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The non-hyperbolicity of irrational invariant
curves for twist maps and all that follows

Marie-Claude Arnaud and Pierre Berger

Abstract. The key lemma of this article is: if a Jordan curve γ is invariant
by a given C1+α-diffeomorphism f of a surface and if γ carries an ergodic
hyperbolic probability μ, then μ is supported on a periodic orbit.

From this lemma we deduce three new results for the C1+α symplectic
twist maps f of the annulus:

1) if γ is a loop at the boundary of an instability zone such that f|γ
has an irrational rotation number, then the convergence of any orbit to γ
is slower than exponential;

2) if μ is an invariant probability that is supported in an invariant curve
γ with an irrational rotation number, then γ is C1 μ-almost everywhere;

3) we prove a part of the so-called “Greene criterion”, introduced by
J.M. Greene in 1978 and never proved: assume that (pn/qn) is a se-
quence of rational numbers converging to an irrational number ω; let
(fk(xn))1≤k≤qn be a minimizing periodic orbit with rotation number pn/qn
and let us denote byRn its mean residueRn = |1/2− Tr(Dfqn (xn))/4|1/qn .
Then, if lim supn→+∞ Rn > 1, the Aubry–Mather set with rotation num-
ber ω is not supported in an invariant curve.

1. Introduction

A reason for studying the positive symplectic twist maps1 (PSTM) of the two-
dimensional annulus A = T×R is that they represent (via a symplectic change of
coordinates) the dynamics of a generic symplectic diffeomorphism of a surface near
its elliptic periodic points (see for example [11]). One motivating example of such
a map was introduced by Poincaré for the study of the restricted 3-body problem.

The study of the PSTM was initiated by G.D. Birkhoff in the 1920s (see [9]).
Among other beautiful results, he proved that any essential curve invariant by a
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1All the definitions are given in subsection 1.2.
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symplectic twist map of the annulus is the graph of a Lipschitz map (an essential
curve is a simple loop that is not homotopic to a point).

Later, in the 1950s, the KAM theorems provided the existence of some invariant
curves for sufficiently regular symplectic diffeomorphisms of surfaces near their el-
liptic fixed points (see [18], [6], [24], [25]). These theorems provide also some essen-
tial invariant curves for the symplectic twist maps that are close to the completely
integrable ones. These KAM curves are all very regular (at least C3, see [16]).

But general invariant curves for general PSTM have no reason to be so regular.
The example of the simple pendulum (see [12]) shows us that an invariant curve can
be non-differentiable at one point: the separatrix of the simple pendulum has an
angle at the hyperbolic fixed point. In [16] and [1], some other examples are given
of symplectic twist maps that have a non-differentiable essential invariant curve
that contains some periodic points. Some examples of symplectic twist maps that
have an essential invariant curve that is not C1 and that has an irrational rotation
number are built in [2] and then improved in [4]. In these examples, the dynamics
restricted to the curve is conjugated to the one of a Denjoy counter-example, and
the set where the curve is non differentiable is the orbit of a wandering point (in
these examples, the first PSTM is C1 and the second one is C2).

An open question is then:

Question 1.1. Does there exist an essential non-C1 curve γ that is invariant by
a PSTM f and such that f|γ is minimal?

Moreover, in the Denjoy examples that we mentionned above, the invariant
curve is differentiable along the support of the unique invariant measure supported
in the curve. Ke Zhang asked us the following question:

Question 1.2. Is it possible to have some points of non-differentiability in the
support of the invariant measure?

We will explain in subsection 2.1 what we mean by “C1 at one point”. The
following result was proved in [1].

Theorem (Arnaud, [1]). Let f : A → A be a C1 PSTM and let η : T → R be a
Lipschitz map such that the graph {(θ, η(θ)); θ ∈ T} is invariant by f . Let us
denote the set of points of T where η is C1 by U . Then U contains a dense Gδ

subset of T that has full Lebesgue measure.

Here we give another partial answer to the previous questions (the set where
the curve is not C1 is small in a new sense) and prove:

Theorem 1.3. Let f : A → A be a C1+α PSTM and let η : T → R be a Lipschitz
map such that the graph graph(η) = {(θ, η(θ)); θ ∈ T} is invariant by f , and the
rotation number of f|graph(η) is irrational. Then if μ is the unique invariant Borel
probability measure supported in graph(η), the set graph(η) is C1 on a subset that
has full μ measure.

The means to obtain Theorem 1.3 is the following lemma, that is the key ingre-
dient of this article and from which we deduce all the other results. Lemma 1.4 an-
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swers in particular to a question that was raised in [1] concerning the existence of
Jordan invariant curves that carry a hyperbolic measure. We recall that a Jordan
curve is the image of T by a continuous and injective map.

Key Lemma 1.4. Let γ : T → S be a Jordan curve that is invariant by a C1+α

diffeomorphism f of a surface S. Assume that μ is an ergodic Borel probability
for f supported in γ that is hyperbolic. Then μ is supported by a periodic orbit
and γ contains two (stable or unstable) branches of the periodic point.

Corollary 1.5. Let f : A → A be a C1+α PSTM, let γ ⊂ A be an essential
irrational invariant curve for f and let μ be the unique invariant measure supported
in γ. Then the Lyapunov exponents of γ are zero.

Corollary 1.5 is fundamental to obtain the rate of convergence of the orbits to
the boundaries of the bounded zones of instability. Let us recall that when we
remove all the essential invariant curves of a given PSTM f : A → A from the
annulus, we obtain an invariant open set U . Following [4], we call the annular
connected components of U the instability zones of f . In [9], G.D. Birkhoff proved
that if U is an instability zone, if U1 is a neighborhood of one of its ends (i.e,
eventually after compactification, a connected component of its boundary) and U2

is a neighborhood of the other end, then there exists an orbit traveling from U1

to U2. This theorem was improved in [23] by J. Mather who proved that if C1, C2
are the ends of U , there exists an orbit whose α-limit set is in C1 and ω-limit set is
in C2. J.N. Mather used variational arguments and after that, P. Le Calvez gave
in [19] a purely topological proof of this result.

We deduce from Corollary 1.5 and from some results due to A. Furman (see [13])
concerning the uniquely ergodic measures the following theorem.

Theorem 1.6. Let γ : T → A be a loop that is invariant by a C1+α PSTM
f : A → A, that has an irrational rotation number and that is at the boundary of an
instability zone. Let x ∈ W s(γ)\γ be a point such that limn→+∞ d(fn(x), γ) = 0.
Then, for all ε > 0, we have

lim
n→+∞ eεnd(fn(x), γ) = +∞.

Remark 1.7. Note that the hypothesis ‘γ at the boundary of an instability zone’
is redundant with the hypothesis W s(γ)\γ �= ∅.

In [16], M. Herman proved that Cr-generically for any 1 ≤ r ≤ ∞, a symplectic
twist map has no invariant curve with rational rotation number; he also proved
the existence of a non-empty open set of symplectic twist maps having a bounded
instability zone. Hence, our result describes what happens in the general case: the
boundary curve has an irrational rotation number and all the orbits that converge
to this curve converge more slowly than every exponential rate.

Having an upper bound for the rate of convergence to the boundary of an
instability zone with an irrational rotation number, we can ask if there exists some
lower bound. The only answer that we can give is the answer for the examples
that were built in [4]: in these examples, γ is a curve that is at the boundary of an
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instability zone and such that the restricted dynamics f|γ is Denjoy, and some
orbits are provided such that

∀n ∈ N, d(fnx, γ) =
d(x, γ)

n(logn)1+δ
for δ > 0.

Of course, there exist too some (non-generic) examples of boundaries of instability
zone that contain a hyperbolic periodic point and for which an exponential con-
vergence to the boundary may happen. Such an example is given by Birkhoff, [10].

Corollary 1.8. There exists a Gδ subset G of a non-empty open set U of PSTM
such that every f ∈ G has an invariant curve γ with a non-trivial stable set
W s(γ) � γ such that the orbit of any point of W s(γ)\γ converges to γ more
slowly than any exponential sequence.

Remark 1.9. The phenomenon that is described in Corollary 1.8 points out a
new typical dynamical behavior (at least in C∞-topology): existence of a large set
of dynamics exhibiting a “slow” convergence (i.e., non-exponential). In some way,
this is reminiscent of Arnol’d diffusion.

In the 1980’s, the Aubry–Mather sets were discovered simultaneously and inde-
pendently by Aubry and Le Daeron (in [7]) and Mather (in [22]). See subsection 1.3
for details on this now classical theory. These sets are invariant and compact. They
are not necessarily on an invariant curve but lie on a Lipschitz graph. We can de-
fine for each of these sets a rotation number and for every real number, there exists
at least one Aubry–Mather set with this rotation number. An Aubry–Mather set
with an irrational rotation number can be

1. an invariant curve;

2. the union of a Cantor set and some homoclinic orbits to this Cantor set.
Then this Cantor set is not contained in an invariant curve.

A fundamental problem is to identify for which irrational rotation numbers
there exists an invariant curve with this rotation number. A method was proposed
by J.M. Greene in [15], that was numerically tested for the standard map. Let
us explain how it works. Let ρ ∈ R be an irrational number. We consider a se-
quence (pn/qn) of rational numbers that converge to ρ and for each n, a minimizing
periodic point xn = (θn, rn) with rotation number pn/qn. Then at every xn, the
residue is rn = 1

4 (2 − Tr(Df qn(xn))) As noticed by J.M. Greene, one advandage
of the residue is that it is as regular as Df is and is easily computable (contrarily
to the eigenvalues of Df qn).

We are interested in the version of Greene’s residue criterion that is presented
in [21]. In [21], R. S. MacKay introduces the mean residue Rn = |rn|1/qn and gives
the following conjecture:

Residue criterion. Let (pn/qn) be a good sequence of rational numbers that con-
verges to ρ and let xn be a minimizing periodic orbit with rotation number pn/qn
and mean residue Rn. Then limn→∞ Rn = μ(ρ) exists. If μ(ρ) ≤ 1, there exist
an invariant curve with rotation number ρ and if μ(ρ) > 1, such a curve does
not exist.
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Some partial results are proved in [21]. Using similar ideas and key Lemma 1.4,
we will prove:

Theorem 1.10. Let f : A → A be a PSTM and let ρ be an irrational number.
Let (xn) be a sequence of minimizing periodic points with rotation number pn/qn
and mean residue Rn such that lim supn→∞ Rn > 1 and limn→∞ pn/qn = ρ. Then
there exists no essential invariant curve with rotation number ρ. Moreover, the
Aubry–Mather set K with rotation number ρ contains a Cantor C set that carries
a hyperbolic invariant probability and that is C1-irregular μ-almost everywhere.

In this case, a subsequence of the sequence of periodic orbits ({f i(xn) : i ≥ 0})n
converges for the Haurdorff metric to an invariant subset of K that contains the
Cantor set C. We proved in [1] that because C carries an invariant hyperbolic
probability measure denoted by μ, the compact set C is C1-irregular μ-almost
everywhere. A natural question is then.

Question 1.11. Can we see the C1-irregularity of C with the help of the orbits of
the xn (with a computer)?

1.1. Structure of the article

After explaining what are the Lyapunov charts, we will prove key Lemma 1.4
and Corollary 1.5 in section 2. In section 3, we state Theorem 3.1 about the
rate of attraction of the uniquely ergodic measures. Joined with key Lemma 1.4,
Theorem 3.1 implies Theorem 1.6 and Corollary 1.8.

In section 4, we will recall some facts about the Green bundles and then we
will prove Theorem 1.3.

In section 5, we will prove Theorem 1.10.

1.2. Some notations and definitions

Before giving the proofs, let us introduce some notations and definitions.

Notations. • T = R/Z is the circle.
• A = T× R is the annulus and an element of A is denoted by x = (θ, r).
• A is endowed with its usual symplectic form, ω = dθ ∧ dr and its usual Rieman-
nian metric.
• π : T× R → T is the first projection and its lift is denoted by Π : R2 → R.
• For every x ∈ A, V (x) = kerDπ(x) ⊂ TxA is the linear vertical at x.
• p : R2 → A is the universal covering.

Definition 1.12. A C1 diffeomorphism f : A → A of the annulus that is isotopic
to identity is a positive twist map (resp. negative twist map) if there exists ε > 0
such that for any x ∈ A, we have: D(π◦f)(x)( 0

1

)
> ε (resp. D(π◦f)(x)( 0

1

)
< −ε).

A twist map may be positive or negative.

We recalled in the introduction that any essential curve that is invariant by a
symplectic twist map is the graph of a Lipschitz map.
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Definition 1.13. Let Γ be an essential invariant curve of a symplectic twist map
f of the annulus. Then, if we project the restricted dynamics to Γ on the circle, we
obtain an orientation preserving homeomorphism of the circle, that has a rotation
number. If this rotation number is irrational, we will say that the curve is irrational.

Let us recall that the dynamics restricted to an irrational invariant curve is
uniquely ergodic.

Definition 1.14. Let f : A → A be a C1-diffeomorphism. Let μ be a Borel
probability that is left invariant by f . We say that μ is a hyperbolic measure if it
has one negative Lyapunov exponent and one positive Lyapunov exponent.

Definition 1.15. Let K ⊂ A be a non-empty compact subset that is invariant by
a diffeomorphism f : A → A. The stable set of K for f is

W s(K, f) = {x ∈ A; lim
n→+∞ d(fn(x),K) = 0}.

Definition 1.16. 1) Let K ⊂ A be a non-empty compact subset and let x ∈ K
be a point of K. The (Bouligand) paratangent cone to K at x if the subset PxK
of TxA that contains all the limit points of the sequences

tn(xn − yn),

where tn ∈ R and (xn), (yn) are two sequences of points of K that converge to x.
2) The set K is C1-regular (in fact we will say C1) at x if PxK is contained in

a line.

Remark 1.17. 1) A loop in A is C1-regular if and only if it is C1 as a submanifold.
2) The graph of a Lipschitz map η : T → R is C1-regular if and only if η is C1.

1.3. Aubry–Mather theory

For proofs, see [8] and [14]. In this section, we assume that the twist maps that
we consider are a little more than symplectic: they are exact symplectic, i.e.,
f∗(rdθ) − rdθ is exact.

To any lift F : R2 → R2 of a positive exact symplectic twist map (PSTM)
f : A → A we may associate a C2 generating function S : R2 → R that satisfies

• S(θ + 1,Θ+ 1) = S(θ,Θ);

• there exists ε > 0 such that: ∂2S
∂θ∂Θ (θ,Θ) ≤ −ε;

• F is implicitly given by:

F (θ, r) = (Θ, R) ⇐⇒
{
r = −∂S

∂θ (θ,Θ)
R = ∂S

∂Θ (θ,Θ)
.

For every k ≥ 2, θ0, θk ∈ R, the function F(0,θ0),(k,θk) = F : Rk−1 → R is defined by

F(θ1, . . . , θk−1) =
k∑

j=1

S(θj−1, θj).
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The function F(0,θ0),(k,θk) has a minimum, and at every critical point for F , the
following sequence is a piece of orbit for F :

(θ0,−∂S

∂θ
(θ0, θ1)), (θ1,

∂S

∂Θ
(θ0, θ1)), (θ2,

∂S

∂Θ
(θ1, θ2)), . . . , (θk,

∂S

∂Θ
(θk−1, θk)).

Definition 1.18. An orbit (θn, rn) of F (and by extension its projection on A) is
minimizing if every finite segment (θn)	≤n≤k isminimizing for F(	−1,θ�−1),(k+1,θk+1).

It can be proved that every minimizing orbit (θn, rn) has a rotation number

ρ = lim
n→±∞

θn − θ0
n

.

The set of points (θ, r) ∈ R2 having a minimizing orbit is denoted by M.
Then it is closed and its projection p(M) ⊂ A is closed too. The rotation number
ρ : M → R is continuous and for every α ∈ R, the set Mα = {x ∈ M, ρ(x) = α}
is non-empty.

If α is irrational, then Kα = p(Mα) ⊂ A is the graph of a Lipschitz map above
a compact subset of T. Moreover, there exists a bilipschitz orientation preserving
homeomorphims h : T → T such that

∀x ∈ Kα, h(π(x)) = π(f(x)).

Hence Kα is:

- either not contained in an invariant loop and then is the union of a Cantor
set Cα on which the dynamics is minimal and some homoclinic orbits to Cα;

- or is an invariant loop. In this case the dynamics restricted to Kα can be
minimal or Denjoy.

If α = p/q is rational, then Mα is the disjoint union of 3 sets:

• Mper
α = {x ∈ Mα,Π ◦ F q(x) = Π(x) + p};

• M+
α = {x ∈ Mα,Π ◦ F q(x) > Π(x) + p};

• M−
α = {x ∈ Mα,Π ◦ F q(x) < Π(x) + p}.

The two sets K+
α = p(Mper

α ∪M+
α ) and K−

α = p(Mper
α ∪M−

α ) are then invariant
Lipschitz graphs above a compact part of T. the points of p(M+

α ∪ M−
α ) are

heteroclinic orbits to some periodic points contained in p(Mper
α ).

Definition 1.19. If α is irrational, the Aubry–Mather set with rotation number α
is Kα. If α is rational, the two Aubry–Mather sets with rotation number α are K−

α

and K+
α .

Remark 1.20. If x is a periodic point of a PSTM f that is contained in a Aubry–
Mather set, then there exists a line bundle G− ⊂ TA along the orbit of x that is
transverse to the vertical fiber and invariant by Df . This line bundle is described
in subsection 4.1 and is one of the two Green bundles. Moreover, the restricted
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dynamics Df|G− is orientation preserving. Indeed, it is proved in the proof of

proposition 7 in [5] that D(π ◦ f)|G− = bΔs where Df =
(
a b
c d

)
(we have b > 0

because f is a PSTM) and Δs = s− − s−1 where s− is the slope of G− and s−1

is slope of the inverse image of the vertical Df−1.V (as noticed in [5], we have
s− > s−1). Hence if τ is the period of x, Df τ (x) has a positive eigenvalue.

2. On the hyperbolic measures that are supported in an es-
sential invariant curve

Let γ : T → S be a Jordan curve of a surface S that is invariant by a C1+α

diffeomorphism f : S → S. Assume that μ is an ergodic Borel probability for f
that is hyperbolic with support in γ.

We want to prove that μ is supported by a periodic orbit and γ contains two
(stable or unstable) branches of the periodic cycle.

Remark 2.1. If f|γ is not orientation preserving, we replace f by f2 (note that
then μ must be supported by a periodic orbit of f2).

2.1. Pesin theory and Lyapunov charts

We denote by d a Riemannian distance in S, by ‖.‖ the associated norm in TS
and by |.| the norm sup defined on R2 by |(x, y)| = sup{|x|, |y|}.

We recall the terminology and the results on Pesin theory that are given in [20]
(see [17] too).

Let Γ be the set of regular points for μ, i.e., the subset of points x ∈ suppμ
where there exists a splitting TxS = Es(x)⊕ Eu(x) such that

∀v ∈ Es(x)\{0}, lim
k→±∞

1

k
log

(‖Dfk(x)v‖) = −λ1

and

∀v ∈ Eu(x)\{0}, lim
k→±∞

1

k
log

(‖Dfk(x)v‖) = λ2;

where λ1, λ2 are positive real numbers. We introduce the notation λ = min{λ1, λ2}.
For any ρ > 0, we denote the square [−ρ, ρ]2 by R(ρ). Let ε ∈ (0, λ

10 ) be given.
We can define a local chart in some neighborhood of any regular point; the size

of the neighborhood, the local chart and the size of the estimates varies with x ∈ Γ
in a measurable way.

More precisely, there is a measurable function � : Γ → [1,∞) such that e−ε�(x) ≤
�(f(x)) ≤ eε�(x), a constant K > 0 and a C∞ embedding Φx : R(1/�(x)) → S with
the following properties:

(i) Φx(0) = x; DΦx(0)(R× {0}) = Eu(x) and DΦx(0)({0} × R) = Es(x);

(ii) if we denote by Fx = Φf(x) ◦ f ◦ Φ−1
x the connecting map between the chart

at x and the chart at f(x) that are defined whenever it makes sense and
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similarly F−1
x = Φ−1

f−1x ◦ f−1 ◦ Φx, then we have:

∣∣∣DFx(0)

(
1
0

) ∣∣∣ ≥ eλ2−ε
∣∣∣
(
1
0

) ∣∣∣ = eλ2−ε

and ∣∣∣DFx(0)

(
0
1

) ∣∣∣ ≤ e−(λ1−ε)
∣∣∣
(
0
1

) ∣∣∣ = e−(λ1−ε)

(iii) if L(g) denotes the Lipschitz constant of a function g, then

L(Fx−DFx(0)) ≤ ε, L(F−1
x −DF−1

x (0)) ≤ ε and L(DFx), L(DF−1
x ) ≤ �(x);

(iv) for all z, z′ ∈ R(1/�(x)), we have

1

K
d(Φx(z),Φx(z

′)) ≤ |z − z′| ≤ �(x)d(Φx(z),Φx(z
′)).

We deduce from (ii) and (iii) that there exists Λ > 0 such that for all x ∈ Γ, we
have

Fx

(
R
(e−(Λ+ε)

�(x)

))
⊂ R

( 1

�(fx)

)
and F−1

x

(
R
(e−(Λ+ε)

�(x)

))
⊂ R

( 1

�(f−1x)

)
.

From now we will use the small charts
(
R(e−(Λ+ε)/�(x)),Φx

)
, because Fx and F−1

x

are defined on the whole domain of these charts, but to be short we will use the
notation �(x) instead of eΛ+ε�(x). We will call them (Lyapunov) (ε, �)-charts.

We recall that the stable (resp. unstable) manifold of x ∈ Γ is defined by:

Ws(x) = {y ∈ S; lim supn→+∞
1
n log d(fnx, fny) < 0}

(resp.
Wu(x) = {y ∈ S; lim supn→+∞

1
n log d(f−nx, f−ny) < 0}).

The local stable (resp. unstable) manifold at x associated with (Φx) is then the
connected component of Ws(x) ∩ Φx(R(1/�(x))) (resp. Wu(x) ∩ Φx(R(1/�(x))))
that contains x and is denoted by Ws

loc(x) (resp. Wu
loc(x)). The Φ−1

x images of
these sets are denoted by Ws

x(0) and Wu
x (0). The function � being eventually re-

placed by δ� for some large δ > 0, it can be proved that Wu
x (0) = {(t, gux(t)); t ∈

[−1/�(x), 1/�(x)]} where gux : [−1/�(x), 1/�(x)] → [−1/�(x), 1/�(x)] is a C1+α func-
tion such that gux(0) = 0 and |gu′x (0)| ≤ 1/3 and that Ws

x(0) = {(gsx(t), t); t ∈
[−1/�(x), 1/�(x)]} where gsx : [−1/�(x), 1/�(x)] → [−1/�(x), 1/�(x)] is a C1+α func-
tion such that gsx(0) = 0 and |gs′x (0)| ≤ 1/3.

2.2. Proof of key Lemma 1.4

We eventually change � into δ� for a large δ to be sure that no Φx(R(1/�(x)))
contains γ (note that Φx(R(1/�(x))) meets γ).

We decompose the boundary ∂R(ρ) of R(ρ) into ∂sR(ρ) = {−ρ, ρ} × [−ρ, ρ]
and ∂uR(ρ) = [−ρ, ρ]× {−ρ, ρ} (see the following figure).
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Then Fx(R(1/�(x))) is a curved square and we have:

- Fx(R(1/�(x))) ∩ ∂uR(1/�(fx)) = ∅,
- and Fx(∂

uR(1/�(x)))∩ ∂R(1/�(fx)) contains 4 points, two on the right com-
ponent of ∂sR(1/�(x)) and two on its left component.

The loop γ is endowed with an orientation. We shall assume, up to consider-
ing f2 instead of f , that f |γ preserves this orientation. For every x ∈ Γ, we denote
by γx the component of γ ∩Φx(R(1/�(x))) that contains x. Then γx\{x} has two
connected components, and we denote by ηx the closure of the one after x following
the orientation (the same reasoning remains the same for the component before x).
We observe that f(η(x)) ∩ η(f(x)) � {f(x)}. We will prove that x is a periodic
point and that ηx ⊂ Ws

loc(x) or ηx ⊂ Wu
loc(x). This will give the conclusion of key

Lemma 1.4.
The set Cx = Φ−1

x (ηx) is an arc (i.e., the image of [0, 1] by a (continuous)
embedding) that joins 0 = Cx(0) to Cx(1) ∈ ∂R(1/�(x)). There are two cases:
Cx(1) ∈ ∂sR(1/�(x)) or Cx(1) ∈ ∂uR(1/�(x)).

Lemma 2.2. We have either for μ almost every x ∈ Γ, Cx(1) ∈ ∂sR(1/�(x)) or
for μ almost every x ∈ Γ, Cx(1) /∈ ∂sR(1/�(x)) (and then Cx(1) ∈ ∂uR(1/�(x))).

Proof Let us assume for an x ∈ Γ that Cx(1) ∈ ∂sR(1/�(x)). Then Fx ◦Cx joins
0 to Fx(Cx(1)) ∈ Fx(R(1/�(x)))\R(1/�(fx)). This implies that Cfx ⊂ Fx(Cx)
joins 0 to a point of Cfx(1) ∈ ∂sR(1/�(fx)). In a similar way, we obtain that, for
all n ≥ 0, Cfnx(1) ∈ ∂sR(1/�(fnx)).

The map I : Γ → {0, 1} is defined by I(x) = 0 if Cx(1) /∈ ∂sR(1/�(x)) and by
I(x) = 1 if Cx(1) ∈ ∂sR(1/�(x)). Then I is measurable and we just proved that I
is non-decreasing along the orbits. Hence I ◦ f − I ≥ 0. As

∫
(I ◦ f − I)dμ = 0,

we deduce that we have μ-almost everywhere I ◦ f = I. Because μ is ergodic, I is
constant μ-almost everywhere and this gives the wanted result. �

From now we assume that we have almost everywhere Cx(1) ∈ ∂sR(1/�(x)).
Let us recall that Wu

x (0) is the graph of gux and let us use the notation Cx(t) =
(c1x(t), c

2
x(t)). If δ(x) = max{|c2x(t) − gux(c

1
x(t))|; t ∈ [0, 1]}, we use the (ii) and

the (iii) of subsection 2.1 to deduce that δ(fx) ≤ eλ1−3εδ(x). Hence∫
δ(x) dμ(x) =

∫
δ(fx) dμ(x) ≤ eλ1−3ε

∫
δ(x) dμ(x),

and thus δ = 0 μ-almost everywhere. This implies that the corresponding branch
of Wu(x) (and then its orbit) is in γ.
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Assume that the rotation number of f|γ is not rational. Then either the dy-
namics f|γ is minimal and we have never, for two different points x �= y,

(�) lim
n→+∞ d(f−nx, f−ny) = 0,

or the dynamics is Denjoy and (�) happens only in the wandering intervals, i.e.,
for no x ∈ suppμ but the one that are endpoints of these wandering intervals.
The numbers of wandering intervals being countable, we obtain a contradiction.
Hence x has to be periodic.

3. On the rate of convergence to a boundary of an instability
zone with irrational rotation number

3.1. A result for the rate of convergence to a uniquely ergodic measure
with zero Lyapunov exponents

Let us assume that γ is an essential invariant curve by a PSTM f : A → A that is
at the boundary of an instability zone. We assume too that the rotation number
of f|γ is irrational. Then f|γ is uniquely ergodic and by Corollary 1.5, its unique
invariant probability has zero Lyapunov exponents. Hence Theorem 1.6 is just a
consequence of the following theorem.

Theorem 3.1. Let f : M → M be a C1-diffeomorphism of a manifold M . Let
K ⊂ M be a compact set that is invariant by f . We assume that f|K is uniquely
ergodic and we denote the unique Borel invariant probability with support in K by μ.
We assume that all the Lyapunov exponents of μ are zero. Let x0 ∈ W s(K, f)\K.
Then we have

∀ε > 0, lim
n→+∞ eεnd(fn(x0),K) = +∞.

Proof. By hypothesis, we have, for μ-almost every point,

lim
n→±∞

1

n
log ‖Dfn(x)‖ = 0.

We can use a refinement Kingman’s subadditive ergodic theorem that is due to
A. Furman (see Corollary 2 in [13]) that implies that we have

lim sup
n→±∞

max
x∈K

1

n
log ‖Dfn(x)‖ ≤ 0.

In particular, for any ε > 0, there exists N ≥ 1 such that

(3.1) ∀x ∈ K, ∀n ≥ N,
1

n
log ‖Df−n(x))‖ ≤ ε

8
.

Observe that the following norm, with k ≥ N large,

‖u‖′x =

k∑
n=0

e−nε/4 ‖Df−n(x)u‖x,
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satisfies uniformly on x for u �= 0:

‖Df−1(x)u‖′f−1(x)

‖u‖′x
= eε/4 +

e−kε/4‖Df−k−1(x)u‖x − eε/4‖u‖
‖u‖′x

≤ eε/4 +
e−kε/4‖Df−k−1(x)u‖x

‖u‖′x
≤ eε/4 + e−kε/8.

Hence by changing the Riemannian metric by the latter one, we can assume that
the norm of Dxf

−1 is smaller than eε/3 for every x ∈ K.

Consequently, on a η-neighborhood Nη of K, it holds for every x ∈ Nη that

‖Dxf
−1‖′ ≤ eε/2.

Let x0 ∈ M be such that xn := fn(x0) → K. We want to show that

lim inf
1

n
log d(xn,K) ≥ −ε.

We suppose that lim inf 1
n log d(xn,K) < −ε for the sake of a contradiction. Hence

there exists n arbitrarily large so that xn belongs to the e−nεη-neighborhood of K.
Let γ be a C1-curve connecting xn to K and of length at most e−nεη. By induction
on k ≤ n, we notice that f−k(γ) is a curve that connects xn−k to K, and has
length at most e−nε+kε/2η, and so is included in Vη. Thus the point x0 is at
most e−nε/2η-distant from K. Taking n large, we obtain that x0 belongs to K. A
contradiction. �

3.2. Proof of Corollary 1.8

Let U be an open non empty set of symplectic twist maps where the KAM theorems
can be used: there are at least two irrational, essential invariant curves. For f in U ,
we denote two such curves by γ1(f) and γ2(f) and by ρ1(f), ρ2(f) their rotation
numbers.

We consider then the dense Gδ subset G of U of symplectic twist maps such that
every minimizing periodic orbit is hyperbolic and all the heteroclinic intersection
points between such minimizing periodic points are transverse. M. Herman proved
in [16] that an element of G has no invariant curve that contains a periodic point.

Let f ∈ G and let us consider a rational number p/q that is between ρ1(f)
and ρ2(f). Let x be a minimizing periodic point with rotation number p/q. Then x
is in the bounded part of A that is between γ1(f) and γ2(f).

As f ∈ G, there is no invariant curve with rotation number p/q. As the set of
invariant curve is closed (see [9]) and the rotation number depends continuously of
the invariant curve, we find two numbers ω1 < p/q < ω2 such that f has no curve
with rotation number in ]ω1, ω2[ but f has an invariant curve η1 with rotation
number ω1 and an invariant curve η2 with rotation number ω2. As f ∈ G, the
numbers ω1 and ω2 are irrational and they are at the boundary of an instability
zone (that contains x). Hence we can apply Theorem 1.6 to conclude.
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4. Size of the set of C1-regularity of an irrational invariant
curve by a symplectic twist map

4.1. Green bundles and regularity

A reference for what is in this subsection is [3] and [1].

Definition 4.1. Let (θ, r) be a point of minimizing orbit for a PSTM f . Then
the two Green bundles at (θ, r) are defined by:

G+(θ, r) = lim
n→+∞Dfn ·V (f−n(θ, r)) and G−(θ, r) = lim

n→+∞Df−n ·V (fn(θ, r)).

These two Green bundles are measurable, invariant by the differential Df and
transverse to the linear vertical V .

Notations.

1. We denote by s−, s+ the slopes of the two Green bundles:

G±(θ, r) = {(t, ts±(θ, r)); t ∈ R} ⊂ R2 = T(θ,r)A.

2. If K ⊂ A is a compact subset that is contained in some Lipschitz graph (for
example K can be an Aubry–Mather set), if x ∈ K, we denote by pxK the
set of all the slopes of the elements of the paratangent cone PxK (that was
defined in subsection 1.2)

PxK\{0} = {(t, tp); t ∈ R∗, p ∈ pxK}.
3. if A,B ⊂ R, the relation A ≤ B means ∀a ∈ A, ∀b ∈ B, a ≤ b.

Note that K is C1 at x if and only if pxK has one or zero elements.
We proved in [3] that if K is a minimizing Aubry–Mather set for the PSTM f ,

then we have
∀(θ, r) ∈ K, s−(θ, r) ≤ p(θ,r)K ≤ s+(θ, r).

Hence, to prove that the minimizing Aubry–Mather set is C1 at a (θ, r) ∈ K,
we only have to prove (but this is not a equivalence) that s−(θ, r) = s+(θ, r).

We proved in [1] the following result:

Theorem (Arnaud, [1]). Let f : A → A be a C1 PSTM and let η : T → R be a
Lipschitz map such that the graph graph(η) = {(θ, η(θ)); θ ∈ T} is invariant by f .
Then the set {θ ∈ T; s−(θ, η(θ)) = s+(θ, η(θ))} is a dense Gδ subset U of T with
Lebesgue measure 1. Hence the map η is C1 on a dense Gδ subset of T that has
full Lebesgue measure.

4.2. Green bundles and Lyapunov exponents

We proved in [3] that if an invariant measure μ is supported in a minimizing
Aubry–Mather set, then

• either it is hyperbolic (that is, its Lyapunov exponents are non-zero) and
μ({s− �= s+}) = 1;

• or its Lyapunov exponents are zero and μ({s− = s+}) = 1.
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4.3. Proof of Theorem 1.3

Theorem 1.3 is a consequence of the following theorem.

Theorem 4.2. Let f : A → A be a C1+α PSTM and let η : T → R be a Lipschitz
map such that the graph graph(η) = {(θ, η(θ)); θ ∈ T} is invariant by f and the
rotation number of f|graph(η) is irrational. Then if μ is the unique invariant Borel
probability measure supported in graph(η), we have μ({θ ∈ T; s−(θ) = s+(θ)}) = 1.
Hence the map η is C1 on a subset of T that has full μ measure.

Theorem 4.2 is a straightforward consequence of key Lemma 1.4 and of the
results that are contained in subsection 4.2.

5. About Greene’s criterion

Let us assume that f : A → A is a PSTM, that ρ is an irrational number, that (xn)
is a sequence of minimizing periodic points with rotation numbers pn/qn such that
limn→+∞ pn/qn = ρ. We denote the mean residue of xn by

Rn =
∣∣∣2− Tr(Df qn(xn))

4

∣∣∣1/qn ,
and we assume that limn→+∞ Rn > 1.

If μn = 1
qn

∑qn
j=1 δfj(xn) is the measure equidistributed along the orbit of xn,

the sequence (μn) converges to the unique invariant measure μ that is supported
in the unique Aubry–Mather set K with rotation number ρ. Let us explain that:
as the rotations numbers pn/qn are bounded, the union of these periodic orbits is
bounded and then contained in some fixed compact set K. As the set of points
having a minimizing orbit is closed, K can be chosen in such a way that it is
filled by minimizing orbits. Then any convergent subsequence of (μn) converges to
a measure η, the support of which is filled by minimizing orbits. As the rotation
number is continuous on the set of points that have a minimizing orbit, the support
of η is contained in Mρ. As there is only one invariant Borel probability with
support in Mρ, that is μ, we conclude that η = μ and (μn) converge to μ.

Let us now fix σ ∈]1, limn→+∞ Rn[. There exists N ≥ 1 such that, for every
n ≥ N , we have |2− Tr(Df qn(xn)| ≥ 4 · σqn .

Because the orbit of xn is minimizing, Df qn(xn) has two real eigenvalues, λn

and 1/λn, such that λn ≥ 1 ≥ 1/λn (see remark 1.20). We have

∀n ≥ N, λn +
1

λn
≥ 4.σqn + 2.

This implies that

lim inf
n→+∞

1

qn
logλn ≥ log σ > 0.

Hence for any n ≥ N , the positive Lyapunov exponent of μn is larger that log σ.
Because the upper Lyapunov exponent depends in a upper semi-continuous way
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on the invariant measure (see for example [21]), this implies that the positive Lya-
punov exponent of μ is larger than log σ. Hence μ is hyperbolic. By Corollary 1.5,
suppμ is not contained in an essential invariant curve.

Moreover, by the results contained in [3], K is C1-irregular μ-almost every-
where.
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Vol. 1. Asterisque 103-104. Société Mathématique de France, Paris, 1983.
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École Norm. Sup. (4) 20 (1987), no. 3, 443–464.

[20] Ledrappier, F. and Young, L.-S.: The metric entropy on diffeomorphisms, I.
Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2)
122 (1985), no. 3, 509–539.

[21] MacKay, R. S.: Greene’s residue criterion. Nonlinearity 5 (1992), no. 1, 161–187.

[22] Mather, J. N.: Existence of quasiperiodic orbits for twist homeomorphisms of the
annulus. Topology 21 (1982), no. 4, 457–467.

[23] Mather, J.N.: Variational construction of orbits of twist diffeomorphisms. J. Amer.
Math. Soc. 4 (1991), no. 2, 207–263.

[24] Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr.
Akad. Wiss. Göttingen Math.-Phys. Kl. II (1962), 1–20.

[25] Rüssman, H.R.: On the existence of invariant curves of twist mappings of an
annulus. In Geometric dynamics (Rio de Janeiro, 1981), 677–718. Lecture Notes in
Math. 1007, Springer, Berlin, 1983.

Received November 25, 2014.

Marie-Claude Arnaud: Avignon University, Laboratoire de Mathématiques
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