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Fractional operators with singular drift:

smoothing properties
and Morrey–Campanato spaces

Diego Chamorro and Stéphane Menozzi

Abstract. We investigate some smoothness properties for a linear tran-
sport-diffusion equation involving a class of non-degenerate Lévy type op-
erators with singular drift. Our main argument is based on a duality
method using the molecular decomposition of Hardy spaces through which
we derive some Hölder continuity for the associated parabolic PDE. This
property will be fulfilled as far as the singular drift belongs to a suitable
Morrey–Campanato space for which the regularizing properties of the Lévy
operator suffice to obtain global Hölder continuity.

1. Introduction and main results

In this article, we are interested in studying some smoothness properties of the
real-valued equation

(1.1)

{
∂tθ(t, x) −∇ · (v θ)(t, x) + Lθ(t, x) = 0,

θ(0, x) = θ0(x), for x ∈ Rn, n ≥ 2, with div(v) = 0 and t ∈ [0, T ],

where T > 0 is a given arbitrary fixed final time. The operator L is given by the
expression

(1.2) L(f)(x) = v.p.

∫
Rn

[
f(x)− f(x− y)

]
π(y) dy,

where π(y)dy is a non-degenerate and bounded Lévy measure. The first order term
is written in divergence form and the velocity field v is meant to be rather singular.
The divergence free condition of the drift term v is usual in problems arising from
fluid mechanics.
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When n = 2 and the operator L is a fractional power of the Laplace operator

(−Δ)α/2 with 0 < α < 2 (given in the Fourier level by ̂(−Δ)α/2f(ξ) = c|ξ|αf̂(ξ)),
equation (1.1) can indeed be seen as a simplified version of the quasi-geostrophic
equation (denoted by (QG)α) which corresponds to the non-linear velocity field

v = (−R2θ,R1θ), where R1,2 denote the Riesz transforms defined by R̂jθ(ξ) =

− iξj
|ξ| θ̂(ξ) for j = 1, 2. It is worth noting that, in this quasi-geostrophic setting,

there is a competition between the drift term v and the diffusion term (−Δ)α/2,
and it is classical to distinguish here three regimes: super-critical if 0 < α < 1,
critical if α = 1 and sub-critical if 1 < α < 2, from which only the two first cases
are of interest since in the sub-critical case the regularization effect given by the
fractional power of the Laplacian (−Δ)α/2 is “stronger” than the non-linear drift
and, as a consequence, there is a natural smoothing effect in the solutions of (1.1).
For the two other cases there is an interesting and rather complex competition
between the smoothing term and the drift one. In particular, in the super-critical
case it is still an open problem to understand the regularity of the solutions of this
equation, see [2], [8], [6], [7], [18] and the references therein for more details.

Following the work of Kiselev and Nazarov [15], it is possible to study the
Hölder regularity of the solutions of the (QG)1 equation (i.e., the critical case) by
a duality-based method where the main idea is to control the deformation of a
special class of functions in order to deduce the regularity of the solutions of such
equation.

The aim of this article is, in the spirit of [3], to generalize this idea using dif-
ferent tools and to apply it to a wider family of operators. Specifically we will
work here with Lévy type operators under some hypotheses that will be stated in
the lines below, and we will see that this approach actually turns out to be well
adapted to investigate the impact of a singular divergence free drift on the smooth-
ing properties of the operator L. Thus, one of our objectives is to characterize,
for a singular drift, the functional spaces for which a Hölder continuity property
holds for the solution of the Cauchy problem (1.1). Under some non-degeneracy
assumption on the Lévy measure π, it will be seen that the natural framework
for the drifts is the one of Morrey–Campanato spaces, whose parameters will be
related to the operator L thanks to some homogeneity properties and then, with
the useful hypothesis div(v) = 0, we will prove that it is possible to obtain a small
gain of regularity.

In this paper we will mainly establish existence and uniqueness results as well
as Hölder regularity for the solutions of equation (1.1). We will also obtain, as
intermediate results, a maximum and a positivity principle for equation (1.1).

Let us start by describing our setting in a general way. In the space variable,
the divergence free drift (or velocity) term v(t, x) will be connected with the homo-
geneous Morrey–Campanato spaces Ṁ q,a(Rn) which are defined for 1 ≤ q < +∞
and 0 ≤ a < +∞ as the spaces of locally integrable functions such that

(1.3) ‖f‖Ṁq,a = sup
x0∈Rn

sup
0<r<+∞

( 1

ra

∫
B(x0,r)

|f(x)− fB(x0,r)|q dx
)1/q

< +∞,
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with

fB(x0,r) =
1

|B(x0, r)|
∫
B(x0,r)

f(x) dx,

and where B(x0, r) = {x ∈ Rn : |x− x0| < r} is an open ball. Morrey–Campanato
spaces Ṁ q,a are closely related to other classical spaces, indeed if a = 0 then
Lq(Rn) ⊂ Ṁ q,0(Rn) for 1 ≤ q < +∞, and if 0 < a < n we obtain the usual Mor-
rey spaces Ṁ q,a(Rn). In the particular case of a = n then we have Ṁ q,n(Rn) 	
Ṁ1,n(Rn) 	 BMO(Rn), which is the space of bounded mean oscillations functions.
If n < a < n + q, we have Ṁ q,a(Rn) 	 Ċλ(Rn), where Ċλ is the classical homo-
geneous Hölder space with 0 < λ = (a − n)/q < 1; and finally, if n + q ≤ a the
spaces Ṁ q,a(Rn) are reduced to constants. We refer to [16], [19] and [27] for more
details about Morrey–Campanato spaces. As we can see, in function of the values
of the parameters q and a, we can continuously describe a wide family of functional
spaces. However, from the previous formula (1.3) above, we observe that all these
functional spaces are only defined modulo constants.

Thus, in order to give a precise meaning to the solutions of equation (1.1) we
will need to consider smaller spaces that are not longer defined modulo constants
and are well-defined Banach spaces. Indeed, for the velocity field v : R×Rn → Rn

we will assume the following general hypothesis:

[MC] The divergence free drift v(t, x) belongs to the space L∞(
[0, T ],M q,a(Rn)

)
,

where T > 0 is a fixed time and M q,a(Rn) is a local Morrey space character-
ized for 1 ≤ q < +∞, 0 ≤ a < n+ q by the condition

‖f‖Mq,a = sup
x0∈Rn

sup
0<r<1

( 1

ra

∫
B(x0,r)

|f(x)− fB(x0,r)|q dx
)1/q

+ sup
x0∈Rn

sup
r≥1

( 1

ra

∫
B(x0,r)

|f(x)|q dx
)1/q

< +∞.

From this definition we observe that we always have the space inclusionM q,a(Rn) ⊂
Ṁ q,a(Rn). We remark now that if a = 0 and 1 ≤ q < +∞ we still have the in-
clusion Lq ⊂ M q,0; furthermore, in the particular case when a = n and q = 1
the spaceM1,n(Rn) corresponds to the space bmo (the local version of BMO), and
from this fact we derive the identificationM1,n 	M q,n for 1 < q < +∞. Finally, if
n < a < n+ q and 1 ≤ q < +∞, we observe that M q,a(Rn) = Ṁ q,a(Rn)∩L∞(Rn)
and in fact we obtainM q,a(Rn) = Cλ(Rn) where Cλ are the classical Hölder spaces
with 0 < λ = (a − n)/q < 1. The case n + q ≤ a will not be considered as the
corresponding spaces are reduced to constants.

Once we have stated the hypotheses on the velocity field v, we describe now
the setting that will be used for the Lévy-type operator L:
[ND] The operator L we are going to work with, introduced in (1.2), is a Lévy

operator for which we assume that the function π is symmetric, i.e., π(y) =
π(−y) for all y ∈ Rn. Also, the following bounds hold:

c1 |y|−n−α ≤ π(y) ≤ c2 |y|−n−α over |y| ≤ 1,(1.4)

0 ≤ π(y) ≤ c2 |y|−n−δ over |y| > 1,(1.5)
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where 0 < c1 ≤ c2 are positive constants and where 0 < δ < α < 2. In the

Fourier level we have L̂f (ξ) = a(ξ)f̂(ξ), where the symbol a(·) is given by
the Lévy–Khinchin formula

(1.6) a(ξ) =

∫
Rn\{0}

(
1− cos(ξ · y))π(y) dy.

We refer to [12], [13] and [20] for additional properties concerning Lévy operators
and the Lévy–Khinchin representation formula. See also the lecture notes [14] for
interesting applications to PDEs.

Observe carefully that the properties of the operator L can be easily read, in
the real variable or in the Fourier level, through the properties of the function π.
In order to have a better understanding of these properties, it is helpful to consider
the important example provided by the fractional Laplacian (−Δ)α/2 defined by
the expression

(−Δ)α/2f(x) = v.p.

∫
Rn

f(x)− f(x− y)

|y|n+α
dy, with 0 < α < 2.

Note that we have here π(y) = |y|−n−α and π satisfies (1.4) and (1.5) with α = δ.

Equivalently, we have a Fourier characterization by the formula ̂(−Δ)α/2f(ξ) =

c|ξ|αf̂(ξ) for c = c(α, n) (see [22] for the exact value of c). Thus, the function
a(ξ) is equal to c|ξ|α. With this example we observe that the lower bound in (1.4)
guarantees a diffusion or regularization effect1 like (−Δ)α/2 for L. Indeed, in
some general sense, only the part of the integral (1.2) near the origin is critical
as π satisfies (1.5). Assumption [ND] can therefore be viewed as a kind of non-
degeneracy condition which roughly means that in terms of regularizing effects
(which are induced by the behavior of π near the origin) the operator L behaves
as (−Δ)α/2.

As the case δ = α = 1 was already treated in [3] in a different framework and
since the case δ = α corresponds to the fractional Laplacian (−Δ)α/2 where the
computations are considerably simplified, we will always consider in this article
the following cases: 0 < δ < α < 1 or 1 < δ < α < 2.

Presentation of the results

We will from now on assume that assumptions [MC] and [ND] are in force. Our
first result concerns existence and uniqueness to (1.1).

Theorem 1 (Existence and uniqueness for Lp initial data). Let θ0 ∈ Lp(Rn) with
2 ≤ p < +∞ be an initial data. Assume that [ND] holds for the Lévy operator L.
Assume moreover that [MC] holds for the velocity field v with the conditions

• 2 ≤ q < +∞,

• 1 < q < 2 and n ≤ a < n+ q or 1 < q < 2, 0 ≤ a < n and q/(q − 1) ≤ p.

Then equation (1.1) has a unique weak solution θ ∈ L∞([0, T ], Lp(Rn)).

1The term “diffusion” must be taken in the sense of the PDEs considered by analysts.
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Furthermore, if θ0 ∈ L∞(Rn), then equation (1.1) has a unique weak solution
θ ∈ L∞([0, T ], L∞(Rn)) with the restrictions 1 < q < +∞ and 0 ≤ a < n + q for
the velocity field v ∈ L∞([0, T ],M q,a(Rn)).

The conditions on the parameters q and a that characterize the Morrey–Campa-
nato spaces are technical and are not very relevant here as we are mainly interested
in the case p = +∞ where no conditions on q and a are imposed.

Our main theorem is the next one. Following the usual terminology for the
quasi-geostrophic equation we will say that equation (1.1) is super-critical (resp.
sub-critical case) if α ∈]0, 1[ (resp. α ∈]1, 2[).
Theorem 2 (Hölder property of the solution). Fix any small time T0 > 0 and
let θ0 be an initial data such that θ0 ∈ L∞(Rn). Assume [MC] and [ND] hold.

• In the case 0 < δ < α < 1, if θ(t, x) is a solution of equation (1.1) and
the velocity field v(t, x) belongs to the space L∞(

[0, T ],M q,a(Rn)
)
, with (a−

n)/q = 1−α and n/(α−γ) < q, then for all time T0 < t < T , we have that the
solution θ(t, ·) belongs to the Hölder space Cγ(Rn) with 0 < γ < δ < α < 1.

• In the case 1 < δ < α < 2, if θ(t, x) is a solution of equation (1.1) and
the velocity field v(t, x) belongs to the space L∞(

[0, T ],M q,a(Rn)
)
with (a−

n)/q = 1−α and n/(1− γ) < q, n < α/(α− 1), then for all time T0 < t < T ,
we have that the solution θ(t, ·) belongs to the Hölder space Cγ(Rn) with
0 < γ < 2− α.

It is worth noting that the Morrey–Campanato spaceM q,a used in this theorem
is fixed by the relationship (a − n)/q = 1 − α and this relationship between the
parameter α which rules the regularization effect of the Lévy type operator and the
indexes q and a is actually quite sharp. Indeed, if the identity (a − n)/q = 1 − α
is not verified, it is possible to provide counterexamples of Theorem 2 in some
particular cases. See [21] for a construction of such counterexamples and see also [7]
for similar results in the setting of the quasi-geostrophic equation.

Let us also remark that in the super-critical case, since 0 < α < 1 we have
n < a < n + q. Thus, the Morrey–Campanato space M q,a is equivalent to a
classical Hölder space of regularity 1−α and the small regularization effect of the
Lévy-type operator L is exactly compensated by the Hölder regularity of order 1−α
of the velocity field.

In the sub-critical case, since 1 < α < 2 we have that 0 ≤ a < n. Hence, the
higher regularization effect of the Lévy-type operator L allows to consider a more
irregular velocity field belonging to a true Morrey space. Observe that in both
cases we are able to obtain a smoothing effect and we can prove that the solutions
of (1.1) belong to a Hölder space Cγ . However, the maximal Hölder regularity γ
obtained by this method is constrained by the parameter 0 < δ < α in the super-
critical regime (0 < α < 1) whereas in the sub-critical regime (1 < α < 2) the
constraint writes 0 < γ < 2 − α. This last constraint comes from the relation
1 − α = (a − n)/q, which readily gives that a = n + q(1 − α) < n since α > 1.
Anyhow, to have a ≥ 0 imposes n/(α − 1) ≥ q. Since on the other hand, the
condition q > n/(1− γ) of the Theorem 2 is crucial for the computations to work
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(see Section 4), this actually imposes n/(α− 1) > n/(1− γ) ⇐⇒ γ < 2−α which
gives the constraint on the regularity bound. We insist here that, even though
the smoothing effect of the spatial operator is higher for 1 < α < 2, the fact that
the drift is allowed correspondingly, through the relation 1 − α = (a − n)/q to
behave worse, we do not obtain much additional smoothness in that case. Observe
in any case that in order to obtain a final γ-Hölder regularity in the previous
ranges, the parameter q must be greater than n/(α∧ 1− γ). This fact reflects the
equilibrium between the regularization effect of the Lévy operator, the singularity
of the velocity field and the integrability required in order to get a prescribed Hölder
regularity. Nevertheless, in this context, the most important issue is to obtain some
Hölder regularity since it should then be possible to apply a bootstrap argument
as in [2], Section B, in order to obtain higher regularity.

The strategy to derive the previous results is the following. For existence and
uniqueness, we first start from a fixed point argument for a modified problem, with
mollified drift and an additional viscosity term in Δ which is meant to vanish, and
for which a uniform maximum principle is established for any Lp initial data with
p ∈ [1,+∞[ (see Proposition 2.5). To recover weak solutions from this modified
problem we will need compactness arguments which anyhow require some Besov
regularity, yielding the constraint p ∈ [2,+∞[ (see Theorem 5). The extension
of the result to the case p = +∞, which is crucial to derive Theorem 2 with our
duality method follows from the previous computations.

For the Hölder properties of the solutions, we use the duality between local
Hardy spaces and Hölder spaces and the fact that we have a molecular decomposi-
tion of local Hardy spaces. Roughly speaking, to derive the smoothness, it suffices,
thanks to those two previous features and to a transfer property (see Proposi-
tion 4.5), to control the L1 norm of the adjoint equation to (1.1) where the initial
condition can be any molecule. A molecule ψ at scale r > 0, can be viewed as a
function satisfying an L∞ condition, ‖ψ‖L∞(Rn) ≤ Cr−(n+γ), and a concentration
condition around its center x0, i.e.,

∫
Rn |ψ(x)||x − x0|ω dx ≤ Crω−γ , where n is

the dimension, γ is the final Hölder index and ω is a technical parameter meant
to be close to γ, roughly speaking ω = γ + ε for a small ε > 0. We refer to Defini-
tion 4.3 for a precise statement. To control the evolution in time of the L1 norm
of the adjoint equation having a molecule as initial condition, two cases are to be
distinguished. If the molecule is big, i.e., r > 1, the previously established maxi-
mum principle readily gives the result. The small molecules require a more subtle
treatment. The evolution of the L1 norm of such molecules can be investigated
updating in time the previous L∞ and concentration conditions, this latter being
considered around the current spatial center in time corresponding to the evolution
of the differential system, starting from the initial center of the molecule with the
averaged drift of (1.1) on a suitable ball. In other words, the evolution of the initial
center of the molecule is nothing but its transport by an averaged, less singular,
velocity field associated with the initial one. Averaging is a way to regularize,
once this choice is made, the functional framework of Morrey–Campanato spaces
is indeed very natural since it allows to sharply control the differences between the
initial drift and the regularized one.
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The article is organized as follows. In Section 2 we study existence and unique-
ness of solutions with initial data in Lp with 2 ≤ p < +∞. We will also prove a
maximum principle for the weak solutions of (1.1). Section 3 is devoted to a posi-
tivity principle that is crucial to prove the Hölder regularity. In Section 4 we study
the Hölder regularity of the solutions of equation (1.1) by a duality method. This
is the core of the paper. Technical computations are postponed to the appendix.

2. Existence and uniqueness with Lp initial data and maxi-
mum principle

In this section we will study existence and uniqueness for weak solution of equa-
tion (1.1) with initial data θ0 ∈ Lp(Rn) where p ≥ 1. We will start by considering
viscosity solutions with an approximation of the velocity field v, and we will prove
existence and uniqueness for this system. To pass to the limit we will need a
further step which follows from the maximum principle.

2.1. Viscosity solutions

The point in this section consists in introducing an approximate equation deriving
from (1.1), where we add an additional viscosity contribution in εΔ and suitably
mollify the potentially singular drift. Precisely, for ε > 0, we introduce:

(2.1)

{
∂tθ(t, x) −∇ · (vε θ)(t, x) + Lθ(t, x) = εΔθ(t, x), t ∈ [0, T ],

θ(0, x) = θ0(x), div(vε) = 0.

Above, the vector field vε is defined in two steps. First, in order to obtain some
regularity in the time variable, we introduce v	,ε = vψε where  stands for the time
convolution and ψε(t) = ε−1ψ(t/ε) where ψ ∈ C∞

0 (R) is a non-negative function
such that supp(ψ) ⊂ B(0, 1) and

∫
R
ψ(t)dt = 1. In the previous time convolution,

we have extended the velocity field on R setting for all (s, x) ∈ R\[0, T ], v(s, x) = 0.
Then we define vε = v	,ε ∗ ωε, here ∗ stands now for the spatial convolution
and ωε is a usual mollifying kernel, i.e., ωε(x) = ε−nω(x/ε), ω ∈ C∞

0 (Rn) is a
non-negative function such that supp(ω) ⊂ B(0, 1) and

∫
Rnω(x) dx = 1. From this

regularization, for a fixed ε > 0, the approximate drift vε will be a smooth (in the
time and space variables), divergence free and bounded vector field under [MC]
(see Lemma A.1 for this last property). Thus, the role of the additional viscosity
is clear: we can view the spatial operators in the left hand side of (2.1) as a
source term for the usual heat equation. We will prove existence and uniqueness
results, see Theorem 3, Remark 2.3, as well as uniform controls with respect to
the mollifying parameter/vanishing viscosity that are the preliminary step of our
compactness based approach, see Proposition 2.5. Following [8], the solutions of
problem (2.1) will be called viscosity solutions.

Note now that the problem (2.1) admits the following equivalent integral rep-
resentation:

(2.2) θ(t, x) = eεtΔ θ0(x)+

∫ t

0

eε(t−s)Δ∇· (vε θ)(s, x) ds−
∫ t

0

eε(t−s)ΔLθ(s, x) ds.
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In order to prove Theorem 1, we will first investigate a local result with the
following theorem where we will apply the Banach contraction scheme in the space
L∞([0, T ], Lp(Rn)) with the norm ‖f‖L∞(Lp) = supt∈[0,T ] ‖f(t, ·)‖Lp.

Theorem 3 (Local existence for viscosity solutions). Assume [MC] and [ND]
hold. If the initial data satisfies ‖θ0‖Lp ≤ K with 1 ≤ p < +∞, and if T ′ is
a time small enough, then the integral problem (2.2) has a unique solution θ ∈
L∞([0, T ′], Lp(Rn)) on the closed ball B(0, 2K) ⊂ L∞([0, T ′], Lp(Rn)).

Proof. We denote by Nv
ε (θ) and Lε(θ) the quantities

Nv
ε (θ)(t, x) =

∫ t

0

eε(t−s)Δ ∇ · (vε θ)(s, x) ds and

Lε(θ)(t, x) =

∫ t

0

eε(t−s)Δ Lθ(s, x) ds.

We construct now a sequence of functions in the following way:

θn+1(t, x) = eεtΔ θ0(x) +Nv
ε (θn)(t, x)− Lε(θn)(t, x).

We take the L∞(Lp)-norm of this expression to obtain

(2.3) ‖θn+1‖L∞(Lp) ≤ ‖eεtΔ θ0‖L∞(Lp) + ‖Nv
ε (θn)‖L∞(Lp) + ‖Lε(θn)‖L∞(Lp),

and we will treat each of the terms of the right-hand side separately.

For the first term above we note that, since eεtΔ is a contraction operator, the
estimate ‖eεtΔf‖Lp ≤ ‖f‖Lp is valid for all function f ∈ Lp(Rn) with 1 ≤ p ≤ +∞,
for all t > 0 and all ε > 0. Thus, we have

(2.4) ‖eεtΔf‖L∞(Lp) ≤ ‖f‖Lp.

For the second term in the r.h.s. of (2.3), we have the following inequality: if
f ∈ L∞([0, T ′], Lp(Rn)) and if v ∈ L∞([0, T ′],M q,a(Rn)), then

(2.5) ‖Nv
ε (f)‖L∞(Lp) ≤ C

T ′1/2

ε1/2
ε−n/q ‖v‖L∞(Mq,a)‖f‖L∞(Lp).

Indeed, it can be shown that the following inequalities hold:

‖vε(s, ·)‖L∞ = ‖v	,ε(s, ·) ∗ ωε‖L∞ ≤ C ε−n/q ‖v	,ε(s, ·)‖Mq,a ,

‖v	,ε‖L∞(Mq,a) ≤ ‖v‖L∞(Mq,a).

We refer to Lemma A.1 for details. From this estimate, since eεtΔf = f ∗ hεt,
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where hεt is the associated heat kernel, we write:

‖Nv
ε (f)‖L∞(Lp) = sup

0<t<T ′

∥∥∥ ∫ t

0

eε(t−s)Δ∇ · (vεf)(s, ·) ds
∥∥∥
Lp

= sup
0<t<T ′

∥∥∥ ∫ t

0

∇· (vεf(s, ·)) ∗ hε(t−s) ds
∥∥∥
Lp

≤ sup
0<t<T ′

∫ t

0

‖vεf(s, ·)‖Lp

∥∥∇hε(t−s)

∥∥
L1 ds

≤ sup
0<t<T ′

∫ t

0

‖vε(s, ·)‖L∞ ‖f(s, ·)‖Lp C(ε(t− s))−1/2ds

≤ C ε−n/q ‖v	,ε‖L∞(Mq,a) ‖f‖L∞(Lp) sup
0<t<T ′

∫ t

0

C(ε(t− s))−1/2ds

≤ C
T ′1/2

ε1/2
ε−n/q‖v‖L∞(Mq,a) ‖f‖L∞(Lp) .

For the last term of (2.3) we have the following fact: if f ∈ L∞([0, T ′], Lp(Rn)),
then

(2.6) ‖Lε(f)‖L∞(Lp) ≤ C
(T ′1−α/2

εα/2
+
T ′1−δ/2

εδ/2

)
‖f‖L∞(Lp).

Indeed, we write

‖Lε(f)‖L∞(Lp)

= sup
0<t<T ′

∥∥∥ ∫ t

0

eε(t−s)ΔLf(s, ·) ds
∥∥∥
Lp

= sup
0<t<T ′

∥∥∥ ∫ t

0

Lf(s, ·) ∗ hε(t−s) ds
∥∥∥
Lp
.

Then by the properties of the Lévy operator L we can write Lf ∗ hε(t−s) = f ∗
Lhε(t−s) and we obtain the estimate

‖Lε(f)‖L∞(Lp) ≤ sup
0<t<T ′

∫ t

0

‖f(s, ·)‖Lp ‖Lhε(t−s)‖L1 ds

≤ ‖f‖L∞(Lp) sup
0<t<T ′

∫ t

0

‖Lhε(t−s)‖L1 ds.

We need now to study the quantity ‖Lhε(t−s)‖L1 , for this we use the following
lemma (proved in Appendix B).

Lemma 2.1. Let 0 < δ < α < 2 and let L be a Lévy-type operator of the form (1.2)
satisfying [ND] (in particular (1.4) and (1.5) hold). Let ht be the heat kernel
on Rn. Then we have that there exists C > 0 such that for all β ∈ [0, 2] there holds
the inequality

‖L(−Δ)β/2 hε(t−s)‖L1 ≤ C
(
[ε(t− s)]−(α+β)/2 + [ε(t− s)]−(δ+β)/2

)
.

Thus, with this result at hand and after an integration in time we obtain the
wished inequality (2.6).
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Now, applying the inequalities (2.4), (2.5) and (2.6) to the right-hand side
of (2.3), we have

‖θn+1‖L∞(Lp) ≤ ‖θ0‖Lp + C0 ‖θn‖L∞(Lp),

C0 = C
(T ′1/2

ε1/2
ε−n/q‖v‖L∞(Mq,a) +

T ′1−α/2

εα/2
+
T ′1−δ/2

εδ/2

)
.(2.7)

Thus, if ‖θ0‖Lp ≤ K and if we define the time T ′ to be such that C0 ≤ 1/2, we
have by iteration that ‖θn+1‖L∞(Lp) ≤ 2K: the sequence (θn)n∈N constructed from

initial data θ0 belongs to the closed ball B(0, 2K). In order to finish this proof, let
us show that θn → θ in L∞([0, T ′], Lp(Rn)). For this we write

‖θn+1 − θn‖L∞(Lp) ≤ ‖Nv
ε (θn − θn−1)‖L∞(Lp) + ‖Lε(θn − θn−1)‖L∞(Lp),

and using the previous results we have ‖θn+1−θn‖L∞(Lp) ≤ C0‖θn−θn−1‖L∞(Lp),
so, by iteration we obtain ‖θn+1 − θn‖L∞(Lp) ≤ Cn

0 ‖θ1 − θ0‖L∞(Lp). Hence, with

the definition of T ′ we have ‖θn+1 − θn‖L∞(Lp) ≤
(
1
2

)n ‖θ1 − θ0‖L∞(Lp). Finally,
if n → +∞, the sequence (θn)n∈N converges towards θ in L∞([0, T ′], Lp(Rn)).
Since it is a Banach space we deduce similarly uniqueness for the solution θ of
problem (2.2). The proof of Theorem 3 is finished. �

Corollary 2.2. The solution constructed above depends continuously on the initial
value θ0.

Proof. Let ϕ0, θ0 ∈ Lp(Rn) be two initial values and let ϕ and θ be the associated
solutions. We write

θ(t, x) − ϕ(t, x) = eεtΔ(θ0(x) − ϕ0(x)) −Nv
ε (θ − ϕ)(t, x) − Lε(θ − ϕ)(t, x).

Taking L∞Lp-norm in the above formula and applying the same previous calcu-
lations one obtains ‖θ − ϕ‖L∞(Lp) ≤ ‖θ0 − ϕ0‖Lp + C0‖θ − ϕ‖L∞(Lp), for C0 as
in (2.7). This shows continuous dependence of the solution since we have chosen
C0 ≤ 1/2. �

Remark 2.3 (From local to global). Once we obtain a local result in time,
global existence easily follows by a simple iteration since the problems studied
here (equations (1.1) or (2.1)) are linear as the velocity v does not depend on θ.

We now study the regularity of the solutions constructed by this method.

Theorem 4 (Smoothness for viscosity solutions). Solutions of the approximated
problem (2.1) are smooth.

Proof. We will work in the time interval 0 < T0 < T∗ < t < T ∗ where T0, T∗ and T ∗

are fixed bounds. We will prove that θ ∈ ⋂
0<T0<T∗<t<T∗L∞([0, t],W k/2,p(Rn))

for all k ∈ N iteratively, where we define the Sobolev space W s,p(Rn) for s ∈ R

and 1 < p < +∞ by ‖f‖W s,p = ‖f‖Lp + ‖(−Δ)s/2f‖Lp . Note that this is true
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for k = 0. So let us assume that it is also true for k > 0 and we will show that it
is still true for k + 1. We consider then the next problem:

θ(t, x) = eε(t−T0)Δθ(T0, x)+

∫ t

T0

eε(t−s)Δ∇· (vε θ)(s, x) ds−
∫ t

T0

eε(t−s)ΔLθ(s, x) ds.

We have then the following estimate:

‖θ‖L∞(W (k+1)/2,p) ≤ ‖eε(t−T0)Δ θ(T0, ·)‖L∞(W (k+1)/2,p)

+
∥∥∥ ∫ t

T0

eε(t−s)Δ∇ · (vε θ)(s, ·) ds
∥∥∥
L∞(W (k+1)/2,p)

+
∥∥∥ ∫ t

T0

eε(t−s)ΔLθ(s, ·) ds
∥∥∥
L∞(W (k+1)/2,p)

.

Now, we will treat separately each of the previous terms.

(i) For the first one we have

‖eε(t−T0)Δθ(T0, ·)‖W (k+1)/2,p

= ‖θ(T0, ·) ∗ hε(t−T0)‖Lp + ‖θ(T0, ·) ∗ (−Δ)(k+1)/4hε(t−T0)‖Lp

≤ ‖θ(T0, ·)‖Lp + ‖θ(T0, ·)‖Lp ‖(−Δ)(k+1)/4hε(t−T0)‖L1 ,

so we can write, using the properties of the heat kernel ht,

‖eε(t−T0)Δθ(T0, ·)‖L∞(W (k+1)/2,p) ≤ C ‖θ(T0, ·) ‖Lp max
{
1; [ε(t− T0)]

−(k+1)/4
}
.

(ii) For the second term, one has

∥∥∥ ∫ t

T0

eε(t−s)Δ∇ · (vε θ)(s, ·) ds
∥∥∥
W (k+1)/2,p

≤
∫ t

T0

‖∇ · (vε θ) ∗ hε(t−s)‖W (k+1)/2,p ds

≤
∫ t

T0

‖∇ · (vε θ) ∗ hε(t−s)‖Lp +
∥∥(−Δ)(k+1)/4

[∇ · (vε θ) ∗ hε(t−s)

]∥∥
Lpds

≤
∫ t

T0

‖vε θ‖Lp‖∇hε(t−s)‖L1 + ‖(−Δ)k/4(vε θ)‖Lp ‖(−Δ)1/4(∇hε(t−s))‖L1 ds

≤ C

∫ t

T0

‖vε θ(s, ·)‖Wk/2,p max
{
[ε(t− s)]−1/2; [ε(t− s)]−3/4

}
ds.

For N ≥ k/2, applying the same arguments used in the proof of the inequality
‖v	,ε(s, ·) ∗ ωε‖L∞ ≤ Cε−n/q‖v	,ε(s, ·)‖Mq,a (see Lemma A.1 in the appendix), we
have the estimations

‖vεθ(s, ·)‖Wk/2,p ≤ ‖vε(s, ·)‖CN ‖θ(s, ·)‖Wk/2,p

≤ C
(
1 + ε−N

)
ε−n/q ‖v	,ε(s, ·)‖Mq,a ‖θ(s, ·)‖Wk/2,p .
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Hence, we can write∥∥∥∫ t

T0

eε(t−s)Δ∇ · (vε θ)(s, ·) ds
∥∥∥
L∞(W (k+1)/2,p)

≤ C ‖v‖L∞(Mq,a)‖θ‖L∞(Wk/2,p)

× sup

∫ t

T0

(1 + ε−N)ε−n/q max
{
[ε(t− s)]−1/2; [ε(t− s)]−3/4

}
ds.

(iii) Finally, for the last term we have∥∥∥ ∫ t

T0

eε(t−s)ΔLθ(s, ·) ds
∥∥∥
W (k+1)/2,p

≤
∫ t

T0

{∥∥θ(s, ·) ∗ Lhε(t−s)

∥∥
Lp +

∥∥(−Δ)k/4θ(s, ·) ∗ L(−Δ)1/4hε(t−s)

∥∥
Lp

}
ds

≤
∫ t

T0

{
‖θ(s, ·)‖Lp

∥∥Lhε(t−s)

∥∥
L1 +

∥∥(−Δ)k/4θ(s, ·)∥∥
Lp

∥∥L(−Δ)1/4hε(t−s)

∥∥
L1

}
ds.

Applying Lemma 2.1 with β = 1/2, we obtain by homogeneity that

‖L(−Δ)1/4hε(t−s)‖L1 ≤ (
[ε(t− s)]−(1+2α)/4 + [ε(t− s)]−(1+2δ)/4

)
,

and then we have∥∥∥ ∫ t

T0

eε(t−s)ΔLθ(s, ·) ds
∥∥∥
L∞(W (k+1)/2,p)

≤ C ‖θ‖L∞(Wk/2,p)

∫ t

T0

max
{
([ε(t− s)]−α/2 + ε(t− s)]−δ/2);

([ε(t− s)]−(1+2α)/4 + [ε(t− s)]−(1+2δ)/4
)}
ds.

Now, with formulas (i)–(iii), we have that the norm ‖θ‖L∞(W (k+1)/2,p) is con-
trolled for all ε > 0: we have proven spatial regularity. Time regularity inductively
follows since we have for all k ≥ 0,

∂k+1

∂tk+1
θ(t, x) −∇ ·

( ∂k
∂tk

(vε θ)
)
(t, x) + L

( ∂k
∂tk

θ
)
(t, x) = εΔ

( ∂k
∂tk

θ
)
(t, x),

and we recall that vε is smooth in time as well. Theorem 4 is now completely
proven. �

Remark 2.4. The solutions θ(·, ·) constructed above depend on ε.

2.2. Maximum principle for viscosity solutions

The maximum principle we are studying here will be a consequence of few inequal-
ities, some of them are well known. We will start with the solutions obtained in
the previous section.
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Proposition 2.5 (Maximum principle for viscosity solutions). Let θ0 ∈ Lp(Rn)
with 1 ≤ p < +∞ be an initial data, then the associated solution of the viscosity
problem (2.1) satisfies the following maximum principle for all t ∈ [0, T ] :

‖θ(t, ·)‖Lp ≤ ‖θ0‖Lp .

Proof. We write, for 1 < p < +∞,

d

dt
‖θ(t, ·)‖pLp = p

∫
Rn

|θ|p−2θ
(
εΔθ +∇ · (vε θ)− Lθ)(t, x) dx

= p ε

∫
Rn

|θ|p−2θΔθ(t, x) dx − p

∫
Rn

|θ|p−1 sgn(θ)Lθ(t, x) dx,

where we used the fact that ∇ · (vε) = 0. Thus, we have

d

dt
‖θ(t, ·)‖pLp − pε

∫
Rn

|θ|p−2θΔθ(t, x) dx + p

∫
Rn

|θ|p−1 sgn(θ)Lθ(t, x) dx = 0,

and integrating in time we obtain

‖θ(t, ·)‖pLp− pε

∫ t

0

∫
Rn

|θ|p−2θΔθ(s, x) dx ds + p

∫ t

0

∫
Rn

|θ|p−1 sgn(θ)Lθ(s, x) dxds
= ‖θ0‖pLp .(2.8)

To finish, we have that the quantities

(2.9) − pε

∫
Rn

|θ|p−2θΔθ(s, x) dx and p

∫ t

0

∫
Rn

|θ|p−1 sgn(θ)Lθ(s, x) dx ds

are both positive. Indeed, for the first expression, since (eεuΔ)u≥0 is a contraction
semi-group we have ‖eεuΔf‖Lp ≤ ‖f‖Lp for all u > 0 and all f ∈ Lp(Rn). Thus
F (u) = ‖eεuΔf‖Lp is decreasing in u; taking the derivative in u and evaluating in
u = 0 for f = θ(s, .) we obtain the desired result. The positivity of the second
expression above follows immediately from the Stroock–Varopoulos estimate for
general Lévy-type operators given by the following formula (see Remark 1.23 of [14]
for a proof; more details can be found in [24] and [26]):

(2.10) C〈L|θ|p/2, |θ|p/2〉 ≤ 〈Lθ, |θ|p−1 sgn(θ)〉,

it is enough to note now that 〈L|θ|p/2, |θ|p/2〉 = ‖L1/2 |θ|p/2‖2L2 ≥ 0, where the

operator L1/2 is defined by the formula (L1/2f)̂(ξ) = a1/2(ξ) f̂(ξ), recalling that a
stands for the symbol of L introduced in (1.6). Thus, getting back to (2.8), we have
that all these quantities are bounded and positive and we write, for all 1 < p < +∞,
‖θ(t, ·)‖Lp ≤ ‖θ0‖Lp .

For the case p = 1, the positivity of the first term of (2.9) is straightforward
(see [8]), while the positivity of the second term follows from the Kato inequality
(see [14]). �
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2.3. Besov regularity and the limit ε → 0 for viscosity solutions

In order to deal with Theorem 1 we will need some additional results that will
allow us to pass to the limit. Indeed, a more detailed study of expression (2.8)
above will lead to a result concerning the regularity of weak solutions.

Lemma 2.6. If the function π satisfies the conditions (1.4) and (1.5), then for
the associated operator L we have the following pointwise estimates on its symbol
a(·) for all ξ ∈ Rn :

1) a(ξ) ≤ C
(|ξ|α + |ξ|δ),

2) |ξ|α ≤ a(ξ) + C.

Proof. We use the Lévy–Khinchin formula to obtain

|ξ|α =

∫
Rn\{0}

(
1− cos(y · ξ))|y|−n−α dy

(see [12] for a proof of this fact). It is enough to apply the hypotheses (1.4)
and (1.5) to conclude. �

We state now a useful result for passing to the limit when ε → 0 which is
interesting for its own sake:

Theorem 5 (Besov regularity). Let L be a Lévy-type operator of the form (1.2)
satisfying [ND] (i.e., hypotheses (1.4) and (1.5) hold for the function π). Let
2 ≤ p < +∞ and let f : Rn → R be a function such that f ∈ Lp(Rn) and∫

Rn

|f(x)|p−2f(x)Lf(x) dx < +∞.

Then f ∈ Ḃ
α/p,p
p (Rn).

Proof. We will prove the following estimates valid for a positive function f :

(2.11) ‖f‖p
Ḃ

α/p,p
p

≤ C‖fp/2‖2
Ḃ

α/2,2
2

≤ ‖fp/2‖2L2 +

∫
Rn

|f(x)|p−2f(x)Lf(x) dx.

The first inequality can be found in Theorem 4.2 of [4]. The constraint p ≥ 2
is precisely needed for this first step. We will thus now only focus on the right-
hand side of the previous estimate. For this, we will start assuming that the
function f is positive. Using Plancherel’s formula, the characterisation of L1/2 via
the symbol a1/2(ξ) and Lemma 2.6 we write

‖fp/2‖2
Ḃ

α/2,2
2

= ‖fp/2‖2
Ḣα/2 =

∫
Rn

|ξ|α|f̂p/2(ξ)|2dξ

≤
∫
Rn

(a1/2(ξ) + C)2|f̂p/2(ξ)|2dξ ≤ c
(‖fp/2‖2L2 + ‖L1/2fp/2‖2L2

)
.
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Now, using the Stroock–Varopoulos inequality (2.10) we have

‖fp/2‖2L2 + ‖L1/2fp/2‖2L2 ≤ ‖fp/2‖2L2 + c

∫
Rn

fp−2f Lf dx.

So inequality (2.11) is proven for positive functions. For the general case we write
f(x) = f+(x)−f−(x) where f±(x) are positive functions with disjoint support and
we have:∫

Rn

|f(x)|p−2f(x)Lf(x) dx(2.12)

=

∫
Rn

f+(x)
p−2f+(x)Lf+(x) dx +

∫
Rn

f−(x)p−2f−(x)Lf−(x) dx

−
∫
Rn

f+(x)
p−2f+(x)Lf−(x) dx −

∫
Rn

f−(x)p−2f−(x)Lf+(x) dx.

We only need to treat the two last integrals, and in fact we just need to study one
of them since the other can be treated in a similar way. So, for the third integral
we have∫

Rn

f+(x)
p−2f+(x)Lf−(x) dx

=

∫
Rn

f+(x)
p−2f+(x)

∫
Rn

[f−(x)− f−(y)]π(x − y) dy dx

=

∫
Rn

f+(x)
p−2

∫
Rn

[f+(x)f−(x)− f+(x)f−(y)]π(x − y) dy dx.

However, since f+ and f− have disjoint supports we obtain the following estimate:∫
Rn

f+(x)
p−2f+(x)Lf−(x) dx = −

∫
Rn

f+(x)
p−2

∫
Rn

[f+(x)f−(y)]π(x− y) dy dx ≤ 0,

since π is a positive function and all the terms inside the integral are positive.
With this observation we see that the last two terms of (2.12) are positive and we
have ∫

Rn

f+(x)
p−2f+(x)Lf+(x) dx+

∫
Rn

f−(x)p−2f−(x)Lf−(x) dx

≤
∫
Rn

|f(x)|p−2f(x)Lf(x) dx < +∞.

Then, using the first part of the proof we have f± ∈ Ḃ
α/p,p
p (Rn) and since f =

f+ − f−, we conclude that f belongs to the Besov space Ḃ
α/p,p
p (Rn). �

Remark 2.7. The lower bound p ≥ 2 in Theorem 1 is a consequence of Theorem 5
above. This constraint results from the first inequality in (2.11).



1460 D. Chamorro and S. Menozzi

Proof of Theorem 1 for p ∈ [2,+∞[. We have obtained with the previous results
in Sections 2.1 and 2.2 a family of regular functions (θ(ε))ε>0 ∈ L∞([0, T ], Lp(Rn))
which are solutions of (2.1) and satisfy the uniform bound ‖θ(ε)(t, ·)‖Lp ≤ ‖θ0‖Lp ;
in order to conclude we need to pass to the limit letting ε → 0. Since we
have that L∞([0, T ], Lp(Rn)) =

(
L1([0, T ], Lq(Rn))

)′
, with 1/p + 1/q = 1, we

can extract from those solutions θ(ε) a subsequence which is ∗-weakly conver-
gent to some function θ in the space L∞([0, T ], Lp(Rn)), which implies conver-
gence in D′(R+ × Rn). However, this weak convergence does not a priori imply
the weak convergence of (vε θ(ε)) to v θ along a converging subsequence in ε.
For this we use the remarks that follow. First remark that combining Proposi-
tion 2.5 and Theorem 5 we obtain that the solutions (θ(ε))ε>0 belong to the space

L∞([0, T ];Lp(Rn)) ∩ L1([0, T ], Ḃ
α/p,p
p (Rn)) for all ε > 0. Then we fix a function

ϕ ∈ C∞
0 ([0, T ]× Rn) and we have the fact that ϕθ(ε) ∈ L1([0, T ], Ḃ

α/p,p
p (Rn)) and

∂tϕθ
(ε) ∈ L1([0, T ], Ḃ−N,p

p (Rn)) for some N > 0. This implies the local inclusion,

in space as well as in time, ϕθ(ε) ∈ Ẇ
α/p,p
t,x ⊂ Ẇ

α/p,2
t,x .

We can thus apply classical results such as the Rellich–Lions theorem to ob-
tain, for a subsequence (εm)m∈N converging to zero, the strong convergence of
(θ(εm))m∈N to θ in (L∞Lp)loc. Next we recall that vε = v	,ε ∗ ωε where ωε(x) =
ε−nω(x/ε) is such that supp(ωε) ⊂ B(0, ε). Then, applying Fubini’s theorem we
have the identity∫ T

0

∫
Rn

(vεmθ
(εm) · ∇φ)(t, x) dx dt =

∫ T

0

∫
Rn

v	,εm · (ω̄εm ∗ [θ(εm)∇φ])(t, x) dx dt
= I

(εm)
T,v,θ(φ),(2.13)

where ω̄(x) = ω(−x). In order to prove that we have a weak solution of equa-

tion (1.1), it remains to prove that the quantity I
(εm)
T,v,θ(φ) is well defined for any

function φ ∈ C∞
0 ([0, T ]×Rn) and can be controlled uniformly in εm. To this end we

distinguish several cases following the values of the indexes q, a that characterize
the Morrey–Campanato spaces:

• We start with the case 2 ≤ q < +∞. Since φ ∈ C∞
0 ([0, T ]×Rn) there exists a

bounded radius Rφ > 0 such that suppx(∇φ) ⊂ B(0, Rφ) and since suppx(ω̄εm) ⊂
B(0, εm) with εm > 0 small, then if ρφ = Rφ+2 we have suppx(ω̄εm ∗ [θ(εm)∇φ]) ⊂
B(0, ρφ). Thus, if we denote by Bφ = B(0, ρφ), we obtain the inequality∣∣∣ ∫

Rn

v	,εm · (ω̄εm ∗ [θ(εm)∇φ])(t, x) dx∣∣∣
≤ ∥∥(ω̄εm ∗ [θ(εm)∇φ])(t, ·)∥∥

Lp̄(Bφ)
|Bφ|a/q

( 1

|Bφ|a
∫
Bφ

|v	,εm(t, x)|q dx
)1/q

,

where p̄ = q/(q − 1) ∈]1, 2]. Since the radius of the ball Bφ is bigger than 1 we
can write∣∣∣ ∫

Rn

v	,εm · (ω̄εm ∗ [θ(εm)∇φ])(t, x) dx∣∣∣
≤ Cφ ‖∇φ(t, ·)‖L∞(Bφ) ‖ω̄εm ∗ θ(εm)(t, .)‖Lp̄(Bφ) ‖v	,εm(t, ·)‖Mq,a(Rn).
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Now, since 1 < p̄ ≤ 2 ≤ p < +∞, we have space inclusion Lp(Bφ) ⊂ Lp̄(Bφ), and
we obtain the inequality∣∣∣ ∫

Rn

v	,εm · (ω̄εm ∗ [θ(εm)∇φ])(t, x) dx∣∣∣
≤ Cφ ‖∇φ(t, ·)‖L∞(Bφ) ‖ω̄εm ∗ θ(εm)(t, .)‖Lp(Bφ) ‖v	,εm(t, ·)‖Mq,a(Rn)

≤ Cφ ‖∇φ(t, ·)‖L∞(Rn) ‖ω̄εm ∗ θ(εm)(t, .)‖Lp(Rn) ‖v	,εm(t, ·)‖Mq,a(Rn).

From usual convolution controls (recall indeed that ω̄εm has integral 1) and
Lemma A.1, we obtain

|I(εm)
T,v,θ(φ)| ≤ Cφ,T ‖∇φ‖L∞([0,T ]×Rn) ‖θ(εm)‖L∞([0,T ],Lp(Rn)) ‖v‖L∞(Mq,a(Rn)).

From the uniform bound on ‖θ(εm)‖L∞([0,T ],Lp(Rn)), we obtain that the quantity

I
(εm)
T,v,θ(φ) is well defined and uniformly controlled in εm for all φ ∈ C∞

0 ([0, T ]× Rn).

This uniform control allows, thanks to the strong convergence in Lp of θ(εm) to-
wards θ and usual convolution controls, to pass to the limit and yields:

(2.14) I
(εm)
T,v,θ(φ) −→m IT,v,θ(φ) =

∫ T

0

∫
Rn

(v · θ∇φ) (t, x) dx dt.

• If 1 < q < 2. In this case we need to take into account the values of the
parameter a in the definition of Morrey–Campanato spaces. If n < a < n+q, since
we have v(t, ·) ∈M q,a(Rn) = Ṁ q,a(Rn) ∩ L∞(Rn), we can write∣∣∣∫

Rn

v	,εm · (ω̄εm ∗ [θ(εm)∇φ])(t, x) dx∣∣∣ ≤ C
∥∥(ω̄εm ∗ [θ(εm)∇φ])(t, ·)∥∥

L1 ‖v	,εm(t, ·)‖L∞

≤ C
∥∥θ(εm)∇φ(t, ·)∥∥

L1 ‖v	,εm(t, ·)‖Mq,a

≤ C ‖θ(εm)(t, ·)‖Lp ‖∇φ(t, ·)‖Lp′ ‖v	,εm(t, ·)‖Mq,a ,

with 1/p + 1/p′ = 1. Since θ(εm)(t, .) is uniformly controlled in Lp and since
the control in the time variable is straightforward, we obtain the wished uniform

control in εm of the quantity I
(εm)
T,v,θ(φ). Now, if 1 < q < 2 and a = n, since in

this particular case we haveM q,n 	M2,n, it is enough to repeat the computations
performed in the first item to obtain the uniform control of the quantity (2.13).
Finally, if 1 < q < 2 and 0 ≤ a < n, we need to impose a condition on q. If the
value of p is small i.e., if 2 ≤ p < q/(q − 1) we cannot completely ensure the fact

that the quantity I
(εm)
T,v,θ(φ) is controlled uniformly in εm. Indeed, using the fact

that θ(t, ·) ∈ Ḃ
α/p,p
p , some involved and technical conditions between α, p, q and n

can be found to study some very particular cases when 2 ≤ p < q/(q − 1), but the
general case seems out of reach. However, if p is big, i.e., if q/(q − 1) ≤ p (recall
that p is fixed by the initial condition), it is possible to reapply the computations

of the first item2 and the quantity I
(εm)
T,v,θ(φ) is uniformly controlled.

2These technical issues when p is small explain the different cases given in the Theorem 1.
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Thus, in all the cases treated previously, we obtain existence and uniqueness
of weak solutions for the problem (1.1) with an initial data in θ0 ∈ Lp(Rn),
2 ≤ p < +∞, that satisfy the maximum principle. Moreover, we have that these

solutions θ(t, x) belong to the space L∞([0, T ], Lp(Rn)) ∩ Lp([0, T ], Ḃ
α/p,p
p (Rn)).

We study now the case when the initial data θ0 belongs to the space L∞(Rn).
This extension is crucial for our duality method to work in order to establish
Theorem 2 in Section 4. Let us fix θR0 = θ01B(0,R) with R > 0 so we have
θR0 ∈ Lp(Rn) for all 1 ≤ p ≤ +∞ and we fix a p large enough in order to obtain
the condition q/(q − 1) ≤ p when 1 < q < 2. Following the previous computations,
there is a unique solution θR for the problem{

∂tθ
R −∇ · (vθR) + LθR = 0,

θR(0, x) = θR0 (x), ∇ · v = 0 and v ∈ L∞(
[0, T ],M q,a(Rn)

)
,

such that θR ∈ L∞([0, T ], Lp(Rn)). Moreover by the maximum principle we have

‖θR(t, ·)‖Lp ≤ ‖θR0 ‖Lp ≤ v
1/p
n ‖θ0‖L∞R

n
p where vn stands for the volume of the unit

ball in Rn. Taking the limit p→ +∞ and making then R → +∞ we finally get

‖θ(t, ·)‖L∞ ≤ C ‖θ0‖L∞ .

This shows that for an initial data θ0 ∈ L∞(Rn) there exists an associated solution
θ ∈ L∞([0, T ], L∞(Rn)). Theorem 1 is now completely proven. �

Remark 2.8. If the solution θ(t, x) belongs to the space L∞([0, T ], L∞(Rn)), it
is easy then to show that the quantity IT,v,θ(φ) given in (2.14) is well defined
for all 1 < q < +∞ and all 0 ≤ a < +∞ without any restriction or condition,
indeed: if φ ∈ C∞

0 ([0, T ] × Rn) and if B̄φ = B(0,max(Rφ, 1)) is a ball such that
suppx(φ) ⊂ B̄φ, then∣∣∣ ∫

Rn

(vθ ·∇φ)(t, x) dx
∣∣∣ ≤ ∥∥θ(t, .)∇φ(t, .)∥∥

Lp̄(B̄φ)
|B̄φ|a/q

( 1

|B̄φ|a
∫
B̄φ

|v(t, x)|q dx
)1/q

,

where 1/p̄ + 1/q = 1. Again, since the radius of the ball B̄φ is bigger than 1 we
can write∣∣∣ ∫

Rn

(vθ · ∇φ)(t, x) dx
∣∣∣ ≤ Cφ ‖∇φ(t, ·)‖Lp̄ ‖θ(t, .)‖L∞ ‖v(t, ·)‖Mq,a(Rn),

and from this inequality we obtain that the quantity IT,v,θ(φ) is well defined.

From Proposition 2.5, the previous paragraphs and the end of the proof of
Theorem 1 for p ∈ [2,+∞[ we eventually derive the following theorem.

Theorem 6 (Maximum principle). Let θ0 ∈ Lp(Rn) with 2 ≤ p < +∞. Assume
that [ND] holds for the Lévy operator L. Assume also that assumption [MC]
holds for the velocity field v with the condition 2 ≤ q < +∞ or with 1 < q < 2
and n ≤ a < n + q or with 1 < q < 2, 0 ≤ a < n and q/(q − 1) ≤ p. Then
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the weak solution of equation (1.1) satisfies the following maximum principle for
all t ∈ [0, T ]: ‖θ(t, ·)‖Lp ≤ ‖θ0‖Lp . In the case when θ0 ∈ L∞(Rn) and with the
condition 1 < q < +∞ and 0 ≤ a < n + q we also have the maximum principle
‖θ(t, ·)‖L∞ ≤ C‖θ0‖L∞ for all t ∈ [0, T ].

3. Positivity principle for weak solutions

Theorem 7. Let θ0 ∈ L1(Rn) ∩ L∞(Rn) be an initial data such that 0 ≤ θ0 ≤M
a.e. where M > 0 is a constant. Assume that [ND] holds for the Lévy operator L
and that assumption [MC] holds for the velocity field v.

• If 0 < δ < α < 1, then the weak solution of equation (1.1) satisfies 0 ≤
θ(t, x) ≤M for all t ∈ [0, T ].

• If 1 < δ < α < 2 and if q > n, α/(α− 1) > n, then the weak solution of
equation (1.1) satisfies 0 ≤ θ(t, x) ≤M for all t ∈ [0, T ].

Proof. To begin with, we fix two constants, ρ,R such that R ≥ 1 and R > 2ρ > 0.
Then we set A0,R(x) a function equals to M/2 over |x| ≤ 2R and equals to θ0(x)
over |x| > 2R and we write B0,R(x) = θ0(x)−A0,R(x), so by construction we have

θ0(x) = A0,R(x) +B0,R(x),

with ‖A0,R‖L∞ ≤ M and ‖B0,R‖L∞ ≤ M/2. Remark that by construction we
have A0,R, B0,R ∈ Lp(Rn) with 1 ≤ p ≤ +∞. Now fix v ∈ (

L∞([0, T ],M q,a(Rn))
)

such that div(v) = 0 and consider the equations{
∂tAR(t, x)−∇ · (v AR)(t, x) + LAR(t, x) = 0, AR(0, x) = A0,R(x),

∂tBR(t, x) −∇ · (v BR)(t, x) + LBR(t, x) = 0, BR(0, x) = B0,R(x).
(3.1)

Using the maximum principle and by construction we have the following estimates
for t ∈ [0, T ]:

‖AR(t, ·)‖Lp ≤ ‖A0,R‖Lp ≤ ‖θ0‖Lp + CMRn/p (1 ≤ p < +∞),

‖AR(t, ·)‖L∞ ≤ ‖A0,R‖L∞ ≤M and ‖BR(t, ·)‖L∞ ≤ ‖B0,R‖L∞ ≤M/2,
(3.2)

where AR(t, x) and BR(t, x) are the weak solutions of the systems (3.1). Since
the initial data θ0 belongs to the space L1(Rn)∩L∞(Rn) it is possible to consider
an Lp framework with 1 < p < +∞. However, we set from now on the following
conditions:

(3.3) p >
n

δ
if 0 < δ < α < 1, and

α

α− 1
> p > n if 1 < δ < α < 2.

These conditions naturally appear at the end of the proof (see equations (3.6)
and (3.7)) and allow to fix p.
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We can see now that the function θ(t, x) = AR(t, x) + BR(t, x) is the unique
solution for the problem

(3.4)

{
∂tθ(t, x)−∇ · (v θ)(t, x) + Lθ(t, x) = 0,

θ(0, x) = A0,R(x) +B0,R(x).

Indeed, using hypothesis for AR(t, x) and BR(t, x) and the linearity of equa-
tion (3.4) we have that the function θR(t, x) = AR(t, x) + BR(t, x) is a solution
for this equation. Uniqueness is ensured by the maximum principle and by the
continuous dependence from initial data given in Corollary 2.2, thus we can write
θ(t, x) = θR(t, x).

To continue, we will need an auxiliary function φ ∈ C∞
0 (Rn) such that φ(x) = 0

for |x| ≥ 1 and φ(x) = 1 if |x| ≤ 1/2 and we set ϕ(x) = φ(x/R). Now, we will
estimate the Lp-norm of ϕ(x)

(
AR(t, x)−M/2

)
. We write

∂t
∥∥ϕ(·)(AR(t, ·)−M/2

)∥∥p
Lp = p

∫
Rn

∣∣ϕ(x)(AR(t, x) −M/2
)∣∣p−2

× (
ϕ(x)

(
AR(t, x) −M/2

))
∂t
(
ϕ(x)

(
AR(t, x) −M/2

))
dx.(3.5)

We observe that we have the following identity for the last term above:

∂t
(
ϕ(x)(AR(t, x)−M/2)

)
= ∇ · (ϕ(x) v(t, x)(AR(t, x)−M/2

))− L(ϕ(x)(AR(t, x) −M/2
))

− (
AR(t, x) −M/2

)
v(t, x) · ∇ϕ(x) + [L, ϕ]AR(t, x)− M

2 Lϕ(x),

where we denoted by [L, ϕ] the commutator between L and ϕ. Thus, using this
identity in (3.5) and the fact that div(v) = 0 we have

∂t
∥∥ϕ(·)(AR(t, ·)−M/2)

∥∥p
Lp

= −p
∫
Rn

∣∣ϕ(x)(AR(t, x)−M/2
)∣∣p−2(

ϕ(x)
(
AR(t, x) −M/2

))
× L(ϕ(x)(AR(t, x)−M/2

))
dx

+ p

∫
Rn

∣∣ϕ(x)(AR(t, x)−M/2
)∣∣p−2(

ϕ(x)
(
AR(t, x) −M/2

))
× (−(AR(t, x)−M/2

)
v(t, x) · ∇ϕ(x) + [L, ϕ]AR(t, x)− M

2 Lϕ(x)) dx.(3.6)

Remark that the first integral in (3.6) is positive by the Stroock–Varopoulos in-
equality (2.10). So, one has

∂t
∥∥ϕ(·)(AR(t, ·)−M/2)

∥∥p
Lp

≤ p

∫
Rn

∣∣ϕ(x)(AR(t, x) −M/2
)∣∣p−2(

ϕ(x)
(
AR(t, x)−M/2

))
× (−(AR(t, x) −M/2

)
v(t, x) · ∇ϕ(x) + [L, ϕ]AR(t, x)− M

2 Lϕ(x)) dx.



Fractional operators with singular drift 1465

Using Hölder’s inequality and integrating in time the previous expression we have

‖ϕ(·) (AR(t, ·)−M/2)‖pLp ≤ ∥∥ϕ(·)(AR(0, ·)−M/2
)∥∥p

Lp

+ p

∫ t

0

( ∥∥(AR(s, ·)−M/2
)
v(s, ·) · ∇ϕ∥∥

Lp + ‖[L, ϕ]AR(s, ·)‖Lp +
∥∥M

2 Lϕ∥∥
Lp

)
× ‖ϕ(·) (AR(s, ·)−M/2)‖p−1

Lp ds.

The first term of the right side is null since we have AR(0, x) =M/2 on the support
of ϕ. Use now Young’s inequality and Gronwall’s lemma to derive∥∥ϕ(·) (AR(t, ·)−M/2)

∥∥p
Lp ≤ Cp

∫ t

0

‖ϕ(·) (AR(s, ·)−M/2)‖pLp ds

+ Cp

{∫ t

0

( ∥∥(AR(s, ·)−M/2
)
v(s, ·) · ∇ϕ∥∥p

Lp

+ ‖[L, ϕ]AR(s, ·)‖pLp

)
ds+ 2−pMp t ‖Lϕ‖pLp

}
≤ Cp exp(Cpt)

{∫ t

0

∥∥(AR(s, ·)−M/2
)
v(s, ·) · ∇ϕ∥∥p

Lp + ‖[L, ϕ]AR(s, ·)‖pLp ds

+ 2−pMp t ‖Lϕ‖pLp

}
.(3.7)

For the first term of the right-hand side of the previous expression we have the
inequalities below:

Lemma 3.1. For 1 ≤ p < +∞, and R ≥ 1, recalling that (a − n)/q = 1 − α, we
have the following inequalities:

• if 0 < δ < α < 1,∥∥(AR(s, ·)−M/2
)
v(s, ·) · ∇ϕ∥∥

Lp ≤ C R−1+n/p(‖A0,R‖L∞ +M/2)‖v‖L∞(Mq,a),

• if 1 < δ < α < 2,

‖(AR(s, ·)−M/2
)
v(s, ·) · ∇ϕ‖Lp

≤ CR−1+n/p+(a−n)/q(‖A0,R‖L∞ +M/2)‖v‖L∞(Mq,a),

with the condition that q ≥ p.

Remark 3.2. When 1 < δ < α < 2 we have imposed the condition q ≥ p to the
index q that characterizes the Morrey–Campanato space M q,a. At the end of the
proof we will need the condition p > n and this fact gives the constraint q > n
stated in Theorem 7.

For the term ‖[L, ϕ]AR(s, ·)‖Lp we will need the following lemma:

Lemma 3.3. For 1 ≤ p ≤ +∞ and R ≥ 1 we have the inequalities

• if 0 < δ < α < 1,

‖[L, ϕ]AR(s, ·)‖Lp ≤ C (R−α +R−δ) ‖A0,R‖Lp ,
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• if 1 < δ < α < 2 and α/(α− 1) > p:

‖[L, ϕ]AR‖Lp([0,t]×Rn) ≤ C R−1‖A0,R‖Lp .

We refer to Appendices A and B for a proof of these two lemmas.

Finally, for the last term of (3.7) we have, by the definition of ϕ and the
properties of the operator L, the estimate

‖Lϕ‖Lp ≤ C Rn/p (R−α +R−δ).

We thus have the following inequalities for 0 < δ < α < 1:∥∥ϕ(·)(AR(t, ·)− M
2

)∥∥p
Lp ≤ C

[
R−p+n(‖A0,R‖L∞ +M/2)p‖v‖pL∞(Mq,a)

+ (R−αp +R−δp)‖A0,R‖pLp +Mp(Rn−αp +Rn−δp)
]
,

or, if 1 < δ < α < 2,∥∥ϕ(·)(AR(t, ·)− M
2

)∥∥p
Lp ≤ C

[
R−p+n+(a−n)p/q(‖A0,R‖L∞ +M/2)p‖v‖pL∞(Mq,a)

+R−p‖A0,R‖pLp +Mp(Rn−pα +Rn−pδ)
]
.

Observe that we have at our disposal the estimates (3.2), so we can write, for
0 < δ < α < 1,∥∥ϕ(·)(AR(t, ·)− M

2

)∥∥p
Lp ≤ C

[
R−p+nMp‖v‖pL∞(Mq,a)

+ (R−αp +R−δp) (‖θ0‖pLp +MpRn) +Mp[Rn−αp +Rn−δp]
]
,(3.8)

and if 1 < δ < α < 2,∥∥ϕ(·)(AR(t, ·)− M
2

)∥∥p
Lp ≤ C

[
R−p+n+(a−n)p/qMp‖v‖pL∞(Mq,a)

+R−p(‖θ0‖pLp +MpRn) +Mp(Rn−αp +Rn−δp)
]
.(3.9)

At this stage, we recall the conditions given in (3.3): p > n/δ if 0 < δ < α < 1,
and p > n if 1 < δ < α < 2. Then, using again the definition of ϕ we have that
the left-hand side above is greater than

∫
B(0,ρ)

|AR(t, ·) −M/2|p dx. Now, if we

make R → +∞, with the definition of the parameter p given in the lines above,
the right-hand side of the expressions (3.8) and (3.9) tends to zero and we obtain
AR(t, x) =M/2 over B(0, ρ). Hence, by construction we have θ(t, x) = AR(t, x) +
BR(t, x), where θ is a solution of (3.4) with initial data θ0 = A0,R + B0,R, but,
since over B(0, ρ) we have AR(t, x) = M/2 and ‖BR(t, ·)‖L∞ ≤ M/2, one finally
has the desired estimate 0 ≤ θ(t, x) ≤ M on B(0, ρ). It is now possible to repeat
these arguments at any point x ∈ Rn and consider balls of the type B(x, ρ) to
finish the proof of the Theorem 7. �



Fractional operators with singular drift 1467

4. Hölder regularity

We will now study Hölder regularity by duality using Hardy spaces. These spaces
have several equivalent characterizations (see [5], [10] and [23] for a detailed treat-
ment). In this paper we are interested mainly in the molecular approach that
defines local Hardy spaces.

Definition 4.1 (Local Hardy spaces hσ). Let 0 < σ < 1. The local Hardy
space hσ(Rn) is the set of distributions f that admits the following molecular
decomposition

(4.1) f =
∑
j∈N

λj ψj ,

where (λj)j∈N is a sequence of complex numbers such that
∑

j∈N
|λj |σ < +∞

and (ψj)j∈N is a family of r-molecules in the sense of Definition 4.3 below. The
hσ-norm3 is then fixed by the formula

‖f‖hσ = inf
{(∑

j∈N

|λj |σ
)1/σ

: f =
∑
j∈N

λj ψj

}
,

where the infimum runs over all possible decompositions (4.1).

Local Hardy spaces have many remarkable properties and we will only stress
here, before passing to duality results concerning hσ spaces, the fact that the
Schwartz class S(Rn) is dense in hσ(Rn), this fact is of course very useful for
approximation procedures.

Now, let us take a closer look at the dual space of the local Hardy spaces.
In [10], D. Goldberg proved the following important theorem.

Theorem 8 (Hardy–Hölder duality). Let n/(n+1) < σ < 1 and fix γ = n(1/σ−1).
Remark that 0 < γ < 1. Then, the dual of the local Hardy space hσ(Rn) is the
Hölder space Cγ(Rn) endowed with the norm

‖f‖Cγ = ‖f‖L∞ + sup
x �=y

|f(x)− f(y)|
|x− y|γ .

This result allows us to study the Hölder regularity of functions in terms of
Hardy spaces and it will be applied to the solutions of equation (1.1).

Remark 4.2. Since n/(n+ 1) < σ < 1, we have
∑

j∈N
|λj | ≤

(∑
j∈N

|λj |σ
)1/σ

,
thus for testing Hölder continuity of a function f it is enough to study the quantities
|〈f, ψj〉| where ψj is an r-molecule.

Since we are going to work with local Hardy spaces, we will introduce a size
treshold in order to distinguish small molecules from big ones in the following way:

3It is not actually a norm since 0 < σ < 1. More details can be found in [10] and [23].
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Definition 4.3 (r-molecules). Set n/(n+ 1) < σ < 1, define γ = n(1/σ − 1) and
fix a real number ω such that 0 < γ < ω < 1. An integrable function ψ is an
r-molecule if we have:

• Small molecules (0 < r < 1).∫
Rn

|ψ(x)||x − x0|ω dx ≤ (ζr)ω−γ , for x0 ∈ Rn (concentration condition),(4.2)

‖ψ‖L∞ ≤ 1

(ζr)n+γ
(height condition),(4.3) ∫

Rn

ψ(x) dx = 0 (moment condition).(4.4)

In the above conditions the quantity ζ > 1 denotes a constant that depends
on γ, ω, α, and other parameters to be specified later on. See Remark 4.6 below.

• Big molecules (1 ≤ r < +∞).

In this case we only require conditions (4.2) and (4.3) for the r-molecule ψ
while the moment condition (4.4) is dropped.

Remark 4.4. 1) Note that the point x0 ∈ Rn can be considered as the “center”
of the molecule.

2) Conditions (4.2) and (4.3) imply the estimate ‖ψ‖L1 ≤ C (ζr)−γ (see e.g. the
arguments for the proof of (4.26)). Thus, every r-molecule belongs to Lp(Rn) with
1 < p < +∞. In particular we have for any small molecule and for 1 < p < +∞,

(4.5) ‖ψ‖Lp ≤ C(ζr)−n+n/p−γ .

3) We find more convenient to show explicitly the dependence on the Hölder
regularity parameter γ instead of σ.

4) The parameter ω is technical and is meant to be very close to γ. See point 6)
in Remark 4.6 below for a precise statement.

For a more concise definition of molecules, we refer to Chapter III, 5.7 in [23].
See also [25], Chapter XIV, 6.6, or [15] for a similar characterization.

The main interest of using molecules relies in the possibility of transferring
the regularity problem to the evolution of such molecules. This idea is borrowed
from [15].

Proposition 4.5 (Transfer property). Let [MC] and [ND] hold. Let t ∈ [0, T ] be
fixed and let ψ be a solution of the following backward problem for s ∈ [0, t] :

(4.6)

⎧⎪⎪⎨⎪⎪⎩
∂sψ(s, x) = −∇ · [v(t− s, x)ψ(s, x)]− Lψ(s, x),
ψ(0, x) = ψ0(x) ∈ L1 ∩ L∞(Rn),

div(v) = 0 and v ∈ L∞(
[0, t],M q,a(Rn)

)
,

where ψ0(x) is a molecule. If θ(t, .) is a solution of (1.1) at time t, with θ0∈L∞(Rn),
then we have the identity∫

Rn

θ(t, x)ψ(0, x) dx =

∫
Rn

θ(0, x)ψ(t, x) dx.
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Proof. We first consider the expression

∂s

∫
Rn

θ(t− s, x)ψ(s, x) dx =

∫
Rn

−∂tθ(t− s, x)ψ(s, x) + ∂sψ(s, x)θ(t− s, x) dx.

Using equations (1.1) and (4.6) we obtain

∂s

∫
Rn

θ(t− s, x)ψ(s, x) dx

=

∫
Rn

{
−∇ · [(v(t− s, x) θ(t− s, x)] ψ(s, x) + Lθ(t− s, x)ψ(s, x)

−∇ · [(v(t− s, x)ψ(s, x))] θ(t− s, x)− Lψ(s, x) θ(t − s, x)
}
dx.

Now, by an integration by parts in the first term of the right-hand side of the
previous formula, using the fact that v is divergence free and the symmetry of the
operator L we have that the expression above is equal to zero. So, the quantity∫
Rn θ(t− s, x)ψ(s, x) dx remains constant in time. We only have to set s = 0 and
s = t to conclude. �

This proposition says, that in order to control 〈θ(t, ·), ψ0〉, it is enough (and
much simpler) to study the bracket 〈θ0, ψ(t, ·)〉.
Proof of Theorem 2. Once we have the transfer property proven above, the proof
of the Theorem 2 is quite direct and it reduces to establish an L1 estimate for
molecules. Indeed, assume that for all molecular initial data ψ0 we have an L1

control for ψ(t, ·) a solution of (4.6), then Theorem 2 follows easily: applying
Proposition 4.5 with the fact that θ0 ∈ L∞(Rn), we have

|〈θ(t, ·), ψ0〉| =
∣∣∣ ∫

Rn

θ(t, x)ψ0(x) dx
∣∣∣ = ∣∣∣ ∫

Rn

θ(0, x)ψ(t, x) dx
∣∣∣

≤ ‖θ0‖L∞‖ψ(t, ·)‖L1 < +∞.(4.7)

From this, we obtain that θ(t, ·) belongs to the Hölder space Cγ(Rn) for a small γ.
We recall here that the exact value of γ depends on the regularization effect of the
Lévy operator (see the statement of Theorem 2).

Now we need to control the L1 norm of ψ(t, ·) and we divide our proof into
two steps following the molecule’s size. For the initial big molecules, i.e., if r ≥ 1,
the needed control is straightforward: apply the maximum principle and the Re-
mark 4.4-2) above to obtain

‖θ0‖L∞‖ψ(t, ·)‖L1 ≤ ‖θ0‖L∞ ‖ψ0‖L1 ≤ C
1

rγ
‖θ0‖L∞ ,

but, since r ≥ 1, we have that |〈θ(t, ·), ψ0〉| < +∞ for all big molecules.

In order to finish the proof of this theorem, it only remains to establish the L1

control for small molecules. This is the most complex part of the proof and it is
treated in the following theorem:
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Theorem 9. Let ψ0 be a small r-molecule (i.e., 0 < r < 1), and consider the as-
sociated solution ψ(t, ·) of the backward problem (4.6), where the hypotheses [MC]
and [ND] hold. If we assume moreover

1) q > n/(α− γ) if 0 < α < 1,

2) or q > n/(1− γ) if 1 < δ < α < 2,

then there exists C > 0 such that for any given time T0 > 0 we have the following
control of the L1-norm:

‖ψ(t, ·)‖L1 ≤ C T−γ
0 (T0 < t < T ),

where 0 < γ < δ < α < 1 if 0 < α < 1, or 0 < γ < 2− α if 1 < α < 2.

Accepting for a while this result, we have then a good control over the quantity
‖ψ(t, ·)‖L1 for all 0 < r < 1 and getting back to (4.7) we obtain that |〈θ(t, ·), ψ0〉|
is always bounded for T0 < t < T and for any molecule ψ0: we have proven
Theorem 2 by a duality argument. �

Let us now briefly explain the main steps to prove Theorem 9. We need to
construct a suitable control in time for the L1-norm of the solutions ψ(t, ·) of the
backward problem (4.6) where the initial data ψ0 is a small r-molecule. Two cases
need to be considered:

• if r ≥ T0/2, we can again apply the maximum principle and the control (2) in
Remark 4.4 gives the result;

• if r < T0/2, i.e., in case the molecules at hand are really small with respect to
the threshold T0, the control is derived by iteration in two different steps:

∗ The first step explains the molecules’ deformation after a very small time
s0 > 0, which is related to the size r by the bounds 0 < s0 ≤ εr with ε a
small constant. This will be done in Section 4.1.

∗ In order to obtain a control of the L1 norm for larger times we need to
perform a second step which takes as a starting point the results of the first
step and then gives the deformation for another small time s1, which is also
related to the original size r. This part is treated in Section 4.2.

To conclude it is enough to iterate the second step as many times as necessary to
get rid of the dependence of the times s0, s1, . . . from the size of the molecule. The
procedure can indeed be stopped as soon as the size of the molecule at the current
time-step is larger than T0/2. We make the size grow at each iteration. This way,
we obtain the L1 control needed for all time T0 < t < T .

4.1. Small time molecule’s evolution: first step

The following theorem shows how the molecular properties are deformed with the
evolution for a small time s0.

Since in the following T > 0 is fixed and that the computations of this section
can be performed for an arbitrary divergence free vector field v ∈ L∞(M q,a), we
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will denote by v(t, x), t ∈ [0, T ] × Rn, what should actually be from the transfer
property established in Proposition 4.5 v(T − t, x). This abuse of notation is
essentially done for notational convenience.

Theorem 10. Let σ, γ and ω be real numbers such that n/(n+ 1) < σ < 1, and
γ = n(1/σ − 1). Let ψ(s0, x) be a solution at time s0 of the problem

(4.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂sψ(s, x) = −∇ · (v ψ)(s, x)− Lψ(s, x), s ∈ [0, T ],

ψ(0, x) = ψ0(x),

div(v) = 0 and v∈L∞(
[0, T ],M q,a(Rn)

)
with sup

s∈[0,T ]

‖v(s, ·)‖Mq,a ≤ μ.

We assume as for Theorem 9 that, for 0 < α < 1 we have q > n/(α− γ) and that
if 1 < α < 2, q > n/(1− γ). Then, there exist positive constants K and ε small
enough such that if ψ0 is a small r-molecule in the sense of Definition 4.3 for the
local Hardy space hσ(Rn), then for all time 0 < s0 ≤ εrα, we have the following
estimates: ∫

Rn

|ψ(s0, x)||x − x(s0)|ω dx ≤ (
(ζr)α +Ks0

)(ω−γ)/α
,(4.9)

‖ψ(s0, ·)‖L∞ ≤ 1(
(ζr)α +Ks0

)(n+γ)/α
,(4.10)

‖ψ(s0, ·)‖L1 ≤ 2 v
ω/(n+ω)
n(

(ζr)α +Ks0
)γ/α ,(4.11)

where vn denotes the volume of the n-dimensional unit ball.

The new molecule’s center x(s0) used in formula (4.9) is given by the evolution
of the differential system

(4.12)

⎧⎨⎩ x′(s) = vBρ = 1
|B(x(s),ρ)|

∫
B(x(s),ρ)

v(s, y) dy, s ∈ [0, s0],

x(0) = x0,

where ρ = ζβ1r and β1 > 1 will be specified later on. In the previous controls and
in the dynamics for the evolution of the center, the parameter ζ = ζ(α, ω, γ, μ) > 1,
to be chosen further, is the same as in Definition 4.3.

Remark 4.6. 1) The definition of the point x(s0) given by (4.12) reflects the
molecule’s center transport using the averaged velocity v.

2) Remark that it is enough to treat the case 0 < ((ζr)α +Ks0) < 1 since s0
is small: otherwise the L1 control will be trivial for time s0 and beyond: we only
need to apply the maximum principle.

3) The parameter ζ was introduced in the definition (4.2)–(4.3) of the molecules
in order to absorb the Morrey–Campanato norm of the velocity field which is
denoted by μ. Now since ζ can be a rather large quantity, in order to obtain
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((ζr)α +Ks0) < 1 we need r to be very small, and this fact is compatible with our
interest in small molecules.

4) For notational convenience we denote the new center of the molecule by
x(s0) = xs0 .

5) The existence of a solution of the differential system (4.12) follows from the
Cauchy–Peano theorem: indeed, since the velocity field v is a locally integrable
function, the quantity vBρ is a continuous function of x(s). Uniqueness is not
needed as far as our computations are involved.

6) We will always assume the following relationship: if 0 < α < 1 then we have
0 < γ < ω < δ < α < 1, while if 1 < δ < α < 2 we have 0 < γ < ω < 2− α.

Proof of Theorem 10. We will follow the next scheme: first we prove the small
concentration condition (4.9), and then we prove the height condition (4.10). Once
we have these two conditions, the L1 estimate (4.11) will follow easily.

1) Small time concentration condition. Let us write for s ∈ [0, s0], Ωs(x) =
|x − x(s)|ω and ψ(x) = ψ+(x) − ψ−(x) where the functions ψ±(x) ≥ 0 have
disjoint support. We will denote ψ±(s0, x) two solutions of (4.8) at time s0 with
ψ±(0, x) = ψ±(x). At this point, we use the positivity principle, thus by linearity
we have

|ψ(s0, x)| = |ψ+(s0, x)− ψ−(s0, x)| ≤ ψ+(s0, x) + ψ−(s0, x),

and we can write∫
Rn

|ψ(s0, x)|Ωs0 (x) dx ≤
∫
Rn

ψ+(s0, x)Ωs0 (x) dx +

∫
Rn

ψ−(s0, x)Ωs0(x) dx,

so we only have to treat one of the integrals on the right-hand side above. We have
for all s ∈ [0, s0]:

Is =
∣∣∣∂s ∫

Rn

Ωs(x)ψ+(s, x) dx
∣∣∣

=
∣∣∣ ∫

Rn

∂sΩs(x)ψ+(s, x) + Ωs(x)
[
−∇ · (v ψ+(s, x))− Lψ+(s, x)

]
dx

∣∣∣
=
∣∣∣ ∫

Rn

−∇Ωs(x) · x′(s)ψ+(s, x) + Ωs(x)
[
−∇ · (v ψ+(s, x)) − Lψ+(s, x)

]
dx

∣∣∣.
Using the fact that v is divergence free, we obtain

Is =
∣∣∣ ∫

Rn

−∇Ωs(x) · (x′(s)− v)ψ+(s, x) − Ωs(x)Lψ+(s, x) dx
∣∣∣.

Since the operator L is symmetric and using the definition of x′(s) given in (4.12),
we have

(4.13) Is ≤ c

∫
Rn

|x−x(s)|ω−1|v − vBρ | |ψ+(s, x)| dx︸ ︷︷ ︸
Is,1

+c

∫
Rn

∣∣LΩs(x)
∣∣ |ψ+(s, x)| dx︸ ︷︷ ︸
Is,2

.
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We will study separately each of the integrals Is,1 and Is,2 by two lemmas that
will be proven in Appendix C in a more general way.

Lemma 4.7. For the integral Is,1 in (4.13) we have the estimates:

1) If 0 < δ < α < 1, if n/(α− γ) < q, and if 1/q + 1/q′ = 1, we have

Is,1 ≤ C ‖v(s, ·)‖Mq,a

[
(ζβ1r)(a−n)/q

{
(ζβ0r)ω−1+n/p ‖ψ(s, ·)‖Lp′

+ (ζβ0(1+ε)r)ω−1+n/p̃ ‖ψ(s, ·)‖Lp̃′
}
+ (ζβ1r)ω−1+a/q ‖ψ(s, ·)‖Lq′

]
.

Here β0 < 1 < β1 are technical parameters, and we have 1 < p < n/(1− ω),
with 1/p+ 1/p′ = 1. Moreover, we set p̃ > n/(1− ω), with 1/p̃+ 1/p̃′ = 1,
and we define

ε =
ln
[
1− ζ(β1−β0)(p̃(ω−1)+n)

]
(p̃(ω − 1) + n)β0 ln(ζ)

> 0.

2) If 1 < δ < α < 2 and if n/(1− γ) < q, we have

Is,1 ≤ C ‖v(s, ·)‖Mq,a (ζβ1r)a/q
(
(ζβ0r)

ω−1+n/q′‖ψ(s, ·)‖L∞

+ (ζβ0(1+ε)r)ω−1+n/p̃) ‖ψ(s, ·)‖Lz + (ζβ1r)ω−1 ‖ψ(s, ·)‖Lq′
)
,

where 1/q + 1/q′ = 1, 1/p̃+ 1/q + 1/z = 1, and p̃ > n/(1− ω).

Lemma 4.8. For the integral Is,2 in (4.13), for 0 < δ < α < 2, we have the
inequality

Is,2 ≤ C
(
(ζβ0r)ω−α+n‖ψ(s, ·)‖L∞ + (ζβ0(1+ε′)r)ω−α+n/p̃‖ψ(s, ·)‖Lp̃′

(ζβ1r)ω−α+n/q̄ ‖ψ(s, ·)‖Lq̄′
)
,

where 1/p̃+ 1/p̃′ = 1, with p̃ > n/(α− ω),

ε′ =
ln
[
1− ζ(β1−β0)(p̃(ω−α)+n)

]
(p̃(ω − α) + n)β0 ln(ζ)

> 0,

q̄, q̄′ > 1, 1/q̄ + 1/q̄′ = 1, and ω − δ + n/q̄ < 0.

Let us mention that in the case 0 < δ < α < 1, it is precisely this last lemma
that constrains the Hölder regularity index γ < δ. We assume from now on that
p̃ > n/(min(1− ω, α− ω)).

We will use these two lemmas in order to obtain an interesting estimate for the
quantity (4.13). To continue we need to divide our study following the values of
the regularity parameter α.
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• For 0 < α < 1: we derive from the first part of Lemma 4.7 and from Lemma 4.8
the inequality

Is ≤ Is,1 + Is,2 ≤ C ‖v(s, ·)‖Mq,a

×
[
(ζβ1r)(a−n)/q

{
(ζβ0r)ω−1+n/p‖ψ(s, ·)‖Lp′ + (ζβ0(1+ε)r)ω−1+n/p̃‖ψ(s, ·)‖Lp̃′

}
+ (ζβ1r)ω−1+a/q‖ψ(s, ·)‖Lq′

]
+ C

(
(ζβ0r)ω−α+n‖ψ(s, ·)‖L∞

+ (ζβ0(1+ε′)r)ω−α+n/p̃‖ψ(s, ·)‖Lp̃′ + (ζβ1r)ω−α+n/q̄ ‖ψ(s, ·)‖Lq̄′
)
.

Now, since sup0<s<T ‖v(s, ·)‖Mq,a ≤ μ and by the maximum principle (see Theo-
rem 6) we can write

Is ≤ Cμ
[
(ζβ1r)(a−n)/q

{
(ζβ0r)ω−1+n/p ‖ψ0‖Lp′ + (ζβ0(1+ε)r)ω−1+n/p̃ ‖ψ0‖Lp̃′

}
+ (ζβ1r)ω−1+a/q ‖ψ0‖Lq′

]
+ C

(
(ζβ0r)ω−α+n‖ψ0‖L∞

+ (ζβ0(1+ε′)r)ω−α+n/p̃‖ψ0‖Lp̃′ + (ζβ1r)ω−α+n/q̄ ‖ψ0‖Lq̄′
)
,

but since ψ0 is a small molecule we have the following estimate (see equation (4.5)
in Remark 4.4):

Is ≤ Cμ
[
(ζβ1r)(a−n)/q

{
(ζβ0r)ω−1+n/p × (ζr)−(n/p+γ) + (ζβ0(1+ε)r)ω−1+n/p̃

× (ζr)−(n/p̃+γ)
}
+ (ζβ1r)ω−1+a/q × (ζr)−(n/q+γ)

]
+C

(
(ζβ0r)ω−α+n(ζr)−(n+γ)

+ (ζβ0(1+ε′)r)ω−α+n/p̃(ζr)−(n/p̃+γ) + (ζβ1r)ω−α+n/q̄ × (ζr)−(n/q̄+γ)
)
.

Recalling that (a− n)/q = 1− α we obtain

Is ≤ rω−α−γ C max{μ, 1}
{[
ζβ1(1−α)+β0(ω−1+n/p)−(n/p+γ)

+ ζβ1(1−α)+β0(1+ε)(ω−1+n/p̃)−(n/p̃+γ) + ζβ1(ω−α+n/q)−(n/q+γ)
]

(
ζβ0(ω−α+n)−(n+γ) + ζβ0(1+ε′)(ω−α+n/p̃)−(n/p̃+γ) + ζβ1(ω−α+n/q̄)−(n/q̄+γ)

)}
,

and if we set

η =C max{μ, 1}
{[
ζβ1(1−α)+β0(ω−1+n/p)−(n/p+γ)

+ ζβ1(1−α)+β0(1+ε)(ω−1+n/p̃)−(n/p̃+γ) + ζβ1(ω−α+n/q)−(n/q+γ)
]

(
ζβ0(ω−α+n)−(n+γ) + ζβ0(1+ε′)(ω−α+n/p̃)−(n/p̃+γ) + ζβ1(ω−α+n/q̄)−(n/q̄+γ)

)}
,

we can write

Is ≤ η rω−α−γ .
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As we can see, beside some dimensional constants and the parameter ζ > 1, the
term η depends on the L∞(M q,a) norm of the velocity field v and we will see how
to absorb this quantity. Indeed, the above estimation on Is associated with the
initial concentration condition (4.2) now gives (taking into account the two parts
associated to ψ+ and ψ−) the following inequality for the concentration condition
at time s0:∫

Rn

|x− x(s0)|ωψ(s0, x) dx ≤ (ζr)ω−γ + 2η rω−α−γs0 = (ζr)ω−γ
(
1 + 2η

s0
ζω−γrα

)
.

Recalling we have assumed 0 ≤ s0 ≤ εrα we can choose ε small enough to have:∫
Rn

|x− x(s0)|ω ψ(s0, x) dx ≤ (ζr)ω−γ
(
1 + 2

α

ω − γ
η

s0
ζω−γ rα

)(ω−γ)/α

=
(
(ζr)α + 2

α

ω − γ
η

s0
ζω−α−γ

)(ω−γ)/α

=
(
(ζr)α +Ks0

)(ω−γ)/α
,(4.14)

where K = 2 α
ω−γ η

1
ζ(ω−α−γ) .

At this point we want to make the quantity K small enough. To be more
precise, in order to perform an iteration in time in resonance with the height
condition that will be studied later on, we will need the following condition:

(4.15) K = 2
α

ω − γ
η

1

ζ(ω−α−γ)
≤
( α

n+ γ

)
c1 × c,

where the constant c1 is given in the hypothesis [ND] associated to the Lévy
operator, and the constant 0 < c < 1 is associated with the height condition and
is explicited in (4.25).

We will see now that if ζ is big, then η/ζ(ω−α−γ) is small. Indeed, from the
definition of η given above we have

η
1

ζ(ω−α−γ)
= Cmax{μ, 1}

{[
ζ(β0−1)(ω−α+n/p)+(1−α)(β1−β0) + ζ(1−β0(1+ε))(α−ω−n/p̃)

× ζ(β1−β0(1+ε))(1−α) + ζ(β1−1)(ω−α+n/q)] +
(
ζ(β0−1)(ω−α+n)(4.16)

+ ζ(1−β0(1+ε′))(α−ω−n/p̃) + ζ(β1−1)(ω−α+n/q̄)
)}
.

It therefore only remains to prove that all the exponents of ζ in the right-hand
side of the previous formula are negative. For the first exponent let us take β0 =
1− ν, β1 = 1+ ν for some ν ∈]0, 1[. Then, the negativity is given by the following
remarks:

−ν
(
ω − α+

n

p

)
+ 2ν(1− α) < 0 ⇐⇒ 2− α− ω <

n

p
,

thus choosing 1 < p < n/(2− α− ω) (which is compatible with the constraint
1 < p < n/(1− ω) given in Lemma 4.7) we obtain the required negativity. For
the second term (1 − β0(1 + ε))(α − ω − n/p̃) + (β1 − β0(1 + ε))(1 − α), since
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0 < ω < α < 1 and we assumed p̃ > n/(min(α− ω, 1− ω)) = n/(α− ω), we only
need to prove that 1 − β0(1 + ε) < 0 and β1 − β0(1 + ε) < 0. Since β0 = 1 − ν
and β1 = 1+ ν, it is enough to study this last term which can be rewritten in the
following manner (ε is given in Lemma 4.7):

β1−β0(1+ε) = (1+ν)−(1−ν)(1+ε) = 2ν−(1−ν)ε = 2ν− ln
[
1− ζ2ν(p̃(ω−1)+n)

]
(p̃(ω − 1) + n) ln(ζ)

.

Now, since we have fixed p̃ > n/(α− ω), we have p̃(ω − 1) + n < 0, and then if
ν is small enough we obtain that the previous quantity is negative which implies
the negativity of the whole exponent of the second term of (4.16). Finally, the last
terms of (4.16) are easy to study: by the constraints given in the Lemmas 4.7-4.8
(recalling as well that 0 < γ < ω < δ < α < 1) we have the conditions β1 > 1,
ω − α+ n/q < 0 and ω − δ + n/q̄ < 0. We obtain that (β1 − 1)(ω − α+ n/q) < 0
and (β1 − 1)(ω − α+ n/q̄) < 0. On the other hand, (β0 − 1)(ω − α + n) < 0 and
the term involving ε′ can be handled as the second one with ε.

Thus, if ζ is big we can make the quantity K = 2 α
ω−γ η

1
ζ(ω−α−γ) small enough

in order to fulfill inequality (4.15). Getting then back to (4.14) we finally obtain∫
Rn

|x− x(s0)|ω ψ(s0, x) dx ≤ (
(ζr)α +Ks0

)(ω−γ)/α
,

which is the desired control over the concentration condition given in Theorem 10.

• In the case when 1 < α < 2, we have, by Lemmas 4.7 and 4.8,

Is ≤ C ‖v(s, ·)‖Mq,a(ζβ1r)a/q
(
(ζβ0r)ω−1+n/q′ ‖ψ(s, ·)‖L∞

+ (ζβ0(1+ε)r)ω−1+n/p̃ ‖ψ(s, ·)‖Lz + (ζβ1r)ω−1 ‖ψ(s, ·)‖Lq′
)

+ C
(
(ζβ0r)ω−α+n‖ψ(s, ·)‖L∞ + (ζβ0(1+ε′)r)ω−α+n/p̃‖ψ(s, ·)‖Lp̃′

+ (ζβ1r)ω−α+n/q̄ ‖ψ(s, ·)‖Lq̄′
)
.

Then, since sup0<s<T ‖v(s, ·)‖Mq,a ≤ μ and by the maximum principle, we write

Is ≤ Cμ (ζβ1r)a/q
(
(ζβ0r)ω−1+n/q′ ‖ψ0‖L∞ + (ζβ0(1+ε)r)ω−1+n/p̃ ‖ψ0‖Lz

+ (ζβ1r)ω−1‖ψ0‖Lq′
)
+ C

(
(ζβ0r)ω−α+n‖ψ0‖L∞ + (ζβ0(1+ε′)r)ω−α+n/p̃‖ψ0‖Lp̃′

+ (ζβ1r)ω−α+n/q̄ ‖ψ0‖Lq̄′
)
.

At this point we use the fact that ψ0 satisfies the molecular condition (4.3) and
the inequality (4.5):

Is ≤ Cμ(ζβ1 r)a/q
(
(ζβ0r)ω−1+n/q′ × (ζr)−(n+γ) + (ζβ0(1+ε)r)ω−1+n/p̃

× (ζr)−n+n/z−γ + (ζβ1r)ω−1 × (ζr)−n+n/q′−γ
)

+ C
(
(ζβ0r)ω−α+n × (ζr)−(n+γ)

+ (ζβ0(1+ε′))ω−α+n/p̃ × (ζr)−(n/p̃+γ) + (ζβ1r)ω−α+n/q̄ × (ζr)−(n/q̄+γ)
)
.
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Now, since 1/p̃+ 1/q + 1/z = 1, 1/q + 1/q′ = 1, and recalling 1 − α = (a− n)/q,
we obtain

Is ≤rω−γ−α × C max{μ, 1}[ζβ0(ω−α+n)+(β1−β0)a/q−(n+γ)

+ ζβ1a/q+β0(1+ε)(ω−1+n/p̃)−n+n/z−γ + ζβ1(a/q+ω−1)−n/q−γ

+ ζβ0(ω−α+n)−(n+γ) + ζβ0(1+ε′)(ω−α+n/p̃)−(n/p̃+γ) + ζβ1(ω−α+n/q̄)−(n/q̄+γ)
]
.

So, Is ≤ η̄ rω−γ−α, where

η̄ = Cmax{μ, 1}[ζβ0(ω−α+n)+(β1−β0)a/q−(n+γ)+ ζβ1a/q+β0(1+ε)(ω−1+n/p̃)−n+n/z−γ

+ ζβ1(a/q+ω−1)−n/q−γ + ζβ0(ω−α+n)−(n+γ) + ζβ0(1+ε′)(ω−α+n/p̃)−(n/p̃+γ)

+ ζβ1(ω−α+n/q̄)−(n/q̄+γ)
]
.

This estimation on Is, associated with the initial concentration condition (4.2),
gives in the same manner than in (4.14):∫

Rn

|x− x(s0)|ω ψ(s0, x) dx ≤
(
(ζr)α + 2

α

ω − γ
η̄

s0
ζω−γ−α

)(ω−γ)/α

=
(
(ζr)α +Ks0

)(ω−γ)/α
.

Again we want to make the quantity K = 2 α
ω−γ η̄

1
ζ(ω−γ−α) very small. Using the

definition of η̄ given above and recalling that 0 < γ < ω < 1 < α < 2 we obtain
that

η̄

ζ(ω−γ−α)
= C max{μ, 1} [ζ(β0−1)(ω−α+n)+(β1−β0)(1−α+n/q)

+ ζβ1(1−α+n/q) × ζβ0(1+ε)(ω−1+n/p̃)−(n/q+n/p̃)+α−ω + ζ(β1−1)(ω−α+n/q)

+ ζ(β0−1)(ω−α+n) + ζ(β0(1+ε′)−1)(ω−α+n/p̃) + ζ(β1−1)(ω−α+n/q̄)
]
.(4.17)

Since ζ > 1, we want to prove that all the powers of ζ in the previous contribution
are negative. For the first term, choose β0 = 1 − ν0 for a small ν0 > 0 and
β1 = 1+ ν1 where 0 < ν1 << ν0. The negativity of the exponent for the first term
then writes:

−ν0(ω − α+ n) + (ν0 + ν1) (1− α+ n/q) < 0

⇐⇒ ω − α+ n > (1− α+ n/q)(1 + ν1/ν0).

Since 0 < ν1 << ν0, observe that this constraint can be fulfilled as soon as ω −
α + n > 1 − α + n/q. But since by assumption q > n and n ≥ 2 the constraint
is always satisfied. On the other hand, for the second term, the global negativity
will follow as soon as

(β1 − 1)(1− α+ n/q) +
{
β0(1 + ε)− 1)(ω − 1 + n/p̃)

}
= ν1(1− α+ n/q) + (ε− ν0(1 + ε))(ω − 1 + n/p̃) < 0.
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Since p̃ > n/(1− ω), recalling the definition of ε in Lemma 4.7, the above inequality
readily holds for ν0 small enough. Indeed, since β0 = 1−ν0, β1 = 1+ν1, ν1 << ν0,
ε := ε(ν0, ν1)→ + ∞ as ν0 → 0. Finally, the negativity of the last terms follows
from the same previous arguments. Use the conditions ω − α + n/q < 0 (recall
q > n/(1− γ), γ < ω < 1) and ω− δ+n/q̄ < 0 which implies ω−α+n/q̄ < 0 since
1 < δ < α < 2. Also, (β0 − 1)(ω − α + n) < 0 and the term in ε′ can be handled
as the second one.

Thus, it is possible to choose ζ big enough in order to obtain the inequality

K = 2
α

ω − γ
η̄

1

ζ(ω−γ−α)
≤
( α

n+ γ

)
c1 × c,

where the constants c1, c are the same as in (4.15). We finally obtain the follow-
ing inequality for the concentration condition with an appropriate control of the
constant K: ∫

Rn

|x− x(s0)|ω ψ(s0, x) dx ≤ (
(ζr)α +Ks0

)(ω−γ)/α
.

This concludes the proof for the concentration condition in the case 1 < α < 2.

2) Small time height condition. We treat now the height condition (4.10),
and for this we will give a slightly different proof of the maximum principle of
A. Córdoba and D. Córdoba. Indeed, the following proof only relies on the
concentration condition. Assume that the molecules we are working with are
smooth enough and in particular continuous. Following an idea of [8] (section 4,
p. 522–523) (see also [12], p. 346), we will denote for s ∈ [0, s0] by xs the point
of Rn such that ψ(s, xs) = ‖ψ(s, ·)‖L∞ . Thus we can write, by the properties
(1.4)–(1.5) of the function π,

d

ds
‖ψ(s, ·)‖L∞ ≤ −

∫
Rn

[ψ(s, xs)− ψ(s, xs − y)]π(y) dy

≤ −c1
∫
{|xs−y|<1}

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy ≤ 0.(4.18)

To establish the control of the theorem we aim at proving that

(4.19)
d

ds
‖ψ(s, ·)‖L∞ ≤ −K

(n+ γ

α

)
((ζr)α +Ks)−(ω−γ)/(n+ω) ‖ψ(s, ·)‖1+α/(n+ω)

L∞ .

Indeed, integrating (4.19) yields∫ s0

0

d

ds

(
‖ψ(s, ·)‖−α/(n+ω)

L∞

)
ds ≥

∫ s0

0

d

ds

(
[(ζr)α +Ks](n+γ)/(n+ω)

)
ds

‖ψ(s0, ·)‖−α/(n+ω)
L∞ ≥ [(ζr)α +Ks0]

(n+γ)/(n+ω)

+
(‖ψ(0, ·)‖−α/(n+ω)

L∞ − [(ζr)α](n+γ)/(n+ω)
)

≥ [(ζr)α +Ks0]
(n+γ)/(n+ω).
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Recalling the initial height condition ‖ψ(0, ·)‖L∞ ≤ (ζr)−(n+γ) for the last inequal-
ity, we therefore derive

‖ψ(s0, ·)‖L∞ ≤ ((ζr)α +Ks0)
−(n+γ)/α,

which is the required control.

To establish the differential inequality (4.19) for s ∈ [0, s0], let us first consider a
corona centered in x̄s defined by C(R, ρR) = {y ∈ Rn : R ≤ |xs − y| ≤ ρR}, where
the parameter R > 0 to be specified later on is such that 0 < ρR < 1 with ρ > 2.
Then, ∫

{|xs−y|<1}

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy ≥

∫
C(R,ρR)

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy.

Define now the sets B1 and B2 by

B1 = {y ∈ C(R, ρR) : ψ(s, xs)− ψ(s, y) ≥ 1
2ψ(s, xs)},

B2 = {y ∈ C(R, ρR) : ψ(s, xs)− ψ(s, y) < 1
2ψ(s, xs)}

such that C(R, ρR) = B1 ∪B2.
We obtain then the inequalities∫

C(R,ρR)

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy ≥

∫
B1

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy ≥ ψ(s, xs)

2ρn+αRn+α
|B1|

=
ψ(s, xs)

2ρn+αRn+α
(|C(R, ρR)| − |B2|) ≥ ψ(s, xs)

2ρn+αRn+α

(
vn(ρ

n−1)Rn − |B2|
)
,(4.20)

where vn denotes the volume of the unit ball.

To continue, we need to estimate the quantity |B2| in the right-hand side
of (4.20) in terms of ψ(s, xs) and R. We will distinguish two cases and prove
the following estimates:

1) If |xs − x(s)| > 2ρR or |xs − x(s)| < R/2, then

(4.21) C1

(
(ζr)α +Ks

)(ω−γ)/α
ψ(s, xs)

−1R−ω ≥ |B2|.

2) If R/2 ≤ |xs − x(s)| ≤ 2ρR, then

(4.22)
(
C2

(
(ζr)α +Ks

)(ω−γ)/α
Rn−ω ψ(s, xs)

−1
)1/2 ≥ |B2|.

For these two controls, our starting point is the concentration condition; indeed
we can write(

(ζr)α +Ks
)(ω−γ)/α ≥

∫
Rn

|ψ(s, y)| |y − x(s)|ω dy ≥
∫
B2

|ψ(s, y)| |y − x(s)|ω dy

≥ ψ(s, xs)

2

∫
B2

|y − x(s)|ω dy.(4.23)
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We just need to estimate the last integral following the cases given above. Indeed,
if |xs − x(s)| > 2ρR then we have

min
y∈B2⊂C(R,ρR)

|y − x(s)|ω ≥ (ρR)ω = ρω Rω,

while if |xs − x(s)| < R/2, one has

min
y∈B2⊂C(R,ρR)

|y − x(s)|ω ≥ Rω

2ω
.

Applying these results to (4.23) we obtain(
(ζr)α +Ks

)(ω−γ)/α ≥ ψ(s, xs)

2
ρω Rω |B2|

and (
(ζr)α +Ks

)(ω−γ)/α ≥ ψ(s, xs)

2

Rω

2ω
|B2|,

and since ρ > 2 we have the first desired estimate:

C1

(
(ζr)α +Ks

)(ω−γ)/α

ψ(s, xs)Rω
≥ |B2|, with C1 = 21+ω.

For the second case, since R/2 ≤ |xs − x(s)| ≤ 2ρR, we can write using the
Cauchy–Schwarz inequality,

(4.24)

∫
B2

|y − x(s)|ω dy ≥ |B2|2
(∫

B2

|y − x(s)|−ω dy
)−1

.

Now, observe that in this case we have B2 ⊂ B(x(s), 5ρR) and then∫
B2

|y − x(s)|−ω dy ≤
∫
B(x(s),5ρR)

|y − x(s)|−ω dy ≤ vn(5ρR)
n−ω.

Getting back to (4.24) we have∫
B2

|y − x(s)|ω dy ≥ |B2|2 v−1
n (5ρR)−n+ω,

and we use this estimate in (4.23) to obtain

C2

(
(ζr)α +Ks

)(ω−γ)/(2α)
Rn/2−ω/2

ψ(s, xs)1/2
≥ |B2|, where C2 = (2 · 5n−ωvn ρ

n−ω)1/2.

Now, with estimates (4.21) and (4.22) at our disposal we can write:

• if |xs − x(s)| > 2ρR or |xs − x(s)| < R/2, then∫
C(R,ρR)

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy

≥ ψ(s, xs)

2 ρn+αRn+α

(
vn(ρ

n − 1)Rn − C1

(
(ζr)α +Ks

)(ω−γ)/α

ψ(s, xs)
R−ω

)
;
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• if R/2 ≤ |xs − x(s)| ≤ 2ρR,∫
C(R,ρR)

ψ(s, xs)− ψ(s, y)

|xs − y|n+α
dy

≥ ψ(s, xs)

2 ρn+αRn+α

(
vn(ρ

n − 1)Rn − C2

(
(ζr)α +Ks

)(ω−γ)/(2α)
Rn/2−ω/2

ψ(s, xs)1/2

)
.

If we set

R =
(
(ζr)α +Ks

)(ω−γ)/(α(n+ω))
ψ(s, xs)

−1/(n+ω),

since we are working with small molecules we have 0 < R � 1, and we obtain for
all the previous cases the following estimate:∫

C(R,ρR)

ψ(s, xs)− ψ(s, xs)

|xs − y|n+α
dy

≥
(vn (ρn − 1)−√

2vn (5ρ)
(n−ω)/2

2 ρn+α

) (
(ζr)α +Ks

)−(ω−γ)/(n+ω)
ψ(s, xs)

1+α/(n+ω).

At this point we set ρ = 5 and once the dimension n and the parameters α, ω are
fixed, we obtain that the quantity

(4.25) c =
vn (5n − 1)−√

2vn 5
n−ω

2× 5n+α
,

is a small positive constant. Thus, and for all possible cases considered before, we
have the following estimate for (4.18):

d

ds
‖ψ(s, ·)‖L∞ ≤ −c1 × c× (

(ζr)α +Ks
)−(ω−γ)/(n+ω) ‖ψ(s, ·)‖1+α/(n+ω)

L∞ .

We recall now that the constant K was given in (4.15) and therefore we can write

d

ds
‖ψ(s, ·)‖L∞ ≤ −K

(n+ γ

α

)(
(ζr)α +Ks

)−(ω−γ)/(n+ω) ‖ψ(s, ·)‖1+α/(n+ω)
L∞ ,

which is exactly formula (4.19).

The proof of the height condition is finished for regular molecules. In order to
obtain the global result, remark that, for viscosity solutions studied in Section 2.1,
we have Δψ(s0, x) ≤ 0 at the points x where ψ(s0, ·) reaches its maximum value
so we only need to study the term Lψ(s0, x) as it was done here. We refer to [8]
for more details.

Remark 4.9. The constants obtained here do not depend on the molecule’s size
but only on the dimension n and on parameters ω, γ and α.

Remark 4.10. The above computations amend those performed in [3].
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3) Small time L1 estimate. This last condition is an easy consequence of the
previous computations. Indeed, we write∫

Rn

|ψ(s0, x)| dx =

∫
{|x−x(s0)|<D}

|ψ(s0, x)| dx +

∫
{|x−x(s0)|≥D}

|ψ(s0, x)| dx

≤ vnD
n ‖ψ(s0, ·)‖L∞ +D−ω

∫
R

|ψ(s0, x)| |x− x(s0)|ω dx.

Now using the concentration condition and the height condition one has∫
Rn

|ψ(s0, x)| dx ≤ vn
Dn

((ζr)α +Ks0)
(n+γ)/α

+D−ω ((ζr)α +Ks0)
(ω−γ)/α,

where vn denotes the volume of the unit ball. An optimization over the real
parameter D yields

(4.26) ‖ψ(s0, ·)‖L1 ≤ 2 v
ω/(n+ω)
n(

(ζr)α +Ks0
)γ/α .

Theorem 10 is now completely proven. �

4.2. Molecule’s evolution: iteration

In the previous section we have quantified the deformation of molecules after a
very small time s0. The next theorem shows us how to obtain similar profiles in
the inputs and the outputs in order to perform an iteration in time.

Theorem 11. For i ∈ N∗ and a given time si−1 such that 0 < si−1 < T , let
ψ(s, x) with s ∈ [si−1, T ] be a solution of the problem⎧⎨⎩
∂sψ(s, x) = −∇ · (v ψ)(s, x) − Lψ(s, x),
div(v) = 0 and v ∈ L∞(

[0, T ],M q,a(Rn)
)

with sup
s∈[si−1,T ]

‖v(s, ·)‖Mq,a ≤ μ.

Here, the initial data ψ(si−1, x) satisfies the three following conditions:∫
Rn

|ψ(si−1, x)||x − x(si−1)|ω dx ≤ ((ζr)α +Ksi−1)
(ω−γ)/α,

‖ψ(si−1, ·)‖L∞ ≤ 1

((ζr)α +Ksi−1)
(n+γ)/α

,

‖ψ(si−1, ·)‖L1 ≤ 2v
ω/(n+ω)
n(

(ζr)α +Ksi−1

)γ/α ,
where γ, ω, α and K are as in Theorem 10, si−1 is such that ((ζr)α+Ksi−1) < T0/2
and x(si−1) stands for the center of the molecule at time si−1. Then for all time



Fractional operators with singular drift 1483

0 < si ≤ εrα, where ε is small, we have the following estimates:∫
Rn

|ψ(si, x)||x − x(si)|ω dx ≤ ((ζr)α +K[si−1 + si])
(ω−γ)/α,(4.27)

‖ψ(si, ·)‖L∞ ≤ 1

((ζr)α +K[si−1 + si])
(n+γ)/α

,(4.28)

‖ψ(si, ·)‖L1 ≤ 2v
ω/(n+ω)
n(

(ζr)α +K[si−1 + si]
)γ/α .(4.29)

Remark 4.11. 1) Since si is small and ((ζr)α +Ksi−1) < T0/2, we can without
loss of generality assume that ((ζr)α + K[si−1 + si]) < T0/2: otherwise, by the
maximum principle there is nothing to prove.

2) The new molecule’s center x(si) used in formula (4.27) is fixed by the evo-
lution of the following differential system:⎧⎨⎩ x′(s) = vB(x(s),ρi) =

1
|B(x(s),ρi)|

∫
B(x(s),ρi)

v(s, y) dy, s ∈ [si−1, si],

x(si−1) = xsi−1 ,

where xsi−1 denotes the center of the molecule at time si−1, and ρi = ζβ1ri, with

(4.30) ri =
(
rα +

K

ζα
si−1

)1/α

,

and ζβ1 is as in Definition 4.3. Note that by 1) above we have 0 < ri < 1/ζ.

3) We have in particular that the hypotheses on the initial data can be rewritten
as follows:∫

Rn

|ψ(si−1, x)| |x − x(si−1)|ω dx ≤ (ζri)
ω−γ , ‖ψ(si−1, ·)‖L∞ ≤ (ζri)

−(n+γ),

‖ψ(si−1, ·)‖L1 ≤ 2vω/(n+ω)
n (ζri)

−γ , and ‖ψ(si−1, ·)‖Lp ≤ C (ζri)
−n+n/p−γ ,

for 1 < p < +∞.

Proof of Theorem 11. The proof follows the same lines as the one of Theorem 10.
Indeed, the concentration condition (4.27) can be established similarly to (4.9)
replacing r by ri. The height condition (4.28) is again proved similarly to (4.10).
The condition (4.29) is eventually derived exactly as (4.11) from the controls (4.27)
and (4.28). We thus have∫

Rn

|ψ(si, x)||x − x(si)|ω dx ≤ ((ζri)
α +Ksi)

(ω−γ)/α,

‖ψ(si, ·)‖L∞ ≤ 1

((ζri)α +Ksi)
(n+γ)/α

, ‖ψ(si, ·)‖L1 ≤ 2v
ω/(n+ω)
n(

(ζri)α +Ksi
)γ/α .

Finally, recalling that ri is given by (4.30), we obtain the wished estimates. �
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End of the proof of Theorem 9. We see with Theorem 10 that it is possible to con-
trol the L1 behavior of the molecules ψ from 0 to a small time s0. Theorem 11
extends the control from time s0 to time sN . We recall that we have si−si−1 ∼ εrα

for all 0 ≤ i ≤ N (with s−1 = 0), so the bound obtained in (4.29) depends mainly
on the size of the molecule r and the number of iterations N .

We observe now that the smallness of r and of the time increments s0, s1 −
s0, . . . , sN − sN−1 can be compensated by the number of iterations N in the fol-
lowing sense: fix a small 0 < r < 1 and iterate as explained before. Since each
small time increment s0, s1−s0, . . . , sN −sN−1 has order εr

α, we have sN ∼ Nεrα.
Thus, we will stop the iterations as soon as Nεrα ≥ T0.

Of course, the number of iterations N = N(r) will depend on the smallness of
the molecule’s size r, and more specifically it is enough to set N(r) ∼ T0/(εr

α)
in order to obtain this lower bound for N(r). Proceeding this way we will obtain
‖ψ(sN , ·)‖L1 ≤ C T−γ

0 < +∞, for all molecules of size r whatever the initial r > 0.
Note in particular that, once this estimate is available, for bigger times it is enough
to apply the maximum principle.

Finally, and for all r > 0, we obtain after a time T0 a L1 control for initially
small molecules and we finish the proof of the Theorem 9. Observe carefully that
we make the size of the molecule increase with time. For large times, the deformed
molecules cannot be put in duality with a Hölder space anymore (we somehow get
rid of the initially small molecules), and we exploit the L1 control in duality with
the L∞ initial data. �

A. Controls on the drift

Lemma A.1 (Smooth approximation of the velocity field).

a) Let v ∈ M q,a(Rn) with 1 < q < +∞ and 0 ≤ a < +∞. Let vε be defined
by vε = v ∗ ωε where ωε is such that ωε(x) = ε−nω(x/ε), ω ∈ C∞

0 (Rn) is a non-
negative function with supp(ω) ⊂ B(0, 1) and

∫
Rnω(x) dx = 1. Then for all ε > 0

we have the inequality

‖v ∗ ωε‖L∞ ≤ C ε−n/q ‖v‖Mq,a .

b) Consider now v ∈ L∞(
[0, T ],M q,a(Rn)

)
with 1 < q < +∞ and 0 ≤ a < +∞

and define v	,ε = v  ψε where  stands for the time convolution and ψ	,ε(t) =
ε−1ψ(t/ε) with ψ ∈ C∞

0 (R) is a non-negative function such that supp(ψ) ⊂ B(0, 1)
and

∫
R
ψ(t)dt = 1. Then we have

‖v	,ε‖L∞(Mq,a) ≤ ‖v‖L∞(Mq,a).

Proof. For a), if 1 < q < +∞ and 0 ≤ a < +∞, since for a small ε > 0 we have
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supp(ωε) ⊂ B(0, 1), we can write for a fixed point x ∈ Rn:∣∣∣ ∫
Rn

v(y)
1

εn
ω
(x− y

ε

)
dy
∣∣∣ = ∣∣∣ ∫

B(x,1)

v(y)
1

εn
ω
(x− y

ε

)
dy
∣∣∣

≤ 1

εn

( ∫
B(x,1)

|v(y)|q dy
)1/q

εn/p ‖ω‖Lp,

where 1/p + 1/q = 1. Then by the definition of local Morrey–Campanato spaces
we obtain ∣∣∣ ∫

Rn

v(y)
1

εn
ω
(x− y

ε

)
dy
∣∣∣ ≤ C ε−n/q ‖v‖Mq,a .

For b), it is enough to remark that for a spatial ball B(x0, r) ⊂ Rn centered in
x0 ∈ Rn and a given radius r > 0, for all (t, x) ∈ [0, T ]×B(x0, r), we have

|v	,ε(t, x) − (v̄	,ε(t, ·))B(x0,r)| = |[v(·, x) − (
v̄(·, ·))

B(x0,r)
]  ψε(t)|

≤ sup
0<t<T

|v(t, x)− (v̄(t, ·))B(x0,r)|,

and from this estimate we reconstruct the Morrey–Campanato norm in the space
variable to obtain the wished inequality. �

Proof of Lemma 3.1. Let R ≥ 1. For 1 ≤ p ≤ +∞, recalling that (a−n)/q = 1−α,
we have the following inequalities:

• if 0 < δ < α < 1: in this case we have n < a < n + q and M q,a = Ṁ q,a ∩ L∞,
then we can write∥∥(AR(s, ·)−M/2

)
v(s, ·) · ∇ϕ∥∥

Lp ≤ (‖AR(s, ·)‖L∞ +M/2
)‖v(s, ·)‖L∞‖∇ϕ‖Lp .

Now, using the definition of the function ϕ, applying the maximum principle and
the fact that v ∈ L∞(M q,a), we obtain∥∥(AR(s, ·)−M/2

)
v(s, ·) · ∇ϕ∥∥

Lp ≤ CR−1+n/p
(‖A0,R‖L∞ +M/2

)‖v‖L∞(Mq,a).

• if 1 < δ < α < 2: this case is similar to the previous ones. Indeed, we have∥∥(AR(s, ·)−M/2
)
v(s, ·) · ∇ϕ∥∥

Lp ≤ ∥∥(AR(s, ·)−M/2
)∇ϕ∥∥

Lp̄ ‖v(s, ·)‖Lq(B(0,R)),

where 1/p = 1/p̄+ 1/q, which leads us to the condition q ≥ p.
Now we have (recalling R ≥ 1),∥∥(AR(s, ·)−M/2

)
v(s, ·) · ∇ϕ∥∥

Lp

≤ ∥∥(AR(s, ·)−M/2
)∥∥

L∞ ‖∇ϕ‖Lp̄Ra/q‖v(s, ·)‖Mq,a

≤ CR−1+n/p+(a−n)/q
(‖A0,R‖L∞ +M/2

)‖v‖L∞(Mq,a).

Lemma 3.1 is completely proven. �
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B. Controls on the operator and some associated commuta-
tors

We first introduce a measure decomposition that will be frequently used in this
appendix. The key idea consists in rewriting the density π of the initial Lévy
measure satisfying condition [ND] as

∀y ∈ Rn, π(y) = (π̃ + π)(y),(B.1)

where the function π̃ is defined over Rn by

(B.2)

⎧⎨⎩π̃(y) = π(y) if |y| ≤ 1, π̃(y) = π(y/|y|) 1
|y|n+α if |y| ≥ 1, so that

c1|y|−(n+α) ≤ π̃(y) ≤ c2 |y|−(n+α) if |y| > 1.

Remark that for all y ∈ Rn we have c1|y|−(n+α) ≤ π̃(y) ≤ c2|y|−(n+α) and

thus the Lévy-type operator L̃ associated to the function π̃ is equivalent to the
fractional Laplacian (−Δ)α/2. On the other hand, the support of π is included in
B(0, 1)C := {y ∈ Rn : |y| ≥ 1}, and

|π(y)| ≤ C{|y|−(n+δ) + |y|−(n+α)}.(B.3)

It is worth noting that the equivalence of the operator L̃ with the action of the
fractional Laplacian (−Δ)α/2 is only valid in an Lp-sense with 1 < p < +∞
(see e.g. [12]). However, in some very specific cases, it is possible to obtain a
similar behavior in an L1-sense. This is for instance the case when considering the
application of L̃ to the heat kernel as in the statement of Lemma 2.1.

Proof of Lemma 2.1. We recall here that we assume the parameter t > 0 to be
small since Lemma 2.1 is needed to investigate the local existence of solutions.
We give for notational simplicity the proof for β = 0, the case β ∈ (0, 2] can be
investigated rather similarly. If 0 < δ < α < 1, using (1.4) and (1.5) we obtain for
the heat kernel ht the inequalities

‖Lht‖L1 ≤ C
{∫

Rn

∫
Rn

|ht(x)−ht(x−y)|
|y|n+α

dy dx+

∫
Rn

∫
Rn

|ht(x)−ht(x−y)|
|y|n+δ

dy dx
}

= C
{‖ht‖Ḃα,1

1
+ ‖ht‖Ḃδ,1

1

} ≤ C
(
t−α/2 + t−δ/2

)
.

If 1 < δ < α < 2, we consider the previous decomposition (B.1) and the con-
trols (B.2) and (B.3) to obtain:

‖Lht‖L1 ≤
∫
Rn

∣∣∣v.p. ∫
Rn

[
ht(x)−ht(x − y)

]
π̃(y) dy

∣∣∣ dx
+ C

{∫
Rn

∫
{|y|≥1}

|ht(x)−ht(x−y)|
|y|n+δ

dx dy +

∫
Rn

∫
{|y|≥1}

|ht(x)−ht(x−y)|
|y|n+α

dy dx
}
.
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Since ht(x) =
1

(4πt)n/2 e
−|x|2/(4t), by homogeneity we have

‖Lht‖L1 ≤ C
{
t−α/2 + t−δ/2

∫
Rn

∫
{|y|≥t−1/2}

t−n/2
∣∣h1(x/t1/2)−h1(x/t1/2−y)∣∣

|y|n+δ
dy dx

+ t−α/2

∫
Rn

∫
{|y|≥t−1/2}

t−n/2
∣∣h1(x/t1/2)− h1

(
x/t1/2 − y

)∣∣
|y|n+α

dy dx
}
.

The first term in the right hand side can be derived observing that

T1 :=

∫
Rn

∣∣∣v.p. ∫
Rn

[
ht(x)− ht(x− y)

]
π̃(y) dy

∣∣∣ dx
=

∫
Rn

∣∣∣ ∫
Rn

{
ht(x + y)− ht(x) −∇ht(x) · y1|y|≤ε

}
π̃(y) dy

∣∣∣ dx
for an arbitrary ε > 0 using the symmetry of the measure π̃. Hence,

T1 ≤ C

t(n+α)/2

∫
Rn

{∫
Rn

∣∣∣h1( x

t1/2
+ y

)
− h1

( x

t1/2

)
−∇h1

( x

t1/2

)
· y 1|y|≤ε/t1/2

∣∣∣ dy

|y|n+α

}
dx.

Choosing now, ε = t1/2 we get:

T1 ≤ C t−α/2
{∫

Rn

( ∫
|y|≥1

{h1
(
x+ y

)
+ h1(x)} dy

|y|n+α

)
dx

+

∫
Rn

(∫
|y|≤1

exp
(− C−1(|x|2/8− |y|2/4))|y|2 dy

|y|n+α

)
dx

}
≤ C t−α/2,

using the usual convexity inequality |x + y|2 ≥ 1
2 |x|2 − |y|2 for the last but one

inequality and the Fubini theorem for the first term to get the stated upper bound
up to a modification of C. Now, since t is a small time, as we are working in a
local in time framework, we have t−1/2 > 1 and then

‖Lht‖L1 ≤ C t−α/2 + C t−δ/2‖ht‖L1

∫
{|y|≥1}

1

|y|n+δ
dy

+ C t−α/2‖ht‖L1

∫
{|y|≥1}

1

|y|n+α
dy ≤ C

(
t−α/2 + t−δ/2

)
.

�

Proof of Lemma 3.3. We recall here that for x ∈ Rn, ϕ(x) = φ(x/R), R ≥ 1,
where φ is a non-negative smooth function such that φ(z) = 1 if |z| ≤ 1/2 and
φ(z) = 0 if |z| ≥ 1, z ∈ Rn.

If 0 < δ < α < 1, we have

[L, ϕ]AR(s, x) = v.p.

∫
Rn

(
ϕ(x) − ϕ(x− y)

)
AR(s, x− y)π(y) dy,

and we proceed as follows.
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We begin with the case p = +∞ and write

|[L, ϕ]AR(s, x)|

≤ C
{∫

Rn

|ϕ(x)− ϕ(y)|
|x− y|n+α

|AR(s, y)| dy +
∫
Rn

|ϕ(x) − ϕ(y)|
|x− y|n+δ

|AR(s, y)| dy
}
.(B.4)

Again, it is enough to study one of these two integrals since the other can be
treated in a totally similar way. We write:∫

Rn

|ϕ(x) − ϕ(y)|
|x− y|n+α

|AR(s, y)| dy

=

∫
{|x−y|>R}

|ϕ(x) − ϕ(y)|
|x− y|n+α

|AR(s, y)| dy +
∫
{|x−y|≤R}

|ϕ(x) − ϕ(y)|
|x− y|n+α

|AR(s, y)| dy

≤ 2‖ϕ‖L∞

∫
{|x−y|>R}

|AR(s, y)|
|x− y|n+α

dy +

∫
{|x−y|≤R}

‖∇ϕ‖L∞ |x− y|
|x− y|n+α

|AR(s, y)| dy

≤ 2‖ϕ‖L∞‖AR(s, ·)‖L∞

∫
{|x−y|>R}

dy

|x−y|n+α
+ CR−1

∫
{|x−y|≤R}

|AR(s, y)|
|x−y|n+α−1

dy

≤ 2C ‖ϕ‖L∞‖AR(s, ·)‖L∞R−α + C ‖AR(s, ·)‖L∞ R−α ≤ C R−α ‖A0,R‖L∞ .

Then, with the δ-part in inequality (B.4) we have

‖[L, ϕ]AR(s, ·)‖L∞ ≤ C (R−α +R−δ) ‖A0,R‖L∞ .

The case p = 1 is very similar. Using inequality (B.4) we have∫
Rn

|[L, ϕ]AR(s, x)| dx

≤ C
{∫

Rn

∫
Rn

|ϕ(x)−ϕ(y)|
|x−y|n+α

|AR(s, y)| dy dx+

∫
Rn

∫
Rn

|ϕ(x)−ϕ(y)|
|x−y|n+δ

|AR(s, y)| dy dx
}
.

We only estimate one of the previous integrals:∫
Rn

∫
Rn

|ϕ(x)− ϕ(y)|
|x− y|n+α

|AR(s, y)| dy dx

≤ C
(
‖ϕ‖L∞

∫
Rn

∫
{|x−y|>R}

|AR(s, y)|
|x−y|n+α

dy dx

+R−1

∫
Rn

∫
{|x−y|≤R}

|AR(s, y)|
|x−y|n+α−1

dy dx
)

≤ C ‖ϕ‖L∞ ‖AR(s, ·)‖L1 R−α + C ‖AR(s, ·)‖L1 R−α ≤ C R−α ‖A0,R‖L1 .

With the other integral, we obtain

‖[L, ϕ]AR(s, ·)‖L1 ≤ C (R−α +R−δ) ‖A0,R‖L1 .

Finally, the case 1 < p < +∞ is obtained by interpolation. See [11] or [23] for
more details about interpolation.
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If 1 < δ < α < 2, recalling [L, ϕ]AR = L(ϕAR)−ϕLAR = [L̃, ϕ]AR+[L, ϕ]AR,
where L̃, L are the integro-differential operators with respective Lévy measures
π̃, π introduced in (B.1), (B.2). We now use Kato-Ponce like inequalities available
in Li [17].

From equation (1.10) in Corollary (1.4) of [17] with s1 = 0, s2 = α,

(B.5) ‖[L̃, ϕ]AR(s, ·)‖Lp ≤ C
(‖(−Δ)α/2ϕ‖BMO‖AR(s, ·)‖Lp+‖∇ϕL̃∇AR(s, ·)‖Lp

)
,

where ̂̃L∇(ξ) = (−i)∇ξ
̂̃L(ξ). On the one hand, since ϕ(·) = φ(·/R) is smooth, we

have:

‖(−Δ)α/2ϕ‖BMO ≤ 2 ‖(−Δ)α/2ϕ‖L∞ ≤ C R−α.

On the other hand, denoting by π̃∇ the centered Lévy measure associated with L̃∇,
we get

‖∇ϕL̃∇AR‖pLp

≤ CR−p
[ ∫

Rn

(∫
|y|≤1

(
A(s, x− y)− 2A(s, x) +A(s, x + y)

)
π̃∇(y)dy

)p

+
(∫

|y|>1

(
A(s, x − y)−A(s, x)

)
π̃∇(y)dy

)p

dx
]

≤ CR−p
[ ∫

Rn

(∫
|y|≤1

|AR(s, x+ y)− 2AR(s, x) +AR(s, x− y)||y|
|y|n+α

dy
)p

+
(∫

|y|≥1

|AR(s, x− y)|p + |AR(s, x)|p
|y|n+α−1

dy
(∫

|y|>1

dy

|y|n+α−1

)p/p′)
dx

]
≤ CR−p

[ ∫
Rn

∫
|y|≤1

|AR(s, x+ y)− 2AR(s, x) +AR(s, x− y)|p
|y|n+α

×
(∫

|y|≤1

|y|p′

|y|n+α
dy
)p/p′

dxdy + ‖AR(s, ·)‖pLp

]
≤ CR−p

[‖AR(s, ·)‖p
Ḃ

α/p,p
p

+ ‖A0,R‖pLp

]
,

exploiting that 1 < p < α/(α− 1) ⇐⇒ p′ = p/(p− 1) > α, where 1/p+1/p′ = 1,
and using as well the maximum principle for the last inequality. From (B.5) and
the above computations, we derive

‖[L̃, ϕ]AR(s, ·)‖pLp ≤ C
(
R−pα‖A0,R‖pLp +R−p

[‖AR(s, ·)‖p
Ḃ

α/p,p
p

+ ‖A0,R‖pLp

])
≤ C R−p

(
‖A0,R‖pLp + ‖AR(s, ·)‖p

Ḃ
α/p,p
p

)
,

recalling R ≥ 1 for the last inequality. From the proof of Theorem 5, see in
particular equation (2.11), and identity (2.8) we then derive

(B.6)

∫ t

0

‖[L̃, ϕ]AR(s, ·)‖pLpds ≤ C R−p ‖A0,R‖pLp .
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Note that the commutator [L, ϕ]AR associated with the non-singular measure π
can be handled as the term involving the big jumps above. Namely,

‖[L, ϕ]AR(s, ·)‖pLp

≤
∫
Rn

( ∫
|y|≥1

(
(ϕ(x) − ϕ(x− y))AR(s, x− y)

)p
|y|n+δ

dy
)( ∫

|y|≥1

dy

|y|n+δ

)p/p′

dx

≤ C R−p ‖AR(s, ·)‖pLp ≤ C R−p ‖A0,R‖pLp ,

which together with (B.6) gives the result. �

C. Controls related to concentration

We will need the following results concerning Morrey–Campanato spaces:

Lemma C.1. Let 1 ≤ q < +∞, 0 < a < +∞, x0 ∈ Rn, 0 < ρ < 1 and k ∈ N.

a) We have the inequality ‖f − fB(x0,ρ)‖Lq(B(x0,ρ)) ≤ Cρa/q ‖f‖Mq,a ,

b) If 0 < a < n we have

(C.1) |fB(x0,2kρ) − fB(x0,ρ)| ≤ C ρ(a−n)/q ‖f‖Mq,a ,

c) If n < a < n+ q we have

(C.2) |fB(x0,2kρ) − fB(x0,ρ)| ≤ C (2kρ)(a−n)/q ‖f‖Mq,a .

See [27] and [1] for a proof of these facts.

We will prove here Lemma 4.7 in a slightly more general framework.

Proposition C.2. Consider a time sN ∈ [0, T ] and let 0 < ω < 1 and β0 < 1 < β1
be parameters. Let ζ � 1 and 0 < r � 1 be such that ρ = ζβ1r < 1. Let
v(sN , ·) ∈ M q,a with 1 < q < +∞ and 0 < a < n + q, ψ(sN , ·) ∈ Lr, r ∈ [1,+∞]
and let x(sN ) be a point in Rn. If we define IsN by

IsN =

∫
Rn

|x− x(sN )|ω−1 |v(sN , x)− vBρ | |ψ(sN , x)| dx,

where vBρ was given in (4.12) (with s = sN). Then, we have the following
inequalities:

1) If 0 < δ < α < 1 and if n/(α− γ) < q,

IsN ≤ C ‖v(sN , ·)‖Mq,a

[
(ζβ1r)(a−n)/q

{
(ζβ0r)ω−1+n/p ‖ψ(sN , ·)‖Lp′

+ (ζβ0(1+ε)r)ω−1+n/p̃ ‖ψ(sN , ·)‖Lp̃′
}
+ (ζβ1r)ω−1+a/q ‖ψ(sN , ·)‖Lq′

]
,

where 1 < p < n/(1−ω), with 1/p+1/p′ = 1. Moreover we set p̃ > n/(1− ω),
with 1/p̃+ 1/p̃′ = 1, and

ε =
ln
[
1− ζ(β1−β0)(p̃(ω−1)+n)

]
(p̃(ω − 1) + n)β0 ln(ζ)

> 0.
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2) If 1 < α < 2 and if n/(1− γ) < q we have

IsN ≤ C ‖v(sN , ·)‖Mq,a (ζβ1r)a/q
(
(ζβ0r)

ω−1+n/q′ ‖ψ(sN , ·)‖L∞

+ (ζβ0(1+ε)r)ω−1+n/p̃) ‖ψ(sN , ·)‖Lz + (ζβ1r)ω−1 ‖ψ(sN , ·)‖Lq′
)
,

where 1/q + 1/q′ = 1, 1/p̃+ 1/q + 1/z = 1, p̃ > n/(1− ω), and ε as above.

Proof. For ρ = ζβ1r ∈ (0, 1), we decompose the space Rn as the union of a ball with
dyadic coronas centered around x(sN ). More precisely we set Rn = Bρ ∪

⋃
k≥1 Ek,

where

Bρ = {x ∈ Rn : |x− x(sN )| ≤ ρ} and

Ek = {x ∈ Rn : 2k−1ρ < |x− x(sN )| ≤ 2kρ},(C.3)

and we write

IsN =

∫
Bρ

|x− x(sN )|ω−1 |v(sN , x)− vBρ | |ψ(sN , x)| dx

+
∑
k≥1

∫
Ek

|x− x(sN )|ω−1 |v(sN , x)− vBρ | |ψ(sN , x)| dx.

We will study each of these terms separately.
(i) Estimations over the ball Bρ.

We define ρ0 = ζβ0r, since β0 < β1 and ζ > 1 we have ρ0 < ρ, and then we can
consider Bρ = Bρ0 ∪ C(ρ0, ρ) where C(ρ0, ρ) = {x ∈ Rn : ρ0 < |x− x(sN )| ≤ ρ} so
we need to study IBρ0

+ IC(ρ0,ρ) where

IBρ0
=

∫
Bρ0

|x− x(sN )|ω−1 |v(sN , x)− vBρ | |ψ(sN , x)| dx,

and

IC(ρ0,ρ) =

∫
C(ρ0,ρ)

|x− x(sN )|ω−1 |v(sN , x)− vBρ | |ψ(sN , x)| dx.

We now consider separately the cases 0 < α < 1 and 1 < α < 2.

• Consider first 0 < α < 1. Recall that in that case v(sN , ·) ∈ C1−α(Rn), with
1 − α = (a− n)/q. Hence, for all x ∈ Bρ we have the uniform control |v(sN , x)−
vBρ | ≤ Cρ(a−n)/q‖v(sn, ·)‖Mq,a . Thus we can write

IBρ0
+ IC(ρ0,ρ) ≤ C ρ(a−n)/q ‖v(sn, ·)‖Mq,a

( ∫
Bρ0

|x− x(sN )|ω−1 ψ(sN , x) dx

+

∫
C(ρ0,ρ)

|x− x(sN )|ω−1 |ψ(sN , x)| dx
)
.

By the Hölder inequality we obtain

IBρ0
+ IC(ρ0,ρ) ≤ C ρ(a−n)/q ‖v(sn, ·) ‖Mq,a

{
ρ
n/p+ω−1
0 ‖ψ(sN , ·)‖Lp′

+
(
ρ
p̃(ω−1)+n
0 − ρp̃(ω−1)+n

)1/p̃ ‖ψ(sN , ·)‖Lp̃′
}
,
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where 1 < p < n/(1−ω) and 1/p+1/p′ = 1, and p̃ > n/(1−ω), with 1/p̃+ 1/p̃′ = 1.
Now, if we define ε as

ε =
ln
[
1− ζ(β1−β0)(p̃(ω−1)+n)

]
(p̃(ω − 1) + n)β0 ln(ζ)

,

which is a positive quantity since p̃(ω− 1)+n < 0 and recalling that ρ = ζβ1r and
ρ0 = ζβ0r, we obtain(

ρ
p̃(ω−1)+n
0 − ρp̃(ω−1)+n

)1/p̃
= (ζβ0(1+ε)r)ω−1+n/p̃,

and we can write

IBρ0
+ IC(ρ0,ρ) ≤ C ρ(a−n)/q ‖v(sn, ·)‖Mq,a

{
(ζβ0r)ω−1+n/p ‖ψ(sN , ·)‖Lp′

+(ζβ0(1+ε)r)ω−1+n/p̃ ‖ψ(sN , ·)‖Lp̃′
}
,

(C.4)

which is the first part of the control of IsN in the case when 0 < α < 1.

• We consider now 1 < α < 2. In this case we proceed in a different manner
to study the sum IBρ0

+ IC(ρ0,ρ): indeed, by the Hölder inequality we have, with
1/p̃+ 1/q + 1/z = 1, p̃ > n/(1− ω) and 1/q + 1/q′ = 1,

IBρ0
+ IC(ρ0,ρ)

≤ ‖ψ(sN , ·)‖L∞ × ‖|x− x(sN )|ω−1‖Lq′(Bρ0 )
× ‖v(sN , x)− vBρ‖Lq(Bρ0)

+
(∫

C(ρ0,ρ)

|v(sN , x)−vBρ |q dx
)1/q(∫

C(ρ0,ρ)

|x−x(sN )|(ω−1)p̃ dx
)1/p̃

‖ψ(sN , ·)‖Lz .

Now, since ρ0 < ρ and since from Lemma C.1, a) we have

‖v(sN , ·)− vBρ‖Lq(Bρ) ≤ C ‖v(sN , ·)‖Mq,a ρa/q,

we obtain

IBρ0
+ IC(ρ0,ρ) ≤ C ‖ψ(sN , ·)‖L∞ ρ

ω−1+n/q′
0 ‖v(sN , ·)‖Mq,a ρa/q

+ ‖v(sN , ·)‖Mq,a ρa/q
(
ρ0

p̃(ω−1)+n − ρp̃(ω−1)+n
)1/p̃ ‖ψ(sN , ·)‖Lz .

Proceeding just as in the case 0 < α < 1, we finally write

IBρ0
+ IC(ρ0,ρ) ≤ C ‖v(sN , ·)‖Mq,a (ζβ1r)a/q

(
(ζβ0r)ω−1+n/q′ ‖ψ(sN , ·)‖L∞

+(ζβ0(1+ε)r)ω−1−n/p̃ ‖ψ(sN , ·)‖Lz

)
.

(C.5)

(ii) Estimations for the dyadic corona Ek.

Let us denote by IEk
the integral

IEk
=

∫
Ek

|x− x(sN )|ω−1 |v(sN , x)− vBρ | |ψ(sN , x)| dx.
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Since over Ek we have4 |x− x(sN )|ω−1 ≤ C(2kρ)ω−1, we write

IEk
≤ C (2kρ)ω−1

( ∫
Ek

|v(sN , x)− vB
2kρ

||ψ(sN , x)| dx

+

∫
Ek

|vBρ − vB
2kρ

||ψ(sN , x)| dx
)
,

where we have denoted B2kρ = B(x(sN ), 2kρ). Then,

IEk
≤ C (2kρ)ω−1

(∫
B

2kρ

|v(sN , x)− vB
2kρ

| |ψ(sN , x)| dx

+

∫
B

2kρ

|vBρ − vB
2kρ

| |ψ(sN , x)| dx
)

≤ C (2kρ)ω−1
(
‖v(sN , ·)− vB

2kρ
‖Lq(B

2kρ
) ‖ψ(sN , ·)‖Lq′

+

∫
B

2kρ

|vBρ − vB
2kρ

| |ψ(sN , x)| dx
)
,

where we used the Hölder inequality with 1/q + 1/q′ = 1.

Now, since v(sN , ·) ∈M q,a(Rn), using Lemma C.1 we have

• if 0 < δ < α < 1 and then (a− n)/q = 1− α > 0, so n < a < n+ q,

IEk
≤ C (2kρ)ω−1

(
(2kρ)a/q ‖v(sN , ·)‖Mq,a ‖ψ(sN , ·)‖Lq′

+ (2kρ)(a−n)/q+n/q ‖v(sN , ·)‖Mq,a ‖ψ(sN , ·)‖Lq′
)
.

• if 1 < δ < α < 2 and then (a− n)/q = 1− α < 0, so 0 < a < n,

IEk
≤ C (2kρ)ω−1

(
(2kρ)a/q ‖v(sN , ·)‖Mq,a ‖ψ(sN , ·)‖Lq′

+ ρ(a−n)/q (2kρ)n/q ‖v(sN , ·)‖Mq,a ‖ψ(sN , ·)‖Lq′
)
.

But since by hypothesis we have n/(α−γ) < q in the first case, or n/(1−γ) < q
in the second case, summing over each dyadic corona Ek, we have in both cases
the inequality

(C.6)
∑
k≥1

IEk
≤ C ‖v(sN , ·)‖Mq,a ρω−1−a/q ‖ψ(sN , ·)‖Lq′ .

In order to finish the proof of the Proposition C.2, it remains to gather (C.4)
and (C.6) to obtain the inequality when 0 < α < 1, and to gather the estimate (C.5)
with (C.6) to obtain the control needed when 1 < α < 2. �

We now prove Lemma 4.8 with the following proposition.

4Recall that we always have 0 < γ < ω < 1.
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Proposition C.3. Consider a time sN ∈ [0, T ], a real 0 < ω < 1 and β0 < 1 < β1
be parameters. Let ζ � 1 and 0 < r � 1 be such that ρ = ζβ1r < 1 . Let x(sN ) be
a point in Rn. If ψ(sN , ·) ∈ Lp with 1 ≤ p ≤ +∞ and if L is a Lévy-type operator
satisfying the hypotheses (1.4) and (1.5), for 0 < δ < α < 2 we have the inequality∫

Rn

∣∣L(|x− x(sN )|ω)∣∣ |ψ(sN , x)| dx ≤ C
(
(ζβ0r)ω−α+n ‖ψ(sN , ·)‖L∞

+(ζβ0(1+ε′)r)ω−α+n/p̃‖ψ(sN , ·)‖Lp̃′ + ρω−α+n/q̄ ‖ψ(sN , ·)‖Lq̄′
)
,

where 1/p̃′ + 1/p̃ = 1, with p̃ > n/(α− ω),

ε′ =
ln[1− ζ(β1−β0)(p̃(ω−α)+n)]

(p̃(ω − α) + n)β0 ln(ζ)
> 0,

1/q̄′ + 1/q̄ = 1 and ω − δ + n/q̄ < 0.

Proof. As for Proposition C.2, we consider Rn as the union of a ball of radius ρ
with dyadic coronas centered on the point x(sN ) (cf. (C.3)).∫

Rn

∣∣L(|x− x(sN )|ω)∣∣ |ψ(sN , x)| dx =

∫
Bρ

∣∣L(|x− x(sN )|ω)∣∣ |ψ(sN , x)| dx
+
∑
k≥1

∫
Ek

∣∣L(|x− x(sN )|ω)∣∣ |ψ(sN , x)| dx.
(i) Estimations over the ball Bρ.

We repeat the splitting of point (i) in the proof of Proposition C.2 writing
Bρ = Bρ0 ∪ C(ρ0, ρ). We then define

IBρ0
=

∫
Bρ0

|L(|x−x(sN )|ω)||ψ(sN , x)|dx, IC(ρ0 ,ρ)=

∫
C(ρ0,ρ)

|L(|x−x(sN )|ω)||ψ(sN , x)|dx,

and IBρ = IBρ0
+ IC(ρ0,ρ). Write

IBρ0
≤ ‖ψ(sN , ·)‖L∞(Bρ0)

‖L| · −x(sN )|ω‖L1(Bρ0 )
.

We need now to study the term ‖L| ·−x(sN )|ω‖L1(Bρ0 )
which is equivalent up to a

change of variables to
( ∫

B(0,ρ0)
|L|x|ω | dx). We use decomposition (B.1) to obtain

(∫
B(0,ρ0)

∣∣∣L|x|ω∣∣∣ dx) ≤
(∫

B(0,ρ0)

∣∣∣v.p. ∫
Rn

[|x|ω − |x− y|ω] π̃(y) dy
∣∣∣ dx)

+
(∫

B(0,ρ0)

∣∣∣v.p. ∫
Rn

[|x|ω − |x− y|ω]π(y) dy
∣∣∣ dx).
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We will start assuming 0 < ω < δ < α < 1. Then, using inequality (B.3) and by
homogeneity we have( ∫

B(0,ρ0)

∣∣L|x|ω ∣∣ dx)≤ Cρω−α+n
0

(∫
{|x|≤1}

(∫
Rn

∣∣|x|ω−|x−y|ω∣∣
|y|n+α

dy
)
dx

)
+ c ρω−α+n

0

( ∫
{|x|≤1}

(∫
{|y|≥1/ρ}

∣∣|x|ω − |x− y|ω∣∣
|y|n+α

dy
)
dx

)
+ c ρω−δ+n

0

( ∫
{|x|≤1}

(∫
{|y|≥1/ρ}

∣∣|x|ω − |x− y|ω∣∣
|y|n+δ

dy
)
dx

)
.

Since 0 < ρ < 1 and ||x|ω − |x− y|ω| ≤ c|y|ω, the last two integrals in the right-
hand side can be bounded by a uniform constant so we only need to study the first
integral above that can be decomposed in the following way:( ∫

{|x|≤1}

( ∫
Rn

∣∣|x|ω − |x− y|ω∣∣
|y|n+α

dy
)
dx

)
≤

( ∫
{|x|≤1}

(∫
{|y|≤1}

∣∣|x|ω − |x− y|ω∣∣
|y|n+α

dy
)
dx

)
+
(∫

{|x|≤1}

(∫
{|y|>1}

∣∣|x|ω − |x− y|ω∣∣
|y|n+α

dy
)
dx

)
.

For the first integral in the right hand side, we use the inequality

||x|ω − |x− y|ω| ≤ C |y| |x|ω−1 for |y| ≤ |x|/2
and direct integration, recalling that

||x|ω − |x− y|ω| ≤ c|y|ω when |y| ∈ [|x|/2, 1].
The second integral is also controlled by direct integration. In any case, all these
quantities are bounded by constants and we obtain

‖L|x− x(sN )|ω‖L1(Bρ0 )
≤ C

(
ρω−α+n
0 + ρω−δ+n

0

)
.

The case 1 < δ < α < 2 can be treated in a very similar way performing a Taylor
expansion of second order, reasoning as in the proof of Lemma 3.3 for that case
(see Section 3 in [9] for more details).

For the corona, the same techniques yield for p̃ > n/(α − ω) and with the
notations of Proposition C.2:

IC(ρ0,ρ) ≤ C(ζβ0(1+ε′)r)ω−α+p̃/n‖ψ(sN , ·)‖Lp̃′ .

Finally, recalling that 0 < ρ < 1 and since 0 < δ < α < 2, we obtain ρω−δ+n
0 ≤

ρω−α+n
0 , so we have

(C.7) IBρ ≤ C
(
(ζβ0r)ω−α+n ‖ψ(sN , ·)‖L∞ + (ζβ0(1+ε)r)ω−α+p̃/n‖ψ(sN , ·)‖Lp̃′

)
.
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(ii) Estimations for the dyadic corona Ek.

By the Hölder inequality and by homogeneity we have∫
Ek

|L(|x− x(sN )|ω)| |ψ(sN , x)| dx ≤ ‖ψ(sN , ·)‖Lq̄′ (2k−1ρ)ω+n(1+1/q̄)

× sup
1≤|x|≤2

∣∣∣v.p. ∫
Rn

[|x|ω − |x− y|ω]π(2k−1ρy) dy
∣∣∣︸ ︷︷ ︸

I

.

Using again the decomposition π = π̃ + π given in (B.1) and (B.2), we have

I ≤ sup
1≤|x|≤2

( ∣∣∣ v.p. ∫
Rn

[|x|ω − |x− y|ω] π̃(2k−1ρy) dy
∣∣∣

+
∣∣∣ v.p. ∫

Rn

[|x|ω − |x− y|ω]π(2k−1ρy) dy
∣∣∣ ).(C.8)

We will study each one of these two terms separately.

• For the first one we have:∣∣∣ v.p. ∫
Rn

[|x|ω − |x− y|ω] π̃(2k−1ρy) dy
∣∣∣

≤ sup
1≤|x|≤2

∣∣∣ v.p. ∫
B(0,1/2)

[|x|ω − |x− y|ω] π̃(2k−1ρy) dy
∣∣∣(C.9)

+ sup
1≤|x|≤2

∫
B(0,1/2)c

∣∣[|x|ω − |x− y|ω] π̃(2k−1ρy)
∣∣ dy.

For the first integral above we recall that the function π̃(y) is equivalent, up to some
constant, to the function |y|−n−α, and we remark that the function y �→ |x − y|ω
is smooth for y ∈ B(0, 1/2) and x in the annulus {x ∈ Rn : 1 ≤ |x| ≤ 2}. Thus we
can write, for 0 < α < 1,

sup
1≤|x|≤2

∣∣∣ v.p. ∫
B(0,1/2)

[|x|ω − |x− y|ω]π̃(2k−1ρy) dy
∣∣∣

≤ sup
1≤|x|≤2

∫
B(0,1/2)

||x|ω − |x− y|ω| π̃(2k−1ρy) dy

≤ sup
1≤|x|≤2

∫
B(0,1/2)

|y|(|x|ω−1 + 1)

|2k−1ρ y|n+α
dy

≤ (2k−1ρ)−n−α sup
1≤|x|≤2

(|x|ω−1 + 1)

∫
B(0,1/2)

|y|1−n−α dy ≤ C (2k−1ρ)−n−α.

The case 1 ≤ α < 2 can be treated in a completely similar way by performing
a Taylor expansion of second order (see [9], Section 3 for more details).
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The last integral of (C.9) can be easily controlled since∫
B(0,1/2)c

∣∣[|x|ω − |x− y|ω]π̃(2k−1ρy)
∣∣ dy ≤ C

∫
B(0,1/2)c

||x|ω − |x− y|ω|
|2k−1ρy|n+α

dy

≤ C (2k−1ρ)−n−α

∫
B(0,1/2)c

|y|ω
|y|n+α

dy,

and as we have 0 < ω < α < 2, the previous integral is bounded and we have∫
B(0,1/2)c

∣∣[|x|ω − |x− y|ω] π̃(2k−1ρy)
∣∣ dy ≤ C (2k−1ρ)−n−α.

• The second part of the formula (C.8) can be handled similarly exploiting the
global bound π(y) ≤ C|y|−(n+δ). We have the following inequality for this term:

sup
1≤|x|≤2

∣∣∣ v.p. ∫
Rn

[|x|ω − |x− y|ω] π(2k−1ρy)1{2k−1ρ|y|≥1} dy
∣∣∣

≤ C (2k−1ρ)−n−α + C(2k−1ρ)−n−δ.

Finally, with these two inequalities for the terms of (C.8) one obtains∫
Ek

|L(|x − x(sN )|ω)||ψ(sN , x)| dx

≤ C ‖ψ(sN , ·)‖Lq̄′ (2k−1ρ)ω+n(1+1/q̄)
(
(2k−1ρ)−n−α + (2k−1ρ)−n−δ

)
.

Since 0 < γ < ω < δ < α < 2 and since ω − δ + n/q̄ < 0, summing over k ≥ 1, we
obtain∑

k≥1

∫
Ek

|L(|x − x(sN )|ω)||ψ(sN , x)| dx ≤ ‖ψ(sN , ·)‖Lq̄′
(
ρω−α+n/q̄ + ρω−δ+n/q̄

)
.

Repeating the same argument used before (i.e., the fact that 0 < ρ < 1 and that
ρω−δ+n/q̄ ≤ ρω−α+n/q̄ ), we finally obtain

(C.10)
∑
k≥1

I2,Ek
≤ C ρω−α+n/q̄ ‖ψ(sN , ·)‖Lq̄′ .

In order to finish the proof of the proposition, it is enough to gather inequali-
ties (C.7) and (C.10). �
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[8] Córdoba, A. and Córdoba, D.: A maximum principle applied to quasi-
geostrophic equations. Comm. Math. Phys. 249 (2004), no. 3, 511–528.

[9] Di Nezza, E., Palatucci, G. and Valdinoci, E.: Hitchhiker’s guide to the frac-
tional Sobolev spaces. Bull. Sci. Math. 136 (2012), no. 5, 521–573.

[10] Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46 (1979),
no. 1, 27–42.

[11] Grafakos, L.: Classical and modern Fourier analysis. Pearson Education, Upper
Saddle River, NJ, 2004.

[12] Jacob, N.: Pseudo differential operators and Markov processes I. Fourier analysis
and semigroups. Imperial College Press, London, 2001.

[13] Jacob, N.: Pseudo differential operators and Markov processes II. Generators and
their potential theory. Imperial College Press, London, 2002.

[14] Karch, G.: Nonlinear evolution equations with anomalous diffusion. In Qualitative
properties of solutions to partial differential equations, 25–68. Jindrich Necas Cent.
Math. Model. Lect. Notes 5, Matfyzpress, Prague, 2009.

[15] Kiselev, A. and Nazarov, F.: A variation on a theme of Caffarelli and Vasseur.
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 370 (2009),
55–82.

[16] Lemarié–Rieusset, P.G.: Recent developments in the Navier–Stokes problem.
Chapman & Hall/CRC Research Notes in Mathematics 431, Chapman & Hall/CRC,
Boca Raton, FL, 2002.

[17] Li, D.: On Kato–Ponce and fractional Leibniz. Preprint, ArXiv: 1609.01780v1,
2016.

[18] Marchand, F.: Propagation of Sobolev regularity for the critical dissipative quasi-
geostrophic equation. Asymptot. Anal. 49 (2006), no. 3-4, 275–293.

[19] Peetre, J.: On the theory of Lp,λ spaces. J. Functional Analysis 4 (1969), 71–87.



Fractional operators with singular drift 1499
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