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Connectivity by geodesics

on globally hyperbolic spacetimes

with a lightlike Killing vector field

Rossella Bartolo, Anna Maria Candela and José Luis Flores

Abstract. Taking a globally hyperbolic spacetime endowed with a com-
plete lightlike Killing vector field and a complete Cauchy hypersurface, we
characterize the points which can be connected by geodesics. A straight-
forward consequence is the geodesic connectedness of globally hyperbolic
generalized plane waves with a complete Cauchy hypersurface.

1. Introduction

During the past years there has been a considerable amount of research related
to the problem of geodesic connectedness of Lorentzian manifolds (cf. the classical
books [5] and [27], the updated survey [12], and references therein). This topic has
wide applications in Physics, but for mathematicians its interest is essentially due
to the peculiar difficulty of this natural problem, which makes it challenging from
both an analytical and a geometrical point of view. In particular, a striking differ-
ence with the Riemannian realm is that no analogous to the Hopf–Rinow theorem
holds (for a counterexample, cf. Remark 1.14 in [29], or also p. 150 and Exam-
ple 7.16 in [27]). Thus, up to now, sufficient conditions for geodesic connectedness
have been established only for a few models of Lorentzian spacetimes.

The ideas in the paper [11] led to the following result (cf. Theorem 1.1 in [11]).

Theorem 1.1 (Candela–Flores–Sánchez). Let (L, 〈·, ·〉L) be a stationary space-
time with a complete timelike Killing vector field K. If L is globally hyperbolic
with a complete (smooth, spacelike) Cauchy hypersurface S, then it is geodesically
connected.

The interest of this theorem does not only rely on the intrinsic geometric char-
acter and accuracy of its hypotheses (cf. Section 6.3 in [11]), but also on the fact
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that it is the top result of a series of works on geodesic connectedness for standard
stationary spacetimes (cf. [2], [6], [19], [20], and [30]). If one analyzes the extrinsic
hypotheses under which standard stationary spacetimes become globally hyper-
bolic (cf. Corollary 3.4 in [31]) and the ones under which they become geodesically
connected (for instance, Theorem 1.2 in [2]), one realizes that the former imply
the latter. So, it was natural to wonder if global hyperbolicity implies geodesic
connectedness for stationary spacetimes, as Theorem 1.1 finally confirms.

Now observe that Theorem 1.1 admits a natural limit case, which consists of
assuming the existence of a lightlike, instead of timelike, Killing vector field. A
remarkable family of spacetimes which falls under this hypothesis is the class of
generalized plane waves. The geodesic connectedness and global hyperbolicity of
these spacetimes have been also studied. In this case, one also finds that the
extrinsic hypotheses which ensure global hyperbolicity (see Theorem 4.1 in [17])
imply geodesic connectedness (see Corollary 4.5 in [10]). So, a natural question is
if Theorem 1.1 still holds when the Killing vector field K is lightlike, instead of
timelike; i.e.,

taking any globally hyperbolic spacetime endowed with a complete light-
like Killing vector field and a complete (smooth, spacelike) Cauchy
hypersurface, is it geodesically connected?

In general, the answer to this question is negative (see Section 7 (c)); however,
we can characterize which points can be connected by geodesics in this class of
spacetimes. More precisely, setting

C1
K(p, q) = {z ∈ C1(I,L) : z(0) = p, z(1) = q, and

∃Cz ∈ R such that 〈ż, K(z)〉L ≡ Cz},
(1.1)

here we prove the following statement:

Theorem 1.2. Let (L, 〈·, ·〉L) be a globally hyperbolic spacetime endowed with a
complete lightlike Killing vector field K and a complete (smooth, spacelike) Cauchy
hypersurface S. Given two points p, q ∈ L, the following statements are equivalent:

(i) p and q are geodesically connected in L;
(ii) C1

K(p, q) �= ∅.

Alike Theorem 1.1, this result is intrinsic, sharp and natural. Moreover, it
presents nice consistency with previous results on geodesic connectedness for gen-
eralized plane waves. The proof is based on a limit argument. First, one perturbs
the metric of the spacetime into a sequence of standard stationary metrics which
approach to the original one. Given two points, one uses an adapted version of The-
orem 1.1 to ensure that they are geodesically connected for sufficiently advanced
metrics of the sequence. Then, one uses property (ii) to provide some estimates on
the sequence of connecting geodesics. Finally, a thorough limit argument based on
these estimates ensures the existence of a limit connecting geodesic for the original
metric.
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Besides the geodesic connectedness, other geodesic properties of stationary
spacetimes have been studied in the last decades. Theorem 1.2 suggests a line
of research consisting of translating geodesic properties, from stationary space-
times to spacetimes with a lightlike Killing vector field, by using a limit argument
similar to the one developed below (see also [14]). The fine estimates needed to
overcome this procedure for the geodesic connectedness problem, and the fact that
this property is only partially preserved when passing to the limit, suggest that, in
general, this line of research will be an interesting mathematical challenge. Accord-
ing to these ideas, here we are able to state also a multiplicity result in the spirit
of Theorem 4.27 in [12] (cf. Subsection 8.2), while an application of Theorem 1.2
to the case with boundary can be found in [3].

The remainder of this paper is organized as follows. In Section 2 we recall some
notations, definitions and background tools on Lorentzian manifolds, especially on
standard stationary spacetimes. In Section 3 we explain the main arguments in-
volved in the intrinsic variational approach to the geodesic connectedness problem
in a stationary spacetime, when a global splitting is not given a priori. The ma-
chinery developed in Section 3 is used in Section 4 to prove Theorem 4.2, an
adapted version of Theorem 1.1. In Section 5 we apply Theorem 4.2 to a sequence
of standard stationary spacetimes obtained by perturbing the original metric. As
a consequence, fixed two arbitrary points, a sequence of connecting geodesics of
the perturbed metrics is obtained (Proposition 5.1). Then, in Section 6 we deduce
some estimates for these geodesics (Lemmas 6.1 and 6.2) and apply a limit argu-
ment to them (Lemma 6.3) in order to prove Theorem 1.2. The accuracy of the
hypotheses of Theorem 1.2 is showed in Section 7. Finally, in Section 8, we pro-
vide some straightforward applications of Theorem 1.2, such as the Avez–Seifert
result in this ambient (Proposition 8.1), a multiplicity result (Theorem 8.4) and
the geodesic connectedness of some generalized plane waves (Theorem 8.6).

2. Notation and background tools

In this section we review some basic notions in Lorentzian geometry used thro-
ughout the paper (we refer to [5] and [27] for more details).

A Lorentzian manifold (L, 〈·, ·〉L) (henceforth often simply denoted by L) is
a smooth (connected) finite dimensional manifold L equipped with a symmetric
non-degenerate tensor field 〈·, ·〉L of type (0, 2) with index 1. A tangent vector
ζ ∈ TzL is called timelike (resp. lightlike; spacelike; causal) if 〈ζ, ζ〉L < 0 (resp.
〈ζ, ζ〉L = 0 and ζ �= 0; 〈ζ, ζ〉L > 0 or ζ = 0; ζ is either timelike or lightlike). The
set of causal vectors at each tangent space has a structure of “double cone” called
causal cones.

A C1 curve γ : I → L (I real interval) is called timelike (resp. lightlike; spacelike;
causal ) when so is γ̇(s) for all s ∈ I. For causal curves, the definition is extended
to include piecewise C1 curves: in this case, the two limit tangent vectors on the
breaks must belong to the same causal cone.
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A smooth curve γ : I → L is a geodesic if it satisfies the equation

DL
s γ̇ = 0,

where DL
s is the covariant derivative along γ associated to the Levi-Civita connec-

tion of metric 〈·, ·〉L. Any geodesic γ satisfies the conservation law

〈γ̇(s), γ̇(s)〉L ≡ Eγ for some constant Eγ ∈ R and all s ∈ I.

So, its causal character can be directly rewritten in terms of the sign of Eγ . Two
points p, q ∈ L are geodesically connected if there exists a geodesic γ : I → L such
that γ(0) = p and γ(1) = q (hereafter, I := [0, 1]). This property is equivalent
to a variational problem: namely, the existence of a critical point of the action
functional

(2.1) f(z) =
1

2

∫ 1

0

〈ż, ż〉L ds

in the subset of C1(I,L) of all the C1 curves z : I → L such that z(0) = p and
z(1) = q.

A vector field K in L is said complete if its integral curves are defined on
the whole real line. On the other hand, K is said Killing if one of the following
equivalent statements holds (cf. Propositions 9.23 and 9.25 in [27]):

(i) the stages of its local flow consist of isometries;

(ii) the Lie derivative of 〈·, ·〉L in the direction of K is 0;

(iii) 〈DXK,Y 〉L = −〈DY K,X〉L for all vector fields X,Y on L.
If K is a Killing vector field and γ : I → L is a geodesic, then there exists

Cγ ∈ R such that

(2.2) 〈γ̇(s),K(γ(s))〉L ≡ Cγ for all s ∈ I.

A spacetime is a Lorentzian manifold L with a prescribed time-orientation,
that is, a continuous choice of a causal cone at each point of L, called future cone,
in opposition to the non-chosen one, named past cone. A causal curve γ in a
spacetime is called future or past directed depending on the time orientation of the
cone determined by γ̇ at each point. Given p, q ∈ L, we say that p is in the causal
past of q, and we write p < q, if there exists a future-directed causal curve from p
to q. Moreover, we denote by p ≤ q either p < q or p = q. For each p ∈ L, the
causal past J−(p) and the causal future J+(p) are defined as

J−(p) = {q ∈ L : q ≤ p} and J+(p) = {q ∈ L : p ≤ q}.
Remark 2.1. The causal relations allow one to extend the space of piecewise C1

causal curves to the space of (non-necessarily smooth) continuous causal curves, in
a way which is appropriate for convergence of curves. Actually, such curves haveH1

regularity (cf. p. 54 in [5], p. 442 in [18], and also Definition 2.1, Remarks 2.2
and A.4 in [11]).
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A spacetime is called stationary if it admits a timelike Killing vector field.
There are several equivalent definitions of global hyperbolicity for a spacetime (cf.,
e.g., [24]). Here, we adopt the following: a spacetime is globally hyperbolic if it
contains a Cauchy surface, that is, a subset which is crossed exactly once by any
inextendible timelike curve. Remarkably, the Cauchy surface can be chosen to
be a smooth, spacelike hypersurface (cf. [7]). In general, any inextendible causal
curve crosses (possibly, along a segment) a Cauchy surface S; if, in addition, S is
spacelike (at least C1), then it crosses S exactly once (cf. p. 342 in [24]). Another
important property of a spacetime L admitting a Cauchy surface S is that J−(p)∩S
is compact for every p ∈ L (cf. Proposition 6.6.6 in [21]).

Finally, following Chapter 14 in [27], we recall that if A is an achronal subset
of L (i.e., no x, y ∈ A are chronologically related), then the Cauchy development
D(A) of A is defined as the subset of the points p of L such that every past/future
inextendible causal curve through p meets A.

In this paper we are concerned with globally hyperbolic spacetimes admitting
a complete causal Killing vector field. The following proposition, which slightly
extends Theorem 2.3 in [11], provides a precise description of the structure of these
spacetimes.

Proposition 2.2. Let (L, 〈·, ·〉L) be a globally hyperbolic spacetime admitting a
complete causal Killing vector field K. Then, there exist a Riemannian mani-
fold (S, 〈·, ·〉), a differentiable vector field δ on S and a differentiable non-negative
function β on S such that

(2.3) L = S × R and 〈ζ, ζ′〉L = 〈ξ, ξ′〉+ 〈δ(x), ξ〉τ ′ + 〈δ(x), ξ′〉τ − β(x)ττ ′,

for all z = (x, t) ∈ L and ζ = (ξ, τ), ζ′ = (ξ′, τ ′) ∈ TzL = TxS × R.

Furthermore, if K is timelike then β is non-vanishing, i.e., β(x) > 0 for all
x ∈ S; if K is lightlike then β ≡ 0, δ is non-vanishing and the metric on L becomes

(2.4) 〈ζ, ζ ′〉L = 〈ξ, ξ′〉+ 〈δ(x), ξ〉τ ′ + 〈δ(x), ξ′〉τ,
for all z = (x, t) ∈ L and ζ = (ξ, τ), ζ′ = (ξ′, τ ′) ∈ TzL = TxS × R.

Proof. Since L is a globally hyperbolic spacetime, it admits a spacelike Cauchy
hypersurface S which becomes a Riemannian manifold when endowed with the
induced metric 〈·, ·〉 from 〈·, ·〉L. Let us consider the map

Ψ : (x, t) ∈ S × R �→ Ψt(x) ∈ L,
being Ψ the flow of the complete vector field K. Since K is causal, its integral
curves are also causal. So, each point of L is crossed by one integral curve of K,
which crosses S at exactly one point. Therefore, Ψ is a diffeomorphism. As K is
Killing, the pull-back metric Ψ∗〈·, ·〉L is independent of t. Hence, taking β(x) =
−〈K(z),K(z)〉L and denoting by δ(x) the orthogonal projection of K(z) on TxS
for any z = (x, t) ∈ S × {t}, the metric expression (2.3) follows.

Furthermore, if K is timelike, then β is clearly strictly positive; instead, if K
is lightlike, then β ≡ 0 and δ is non-vanishing (since K(z) cannot be orthogonal
to TxS). �
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Remark 2.3. For further use, here we emphasize the following relations, contained
in the proof of previous proposition: for any z = (x, t) ∈ S × R we have, up to a
diffeomorphism Ψ,

K ≡ ∂t, S ≡ S × {0}, β(x) = −〈K(z),K(z)〉L,
δ(x) ≡ orthogonal projection of K(z) on TxS.

In general, a spacetime as in (2.3) with β(x) > 0 on S is called standard
stationary. For this class of spacetimes, K = ∂t is always a complete timelike
Killing vector field. A smooth curve γ = (x, t) in a standard stationary spacetime L
is a geodesic if and only if it satisfies the following system of differential equations:

(2.5)

⎧⎪⎨
⎪⎩

Dsẋ− ṫ F (x)[ẋ] + ẗ δ(x) +
1

2
ṫ2 ∇β(x) = 0,

d

ds

(
β(x)ṫ − 〈δ(x), ẋ〉) = 0,

where Ds denotes the covariant derivative along x associated to the Levi-Civita
connection of metric 〈·, ·〉, and F (x) denotes the linear (continuous) operator
on TxS associated to the bilinear form

curl δ(x)[ξ, ξ′] = 〈(δ′(x))T [ξ], ξ′〉 − 〈δ′(x)[ξ′], ξ〉 for all ξ, ξ′ ∈ TxS,

being δ′(x) the differential map of δ(x) and (δ′(x))T its transpose (cf., e.g., Ap-
pendix A in [4]).

We conclude this section with the following result, which will be used later on
in the paper.

Proposition 2.4. Let (L, 〈·, ·〉L) be a standard stationary spacetime as in (2.3)
and (S, 〈·, ·〉) a complete Riemannian manifold. Given two points p = (xp, tp) and
q = (xq, tq) ∈ L satisfying Δt = tq − tp ≥ 0, the following assertions hold:

(i) if J−(q) ∩ (S × {tp}) is not closed in S × {tp} then it is not bounded;

(ii) if J−(q)∩ (S×{tp}) is compact in S×{tp}, then there exists ε > 0 such that,
setting qε = (xq, tq + ε), J−(qε) ∩ (S × {tp}) is also compact in S × {tp}.

Proof. (i) Arguing by contradiction, assume that J−(q)∩(S×{tp}) is not closed in
S×{tp} but it is bounded. Then, there exists a sequence (yk)k ⊂ J−(q)∩(S×{tp})
converging to some point y ∈ S × {tp}, but

(2.6) y �∈ J−(q).

By assumption, for each k ∈ N there exists a past inextendible1 causal curve γk
departing from q and passing through yk. Then, Proposition 3.31 in [5] ensures
that, up to a subsequence, (γk)k converges to a past inextendible causal curve γ

1The past inextendible causal curves γk can be obtained by prolonging the corresponding
causal curves from q to yk (ensured by condition yk ∈ J−(q)) with integral lines of the timelike
vector field −∂t.
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departing from q. The projection of γ on S remains in J−(q)∩(S×{tp}). In partic-
ular, it is contained in a compact set, and so, it admits an exhausting sequence of
points which is convergent in S×{tp}. The sequence formed by the corresponding
lifted points on γ must be also convergent (note that the temporal components
of these points are decreasing). So, the causal (thus, locally Lipschitz) curve γ
admits an exhausting sequence of points which is convergent, and thus, γ must be
extensible, a contradiction.

(ii) By contradiction, assume the existence of a sequence of points (qn)n, with
qn = (xq, tq+εn) ∈ L and εn ↘ 0, such that for all n ∈ N the set J−(qn)∩(S×{tp})
is not compact in S × {tp}. Since (S, 〈·, ·〉) is complete, by property (i) the set
J−(qn) ∩ (S × {tp}) cannot be bounded. So, for every n ∈ N there exists an
unbounded sequence of points (pnk )k ⊂ J−(qn) ∩ (S × {tp}), with pnk = (xn

k , tp).
By using a Cantor’s diagonal type argument, we construct an unbounded sequence
(pn)n, with pn = pnkn

, such that pn ∈ J−(qn) ∩ (S × {tp}) for all n. Denote by
γn = (xn, tn) a future-directed causal curve joining pn to qn, and let sn ∈ I be
such that tn(sn) = tp + εn for each n ∈ N. Since the future-directed causal curve
αn = (xn, tn − εn) on [sn, 1] joins zn = (xn(sn), tp) to q, we have that (zn)n is
contained in the compact set J−(q) ∩ (S × {tp}). Thus, since (pn)n is unbounded
in S × {tp}, there exists sn ∈ [0, sn] such that

(2.7) xn |[sn,sn] remains bounded and length(xn |[sn,sn]) ≥ 1 ∀n ∈ N.

On the other hand, as γn = (xn, tn) is causal and future-directed, tn is character-
ized by 〈γ̇n, γ̇n〉L ≤ 0 and ṫn > 0 on I (recall (2.3)), hence it follows that

ṫn ≥ 〈δ(xn), ẋn〉
β(xn)

+

√
〈δ(xn), ẋn〉2

β(xn)2
+

〈ẋn, ẋn〉
β(xn)

on I.

By integrating the previous inequality in [s̄n, sn] , we deduce

∫ sn

sn

〈δ(xn), ẋn〉
β(xn)

ds+

∫ sn

sn

√
〈δ(xn), ẋn〉2

β(xn)2
+

〈ẋn, ẋn〉
β(xn)

ds ≤
∫ sn

sn

ṫn ds ≤ εn → 0,

as n → +∞. However, by virtue of (2.7), the first member of the previous expres-
sion remains positive and far from zero, a contradiction. �

Remark 2.5. It is conceivable that J−(q) ∩ (S × {tp}) is not closed under the
hypotheses of the previous proposition. In fact, this type of property holds just
in causally simple spacetimes. So, in order to find a counterexample, one should
take into account the characterization of causally simple spacetimes in [13] plus the
examples of Randers metrics in [16], in order to construct a suitable non-causally
simple spacetime with a complete slice S (this is a remarkable difference with the
static case, where the completeness of S implies global hyperbolicity).

About the part (ii) of the theorem, notice that this is intuitively related with
the causal continuity of the spacetime. This property holds for every standard
stationary spacetime (see [22]).
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3. Stationary intrinsic functional framework

A considerable contribution to the study of the geodesic connectedness of space-
times was given in [19]. In that paper the authors introduced a variational prin-
ciple for geodesics, based on the natural constraint (2.2), and proved the geodesic
connectedness of standard stationary spacetimes L, under some boundedness as-
sumptions for the metric coefficients |δ| and β (recall (2.3)). Under the hypotheses
of Theorem 1.1, the spacetime L globally splits into (2.3), and previous result can
be applied. However, this splitting is neither unique nor canonically associated
to L, and the conclusion may depend on it. In order to avoid this arbitrariness, an
intrinsic approach to the problem of geodesic connectedness was developed in [20].
There, the variational principle in [19] is translated into a splitting independent
form, and a compactness assumption on the infinite dimensional manifold of the
paths between two points is introduced, called pseudo-coercivity (see from Theo-
rem 3.1 till the end of this section). This condition implies global hyperbolicity,
but, in the practice, it is quite difficult to verify. Motivated by this deficiency,
in [11] the authors worked under intrinsic geometric assumptions, which involve
the causal structure of the spacetime and are shown to be equivalent to pseudo-
coercivity. For a given complete spacelike smooth Cauchy hypersurface S and a
given complete timelike Killing vector field K, Proposition 2.2 is applied to obtain
the corresponding global splitting. But, even if this splitting is neither unique
nor canonically associated to L, the result obtained in [11] is independent of the
chosen K and S, and no growth hypotheses on the coefficients of the metric 〈·, ·〉L
are involved.

As we will see later on, the proof of Theorem 1.2 makes use of Theorem 4.2, a
refinement of Theorem 1.1. So, in the rest of this section we are going to recall the
intrinsic variational functional framework associated to a stationary spacetime, as
developed in [11] and [20].

Let (L, 〈·, ·〉L) be a stationary spacetime. As shown in [20], by taking into
account the constraint (2.2), the geodesics in L connecting two fixed points p, q ∈ L
correspond to critical points of functional f in (2.1) restricted to the set of curves
in (1.1).

Since our approach will require dealing with H1 curves on L, we also introduce
the infinite dimensional manifold

Ω(p, q) =
{
z : I → L : z is absolutely continuous,

z(0) = p, z(1) = q,

∫ 1

0

〈ż, ż〉R ds < +∞
}
,

where 〈·, ·〉R is the Riemannian metric canonically associated to K and 〈·, ·〉L, i.e.,

〈ζ, ζ′〉R = 〈ζ, ζ′〉L − 2
〈ζ,K(z)〉L 〈ζ′,K(z)〉L

〈K(z),K(z)〉L for all z ∈ L, ζ, ζ′ ∈ TzL.

For each z ∈ Ω(p, q) the tangent space TzΩ(p, q) is given by the H1 vector fields
ζ : I → TL along z such that ζ(0) = 0 = ζ(1). Moreover, the functional f in (2.1)



Connectivity by geodesics 9

is well defined and finite on the whole manifold Ω(p, q). Standard arguments ensure
that f is smooth, with differential given by

df(z)[ζ] =

∫ 1

0

〈ż,∇L
s ζ〉L ds for all z ∈ Ω(p, q), ζ ∈ TzΩ(p, q),

and its critical points are the geodesics in (L, 〈·, ·〉L) connecting p to q.

The set C1
K(p, q) can be also extended to a subset of Ω(p, q) defined as

(3.1) ΩK(p, q) = {z ∈ Ω(p, q) : ∃Cz ∈ R such that 〈ż, K(z)〉L ≡ Cz a.e. on I}
and definitions and theorems below hold on both of them.

The following result reduces the geodesic connectedness problem between p
and q to the search of critical points of f on ΩK(p, q) (cf. Theorem 3.3 in [20]).

Theorem 3.1. A curve γ ∈ Ω(p, q) is a geodesic on L connecting p to q if and
only if γ ∈ ΩK(p, q) and γ is a critical point of f in (2.1) restricted to ΩK(p, q).

The following definitions are given in [20]:

(i) given c ∈ R, the set ΩK(p, q) is c-precompact for f if every sequence (zm)m
in ΩK(p, q) such that f(zm) ≤ c has a subsequence which converges weakly
in ΩK(p, q) (hence, uniformly in L);

(ii) the restriction of f to ΩK(p, q) is pseudo-coercive if ΩK(p, q) is c-precompact
for all c ≥ inf f(ΩK(p, q)).

Then, the following theorem holds (cf. Theorem 1.2 in [20]).

Theorem 3.2 (Giannoni–Piccione). If ΩK(p, q) is not empty and there exists
c > inf f(ΩK(p, q)) such that ΩK(p, q) is c-precompact, then there exists at least
one geodesic in (L, 〈·, ·〉L) joining p to q.

Remark 3.3. In the hypotheses of Theorem 1.1, the completeness of K guaran-
tees that ΩK(p, q) �= ∅ for any p, q ∈ L (cf. Lemma 5.7 in [20] and Proposition 3.6
in [11]); moreover, the technical condition of pseudo-coercivity holds (cf. Theo-
rem 5.1 in [11]). At the end, Theorem 1.1 will follow from Theorem 3.2.

4. The stationary non-canonical global splitting

Let (L, 〈·, ·〉L) be a standard stationary spacetime as in (2.3) with β(x) > 0 for all
x ∈ S. Given two points p = (xp, tp), q = (xq , tq) ∈ L, the space Ω(p, q) can be
rewritten as

Ω(p, q) = Ω(xp, xq;S)×W (tp, tq),

where

Ω(xp, xq;S) =
{
x : I → S : x is absolutely continuous,

x(0) = xp, x(1) = xq ,

∫ 1

0

〈ẋ, ẋ〉ds < +∞
}
,

W (tp, tq) =
{
t ∈ H1(I,R) : t(0) = tp, t(1) = tq

}
= H1

0 (I,R) + T ∗,
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being H1(I,R) the classical Sobolev space,

H1
0 (I,R) =

{
t ∈ H1(I,R) : t(0) = 0 = t(1)

}
and

(4.1) T ∗ : s ∈ I �−→ tp + sΔt ∈ R, Δt = tq − tp.

For every x ∈ Ω(xp, xq;S), one has

TxΩ(xp, xq;S) =
{
ξ : I → TxS : ξ is absolutely continuous,

ξ(0) = 0 = ξ(1),

∫ 1

0

〈Dsξ,Dsξ〉ds < +∞
}
.

Furthermore, W (tp, tq) is a closed affine submanifold of H1(I,R) having tangent
space

TtW (tp, tq) = H1
0 (I,R) for all t ∈ W (tp, tq).

So, for every z = (x, t) ∈ Ω(p, q) we have

TzΩ(p, q) = TxΩ(xp, xq;S)× TtW (tp, tq) = TxΩ(xp, xq;S)×H1
0 (I,R)

and Ω(p, q) can be equipped with the Riemannian structure

〈ζ, ζ〉H = 〈(ξ, τ), (ξ, τ)〉H =

∫ 1

0

〈Dsξ,Dsξ〉ds+
∫ 1

0

τ̇2 ds,

for all z = (x, t) ∈ Ω(p, q) and ζ = (ξ, τ) ∈ TzΩ(p, q).

Next, assume that (S, 〈·, ·〉) is complete. Then, Ω(xp, xq;S) is a complete infi-
nite dimensional manifold (cf. [23]). By the Nash embedding theorem, the com-
plete manifold S can be seen as a closed submanifold of an Euclidean space R

N

(cf. [26] for the existence of a closed isometric embedding). Hence, Ω(xp, xq;S) is
an embedded submanifold of the classical Sobolev space H1(I,RN ). As usual, let
us set

‖y‖2 = ‖y‖22 + ‖ẏ‖22 for all y ∈ H1(I,RN ),

where ‖ · ‖2 denotes the standard L2-norm. It is well known that the following
inequalities hold:

(4.2) ‖y‖2 ≤ ‖y‖∞ ≤ ‖ẏ‖2 for all y ∈ H1
0 (I,R

N ),

where ‖·‖∞ denotes the norm of the uniform convergence (cf., e.g., Proposition 8.13
in [9]). Moreover, the Ascoli–Arzelá theorem implies that any bounded sequence
in H1(I,RN ) has a uniformly converging subsequence in C(I,RN ).

For any absolutely continuous curve z = (x, t) : I → L, one has

(4.3) 〈ż, K(z)〉L = 〈ż, ∂t〉L = 〈δ(x), ẋ〉 − β(x) ṫ (recall that K = ∂t).
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Taking into account (4.3), if z ∈ ΩK(p, q) (recall (3.1)) then there exists a con-
stant Cz such that

(4.4) ṫ =
〈δ(x), ẋ〉 − Cz

β(x)
a.e. on I.

Thus, integrating both hand sides of (4.4) on I, and isolating Cz , we get

(4.5) Cz =
(∫ 1

0

〈δ(x), ẋ〉
β(x)

ds − Δt

) (∫ 1

0

ds

β(x)

)−1

.

Denoting by J the restriction to ΩK(p, q) of the functional f in (2.1) with met-
ric (2.3), and substituting (4.5) in (4.4), J can expressed as a functional depending
only on Δt (cf. (4.1)) and the component x of the curve z = (x, t) ∈ ΩK(p, q):

J (x) =
1

2
‖ẋ‖22 +

1

2

[ ∫ 1

0

〈δ(x), ẋ〉2
β(x)

ds −
( ∫ 1

0

〈δ(x), ẋ〉
β(x)

ds
)2( ∫ 1

0

1

β(x)
ds

)−1]

− Δt

2

(
Δt − 2

∫ 1

0

〈δ(x), ẋ〉
β(x)

ds
) (∫ 1

0

1

β(x)
ds

)−1

.(4.6)

By construction, f(z) = J (x) if z = (x, t) ∈ ΩK(p, q); furthermore, by applying
the Cauchy–Schwarz inequality to the middle term of (4.6), we get

(4.7) 2J (x) ≥ ‖ẋ‖22 − Δt

(
Δt − 2

∫ 1

0

〈δ(x), ẋ〉
β(x)

ds
) (∫ 1

0

1

β(x)
ds

)−1

.

Now, we are ready to establish an adapted version of Theorem 1.1, needed in
Section 5. But, first, we recall the following result (cf. Lemma 5.4 in [11]):

Lemma 4.1. Fixed any x ∈ Ω(xp, xq;S) ∩ C1(I, S) (x non-constant if xp = xq)
there exists a unique future directed lightlike curve γl = (xl, tl) : [0, 1] → L joining
(xp, tp) to {xq}×R in a time T (x) = tl(1)− tl(0) > 0 such that xl = x. Moreover,
T (x) satisfies

(4.8) T (x) =

∫ 1

0

〈δ(x), ẋ〉
β(x)

ds +

∫ 1

0

√〈δ(x), ẋ〉2 + 〈ẋ, ẋ〉β(x)
β(x)

ds.

Theorem 4.2. Let (L, 〈·, ·〉L) be a standard stationary spacetime as in (2.3) and
let (S, 〈·, ·〉) be a complete Riemannian manifold. If two points p = (xp, tp), q =
(xq, tq) ∈ L satisfy

Δt = tq − tp ≥ 0 and J−(q) ∩ (S × {tp}) is compact,

then they are connected by a geodesic in L.
Proof. 2 From Theorem 3.2 and Remark 3.3, it suffices to show that f restricted to
C1

K(p, q) is c-precompact for some c > inf f(C1
K(p, q)), i.e. every sequence (zm)m

2Even if the core of this proof is essentially contained in Section 5 in [11], here we rearrange
it for reader’s convenience. Although the functional f is defined in C1

K(p, q), it is natural to
consider limits in ΩK(p, q) (cf. p. 522 and Remark 3.3 in [11]).
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in C1
K(p, q) such that (f(zm))m is upper bounded, has a uniformly convergent

subsequence. So, let us consider any c > inf f(C1
K(p, q)) and a sequence of curves

(zm)m in C1
K(p, q), with zm = (xm, tm), satisfying

(4.9) (f(zm))m (and thus (J (xm))m) is upper bounded by c.

Setting
C1(xp, xq) = Ω(xp, xq;S) ∩C1(I, S),

we have that
(xm)m ⊂ C1(xp, xq).

It suffices to prove that

(4.10) (‖ẋm‖2)m is bounded, up to a subsequence;

indeed, by (4.2) it follows that (xm)m is bounded in Ω(xp, xq;S) and the supports
of these curves are contained in a compact subset of S. Hence, the Ascoli–Arzelá
theorem applies.

As we will see later, (4.10) will be a direct consequence of the following three
claims.

Claim 1. If (4.10) does not hold, i.e.,

(4.11) ‖ẋm‖2 → +∞,

then no compact subset of S contains all the elements of the sequence (xm)m.

Proof of Claim 1. Otherwise, being (β(xm))m and (|δ(xm)|)m bounded (with
|δ(xm)|2 = 〈δ(xm), δ(xm)〉), by (4.7) and the Cauchy–Schwarz inequality it follows

2J (xm) ≥ ‖ẋm‖22 − C1 ‖ẋm‖2 − C2

for some C1, C2 > 0 independent of m ∈ N. Hence, (4.11) implies

(4.12) J (xm) → +∞,

in contradiction with (4.9).

Claim 2. If no compact subset of S contains all the elements of the sequence
(xm)m, then there exists some ε > 0 such that (recall (4.8))

(4.13) Tm := T (xm) > Δt + ε for infinitely many m ∈ N.

Proof of Claim 2. Taking ε > 0 provided by Proposition 2.4 (ii), let us assume by
contradiction that statement (4.13) does not hold. This means that

(4.14) Tm ≤ Δt + ε for all m big enough.

From Lemma 4.1, there exist future directed lightlike curves γl
m = (xm, tlm) join-

ing p to (xq , tp + Tm). Then, from (4.14), these curves can be prolonged with
the integral curves of ∂t to get future directed causal curves from p to qε =
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(xq, tp +Δt+ ε) = (xq, tq + ε). These curves have support in J−(qε), so the curves
(xm, tp) lie in the compact set J−(qε) ∩ (S × {tp}) (recall Proposition 2.4 (ii)), in
contradiction with the hypothesis.

Claim 3. Conditions (4.11) and (4.13) imply (4.12), up to a subsequence.

Proof of Claim 3. If there exists a constant c1 > 0 such that(
Δt − 2

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds
)(∫ 1

0

ds

β(xm)

)−1

≤ c1 for infinitely many m ∈ N,

then the desired limit (4.12) follows from (4.7) and (4.11).
Otherwise, assume that

(4.15)
(
Δt − 2

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds
)(∫ 1

0

ds

β(xm)

)−1

−→ +∞ as m → +∞.

Setting

T̃m =

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds+

√(∫ 1

0

〈δ(xm), ẋm〉2
β(xm)

ds+ ‖ẋm‖2
)∫ 1

0

ds

β(xm)
,

the Cauchy–Schwarz inequality implies

(4.16) Tm ≤ T̃m ∀m ∈ N.

Moreover,∫ 1

0

〈δ(xm), ẋm〉2
β(xm)

ds+ ‖ẋm‖22 =
(
T̃m −

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds
)2(∫ 1

0

ds

β(xm)

)−1

.

For infinitely many m ∈ N, inequality (4.13) holds and

(4.17) Δt − 2

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds is positive

(recall (4.15)). Hence,

2J (xm) =
(
T̃m −

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds
)2( ∫ 1

0

ds

β(xm)

)−1

−
( ∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds − Δt

)2(∫ 1

0

ds

β(xm)

)−1

=
(
T̃ 2
m −Δ2

t − 2(T̃m −Δt)

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds
) (∫ 1

0

ds

β(xm)

)−1

= (T̃m −Δt)
(
T̃m +Δt − 2

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds
) ( ∫ 1

0

ds

β(xm)

)−1

≥ ε
[
T̃m +

(
Δt − 2

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds
)]( ∫ 1

0

ds

β(xm)

)−1

≥ ε
(
Δt − 2

∫ 1

0

〈δ(xm), ẋm〉
β(xm)

ds
) ( ∫ 1

0

ds

β(xm)

)−1

,
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where, in the first inequality, we have taken into account (4.13), (4.16) and (4.17).
So, the limit (4.15) clearly implies the limit (4.12), up to a subsequence.

Summing up, if (4.10) does not hold, Claim 1 ensures that no compact subset
of S contains all the elements of the sequence (xm)m. Then, Claims 2 and 3
imply (4.12), up to a subsequence, in contradiction with (4.9). �

Notice that, under the hypotheses of the previous theorem, the Cauchy devel-
opment of S × {tp} must be globally hyperbolic and S × {tp} is a Cauchy surface
of it. So, we deduce the following immediate consequence of Theorem 4.2.

Corollary 4.3. Given a standard stationary spacetime (L, 〈·, ·〉L) as in (2.3) and
(S, 〈·, ·〉) a complete Riemannian manifold, then any point in St = S × {t}, t ∈ R,
can be geodesically connected with any point in its Cauchy development D(St).
In particular, if St is a Cauchy hypersurface then D(St) = L and all the spacetime
is geodesically connected.

5. Connecting geodesics in auxiliary stationary spacetimes

Throughout this section, (L, 〈·, ·〉L) will be a spacetime which satisfies the hypothe-
ses of Theorem 1.2. From Proposition 2.2, L = S×R and 〈·, ·〉L is as in (2.4), with
metric coefficients given by Remark 2.3.

For each n ∈ N, let us consider the standard stationary spacetime (Ln, 〈·, ·〉n)
(often simply denoted by Ln), where Ln = L and

(5.1) 〈ζ, ζ′〉n = 〈ζ, ζ′〉L − 1

n
ττ ′ = 〈ξ, ξ′〉+ 〈δ(x), ξ〉 τ ′ + 〈δ(x), ξ′〉 τ − 1

n
ττ ′

for any z = (x, t) ∈ L, ζ = (ξ, τ), ζ′ = (ξ′, τ ′) ∈ TzL = TxS × R. In particular
note that, with this definition, there is a strict inclusion of cones, namely 〈·, ·〉L ≺
〈·, ·〉m ≺ 〈·, ·〉n if m > n.

In the present section we are going to take advantage of Theorem 4.2 to prove
that each two points of L are geodesically connected in Ln, for n large enough.
To avoid misunderstandings, the objects associated to each spacetime Ln will be
denoted by a subindex n. So, the functional f in (2.1) associated to Ln translates
into

(5.2) fn(z) =
1

2

∫ 1

0

〈ż, ż〉nds = 1

2
‖ẋ‖22 +

∫ 1

0

〈δ(x), ẋ〉 ṫ ds − 1

2n
‖ṫ‖22.

Analogously, the functional J in (4.6) becomes

Jn(x) =
1

2
‖ẋ‖22 +

n

2

[ ∫ 1

0

〈δ(x), ẋ〉2 ds−
(∫ 1

0

〈δ(x), ẋ〉ds
)2]

−Δt

(Δt

2n
−
∫ 1

0

〈δ(x), ẋ〉ds
)
.

(5.3)
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Furthermore, the geodesic equations (2.5), particularized to Ln in (5.1), translate
into

(5.4)

⎧⎨
⎩

Dsẋ− ṫ F (x)[ẋ] + ẗ δ(x) = 0,

d

ds

( 1

n
ṫ− 〈δ(x), ẋ〉

)
= 0.

With these ingredients, now we can establish the announced result.

Proposition 5.1. Let (L, 〈·, ·〉L) be a spacetime as in Theorem 1.2. Given two
points p = (xp, tp), q = (xq , tq) ∈ L with Δt = tq − tp ≥ 0, there exists n0 ∈ N

such that p and q are connected by a geodesic γn = (xn, tn) in (Ln, 〈·, ·〉n) for
every n ≥ n0.

Proof. From Theorem 4.2 applied to each Ln, it suffices to prove the existence of
some n0 ∈ N such that

(5.5) J−
n (q) ∩ (S × {tp}) is compact in S × {tp} for all n ≥ n0.

Arguing by contradiction, assume that condition (5.5) is false for infinitely many
(Lm, 〈·, ·〉m). Since (S, 〈·, ·〉) is complete, by Proposition 2.4 (i), the set J−

m(q)∩(S×
{tp}) cannot be bounded. Hence, for each m, there exists an unbounded sequence
of points (ymk )k in J−

m(q) ∩ (S × {tp}). Then, by using a Cantor’s diagonal type
argument applied to the family of these sequences, for each m there exists km ∈ N

such that, denoting ym = ymkm
with ym ∈ J−

m(q) ∩ (S × {tp}), the sequence (ym)m
is still unbounded and does not admit any convergent subsequence. Let (γm)m be
a sequence of past inextendible 〈·, ·〉m-causal curves departing from q and passing
through ym (recall Footnote 1). Taking any n0 ∈ N, if m ≥ n0 then γm is not
only causal for 〈·, ·〉m, but also for 〈·, ·〉n0 (by the metric expression (5.1)). From
Proposition 3.31 in [5] applied to the sequence of curves (γm)m in (L, 〈·, ·〉L), we
obtain an inextendible limit curve γ = (x, t) departing from q, which is 〈·, ·〉n-
causal for all n, and thus, 〈·, ·〉L-causal. Since (γm)m intersects S × {tp} in a
sequence of points without convergent subsequences, the limit curve γ cannot in-
tersect S × {tp}, in contradiction with the Cauchy character of the hypersurface
S × {tp} in (L, 〈·, ·〉L). �

Remark 5.2. We recall that a C1 functional J : Ω → R, defined on a Hilbert
manifold Ω, satisfies the Palais–Smale condition if each sequence (xn)n ⊂ Ω, such
that (J(xn))n is bounded and dJ(xn) → 0 admits a converging subsequence.

The spatial components xn of the connecting geodesics γn = (xn, tn) provided
by Proposition 5.1 are minimum of the functionals Jn in (5.3): indeed, the c-
precompactness of ΩK(p, q) for Jn for n ≥ n0 (cf. Theorem 4.2), implies that the
functionals Jn are bounded from below, satisfy the Palais–Smale condition and
have complete sublevels, so that they attain their infimum (see Propositions 4.3
and 5.5, Theorem 5.3 in [20] and also Theorem 3.3 in [1]).
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6. Proof of Theorem 1.2

Let (L, 〈·, ·〉L) be a spacetime as in Theorem 1.2. In particular, by Proposition 2.2
L = S × R and 〈·, ·〉L is as in (2.4), with metric coefficients given by Remark 2.3.
Consider two points p = (xp, tp), q = (xq , tq) ∈ L with Δt = tq−tp ≥ 0 and assume
that C1

K(p, q) �= ∅. Then, there exists a C1 curve ϕ = (y, t) : I → L connecting p
with q such that 〈ϕ̇,K(ϕ)〉L = 〈δ(y), ẏ〉 is constant.

Let (γn = (xn, tn))n≥n0
be the sequence of curves connecting p to q, each γn

geodesic in Ln, as stated in Proposition 5.1. Then, the following technical results
hold.

Lemma 6.1. The sequence (‖ẋn‖2)n≥n0
is bounded.

Proof. Arguing by contradiction, assume that (‖ẋn‖2)n≥n0 is not bounded. Taking
any n̄ ≥ n0, the three claims in the proof of Theorem 4.2 imply that (Jn̄(xn))n≥n0

is not upper bounded either. By the expression of the functionals in (5.3) and the
Cauchy–Schwarz inequality, it follows that

Jn(xn) ≥ Jn̄(xn) for all n ≥ n̄.

Whence, also (Jn(xn))n≥n0
is not bounded from above.

Since 〈δ(y), ẏ〉 is constant, one has

Jn(y) =
1

2
‖ẏ‖22 −Δt

(Δt

2n
−
∫ 1

0

〈δ(y), ẏ〉ds
)

≤ 1

2
‖ẏ‖22 +Δt

∫ 1

0

〈δ(y), ẏ〉ds for all n ∈ N.

Therefore, Jn(y) admits an upper bound independent of n, and thus

Jn(y) < Jn(xn) for infinitely many n,

in contradiction with the minimum character of xn, as stated in Remark 5.2. �

Lemma 6.2. The sequence
(‖ṫn‖2)n≥n0

is bounded.

Proof. 3 Taking the scalar product of the first equation in (5.4) applied to γn =
(xn, tn), n ≥ n0, by the vector field δ(xn), we get

〈Dsẋn, δ(xn)〉 − ṫn〈F (xn)[ẋn], δ(xn)〉+ ẗn〈δ(xn), δ(xn)〉 ≡ 0 on I.

So, τn = ṫn satisfies the first order linear ODE

(6.1) τ̇n = an(s) τn + bn(s) on I,

3Along this proof, for any integer j ≥ 1 the constant cj will always denote a strictly positive
real number which does not depend on s ∈ I and n ≥ n0.
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where

(6.2) an(s) =
〈F (xn(s))[ẋn(s)], δ(xn(s))〉

〈δ(xn(s)), δ(xn(s))〉 , bn(s) = −〈Dsẋn(s), δ(xn(s))〉
〈δ(xn(s)), δ(xn(s))〉

(δ is non-vanishing, recall Proposition 2.2). Since

(6.3)

∫ 1

0

ṫn ds = tq − tp = Δt for all n ≥ n0,

necessarily

(6.4) ṫn(sn) = Δt for some sn ∈ I.

So, ṫn(s) is the unique solution to (6.1) which satisfies condition (6.4), i.e.,

(6.5) ṫn(s) = τn(s) = eAn(s) (gn(s) + Δt) ,

where An(s) is the primitive of an(s) satisfying An(sn) = 0 and, for simplicity, we
have set

(6.6) gn(s) =

∫ s

sn

bn(r) e
−An(r) dr.

Now, in order to prove the boundedness of (‖ṫn‖2)n≥n0 , firstly we claim that

(6.7) c1 ≤ eAn(s) ≤ c2 on I, for all n ≥ n0.

In fact, by applying inequality (4.2) to xn, Lemma 6.1 implies that the sequence

(6.8) (‖xn‖∞)n≥n0
is bounded;

thus,

(6.9) c3 ≤ 〈δ(xn(s)), δ(xn(s))〉 ≤ c4 on I, for all n ≥ n0.

Then, by the Cauchy–Schwarz inequality, (6.2), (6.8) and (6.9) we obtain

(6.10) |an(s)| ≤ c5 |ẋn(s)| on I,

with |ẋn(s)|2 = 〈ẋn(s), ẋn(s)〉. Hence, Lemma 6.1 implies

|An(s)| ≤ c6 on I, for all n ≥ n0,

which implies (6.7).

So, in order to conclude the proof, from (6.5) and (6.7) it suffices to show that

(6.11) (‖gn‖2)n≥n0
is bounded.

To this aim, let us note that

〈Dsẋn, δ(xn)〉 = −〈ẋn,
d

ds
δ(xn)〉+ d

ds
〈ẋn, δ(xn)〉;
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thus, by (6.2) and (6.6), integrating by parts we have

gn(s) =

∫ s

sn

〈ẋn,
d

dr
δ(xn)〉 e−An(r)

〈δ(xn), δ(xn)〉 dr

−
∫ s

sn

d

dr

(〈ẋn, δ(xn)〉
) e−An(r)

〈δ(xn), δ(xn)〉 dr

=

∫ s

sn

〈ẋn,
d

dr
δ(xn)〉 e−An(r)

〈δ(xn), δ(xn)〉 dr

− e−An(s)〈ẋn(s), δ(xn(s))〉
〈δ(xn(s)), δ(xn(s))〉 +

e−An(sn)〈ẋn(sn), δ(xn(sn))〉
〈δ(xn(sn)), δ(xn(sn))〉

+

∫ s

sn

〈ẋn, δ(xn)〉 d

dr

(
e−An(r)

〈δ(xn), δ(xn)〉
)

dr.

(6.12)

The smoothness of δ, (6.7)–(6.10), the Cauchy–Schwarz inequality, direct compu-
tations and Lemma 6.1 imply that for all n ≥ n0 the following bounds hold:

∣∣∣ ∫ s

sn

〈ẋn,
d

dr
δ(xn)〉 e−An(r)

〈δ(xn), δ(xn)〉 dr
∣∣∣ ≤ c7 ‖ẋn‖22 ≤ c8,(6.13)

∣∣∣ 〈ẋn(s), δ(xn(s))〉
〈δ(xn(s)), δ(xn(s))〉

∣∣∣ ≤ c9 |ẋn(s)| on I,(6.14)

and

∣∣∣ ∫ s

sn

〈ẋn, δ(xn)〉 d

dr

( e−An(r)

〈δ(xn), δ(xn)〉
)
dr

∣∣∣
≤

∫ 1

0

|〈ẋn, δ(xn)〉| |an(r)|e
−An(r)

〈δ(xn), δ(xn)〉 dr

+ 2

∫ 1

0

|〈ẋn, δ(xn)〉| e−An(r)

∣∣〈δ(xn),
d
dr δ(xn)〉

∣∣
〈δ(xn), δ(xn)〉2 dr

≤ c10 ‖ẋn‖22 ≤ c11.

(6.15)

Moreover, we claim that

(6.16)
∣∣∣ 〈ẋn(sn), δ(xn(sn))〉
〈δ(xn(sn)), δ(xn(sn))〉

∣∣∣ ≤ c12 ‖ẋn‖2 ≤ c13 on I.

In fact, from the second equality in (5.4) we have

1

n
ṫn − 〈δ(xn), ẋn〉 ≡ kn on I;

thus, from one hand (6.4) implies

kn =
1

n
ṫn(sn)− 〈δ(xn(sn)), ẋn(sn)〉 =

Δt

n
− 〈δ(xn(sn)), ẋn(sn)〉,
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while, from the other hand, (6.3) gives

kn =

∫ 1

0

( 1

n
ṫn(s)− 〈δ(xn(s)), ẋn(s)〉

)
ds =

Δt

n
−
∫ 1

0

〈δ(xn(s)), ẋn(s)〉ds.

Whence,

〈δ(xn(sn)), ẋn(sn)〉 =

∫ 1

0

〈δ(xn(s)), ẋn(s)〉ds,

and (6.16) follows from (6.9) and, again, Lemma 6.1.
At last, by using (6.13)–(6.16) in (6.12), we have that

|gn(s)| ≤ c14 |ẋn(s)|+ c15 on I, for all n ≥ n0;

whence, Lemma 6.1 implies (6.11). �

Lemma 6.3. There exists γ = (x, t) ∈ Ω(xp, xq;S) × W (tp, tq) such that, up to
subsequences, (γn)n≥n0

strongly converges to γ on Ω(xp, xq;S)×W (tp, tq).

Proof. From (4.2) and Lemmas 6.1, 6.2, the sequences (‖xn‖)n≥n0
and (‖tn‖)n≥n0

are bounded, thus there exists γ = (x, t) ∈ H1(I,RN )×H1(I,R) such that, up to
subsequences,

(6.17) xn ⇀ x weakly in H1(I,RN ) (and also uniformly in I)

and

tn ⇀ t weakly in H1(I,R).

Furthermore, as S is complete, by (6.17) it follows that x ∈ Ω(xp, xq;S) and there
exist two sequences (ξn)n≥n0 , (νn)n≥n0 in H1(I,RN ) such that

ξn ∈ TxnΩ(xp, xq;S), xn − x = ξn + νn for all n ≥ n0,

ξn ⇀ 0 weakly and νn → 0 strongly in H1(I,RN )
(6.18)

(cf. Lemma 2.1 in [6]). Taking any n ≥ n0, by Proposition 5.1 and (5.2) we have
dfn(γn)[ζ] = 0 for all ζ ∈ TγnΩn(p, q); thus, in particular we have

∫ 1

0

〈ẋn, ξ̇n〉ds+
∫ 1

0

〈δ′(xn)ξn, ẋn〉 ṫn ds+
∫ 1

0

〈δ(xn), ξ̇n〉 ṫn ds

−
∫ 1

0

〈δ(xn), ẋn〉 τ̇n ds+
∫ 1

0

1

n
ṫnτ̇n ds = 0

(6.19)

for ζ = (ξn,−τn) ∈ TγnΩn(p, q) with τn = tn − t ∈ H1
0 (I,R). On the other hand,

by Lemmas 6.1 and 6.2, and (6.18), it results

∫ 1

0

〈δ′(xn)ξn, ẋn〉 ṫn ds = o(1),
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where o(1) denotes an infinitesimal sequence. Whence, (6.19) implies∫ 1

0

〈ẋn, ξ̇n〉ds+
∫ 1

0

1

n
ṫnτ̇n ds = −

∫ 1

0

〈δ(xn), ξ̇n〉 ṫn ds+
∫ 1

0

〈δ(xn), ẋn〉 τ̇n ds+ o(1).

Reasoning as in Theorem 3.3 in [19], the strong convergence of (γn)n≥n0 to γ, up
to a subsequence, is deduced. �

Proof of Theorem 1.2. The implication (i) =⇒ (ii) is a direct consequence of (2.2).
For the implication (ii) =⇒ (i), let (γn = (xn, tn))n≥n0

be the sequence of curves
connecting p to q, with each γn geodesic in Ln, provided by Proposition 5.1. From
Lemma 6.3 there exists a curve γ = (x, t) ∈ Ω(xp, xq;S)×W (tp, tq) such that, up
to subsequences,

(6.20) xn → x strongly in Ω(xp, xq;S) and tn → t strongly in W (tp, tq).

It suffices to prove that γ satisfies equations (2.5) with β ≡ 0, i.e.,

(6.21)

⎧⎨
⎩

Dsẋ− ṫ F (x)[ẋ] + ẗ δ(x) = 0,

d

ds
〈δ(x), ẋ〉 = 0.

To this aim, let us remark that if n ≥ n0, by Theorem 3.1 applied to fn in (5.2),
we have

(6.22) dfn(γn)[ζ] = 0 for all ζ ∈ TγnΩ(p, q).

Then, in particular, taking any τ ∈ H1
0 (I,R) and ζ = (0, τ) in (6.22), it follows

that ∫ 1

0

〈δ(xn), ẋn〉 τ̇ ds− 1

n

∫ 1

0

ṫnτ̇ ds = 0;

hence, passing to the limit, by (6.20) we get∫ 1

0

〈δ(x), ẋ〉τ̇ ds = 0.

Thus, for the arbitrariness of τ ∈ H1
0 (I,R) the second equality in (6.21) holds.

On the other hand, taking any η ∈ TxΩ(xp, xq;S), by (6.20) and Lemma 2.2
in [6] there exists a sequence (ηn)n≥n0 , with ηn ∈ TxnΩ(xp, xq;S), converging
weakly to η. Then, choosing ζ = (ηn, 0) in (6.22) for n ≥ n0, by passing to the
limit and taking into account (6.20), we obtain∫ 1

0

〈ẋ, η̇〉ds+
∫ 1

0

〈δ′(x)η, ẋ〉ṫ ds+
∫ 1

0

〈δ(x), η̇〉ṫ ds = 0.

Therefore, integrating by parts and for the arbitrariness of η ∈ TxΩ(xp, xq;S), we
deduce that γ = (x, t) is smooth and verifies the first equation in (6.21). Hence,
the proof is complete. �
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The proof of Theorem 1.2 requires global hyperbolicity only in two points: for
ensuring the decomposition (2.4) and for proving the following property:

(�)
Any past inextendible causal curve departing from q = (xq , tq),
tq ≥ tp, must intersect S × {tp}.

Therefore, if we are dealing with a spacetime which already splits globally as
in (2.4), the global hyperbolicity assumption can be replaced by property (�). More
precisely, the same arguments performed in the proof of Theorem 1.2 allow us to
state the following generalization:

Theorem 6.4. Let (L, 〈·, ·〉L) be a spacetime with L = S×R and 〈·, ·〉L as in (2.4).
Assume that (S, 〈·, ·〉) is a complete Riemannian manifold. Given two points p =
(xp, tp), q = (xq , tq), with Δt = tq − tp ≥ 0, satisfying property (�), the following
statements are equivalent:

(i) p and q are geodesically connected in L;
(ii) p and q can be connected by a C1 curve ϕ = (y, t) on L such that 〈δ(y), ẏ〉 is

constant.

7. Accuracy of the hypotheses of Theorem 1.2.

(a) Counterexample if the lightlike Killing vector field is not complete.

Consider the spacetime obtained by removing from the Minkowski 2-space L
2

the region {(x, t) : x ≥ 0, t ≥ 0}. This spacetime admits the hyperplane t ≡ −1
as a complete Cauchy hypersurface, and K = ∂x + ∂t as a non-complete lightlike
Killing vector field. However, the points p = (1,−1), q = (−1, 1), which can
be connected with a C1 curve ϕ with 〈ϕ̇,K(ϕ)〉L having constant negative sign,
cannot be connected by a geodesic.

(b) Counterexample if the Cauchy hypersurface is not complete.

Consider L = S × R, S = R
2 \ {(x1, 0) : −1 ≤ x1 ≤ 1} equipped with the

Lorentzian metric

〈ζ, ζ′〉L = 〈ξ, ξ′〉0 + 〈δ(x), ξ〉0 τ ′ + 〈δ(x), ξ′〉0 τ,
for all ζ = (ξ, τ), ζ′ = (ξ′, τ ′) ∈ R

3, where 〈·, ·〉0 is the canonical scalar product
on S ⊂ R

2 and δ : x = (x1, x2) ∈ S �→ λ(x)(1, 0) ∈ R
2, with λ a positive smooth

function on S such that 〈·, ·〉0/λ2 is complete on S. Note that K = ∂t is a complete
lightlike Killing vector field and S×{t} is a non-complete Cauchy hypersurface for
every t ∈ R (apply Proposition 3.1 in [31] with Fn(x) ≡ 2λ(x) for all n). However,
this manifold is not geodesically connected. In fact, consider two points p = (xp, 0),
q = (xq , 0) with xp = (0,−1), xq = (0, 1). By the second equation in (6.21), any
geodesic γ = (x, t) joining p to q must satisfy

d

ds
〈δ(x), ẋ〉0 = 0,

but the sign of 〈δ(x), ẋ〉0 must change for any curve x = x(s) departing from xp

and arriving to xq. Hence, there is no geodesic connecting p to q.
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(c) The existence of a complete lightlike Killing vector field and a complete
Cauchy hypersurface do not imply geodesic connectedness.

Consider L = R
2 × R equipped with the Lorentzian metric4

〈ζ, ζ′〉L = 〈ξ, ξ′〉0 + 〈δ(x), ξ〉0 τ ′ + 〈δ(x), ξ′〉0 τ,

for all ζ = (ξ, τ), ζ′ = (ξ′, τ ′) ∈ R
3, where 〈·, ·〉0 is the canonical scalar product

on R
2 and δ : x = (x1, x2) ∈ R

2 �→ δ(x1) ∈ R
2 satisfies

δ(x1) =

{
(− cos3 x1, sin

3 x1) if x1 < π,
(1, 0) if x1 ≥ π.

In this spacetime ∂t is a complete lightlike Killing vector field and R
2 × {t} is a

complete Cauchy hypersurface for every t ∈ R (apply Proposition 3.1 in [31] with
Fn ≡ 2 for all n). However, this spacetime is not geodesically connected. In fact,
for any C1 curve x = x(s) departing from a point in R

2 with x1 = 0 and arriving to
a point in the region x1 > π, the quantity 〈δ(x), ẋ〉0 cannot be constant as its sign
must change. Hence, there is no geodesic which connects the points p = (xp, 0)
and q = (xq , 0), when, for example, it is xp = (0, 0) and xq = (3π/2, 0).

Remark 7.1. In previous examples (b) and (c) we have used the result Proposi-
tion 3.1 in [31], where an ambient hypothesis says that β = −〈K,K〉 > 0, i.e., K is
timelike. However, it is clear that this type of results can be applied when K
is lightlike, as here. In fact, they can be applied even when K becomes spacelike,
because the function t remains still as a temporal function (see Section 3 in [14]).
Nevertheless, when K is allowed to be non-timelike, one assumes implicitly that
β + 〈δ, δ〉0 > 0 (true in our setting as by Proposition 2.2 it is β ≡ 0 but δ is
non-vanishing), which is equivalent to saying that the full metric of the spacetime
is Lorentzian (see Proposition 3.3 in [14]).

8. Some applications

8.1. An Avez–Seifert result

A first consequence of Theorem 1.2 is that it provides an alternative proof of the
classical Avez–Seifert result in our ambient (cf., e.g., Theorem 3.18 in [5]):

Proposition 8.1. Let (L, 〈·, ·〉L) be a globally hyperbolic spacetime endowed with
a complete lightlike Killing vector field K and a complete Cauchy hypersurface S.
Then, two points of L can be connected by a causal geodesic if and only if they are
causally related.

Proof. We will focus on the implication to the left, as the converse is trivial. So,
assume that two points p, q ∈ L are causally related. Then, they are connectable

4This metric is only C1. Even though, this is enough for the problem of the geodesics (espe-
cially from the developed variational viewpoint), it is clear that it could be modified in a C∞ one.
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by a C1 causal curve ϕ = (y, τ), which, up to a reparameterization, satisfies that
〈ϕ̇,K(ϕ)〉L is constant. Thus, from Theorem 1.2 the points p and q are connectable
by a geodesic γ = (x, t).

In order to prove that γ = (x, t) is causal, it suffices to show that f(γ) ≤ 0.
To this aim, recall that γ = (x, t) can be approached by a sequence of geodesics
γn = (xn, tn), n ≥ n0, of (Ln, 〈·, ·〉n), where each xn is a minimum of the func-
tional Jn (recall Remark 5.2 and Lemma 6.3). So, from one hand, γn → γ
strongly in Ω(xp, xq;S) × W (tp, tq) (and also uniformly in I) and the bounded-
ness of (‖ẋn‖2)n≥n0

and
(‖ṫn‖2)n≥n0

imply

Jn(xn) = fn(γn) → f(γ) as n → ∞
(cf. also Theorem 3.3 in [19]). On the other hand,

Jn(xn) ≤ Jn(y) = fn(ϕ) → f(ϕ) ≤ 0 as n → ∞.

In conclusion, f(γ) ≤ 0 and, thus, γ is causal. �

8.2. A multiplicity result

In order to state a multiplicity result, the following abstract tools are required (cf.,
e.g., [28]).

Definition 8.2. Let X be a topological space. Given A ⊂ X , the Ljusternik–
Schnirelmann category of A in X , briefly catX(A), is the least number of closed
and contractible subsets of X covering A. If it is not possible to cover A with a
finite number of such sets, then catX(A) = +∞.

Theorem 8.3. Let M be a Riemannian manifold and I a C1 functional on M
which satisfies the Palais–Smale condition in R. Given any k ∈ N, k > 0, let us
define

(8.1) ck = inf
A∈Γk

sup
x∈A

I(x) with Γk = {A ⊂ M : catM (A) ≥ k}.

If M is complete or each sublevel of I in M is complete, then ck is a critical
value of I for each k such that Γk �= ∅ and ck ∈ R. Moreover, if I is bounded
from below but not from above and Ω contains a sequence of compact subsets
with arbitrary high category, then a sequence (xk)k of critical points exists such
that lim

k→+∞
I(xk) = +∞.

Then, we can point out that, in the assumptions of Theorem 1.1, Theorem 8.3
allows one to prove the existence of infinitely many geodesics joining two events
p, q ∈ L, if Ω(p, q) contains a sequence of compact subsets with arbitrary high
category5 (cf. Theorem 4.27 in [12]). Starting from this, we can state a multiplicity
result also in the setting of Theorem 1.2.

5This is true for any couple of points if L is non contractible in itself (cf. [15], once applied
the Nash embedding theorem to the Cauchy hypersurface).



24 R. Bartolo, A.M. Candela and J. L. Flores

Theorem 8.4. Assume that the hypotheses of Theorem 1.2 hold and p, q ∈ L
are such that ΩK(p, q) contains a sequence of compact subsets of arbitrary high
category. Then, p and q can be connected by infinitely many geodesics (γk)k on L
with diverging action f in (2.1).

Proof. By Proposition 2.2, L = S × R and the metric is described by (2.4). We
assume Δt = tq − tp ≥ 0 and for any n ∈ N consider (Ln, 〈·, ·〉n), fn and Jn

as in (5.1)–(5.3). By Proposition 5.1 and the arguments in Remark 5.2, we have
that n0 exists such that for all n ≥ n0 the functionals Jn are bounded from
below, satisfy the Palais–Smale condition in R and have complete sublevels. Hence,
by the hypothesis on ΩK(p, q) and Theorem 8.3 for each n ≥ n0, a sequence of
geodesics {γn

k = (xn
k , t

n
k )}k≥1 on (Ln, 〈·, ·〉n) exists and by (8.1) their critical values

cnk = Jn(x
n
k ) = fn(γ

n
k ) can be written as

cnk = inf
A∈Γk

sup
x∈A

Jn(x)

and satisfy cnk → +∞ as k → +∞.

Now, fixing any k ≥ 1, in order to ensure the existence of some connecting limit
curve (thus, geodesic) γk in the given manifold L, we can repeat the procedure in
Section 6, once we prove that (‖ẋn

k‖2)n≥n0
is bounded. To this aim, by the first

part of Section 4 and (5.2),

(8.2) Jn(x) = fn(γ) ≤ f(γ) for all γ = (x, t) ∈ ΩK(p, q);

moreover, by assumption there exists a compact subset Ak of ΩK(p, q) such that
catΩK (Ak) ≥ k, and thus

(8.3) Jn(x
n
k ) = cnk ≤ max

x∈Ak

Jn(x) < +∞.

Arguing by contradiction, assume that (‖ẋn
k‖2)n is not bounded. Thus, reasoning

as in the first part of the proof of Lemma 6.1, and taking into account that the
second term in the expression of Jn(x) is zero if x ∈ Ak, we prove that

(8.4) Jn(x
k
n) > max

x∈Ak

Jn(x) ∀n big enough,

which is in contradiction with (8.3). So, for each k ≥ 1 the sequence (γn
k )n≥n0

converges to a connecting geodesic γk.
Furthermore, note that

(8.5) c1k ≤ cnk = Jn(x
n
k ) = fn(γ

n
k )

n→∞−→ f(γk),

where the first inequality follows from

Jn(x) − J1(x) =
n−1

2

(∫ 1

0

〈δ(x), ẋ〉2 ds−
( ∫ 1

0

〈δ(x), ẋ〉 ds
)2 )

+
nΔ2

t −Δ2
t

2n
≥ 0.

So, taking into account that c1k → +∞ in (8.5), we deduce f(γk) → +∞, too. �
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8.3. Generalized plane waves

Theorem 1.2 becomes also useful for studying the geodesic connectedness of a fam-
ily of Lorentzian manifolds which generalizes the gravitational waves, the so-called
generalized plane waves (see [25]).6

Definition 8.5. A Lorentzian manifold (L, 〈·, ·〉L) is called generalized plane wave,
briefly GPW, if there exists a (connected) finite dimensional Riemannian manifold
(M, 〈·, ·〉) such that L = M× R

2 and

〈·, ·〉L = 〈·, ·〉+ 2 du dv +H(x, u) du2,

where x ∈ M, the variables (u, v) are the natural coordinates of R2 and the smooth
function H : M× R → R is not identically zero.

A GPW becomes a gravitational wave if M = R
2 is equipped with the classical

Euclidean metric and H(x, u) = g1(u)(x
2
1 − x2

2) + 2g2(u)x1x2, x = (x1, x2) ∈ R
2,

for some smooth real functions g1 and g2 such that g21 + g22 �≡ 0 (for more details,
cf., e.g., [5]).

The geodesic connectedness and the global hyperbolicity of GPWs have been
investigated in [10, 17]. In particular, if the Riemannian manifold (M, 〈·, ·〉) is
complete with respect to its canonical distance d(·, ·) and H behaves subquadrati-
cally at spatial infinity, i.e., there exist x̄ ∈ M and (positive) continuous functions
R1(u), R2(u), p(u), with p(u) < 2, such that

−H(x, u) ≤ R1(u) d
p(u)(x, x̄) +R2(u) for all (x, u) ∈ M× R,

then the spacetime is not only geodesically connected (cf. Corollary 4.5 in [10])
but also globally hyperbolic (cf. Theorem 4.1 in [17]). This suggests an intrinsic
connection between these two properties, as the following simple consequence of
our approach confirms.

Theorem 8.6. Any globally hyperbolic GPW with a complete Cauchy hypersurface
is geodesically connected.

Proof. Let (L, 〈·, ·〉L) be a GPW. Clearly, K = ∂v is a complete lightlike Killing
vector field on L. Take any p = (xp, up, vp), q = (xq, uq, vq) ∈ L, any curve x = x(s)
in M connecting xp to xq, and denote Δu = uq − up and Δv = vq − vp. The curve
ϕ(s) = (x(s),Δu s,Δv s) connects p to q, and the scalar product

〈ϕ̇,K(ϕ)〉L = u̇ = Δu

is constant. Therefore, the existence of a geodesic connecting p to q follows from
Theorem 1.2. �

6Indeed, these results are also applicable to the much bigger class of Brinkmann spacetimes
(for more details about such spacetimes see, e.g., [8] and references therein).
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Remark 8.7. To the authors it is not clear if any globally hyperbolic GPW
(L, 〈·, ·〉L), with (M, 〈·, ·〉) complete, necessarily admits some complete Cauchy
hypersurfaces. If this was true, in the hypotheses of Theorem 8.6 this last condition
could be replaced by the completeness of (M, 〈·, ·〉). This question is in connection
with the following more general problem, which goes beyond the scope of the
present article: finding general conditions on a globally hyperbolic spacetime which
ensure that it admits some complete Cauchy hypersurfaces.
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