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Combining Riesz bases in Rd

Gady Kozma and Shahaf Nitzan

Abstract. We prove that every finite union of rectangles with edges
parallel to the axes in R

d admits a Riesz basis of exponentials.

1. Introduction

Orthogonal bases are used throughout mathematics and its applications. However,
in many settings such bases are not easy to come by. For example, even the union
of as few as two disjoint intervals in R may not admit an orthogonal basis of expo-
nentials, e(Λ) := {ei〈λ,t〉}λ∈Λ. This example should be contrasted with the case of
a single interval, where the exponential orthogonal basis plays a fundamental role.

Among the systems which may be considered as replacements for orthogonal
bases, Riesz bases are the best possible: They are the image of orthogonal bases
under a bounded invertible operator and therefore preserve most of their qualities.
In particular, if e(Λ) is a Riesz basis over some set S ⊂ R then every f ∈ L2(S)
can be decomposed into a series f =

∑
aλe

2πiλt in a unique and stable way.
Our understanding of the existence of Riesz bases of exponentials is still lacking.

On the one hand, there are relatively few examples in which it is known how to
construct a Riesz basis of exponentials. For example, in two dimensions, we do not
know how to construct such a basis for either a ball or a triangle, nor even have a
reasonable candidate to be such a basis (it is known that neither set supports an
orthogonal basis of exponentials, [2], [4]). Some constructions of Riesz bases (e.g.,
for polytopes with some arithmetic constraints) can be found in [9], [3], and [1],
and references within. On the other hand, we know of no example of a set S of
positive measure for which a Riesz basis of exponentials can be shown not to exist.

In [6] we proved the following.

Theorem 1. Let S ⊂ R be a finite union of intervals. Then there exists a set
Λ ⊂ R such that the family e(Λ) := {e2πiλt}λ∈Λ is a Riesz basis in L2(S). More-
over, if S ⊂ [0, 1] then Λ may be chosen to satisfy Λ ⊂ Z.

In this paper we extend this result to higher dimensions in the following way.

Mathematics Subject Classification (2010): Primary 42C15; Secondary 42C30, 42B99.
Keywords: Sampling, interpolation, Riesz bases, Paley–Wiener space, multi-dimensional.



1394 G. Kozma and S. Nitzan

Theorem 2. Let S ⊂ Rd be a finite union of rectangles with edges parallel to the
axes. Then there exists a set Σ ⊂ R

d such that the family e(Σ) is a Riesz basis in
L2(S). Moreover, if S ⊂ [0, 1]d then Σ may be chosen to satisfy Σ ⊂ Zd.

We take from [6] the following basic principle. Suppose you try to construct a
Riesz basis by combining Riesz bases of simpler sets. If the most natural candi-
date for a construction of a Riesz basis does not work, try instead a construction
that involves first taking unions and intersections of your simpler sets, and then
combining their Riesz bases. Take, for example, in the setting of Theorem 1, the
case where S = I ∪ J with I ⊂ [0, 1/2] and J ⊂ [1/2, 1]. Then the most natural
candidate for a Riesz basis might be to take a Riesz basis for I and a Riesz basis
for J and hope that their union would be a Riesz basis for S. This does not work,
but it turns out that taking Riesz bases for I ∪ (J − 1/2) and for I ∩ (J − 1/2)
and taking the union of them works (under certain conditions). Here we need
to construct a Riesz basis for a union of products, say

⋃
Xi × Yi. The natural

candidate is to take Riesz bases Ξi for Xi and Ψi for Yi, and hope that
⋃
Ξi ×Ψi

would be a Riesz basis for
⋃
Xi× Yi. This does not work. The correct “union and

intersection version” is the following lemma. Denote Y≥n =
⋃L
k=n Yn.

Lemma 3. Let X1, . . . , XL ⊂ [0, 1]a be some sets and let Y1, . . . , YL ⊂ [0, 1]b be
pairwise disjoint sets. Assume Ξ1 ⊂ · · · ⊂ ΞL ⊂ Za satisfy that e(Ξn) is a Riesz
basis for Xn. Assume further that Ψ≥1 ⊃ · · · ⊃ Ψ≥L are subsets of Zb such that
that e(Ψ≥n) is a Riesz basis for Y≥n. Define

Σ :=
L⋃
n=1

Ξn ×Ψ≥n.

Then e(Σ) is a Riesz basis for
⋃L
n=1Xn × Yn.

To get a feeling for the condition Ξ1 ⊂ · · · ⊂ ΞL (which in particular means
that the Xn must have increasing sizes for the lemma to have any hope of being
applicable) one should first note that without this condition Σ might not even
have the right density to be a Riesz basis (see [7], [8], [11] for Landau’s theorem,
explaining the role of density). The definition of Σ can be reorganized in two other
ways which emphasize the issue of density (in particular as a union of disjoint sets).
The first is

Σ =

L⋃
n=1

Ξn × (Ψ≥n \Ψ≥n+1)

(where Ψ≥L+1 := ∅). This version has the mnemonic property of being almost a
“union of products of Riesz bases” except, of course, we are not requiring from
Ψ≥j \Ψ≥j+1 to be a Riesz basis for Yj . The other version is

Σ =

L⋃
n=1

(Ξn \ Ξn−1)× (Ψ≥n)

(where Ξ0 := ∅). This version will be used in the proof (§3 below). More remarks
on the relation with [6] will be given after the proof, in Section 6.



Combining Riesz bases in R
d 1395

2. Preliminaries

2.1. Systems of vectors in Hilbert spaces

Let H be a separable Hilbert space. A system of vectors {fn} ⊆ H is called a Riesz
basis if it is the image, under a bounded invertible operator, of an orthonormal
basis. This means that {fn} is a Riesz basis if and only if it is complete in H and
satisfies the following inequality for all sequences {an} ∈ l2,

(2.1) c
∑

|an|2 ≤
∥∥∥∑ anfn

∥∥∥2

≤ C
∑

|an|2,

where c and C are some positive constants which depend on the system fn but
not on the an. A system {fn} ⊆ H which satisfies condition (2.1), but is not
necessarily complete, is called a Riesz sequence.

A simple duality argument shows that {fn} is a Riesz basis if and only if it is
minimal (i.e., no vector from the system lies in the closed span of the rest) and
satisfies the following inequality for every f ∈ H ,

(2.2) c ‖f‖2 ≤
∑

|〈f, fn〉|2 ≤ C ‖f‖2,

where c and C are some positive constants (in fact, the same constants as in (2.1)).
A system {fn} ⊆ H which satisfies condition (2.2), but is not necessarily minimal,
is called a frame.

In particular, this discussion implies the following:

Lemma 4. A system of vectors in a Hilbert space is a Riesz basis if and only if it
is both a Riesz sequence and a frame.

In this paper we are interested in frames, Riesz sequences and Riesz bases for
L2(X) of the form e(Ξ). Often we will be lax and simply say that Ξ is a frame,
Riesz sequence or Riesz basis for X . An important property of such sets is the
complementation property:

Lemma 5. A Ξ ⊂ Z
d is a frame over an X ⊂ [0, 1]d if and only if Zd \ Ξ is a

Riesz sequence over [0, 1]d \X.

Lemma 5 follows from the following general fact:

Lemma 6. Let H be a separable Hilbert space and let {en}n∈I be an orthonormal
basis in H. Let L ⊂ H be a closed subspace of H and let L⊥ be its orthogonal
complement. Denote by P the orthogonal projection to L and by P⊥ the orthogonal
projection to L⊥. Then for a subset Ξ ⊂ I we have that {Pen}n∈Ξ is a frame in L
if and only if {P⊥en}n∈I\Ξ is a Riesz sequence in L⊥.

See Proposition 2.1 in Matei and Meyer [10] for a proof.
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3. Proof of the main lemma

In this section we prove Lemma 3, which is the main new component in the proof of
Theorem 2. Recall that we are given sets Xj ⊂ Ra and Yj ⊂ Rb and corresponding
Ξj ⊂ Za,Ψ≥j ⊂ Zb and we wish to show for Σ =

⋃
(Ξj \ Ξj+1)×Ψ≥j that e(Σ) is

a Riesz basis for S =
⋃
Xi× Yi. We will use Lemma 4 and show that e(Σ) is both

a frame and a Riesz sequence for L2(S).

Throughout the proof we denote by (x, y) := (x1, . . . , xa, y1, ..., yb) a point in
[0, 1]a+b and by (ξ, ψ) := (ξ1, . . . , ξa, ψ1, ..., ψb) a point in Za+b. We denote by
e(ξ,ψ) the function e2πi〈(ξ,ψ),(x,y)〉.

Frame. To show that e(Σ) is a frame in L2(S) we need to show that, for any
f ∈ L2(S), ∑

(ξ,ψ)∈Σ

|〈f, e(ξ,ψ)〉|2 > c1 ‖f‖2

(the right inequality in the definition of a frame, (2.2), is satisfied because S ⊂
[0, 1]a+b and Σ ⊂ Za+b). For k ∈ {1, . . . , L}, denote by fk the restriction of f to
Xk × Yk. It is enough to show that for every n = 1, . . . , L we have

(3.1)
∑

(ξ,ψ)∈Σ

|〈f, e(ξ,ψ)〉|2 ≥ c2 ‖fn‖2 −
n−1∑
k=1

‖fk‖2,

where c2 is a positive constant, not depending on f . Indeed, the inequalities in (3.1)
imply that for any sequence of positive numbers {δn}Nn=1 with

∑
δn = 1 we have

∑
(ξ,ψ)∈Σ

|〈f, e(ξ,ψ)〉|2 =

L∑
n=1

δn
∑

(ξ,ψ)∈Σ

|〈f, e(ξ,ψ)〉|2

(3.1)

≥
L∑
n=1

δn

(
c2 ‖fn‖2 −

n−1∑
k=1

‖fk‖2
)
=

L∑
n=1

(
c2 δn −

L∑
k=n+1

δk

)
‖fn‖2.

We get that, if the sequence {δn} satisfies

δn >
2

c2

L∑
k=n+1

δk, ∀n ∈ {1, . . . , L}

(essentially it needs to decrease exponentially), then for c1 = 1
2c2 min δn,

∑
(ξ,ψ)∈Σ

|〈f, e(ξ,ψ)〉|2 ≥ c1

L∑
n=1

‖fn‖2 = c1‖f‖2.

as needed.
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Hence we need to show (3.1). Fix therefore some n ∈ {1, . . . , L} until the end
of the proof. Now, for any x, y ∈ C, |x+ y|2 ≥ 1

2 |x|2 − |y|2. So,

|〈f, e(ξ,ψ)〉|2 ≥ 1

2

∣∣∣
〈 L∑
k=n

fk, e(ξ,ψ)

〉∣∣∣2 −
∣∣∣
〈 n−1∑
k=1

fk, e(ξ,ψ)

〉∣∣∣2.
For brevity denote

f≥n =

L∑
k=n

fk.

Summing over all (ξ, ψ) in Σ gives

∑
(ξ,ψ)∈Σ

|〈f, e(ξ,ψ)〉|2 ≥ 1

2

∑
(ξ,ψ)∈Σ

|〈f≥n, e(ξ,ψ)〉|2 −
∑

(ξ,ψ)∈Σ

∣∣∣
〈 n−1∑
k=1

fk, e(ξ,ψ)

〉∣∣∣2

(∗)
≥ 1

2

∑
(ξ,ψ)∈Σ

|〈f≥n, e(ξ,ψ)〉|2 −
∥∥∥
n−1∑
k=1

fk

∥∥∥2

(∗∗)
=

1

2

∑
(ξ,ψ)∈Σ

|〈f≥n, e(ξ,ψ)〉|2 −
n−1∑
k=1

‖fk‖2

where (∗) is because Σ ⊂ Zd and (∗∗) since fk have disjoint supports. Hence, to
obtain (3.1) it remains to show that

(3.2)
∑

(ξ,ψ)∈Σ

|〈f≥n, e(ξ,ψ)〉|2 ≥ c ‖fn‖2,

where c is a positive constant not depending on f .
Fix some ξ ∈ Ξn and consider the function of b variables

F (y) =

∫
[0,1]a

f≥n(x, y) e−2πi〈ξ,x〉 dx

and note that it is supported on Y≥n. Since Ψ≥n is a Riesz basis for this set, we
have

∑
ψ∈Ψ≥n

|〈f≥n, e(ξ,ψ)〉|2 =
∑

ψ∈Ψ≥n

∣∣∣
∫
[0,1]a+b

f≥n(x, y) e(ξ,ψ)(x, y) dx dy
∣∣∣2

=
∑

ψ∈Ψ≥n

∣∣∣
∫
[0,1]b

F (y) eψ(y) dy
∣∣∣2

≥ c

∫
Y≥n

|F (y)|2 dy ≥ c

∫
Yn

|F (y)|2 dy

= c

∫
Yn

∣∣∣
∫
Xn

fn(x, y) e
−2πi〈ξ,x〉 dx

∣∣∣2,(3.3)

where the last equality follows from the fact that when y ∈ Yn we have f≥n(x, y) =
fn(x, y) and this function, as a function of x, is supported on Xn.
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We now sum this over ξ ∈ Ξn. Recall that Ξn ×Ψ≥n ⊂ Σ and that e(Ξn) is a
Riesz basis for L2(Xn). We get

∑
(ξ,ψ)∈Σ

|〈f≥n, e(ξ,ψ)〉|2 ≥
∑

ξ∈Ξn,ψ∈Ψ≥n

|〈f≥n, e(ξ,ψ)〉|2

(3.3)

≥ c
∑
ξ∈Ξn

∫
Yn

∣∣∣
∫
Xn

fn(x, y) e
−2πi〈ξ,x〉 dx

∣∣∣2dy

= c

∫
Yn

∑
ξ∈Ξn

∣∣∣
∫
Xn

fn(x, y) e
−2πi〈ξ,x〉 dx

∣∣∣2dy

≥ c

∫
Yn

∫
Xn

|fn(x, y)|2 dx dy = c ‖fn‖2.

Hence, (3.2) holds and the system is a frame.

Riesz sequence. We now show that e(Σ) is a Riesz sequence in L2(S), i.e., that
for any finitely supported sequence a(ξ,ψ) ∈ l2(Σ),

∥∥∥ ∑
(ξ,ψ)∈Σ

a(ξ,ψ) e(ξ,ψ)

∥∥∥2
L2(S)

≥ c
∑

(ξ,ψ)∈Σ

|a(ξ,ψ)|2

(again, the other inequality in (2.1) follows from S ⊂ [0, 1]a+b and Σ ⊂ Za+b).
We apply a strategy similar to the one we used in the first (“frame”) part, but
we decompose Σ rather than S. Define therefore Σn = (Ξn \ Ξn−1)× Ψ≥n. With
this definition a similar argument to the one used in the first part shows that it is
enough to show that for every n = 1, . . . , L we have

(3.4)

∫
S

∣∣∣ ∑
(ξ,ψ)∈Σ

a(ξ,ψ)e (ξ,ψ)

∣∣∣2 ≥ c
∑

(ξ,ψ)∈Σn

|a(ξ,ψ)|2 −
L∑

j=n+1

∑
(ξ,ψ)∈Σj

|a(ξ,ψ)|2.

To this end choose n ∈ {1, . . . , L}. We have,
∫
S

∣∣∣ ∑
(ξ,ψ)∈Σ

a(ξ,ψ) e(ξ,ψ)

∣∣∣2 dx dy

≥ 1

2

∫
S

∣∣∣
n∑
j=1

∑
(ξ,ψ)∈Σj

a(ξ,ψ) e(ξ,ψ)

∣∣∣2 −
∫
S

∣∣∣
L∑

j=n+1

∑
(ξ,ψ)∈Σj

a(ξ,ψ) e(ξ,ψ)

∣∣∣2

≥ 1

2

∫
S

∣∣∣
n∑
j=1

∑
(ξ,ψ)∈Σj

a(ξ,ψ) e(ξ,ψ)

∣∣∣2 −
L∑

j=n+1

∑
(ξ,ψ)∈Σj

|a(ξ,ψ)|2,

where the second inequality is due to S ⊂ [0, 1]a+b and Σ ⊂ Za+b. Denote for
brevity

f = �S ·
n∑
j=1

∑
(ξ,ψ)∈Σj

a(ξ,ψ) e(ξ,ψ),
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and get that to prove (3.4) it remains to show that

(3.5)

∫
S

|f(x, y)|2 dx dy ≥ c
∑

(ξ,ψ)∈Σn

|a(ξ,ψ)|2.

Here is where the fact that Ξn and Ψ≥n are Riesz bases will enter.
We first apply that Ξn is a Riesz sequence over Xk for all k ≥ n, specifically

the left inequality in (2.1), and get, for any y,

∫
Xk

|f(x, y)|2 dx =

∫
Xk

∣∣∣
n∑
j=1

∑
ξ∈Ξj\Ξj−1

( ∑
ψ∈Ψ≥j

a(ξ,ψ)e
2πi〈ψ,y〉

)
e2πi〈ξ,x〉

∣∣∣2dx(3.6)

(by (2.1)) ≥ c
n∑
j=1

∑
ξ∈Ξj\Ξj−1

∣∣∣ ∑
ψ∈Ψ≥j

a(ξ,ψ) e
2πi〈ψ,y〉

∣∣∣2

(dropping terms) ≥ c
∑

ξ∈Ξn\Ξn−1

∣∣∣ ∑
ψ∈Ψ≥n

a(ξ,ψ) e
2πi〈ψ,y〉

∣∣∣2.

Integrating over y and using the fact that Ψ≥n is a Riesz basis over Y≥n we get

∫
S

|f(x, y)|2 dx dy ≥
L∑
k=n

∫
Yk

∫
Xk

|f(x, y)|2 dx dy

(3.6)

≥ c

L∑
k=n

∫
Yk

∑
ξ∈Ξn\Ξn−1

∣∣ ∑
ψ∈Ψ≥n

a(ξ,ψ) e
2πi〈ψ,y〉∣∣2 dy

= c
∑

ξ∈Ξn\Ξn−1

∫
Y≥n

∣∣ ∑
ψ∈Ψ≥n

a(ξ,ψ) e
2πi〈ψ,y〉∣∣2 dy

(since Ψ≥n is a Riesz basis) ≥ c
∑

ξ∈Ξn\Ξn−1

∑
ψ∈Ψ≥n

|a(ξ,ψ)|2,

which asserts (3.5) and completes the proof. �

Remark. The “frame” and “Riesz sequence” parts are in fact independent in the
following sense. If Ξ1 ⊂ · · · ⊂ ΞL and Ψ≥1 ⊃ · · · ⊃ Ψ≥L are only assumed to be
frames, then Σ will be a frame; while if they are assumed to be Riesz sequences
then Σ will be a Riesz sequence. In the next section we will see that in another
setting this remark allows to shorten the proof.

4. Folding

In this section we prove a version of the main lemma of [6]. That lemma stated that
if certain “foldings” of a set have Riesz bases, then one may construct a Riesz basis
for the original set too. The result here, while stated in d-dimensions, is essentially
one dimensional and we will perform the same transformations performed in [6] on
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the first coordinate only. The details are below. The proof is also similar to the
proof there, but with a simplification suggested by A. Olevskĭı. Throughout this
section we will denote either by (t, s) := (t, s1, ..., sd−1) or by x a point in [0, 1]d;
and by (λ, δ) := (λ, δ1, ..., δd−1) or ξ a point in Zd.

Fix a positive integer N . Given a set X ⊂ [0, 1]d, define

Xn =
{
t ∈

[
0,

1

N

]
× [0, 1]d−1 :

(
t+

j

N
, s
)
∈ X(4.1)

for exactly n values of j ∈ {0, . . . , N − 1}
}

X≥n =
N⋃
k=n

Xk(4.2)

Lemma 7. If there exist Ξ1, . . . ,ΞN ⊆ NZ× Zd−1 such that the system e(Ξn) is
a Riesz basis in L2(X≥n), then the system e(Ξ), where

Ξ =

N⋃
n=1

(Ξn + (n, 0, . . . , 0)),

is a Riesz basis in L2(X).

Clearly, it is equivalent to prove the lemma under the assumptions that

(4.3) Ξn ⊂ (NZ+ n)× Z
d−1, Ξ =

N⋃
n=1

Ξn

(but still requiring that Ξn is a Riesz basis for X≥n, recall that the property of
being a Riesz basis is invariant to translations) which will make the notations a
little shorter.

We will show that e(Ξ) is a Riesz basis by showing that it is both a frame and
a Riesz sequence (recall Lemma 4). It turns out that to show that Ξ is a frame it
is enough that all Ξj are frames. Let us state this as a lemma.

Lemma 8. If Ξn ⊂ (NZ + n) × Zd−1 satisfy that e(Ξn) is a frame in L2(X≥n)
for all n ∈ {1, . . . , N}, then the system e(Ξ) is a frame in L2(X), where Ξ is given
by (4.3).

Furthermore, the same holds if Ξn ⊂ (NZ− n)× Zd−1.

Proof. To show that e(Ξ) is a frame in L2(X) we need to show that for any
f ∈ L2(X) ∑

ξ∈Ξ

|〈f, eξ〉|2 > c1 ‖f‖2

(the right inequality in the definition of a frame, (2.2), is satisfied because X ⊂
[0, 1]d and Ξ ⊂ Zd). For n ∈ {1, . . . , N}, denote by fn the restriction of f to

(4.4) Bn =
{
(t, s) ∈ X :

(
t+

j

N
, s
)
∈ X for exactly n integers j

}
.
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(Xn is the “folding” of Bn to [0, 1/N ]× [0, 1]d−1, i.e., cutting to N pieces, trans-
lating each one to [0, 1/N ] × [0, 1]d−1 and taking a union). For brevity denote

f≥n =
∑N

k=n fk. As in the proof of Lemma 3, it is enough to show, for every

n = 1, . . . , N , that
∑

ξ |〈f, eξ〉|2 ≥ c ‖fn‖2 − C
∑n−1
k=1 ‖fk‖2. And, again as in the

proof of Lemma 3, this can be reduced further to showing that

(4.5)
∑
ξ∈Ξ

|〈f≥n, eξ〉|2 ≥ c ‖fn‖2,

where c is a positive constant not depending on f . The rest of the proof only
examines one n at a time, so let us fix n now.

For any (λ, δ) ∈ (NZ+ j)× [0, 1]d−1, we have

〈f≥n, e(λ,δ)〉 =
∫
[0,1]d−1

∫ 1

0

f≥n(t, s) e(λ,δ)(t, s) dt ds

=

∫
[0,1]d−1

∫ 1/N

0

N−1∑
l=0

f≥n
(
t+

l

N
, s
)
e(−λ,−δ)

(
t+

l

N
, s
)
dt ds

=

∫
[0,1]d−1

∫ 1/N

0

hj(t, s) e(−λt− 〈δ, s〉) dt ds = 〈hj , e(λ,δ)〉,(4.6)

where

hj(t, s) = �X≥n
(t, s) ·

N−1∑
l=0

f≥n
(
t+

l

N
, s
)
qlj , qj = e

(
− j

N

)
.

Fix j ≤ n. Since e(Ξj) is a frame for X≥j and since hj is supported on X≥n ⊂ X≥j
we have

(4.7)
∑

(λ,δ)∈Ξj

|〈f≥n, e(λ,δ)〉|2 (4.6)
=

∑
(λ,δ)∈Ξj

|〈hj , e(λ,δ)〉|2 ≥ c ‖hj‖2,

where c is the frame constant of Ξj . In the “furthermore” clause of the lemma
(where Ξj ⊂ NZ−j) we define qj = e(j/N) instead of e(−j/N) and the calculation
follows identically.

Summing over j gives

∑
ξ∈Ξ

|〈f≥n, eξ〉|2 ≥
n∑
j=1

∑
ξ∈Ξj

|〈f≥n, eξ〉|2

(4.7)

≥ c

n∑
j=1

‖hj‖2 ≥ c

n∑
j=1

‖hj · �Xn‖2.(4.8)

For every particular (t, s) ∈ Xn the values of {hj(t, s)}j are given by applying
the n×N matrix L = {qlj}j,l to the vector {f≥n(t+ l/N, s)}l. Now, (t, s) ∈ Xn so
exactly n different values of this vector are non-zero. Considering only these values
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we may think of L as an n × n Vandermonde matrix which is invertible because
the numbers qj are different. Let C be a bound for the norm of the inverse over
all such n× n sub-matrices of L. We get

n∑
j=1

|hj(t, s)|2 ≥ 1

C

N−1∑
l=0

∣∣∣f≥n
(
t+

l

N
, s
)∣∣∣2,

which we integrate over (t, s) ∈ Xn to get

n∑
j=1

‖hj · �Xn‖2 ≥ c

N−1∑
l=0

∫
Xn

∣∣∣f≥n
(
t+

l

N
, s
)∣∣∣2 dt ds = c ‖fn‖2.

With this we get (4.5) and therefore that Ξ is a frame. �

Proof of Lemma 7. We apply Lemma 8 twice. The first application is straight-
forward with the same X and Ξn and we get that Ξ is a frame. For the second
application, let Y = [0, 1]d \X and note that Y≥n = [0, 1/N ]× [0, 1]d−1 \X≥N+1−n
(for Yn the correspondence is not as nice as it is for Y≥n). Since Ξn is a Riesz basis
for X≥n, in particular a Riesz sequence, by Lemma 6 (NZ+1−n)×Zd−1\ΞN+1−n
is a frame for Y≥n. We now apply Lemma 8 for Y and the complements of Ξn (we
use the “furthermore” clause to rearrange them in decreasing order) and get that

N⋃
n=1

(NZ+ 1− n)× Z
d−1 \ ΞN+1−n

is a frame for Y (we used here that a translation of a frame is also a frame, to
solve +1 problems). But this set is exactly Zd \ Ξ and using Lemma 6 again we
get that Ξ is a Riesz sequence for X , and we are done. �

We end this section with another lemma from [6]. It is a consequence of Claim 3
and Lemma 4 there.

Lemma 9. Let X ⊂ [0, 1] be a union of L intervals and N be a positive integer.
Then, the sets X≥n defined before Lemma 7 are all unions of at most L intervals
(when considered cyclically). Moreover, there exist infinitely many N for which all
these sets are unions of at most L−1 intervals (again, when considered cyclically).

Here and below a “cyclic interval” is either an interval [a, b] ⊂ [0, 1/N ] for a < b
or a union of intervals [0, b] ∪ [a, 1/N ] for b < a.

5. Proof of Theorem 2

The proof follows by induction and, as is quite typical for inductive proofs, we
need to prove a stronger claim in order to make the induction tick. We describe it
in the following definition.
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Definition 10. Let X1, X2, . . . ⊂ [0, 1]d. A coherent collection of Riesz bases are
Ξi ⊂ Z

d such that e(Ξi) is a Riesz basis for Xi and such that Xi ⊂ Xj implies
that Ξi ⊂ Ξj .

The “stronger claim” above is now:

Theorem 11. Any collection of sets, each of which is a union of rectangles with
edges parallel to the axes, has a coherent collection of Riesz bases.

The proof of the d = 1 case will follow easily from the following lemma.

Lemma 12. Let X ⊂ [0, 1] be a union of L intervals and fix N > 0. Assume that
m/N ≤ |X | < (m+1)/N where m is a positive integer. Then there exists a Ξ with
e(Ξ) a Riesz basis in L2(X) such that

⋃m−2L−1
n=0 (NZ+ n) ⊆ Λ ⊆ ⋃m+2L

n=0 (NZ+ n).

Proof. Divide [0, 1] into the intervals [n/N, (n+1)/N ] and note that, since m/N ≤
|X | < (m+ 1)/N and X is a union of L intervals, at least m− 2L of the intervals
[n/N, (n+1)/N ] belong to X and no more thenm+2L+1 of them intersectX . We
wish to apply Lemma 7 with this N , so examine the sets X≥n from the statement
of the lemma. We get that among the X≥n at least m− 2L are equal to [0, 1/N ]
(so the corresponding Ξn can, and must be taken to be NZ) and no more then
m + 2L are non-empty (for which the Ξn must be taken empty). The remaining
sets are finite unions of intervals so we may apply Theorem 1 to find Riesz bases
for them with frequencies from NZ. Applying Lemma 7 the resulting basis Ξ has
the necessary property. �

Proof of Theorem 11. As promised, the case d = 1 follows directly from Lemma 12.
Indeed, let Xi be the unions of rectangles (intervals in our case) for which we need
to find a coherent collection of Riesz bases. Let L be the maximum number of
intervals in any Xi and take N > 4L/min |Xj \Xi|, where the minimum is taken
over all i and j such that Xi ⊂ Xj . Construct Riesz bases Ξi for L

2(Xi) using
Lemma 12 with this N . We get that the Ξi are automatically coherent as Xi ⊂ Xj

implies that, for any k, if Ξi ∩ (NZ + k) �= ∅ then necessarily NZ+ k ⊂ Ξj . This
finishes the case d = 1.

We now move to the case d > 1.

Step 1. First, we prove the induction step in the case where the intersection of
each Xi with each line parallel to the first coordinate axis is an interval.

Claim. In this case, it is possible to find disjoint sets Yj ⊂ [0, 1]d−1 and intervals
Ii,j ⊂ [0, 1] (possibly empty) such that each Xi can be written as

Xi =
⋃
j

Ii,j × Yj .

Further, all Yj can be taken to be finite unions of rectangles.
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The proof of this claim is simple (take a total refinement of appropriate pro-
jections of parts of the Xi) and will be omitted.

Returning to the proof of Theorem 11, we first use the case d = 1 already
established to find a coherent collection of Riesz bases Λi,j for the intervals [0, |Ii,j |],
i.e., for translations of Ii,j so that their left side is at 0. Since the property of being
a Riesz basis is translation invariant we get that each Λi,j is a Riesz basis for Ii,j .
In other words, Λi,j is a collection of Riesz bases for Ii,j with the property that if
|Ii,j | ≤ |Ii′,j′ | then Λi,j ⊆ Λi′,j′ .

Next we apply the induction assumption for d− 1 and get a coherent collection
of Riesz bases for all finite unions of the Yj . Denote, for each set of indices J ,
YJ =

⋃
j∈J Yj and ΨJ ⊂ Zd the Riesz basis over YJ .

For each i let σ be the rearrangement of Ii,j by length, i.e., σ is a permutation
such that |Ii,σ(1)| ≤ |Ii,σ(2)| ≤ · · · and define

Ξi =
⋃
j

Λi,σ(j) ×Ψ{σ(j),σ(j+1),... }.

By Lemma 3, Ξi is a Riesz basis for Xi. To see coherency, let i and i′ satisfy
that Xi ⊂ Xi′ and let σ and σ′ be the corresponding permutations. To shorten
notations denote the different pieces of Ξ and Ξ′ by Aj and A′

j respectively, i.e.,

Aj := Λi,σ(j) ×Ψ{σ(j),σ(j+1),... }, A′
j := Λi′,σ′(j) ×Ψ{σ′(j),σ′(j+1),... }.

We need to show that Ξi ⊂ Ξi′ , and this will follow once we show that for every j
there exists k such that Aj ⊂ A′

k. Fix therefore j and examine the j shortest inter-
vals for Xi′ , i.e., σ

′(1), . . . , σ′(j). They cannot be all in the set σ(1), . . . , σ(j − 1),
so let k be the first which is not in it, i.e.,

k = inf
{
l ≤ j : σ′(l) �∈ {σ(1), . . . , σ(j − 1)}}.

The claim now follows easily. We first note that

|Ii′,σ′(k)|
(∗)
≥ |Ii,σ′(k)|

(∗∗)
≥ |Ii,σ(j)|

where (∗) is becauseXi⊂Xi′ , and (∗∗) is because σ′(k) is not in {σ(1), . . . , σ(j−1)}.
Hence the coherency of the Λ’s gives that Λi′,σ′(k) ⊃ Λi,σ(j). On the other hand,
{σ′(1), . . . , σ′(k − 1)} ⊂ {σ(1), . . . , σ(j − 1)} and taking complements gives

{σ′(k), σ′(k + 1), . . . } ⊃ {σ(j), σ(j + 1), . . . }
and the coherency of the Ψ’s gives that Ψ{σ′(k),σ′(k+1),... } ⊃ Ψ{σ(j),σ(j+1),... }. To-
gether we get Aj ⊂ A′

k, as required.

Step 2. As in step 1, we find disjoint sets Yj ⊂ [0, 1]d−1 and Si,j ⊂ [0, 1] (which
are no longer necessarily intervals, but are finite unions of intervals) such that

Xi =
⋃
j

Si,j × Yj .

Let Mi,j be the number of components of Si,j . We argue by induction on the
vector {Mi,j}, with the case that all Mi,j are either 0 or 1 given by step 1.
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Let therefore i0 and j0 satisfy thatMi0,j0 ≥ 2. Recall the notationX≥n from §4,
which was defined with respect to some N which does not appear in the notation.
When we apply it to sets which already have a subscript, like Si,j , we will write
Si,j,≥n. By Lemma 9 we can find some N such that the sets Si0,j0,≥n contain no
more than Mi0,j0 − 1 intervals, for all n. Since the operation •≥n examines only
the first coordinate, and because the Yj are disjoint, we have

Xi,≥n =
⋃
j

Si,j,≥n × Yj .

Again by Lemma 9, Si,j,≥n has no more than Mi,j components, for all i and j.
Therefore we may apply our induction hypothesis to Xi,≥n (formally after stretch-
ing the first coordinate by N) and get a coherent collection of Riesz bases Ξi,n in
NZ× Zd−1. Define

Ξi =

N⋃
n=1

Ξi,n + (n, 0, . . . , 0).

and get from Lemma 7 that e(Ξi) is a Riesz basis for L2(Xi). Since Xi ⊂ Xj

implies that Xi,≥n ⊂ Xj,≥n, we get that the Ξi are coherent, finishing step 2 and
the proof of the theorem. �

6. Remarks on the proof

The main ingredient in the proof of Theorem 1 from [6] was the one-dimensional
case of Lemma 7. Examining its proof it is natural to wonder whether it could
have been generalized directly to prove the d-dimensional result by folding in all
dimensions simultaneously. As far as we can see, this is not possible. The proof of
Lemma 7 relies on the fact that for any choice of n columns in the N ×N Fourier
matrix the first n rows will give, universally, an n × n invertible matrix, as it is
a Vandermonde matrix. This is not the case for the analog of the Fourier matrix
in higher dimensions, no such “universal” choice of rows exists, as can be checked
directly for the 4× 4 matrix of the Fourier transform of the group (Z/2)2.

Acknowledgements. We thank A. Olevskĭı for showing us how to deduce the
Riesz sequence part from the frame part in the proof of Lemma 7.
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