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Isoperimetric problem in H-type groups

and Grushin spaces

Valentina Franceschi and Roberto Monti

Abstract. We study the isoperimetric problem in H-type groups and
Grushin spaces, emphasizing a relation between them. Under a symmetry
assumption that depends on the dimension, we prove existence, additional
symmetry, and regularity properties of isoperimetric sets.

1. Introduction

Let M be a manifold, V be a volume, and P a perimeter measure on M . For
a regular set E ⊂ M , P (E) is the area of the boundary ∂E. The isoperimetric
problem relative to V and P consists in studying existence, symmetries, regularity
and, if possible, classifying the minimizers of the problem

(1.1) min
{
P (E) : E ∈ A such that V (E) = v

}
,

for a given volume v > 0 and for a given family of admissible sets A . Minimizers
of (1.1) are called isoperimetric sets.

In space forms (Euclidean space, sphere and hyperbolic space) with their natu-
ral volume and perimeter, isoperimetric sets are precisely metric balls. In Rn with
volume e−|x|2L n and perimeter e−|x|2H n−1, isoperimetric sets are half-spaces, [3].
This is the Gaussian isoperimetric problem, the model of the current research di-
rection on isoperimetric problems with density, [21]. A different way to weight
perimeter is by a surface tension, i.e., by the support function τ : Sn−1 → [0,∞)
of a convex body K ⊂ R

n with 0 ∈ int(K), τ(ν) = supx∈K〈x, ν〉. Namely, one can
consider

P (E) =

∫
∂E

τ(νE) dH
n−1, νE outer normal to ∂E.

The isoperimetric problem for this perimeter and with V = L n is known as Wulff
problem and isoperimetric sets are translates and dilates of the set K, see the
quantitative version in [4].
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In a different approach, the perimeter of a Lebesgue measurable set E ⊂ Rn is
defined via a system X = {X1, . . . , Xh}, h ≥ 2, of self-adjoint vector fields in R

n,

(1.2) PX(E) = sup
{∫

E

h∑
i=1

Xiϕi(x) dx : ϕ ∈ C1
c (R

n;Rh), max
x∈Rn

|ϕ(x)| ≤ 1
}
.

This definition is introduced and studied systematically in [10]. The perimeter PX
is known as X-perimeter (horizontal, sub-elliptic, or sub-Riemannian perimeter).
One important example is the Heisenberg perimeter, that is subject of intensive
research in connection with Pansu’s conjecture on the shape of isoperimetric sets
(see [2], [5], [13], [15], [17], [18], [19], [20]) and in connection with the regularity
problem of minimal surfaces.

In this paper, we study perimeters related to the Heisenberg perimeter. Namely,
we study the isoperimetric problem in H-type groups and in Grushin spaces.

1) H-type groups. Let h = h1 ⊕ h2 be a stratified nilpotent real Lie algebra of
dimension n ≥ 3 and step 2. Thus we have h2 = [h1, h1]. We fix on h a scalar
product 〈·, ·〉 that makes h1 and h2 orthogonal. The Kaplan mapping, introduced
in [11], is the mapping J : h2 → End(h1) defined via the identity

(1.3) 〈JY (X), X ′〉 = 〈Y, [X,X ′]〉,
holding for all X,X ′ ∈ h1 and Y ∈ h2. The algebra h is called an H-type algebra
if for all X,X ′ ∈ h1 and Y ∈ h2 there holds

(1.4) 〈JY (X), JY (X
′)〉 = |Y |2〈X,X ′〉,

where |Y | = 〈Y, Y 〉1/2. We can identify h with Rn = Rh × Rk, h1 with Rh × {0},
and h2 with {0} × Rk, where h ≥ 2 and k ≥ 1 are integers. In fact, h is an even
integer. We can also assume that 〈·, ·〉 is the standard scalar product of Rn. Using
exponential coordinates, the connected and simply connected Lie group of h can be
identified with Rn. Denoting points of Rn as (x, y) ∈ Rn = Rh×Rk, the Lie group
product · : Rn×Rn → Rn is of the form (x, y) · (x′, y′) = (x+x′, y+ y′+Q(x, x′)),
where Q : Rh × R

h → R
k is a bilinear skew-symmetric mapping. Let Q�ij ∈ R be

the numbers

Q�ij = 〈Q(ei, ej), e�〉, i, j = 1, . . . , h, � = 1, . . . , k,

where ei, ej ∈ Rh and e� ∈ Rk are the standard coordinate versors. An orthonormal
basis of the Lie algebra of left-invariant vector fields of the H-type group (Rn, ·) is
given by

Xi =
∂

∂xi
−

k∑
�=1

h∑
j=1

Q�ijxj
∂

∂y�
, i = 1, . . . , h,

Yj =
∂

∂yj
, j = 1, . . . , k.

(1.5)

We denote by PH(E) = PX(E) the perimeter of a set E ⊂ Rn defined as in (1.2),
relative to the system of vector fields X = {X1, . . . , Xh}. The vector fields
Y1, . . . , Yk are not considered.
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2) Grushin spaces. Let Rn = Rh×Rk, where h, k ≥ 1 are integers and n = h+k.
For a given real number α > 0, let us define the vector fields in R

n

(1.6) Xi =
∂

∂xi
, i = 1, . . . , h, Yj = |x|α ∂

∂yj
, j = 1, . . . , k,

where |x| is the standard norm of x. We denote by Pα(E) = PX(E) the perimeter
of a set E ⊂ Rn defined as in (1.2) relative to the system of vector fields X =
{X1, . . . , Xh, Y1, . . . , Yk}. We call Pα(E) the α-perimeter of E.

We study the isoperimetric problem in the class of x-spherically symmetric
sets in H-type groups and Grushin spaces. These two problems are related to each
other. We say that a set E ⊂ Rh × Rk is x-spherically symmetric if there exists a
set F ⊂ R+ × Rk, called generating set of E, such that

E =
{
(x, y) ∈ R

n : (|x|, y) ∈ F
}
.

We denote by Sx the class of L n-measurable, x-spherically symmetric sets.
Starting from the x-spherical symmetry, we can prove that the class of sets

involved in the minimization (1.1) can be restricted to a smaller class of sets with
more symmetries (see Section 3). Using this additional symmetry, we can imple-
ment the concentration-compactness argument in order to have the existence of
isoperimetric sets. In Carnot groups, the existence is already known, see [12]. In
Grushin spaces, the existence is less clear because x-translations do not preserve
α-perimeter.

In fact, we have existence of isoperimetric sets that are x- and y-Schwarz sym-
metric, i.e., of the form

(1.7) E = {(x, y) ∈ R
n : |y| < f(|x|)},

for some function f : (0, r0) → R+, r0 > 0, which is called the profile function of E.
The profile function has the necessary regularity to solve a second order ordinary
differential equation expressing the fact that the boundary of E has a certain “mean
curvature” that is constant. This differential equation can be partially integrated
and, for the profile function of a minimizer, it can be expressed in the following
equivalent way:

(1.8)
f ′(r)√

r2α + f ′(r)2
=
k − 1

rh−1

∫ r

0

s2α+h−1

f(s)
√
s2α + f ′(s)2

ds− κ

h
r, for r ∈ (0, r0),

where h, k are the dimensional parameters, α > 0 is the real parameter in the
Grushin vector fields (1.6) (in H-type groups we have α = 1), and κ > 0 is a real
parameter (the “mean curvature”) related to perimeter and volume.

In H-type groups, the Haar measure is the Lebesgue measure. Moreover,
Lebesgue measure andH-perimeter are homogeneous with respect to the anisotrop-
ic dilations

(x, y) �→ δλ(x, y) = (λx, λ2y), λ > 0.
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In fact, for any measurable set E ⊂ Rn and for all λ > 0 we have L n(δλ(E)) =
λQL n(E) and PH(δλ(E)) = λQ−1PH(E), where the number Q = h + 2k is the
homogeneous dimension of the group. Then, the isoperimetric ratio

IH(E) =
PH(E)Q

L n(E)Q−1

is homogeneous of degree 0 and the isoperimetric problem (1.1) can be formulated
in scale invariant form. In the following, by a vertical translation we mean a
mapping of the form (x, y) �→ (x, y + y0) for some y0 ∈ Rk.

Theorem 1.1. In any H-type group, the isoperimetric problem

(1.9) min
{
IH(E) : E ∈ Sx with 0 < L n(E) <∞}

has solutions and, up to a vertical translation and a null set, any isoperimetric set
is of the form (1.7) for a function f ∈ C([0, r0]) ∩ C1([0, r0)) ∩ C∞(0, r0), with
0 < r0 < ∞, satisfying f(r0) = 0, f ′ ≤ 0 on (0, r0), and solving equation (1.8)

with α = 1 and κ = QPH(E)
(Q−1)L n(E) .

Isoperimetric sets are, in fact, C∞-smooth sets away from x = 0. Removing
the assumption of x-spherical symmetry is a difficult problem that is open even in
the basic example of the 3-dimensional Heisenberg group.

For the special dimension h = 1, we are able to prove the x-symmetry of isoperi-
metric sets for α-perimeter. Lebesgue measure and α-perimeter are homogeneous
with respect to the group of anisotropic dilations

(x, y) �→ δλ(x, y) = (λx, λ1+αy), λ > 0.

In fact, for any measurable set E ⊂ Rn and for all λ > 0 we have L n(δλ(E)) =
λdL n(E) and Pα(δλ(E)) = λd−1PH(E), where d = h + k(1 + α). Then, the
isoperimetric ratio

Iα(E) =
Pα(E)d

L n(E)d−1

is homogeneous of degree 0.

Theorem 1.2. Let α > 0, h = 1, k ≥ 1 and n = 1+k. The isoperimetric problem

(1.10) min
{
Iα(E) : E ⊂ R

n L n-measurable with 0 < L n(E) <∞}
has solutions and, up to a vertical translation and a null set, any isoperimetric set
is of the form (1.7) for a function f ∈ C([0, r0]) ∩ C1([0, r0)) ∩ C∞(0, r0), with
0 < r0 < ∞, satisfying f(r0) = 0, f ′ ≤ 0 on (0, r0), and solving equation (1.8)

with h = 1 and κ = dPα(E)
(d−1)Ln(E) .

In particular, for h = 1 isoperimetric sets are x-symmetric. When h ≥ 2 we
need to assume the x-spherical symmetry.
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Theorem 1.3. Let α > 0, h ≥ 2, k ≥ 1 and n = h+k. The isoperimetric problem

(1.11) min
{
Iα(E) : E ∈ Sx with 0 < L n(E) <∞}

has solutions and, up to a vertical translation and a null set, any isoperimetric set
is of the form (1.7) for a function f ∈ C([0, r0]) ∩ C1([0, r0)) ∩ C∞(0, r0), with
0 < r0 < ∞, satisfying f(r0) = 0, f ′ ≤ 0 on (0, r0), and solving equation (1.8)

with κ = dPα(E)
(d−1)Ln(E) .

In the special case k = 1, equation (1.8) can be integrated and we have an
explicit formula for isoperimetric sets. Namely, with the normalization κ = h
(that implies r0 = 1), the profile function solving (1.8) gives the isoperimetric set

(1.12) E =
{
(x, y) ∈ R

n : |y| <
∫ π/2

arcsin |x|
sinα+1(s) ds

}
.

This formula generalizes to dimensions h ≥ 2 the results of [16]. When k = 1
and α = 1, the profile function satisfying the final condition f(1) = 0 is f(r) =
1
2

(
arccos(r) + r

√
1− r2

)
, r ∈ [0, 1]. This is the profile function of the Pansu’s ball

in the Heisenberg group.
In Section 2, we prove various representation formulas for the perimeter of

smooth and symmetric sets. In particular, we show that for x-spherically symmet-
ric sets we have the identity PH(E) = Pα(E) with α = 1. This makes Theorem 1.1
a special case of Theorem 1.3.

In Section 3, we prove the rearrangement theorems. We show that when h = 1
the isoperimetric problem with no symmetry assumption can be reduced to x-sym-
metric sets. When h ≥ 2, we show that the x-spherical symmetry can be improved
to the x-Schwarz symmetry. We also study perimeter under y-Schwarz rearrange-
ment. The equality case in this rearrangement does not imply that, before re-
arrangement, the set is already y-Schwarz symmetric because the centers of the
x-balls may vary. However, for isoperimetric sets the centers are constant, see
Proposition 5.4. To prove this, we use the regularity of the profile function (see
Section 5).

The existence of isoperimetric sets is established in Section 4 by the concentra-
tion-compactness method. Here, we borrow some ideas from [9] and we also use the
isoperimetric inequalities (with non-sharp constants) obtained in [10], [6], and [7].

Finally, in Section 5 we deduce the differential equation for the profile function,
we use minimality to derive its equivalent version (1.8), and we establish some
elementary properties of solutions.

2. Representation and reduction formulas

In this section, we derive some formulas for the representation of H- and α-peri-
meter of smooth sets and of sets with symmetry. For any open set A ⊂ Rn and
m ∈ N, let us define the family of test functions

Fm(A) =
{
ϕ ∈ C1

c (A;R
m) : max

(x,y)∈A
|ϕ(x, y)| ≤ 1

}
.
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2.1. Relation between H-perimeter and α-perimeter

Let X1, . . . , Xh be the generators of an H-type Lie algebra, thought of as left-
invariant vector fields in Rn as in (1.5). For an open set E ⊂ Rn with Lipschitz
boundary, the Euclidean outer unit normal NE : ∂E → Rn is defined at H n−1-
a.e. point of ∂E. We define the mapping NE

H : ∂E → Rh by

NE
H = (〈NE , X1〉, . . . , 〈NE , Xh〉).

Here, 〈·, ·〉 is the standard scalar product of Rn and Xi is thought of as an element
of Rn with respect to the standard basis ∂1, . . . , ∂n.

Proposition 2.1. If E ⊂ Rn is a bounded open set with Lipschitz boundary, then
the H-perimeter of E in Rn is

(2.1) PH(E) =

∫
∂E

|NE
H (x, y)| dH n−1,

where H n−1 is the standard (n− 1)-dimensional Hausdorff measure in Rn.

Proof. The proof of (2.1) is standard and we only sketch it. The inequality

PH(E) ≤
∫
∂E

|NE
H (x, y)| dH n−1

follows by the Cauchy–Schwarz inequality applied to the right hand side of the
identity ∫

E

h∑
i=1

Xiϕi dx dy =

∫
∂E

〈NE
H , ϕ〉 dH n−1,

that holds for any ϕ ∈ Fh(R
n).

The opposite inequality follows by approximating NE
H/|NE

H | with functions in
Fh(R

n). In fact, by a Lusin-type and Tietze-extension argument, for any ε > 0
there exists ϕ ∈ Fh(R

n) such that∫
∂E

〈NE
H , ϕ〉 dH n−1 ≥

∫
∂E

|NE
H (x, y)| dH n−1 − ε. �

The outer normal NE can be split in the following way

NE = (NE
x , N

E
y ), with NE

x ∈ R
h and NE

y ∈ R
k.

For any α > 0, we call the mapping NE
α : ∂E → R

n

(2.2) NE
α = (NE

x , |x|αNE
y )

the α-normal to ∂E. The same argument used to prove (2.1) also shows that

(2.3) Pα(E) =

∫
∂E

|NE
α (x, y)| dH n−1,

for any set E ⊂ R
n with Lipschitz boundary.

Remark 2.2. Formulas (2.1) and (2.3) hold also when ∂E is H n−1-rectifiable.
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Proposition 2.3. For any x-spherically symmetric set E ∈ Sx, we have PH(E) =
Pα(E), with α = 1.

Proof. By a standard approximation, using the results of [8], it is sufficient to
prove the claim for smooth sets, e.g., for a bounded set E ⊂ R

n with Lipschitz
boundary. By (2.1) and (2.3), the claim PH(E) = Pα(E) with α = 1 reads

(2.4) PH(E) =

∫
∂E

√
|NE

x |2 + |x|2|NE
y |2 dH n−1,

where NE = (NE
x , N

E
y ) ∈ Rh × Rk is the unit Euclidean normal to ∂E. By the

representation formula (2.1), we have

PH(E) =

∫
∂E

( h∑
i=1

〈Xi, N
E〉2

)1/2

dH n−1,

where, by (1.5), for any i = 1, . . . , h,

〈Xi, N
E〉2 =

(
NE
xi

−
k∑
�=1

h∑
j=1

Q�ijxjN
E
y�

)2

= (NE
xi
)2 − 2NE

xi

k∑
�=1

h∑
j=1

Q�ijxjN
E
y� +

( k∑
�=1

h∑
j=1

Q�ijxjN
E
y�

)2

,

and thus

h∑
i=1

〈Xi, N
E〉2

= |NE
x |2 − 2

k∑
�=1

h∑
i,j=1

Q�ijxjN
E
xi
NE
y�

+

h∑
i=1

k∑
�,m=1

h∑
j,p=1

Q�ijQ
m
ipxjxpN

E
y�
NE
ym .(2.5)

Since the set E is x-spherically symmetric, the component NE
x of the normal

satisfies the identity

(2.6) NE
x =

x

|x| |N
E
x |.

The bilinear form Q : Rh × Rh → Rk is skew-symmetric, i.e., we have Q(x, x′) =
−Q(x′, x) for all x, x′ ∈ Rh or, equivalently, Q�ij = −Q�ji. Using (2.6), it follows
that for any � = 1, . . . , k we have

(2.7)

h∑
i,j=1

Q�ijxjN
E
xi

=
|NE

x |
|x|

h∑
i,j=1

Q�ijxixj = 0.

Next, we insert into identity (1.4), that defines an H-type group, the vector
fields

X = X ′ =
h∑
i=1

xiXi, Y =
k∑
j=1

NE
yjYj ,
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where x ∈ Rh, NE
y = (NE

y1 , . . . , N
E
yk), and Xi, Yj are the orthonormal vector fields

in (1.5). After some computations that are omitted, using the definition (1.3) of
the Kaplan mapping, we obtain the identity

(2.8)

k∑
�,m=1

h∑
i,j,p=1

Q�ijQ
m
ipN

E
y�N

E
ymxjxp = |x|2|NE

y |2.

From (2.5), (2.7), and (2.8) we deduce that

h∑
i=1

〈Xi, N
E〉2 = |NE

x |2 + |x|2|NE
y |2,

and formula (2.4) follows. �

2.2. α-Perimeter for symmetric sets

Thanks to Proposition 2.3, from now on we will consider only α-perimeter.
We say that a set E ⊂ Rn = Rh×Rk is x- and y-spherically symmetric if there

exists a set G ⊂ R+ × R+ such that

E =
{
(x, y) ∈ R

n : (|x|, |y|) ∈ G
}
.

We call G the generating set of E. In the following we will use the constant

chk = hk ωh ωk,

where ωm = Lm({x ∈ Rm : |x| < 1}), for m ∈ N.

Proposition 2.4. Let E ⊂ Rn be a bounded open set with finite α-perimeter that
is x- and y-spherically symmetric with generating set G ⊂ R+×R+. Then we have

(2.9) Pα(E) = chk sup
ψ∈F2(R+×R+)

∫
G

(
sk−1∂r

(
rh−1ψ1

)
+ rh−1+α∂s

(
sk−1ψ2

))
drds.

In particular, if E has Lipschitz boundary then we have

(2.10) Pα(E) = chk

∫
∂G

|(NG
r , r

αNG
s )|rh−1sk−1 dH 1(r, s),

where NG = (NG
r , N

G
s ) ∈ R2 is the outer unit normal to the boundary ∂G ⊂

R+ × R+.

Proof. We prove a preliminary version of (2.9). We claim that if E is of finite
α-perimeter and x-spherically symmetric with generating set F ⊂ R+ × Rk, then
we have

Pα(E) = hωh sup
ψ∈F1+k(R+×Rk)

∫
F

(
∂r
(
rh−1ψ1

)
+ rh−1+α

k∑
j=1

∂yjψ1+j

)
drdy

= Q(F ),(2.11)
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where Q is defined via the last identity. For any test function ψ ∈ F1+k(R
+ ×Rk)

we define the following test function ϕ ∈ Fn(R
n):

(2.12) ϕ(x, y) =
( x

|x|ψ1(|x|, y), ψ2(|x|, y), . . . , ψ1+k(|x|, y)
)

for |x| �= 0,

and ϕ(0, y) = 0. For any i = 1, . . . , h, j = 1, . . . , k, and x �= 0, we have the
identities

∂xiϕi(x, y) =
( 1

|x| −
x2i
|x|3

)
ψ1(|x|, y) + x2i

|x|2 ∂rψ1(|x|, y),

∂yjϕh+j(x, y) = ∂yjψ1+j(|x|, y),

and thus, the α-divergence defined by

(2.13) divαϕ(x, y) =

h∑
i=1

∂ϕi(x, y)

∂xi
+ |x|α

k∑
j=1

∂ϕh+j(x, y)

∂yj

satisfies

(2.14) divαϕ(x, y) =
h− 1

|x| ψ1(|x|, y) + ∂rψ1(|x|, y) + |x|α
k∑
j=1

∂yjψ1+j(|x|, y).

For any y ∈ Rk we define the section F y =
{
r > 0 : (r, y) ∈ F

}
. Using the

Fubini–Tonelli theorem, spherical coordinates in Rh, the symmetry of E, and (2.14)
we obtain∫
E

divαϕ dxdy =

∫
Rk

∫
Fy

∫
|x|=r

(h−1

r
ψ1 + ∂rψ1 + rα

k∑
j=1

∂yjψ1+j

)
dH h−1(x) drdy

= hωh

∫
Rk

∫
Fy

rh−1
(h− 1

r
ψ1 + ∂rψ1 + rα

k∑
j=1

∂yjψ1+j

)
drdy

= hωh

∫
F

∂r(r
h−1ψ1) + rα+h−1

k∑
j=1

∂yjψ1+j drdy.(2.15)

Because ψ is arbitrary, this proves the inequality ≥ in (2.11).
We prove the opposite inequality when E ⊂ R

n is an x-symmetric bounded
open set with smooth boundary. The unit outer normal NE = (NE

x , N
E
y ) is con-

tinuously defined on ∂E. At points (0, y) ∈ ∂E, however, we have NE
x (0, y) = 0

and thus NE
α (0, y) = 0. For any ε > 0 we consider the compact set K =

{
(x, y) ∈

∂E : |x| ≥ δ
}
, where δ > 0 is such that Pα(E; {|x| = δ}) = 0 and

(2.16)

∫
∂E\K

|NE
α (x, y)| dH n−1 < ε.
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Let H ⊂ R+×Rk be the generating set of K. By standard extension theorems,
there exists ψ ∈ F1+k(R

+ × R
k) such that

ψ(r, y) =
(NF

r (r, y), rαNF
y (r, y))

|(NF
r (r, y), rαNF

y (r, y)| for (r, y) ∈ H.

The mapping ϕ ∈ Fn(R
n) introduced in (2.12) satisfies

(2.17) ϕ(x, y) =
NE
α (x, y)

|NE
α (x, y)| , for (x, y) ∈ K.

Then, by identity (2.15), the divergence theorem, (2.17), (2.16), and (2.3), we
have

Q(F ) ≥
∫
F

(
∂r
(
rh−1ψ1

)
+ rh−1+α

k∑
j=1

∂yjψ1+j

)
dr dy =

∫
E

divαϕdxdy

=

∫
∂E

〈ϕ,NE
α 〉 dH n−1 =

∫
K

|NE
α (x, y)| dH n−1 +

∫
∂E\K

〈ϕ,NE
α 〉 dH n−1

≥ Pα(E)− 2ε.

This proves (2.11) when ∂E is smooth. The general case follows by approximation:
let E ⊂ Rn be a set of finite α-perimeter and finite Lebesgue measure that is x-sym-
metric with generating set F ⊂ R+ × Rk. By Theorem 2.2.2 in [8], there exists a
sequence (Ej)j∈N such that each Ej is of class C∞,

lim
j→∞

L n(EjΔE) = 0 and lim
j→∞

Pα(Ej) = Pα(E).

Each Ej can be also assumed to be x-spherically symmetric with generating set
Fj ⊂ R+ × Rk. Then we also have

lim
j→∞

L 1+k(FjΔF ) = 0.

By lower semicontinuity and (2.11) for the smooth case, we have

Q(F ) ≤ lim inf
j→∞

Q(Fj) = lim
j→∞

Pα(Ej) = Pα(E).

This concludes the proof of (2.11) for any set E with finite α-perimeter.
The general formula (2.9) for sets that are also y-spherically symmetric can be

proved in a similar way and we can omit the details.
Formula (2.10) for sets E with Lipschitz boundary follows from (2.9) with the

same argument sketched in the proof of Proposition 2.3. �

2.3. α-Perimeter in the case h = 1

When h = 1 there exists a change of coordinates that transforms α-perimeter into
the standard perimeter (see [16] for the case of the plane h = k = 1). Let n = 1+k
and consider the following mappings Φ,Ψ : Rn → Rn:

Ψ(x, y) =
(
sgn(x)

|x|α+1

α+ 1
, y
)

and Φ(ξ, η) =
(
sgn(ξ)|(α+ 1)ξ|1/(α+1), η

)
.

Then we have Φ ◦Ψ = Ψ ◦ Φ = IdRn .
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Proposition 2.5. Let h = 1 and n = 1 + k. For any measurable set E ⊂ Rn we
have

(2.18) Pα(E) = sup
{∫

Ψ(E)

divψ dξ dη : ψ ∈ Fn(R
n)
}
.

Proof. First notice that the supremum in the right hand side can be equivalently
computed over all vector fields ψ : Rn → Rn in the Sobolev space W 1,1

0 (Rn;Rn)
such that ‖ψ‖∞ ≤ 1.

For any ϕ ∈ Fn(R
n), let ψ = ϕ◦Φ. Then for any j = 1, . . . , k = n−1, we have

∂ξψ1(ξ, η) = ∂ξ
(
ϕ1 ◦Φ

)
(ξ, η) = |(α+ 1)ξ|−α/(α+1) ∂xϕ1(Φ(ξ, η)),

∂ηjψ1+j(ξ, η) = ∂ηj
(
ϕ1+j ◦ Φ

)
(ξ, η) = ∂yjϕ1+j(Φ(ξ, η)).

(2.19)

In particular, we have ψ ∈ W 1,1
0 (Rn;Rn) and ‖ψ‖∞ ≤ 1. Then, the standard

divergence of ψ satisfies

divψ(ξ, η) = |(α+ 1)ξ|−α/(α+1) divαφ(Φ(ξ, η)).

The determinant Jacobian of the change of variables (x, y) = Φ(ξ, η) is

(2.20) | detJΦ(ξ, η)| = |(α+ 1)ξ|−α/(α+1).

and thus we obtain∫
E

divαϕ(x, y) dxdy =

∫
Ψ(E)

divαϕ(Φ(ξ, η)) | det JΦ(ξ, η)| dξ dη

=

∫
Ψ(E)

divψ(ξ, η) dξ dη.

(2.21)

The claim follows. �

3. Rearrangements

In this section, we prove various rearrangement inequalities for α-perimeter in Rn.
We consider first the case h = 1. In this case, there are a Steiner type rearrange-
ment in the x-variable and a Schwarz rearrangement in the y variables that reduce
the isoperimetric problem in Rn to a problem for Lipschitz graphs in the first
quadrant R+ × R+. Then we consider dimensions h ≥ 2, where we can rearrange
sets in Rh that are already x-spherically symmetric.

3.1. Rearrangement in the case h = 1

Let h = 1 and n = 1+k. We say that a set E ⊂ Rn is x-symmetric if (x, y) ∈ E im-
plies (−x, y) ∈ E; we say that E is x-convex if the section Ey = {x∈R : (x, y) ∈ E}
is an interval for every y ∈ Rk; finally, we say that E is y-Schwarz symmetric if for
every x ∈ R the section Ex = {y ∈ Rk : (x, y) ∈ E} is an (open) Euclidean ball
in R

k centered at the origin.
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Theorem 3.1. Let h = 1 and n = 1+k. For any set E ⊂ Rn such that Pα(E) <∞
and 0 < L n(E) <∞ there exists an x-symmetric, x-convex, and y-Schwarz sym-
metric set E∗ ⊂ Rn such that Pα(E

∗) ≤ Pα(E) and L n(E∗) = L n(E).
Moreover, if Pα(E

∗) = Pα(E) then E is x-symmetric, x-convex and there exist
functions c : [0,∞) → Rk and f : [0,∞) → [0,∞] such that for L 1-a.e. x ∈ R we
have

(3.1) Ex = {y ∈ R
k : |y − c(|x|)| < f(|x|)}.

Proof. By Proposition 2.5, the set F = Ψ(E) ⊂ Rn satisfies P (F ) = Pα(E),
where P stands for the standard perimeter in Rn. We define the measure μ on Rn

(3.2) μ(F ) =

∫
F

|(α+ 1)ξ|−α/(α+1) dξ dη.

Then, by (2.20) we also have the identity μ(F ) = L n(E).
We rearrange the set F using Steiner symmetrization in direction ξ. Namely,

we let

F1 = {(ξ, η) ∈ R
n : |ξ| < L 1(F η)/2},

where F η = {ξ ∈ R : (ξ, η) ∈ F}. The set F1 is ξ-symmetric and ξ-convex. By
classical results on Steiner symmetrization we have P (F1) ≤ P (F ) and the equality
P (F1) = P (F ) implies that F is ξ-convex: namely, a.e. section F η is (equivalent
to) an interval.

The μ-volume of F1 is

μ(F1) =

∫
F1

|(α+ 1)ξ|−α/(α+1) dξ dη =

∫
Rk

(∫
Fη

1

|(α+ 1)ξ|−α/(α+1) dξ
)
dη.

For any measurable set I ⊂ R with finite measure, the symmetrized set I∗ =
(−L 1(I)/2,L 1(I)/2) satisfies the following inequality (see [16], page 361):

(3.3)

∫
I

|ξ|−α/(α+1) dξ ≤
∫
I∗

|ξ|−α/(α+1) dξ.

Moreover, if L 1(IΔI∗) > 0 then the inequality is strict. This implies that μ(F1) ≥
μ(F ) and the inequality is strict if F is not equivalent to an ξ-symmetric and
ξ-convex set.

We rearrange the set F1 using Schwarz symmetrization in R
k, namely we let

F2 =
{
(ξ, η) ∈ R

n : |η| <
(L k(F ξ1 )

ωk

)1/k}
.

By classical results on Schwarz rearrangement, we have P (F2) ≤ P (F1) and the

equality P (F2) = P (F1) implies that a.e. section F ξ1 is an Euclidean ball

(3.4) F ξ1 = {η ∈ R
k : |η − d(|ξ|)| < �(|ξ|)}
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for some d(|ξ|) ∈ Rk and �(|ξ|) ∈ [0,∞]. By the Fubini–Tonelli theorem, the
μ-volume is preserved:

μ(F2) =

∫
R

|(α+ 1)ξ|−α/(α+1)L k(F ξ2 ) dξ

=

∫
R

|(α+ 1)ξ|−α/(α+1)L k(F ξ1 ) dξ = μ(F1).(3.5)

Recall that δλ(x, y) = (λx, λα+1y). The set E∗ = δλ(Φ(F2)), with λ > 0 such
that L n(E∗) = L n(E), satisfies the claims in the statement of the theorem. In
fact, we have 0 < λ ≤ 1 because

L n(Φ(F2)) = μ(F2) = μ(F1) ≥ μ(F ) = L n(E),

and then, by the scaling property of α-perimeter we have

Pα(E
∗) = λd−1Pα(Φ(F2)) ≤ Pα(Φ(F2)) = P (F2) ≤ P (F1) ≤ P (F ) = Pα(E).

This proves the first part of the theorem.
If Pα(E

∗) = Pα(E) then we have P (F2) = P (F1) and λ = 1. From the first

equality we deduce that the sections F ξ1 are of the form (3.4) and claim (3.1) holds
with c(|x|) = d

(|x|α+1/(α + 1)
)
and f(|x|) = �

(|x|α+1/(α + 1)
)
. From λ = 1 we

deduce that

μ(F ) = L n(E) = L n(E∗) = L n(Φ(F2)) = μ(F2) = μ(F1),

and thus F is ξ-symmetric and ξ-convex. The same holds then for E. �

3.2. Rearrangement in the case h ≥ 2

We prove the analogous of Theorem 3.1 when h ≥ 2. We need to start from a set
E ⊂ Rn that is x-spherically symmetric

E = {(x, y) ∈ R
n : (|x|, y) ∈ F}

for some generating set F ⊂ R+ × Rk.
By the proof of Proposition 2.4, see (2.11), we have the identity Pα(E) = Q(F ),

where

(3.6) Q(F ) = hωh sup
ψ∈F1+k(R+×Rk)

∫
F

(
∂r
(
rh−1ψ1

)
+ rh−1+α

k∑
j=1

∂yjψ1+j

)
dr dy.

Our goal is to improve the x-spherical symmetry to the x-Schwarz symmetry.
A set E ⊂ Rn is x-Schwarz symmetric if for all y ∈ Rk we have

Ey = {x ∈ R
h : (x, y) ∈ E} = {x ∈ R

h : |x| < �(y)}
for some function � : Rk → [0,∞]. To obtain the Schwarz symmetry, we use the
radial rearrangement technique introduced in [13].
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Theorem 3.2. Let h ≥ 2, k ≥ 1 and n = h+ k. For any x-spherically symmetric
set E ⊂ R

n such that Pα(E) <∞ and 0 < L n(E) <∞, there exists an x- and y-
Schwarz symmetric set E∗⊂Rn such that Pα(E

∗)≤Pα(E) and L n(E∗) = L n(E).
Moreover, if Pα(E

∗) = Pα(E) then E is x-Schwarz symmetric and there exist
functions c : [0,∞) → R

k and f : [0,∞) → [0,∞] such that, up to a negligible set,
we have

(3.7) E = {(x, y) ∈ R
n : |y − c(|x|)| < f(|x|)}.

Proof. Let F ⊂ R+×R be the generating set of E. We define the volume of F via
the formula

V (F ) = ωh

∫
F

rh−1 dr dy = L n(E).

We rearrange F in the coordinate r using the linear density rh−1+α that ap-
pears, in (3.6), in the part of divergence depending on the coordinates y. Namely,
we define the function g : Rk → [0,∞] via the identity

(3.8)
1

h+ α
g(y)h+α =

∫ g(y)

0

rh−1+αdr =

∫
Fy

rh−1+αdr,

and we let

F 
 =
{
(r, y) ∈ R

+ × R
k : 0 < r < g(y)

}
.

We claim that Q(F 
) ≤ Q(F ) and V (F 
) ≥ V (F ), with equality V (F 
) = V (F )
holding if and only if F 
 = F , up to a negligible set.

For any open set A ⊂ R+ × Rk, we define

Q0(F ;A) = sup
ψ∈F1(A)

∫
F

∂r
(
rh−1ψ

)
dr dy,

Qj(F ;A) = sup
ψ∈F1(A)

∫
F

rh−1+α ∂yjψ dr dy, j = 1, . . . , k.

(3.9)

The open sets mappings A �→ Qj(F ;A), j = 0, 1, . . . , k, extend to Borel measures.
For any Borel set B ⊂ Rk and j = 0, 1, . . . , k, we define the measures

μj(B) = Qj(F ;R
+ ×B),

μ
j(B) = Qj(F

;R+ ×B).

By Step 1 and Step 2 of the proof of Theorem 1.5 in [13], see page 106, we have

μ
j(B) ≤ μj(B) for any Borel set B ⊂ R
k and for any j = 0, 1, . . . , k. It follows that

the vector valued Borel measures μ = (μ0, . . . , μk) and μ

 = (μ
0, . . . , μ



k) satisfy

|μ
|(Rk) ≤ |μ|(Rk),

where | · | denotes the total variation. This is equivalent to Q(F 
) ≤ Q(F ).
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We claim that for any y ∈ Rk we have

(3.10)
1

h
g(y)h =

∫
F �

y

rh−1 dr ≥
∫
Fy

rh−1 dr,

with strict inequality unless F 
y = Fy up to a negligible set. From (3.10), by the

the Fubini–Tonelli theorem it follows that V (F 
) ≥ V (F ) with strict inequality
unless F 
 = F up to a negligible set. By (3.8), claim (3.10) is equivalent to

(3.11)
(
(h+ α)

∫
Fy

rh−1+α dr
)1/(h+α)

≥
(
h

∫
Fy

rh−1 dr
)1/h

,

and this inequality holds for any measurable set Fy ⊂ R+, for any h ≥ 2, and
α > 0, by Example 2.5 in [13]. Moreover, we have equality in (3.11) if and only if
Fy = (0, g(y)).

Let E
1 ⊂ Rn be the x-Schwarz symmetric set with generating set F 
. Then we
have

L n(E
1) = V (F 
) ≥ V (F ) = L n(E),

with strict inequality unless F 
 = F . Then there exists 0 < λ ≤ 1 such that the
set E
 = δλ(E



1) satisfies L n(E
) = L n(E). Since λ ≤ 1, we also have

Pα(E

) = λd−1Pα(E



1) ≤ Pα(E



1) = Q(F 
) ≤ Q(F ) = Pα(E).

If Pα(E

) = Pα(E) then it must be λ = 1 and thus F 
 = F , that in turn implies

E
 = E, up to a negligible set.
Now the proof of the theorem can be concluded applying to E
 a Schwarz

rearrangement in the variable y ∈ Rk. This rearrangement is standard, see the
general argument in [14]. The resulting set E∗ ⊂ Rn satisfies Pα(E

∗) ≤ Pα(E)
and also the other claims in the theorem. �

4. Existence of isoperimetric sets

In this section, we prove existence of solutions to the isoperimetric problem for
α-perimeter and H-perimeter. When h ≥ 2, we prove the existence of solutions in
the class of x-spherically symmetric sets. The proof is based on a concentration-
compactness argument.

For any set E ⊂ Rn and t > 0, we let

Ext− = {(x, y) ∈ E : |x| < t} and Ext = {(x, y) ∈ E : |x| = t} ,
Eyt− = {(x, y) ∈ E : |y| < t} and Eyt = {(x, y) ∈ E : |y| = t} .(4.1)

We also define

(4.2) vxE(t) = H n−1(Ext ),



1242 V. Franceschi and R. Monti

and

(4.3) vyE(t) =

∫
Ey

t

|x|α dH n−1.

In the following, we use the short notation {|x| < t} = {(x, y) ∈ Rn : |x| < t} and
{|y| < t} = {(x, y) ∈ Rn : |y| < t}.

Proposition 4.1. Let E ⊂ Rn be a set with finite measure and finite α-perimeter.
Then for a.e. t > 0 we have

Pα(E
x
t−) = Pα(E;Ext−) + vxE(t) and Pα(E

y
t−) = Pα(E;Eyt−) + vyE(t).(4.4)

Proof. We prove the claim for Eyt−. Let {φε}ε>0 be a standard family of mollifiers
in R

n and let

fε(z) =

∫
E

φε(|z − w|) dw, z ∈ R
n.

Then fε ∈ C∞(Rn) and fε → χE in L1(Rn) for ε → 0. Therefore, by the coarea
formula we also have, for a.e. t > 0, and possibly for a suitable infinitesimal
sequence of ε’s,

(4.5) lim
ε→0

∫
{|y|=t}

|fε − χE | dH n−1 = 0.

Since E has finite α-perimeter, the set {t > 0 : Pα(E; {|y| = t}) > 0} is at most
countable, and thus

(4.6) Pα(E; {|y| = t}) = 0 for a.e. t > 0.

We use the notation ∇αfε = (X1fε, . . . , Xhfε, Y1fε, . . . Ykfε), where Xi, Yj are
the vector fields (1.6). By the divergence theorem, for any ϕ ∈ C1

c (R
n,Rn) we

have∫
{|y|<t}

fε(z)divαϕ(z) dz =

∫
{|y|<t}

(
divα(fεϕ)− 〈∇αfε, ϕ〉

)
dz

= −
∫
{|y|=t}

fε(z)|x|α〈N,ϕ(z)〉 dH n−1−
∫
{|y|<t}

〈∇αfε, ϕ〉dz,(4.7)

where N = (0,−y/|y|) is the inner unit normal of {|y| < t}. For any t > 0, we
have

(4.8) lim
ε→0

∫
{|y|<t}

fε(z)divαϕ(z) dz =

∫
Ey

t−

divαϕ(z) dz,

and, for any t > 0 satisfying (4.5),

(4.9) lim
ε→0

∫
{|y|=t}

fε(z)|x|α〈N,ϕ(z)〉 dH n−1 =

∫
Ey

t

|x|α〈N,ϕ(z)〉 dH n−1.
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On the other hand, we claim that

(4.10) lim
ε→0

∫
{|y|<t}

〈∇αfε, ϕ〉dz =

∫
{|y|<t}

{ h∑
i=1

ϕidμ
xi

E +

k∑
�=1

ϕh+�|x|αdμy�E
}
,

where μxi

E and μy�E are the distributional partial derivatives of χE , that are Borel
measures on R

n, because E has finite α-perimeter. For the coordinate y�, we have∫
{|y|<t}

ϕh+�(z)|x|α∂y�fε(z)dz =
∫
{|y|<t}

ϕh+�(z)|x|α
∫
E

∂y�φε(|z − w|)dw dz

= −
∫
{|y|<t}

ϕh+�(z)|x|α
∫
E

∂η�φε(|z − w|)dw dz

=

∫
{|y|<t}

ϕh+�(z)|x|α
∫
Rn

φε(|z − w|)dμy�E (w) dz

=

∫
Rn

∫
{|y|<t}

ϕh+�(z)|x|αφε(|z − w|)dz dμy�E (w),

where we let w = (ξ, η) ∈ Rh × Rk. By (4.6), the measure μy�E is concentrated on
{|y| �= t}. It follows that

lim
ε→0

∫
Rn

∫
{|y|<t}

ϕh+�(z)|x|αφε(|z − w|)dz dμy�E (w) =

∫
{|η|<t}

ϕh+�(w)|ξ|αdμy�E (w).

This proves (4.10).
Now, from (4.7)–(4.10) we deduce that∫

E∩{|y|<t}
divαϕ(z) dz = −

∫
E∩{|y|=t}

|x|α〈N,ϕ(z)〉 dH n−1

−
∫
{|y|<t}

{ h∑
i=1

ϕi dμ
xi

E + |x|α
k∑
�=1

ϕh+� dμ
y�
E

}
,

(4.11)

and the claim follows by optimizing the right hand side over ϕ ∈ Fn(R
n). �

Proposition 4.2. Let E ⊂ Rn be a set with finite measure and finite α-perimeter.
For a.e. t > 0 we have Pα(E

x
t−) ≤ Pα(E) and Pα(E

y
t−) ≤ Pα(E).

Proof. The proof is a calibration argument. Notice that

Pα(E
y
t−) = Pα(E

y
t−; {|y| < t}) + Pα(E

y
t−; {|y| ≥ t})

= Pα(E; {|y| < t}) + Pα(E
y
t−; {|y| = t}).

Let t > 0 be such that Pα(E; {|y| = t}) = 0; a.e. t > 0 has this property, see (4.6).
It is sufficient to show that

Pα(E
y
t−; {|y| = t}) ≤ Pα(E; {|y| ≥ t}) = Pα(E; {|y| > t}).
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The function ϕ(x, y) = (0,−y/|y|) ∈ Rn, |y| �= 0, has negative divergence:

divαϕ(x, y) = −|x|α
k∑
�=1

( 1

|y| −
y2�
|y|3

)
= − (k − 1)|x|α

|y| ≤ 0.

As in the proof of (4.11), we have

0 ≥
∫
E∩{|y|>t}

divαϕdz =

∫
Ey

t

|x|α dH n−1 −
∫
{|y|>t}

|x|α
k∑
�=1

ϕh+� dμ
y�
E

≥
∫
E∩{|y|=t}

|x|α dH n−1 − Pα(E; {|y| > t}).

By the representation formula (2.3), we obtain

Pα(E
y
t−; {|y| = t}) =

∫
Ey

t

|x|α dH n−1 ≤ Pα(E; {|y| > t}).

This ends the proof. �

We prove the existence of isoperimetric sets assuming the validity of the fol-
lowing isoperimetric inequality, holding for any L n-measurable set E ⊂ Rn with
finite measure

(4.12) Pα(E) ≥ CL n(E)(d−1)/d

for some geometric constant C > 0, see [10], [6], and [7]. By the homogeneity
properties of Lebesgue measure and α-perimeter, we can define the constant

(4.13) CI = inf{Pα(E) : L n(E) = 1 and E ∈ Sx, if h ≥ 2}.

Only when h ≥ 2 we are adding the constraint E ∈ Sx. We have CI > 0 by the
validity of (4.12) for some C > 0. Our goal is to prove that the infimum in (4.13)
is attained.

Theorem 4.3. Let h, k ≥ 1 and n = h + k. There exists an x- and y-Schwarz
symmetric set E ⊂ Rn realizing the infimum in (4.13).

Proof. Let (Em)m∈N be a minimizing sequence for the infimum in (4.13), with the
additional assumption that the sets involved in the minimization are x-spherically
symmetric when h ≥ 2. Namely,

(4.14) L n(Em) = 1 and Pα(Em) ≤ CI

(
1 +

1

m

)
, m ∈ N.

By Theorems 3.1 and 3.2, we can assume that every set Em is x- and y-Schwarz
symmetric. We claim that the minimizing sequence can be also assumed to be in
a bounded region of Rn.
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Fix m ∈ N and let E = Em. For any t > 0 such that (4.4) holds we consider
the set Ext− = E ∩ {|x| < t} ∈ Sx.

We apply the isoperimetric inequality (4.12) with the constant CI > 0 in (4.13)
to the sets Ext− and E \ Ext−, and we use Proposition 4.1:

CIL
n(Ext−)

(d−1)/d ≤ Pα(E
x
t−) = Pα(E; {|x| < t}) + vxE(t)

CI(1 − L n(Ext−))
(d−1)/d ≤ Pα(E \ Ext−) = Pα(E; {|x| > t}) + vxE(t).

(4.15)

As in (4.2), we let vxE(t) = H n−1(Ext ). Adding up the two inequalities we get

(4.16) CI(L
n(Ext−)

(d−1)/d + (1 − L n(Ext−))
(d−1)/d) ≤ Pα(E) + 2vxE(t).

The function g : [0,∞) → R, g(t) = L n(Ext−) is continuous, (0, 1) ⊂ g([0,∞)) ⊂
[0, 1], and it is increasing. In particular, g is differentiable almost everywhere. For
any t > 0 such that Pα(E; {|x| = t}) = 0, also the standard perimeter vanishes,
namely P (E; {|x| = t}) = 0. With the vector field ϕ = (x/|x|, 0), and for t < s
satisfying Pα(E; {|x| = t}) = Pα(E; {|x| = s}) = 0, we have∫

Ex
s−\Ex

t−

h− 1

|x| dz =

∫
Ex

s−\Ex
t−

divϕdz

= H n−1(Exs )− H n−1(Ext ) +

∫
∂∗E∩{s<|x|<t}

〈ϕ, νE〉 dH n−1.

This implies that
lim
s→t

H n−1(Exs ) = H n−1(Ext ),

with limit restricted to s satisfying the above condition, and thus

(4.17) g′(t) = lim
s→t

1

s− t

∫ s

t

H n−1(Exτ ) dτ = H n−1(Ext ).

At this point, by (4.14), inequality (4.16) gives

(4.18) CI

(
g(t)(d−1)/d + (1− g(t))(d−1)/d − 1− 1

m

)
≤ 2g′(t).

The function ψ : [0, 1] → R, ψ(s) = s(d−1)/d+(1−s)(d−1)/d−1 is concave, it attains
its maximum at s = 1/2 with ψ(1/2) = 21/d − 1, and it satisfies ψ(s) = ψ(1 − s),
ψ(0) = ψ(1) = 0. By (4.18) we have

(4.19) g′(t) ≥ CI
2

(
ψ(g(t)) − 1

m

)
≥ CI

4
ψ(g(t)) +

CI
4

(
ψ(g(t))− 2

m

)
,

for almost every t ∈ R and every m ∈ N. Provided that m ∈ N is such that
2/m ≤ maxψ = 21/d − 1, we show that there exist constants 0 < am < bm < ∞
such that inequality (4.19) implies the following:

(4.20) g′(t) ≥ CI
4
ψ(g(t)) for a.e. t ∈ [am, bm].
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In fact, by continuity of g and ψ, and by symmetry of ψ with respect to the line
{s = 1/2}, for m large enough, there exist 0 < am < bm <∞ such that

0 < g(am) = 1− g(bm) <
1

2
and ψ(g(am)) = ψ(g(bm)) =

2

m
.

By the concavity of ψ and the monotonicity of g, it follows that ψ(g(t)) ≥ 2/m
for every t ∈ [am, bm], and (4.20) follows. As m → ∞ we have g(bm) → 1, that
implies

lim
m→∞ bm = sup{b > 0 : g(b) < 1} > 0.

Moreover, as m → ∞ we also have g(am) → 0. Since the set E is x-Schwarz
symmetric, there holds g(a) > 0 for all a > 0. Therefore, we deduce that am → 0.

We infer that, for m large enough, we have am < bm/2. Integrating inequal-
ity (4.20) on the interval [bm/2, bm], we find

(4.21)
bm
2

≤ 4

CI

∫ bm

bm/2

g′(t)
ψ(g(t))

dt ≤ 4

CI

∫ g(bm)

g(bm/2)

1

ψ(s)
ds ≤ 4

CI

∫ 1

0

1

ψ(s)
ds = �1.

We consider the set Êm = Exbm−. By (4.21), Êm is contained in the cylinder

{|x| < 2�1} and, by Proposition 4.2, it satisfies Pα(Êm) ≤ Pα(Em). Define the set

E†
m = δλm(Êm), where λm ≥ 1 is chosen in such a way that L n(Ê†

m) = 1; namely,
λm is the number

λm =
( 1

L n(Êm)

)1/d

,

where

L n(Êm) = L n(Em ∩ {|x| < bm}) = g(bm) = 1− g(am).(4.22)

By the concavity of ψ, for 0 < s < 1/2 the graph of ψ lays above the straight
line through the origin passing through the maximum (1/2, ψ(1/2)), i.e., ψ(s) >
2(21/d − 1)s. Therefore, since g(am) < 1/2 and ψ(g(am)) = 2/m, then

g(am) ≤ 1

m(21/d − 1)
,

and thus

λm ≤
( 1

1− 1
m(21/d−1)

)1/d

=
( m

m− 1
21/d−1

)1/d

.

By homogeneity of α-perimeter,

Pα(E
†
m) = λd−1

m Pα(Êm) ≤ λd−1
m Pα(Em) ≤ λd−1

m CI

(
1 +

1

m

)
≤ CI

(
1 +

1

m

)( m

m− 1
21/d−1

)(d−1)/d

.
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In conclusion, (E†
m)m∈N is a minimizing sequence for CI and, for m large enough,

it is contained in the cylinder {|x| < �}, where � = 21/d+1�1.
Now we consider the case of the y-variable. We start again from (4.15) for the

sets Eyt− for t > 0. Now the set E can be assumed to be contained in the cylinder
{|x| < �}. In this case, we have

vyE(t) =

∫
Ey

t

|x|α dH n−1 ≤ �αH n−1(Eyt ) = �αg′(t).

So inequality (4.16) reads

(4.23) CI

(
g(t)(d−1)/d + (1 − g(t))(d−1)/d − 1− 1

m

)
≤ 2 �αg′(t).

Now the argument continues exactly as in the first case. The conclusion is that
there exists a minimizing sequence (Em)m∈N for (4.13) and there exists � > 0 such
that we have:

i) L n(Em) = 1 for all m ∈ N;

ii) Pα(Em) ≤ CI(1 + 1/m) for all m ∈ N;

iii) Em ⊂ {(x, y) ∈ R
n : |x| < � and |y| < �} for all m ∈ N;

iv) each Em is x- and y-Schwarz symmetric.

By the compactness theorem for sets of finite α-perimeter (see [10] for a general
statement that covers our case), there exists a set E ⊂ R

n of finite α-perimeter
which is the L1-limit of (a subsequence of) the sequence (Em)m∈N. Then we have

L n(E) = lim
m→∞L n(Em) = 1.

Moreover, by lower semicontinuity of α-perimeter

Pα(E) ≤ lim inf
m→∞ Pα(Em) = CI .

The set E is x- and y-Schwarz symmetric, because these symmetries are preserved
by the L1-convergence. This concludes the proof. �

5. Profile of isoperimetric sets

In Theorem 4.3, we proved existence of isoperimetric sets, in fact in the class of
x-spherically symmetric sets when h ≥ 2. By the characterization of the equality
case in Theorems 3.1 and 3.2, any isoperimetric set E is x-Schwarz symmetric and
there are functions c : [0,∞) → Rk and f : [0,∞) → [0,∞) such that

(5.1) E = {(x, y) ∈ R
n : |y − c(|x|)| < f(|x|)}.

The function f is decreasing. We will prove in Proposition 5.4 that, for isoperi-
metric sets, the function c is constant.
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We start with the characterization of an isoperimetric set E with constant
function c = 0. Let F ⊂ R

+ × R
+ be the generating set of E,

E = {(x, y) ∈ R
n : (|x|, |y|) ∈ F}.

The set F is of the form

(5.2) F = {(r, s) ∈ R
+ × R

+ : 0 < s < f(r), r ∈ (0, r0)},
where f : (0, r0) → (0,∞) is a decreasing function, for some 0 < r0 ≤ ∞.

By the regularity theory of Λ-minimizers of perimeter, the boundary ∂E is
a C∞ hypersurface where x �= 0. We do not need the general regularity theory,
and we prove this fact in our case by an elementary method that gives also the
C∞-smoothness of the function f in (5.2).

5.1. Smoothness of f

We prove that the boundary ∂F ⊂ R+ × R+ is the graph of a smooth function
s = f(r).

We rotate clockwise by 45 degrees the coordinate system (r, s) ∈ R2 and we
call the new coordinates (�, σ); namely, we let

r =
σ + �√

2
, s =

σ − �√
2
.

There exist −∞ ≤ a < 0 < b ≤ ∞ and a function g : (a, b) → R such that the
boundary ∂F ⊂ R+ × R+ is a graph σ = g(�); namely, we have

∂F =
{(
r(�), s(�)

)
=

(g(�) + �√
2

,
g(�)− �√

2

)
: � ∈ (a, b)

}
.

Since the function f is decreasing, the function g is 1-Lipschitz continuous.
By formula (2.10) and by the standard length formula for Lipschitz graphs, the

α-perimeter of E is

Pα(E) = chk

∫ b

a

√
s′2 + r2αr′2 rh−1sk−1 d�,

where chk = hkωhωk. On the other hand, the volume of E is

L n(E) = chk

∫ b

a

( ∫ g()

||

(σ + �√
2

)h−1(σ − �√
2

)k−1

dσ
)
d�.

For ε ∈ R and ψ ∈ C∞
c (a, b), let gε = g + εψ, sε = s+ ε ψ√

2
, rε = r + ε ψ√

2
and let

Fε ⊂ R+ × R+ be the subgraph in σ > |�| of the function gε. The set Eε ⊂ Rn

with generating set Fε has α-perimeter

p(ε) = Pα(Eε)

= chk

∫ b

a

√(
s′ + ε

ψ′
√
2

)2

+
(
r + ε

ψ√
2

)2α(
r′ + ε

ψ′
√
2

)2(
r + ε

ψ√
2

)h−1(
s+ ε

ψ√
2

)k−1

d�,
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and volume

v(ε) = L n(Eε) = chk

∫ b

a

(∫ g()+εψ()

||

(σ + �√
2

)h−1(σ − �√
2

)k−1

dσ
)
d�.

Since E is an isoperimetric set, we have

0 =
d

dε

p(ε)d

v(ε)d−1

∣∣∣∣
ε=0

=
dpd−1p′vd−1 − pd(d− 1)vd−2v′

v2d−2

∣∣∣∣
ε=0

,

that gives

(5.3) p′(0)− Chkαv
′(0) = 0, where Chkα =

d− 1

d

Pα(E)

L n(E)
.

After some computations, we find

p′(0) =
chk√
2

∫ b

a

{ (r2αr′ − s′)ψ′ + 2αr2α−1r′2ψ√
s′2 + r2αr′2

+

+
√
s′2 + r2αr′2

[h− 1

r
+
k − 1

s

]
ψ
}
rh−1sk−1 d�,

(5.4)

and

(5.5) v′(0) = chk

∫ b

a

rh−1sk−1ψ d�.

From (5.3), (5.4), and (5.5) we deduce that g is a 1-Lipschitz function that,
via the auxiliary functions r and s, solves in a weak sense the ordinary differential
equation

d

d�

(
rh−1sk−1 r2αr′ − s′√

s′2 + r2αr′2

)
= rh−1sk−1

{ 2αr2α−1r′2√
s′2 + r2αr′2

+
√
s′2 + r2αr′2

[h− 1

r
+
k − 1

s

]
−√

2Chkα

}
.(5.6)

By an elementary argument that is omitted, if follows that g ∈ C∞(a, b).
We claim that for all � ∈ (a, b) there holds g′(�) �= −1. By contradiction,

assume that there exists �̄ ∈ (a, b) such that g′(�̄) = −1, i.e., r′(�̄) = 0 and
s′(�̄) = −√

2. Inserting these values into the differential equation (5.6) we can
compute g′′(�̄) as a function of g(�̄); namely, we obtain

(5.7) g′′(�̄) = 2α+1 2(h− 1)−√
2Chkαr(�̄)

r(�̄)2α+1
.

Now there are three possibilities:

(1) g′′(�̄) < 0. In this case, g is strictly concave at �̄ and this contradicts the
fact that E is y-Schwarz symmetric.
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(2) g′′(�̄) > 0. In this case, g′ is strictly increasing at �̄ and since g′(�̄) = −1
this contradicts the fact the g is 1-Lipschitz, equivalently, the fact that E is
x-Schwarz symmetric.

(3) g′′(�̄) = 0. In this case, the value of g at �̄ is, by (5.7),

(5.8) g(�̄) = −�̄+
√
2(h− 1)

Chkα
.

The function ĝ(�) = −� +
√
2(h− 1)/Chkα, � ∈ R, is the unique solution

to the ordinary differential equation (5.6) with initial conditions g(�̄) given
by (5.8) and g′(�̄) = −1. It follows that g = ĝ and this contradicts the
boundedness of the isoperimetric set; namely, the fact that isoperimetric sets
have finite measure.

This proves that g′(�) �= −1 for all � ∈ (a, b).

5.2. Differential equations for the profile function

By the discussion in the previous section, the function f appearing in the definition
of the set F in (5.2) is in C∞(0, r0). The function f is decreasing, f ′ ≤ 0. By
formula (2.10), the perimeter of the set E with generating set F is

Pα(E) = chk

∫ r0

0

√
f ′(r)2 + r2α rh−1f(r)k−1dr,(5.9)

and the volume of E is

(5.10) L n(E) =
chk
k

∫ r0

0

rh−1f(r)kdr.

As in the previous subsection, for ψ ∈ C∞
c (0, r0) and ε ∈ R, we consider the

perturbation f + εψ and we define the set

Eε =
{
(x, y) ∈ R

n : |y| < f(|x|) + εψ(|x|)}.
Then we have

p(ε) = Pα(Eε) = chk

∫ r0

0

√
(f ′ + εψ′)2 + r2α (f + εψ)k−1rh−1 dr,

v(ε) = L n(Eε) =
chk
k

∫ r0

0

(f + εψ)krh−1 dr,

and from these formulas we compute the first derivatives at ε = 0:

p′(0) = chk

∫ r0

0

[ fk−1f ′√
f ′2 + r2α

ψ′ + (k − 1)fk−2
√
f ′2 + r2αψ

]
rh−1 dr,

v′(0) = chk

∫ r0

0

fk−1ψ rh−1 dr.
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The minimality equation (5.3) reads

(5.11)

∫ r0

0

( f ′fk−1√
f ′2 + r2α

ψ′+
[
(k−1)fk−2

√
f ′2 + r2α−Chkαfk−1

]
ψ
)
rh−1 dr = 0.

Integrating by parts the term with ψ′ and using the fact that ψ is arbitrary, we
deduce that f solves the following second order ordinary differential equation:

(5.12) − d

dr

(
rh−1 f ′fk−1√

f ′2 + r2α

)
+rh−1

[
(k−1)

√
f ′2 + r2α fk−2 − Chkαf

k−1
]
= 0.

The normal form of this differential equation is

(5.13) f ′′ =
αf ′

r
+ (f ′2 + r2α)

(k − 1

f
− (h− 1)

f ′

r2α+1

)
− Chkα

(f ′2 + r2α)3/2

r2α
,

and it can be rearranged in the following way:

∂

∂r

( f ′

rα

)
= (f ′2 + r2α)

(k − 1

frα
− (h− 1)

f ′

r3α+1

)
− Chkα

(f ′2 + r2α)3/2

r3α

= rα
(( f ′

rα

)2

+ 1
)(k − 1

f
− (h− 1)

rα+1

f ′

rα

)
− Chkα

(( f ′

rα

)2

+ 1
)3/2

.(5.14)

With the substitution

(5.15) z = sin arctan
( f ′

rα

)
=

f ′√
r2α + f ′2 ,

equation (5.14) transforms into the equation

(5.16) (rh−1z)′ = rα+h−1 k − 1

f

√
1− z2 − Chkαr

h−1.

We integrate this equation on the interval (0, r). When h > 1 we use the fact
that rh−1z = 0 at r = 0. When h = 1 we use the fact that z has a finite limit
as r → 0+. In both cases, we deduce that there exists a constant D ∈ R such that

(5.17) z(r) = r1−h
∫ r

0

sα+h−1 k − 1

f

√
1− z2 ds− Chkα

h
r +Dr1−h.

Inserting (5.15) into (5.17), we get

(5.18)
f ′√

r2α + f ′2 = r1−h
∫ r

0

s2α+h−1 k − 1

f
√
s2α + f ′2 ds−

Chkα
h

r +Dr1−h.

If h ≥ 2, from (5.18) we deduce that D = 0. In fact, the left-hand side of (5.18)
is bounded as r → 0+, while the right-hand side diverges to ±∞ according to the
sign of D �= 0. In the next section, we prove that D = 0 also when h = 1, provided
that f is the profile of an isoperimetric set.
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Remark 5.1 (Computation of the solution when k = 1). When k = 1 and D = 0,
equation (5.18) reads

f ′√
r2α + f ′2 = −Chkα

h
r.

and this is equivalent to

(5.19) f ′(r) = − Chkα r
α+1√

h2 − C2
hkα r

2
, r ∈ [0, r0).

Without loss of generality we can assume that r0 = 1 and this holds if and only if
Chkα = h. Integrating (5.19) with f(1) = 0 we obtain the solution

f(r) =

∫ 1

r

sα+1

√
1− s2

ds =

∫ π/2

arcsin r

sinα+1(s) ds.

This is the profile function for the isoperimetric set when k = 1 in (1.12).

5.3. Proof that D = 0 in (5.18)

We prove that D = 0 in the case h = 1. We assume by contradiction that D �= 0.
For a small parameter s > 0, let fs : [0, r0) → R+ be the function

fs(r) =

{
f(s) for 0 < r ≤ s,
f(r) for r > s,

and define the set

Es =
{
(x, y) ∈ R

n : |y| < fs(|x|)
}
.

Recall that the isoperimetric ratio is Iα(E) = Pα(E)d/L n(E)d−1. We claim that
for s > 0 small, the difference of isoperimetric ratios

Iα(Es)− Iα(E) =
Pα(Es)

d

L n(Es)d−1
− Pα(E)d

L n(E)d−1

=
Pα(Es)

dL n(E)d−1 − Pα(E)dL n(Es)
d−1

L n(Es)d−1L n(E)d−1

(5.20)

is strictly negative.
The α-perimeter of Es is

Pα(Es) = chk

∫ ∞

0

√
f ′
s
2 + r2α fk−1

s rh−1 dr

= chk

[
f(s)k−1

∫ s

0

rα+h−1 dr +

∫ ∞

s

√
f ′2 + r2α fk−1 rh−1 dr

]
= Pα(E) + chk

∫ s

0

[
rαf(s)k−1 −

√
f ′2 + r2α fk−1

]
rh−1 dr,
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and its volume is

L n(Es) =
chk
k

∫ ∞

0

fks r
h−1 dr =

chk
k

(∫ s

0

f(s)krh−1 dr +

∫ ∞

s

f(r)k rh−1 dr
)

= L n(E) +
chk
k

∫ s

0

(
f(s)k − f(r)k

)
rh−1 dr,

so, by elementary Taylor approximations, we find

L n(E)d−1Pα(Es)
d

= L n(E)d−1
{
Pα(E) + chk

∫ s

0

[
rαf(s)k−1 −

√
f ′2 + r2αfk−1

]
rh−1 dr

}d
= L n(E)d−1

{
Pα(E)d + dchkPα(E)d−1

(∫ s

0

[
rαf(s)k−1

−
√
f ′2 + r2αfk−1

]
rh−1 dr

)
+R1(s)

}
,

where R1(s) is a higher order infinitesimal as s→ 0, and

Pα(E)dL n(Es)
d−1 = Pα(E)d

{
L n(E) +

chk
k

∫ s

0

(
f(s)k − f(r)k

)
rh−1 dr

}d−1

= Pα(E)d
{

L n(E)d−1+
chk(d−1)

k
L n(E)d−2

∫ s

0

(
f(s)k−f(r)k) rh−1 dr+R2(s)

}
,

where R2(s) is a higher order infinitesimal as s→ 0. The difference is thus

Δ(s) = P (Es)
dL n(E)d−1 − Pα(E)dL n(Es)

d−1

= chk Pα(E)dL n(E)d−1
{
d
A(s)

Pα(E)
− (d− 1)

B(s)

kL n(E)

}
,

where we let

A(s) =

∫ s

0

[
rαf(s)k−1 −

√
f ′2 + r2α fk−1

]
rh−1 dr +R1(s),

B(s) =

∫ s

0

(
f(s)k − f(r)k

)
rh−1 dr +R2(s).

Now we let h = 1 and we observe that the differential equation (5.17) or its
equivalent version (5.18) imply that

lim
r→0+

f ′(r)
rα

= D.

So for D �= 0 and, in fact, for D < 0 (because f is decreasing) we have

lim
s→0+

A(s)

sα+h
= f(0)k−1 1−

√
D2 + 1

α+ h
< 0, and lim

s→0+

B(s)

sα+h
= 0.

It follows that for s > 0 small there holds

Δ(s)

sh+α
= f(0)k−1 1−

√
D2 + 1

α+ h
d chk Pα(E)d−1L n(E)d−1 + o(1) < 0.

Then E is not an isoperimetric set. This proves that D = 0.
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5.4. Initial and final conditions for the profile function

In this section, we study the behavior of f at 0 and r0.

Proposition 5.2. The profile function f of an x- and y-Schwarz symmetric
isoperimetric set E ⊂ Rn satisfies f ∈ C∞(0, r0)∩C([0, r0]) for some 0 < r0 <∞,
f ′ ≤ 0, f(r0) = 0, it solves the differential equation (5.18) with D = 0, and

lim
r→r−0

f ′(r) = −∞ and lim
r→0+

f ′(r)
rα+1

= −Chkα
h

.

Proof. By Remark 5.1, it is sufficient to prove that r0 < ∞ when k > 1. Assume
by contradiction that r0 = ∞. In this case, it must be

(5.21) lim
r→∞ f(r) = 0,

otherwise the set E with profile f would have infinite volume.
For ε > 0 and M > 0, let us consider the set

KM =
{
r ≥M : f ′(r) ≥ −ε}.

Recall that in our case we have f ′ ≤ 0. The set KM is closed and nonempty for
any M . If KM = ∅ for some M , then this would contradict (5.21).

Let r̄ ∈ KM . From (5.13) we have

(5.22) f ′′(r̄) ≥ −αε
r̄

+ r̄2α
k − 1

f(r̄)
− Chkα

(ε2 + r̄2α)3/2

r̄2α
≥ 1

2
M2α k − 1

f(M)
> 0,

provided that M is large enough. We deduce that there exists δ > 0 such that
f ′(r) ≥ −ε for all r ∈ [r̄, r̄ + δ). This proves that KM is open to the right. It
follows that it must be KM = [M,∞). This proves that

lim
r→∞ f ′(r) = 0,

and this in turn contradicts (5.22).
Now we have r0 <∞ and we also have

L = lim
r→r−0

f(r) = 0.

If it were L > 0, then the isoperimetric set would have a “vertical part”. We would
get a contradiction by the argument at point (3) at the end of Section 5.1.

We claim that
lim
r→r−0

f ′(r) = −∞.

For M > 0 and 0 < s < r0, consider the set

Ks =
{
s ≤ r < r0 : f ′(r) ≥ −M}

.
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By contradiction assume that there exists M > 0 such that Ks �= ∅ for all
0 < s < r0. If r̄ ∈ Ks, we have as above f ′′(r̄) ≥ 1

2 (k − 1)s2α/f(s) > 0. We
deduce that there exists s < r0 such that 0 ≥ f ′(r) ≥ −M for all r ∈ [s, r0).
From (5.13), we deduce that there exists a constant C > 0 such that

f ′′(r) ≥ C

f(r)
.

Multiplying by f ′ ≤ 0 and integrating the resulting inequality we find

f ′(r)2 ≤ 2C log |f(r)|+ C0,

for some constant C0∈R. This is a contradiction because limr→r−0
log |f(r)| = −∞.

By Section 5.2, we have D = 0 in (5.18). In this case, by (5.17) we can compute
the limit

lim
r→0+

f ′(r)
rα+1

= lim
r→0+

−Chkα
h

+ r−h
∫ r

0

sα+h−1 k − 1

f

√
1− z2 ds = −Chkα

h
.

This ends the proof. �

Remark 5.3. The Cauchy problem for the differential equation (5.13), with the
initial conditions f(0) = 1 and f ′(0) = 0, has a unique decreasing solution on some
interval [0, δ], with δ > 0, in the class of functions f ∈ C1([0, δ]) ∩C∞((0, δ]) such
that

lim
r→0+

f ′(r)
rα+1

= −Chkα
h

.

This can be proved using the Banach fixed point theorem with the norm

‖f‖ = max
r∈[0,δ]

|f(r)|+ max
r∈[0,δ]

|f ′(r)|
rα+1

.

From Theorem 4.3 and Proposition 5.2, there exists a value of the constant
Chkα > 0 such that the maximal decreasing solution of the Cauchy problem has a
maximal interval [0, r0] such that f(r0) = 0.

5.5. Isoperimetric sets are y-Schwarz symmetric

To conclude the proof of Theorems 1.1–1.3 we are left to show that for an isoperi-
metric set E of the type (5.1), the function c of the centers is constant.

Proposition 5.4. Let h, k ≥ 1 and n = h+ k. Let E ⊂ Rn be a set of the form

E = {(x, y) ∈ R
n : |y − c(|x|)| < f(|x|)}

for measurable functions c : [0,∞) → Rk and f : [0,∞) → [0,∞]. If E is an iso-
perimetric set for the problem (4.13), then the function c is constant.
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Proof. If E is isoperimetric, then E∗ = {(x, y) ∈ Rn : |y| < f(|x|)}, the y-Schwarz
rearrangement of E, is also an isoperimetric set, see Theorems 3.1 and 3.2. Then,
by Proposition 5.2, we have f ∈ C∞(0, r0) ∩ C([0, r0]) with f(r0) = 0 and f ′ ≤ 0.
In particular, f ∈ Liploc(0, r0). We claim that c ∈ Liploc(0, r0).

Since E is x-Schwarz symmetric, for any 0 < r1 < r2 < r0 we have the inclusion

{y ∈ R
k : |y − c(r2)| ≤ f(r2)} ⊂ {y ∈ R

k : |y − c(r1)| ≤ f(r1)}.
Assume c(r2) �= c(r1) and let ϑ = c(r2)− c(r1)/|c(r2)− c(r1)|. Then we have

c(r2) + ϑf(r2) ∈ {y ∈ R
k : |y − c(r1)| ≤ f(r1)},

and therefore

|c(r2)− c(r1)|+ f(r2) = |c(r2) + ϑf(r2)− c(r1)| ≤ f(r1).

This implies that c is locally Lipschitz on (0, r0).
Let F ⊂ R+ × Rk be the generating set of E:

E = {(x, y) ∈ R
n : (|x|, y) ∈ F}.

By the discussion above, the set E and thus also the set F have locally Lipschitz
boundary away from a negligible set. By the representation formula (2.11), we
have

Pα(E) = Q(F ) = hωh

∫
∂F

√
N2
r + r2α|Ny|2 rh−1 dH k,

where (Nr, Ny) ∈ R1+k is the unit normal to ∂F in R+ × Rk, that is defined H k

almost everywhere on the boundary. By the coarea formula (see [1]) we also have

Q(F ) = hωh

∫ ∞

0

rh−1

∫
∂Fr

√
N2
r + r2α|Ny|2√
1−N2

r

dH k−1 dr,

where ∂Fr = ∂{y ∈ Rk : (r, y) ∈ F} = {y ∈ Rk : |y − c(r)| = f(r)}.
A defining equation for ∂F is |y − c(r)|2 − f(r)2 = 0. From this equation, we

find

Nr = − 〈y − c, c′〉+ ff ′√
(〈y − c, c′〉+ ff ′)2 + |y − c|2 , Ny =

y − c√
(〈y − c, c′〉+ ff ′)2 + |y − c|2 ,

and thus, by translation and scaling in the inner integral,

Q(F ) =hωh

∫ ∞

0

rh−1

∫
|y−c(r)|=f(r)

√{ 〈y − c(r), c′(r)〉
f(r)

+ f ′(r)
}2

+ r2α dH k−1(y) dr

= hωh

∫ ∞

0

rh−1f(r)k−1

∫
|y|=1

√{〈y, c′(r)〉 + f ′(r)
}2

+ r2α dH k−1(y) dr.

For any r > 0, the function Φ : Rh → R+

Φ(z) =

∫
|y|=1

√(〈y, z〉+ f ′(r)
)2

+ r2α dH k−1(y)
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is strictly convex. This follows from the strict convexity of t �→ √
r2α + t2. The

function Φ is also radially symmetric because the integral is invariant under or-
thogonal transformations. It follows that Φ attains the minimum at the point
z = 0 and that this minimum point is unique.

Denoting by F ∗ the generating set of E∗, we deduce that if c′ is not 0 a.e.,
then we have the strict inequality Pα(E

∗) = Q(F ∗) < Q(F ) = Pα(E), and E is
not isoperimetric. Hence, c is constant and this concludes the proof. �
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