R(α).

If α, β are distinct indices belonging to category C, then they have no roots in
common. Hence ∑

α∈XC,k

∑
γ∈R(α)

φγ =
∑

γ∈YC,k

φγ .

The strong orthogonality condition (iii) implies that the set YC,k also satisfies the
strong orthogonality condition of order J . As YC,k ⊆ {α : g(α) ≤ k − 1} and
k − 1 ≤ n − 1, the induction assumption ensures (3.2) holds with Λ replaced by
YC,k and f = V C

i (mk(fC,k)). With K = 3AJ , this gives

‖FC,k‖4 ≤
N∑
i=1

‖UC
i ‖4,4

∥∥∥V C
i (mk(fC,k)) ∗Mk−1

( ∑
α∈YC,k

φγ

)∥∥∥
4

≤ K

N∑
i=1

∥∥UC
i

∥∥
4,4

∥∥PYC,k

(
V C
i (mk(fC,k))

)∥∥
2

≤ K

N∑
i=1

∥∥UC
i

∥∥
4,4

∥∥V C
i (mk(fC,k))

∥∥
2

≤ K

N∑
i=1

∥∥UC
i

∥∥
4,4

∥∥V C
i

∥∥
2,2

‖mk(fC,k)‖2 ≤ KA ‖mk(fC,k)‖2 .

But mk is a ρ-contraction on ⊕α∈XC,k
Bα, hence ‖mk(fC,k)‖2 ≤ ρ ‖fC,k‖2. Since

each mi is also a contraction on L2 it follows that whenever ρ ≤ 1/K, then

‖FC,k‖4 ≤ KAρ ‖fC,k‖2 = KAρ ‖Mn,k(f)‖2 ≤ KAρ ‖f‖2 ≤ A ‖f‖2 ,

so (3.5) holds.

Now consider the case k = 0. Recall that by assumption there is at most one
member of each category of generation zero. Thus XC,0 is a singleton, say α (or
empty). As we saw in the base case argument,

‖f ∗ φα‖4 ≤ A ‖PBαf‖2 = A
∥∥PXC,0f

∥∥
2
.

Since Mn is a contraction, the same bound holds for f ∗Mn(φα). Thus (3.5) holds
for all k ≥ 0.

The strong orthogonality assumption implies (in particular) that the set Λj
n

satisfies the 4-orthogonality condition, thus Lemma 3.1 applies to the collection of
functions FC,k. Coupled with (3.5) we deduce that

∥∥∥ ∑
(C,k)

FC,k

∥∥∥
4
≤ 3

( ∑
(C,k)

‖FC,k‖24
)1/2

≤ 3A
( ∑

(C,k)

‖PXC,k
f‖22

)1/2

,

where the sum is over those pairs (C, k) for which XC,k is non-empty.



On Lp
-improving measures 1221

Strong orthogonality also ensures the spaces ⊕α∈XC,k
Bα are mutually orthog-

onal, thus
∑

(C,k) ‖PXC,k
f‖22 = ‖PΛj

n
f‖22. Consequently,∥∥∥f ∗Mn

( ∑
α∈Λj

n

φα

)∥∥∥
4
=

∥∥∥ ∑
(C,k)

FC,k

∥∥∥
4
≤ 3A

∥∥PΛj
n
f
∥∥
2
.

Summing over j = 1, . . . , J completes the induction step and hence the proof. �

4. Applications

In this section we will see that many Riesz product measures and Cantor measures
can be shown to be Lp-improving using this approach. Our results are not meant to
be exhaustive or best possible, and in general they are not new, but they illustrate
the versatility of the technique.

Before turning to these we remind the reader of some well known facts about
Lp-improving measures.

First, we recall that as any measure acts by convolution as a bounded map
from L1 to L1 and from L∞ to L∞, an interpolation argument shows that if the
measure μ is Lp-improving, then for every 1 < p < ∞ there is some q > p such
that μ : Lp → Lq is a bounded operator. Furthermore, by a duality argument,
μ : Lp → Lq if and only if μ : Lq′ → Lp′

, with the same operator norm, when p′, q′

are the conjugate indices to p, q respectively. Consequently, μ is Lp-improving if
and only if there is some p < 2 such that μ : Lp → L2 is a bounded operator. It also
can be deduced immediately from this that if ν is Lp-improving and |μ̂(γ)| ≤ |v̂(γ)|
for all γ ∈ Ĝ, then μ is also Lp-improving.

Lastly, we mention that if μm is Lp-improving for some m-fold convolution
power of μ, then an application of Stein’s complex interpolation theorem proves
that μ is also Lp-improving (see [9] for details).

4.1. Riesz products

Terminology. Let k be a positive integer. We will say {γj} ⊆ Ĝ is k-dissociate
if whenever

∏
γ
εj
j = 1 with εj ∈ {0,±1,±2, . . . ,±k}, then all γ

εj
j = 1. (Here the

group operation on Ĝ is the product.) Recall that 2-dissociate is usually simply
called dissociate. If {nj} ⊆ Z+ is lacunary, then {e2πinjx} is k-dissociate if the
lacunary ratio is sufficiently large. For example, if inf nj+1/nj ≥ 3, then {nj} is
dissociate.

To avoid technicalities, we will assume Ĝ has no elements of order two and
suppose {γj} ⊆ Ĝ is dissociate. By a Riesz product measure μ we mean the

(unique) weak* limit of the polynomials PN =
∏N

j=1(1 + aj(γj + γ−1
j )), where

|aj | ≤ 1/2. It is customary to write μ =
∏∞

j=1(1 + aj(γj + γ−1
j )).

Proposition 4.1 ([2], [9]). (a) Assume nj+1/nj ≥ 3 for all j, |aj | ≤ 1, and
let μ =

∏∞
j=1(1 + aj cos 2πnjx) be a Riesz product measure on T. Then μ is an

Lp-improving measure.
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(b) If {γj} ⊆ Ĝ is 4-dissociate and |aj | ≤ 1/2, then the Riesz product μ =∏∞
j=1(1 + aj(γj + γ−1

j )) is an Lp-improving measure.

Proof. (a) Take the index set I, subspaces Bα, functions φα ∈ Bα and associated
factoring map of norm A = 1, as in Example 2.4. According to Lemma 2.3, the sets
Λn = {α ∈ I : g(α) = n} satisfy the strong orthogonality condition of order 2. Take
ρ < 1/100. Let r < 1 and consider the Riesz product ν =

∏∞
j=1(1 + rρ cos 2πnjx).

Let mj denote the multiplier that is multiplication by ρ on L2; these are com-
patible multipliers that are ρ-contractions on all of L2. For F ⊆ I a finite subset,

put Q
(F )
n = m1 ◦ · · · ◦ mn

(∑
α∈Λn∩F φα

)
. For each integer j, ν̂(j) is the limit

of the net {ν̂F (j)} where νF =
∑|F |

k=0 r
kQ

(F )
k . Thus Corollary 3.6 implies ν is

Lp-improving.
For sufficiently large m, |aj/2|m ≤ rρ for all j, and this is enough to ensure∣∣μ̂m(n)

∣∣ ≤ |v̂(n)| for all n. By the remarks at the beginning of this section, the
measure μm, and therefore also μ, is Lp-improving.

(b) The strategy of the proof is similar. The 4-dissociate condition allows one

to see that if Bα = span{Πγεjα(j)
j : εj = ±1}, then Λn = {α : g(α) = n} satisfies

the strong orthogonality condition of order 1. �

4.2. Cantor measures

By a Cantor set, we mean a subset of [0, 1] that has an inductive construction
similar to the classical middle-third Cantor set.

Suppose we are given real numbers {rn}, 0 < rn < 1/2. We begin the inductive
construction with the interval [0, 1] and at the first step in the construction remove
the open middle interval of length 1 − 2r1, keeping the two outer closed intervals
of length r1. Call this set C1. Proceeding inductively, at step k in the construction
the set Ck will consist of 2k closed intervals of length r1 · · · rk. From each of these
we remove the open middle subinterval of length r1 · · · rk(1 − 2rk+1), keeping the
two outer intervals of length r1 · · · rk+1. The set Ck+1 is the union of these 2k+1

closed intervals of length r1 · · · rk+1. The Cantor set with ratios of dissection {rj}
is the intersection of these sets Ck. The classical middle-third Cantor set is the
special case where the ratios of dissection all equal 1/3.

By a Cantor measure we mean the uniform measure supported on the Cantor
set C, meaning that the measure of any of the 2k closed intervals arising at step k in
the construction are assigned measure 1/2k. It is well known that when the ratios
of dissection are given by {rk}, then the Cantor measure is the infinite convolution

μ =
∞∏

n=1

1

2
(δ0 + δr1···rn−1(1−rn)),

where δt denotes the point mass measure at t. A simple calculation shows that

|μ̂(k)| =
∞∏
n=1

∣∣ cosπkr1 · · · rn−1(1 − rn)
∣∣.
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Proposition 4.2 ([3]). If μ is the Cantor measure supported on a Cantor set with
ratios of dissection bounded away from 0, then μ is Lp-improving.

Proof. We will first show how the technique can be applied in the case when
rk = 1/3 for each k and then briefly explain the key modifications needed for the
general case.

A periodicity argument implies that there is some δ > 0, independent of k, such
that | cos 2πx3−k−1| ≤ 1 − δ for all x belonging to any interval of length 3k+1/4,
except for those x belonging to a (particular) subinterval of length at most 3k/4.
Choose an integer L such that (1 − δ)L < ρ = 1/18. It will be sufficient to prove
that μL is Lp-improving.

We will now explain the index set, a slight variation on the triadic index set
of Example 2.2. As with the triadic index set, we start with the set of 3-adic
intervals in Z, specifically, those of the form [(2m − 1)3k/8, (2m + 1)3k/8) ∩ Z,
where m, k ∈ Z, k ≥ 0. The generation of such an index α is defined as k. Now
exclude from this collection those intervals of generation k ≥ 1 that contain an
element x having

∣∣cos 2πx3−k−1
∣∣ > 1 − δ. Our comments above imply that from

any 3 consecutive intervals of generation k, there are either 0, 1 or 2 (adjacent)
intervals of generation k having this undesirable property. The remaining 3-adic
intervals form the index set. As with the triadic index set, each index is its own
category. The roots of α of generation k will consist of all the 3-adic intervals
contained in α, which belong to the index set and are maximal proper subsets
(under inclusion) with this property.

We define the subspaces Bα, functions φα and the factoring map of norm one as

in Example 2.5. If we define multipliers mk by m̂k(f)(n) = f̂(n)(cos 2πn3−k−1)L,
then it is clear by construction that mk is ρ-contractive on the spaces Bα with
g(α) = k ≥ 1 and a contraction on L2.

Next, we claim that the set of all roots of any index α satisfies the strong orthog-
onality condition of order 6. First, we remark that the intervals β ∈ R(α) are dis-
joint and hence the subspaces Bβ are mutually orthogonal. We will show that R(α)
can be partitioned into 6 subsets, each of which satisfies the 4-orthogonality con-
dition. This will suffice to prove the claim as categories are singletons. We note
that this observation was also a key idea in Christ’s original proof.

To see this, observe that our construction guarantees that the roots of index α
first monotonically decrease in generation as one moves from left to right (in R),
and then monotonically increase. Partition the roots into two groups, those on the
decreasing side and those on the increasing side. Furthermore, there are at most 3
(adjacent) intervals of each generation among the roots in each of the two groups.
Now further partition each group by selecting every third element as one moves
left to right.

This procedure ensures that each of the 6 collections of sets we have constructed
contains at most one element of each generation, with any two intervals in a given
collection separated by an interval whose length is at least 2 times that of the
smaller of the two. A standard geometric series argument shows that each of these
collections satisfies the 4-orthogonality condition. This establishes the claim.
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To complete the proof, take Λn to be the set of roots of the index α =
[−3n/2, 3n/2)∩ Z. As the union of these sets cover R, the L-fold convolution of μ
is the weak* limit of m1 ◦ · · · ◦mn

(∑
α∈Λn

φα

)
. Finally, call upon Corollary 3.4.

Now suppose the ratios, rk, are bounded away from 0. For notational ease,
put εn = r1 · · · rn−1(1 − rn). The boundedness away from 0 ensures that there is
some even number R such that 9/R ≤ εn/εn+1 ≤ R for all n. The boundedness
also ensures we can choose δ > 0 such that for each n, |cosπεn+1x| ≤ 1 − δ for
all x belonging to an interval of length 1/(2εn+1), except for x belonging to a
subinterval of length at most 1/(6εn). To create the index set, for each n we begin
with disjoint intervals in Z with lengths in the range [1/(6εn), 1/(4εn)]. These will
be of generation n. The intervals of generation n should be a union of the intervals
of generation n − 1. We then apply the exclusion rule, similar to above. Finally,
we partition the roots of an index into 3R+2 sets, each of which can be shown to
be 4-orthogonal. �

4.3. Markov measures

For an integer qj , let Zqj denote the multiplicative group of qj ’th roots of unity
and let X =

∏∞
j=1 Zqj . The dual of the product space X is the direct sum ⊕Zqj .

By a product measure, we mean a probability measure μ =
∏∞

j=1 gj(x) on X
where gj depends only on coordinate j. Product measures are often Lp-improving.
Indeed, the following can be proven, using our approach, by adapting the tech-
niques of the next proof.

Proposition 4.3. If ε > 0 is sufficiently small, then the product measure μ =∏∞
j=1 gj(x), on X =

∏∞
j=1 Zqj , is Lp-improving if the real-valued functions gj

satisfy |1− gj(x)| < ε/qj for all j.

We turn now to proving a result for the more general class of Markov measures,
studied in [4] and [5]. Again, these are probability measures on on X =

∏∞
j=1 Zqj

of the form μ =
∏∞

j=1 gj(x), but where the probability densities gj satisfy the
following two properties: let Xn = {y = (yj) ∈ X : yj = 1 for all j �= n}. Then,
for all n,

(i) gn(xy) = gn(x) for any y ∈ Xk with k �= n, n+ 1; and

(ii) 1
|Xn|

∑
y∈Xn

gn(xy) = 1.

Like product measures, Markov measures are also Lp-improving if the func-
tions gj are close enough to 1.

Proposition 4.4. If ε > 0 is sufficiently small, then the Markov measure μ =∏∞
j=1 gj(x), on X =

∏∞
j=1 Zqj , is Lp-improving if gj is real valued and

‖1− gj(x)‖2 < ε/
√
qjqj+1 for all j.

Proof. We use the 0-1 index set I, but this time with the category Ck consisting
of the set of sequences whose first 1 is in coordinate k. The sequence of all 0’s will
be in the category C0. The root of α will be the sequence with the first 1 changed
to a 0.
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Given α ∈ I, let Bα be the functions in L2(X) with the property that whenever
y ∈ Xn and αn−1 = αn = 0, then f(xy) = f(x), while if αn−1 = 0, αn = 1, then∑

y∈Xn
f(xy) = 0. (If αn−1 = 1, no constraints are imposed.)

As with the Riesz product example, let Λk = {α ∈ I : g(α) = k}. Assume
α �= β both belong to Λk for for k ≥ 1. Then (without loss of generality) 0 <
C(α) = n < C(β). If fα ∈ Bα and fβ ∈ Bβ , then a change of variables argument
shows ∫

fα(x)fβ(x)dx =
1

|Xn|
∫ ∑

y∈Xn

fα(xy)fβ(xy) dx.

But fβ(xy) = fβ(x) and
1

|Xn|
∑

y∈Xn
fα(xy) = 0 whenever y ∈ Xn. Thus∫

fα(x)fβ(x) dx = 0,

so the spaces Bα and Bβ are mutually orthogonal. A similar argument proves Λk

satisfies the strong orthogonality condition of order 1.
Let r < 1 with ε/r ≤ 1. Define φα(x) =

∏∞
n=1((1 − gn(x))/r)

αn . It can be
verified that φα ∈ Bα. Assume C(α) = n. Put hn = (1 − gn)/r and suppose the
root of α is β. Then φα = hnφβ . As hn depends only on coordinates n, n + 1,

we can view ĥn as a function on the dual of Zqn × Zqn+1 . As this group has

order qnqn+1, we can write ĥn =
∑qnqn+1

j=1 ajδγj where γj are the characters of
Zqn × Zqn+1 . Direct calculation gives

f̂ ∗ φα(χ) = ̂f ∗ hnφβ(χ) = f̂(χ)
∑
γ

ĥn(γ)φ̂β(χ− γ) =

qnqn+1∑
j=1

aj f̂(χ)φ̂β(χ− γj).

Define Un
j on L2 by Ûn

j (f)(χ) = aj f̂(χ − γj) and define V n
j by V̂ n

j (f)(χ) =

f̂(χ+ γj). With this notation, continuing from above we have

f̂ ∗ φα(χ) =

qnqn+1∑
j=1

aj V̂ n
j (f)(χ− γj)φ̂β(χ− γj)

=

qnqn+1∑
j=1

aj(V
n
j (f) ∗ φβ )̂(χ− γj) =

qnqn+1∑
j=1

Un
j

(
V n
j (f) ∗ φβ

)̂
(χ).

As R(α) is the singleton β, this shows

f ∗ φα =

qnqn+1∑
j=1

Un
j

(
V n
j (f) ∗

∑
β∈R(α)

φβ

)
,

so {(Un
j , V

n
j ) : j = 1, . . . , qnqn+1}n is a factoring map. One easily sees that

qnqn+1∑
j=1

∥∥Un
j

∥∥
4,4

∥∥V n
j

∥∥
2,2

=

qnqn+1∑
j=1

|aj| ≤ √
qnqn+1 ‖h‖2 ≤ ε/r ≤ 1.

Now appeal to Corollary 3.6 in a similar manner to the Riesz product argument. �
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