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Quasicrystals with discrete support and spectrum

Nir Lev and Alexander Olevskii

Abstract. We proved recently that a measure on R, whose support and
spectrum are both uniformly discrete sets, must have a periodic structure.
Here we show that this is not the case if the support and the spectrum are
just discrete closed sets.

1. Introduction

By a Fourier quasicrystal one often means an (infinite) pure point measure μ,
whose Fourier transform is also a pure point measure (see e.g. [2], [6]).

Consider a (complex) measure μ on R
n supported on a discrete set Λ:

(1.1) μ =
∑
λ∈Λ

μ(λ) δλ, μ(λ) �= 0.

Assume that μ is a temperate distribution, and that its Fourier transform

μ̂(t) :=
∑
λ∈Λ

μ(λ) e−2πi〈λ,t〉

(in the sense of distributions) is also a pure point measure, namely

(1.2) μ̂ =
∑
s∈S

μ̂(s) δs, μ̂(s) �= 0.

The set Λ is called the support of the measure μ, while S is called the spectrum.
The classical example of such a measure comes from Poisson’s summation for-

mula. The measure there is the sum of unit masses over a lattice, and the spectrum
is the dual lattice. The problem whether other measures of Poisson type may exist,
was studied by different authors. See, in particular, [8], [7], [16], [5], [1], [3], [4],
and [10]. In the last paper one may find a comprehensive survey and references up
to that date.
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Notice that a new peak of interest in the subject appeared after the experimen-
tal discovery in the middle of 80’s of the physical quasicrystals, demonstrating that
an aperiodic atomic structure may have a diffraction pattern consisting of spots.

The “cut-and-project” construction, introduced by Y. Meyer in the beginning
of 70’s [16], may serve as a good model for this phenomenon, see [17]. It provides
many examples of measures with uniformly discrete support and dense countable
spectrum.

On the other hand, we proved recently that if both the support and the spec-
trum of a measure on R are uniformly discrete sets then the measure has a periodic
structure.

Theorem 1 ([11, 12]). Let μ be a measure on R satisfying (1.1) and (1.2), and
assume that Λ and S are both uniformly discrete sets. Then Λ is contained in a
finite union of translates of an arithmetic progression.

Moreover, it was proved that such a measure can be obtained from Poisson’s
summation formula by a finite number of shifts, multiplication on exponentials, and
taking linear combinations. A similar result was also proved for positive measures
in R

n.1

The goal of the present note is to establish the sharpness of this result, in the
sense that the condition of uniform discreteness cannot be relaxed much. More
precisely, we prove the following:

Theorem 2. There is a (non-zero) real, signed measure μ on R satisfying (1.1)
and (1.2), such that

(i) Λ and S are both discrete closed sets;

(ii) Λ contains only finitely many elements of any arithmetic progression.

The condition (ii) indicates that the measure μ is “non-periodic” in a strong
sense. In particular, μ cannot be obtained from Poisson’s summation formula by
the procedures mentioned above. In Section 6 below we discuss some additional
properties of the measure in our construction that illustrate its non-periodic nature.

Remarks. 1) It follows from (ii) that Λ may not be covered by any finite union
of arithmetic progressions. We will see that in our example, this latter property is
true for S as well.

2) The measure μ constructed in the proof, as well as its Fourier transform μ̂,
are translation-bounded measures on R.

2. Notation

A set Λ ⊂ R is a discrete closed set if it has finitely many points in every bounded
interval. The set Λ is called uniformly discrete (u.d.) if |λ − λ′| � δ(Λ) > 0 for
any two distinct points λ, λ′ ∈ Λ.

1Note added in proof. Recently we have strengthened this result so that only the spectrum is
assumed to be a uniformly discrete set, while the support is just a discrete closed set. See [13].
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By a “measure” on R we mean a complex, locally finite measure (usually in-
finite) which is also a temperate distribution. A measure μ is called translation-
bounded if

(2.1) sup
x∈R

∫ x+1

x

|dμ| <∞.

By the “support” of a pure point measure μ we mean the countable set of the
non-zero atoms of μ. This should not be confused with the notion of support in
the sense of distributions, which is always a closed set. In the construction below
this difference will not be important, since both μ and μ̂ are supported by discrete
closed sets.

The Fourier transform on R will be normalized as follows:

ϕ̂(t) =

∫
R

ϕ(x) e−2πitx dx.

We denote by supp(ϕ) the closed support of a Schwartz function ϕ, and by spec(ϕ)
the closed support of its Fourier transform ϕ̂.

If α is a temperate distribution then 〈α, ϕ〉 denotes the action of α on a Schwartz
function ϕ. The Fourier transform α̂ is defined by 〈α̂, ϕ〉 = 〈α, ϕ̂〉.

By a (full-rank) lattice Γ ⊂ R
n we mean the image of Zn under some invertible

linear transformation T . The determinant det(Γ) is equal to | det(T )|. The dual
lattice Γ∗ is the set of all vectors γ∗ such that 〈γ, γ∗〉 ∈ Z, γ ∈ Γ.

3. Interpolation in Paley–Wiener spaces

3.1. Let Ω be a bounded, measurable set in R. We denote by PWΩ the Paley–
Wiener space consisting of all functions f ∈ L2(R) whose Fourier transform van-
ishes a.e. on R \Ω. Since Ω is bounded, the elements of the space PWΩ are entire
functions of finite exponential type.

A countable set Λ ⊂ R is called an interpolation set for PWΩ if for every
sequence {c(λ)} ∈ �2(Λ) there exists at least one f ∈ PWΩ such that f(λ) =
c(λ), λ ∈ Λ. It is well known that such Λ must be a u.d. set, and there is a
constantK = K(Λ,Ω) such that the solution f may be chosen to satisfy ‖f‖L2(R) �
K‖{c(λ)}‖�2(Λ) (the latter follows from standard results in functional analysis).

3.2. We will need to interpolate by Schwartz functions with a given spectrum.
Recall that the topology on the Schwartz space on R is determined by the family
of seminorms

‖f‖m,k := sup
x∈R

|xmf (k)(x)| (m, k � 0).

Lemma 3.1. Let Λ be an interpolation set for PWΩ where Ω is a compact set
in R, and let ε > 0 be given. Then, for any sequence {c(λ)}, λ ∈ Λ, satisfying

(3.1) sup
λ∈Λ

|c(λ)| · (1 + |λ|)N <∞ (N = 1, 2, 3, . . . ),
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one can find a Schwartz function f ∈ PWΩ+[−ε,ε] which solves the interpolation
problem f(λ) = c(λ), λ ∈ Λ, and moreover satisfies

(3.2) ‖f‖m,k � Cm,k sup
λ∈Λ

|c(λ)| · (1 + |λ|)m (m, k � 0)

for some positive constants Cm,k = Cm,k(Λ,Ω, ε) which do not depend on {c(λ)}.
Proof. Choose functions ϕλ ∈ PWΩ (λ ∈ Λ) satisfying

ϕλ(λ) = 1, ϕλ(λ
′) = 0 (λ′ ∈ Λ, λ′ �= λ)

and
sup
λ∈Λ

‖ϕλ‖L2(R) <∞.

Observe that this implies that

(3.3) Mk := sup
λ∈Λ

‖ϕ(k)
λ ‖∞ <∞

for every k � 0. Choose a Schwartz function Φ such that Φ(0) = 1 and spec(Φ) ⊂
(−ε, ε). Since Λ is a u.d. set we have that

(3.4) Lm,j := sup
x∈R

|x|m
∑
λ∈Λ

(1 + |λ|)−m|Φ(j)(x− λ)| <∞

for every m, j � 0. Using (3.1), (3.3) and (3.4), we see that the function

f(x) =
∑
λ∈Λ

c(λ)Φ(x − λ)ϕλ(x)

is a Schwartz function in PWΩ+[−ε,ε] and satisfies (3.2) with

Cm,k =

k∑
j=0

(
k

j

)
Lm,jMk−j .

Clearly f solves the interpolation problem, so this proves the lemma. �

4. The projection method

4.1. Let Γ be a lattice in R
2. Consider the projections p1(x, y) = x and p2(x, y) =

y, and assume that the restrictions of p1 and p2 to Γ are injective, and so their
images are dense in R. Let Γ∗ be the dual lattice, then the restrictions of p1 and p2
to Γ∗ are also injective and have dense images.

If I is a bounded interval in R, then the set

(4.1) Λ(Γ, I) := {p1(γ) : γ ∈ Γ, p2(γ) ∈ I}
is called a “model set”, or a “cut-and-project” set. Meyer observed ([16], p. 30, see
also [17]) that these sets provide examples of non-periodic u.d. sets which support
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a measure μ, whose Fourier transform is also a pure point measure. Such a measure
may be obtained by choosing a Schwartz function ϕ with supp(ϕ̂) ⊂ I, and taking

(4.2) μ =
∑

(x,y)∈Γ

ϕ̂(y) δx.

The Fourier transform of μ is then the measure

(4.3) μ̂ =
1

det Γ

∑
(u,v)∈Γ∗

ϕ(v) δu.

However, ϕ cannot also be supported on a bounded interval, and the support of
the pure point measure μ̂ is generally everywhere dense in R.

Our approach is inspired by Meyer’s construction, but an essential difference
is that in our example, neither ϕ nor ϕ̂ will have a bounded support. We will
nevertheless see that by a special choice of the function ϕ, the measure (4.2) and
its Fourier transform (4.3) can each be supported by a discrete closed set, obtained
by a certain generalization of the cut-and-project construction.

4.2. For completeness of the exposition, we formulate the correspondence be-
tween the measures (4.2) and (4.3) for a general Schwartz function ϕ, including a
short proof.

Lemma 4.1. Let ϕ be a Schwartz function on R. Then (4.2) defines a translation-
bounded measure μ on R, whose Fourier transform is the (also translation-bounded )
measure (4.3).

Proof. Fix M > 0 such that every cube with side length 1 contains at most M
points of Γ. For x ∈ R consider the cubes Bk(x) := [x, x + 1]× [k, k + 1), k ∈ Z.
Then∫ x+1

x

|dμ| =
∑
k∈Z

∑
γ∈Γ∩Bk(x)

|ϕ̂(p2(γ))| �M
∑
k∈Z

sup
y∈[k,k+1)

|ϕ̂(y)| =: C(Γ, ϕ) <∞.

Hence μ is a translation-bounded measure, and in the same way one can show that
the measure in (4.3) is also translation-bounded. It remains to show that the latter
measure is indeed the Fourier transform of μ.

Let ψ be a Schwartz function on R. Then

〈μ̂, ψ〉 = 〈μ, ψ̂〉 =
∑

(x,y)∈Γ

ψ̂(x) ϕ̂(y) =
1

det Γ

∑
(u,v)∈Γ∗

ψ(u)ϕ(v),

where the last equality follows from Poisson’s summation formula. As this holds
for every Schwartz function ψ, this confirms (4.3). �

4.3. Model sets also play an interesting role in the interpolation theory in Paley–
Wiener spaces. It was proved in [18], [19] that there exist “universal” sets Λ of
positive density, which serve as a set of interpolation for PWΩ whenever Ω is a finite
union of intervals with sufficiently large measure. An example of such universal
interpolation sets can also be obtained by the “cut-and-project” construction:
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Theorem M ([14], [15]). Let I be a bounded interval in R. Then the set Λ(Γ, I)
defined by (4.1) is an interpolation set for PWΩ whenever Ω is a finite union of
intervals such that

mes(Ω) >
|I|

det Γ
.

Here |I| denotes the length of the interval I.

5. The construction

5.1. Suppose that we are given a sequence of real numbers

0 = a0 < a1 < a2 < a3 < · · · , an → ∞ (n→ ∞)

and also another sequence

0 < h1 < h2 < h3 < · · · , hn → ∞ (n→ ∞).

We partition the plane R
2 into two disjoint sets A,B defined by

A =

∞⋃
n=1

{(x, y) : |x| � an−1, |y| � hn},(5.1)

B =

∞⋃
n=1

{(x, y) : |x| < an, |y| > hn},(5.2)

and consider the two sets

Λ := {p1(γ) : γ ∈ Γ ∩A}, Q := {p2(γ) : γ ∈ Γ ∩B}.
Observe that Λ andQ are both discrete closed sets in R (see Figure 1). Also observe
that if ϕ is a Schwartz function such that ϕ̂ vanishes on Q, then the support of
the measure μ in (4.2) is contained in Λ.

Suppose now that we are given two other sequences {a∗n}, {h∗n} with properties
similar to {an}, {hn}, and that these two sequences determine a partition of R2

into two disjoint sets A∗, B∗ defined similarly to A,B. Let

S := {p1(γ∗) : γ∗ ∈ Γ∗ ∩ A∗}, Z := {p2(γ∗) : γ∗ ∈ Γ∗ ∩B∗}.
As before, S and Z are two discrete closed sets in R (see Figure 2). If ϕ vanishes
on Z, then according to (4.3) the spectrum of the measure μ is contained in S.

5.2. Our goal will thus be to construct sequences {an}, {hn} and {a∗n}, {h∗n} with
the properties above, and a Schwartz function ϕ (not identically zero), such that
ϕ and ϕ̂ are both real-valued, ϕ vanishes on Z and ϕ̂ vanishes on Q. As we have
seen, this would give a non-zero measure μ satisfying property (i) in Theorem 2.

We choose the sequences {an}, {hn} in an arbitrary way, and this choice defines
the sets Λ and Q.
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(an, hn)

Q

Λ

Γ

Figure 1. Construction of Λ and Q from the lattice Γ.

We also choose the {a∗n} arbitrarily, and for each n � 0 we let Ωn be a finite
union of closed intervals in R, such that

Ωn = −Ωn, Ωn ⊂ R \Q, mes(Ωn) >
2a∗n

det Γ∗ , Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ · · ·

(it may be convenient here to notice that −Q = Q).
Let ϕ0 be a Schwartz function that is real-valued, even,

ϕ0(0) = 1, spec(ϕ0) ⊂ Ω0.

Now we construct by induction on n the sequence {h∗n} and Schwartz func-
tions ϕn, real-valued and even, such that

(a) ϕn(0) = 1;

(b) spec(ϕn) ⊂ Ωn;

(c) ‖ϕn − ϕn−1‖m,k < 2−n (0 � m, k � n);

(d) ϕn vanishes on Zn, where

Zn := {p2(γ∗) : γ∗ ∈ Γ∗ ∩B∗
n}, B∗

n :=

n⋃
k=1

{(x, y) : |x| < a∗k, |y| > h∗k}.

Property (c) ensures that ϕn converges in the Schwartz space to a limit ϕ,
real-valued and even, not identically zero by (a), which vanishes on Z due to (d),
and such that ϕ̂ vanishes on Q due to (b). So the measure μ in (4.2) has support
in Λ and spectrum in S as required.
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(a∗n, h∗n)

Z

S

Γ∗

Figure 2. A similar construction of S and Z from the dual lattice Γ∗.

To construct the number h∗n and the function ϕn at the n’th step of the induc-
tion, we let J denote a finite union of closed intervals such that

mes(J) >
2a∗n

det Γ∗ , J + [−ε, ε] ⊂ Ωn

for an appropriate ε > 0. Now consider the model set

X = Xn := {p2(γ∗) : γ∗ ∈ Γ∗, |p1(γ∗)| < a∗n}.
By Theorem M, it is an interpolation set for PWJ . Define

C := sup
0�m,k�n

Cm,k(X, J, ε)

where Cm,k(X, J, ε) is the constant from Lemma 3.1.
Since ϕn−1 is a Schwartz function, we have

sup
λ∈X

|ϕn−1(λ)| · (1 + |λ|)N <∞ (N = 1, 2, 3, . . . ).

We choose the number h∗n sufficiently large such that

sup
λ∈X,|λ|>h∗

n

|ϕn−1(λ)| · (1 + |λ|)n < 1

C · 2n ,

and consider the interpolation problem

(5.3) f(λ) = c(λ), λ ∈ X,
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where

c(λ) :=

{
0, λ ∈ X, |λ| � h∗n,
ϕn−1(λ), λ ∈ X, |λ| > h∗n.

By Lemma 3.1, there is a Schwartz function f satisfying (5.3) such that

spec(f) ⊂ J + [−ε, ε] ⊂ Ωn and sup
0�m,k�n

‖f‖m,k < 2−n.

Since {c(λ)} is a real-valued, even sequence, by replacing f with

Re
[f(t) + f(−t)

2

]
we may assume that f is real-valued and even. We then take

ϕn := ϕn−1 − f.

It is clear that ϕn satisfies conditions (b) and (c) above. To check that (a)
and (d) are also satisfied, we first use the fact that f(λ) = 0 for λ ∈ X, |λ| � h∗n.
It implies that ϕn(0) = ϕn−1(0) = 1 and

ϕn(λ) = ϕn−1(λ) = 0, λ ∈ Zn ∩ [−h∗n, h∗n],

where the latter is true because Zn∩[−h∗n, h∗n] ⊂ Zn−1 and ϕn−1 vanishes on Zn−1.
On the other hand, since f(λ) = ϕn−1(λ) for λ ∈ X, |λ| > h∗n, we obtain also

ϕn(λ) = 0, λ ∈ Zn \ [−h∗n, h∗n].

This confirms that conditions (a)–(d) hold, and completes the inductive construc-
tion.

6. Arithmetic progressions

6.1. To complete the proof of Theorem 2, it remains to show how to satisfy
property (ii) in the construction above. For this we need the following proposition,
which provides the relation of the construction to arithmetic progressions.

Lemma 6.1. Let P be an arithmetic progression in R. Then the set

{(x, y) ∈ Γ : x ∈ P}

is contained in a straight line in R
2 which is not parallel to the x-axis.

Proof. Suppose that γ1, γ2, γ3 are three distinct points in Γ, whose images under p1
lie in P . Then there are non-zero integers m1,m2,m3 such that m1+m2+m3 = 0
and

m1p1(γ1) +m2p1(γ2) +m3p1(γ3) = 0.
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Since p1 restricted to Γ is injective, this implies that

m1γ1 +m2γ2 +m3γ3 = 0,

hence the points γ1, γ2, γ3 lie on a line in R
2. Since p2 restricted to Γ is also

injective, it follows that the line is not parallel to the x-axis. �

Now recall that the sequences {an}, {hn} have been chosen in an arbitrary way.
To satisfy property (ii) we choose them such that the domain A defined by (5.1)
contains only a bounded part of any straight line not parallel to the x-axis (for this
it is enough that an grows much faster than hn). By Lemma 6.1 this implies that Λ
contains only finitely many elements of any arithmetic progression. So Theorem 2
is proved.

6.2. There are several other ways to illustrate the non-periodic nature of the
measure in our example, in addition to property (ii) stated above. Observe that (ii)
implies:

(iii) Λ may not be covered by any finite union of arithmetic progressions.

This property is true for the spectrum as well, namely:

(iv) Also S may not be covered by a finite union of arithmetic progressions.

In fact, the properties (iii) and (iv) hold due to the following.

Proposition 6.2. The support of any measure μ of the form (4.2) may not be
covered by a finite union of arithmetic progressions, and the same is true for the
support of the measure μ̂, unless the function ϕ vanishes identically.

Proof. Indeed, if the support of the measure μ is contained in a finite union of
arithmetic progressions, then by Lemma 6.1 the set

Γ0 := {(x, y) ∈ Γ : ϕ̂(y) �= 0}
must be contained in a finite union of lines. Thus p2(Γ0) is a discrete closed set
in R. But on the other hand, since p2(Γ) is dense in R, the closure of p2(Γ0) must
be equal to supp(ϕ̂), a contradiction. Hence the support of μ is not contained in
any finite union of arithmetic progressions, and similarly, the same is true for the
support of μ̂. �

In the first version of this paper the property (ii) in Theorem 2 was not men-
tioned explicitly, being replaced by (iii) and (iv) above. In this weaker form,
another proof of our result was given by Kolountzakis [9], who used an infinite
sum of appropriately chosen Poisson measures.

One may actually consider stronger versions of properties (iii) and (iv). For
instance, given ε > 0 there is a decomposition of μ as the sum of two measures
μ = μ1 +μ2 such that μ1 is supported on a model set and ‖μ2‖ < ε, where by ‖ · ‖
we denote the natural norm on the space of translation-bounded measures defined
by (2.1). It follows (again by Lemma 6.1) that μ may not even be approximated,
with respect to this norm, to arbitrary degree by measures whose supports are
contained in finite unions of arithmetic progressions. The same is true for the
measure μ̂.
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7. Remarks

7.1. One may obtain results of similar type also in R
n. For instance, the product

μ× · · · × μ (n times) of the measure μ in our proof gives an example of a measure
in R

n, whose support and spectrum are both discrete closed sets, and the support
cannot be covered by any finite union of translated lattices, nor may it contain
infinitely many elements of an arithmetic progression.

7.2. By choosing the sequence {an} increasing sufficiently fast, the measure μ may
be constructed with the additional property that the minimal distance between
consecutive points of Λ in the interval (−R,R) approaches zero arbitrarily slowly
as R → ∞.

7.3. In [11] and [12], we obtained an affirmative answer to Problem 4.1 (a) in [10],
which asked whether it is true that a positive measure μ in R

n may have uniformly
discrete support and spectrum only if each of them is contained in a finite union
of translates of some lattice.

Problem 4.1 (b) from that paper asks whether the periodic structure is still
necessary if the support and the spectrum are just discrete closed sets. Here we
basically answer this question in the negative, but without the positivity of the
measure μ. At present we do not know whether in our construction one can get a
positive measure.

7.4. To each measure satisfying (1.1) and (1.2) corresponds a weighted summation
formula

(7.1)
∑
λ∈Λ

μ(λ) f̂(λ) =
∑
s∈S

μ̂(s) f(s),

which holds for any Schwartz function f . If μ and μ̂ are translation-bounded
measures (or, more generally, measures with polynomial growth) then both series
in (7.1) converge absolutely, otherwise an appropriate summation method should
be used to sum them.

An interesting summation formula may be found in [7], p. 265, which involves

weighted sums of f and f̂ at the nodes {±(n+1/9)1/2} (n = 0, 1, 2, . . . ). However
it is not clear to which class of functions it applies. In particular, whether it
corresponds to a temperate distribution. Remark that the nodes in this example
contain two arithmetic progressions 3Z± 1/3.
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