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Qualitative properties and classification of
nonnegative solutions to −Δu = f(u) in

unbounded domains when f(0) < 0

Alberto Farina and Berardino Sciunzi

Abstract. We consider nonnegative solutions to −Δu = f(u) in un-
bounded Euclidean domains under zero Dirichlet boundary conditions,
where f is merely locally Lipschitz continuous and satisfies f(0) < 0. In
the half-plane, and without any other assumption on u, we prove that u
is either one-dimensional and periodic or positive and strictly monotone
increasing in the direction orthogonal to the boundary. Analogous results
are obtained if the domain is a strip. As a consequence of our main results,
we answer affirmatively to a conjecture and to an open question posed by
Berestycki, Caffarelli and Nirenberg. We also obtain some symmetry and
monotonicity results in the higher-dimensional case.

1. Introduction and main results

We study qualitative properties of nonnegative solutions to −Δu = f(u) in un-
bounded Euclidean domains, where f is merely locally Lipschitz continuous and
satisfies f(0) < 0. In particular, we are interested in proving the one-dimensional
symmetry, the monotonicity and/or the periodicity of the considered solutions.

Let us start by considering the case of R2
+ := {(x, y) ∈ R

2 : y > 0}, the open
half-plane:

(1.1)

⎧⎪⎨
⎪⎩
−Δu = f(u) in R

2
+,

u � 0 in R
2
+,

u = 0 on ∂R2
+.

As a consequence of more general results that we shall state later, we prove:
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Theorem 1.1. Assume that f is locally Lipschitz continuous on [0 ,+∞) with

f(0) < 0. Let u ∈ C2(R2
+) be a solution to (1.1). Then, either u is one-dimensional

and periodic, or u is positive and strictly monotone increasing in the direction
orthogonal to the boundary with ∂yu > 0 in R

2
+.

The theorem above provides a complete picture of the situation in our general
framework.

Theorem 1.2. Let u ∈ C2(R2
+) be a solution to

(1.2)

⎧⎪⎨
⎪⎩
−Δu = u− 1 in R

2
+,

u � 0 in R
2
+,

u = 0 on ∂R2
+.

Then
u(x, y) = 1− cos y .

Theorem 1.2 provides an affirmative answer to an extended version of a con-
jecture posed by Berestycki, Caffarelli and Nirenberg (see p. 73 of [2]). It recovers
and improves upon a result of [15] (cf. also [2]) since here no a-priori bound on the
solutions is required.

The techniques developed here allow us to consider also problems defined in
strips Σ2b := {(x, y) ∈ R

2 : y ∈ (0 , 2b)}, b > 0. The following result answers
affirmatively to an open question raised by Berestycki, Caffarelli and Nirenberg
(see p. 486 in [1]).

Theorem 1.3. Let u ∈ C2(Σ2b) be a solution to

(1.3)

⎧⎪⎨
⎪⎩
−Δu = f(u), in Σ2b,

u � 0, in Σ2b,

u = 0, on ∂Σ2b,

with f locally Lipschitz continuous on [0 ,+∞) (no restriction on the sign of f(0)).
Then,

(i) if f(0) < 0, either u is positive on Σ2b, symmetric about {y = b} with ∂yu > 0
in Σb, or u is one-dimensional and periodic; in this case, 2b is necessarily a
multiple of the period of u;

(ii) if f(0) ≥ 0, either u vanishes identically or it is positive on Σ2b, symmetric
about {y = b} with ∂yu > 0 in Σb.

Remark 1.4. Note that the theorem above also applies when f(0) ≥ 0 and it is
new even in this case.

Before proceeding further, let us briefly recall the main difficulties that one has
to face when working in our general framework.

When f(0) < 0, nonnegative solutions are natural and must be taken into
account. Indeed, in this case, nontrivial, nonnegative solutions (vanishing some-
where) can exist and sometimes, they are the only nonnegative solutions of the
considered problem (this is the case when f(u) = u− 1, for instance). These phe-
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nomena are strongly related to the absence of both the strong maximum principle
and the Hopf lemma. Hence a deeper and different analysis with respect to the
case f(0) � 0 is needed. Further difficulties in the analysis are added by the fact
that the solution u is not assumed to be bounded and f is merely locally Lipschitz
continuous. Indeed, in the study of the qualitative properties of the solutions to
semilinear problems in unbounded domains, it is always assumed some a priori
bound on u and/or the global Lipschitz character of f . These properties ensure,
for instance, the possibility to use elliptic estimates to study the asymptotic be-
haviour u, by means of the translation invariance of the considered problem and/or
to use some comparison principles on unbounded cylindrical domains having small
cross section. The lack of those properties in our general framework will require a
different approach to the problem.

To obtain our results we shall use a rotating plane method (inspired by [2], and
especially by [8]) combined with the unique continuation principle (see [17] and the
references therein). These tools are described and developed in sections 2 and 3.

To continue the description of our results, we denote by p := (x, y) a general
point in the plane and, for a nonnegative solution u of (1.1), we say that u satisfies
the property (Pμ) if there exists a real number μ > 0 and a point p ∈ {y = μ} such
that u(p) �= 0.

Equivalently:

(Pμ) holds if {y = μ} ∩ {u �= 0} �= ∅ .
Since u cannot be identically zero by the assumption f(0) < 0, we see that the

above property (Pμ) is satisfied for some μ > 0.
We shall prove in Theorem 6.1 that the set

(1.4) Λ∗ = Λ∗(u) := {λ > 0 : (Pμ) holds for every 0 < μ ≤ λ}
is not empty (in any dimension N ≥ 2). Therefore we have

(1.5) λ∗ = λ∗(u) := supΛ∗ ∈ (0,+∞].

Note that, by a continuity argument, if λ∗ is finite, we easily get that {y =
λ∗} ⊆ {u = 0}.

Recalling the notation Σλ := {(x, y) ∈ R
2 | 0 < y < λ}, we have the following.

Theorem 1.5. Assume that f is locally Lipschitz continuous on [0 ,+∞) with

f(0) < 0. Let u ∈ C2(R2
+) be a solution to (1.1). Then

(i) if λ∗ = +∞, then u is positive and strictly monotone increasing in the y
direction, with u > 0 and ∂yu > 0 in R

2
+.

(ii) If λ∗ < +∞, u is one-dimensional and periodic, i.e.,

u(x, y) = u0(y) ∀ (x, y) ∈ R
2
+,

where u0 ∈ C2(R, [0,∞)) is periodic of period λ∗. Moreover, u0 is the unique
solution of

(1.6) − u′′
0 = f(u0) in [0,∞), u′

0(0) = u0(0) = 0 = u′
0(λ

∗) = u0(λ
∗) .

Also, u is symmetric with respect to {y = λ∗/2} with ∂yu > 0 in Σλ∗/2.
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We shall provide two different proofs of the above theorem. Note that The-
orem 1.1 is an immediate consequence of Theorem 1.5. Both of them provide
a complete classification of the solutions to problem (1.1) and they significantly
extend the results of [2], where it is always assumed that f is globally Lipschitz
continuous and/or the solution u is positive and bounded, and the partial results
obtained in [10], which hold for bounded solutions and f ∈ C1.

Next we have two results concerning the one-dimensional symmetry for solu-
tions to (1.1).

Theorem 1.6. Assume that f is locally Lipschitz continuous on [0 ,+∞). Let u ∈
C2(R2

+) be a solution to (1.1) with |∇u|∈L∞(R2
+). Then u is one-dimensional, i.e.,

u(x, y) = u(y) ∀ (x, y) ∈ R
2
+.

The above theorem recovers and improves upon a result of [16], where only
positive solutions were considered (cf. also [2]).

Theorem 1.7. Assume that f ∈ C1([0 ,+∞)) with f(0) < 0 such that

f ′(t) � c > 0 for any t ∈ (0,∞),

and let u ∈ C2(R2
+) be a solution to (1.1). Then u is one-dimensional and peri-

odic, i.e.,
u(x, y) = u0(y) ∀ (x, y) ∈ R

2
+

with u0 as in Theorem 1.5. In particular, there are no positive solutions to (1.1).

Note that Theorem 1.2 is obtained by setting f(u) = u − 1 in the previous
theorem.

We can now turn to the case of the strips Σ2b, b > 0. Precisely, we consider
the following problem:

(1.7)

⎧⎪⎨
⎪⎩
−Δu = f(u), in Σ2b,

u � 0, in Σ2b,

u = 0, on ∂Σ2b .

We let Λ∗ be defined by (1.4), considering there values of λ such that 0 < λ < 2b,
thus λ∗ ∈ (0, 2b].

We shall prove:

Theorem 1.8. Assume that f is locally Lipschitz continuous on [0 ,+∞) with
f(0) < 0. Let u ∈ C2(Σ2b) be a solution to (1.7). Then,

(i) if λ∗ = 2b, it follows that u is positive in Σ2b with ∂yu > 0 in Σb.
Furthermore u is symmetric with respect to {y = b}, i.e., u(x, y) = u(x, 2b−y)

for any 0 � y � 2b.

(ii) If λ∗ < 2b, u is one-dimensional and periodic, i.e.,

u(x, y) = u0(y) ∀ (x, y) ∈ Σ2b
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where u0 ∈ C2(R, [0,∞)) is periodic of period λ∗. Moreover, u0 is the unique
solution of

(1.8) − u′′
0 = f(u0) in [0, 2b], u0(0) = u′

0(0) = 0.

Also, u is symmetric with respect to {y = λ∗/2} with ∂yu > 0 in Σλ∗/2. Finally, 2b
is necessarily a multiple of the period λ∗.

The techniques used to prove Theorem 1.8 also cover the case f(0) ≥ 0. Since
the result appears to be new even in this case, we explicitly state it in the next
Theorem 1.9.

Theorem 1.9. Assume that f is locally Lipschitz continuous on [0 ,+∞) with
f(0) ≥ 0. Let u ∈ C2(Σ2b) be a solution to (1.7).

Then, either u vanishes identically or it is positive on Σ2b, symmetric about
{y = b} with ∂yu > 0 in Σb.

Note that Theorem 1.3 is a consequence of the combination of Theorem 1.8
and Theorem 1.9.

The next result concerns the qualitative properties of nonnegative solutions on
coercive epigraphs. It holds true in every dimension N ≥ 2. Let us recall that a
domain Ω ⊂ R

N is a smooth coercive epigraph if, up to a rotation of the space, there
exists g ∈ C2(RN−1,R) such that Ω := { x = (x′, xN ) ∈ R

N−1 × R : xN > g(x′) }
and lim|x′|→+∞ g(x′) = +∞.

Theorem 1.10. Let N ≥ 2 and let Ω ⊂ R
N denote a smooth coercive epigraph.

Assume that f is locally Lipschitz continuous on [0 ,+∞) with f(0) < 0. Let u ∈
C2(Ω) be a solution to

(1.9)

⎧⎪⎨
⎪⎩
−Δu = f(u), in Ω,

u � 0, in Ω,

u = 0, on ∂Ω.

Then, u is positive and strictly monotone increasing in the xN direction, with
∂xNu > 0 in Ω.

Previous results in this case have been obtained in [3], [11] under the condition
that u is a positive solution (cf. also [13]).

Further results concerning the higher dimensional case are provided in the last
section.

In this work we focused on the case f(0) < 0, where very few results were
available. For the more classical case f(0) ≥ 0, f globally Lipschitz continuous
and/or u bounded, we refer to [1], [2], [3], [4], [6], [7], [9], [11], [12], [13], [14], [16],
and [18], and the references therein.

The paper is organized as follows: in Section 2 we state and prove some prelimi-
nary results needed for the application of the rotating plane technique. In Section 3
we give the first proof of Theorem 1.5. Here we exploit the unique continuation
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principle only to prove the last assertion of the statement. We provide the sec-
ond proof of Theorem 1.5 in Section 4 exploiting there the unique continuation
principle to start the rotating plane procedure. Section 5 is devoted to the proof
of Theorems 1.1–1.3 and Theorems 1.6–1.9. The results in higher dimensions are
treated in Section 6.

2. Preliminary results

In this section we assume that f is merely locally Lipschitz continuous. No restric-
tions are imposed on the sign of f(0).

In the proof of our main result we will exploit a rotating plane technique.
This will be strongly based on the use of weak and strong maximum principles,
see e.g. [20] and [21]. Since we are not assuming that the solution is globally
bounded and since we are not assuming that the nonlinearity f is globally Lipschitz
continuous, we need the following version of the weak comparison principle in
domains of small measure.

Proposition 2.1 (Weak comparison principle in small domains). Assume N ≥ 2.
Let us consider a bounded domain D ⊂ R

N and u, v ∈ C2(D) such that

(2.1) −Δu− f(u) ≤ −Δv − f(v) in D.

Then there exists ϑ = ϑ(D, u, v, f) > 0 such that, for any domain D′ ⊂ D with
u ≤ v on ∂ D′ and L(D′) ≤ ϑ (where L(·) denotes the Lebesgue measure of a set),
it follows

u ≤ v in D′.

Proof. We use (u− v)+ ∈ H1
0 (D

′) as test function in the weak formulation of (2.1)
and get ∫

D′

∣∣∇(u− v)+
∣∣2 dx ≤

∫
D′

f(u)− f(v)

(u − v)
((u− v)+)2 dx

� C(D, u, v, f)

∫
D′

((u − v)+)2 dx,

where the positive constant C(D, u, v, f) can be determined exploiting the fact
that u, v are bounded on D and f is locally Lipschitz continuous on [0 ,+∞).

An application of Poincaré inequality gives∫
D′

∣∣∇(u− v)+
∣∣2 dx � C(D, u, v, f)(CN (L(D′))2/N )

∫
D′

∣∣∇(u − v)+
∣∣2 dx ,

where CN > 0 is a constant depending only on the Euclidean dimension N .

For L(D′) small such that C(D, u, v, f)(CN (L(D′))2/N ) < 1, we get that (u−
v)+ ≡ 0 and the thesis. �
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Now we focus on the two-dimensional case and fix some notations. Given
x0 ∈ R, s > 0 and θ ∈ (0, π/2), let Lx0,s,θ be the line, with slope tan(θ), pass-
ing through (x0, s). Also, let Vθ be the vector orthogonal to Lx0,s,θ such that
(Vθ, e2) > 0 and ‖Vθ‖ = 1. We denote by

(2.2) Tx0,s,θ

the (open) triangle delimited by Lx0,s,θ, {y = 0} and {x = x0}. We also define

ux0,s,θ(x) = u(Tx0,s,θ(x)), x ∈ Tx0,s,θ

where Tx0,s,θ(x) is the point symmetric to x with respect to Lx0,s,θ, and

(2.3) wx0,s,θ = u− ux0,s,θ .

It is immediate to see that ux0,s,θ still fulfills −Δux0,s,θ = f(ux0,s,θ) and

(2.4) −Δwx0,s,θ = cx0,s,θwx0,s,θ

on the triangle Tx0,s,θ, where we have set

(2.5) cx0,s,θ(x) :=

{
f(u(x))−f(ux0,s,θ

(x))

u(x)−ux0,s,θ(x)
if wx0,s,θ �= 0,

0 if wx0,s,θ = 0.

Note that |cx0,s,θ| ≤ C(Tx0,s,θ, u, f) on the triangle Tx0,s,θ, where C(Tx0,s,θ, u, f)
is a positive constant which can be determined by exploiting the fact that u and
ux0,s,θ are bounded on Tx0,s,θ and f is locally Lipschitz continuous on [0 ,+∞).

Let us remark that, exploiting also the Dirichlet boundary condition and the
fact that u is nonnegative, it follows that wx0,s,θ = 0 on Tx0,s,θ ∩ Lx0,s,θ, while
wx0,s,θ ≤ 0 on Tx0,s,θ ∩ {y = 0}.

In what follows we shall make repeated use of a refined version of the moving
plane technique [22] (see also [5] and [19]). Actually we will exploit a rotating plane
technique and a sliding plane technique developed in [8].

Let us give the following definition:

Definition 2.2. Given x0, s and θ as above, we say that the condition (HTx0,s,θ)
holds in the triangle Tx0,s,θ if

wx0,s,θ < 0 in Tx0,s,θ, wx0,s,θ � 0 on ∂(Tx0,s,θ), and

wx0,s,θ is not identically zero on ∂(Tx0,s,θ),

with wx0,s,θ defined in (2.3).

We have the following.

Lemma 2.3 (Small perturbations). Let (x0, s, θ) and Tx0,s,θ be as above and as-
sume that (HTx0,s,θ) holds. Then there exists μ̄ = μ̄(x0, s, θ) > 0 such that

(2.6)

⎧⎪⎨
⎪⎩
|θ − θ′|+ |s− s′| < μ̄,

wx0,s′,θ′ � 0 on ∂(Tx0,s′,θ′), =⇒ (HTx0,s′,θ′) holds.

wx0,s′,θ′ is not identically zero on ∂(Tx0,s′,θ′)
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Proof. In order to exploit Proposition 2.1, let us fix a bounded domain D ⊂ R
2
+

such that Tx0,s′,θ ⊂ D for all s′ ∈ (0, s+ 1) and θ′ ∈ (θ/2, π/2). Now pick a small
ε = ε(θ, s) > 0 such that L(Tx0,s+ε,θ−ε \ Tx0,s−ε,θ+ε) < ϑ/10, and then a compact
set K ⊂ Tx0,s−ε,θ+ε such that L(Tx0,s−ε,θ+ε \ K) < ϑ/10, where ϑ is given by
Proposition 2.1. Therefore, for all (s′, θ′) satisfying |θ − θ′|+ |s− s′| < ε, we have
L(Tx0,s′,θ′ \ K) < ϑ/5. Also, since by assumption wx0,s,θ < 0 in Tx0,s,θ we get
wx0,s,θ � ρ < 0 on the compact set K. Therefore, we can find μ̄ ∈ (0, ε) such that,
for all (s′, θ′) satisfying |θ − θ′| + |s− s′| < μ̄, we have wx0,s′,θ′ � ρ/2 < 0 on the
compact set K, and L(Tx0,s′,θ′ \K) < ϑ/5. Since wx0,s′,θ′ � 0 on ∂

(
Tx0,s′,θ′ \K

)
,

we can apply Proposition 2.1 to get that

wx0,s′,θ′ � 0 in Tx0,s′,θ′ \K,

and therefore in the triangle Tx0,s′,θ′ . Also by the strong comparison principle,
we get

wx0,s′,θ′ < 0 in Tx0,s′,θ′ ,

and the proof is completed. �

Let us now show that, from the fact that we can make small translations and
rotations of Tx0,s,θ towards Tx0,s′,θ′ , if (s′, θ′) ≈ (s, θ), then we can also make larger
translations and rotations. We have the following.

Lemma 2.4 (The sliding-rotating technique). Let (x0, s, θ) be as above and assume

that (HTx0,s,θ) holds. Let (ŝ, θ̂) be fixed and assume that there exists a continuous
function g(t) = (s(t), θ(t)) : [0 , 1] → (0,+∞) × (0, π/2), such that g(0) = (s, θ)

and g(1) = (ŝ, θ̂). Assume that

(2.7) wx0,s(t),θ(t) � 0 on ∂(Tx0,s(t),θ(t)) for every t ∈ [0, 1),

and that wx0,s(t),θ(t) is not identically zero on ∂(Tx0,s(t),θ(t)) for every t ∈ [0, 1).
Then

(HTx0,ŝ,θ̂
) holds.

Proof. By the assumptions and exploiting Lemma 2.3, we obtain the existence
of t̃ > 0 small such that, for 0 � t � t̃, (HTx0,s(t),θ(t)) holds. We now set

T ≡ {t̃ ∈ [0, 1] such that (HTx0,s(t),θ(t)) holds for any 0 � t � t̃},

and

t̄ = sup T .

We claim that actually t̄ = 1. To prove this, assume t̄ < 1 and note that in this
case we have

wx0,s(t̄),θ(t̄) ≤ 0 in Tx0,s(t̄),θ(t̄) ,

wx0,s(t̄),θ(t̄) ≤ 0 on ∂(Tx0,s(t̄),θ(t̄)),
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by continuity, and that wx0,s(t̄),θ(t̄) is not identically zero on ∂(Tx0,s(t̄),θ(t̄)) by
assumption. Hence, by the strong maximum principle, we see that

wx0,s(t̄),θ(t̄) < 0 in Tx0,s(t̄),θ(t̄) .

Therefore (HTx0,s(t̄),θ(t̄)) holds and using once again Lemma 2.3, we can find a
sufficiently small ε > 0 so that (HTx0,s(t),θ(t)) holds for any 0 � t � t̄ + ε, which
contradicts the definition of t̄. �

3. First proof of Theorem 1.5

Given any x0 ∈ R, let us set

(3.1) Qh(x0) = {(x, y) : |x− x0| � h, 0 � y � 2h} .

Since ∂xxu(x0, 0) = 0, we have that

− ∂yyu(x0, 0) = −Δu(x0, 0) = f(u(x0, 0)) = f(0) < 0 ,

since f(0) < 0 by assumption. Recalling that u ∈ C2(R2
+), we conclude that we

can take h̄ > 0 small such that

∂yyu > 0 in Qh̄(x0).

Exploiting again the fact that u ∈ C2(R2
+), we can consequently find θ̄ = θ̄(h̄) ∈

(0, π/2) such that

(3.2)
∂

∂Vθ

( ∂ u

∂Vθ

)
> 0 in Qh̄(x0) for − θ̄ ≤ θ ≤ θ̄ .

Also, since we assumed that u is nonnegative in R
2
+, it follows that

(3.3)
∂ u

∂Vθ
(x, 0) � 0 for any − θ̄ ≤ θ ≤ θ̄ and for any x ∈ R .

By combining (3.2) and (3.3), we deduce the strict monotonicity of u in the
Vθ-direction, for every x ∈ Qh̄(x0) ∩ R

2
+ and every θ ∈ [−θ̄, θ̄]. From the anal-

ysis above, we find the existence of (possible very small)

(3.4) s̄ = s̄(θ̄) > 0

such that, for any 0 < s � s̄:

i) both the triangle Tx0,s,θ̄ and its reflection with respect to Lx0,s,θ̄ are contained
in Qh̄(x0) (as well as their reflections with respect to the axis { x = x0 }),

ii) both the segment { (x0, y) : 0 ≤ y ≤ s } and its reflection with respect to
Lx0,s,θ are contained in Qh̄(x0) for every θ ∈ (0, θ̄],

iii) u < ux0,s,θ̄ in Tx0,s,θ̄,

iv) u � ux0,s,θ on ∂(Tx0,s,θ) for every θ ∈ (0, θ̄],

v) u < ux0,s,θ on the set { (x0, y) : 0 < y < s }, for every θ ∈ (0, θ̄].
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Note that, from iii)–iv), we have that

(3.5) ∀ s ∈ (0, s̄), (HTx0,s,θ̄) holds.

Next we prove a result that allows to start the moving plane procedure. We
recall the notation

uλ(x, y) := u(x, 2λ− y) .

Lemma 3.1 (Monotonicity near the boundary). There exists λ̂ > 0 such that, for

any 0 < λ ≤ λ̂, we have

(3.6) u < uλ in Σλ .

Furthermore,

(3.7) ∂yu > 0 in Σλ̂ .

Proof. Let θ̄ given by (3.2) and s̄ = s̄(θ̄) as in (3.4). We showed that, for any
0 < s < s̄, (HTx0,s,θ̄) holds. We use now Lemma 2.4 as follows: for any fixed

s ∈ (0, s̄) and θ′ ∈ (0, θ̄), we consider the rotation

g(t) = (s(t), θ(t)) := (s , tθ′ + (1− t)θ̄), t ∈ [0 , 1] .

Recalling that (HTx0,s,θ̄) holds by (3.5), we deduce that also (HTx0,s,θ′) holds.

Therefore, by the fact that 0 < θ′ < θ̄ is arbitrary and by a continuity argument,
we pass to the limit for θ′ → 0 and get

u(x, y) ≤ us(x, y) in Σs ∩ {x � x0} for 0 < s < s̄.

The invariance of the considered problem with respect to the axis { x = x0 } enables
us to use the same argument to treat the case of negative θ, yielding

u(x, y) ≤ us(x, y) in Σs ∩ {x � x0} for 0 < s < s̄,

possibly reducing s̄. Thus u(x, y) ≤ us(x, y) in Σs for every s ∈ (0, s̄). The desired

conclusion (3.6) then follows by taking λ̂ such that 0 < λ̂ < min{s̄, λ∗/2}. Here

we have used in a crucial way that the property (P)λ holds for every λ ∈ (0, λ̂], so
that the case u ≡ uλ in Σλ is not possible. Moreover, by Hopf’s lemma, for every
λ ∈ (0, λ̂] and every x ∈ R, we get

(3.8) 2∂yu(x, λ) =
∂(u− uλ)

∂y
(x, λ) > 0 .

This proves (3.7). �

To proceed further we need some notations. Let λ∗ be defined as in (1.5) (a
self-contained independent proof of the fact that λ∗ is well defined will be provided
in Theorem 6.1). In the case λ∗ = ∞, we set

Λ = {λ > 0 : u < uλ′ in Σλ′ ∀λ′ < λ} .
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If λ∗ is finite we use the same notation but considering values of λ such that
0 < λ < λ∗/2, namely,

Λ = {λ < λ∗/2 : u < uλ′ in Σλ′ ∀λ′ < λ} .

By Lemma 3.1, we know that Λ is not empty and we can define

(3.9) λ̄ = sup Λ .

The proof of the theorem will be done if we show that λ̄ = +∞, when λ∗ = ∞
(respectively, λ̄ = λ∗/2, when λ∗ is finite). Therefore we argue by contradiction
and assume that λ̄ < +∞, when λ∗ = ∞ (respectively, λ̄ < λ∗/2, when λ∗ is
finite).

First, as above, we deduce that u is strictly monotone increasing in the e2-direc-
tion in Σλ̄, with

(3.10) ∂yu > 0 in Σλ̄ .

To proceed further we need to prove the following.

Lemma 3.2. Let λ∗ and λ̄ be as above. Assume that there is a point x0 ∈ R

satisfying u(x0, 2λ̄) > 0. Then there exists δ̄ > 0 such that: for any −δ̄ � θ � δ̄
and for any 0 < λ � λ̄+ δ̄, we have

u(x0, y) < ux0,λ,θ(x0, y) , for 0 < y < λ.

Proof. First we note that ∂yu(x0, λ̄) > 0. In fact, by construction u < uλ̄ in Σλ̄.
Therefore, by Hopf’s lemma, we have

(3.11) 2∂yu(x0, λ̄) =
∂(u− uλ̄)

∂y
(x0, λ̄) > 0 .

We argue now by contradiction. If the lemma were false, we would find a sequence
of small δn → 0 and −δn � θn � δn, 0 < λn � λ̄+ δn, 0 < yn < λn with

u(x0, yn) � ux0,λn,θn(x0, yn).

Possibly considering subsequences, we may and do assume that λn → λ̃ � λ̄.
Also yn → ỹ for some ỹ � λ̃. Considering the construction of Qh̄(x0) as above and
in particular taking into account (3.2) and (3.3), we deduce that λ̃ > 0 and, by
continuity, it follows that u(x0, ỹ) � uλ̃(x0, ỹ). Consequently yn → λ̃ = ỹ, since
we know that u < uλ′ in Σλ′ for any λ′ � λ̄ and we assumed that u(x0, 2λ̄) > 0
so that in particular u(x0, 0) = 0 < u(x0, 2λ̄). By the mean value theorem, since
u(x0, yn) � ux0,λn,θn(x0, yn), it follows

∂u

∂Vθn

(xn, yn) � 0
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at some point ξn ≡ (xn, yn) lying on the line from (x0, yn) to Tx0,λn,θn(x0, yn),
recalling that the vector Vθn is orthogonal to the line Lx0,λn,θn . Since Vθn → e2 as
θn → 0. Taking the limit it follows that

∂yu(x0, λ̃) � 0

which is impossible by (3.11) and (3.10). �

End of the first proof of Theorem 1.5. Since we are assuming that λ̄ < +∞, when
λ∗ = ∞ (respectively, λ̄ < λ∗/2, when λ∗ is finite), we can find x0 ∈ R such that
u(x0, 2λ̄) > 0. Let Qh̄(x0) be constructed as above and pick θ̄ given by (3.2). Let
also δ̄ as in Lemma 3.2. Then fix θ0 > 0 with θ0 � δ̄ and θ0 � θ̄. Let us set

s0 := s0(θ0) ,

such that the triangle Tx0,s0,θ0 and its reflection with respect to Lx0,s0,θ0 is con-
tained in Qh̄(x0) and consequently (HTx0,s0,θ0) holds. It is convenient to assume

that s0 � λ̂ with λ̂ as in Lemma 3.1. For any

s0 < s � λ̄+ δ̄, 0 < θ < θ0 ,

we carry out the sliding-rotating technique exploiting Lemma 2.4 with

g(t) = (s(t), θ(t)) := (ts+ (1− t)s0 , tθ + (1− t)θ0) t ∈ [0 , 1] .

By Lemma 3.2, we deduce that the boundary conditions required to apply
Lemma 2.4 are fulfilled and therefore, by Lemma 2.4, we get that (HTx0,s,θ) holds.
We can now argue as in the proof of Lemma 3.1 and deduce that u(x, y) < uλ(x, y)
in Σλ for any 0 < λ � λ̄ + δ̄. This provides a contradiction unless λ̄ = +∞
(respectively, λ̄ = λ∗/2, if λ∗ is finite). Arguing e.g. as in the proof of Lemma 3.1,
we deduce

∂yu > 0 in R
2
+ if λ∗ = +∞ ,

while
∂yu > 0 in Σλ∗/2 if λ∗ < +∞ .

As a consequence of the monotonicity result, we deduce that u is positive in R
2
+

if λ∗ = +∞.

In we assume that λ∗ is finite, we deduce by continuity that

u ≤ uλ∗/2 in Σλ∗/2 .

By the strong comparison principle, we deduce that: either u < uλ∗/2 or u ≡ uλ∗/2,
in Σλ∗/2. Note that, by the definition of λ∗, we have that {y = λ∗} ⊆ {u = 0}, that
also implies {y = λ∗} ⊆ {∇u = 0} since u is nonnegative. If u < uλ∗/2 in Σλ∗/2,
we get by the Hopf boundary lemma (see [20]) that ∂y(uλ∗/2 − u) > 0 on {y = 0}.
Since ∂y(uλ∗/2) = 0 on {y = 0} (by the fact that {y = λ∗} ⊆ {∇u = 0}) this
provides a contradiction with the fact that u is nonnegative. Therefore it occurs
u ≡ uλ∗/2, in Σλ∗/2.
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Note now that, since {y = λ∗} ⊆ {u = 0}∩{∇u = 0} , by symmetry we deduce

{y = 0} ⊆ {u = 0} ∩ {∇u = 0} .

Therefore we deduce that u is one-dimensional by the unique continuation principle
(see for instance Theorem 1 of [17] and the references therein). Indeed, for every
t ∈ R, the function ut(x, y) := u(x + t, y) is a nonnegative solution of (1.1) with
ut = ∇ut = 0 on ∂R2

+ and the unique continuation principle implies that u ≡ ut

on R
2
+. This immediately gives that u depends only on the variable y, i.e.,

u(x, y) = u0(y) ∀ (x, y) ∈ R
2
+,

where u0 ∈ C2([0,+∞)) is the unique solution of u′′
0 + f(u0) = 0 with u′

0(0) =
u0(0) = 0. The remaining part of the statement, namely the properties of u0,
follows by a simple ODE analysis. �

4. Second proof of Theorem 1.5

This proof makes use of the unique continuation principle to start the moving
plane procedure.

Second proof of Theorem 1.5. If we assume that

∇u(x, 0) = 0 for any x ∈ R ,

then it follows that u coincides with u0 by the unique continuation principle,
with u0 as in the statement. A simple analysis of the associated ordinary dif-
ferential equation shows in this case that u0 is monotone increasing if λ∗ = ∞,
while u0 is periodic when λ∗ is finite. Therefore the proof is done in this case and
we reduce to consider the case:

there exists x0 ∈ R such that ∇u(x0, 0) �= 0 .

Necessarily in this case we have that ∂yu(x0, 0) > 0 since the case ∂yu(x0, 0) < 0
is not possible because u is nonnegative. Setting as above (see (3.1))

(4.1) Qh(x0) = {(x, y) : |x− x0| � h, 0 � y � 2h} ,

recalling that u ∈ C2(R2
+), we can therefore fix h̄ > 0 small such that

∂yu > 0 in Qh̄(x0).

Exploiting again the fact that u ∈ C2(R2
+), we can consequently consider θ̄ = θ̄(h̄)

small such that

(4.2)
∂ u

∂Vθ
> 0 in Qh̄(x0) for − θ̄ ≤ θ ≤ θ̄ .
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From the above (4.2), we immediately deduce the existence of s̄ as in (3.4) and
satisfying properties i)–v) at the beginning of the first proof of Theorem 1.5, so
that the moving plane procedure can be started.

To proceed further note that, for λ̄ defined as above, it occurs that

u(x0, 2λ̄) > 0 .

In fact, if this is not the case, then we have ∇u(x0, 2λ̄) = 0. Consequently,

∂yu(x0, 0) = ∂y(u − uλ̄)(x0, 0) � 0 ,

while ∂yu(x0, 0) > 0 by construction. Therefore Lemma 3.2 can be exploited and,
since the remaining part of the proof can be repeated verbatim, we omit it. �

5. Proof of Theorems 1.1–1.3 and Theorems 1.6–1.9

Proof of Theorem 1.1. By Theorem 1.5 we have that, either λ∗ < +∞ and thus u
is one-dimensional and periodic or λ∗ = +∞ and u satisfies u > 0 and ∂yu > 0
in R

2
+. �

Proof of Theorem 1.6. Let us first consider the case f(0) < 0. By Theorem 1.1,
either u is one-dimensional and periodic, and we are done, or u > 0 and ∂yu > 0
in R

2
+. Therefore, since we are assuming that |∇u| is bounded, we are in position to

apply Theorem 1.2 in [16] to conclude that u is one-dimensional. When f(0) ≥ 0,
either u is identically zero, or u > 0 and ∂yu > 0 in R

2
+ by Theorem 1.1 in [8]. The

desired conclusion then follows by applying once again Theorem 1.2 in [16]. �

Proof of Theorem 1.7. Let us assume by contradiction that λ∗ = +∞ in Theo-
rem 1.5, hence ∂yu > 0 in R

2
+. This implies that∫

R
2
+

|∇ϕ|2 − f ′(u)ϕ2 dx � 0 for any ϕ ∈ C∞
c (R2

+) .

Since we are assuming that f ′(t) � c > 0 for any t ∈ (0,∞), it follows that

(5.1)

∫
R

2
+

|∇ϕ|2 dx � c

∫
R

2
+

ϕ2 dx for any ϕ ∈ C∞
c (R2

+) .

Let us now consider an arbitrary open ball Ω such that Ω ⊂ R
2
+ and let λ1(Ω)

be the first eigenvalue of the Laplace operator in Ω under zero Dirichlet boundary
conditions. By the variational characterization of λ1(Ω) and by (5.1), it would
follow that

λ1(Ω) � c > 0,

and this is clearly impossible since λ1(Ω) approaches zero when Ω is chosen arbi-
trary large. Therefore, necessarily, it occurs that λ∗ is finite, u is one-dimensional
and periodic and u cannot be positive. �
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Proof of Theorem 1.2. By Theorem 1.7, u is one-dimensional and periodic with
profile u0 satisfying (1.6). A simple ODE analysis shows that

u0(y) = 1− cos y,

and the result is proved. �

Proof of Theorem 1.8. The proof is analogous to the proof of Theorem 1.5. Let us
only provide a few details.

Consider first the case λ∗ = 2b. The moving plane procedure can be started
as in Theorem 1.5 exploiting Lemma 3.1. Then we define λ̄ as in (3.9) ad we
deduce that necessarily λ̄ = b arguing by contradiction exactly as in the proof of
Theorem 1.5 and exploiting the assumption λ∗ = 2b. Note that there is no need
of changes in the proof of Lemma 3.2. Therefore we deduce that u � uλ in Σλ for
any 0 < λ < b and, by continuity, we have

u � ub in Σb .

As a consequence of the moving plane procedure we also deduce that u is monotone
non-decreasing in Σb. Actually, arguing as in Lemma 3.1 we have ∂yu > 0 in Σb.
In particular u is positive in the entire strip Σ2b.

Performing the moving plane method in the opposite direction (0,−1) and
observing that the corresponding λ∗ is still equal to 2b (by the positivity of u), we
derive in the same way that

u � ub in Σb ,

and this implies that u is symmetric with respect to {y = b}.
Let us now consider the case λ∗ < 2b. In this case arguing as above we deduce

that u is positive in Σλ∗ , u � uλ in Σλ for any 0 < λ < λ∗/2 and

u ≡ uλ∗/2 in Σλ∗/2 .

As above {y = λ∗} ⊆ {u = 0} ∩ {∇u = 0} , that gives, by symmetry,

{y = 0} ⊆ {u = 0} ∩ {∇u = 0} .

Now we deduce that u is one-dimensional by the unique continuation principle and
consequently u(x, y) ≡ u0(y) for u0 defined as in the statement. �

Proof of Theorem 1.9. The proof is completely analogous to the proof of Theo-
rem 1.8. Actually, it is easier in this case since we are assuming that f(0) � 0
so that the strong maximum principle and the Hopf lemma can be exploited. In
particular we can start the moving plane procedure recovering (4.2) via the Hopf
lemma. Then we complete the proof repeating verbatim the proof of Theorem 1.8
and exploiting the fact that in this case, by the strong maximum principle, the
solution is either trivial or positive. �

Proof of Theorem 1.3. The proof of Theorem 1.3 follows combining Theorem 1.8
and Theorem 1.9. �
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6. Some results in any dimension N ≥ 2

In this section we state and prove some results for any dimension N ≥ 2. We
continue to assume that f is locally Lipschitz continuous and satisfies f(0) < 0.
Let us consider the problem

(6.1)

⎧⎪⎨
⎪⎩
−Δu = f(u) in R

N
+ ,

u � 0 in R
N
+ ,

u = 0 on ∂RN
+ ,

and let us denote by (x′, y) a point in R
N , with x′ = (x1, . . . , xN−1) and y = xN .

For a fixed solution u, we consider the property (Pμ) as in the introduction, and
we have the following

Theorem 6.1. Let u ∈ C2(RN
+ ) be a solution to (6.1) and let us set

(6.2) Λ∗ = Λ∗(u) := {λ > 0 : (Pμ) holds for every 0 < μ ≤ λ} .

Then
Λ∗ �= ∅ .

Proof. We prove the theorem by contradiction, and therefore we assume that there
exists a sequence of positive numbers μn such that μn tends to zero as n → ∞ and
(Pμn) fails, namely

{y = μn} ⊂ {u = 0} .
For x′

0 ∈ R
N−1 fixed, by the fact that u is nonnegative, it follows that

∇u(x′
0, μn) = 0.

Exploiting the Dirichlet condition, it also follows that the real valued function
u(x′

0, t) with t ∈ [0, μn], has an interior local maximum tn ∈ (0, μn). Therefore
∂yu(x

′
0, tn) = 0.

By the mean value theorem we deduce that

∂yyu(x
′
0, ξn) = 0 for some ξn ∈ [tn , μn] .

Since u ∈ C2(RN
+ ), letting n → ∞, we infer that

∂yyu(x
′
0, 0) = 0 .

This is a contradiction since in this case, recalling that u = 0 in {y = 0}, it follows
that

−Δu(x′
0, 0) = 0 > f(u(x′

0, 0)),

and the result is proved. �

As a consequence of Theorem 6.1, we see that

(6.3) λ∗ = λ∗(u) := supΛ∗ ∈ (0,+∞].

We have the following.
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Theorem 6.2. Let u ∈ C2(RN
+ ) be a solution to (6.1) and let λ∗ = λ∗(u) be

defined by (6.3). Then, if λ∗ is finite, it follows that u is one-dimensional and
periodic, i.e.,

u(x, y) = u0(y) ∀ (x, y) ∈ R
2
+,

where u0 ∈ C2(R, [0,∞)) is periodic of period λ∗ and is the unique solution of

(6.4) u′′
0 + f(u0) = 0 in [0,∞) u′

0(0) = u0(0) = 0 = u′
0(λ

∗) = u0(λ
∗) .

Also, u is symmetric with respect to {y = λ∗/2} with ∂yu > 0 in Σλ∗/2.

Proof. It follows by the definition of λ∗ that {y = λ∗} ⊆ {u = 0} . Since u is
nonnegative this implies that

{y = λ∗} ⊆ {∇u = 0} .

To conclude, we argue as at the end of the proof of Theorem 1.5. Indeed, for every
t ∈ R

N−1, the function ut(x′, y) := u(x′ + t, y) is a nonnegative solution of (1.1)
with ut = ∇ut = 0 on the set {y = λ∗} and the unique continuation principle
implies that u ≡ ut on R

N
+ . This immediately gives that u depends only on the

variable y, i.e.,

u(x′, y) = u0(y) ∀ (x′, y) ∈ R
N
+

where u0 ∈ C2([0,+∞)) is the unique solution of u′′
0 + f(u0) = 0 with u′

0(0) =
u0(0) = 0 = u′

0(λ
∗) = u0(λ

∗). A simple analysis of (6.4) yields that u0 is periodic
of period λ∗ with u0 even with respect to {y = λ∗/2}, and satisfying u′

0 > 0
in (0, λ∗/2). This concludes the proof. �

Now we turn to the case of coercive epigraphs and we prove Theorem 1.10.

Proof of Theorem 1.10. We plan to use the classical moving plane procedure [22].
We use the notation Σλ := {(x′, y) ∈ R

N | 0 < y < λ} and we denote by Rλ(x
′, y)

the point symmetric to (x′, y) with respect to the hyperplane {y = λ}, namely

Rλ(x
′, y) := (x′, 2λ− y) .

We set uλ(x
′, y) = u(Rλ(x

′, y)) = u(x′, 2λ− y) and Ωλ := Ω ∩ Σλ . Since Ω is a
smooth coercive epigraph, we have that Ωλ is a bounded open set (possibly non
connected) satisfying Rλ(Ωλ) ⊂ Ω, for every λ > 0.

Given any δ > 0, we can find λ0 = λ0(δ) > 0 such that L(Ωλ) < δ for any
0 < λ � λ0. Therefore we can take δ small such that the weak comparison principle
in small domains (Proposition 2.1) applies. Since u � uλ on ∂Ωλ, Proposition 2.1
yields

u � uλ in Ωλ for every 0 < λ � λ0 .

Therefore the set

Λ := {λ > 0 : u � uμ in Ωμ for any 0 < μ � λ}
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is not empty and
λ̄ := sup Λ ∈ (0,+∞].

Assume by contradiction that λ̄ < +∞. By continuity it follows that u � uλ̄ in Ωλ̄.
Let us now prove that

(6.5) u < uλ̄ in Ωλ̄.

To this end, we observe that u is positive in a neighborhood of the boundary.
Namely, for any x ∈ ∂Ω, there exists ρ = ρ(x) > 0 such that

(6.6) u > 0 in Ω ∩Bρ(x) .

A proof of this fact can be found, for instance, in [1] (cf. Lemma 4.1 on p. 485).
If (6.5) were false, there would exist a point x0 ∈ Ωλ̄ such that u(x0) = uλ̄(x0).
Thence, the strong maximum principle would imply

u ≡ uλ̄ in ωλ̄,

where ωλ̄ is the connected component of Ωλ̄ containing the point x0. This clearly
contradicts (6.6) (it would imply u = 0 on Rλ̄(∂Ω ∩ ωλ̄)). Hence (6.5) is satisfied.

In order to exploit Proposition 2.1 once again, let us fix a bounded domain
D ⊂ Ω containing the bounded set Ωλ̄+1∪Rλ̄+1(Ωλ̄+1) and then consider a compact
set K ⊂ Ωλ̄ such that

L(Ωλ̄ \ K) � ϑ

10

where ϑ is given by Proposition 2.1. It follows by compactness that, for some
σ > 0,

(uλ̄ − u) � σ > 0 on K,

and therefore, by the uniform continuity of u on compact sets, we can find ε0 ∈
(0, 1) such that

(uλ̄+ε − u) � σ

2
> 0 and L(Ωλ̄+ε \ Ωλ̄) �

ϑ

10
for every 0 < ε < ε0 .

Then it follows that Proposition 2.1 applies in Ωλ̄+ε \K, for every 0 < ε < ε0, since

L(Ωλ̄+ε \ K) < ϑ .

Therefore u � uλ̄+ε in Ωλ̄+ε \ K, for every 0 < ε < ε0, and consequently

u � uλ̄+ε in Ωλ̄+ε for every 0 < ε < ε0 .

The latter contradicts the definition of λ̄. Thus, we have proved that

λ̄ = +∞ .

As a consequence, u is monotone non-decreasing in the y-direction. Actually,
arguing exactly as above and using again that u is positive in a neighborhood of
the boundary, we get

(6.7) u < uλ in Ωλ for every λ > 0 .
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Hence the Hopf lemma yields

∂xNu = ∂yu > 0 in Ω .

Furthermore, as a consequence, u is positive in Ω. �
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