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Sharp estimates for trilinear oscillatory integrals
and an algorithm of two-dimensional

resolution of singularities

Lechao Xiao

Abstract. We obtain sharp estimates for certain trilinear oscillatory in-
tegrals, extending Phong and Stein’s seminal result to a trilinear setting.
This result partially answers a question raised by Christ, Li, Tao and
Thiele, concerning sharp estimates for certain multilinear oscillatory in-
tegrals. The method in this paper relies on a self-contained algorithm of
resolution of singularities in R

2, which may be of independent interest.

1. Introduction

The purpose of this paper is to study sharp decay estimates of the following trilinear
oscillatory integrals:

ΛS(f1, f2, f3) =

∫∫
eiλS(x,y) f1(x) f2(y) f3(x+ y) a(x, y) dx dy,

where a ∈ C∞
0 (R2) is a smooth cut-off function supported in a small neighborhood

of the origin, and the phase S is real analytic.

1.1. Background

Consider the following oscillatory integral operator:

T (f)(x) =

∫
eiλS(x,y) f(y) a(x, y) dy,(1.1)

where S(x, y) is a smooth real-valued function in Rn ×Rn and a(x, y) is a smooth
cut-off function.
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One of the central topics in oscillatory integrals is the study of the asymptotic
behavior of ‖T ‖2→2 as |λ| → ∞. Equivalently, from a dual point of view, can one
find the optimal decay C(λ) such that

|Λ2(f, g)| ≤ C(λ) ‖f‖2 ‖g‖2,
where the bilinear form Λ2(f, g) is given by

Λ2(f, g) = 〈T (f), g〉 =
∫∫

eiλS(x,y) f(y) g(x) a(x, y) dx dy?(1.2)

During the last decades, this problem and related topics have been extensively
studied by many authors. Fruitful results have been obtained via rich techniques.
We begin with a classical result from Hörmander [12], concerning sharp L2 esti-
mates of (1.1) when S is non-degenerate.

Theorem 1.1 (Hörmander, [12]). Assume a(x, y) is a smooth cut-off function
supported in a neighborhood of 0 and S(x, y) is a smooth function such that∣∣∣ det ∂2S

∂x∂y

∣∣∣ ≥ 1, for all (x, y) ∈ supp (a).(1.3)

Then one has

‖T (f)‖2 ≤ C |λ|−n/2 ‖f‖2.(1.4)

Establishing sharp estimates in a more general setting, in particular when
S(x, y) is degenerate, was significantly more difficult. Until the early ‘90s, by
the seminal works of Phong and Stein [14], [15], [16], a full understanding of (1.1)
was obtained when S is a real analytic function of two variables. In their works, a
systematic treatment was introduced to deal with the degenerate setting. The key
ingredient to characterize the sharp decay rate is the geometric concept: Newton
polyhedra.

Definition 1.2. Assume the Taylor series expansion of S(x, y) is given by

S(x, y) =
∑
p,q∈N

cp,q x
pyq.(1.5)

The Newton polyhedron of S is defined as

N (S) = Conv(∪p,q{(u, v) ∈ R
2 : u ≥ p, v ≥ q and cp,q �= 0}),

where Conv(X) denotes the convex hull of a set X ⊂ R2. The Newton distance
of N (S) is defined to be

δS = inf{t ∈ R : (t, t) ∈ N (S)}.
Theorem 1.3 (Phong–Stein, [16]). Let S(x, y) be real-analytic and assume the
support of a(x, y) is contained in a sufficiently small neighborhood of 0 ∈ R2.
Then

‖T (f)‖2 ≤ C |λ|− 1
2(1+δ) ‖f‖2,

where δ is the Newton distance of N (∂x∂yS).
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It has been shown by the classic work of Varchenko, confirming earlier hypothe-
ses of Arnold, that the Newton polyhedron is the appropriate notion to characterize
the decay rate of scalar oscillatory integrals [20].

1.2. Motivation

In this paper, we study some trilinear analogues of the above problems. Set

ΛS(f1, f2, f3) =

∫∫
eiλS(x,y)f1(x)f2(y)f3(x+ y)a(x, y) dx dy.(1.6)

We want to characterize the optimal constant ε such that the following is true:

|ΛS(f1, f2, f3)| ≤ C |λ|−ε ‖f1‖2 ‖f2‖2 ‖f3‖2,
for some constant C independent of f1, f2, f3 and λ.

The study of the trilinear form (1.6) is also motivated by the work of Christ,
Li, Tao and Thiele [3], where certain multilinear oscillatory integrals were studied
in a very general setting.

To formulate the questions posed in [3], we need some preliminary notations.
Let π = (π1, . . . , πJ ), where each πj : R

n → Rnj ⊂ Rn is a surjective linear
projection. Let S : Rn → R be a polynomial and a(x) be a smooth cut-off function
supported in a small neighborhood of 0 ∈ Rn. For each j, let fj : R

nj → C be a
measurable function. Consider the following multilinear form:

ΛS,π(f1, f2, . . . , fJ) =

∫
eiλS(x)a(x)

J∏
j=1

fj ◦ πj(x) dx.(1.7)

Q1: For what kind of input (S,π), the following is true:

|ΛS,π(f1, f2, . . . , fJ)| ≤ C |λ|−δ
J∏

j=1

‖fj‖pj(1.8)

for some δ > 0, some p = (p1, . . . , pJ) ∈ [1,∞]J and all fj ∈ Lpj (Rnj )?

Q2: If Q1 could be answered affirmatively, what is the optimal exponent δ?

Giving a complete answer to Q1 for a most general input (S,π) is quite chal-
lenging. Still, an affirmative answer to Q1 was given in [3] under certain dimension
assumptions on π. For further progress of Q1, we refer the reader to [1], [2], [4],
and [8].

For Q2, some results were already known. For instance, when J = 2, n1 =
n2 = n/2 (assume n is even) and S is smooth, Theorem 1.1 provides a sufficient
characterization when the best possible decay can be obtained. Theorem 1.3 settled
the case n = J = 2 and S is an arbitrary analytic function; see [7], [18], [19] for
S ∈ C∞(R2). For n = J ≥ 2 and S is a polynomial, almost sharp estimates
(probably up to a power of log |λ|) were known, by the work of Phong, Stein and
Sturm [17].
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In Christ, Li, Tao and Thiele’s attempt to answer Q1, an important step is
a reduction to the trilinear setting. Thus, it is helpful to fully understand the
trilinear case, in particular to determine the optimal exponent in (1.8) in this
setting. This motivates us to study the sharp estimate of the trilinear form (1.6),
which corresponds to the case n = 2, J = 3, S is analytic and π = π0, where

π0(x, y) = (π01(x, y), π02(x, y), π03(x, y)) = (x, y, x+ y).(1.9)

Indeed, a more general setting

ΛS,π(f1, f2, f3) =

∫∫
eiλS(x,y)a(x, y)

3∏
j=1

fj ◦ πj(x, y) dx dy ,(1.10)

can be reduced to (1.6) via an invertible linear transformation in R2 (see Section 2),
where πj : R

2 → R are pairwise linearly independent projections for j = 1, 2, 3.
One necessary condition for (1.10) to possess a decay bound is that S should

be non-degenerate relative to π, in the sense that S(x, y) cannot be represented
as a sum of functions of {πj(x, y)}. Otherwise, if

S(x, y) =
∑

1≤j≤3

Sj ◦ πj(x, y),

then we can incorporate each eiλSj◦πj(x,y) into fj ◦ πj(x, y) by setting

f̃j ◦ πj(x, y) = eiλSj◦πj(x,y)fj ◦ πj(x, y).

Since ‖f̃j‖pj = ‖fj‖pj , one cannot expect any decay as in (1.8).

Let π⊥
j : R2 → R ⊂ R2 be linear projections such that πj ◦ π⊥

j = 0 and

‖π⊥
j ‖2 = 1. Set π⊥ = (π⊥

1 , π⊥
2 , π

⊥
3 ) and Dπ⊥ =

∏3
j=1 π

⊥
j · ∇. Then S is called

simply degenerate relative to π if Dπ⊥S ≡ 0 [3], otherwise S is called simply non-
degenerate relative to π. In addition, S is simply degenerate at a point (x0, y0)
if Dπ⊥S(x0, y0) = 0. Simple non-degeneracy implies non-degeneracy and the con-
verse is not true in general. But in our case, they are equivalent; see Proposition 3.1
in [3].

1.3. Results

The following theorem, extending Theorem 1.1 to the trilinear setting when n = 1,
states that if S is simply non-degenerate everywhere in Conv(supp (a)), then one
can obtain the optimal bound of (1.10).

Theorem 1.4. Assume a(x, y) is a smooth cut-off function supported in a neigh-
borhood of 0 ∈ R2 and S(x, y) is smooth such that

|Dπ⊥S(x, y)| ≥ 1 for all (x, y) ∈ Conv(supp(a)).(1.11)

Then

|ΛS,π(f1, f2, f3)| ≤ C |λ|−1/6
3∏

j=1

‖fj‖2.(1.12)
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This theorem is indeed implicitly proved by Li [13]. We also extend Theorem 1.3
to the trilinear form (1.10). Different to what was expected, the characterization of
the sharp exponent in this case is distinct from the ones in Varchenko’s or Phong–
Stein’s results. Instead, it is described algebraically by the relative multiplicity
of S. Write S as a sum of homogeneous polynomials S(x, y) =

∑
i Si(x, y), where

each Si is a homogeneous polynomial of degree i. The multiplicity of S, i.e., the
order of the zero of the function S at the origin, is

mult(S) = min{i : Si �= 0}.
We also adopt the convention that mult(S) = −∞ if S = 0. The multiplicity of S
relative to π is defined as

multπ(S) = min{i : Dπ⊥Si �= 0} = mult(Dπ⊥S) + 3,

which is the multiplicity of the quotient of S by the class of degenerate analytic
functions. Notice that if S is simply degenerate, then multπ(S) = −∞. One of
the two main results of this paper is:

Theorem 1.5. Assume S(x, y) is a real analytic function and the support of a(x, y)
is sufficiently small. Then

|ΛS,π(f1, f2, f3)| ≤ C |λ|−1/(2multπ(S))
3∏

j=1

‖fj‖2.(1.13)

The result (1.13) is sharp in the sense that if a(0, 0) �= 0, then

|ΛS,π(f1, f2, f3)| ≥ C′ |λ|−1/(2multπ(S))
3∏

j=1

‖fj‖2,(1.14)

as |λ| → ∞, for some C′ > 0 and some {fj}1≤j≤3.

Existence of a (non-sharp) decay rate in the bound of (1.13) was treated in [3].
What is new and interesting here is its sharpness and its connection to the given
phase. It is intriguing to compare the above statement with Theorem 1.3:

1. Where do the exponents in both theorems come from?

2. Why do the exponents look so different?

3. Show that both exponents are sharp.

We provide our answers here since they are quite accessible. We begin with
interpreting both exponents geometrically via the Newton polyhedron of P , where

P (x, y) = ∂x∂y(∂x − ∂y)S(x, y)(1.15)

in the trilinear setting, and

P (x, y) = ∂x∂yS(x, y)(1.16)
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in the bilinear setting. Index the vertices ofN (P ) from left to right by V1 = (p1, q1),
V2 = (p2, q2), . . . , Vk = (pk, qk), the compact edges by E1 = V1V2, E2 = V2V3,
. . . , Ek−1 = Vk−1Vk, and the vertical and horizontal edges by E0 and Ek. The set
of faces, denoted by F(P ), is the union of the set of vertices and the set of edges.
The set of supporting lines of N (P ), denoted by SL(P ) are the lines that intersect
the boundary of N (P ) and do not intersect any other points of N (P ). There
is a one-to-one correspondence M between SL(P ) and [0,∞], given by defining
M(L) to be the negative reciprocal of the slope of L for each L ∈ SL(P ).We often
use the notation Lm ∈ SL(P ) to refer the supporting line M(Lm) = m. Since
each Ej lies in exactly one supporting line, we also use Ej to denote that line.
Let mj = M(Ej), then

0 = m0 < m1 < m2 < · · · < mk−1 < mk = ∞.

We assign two decay constants dL and δL to each L ∈ SL(P ) as follows:

(1) dL = min{dL,x, dL,y}, the minimum of the x-intercept and the y-intercept of L;

(2) (δL, δL) is the intersection of L and the bisecting line p = q.

We associate each Lm ∈ SL(P ) in the (p, q)-plane with a region |y| ∼ |x|m in the
(x, y)-plane, which will be known as the ‘good’ region defined by Lm; see Section 4.
The two decay constants assigned to L ∈ SL(P ) are then associated to the decay
rates of the trilinear and bilinear forms when the support of the cut-off function
a(x, y) is localized to the associated region of L.

Next we assign the corresponding decay constants to each face F as follows:

dF = sup dL and δF = sup δL,

where both supremums range over all L ∈ SL(P ) containing F . Then

mult(P ) = max{dF : F ∈ F(P )} = sup{dL : L ∈ SL(P )}
and

δP = max{δF : F ∈ F(P )} = sup{δL : L ∈ SL(P )}.
For simplicity, we restrict our attention to the non-vertical edges. Let E = Ej ,

m = mj and (p, q) = (pj , qj) for some j. In the trilinear setting, there are subtle
differences between m ≤ 1 and m ≥ 1. In the case m ≤ 1, one has dE = dE,x =

p + mq. The value |λ|− 1
2(3+dE) corresponds to the bound of ΛS when restricting

supp (a) to the region associated to E. If m ≥ 1, then dE = dE,y ≥ p/m+q. When
restricting supp (a) to the regions assoicated to E, the corresponding bound of ΛS

is |λ|− 1
2(3+dE) ; see Proposition 5.2 and Proposition 5.4. In general, the bound

of ΛS is |λ|− 1
2(3+dF ) , when supp (a) is restricted to the region associated to F .

However, such difference does not arise in the bilinear setting and we only need
one expression for δE which is δE = (p+mq)/(1 +m). In general, the bound for

the bilinear form is |λ|− 1
2(1+δF ) , when supp (a) is restricted to the region associated

to F .



Trilinear oscillatory integrals and resolution of singularities 73

For the second question, the noticeable difference between the operators is
the extra term f3(x + y) in the trilinear form. If x and y vary in intervals of
length δ1 and δ2 respectively, then (x + y) varies in an interval of length about
max{δ1, δ2}. If f3 is a characteristic function supported in this interval, then

‖f3‖2 ∼ max{δ1/21 , δ
1/2
2 }. Heuristically, this freezes the ratio log |δ1|/ log |δ2| to

be 1, if one wants to optimize the bound of the trilinear form. However, without
the extra term f3(x+y), the ratio log |δ1|/ log |δ2| is totally free. The effect of such
difference between the operators is realized by the difference between the following
two Schur’s type lemmas:

Lemma 1.6. Assume a(x, y) is a measurable function supported in a strip of
x-width no more than δ1 and y-width no more than δ2. Assume ‖a‖∞ ≤ 1. Then∣∣∣ ∫∫ f1(x)f2(y) a(x, y) dx dy

∣∣∣ ≤ C (δ1δ2)
1/2‖f1‖2 ‖f2‖2.(1.17)

Lemma 1.7. The assumptions on a(x, y) are the same as in Lemma 1.6. Then∣∣∣ ∫∫ f1(x)f2(y)f3(x+y)a(x, y) dxdy
∣∣∣≤ Cmin{δ1/21 , δ

1/2
2 }‖f1‖2 ‖f2‖2 ‖f3‖2.(1.18)

Lemma 1.6 is employed in [16] to control the norm of the operator in Theo-
rem 1.3 when the phase fails to provide sufficient decay. Lemma 1.7 plays the same
role in our proof; see Section 2 for its proof.

In Lemma 1.6, the two parameters δ1 and δ2 are symmetric, which illustrates
why there is no constraint on the ratio log |δ1|/ log |δ2|. Indeed, the sharpness
of Theorem 1.3 can be verified by setting f1 = 1[0,δ1] and f2 = 1[0,δm1 ] with an
appropriate choice of δ1 and with m being the negative reciprocal of the slope of
any supporting lines containing the so-called main face, i.e., the edge that intersects
the bisecting line or the vertex that lies on it.

However, such symmetry breaks down in the trilinear setting, even though
the parameters x and y appear symmetrically in ΛS . One should think of (1.18)

as two different estimates: the first one with the bound Cδ
1/2
1 and the second

one with Cδ
1/2
2 . Consequently, they will lead to two different bounds for (1.6)

accordingly. The first (second) bound comes from employing the first (second)
estimate of (1.18) and Theorem 2.1, with decay exponents represented in terms
of x-intercepts dEj ,x (y-intercepts dEj ,y). This explains why we need to split the
range of m into two cases: m ≤ 1 and m ≥ 1. However, these two bounds coincide
when the x-intercept and the y-intercept are equal, i.e., m = 1. In the picture
of the Newton polyhedron, this corresponds to the supporting line of slope −1,
which is given by the equation p + q =mult(P ) with |y| ∼ |x| as the associated
region. This illustrates how the relative multiplicity comes into play and why the
sharpness of ΛS is obtained when |y| ∼ |x|.

Now we come to the sharpness of the trilinear form. Write S as a sum of
homogeneous polynomials:

S(x, y) =

∞∑
n=n0

Sn(x, y).
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Without loss of generality, we assume n0 is the relative multiplicity of S, i.e.,

∂x∂y(∂x − ∂y)Sn0 �= 0;(1.19)

see Section 1.2.
Let f1 = f2 be characteristic functions of IA = [−λ−1/n0/A, λ−1/n0/A], and

let f3 be the characteristic function of [−2λ−1/n0/A, 2λ−1/n0/A], where A > 0 is
a number independent of λ such that

|λS(x, y)| ≤ 2−100, for all x, y ∈ IA.

Then∣∣∣ ∫∫ eiλS(x,y) a(x, y) f1(x) f2(y) f3(x+ y) dx dy
∣∣∣ ∼ |IA| × |IA| ∼ λ−2/n0 .

Notice that

‖f1‖2 ∼ ‖f2‖2 ∼ ‖f3‖2 ∼ λ−1/(2n0).

Hence, if

∣∣∣∣
∫∫

eiλS(x,y) a(x, y) f1(x) f2(y) f3(x+ y) dx dy

∣∣∣∣ � C(λ)

3∏
j=1

‖fj‖2,(1.20)

then C(λ) � λ−1/(2n0) = λ−1/(2multπ0(S)) as desired.

1.4. Methods

Like Phong and Stein’s proof of Theorem 1.3, the proof of Theorem 1.5 requires
elaborate analysis. There are two main ingredients in their proof:

(1) the operator version of the van der Corput lemma [15]; see Theorem 2.2, and

(2) the Weierstrass preparation theorem (WPT) and the Puiseux expansion.

In order to extend Phong and Stein’s framework to the trilinear setting, we first
establish the trilinear analogue of (1):

(1’) Theorem 2.1: trilinear version of Phong–Stein’s operator van der Corput
lemma.

In addition, we develop:

(2’) a self-contained algorithm of resolution of singularities in R
2, which is our

second main result. We also use the WPT in the proof of the algorithm, but
its use is not essential. One can use the implicit function theorem instead.

Theorem 1.8. For each analytic function P defined in a neighborhood of 0 ∈ R2,
there is an open set U containing the origin, such that up to a set of measure zero,
one can partition U into a finite collection of regions {Vk}1≤k≤K , such that P
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behaves almost like a monomial in each Vk in the following sense. There is an
integer M ∈ N, and for each k there is a one-to-one function

ρk : Vk → ρk(Vk)

(x, y) �→ (xk, yk)

satisfying the following properties:

P (x, y) = Pk(xk, yk) = xpk

k yqkk ·Qk(xk, yk) for all (x, y) ∈ Vk,(1.21)

where

(i) (xk, yk) = ρk(x, y) is given by{
x = xk

y = γk(|xk|1/M ) + |xk|Mk/Myk,
(1.22)

where Mk ∈ N and γk is a polynomial, unless P (x, γk(|x|1/M )) = 0, then γk
is a convergent power series.

(ii) Pk = P ◦ ρ−1
k and (pk, qk) is a vertex of the Newton polyhedron of Pk;

(iii) The function Qk is smooth and nonvanishing near 0 in ρk(Vk), i.e.,

lim
(xk,yk)→(0,0)

Qk(xk, yk) �= 0 inside ρk(Vk);

(iv) ρk(Vk) (as well as Vk) is a curved triangular region, whose upper and lower
boundaries are given by yk = Ck|xk|mk and yk = C′

k|xk|m′
k , for some 0 ≤

mk,m
′
k ≤ ∞ with mkM , m′

kM ∈ N ∪ {∞}, and for some constants Ck, C
′
k.

Moreover, the constants mk, m
′
k, (pk, qk), Mk/M and the function1 γk can be

computed explicitly via the Newton polyhedra of {Pk}1≤k≤K .

Remark 1.9. See Theorem 4.11 in Section 4 for a complete version.

The idea of employing resolution of singularities to investigate oscillatory in-
tegrals appeared in Varchenko’s work [20], where deep results from Hironaka [11]
played a crucial role. In [16], to control the lower bound of |∂x∂yS|, one resolves
the singularities of ∂x∂yS by means of Puiseux series expansions of roots. More re-
cently, a direct algorithm of resolution of singularities in R2 was introduced by
Greenblatt [6], where an elegant proof of Theorem 1.3 was presented based on
this algorithm.

Our proofs of Theorem 1.5 and the algorithm here are both influenced by [6],
as well as its predecessor [16]. Many of the ideas inside the algorithm here are
very elementary and have even been known for centuries, which may come back to
Newton’s method, known as the Newton–Puiseux algorithm for solving P (x, y) = 0
by a fractional power series y = y(x1/M ), i.e., the Puiseux series; see [5]. The

1In the case γk is an infinite series, we can compute any partial sum of γk.
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philosophy of the algorithm here is similar to that of the one in [6]: one wants
to decompose some neighborhood of a singular point of a given function into a
finite collection of ‘good’ regions, in each of which the function behaves like a
monomial. However, the algorithm here is distinct from the one in [6] in many
aspects. One noticeable difference is that we do not need to employ the implicit
function theorem, while it is a key for the termination of the algorithm in [6]. We
refer the reader to Section 3 for the main ideas of the algorithm, comparisons to
the one in [6] and some examples that implement the algorithm.

Concluding remarks

It is possible to generalize the simply non-degenerate case, i.e., Theorem 1.4 to
higher dimensions, however such generalization for the degenerate case, i.e., The-
orem 1.5 is extremely challenging. First, the equivalence between degeneracy and
simple-degeneracy breaks down completely, and indeed the class of non-degenerate
functions is significantly larger than that of simply non-degenerate functions. Even
for proving the existence of decays, the case for higher dimensions is substantially
more complicated; see [4]. Second, progress on degenerate oscillatory integrals in
higher dimensions are slow and arduous, and even the higher dimension analogue
of Theorem 1.3 is still far from being fully understood; see [9]. Perhaps a more
approachable problem to consider is the n-linear analogue of Theorem 1.5. How-
ever, starting from n = 4, there won’t be any decay if one attempts to bound the
n-linear form by the product of functions in L2(R). Thus, one needs to consider
the functions in general Lpj (R) space. As a starting point, one should address Q2
above for (1.6) for general p, q and r. Certain symmetry, which holds in the setting
of n functions with n variables (see [17]), breaks down completely in this trilinear
setting. Consequently, finding optimal decays for all triples (p, q, r) is substantially
more complicated than that in [17]; see [10] for recent progress. Finally, we refer
the reader to [21] for another interesting application of the resolution algorithm,
where we obtain a complete characterization for the Lp → Lp mapping properties
for one-dimensional oscillatory integral operators.

The organization of this paper is as follows. In Section 2, we reduce the trilinear
form ΛS,π(f1, f2, f3) to the special case ΛS(f1, f2, f3) as in (1.6) and then prove
Theorem 1.4 and Theorem 2.1. The latter one is the trilinear version of Phong–
Stein’s van der Corput Lemma. In Section 3, we outline some main ideas of the
algorithm. Model examples are also provided to illustrate how the algorithm is
implemented. Details for the proof of the algorithm will appear in Section 4. The
method is purely analytic. In Section 5, we apply the algorithm and Theorem 2.1
to prove Theorem 1.5.
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2. Preliminaries

In this section, we employ the basic strategy from [13] to prove Theorem 1.4 and
its local analogue, Theorem 2.1. At the end, we will prove Lemma 1.7.

Theorem 2.1. Assume a(x, y) is a smooth function supported in a strip of x-width
no more than δ1 and y-width no more than δ2, satisfying the following derivative
conditions:

|∂ya(x, y)| � δ−1
2 and |∂2

ya(x, y)| � δ−2
2 .(2.1)

Let μ > 0 and S(x, y) be a smooth function such that, for all (x, y) ∈ Conv(supp (a)),

|Dπ⊥
0
S(x, y)| � μ and |∂β

yDπ⊥
0
S(x, y)| � μ

δβ2
for β = 1, 2.(2.2)

Then for ΛS defined as in (1.6), one has

|ΛS(f1, f2, f3)| � |λμ|−1/6
3∏

j=1

‖fj‖2.

The above theorem can be viewed as a trilinear analogue of Phong–Stein’s
operator version of van der Corput lemma [15]:

Theorem 2.2. Assume a(x, y) is a smooth function supported in a strip of x-
width no more than δ1 and y-width no more than δ2, satisfying the same derivative
conditions as in (2.1). Suppose μ > 0 and S(x, y) is a smooth function in R

2 such
that the following holds for all (x, y) ∈ supp (a) :

(2.3) |∂x∂yS(x, y)| � μ and |∂x∂β+1
y S(x, y)| � μ

δβ2
for β = 1, 2.

Then, for T defined as in (1.1),

‖T (f)‖2 � (λμ)−1/2 ‖f‖2.

In both theorems above, we have adopted the notation X � Y to denote
|X | ≤ CY , where C can depend on a and S, but is independent of δ1, δ2, μ and λ.
It is also worth pointing out that theorem 2.2 is not exactly the same as the one
employed by Phong–Stein in [15], we have adopted a slightly more general version
from Greenblatt [6]. For the proof of Theorem 2.2, we also refer the reader to [6].

Now we turn to the technical details in proving Theorem 1.4 and Theorem 2.1.
First of all, (1.10) can be reduced to (1.6). Set

‖ΛS,π‖ = sup{|ΛS,π(f1, f2, f3)|, ‖fj‖2 ≤ 1 for j = 1, 2, 3}(2.4)

and let ‖ΛS‖ be defined similarly. We may assume π1(x, y) = x, π2(x, y) = y
and π3(x, y) = Ax + By, where A �= 0 and B �= 0. Change variables u = Ax
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and v = By to obtain

ΛS,π(f1, f2, f3) =

∫∫
eiλS(x,y)f1(x)f2(y)f3(Ax +By) dx dy

=
1

AB

∫∫
eiλS(u/A,v/B)f1(u/A)f2(v/B)f3(u+ v) du dv

=
1

AB

∫∫
eiλSA,B(u,v)f1,A(u)f2,B(v)f3(u + v) du dv,

where SA,B(u, v) = S(u/A, v/B), f1,A(u) = f1(u/A) and f2,B(v) = f2(v/B). No-
tice that

Dπ⊥
0
SA,B(u, v) =

1

AB
((∂u/A− ∂v/B)∂u∂vS)(u/A, v/B).

Thus Dπ⊥
0
SA,B = CDπ⊥S for an appropriate constant C. In addition ‖f1,A‖2 =√

A‖f1‖2 and ‖f2,B‖2 =
√
B‖f2‖2. Finally, notice that the convexity is preserved

under linear mappings. Therefore, for an appropriate constant C, one has

‖ΛS,π‖ = C‖ΛSA,B‖.
Now we turn to the proofs of Theorem 1.4 and Theorem 2.1, and only need

to consider ΛS. For simplicity, we assume ‖f1‖2 = ‖f2‖2 = ‖f3‖2 = 1. Applying
change of variables (u, v) = (x+ y, y) and duality, one has

‖ΛS(f1, f2, f3)‖ ≤ ‖B(f1, f2)‖2 ‖f3‖2 = ‖B(f1, f2)‖2,
where

B(f1, f2)(u) =

∫
eiλS(u−v,v) f1(u − v) f2(v) a(u − v, v) dv.

Employing the method of TT ∗, one obtains

‖B(f1, f2)‖22 =

∫∫∫
ei(λS(u−v1,v1)−λS(u−v2,v2))f1(u− v1)f̄1(u− v2)f2(v1)f̄2(v2)

× a(u− v1, v1) a(u− v2, v2) dv1 dv2 du.

Change variables: x = u− v1, y = v1 and τ = v2 − v1 and set

Sτ (x, y) = S(x, y)− S(x− τ, y + τ),

Fτ (x) = f1(x) f̄1(x− τ),

Gτ (y) = f2(y) f̄2(y + τ),

aτ (x, y) = a(x, y)a(x − τ, y + τ) .(2.5)

This yields

‖B(f1, f2)‖22 =

∫∫∫
eiλSτ (x,y) Fτ (x)Gτ (y) aτ (x, y) dx dy dτ .(2.6)

The proofs of Theorem 1.4 and Theorem 2.1 slightly diverge now and are presented
in two separated subsections.
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2.1. Proof of Theorem 1.4

Split ‖B(f1, f2)‖22 into B1 +B2 according to the value of |τ | below:
• Case 1. |τ | ≤ |λ|−1/3.

• Case 2. |τ | ≥ |λ|−1/3.

In Case 1, we simply move the absolute value into the integrals, which yields

B1 ≤
∫
|τ |≤|λ|−1/3

‖Fτ‖1 ‖Gτ‖1 dτ ≤ |λ|−1/3 ‖f1‖22 ‖f2‖22 = |λ|−1/3.(2.7)

In Case 2, in order to employ Theorem 1.1 to the inner double-integral, we assume
for a moment in the support of aτ , the following holds for some positive constant C:

|∂x∂ySτ (x, y)| ≥ C |τ |.(2.8)

By Theorem 1.1 and the Cauchy–Schwarz inequality, B2 is dominated by∫
|τ |≥|λ|−1/3

C |λτ |−1/2 ‖Fτ‖2 ‖Gτ‖2 dτ

≤ C |λ|−1/3

∫
‖Fτ‖2 ‖Gτ‖2 dτ ≤ C |λ|−1/3

(∫
‖Fτ‖22 dτ ·

∫
‖Gτ‖22 dτ

)1/2

= C |λ|−1/3‖f‖22 ‖g‖22 ≤ C |λ|−1/3.(2.9)

Thus
‖B(f, g)‖22 = B1 +B2 ≤ C |λ|−1/3.

It remains to verify (2.8) on the support of (2.5). Set

F (t) = Sxy(x− t, y + t).

Then,

|F ′(t)| = |(∂x − ∂y)∂x∂yS(x− t, y + t)|.(2.10)

By the mean value theorem, there is a t0 between 0 and τ such that

|∂x∂ySτ (x, y)| = |F (0)− F (τ)| =
∣∣∣ ∫ τ

0

F ′(t) dt
∣∣∣ = |τ | |F ′(t0)|.(2.11)

Notice that (x, y) ∈ supp (a) and (x − τ, y + τ) ∈ supp (a), then by convexity
(x− t0, y + t0) ∈ Conv(supp (a)). Therefore, (1.11), (2.11) and (2.10) yield (2.8).

2.2. Proof of Theorem 2.1

Similarly, we split ‖B(f1, f2)‖22 into B1+B2 according to the value of |τ | as below:
• Case 1. |τ | ≤ |λμ|−1/3.

• Case 2. |τ | ≥ |λμ|−1/3.
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In Case 1, we simply move the absolute value into the integrals and thus

B1 ≤
∫
|τ |≤|λμ|−1/3

‖Fτ‖1 ‖Gτ‖1 dτ ≤ |λμ|−1/3 ‖f1‖22 ‖f2‖22 = |λμ|−1/3.

In Case 2, assume at a moment that (2.1) is true for aτ and (2.3) are true for Sτ

with μ replaced by |λμ|. Then Theorem 2.2 implies

B2 ≤ C

∫
|τ |≥|λμ|−1/3

|λμτ |−1/2 ‖Fτ‖2 ‖Gτ‖2 dτ ≤ C |λμ|−1/3.(2.12)

It remains to verify the conditions mentioned above. Indeed (2.1) follows by
aτ (x, y) = a(x, y)a(x− τ, y+ τ). Sτ satisfies the first part of (2.3) with μ replaced
by |λμ| due to (2.2), (2.10), (2.11) and the convexity assumption in Theorem 2.1.
If we set

F1(t) = ∂x∂
2
yS(x− t, y + t) and F2(t) = ∂x∂

3
yS(x− t, y + t),

then the second part of (2.3) (with μ replaced by |λμ|) follows from (2.2), (2.10),
(2.11) (with F replaced by F1 and F2) and convexity.

2.3. Proof of Lemma 1.7

Proof. By the Cauchy–Schwarz inequality, Hölder’s inequality and the Fubini the-
orem, one has∣∣∣ ∫∫ f1(x)f2(y)f3(x+ y)a(x, y) dx dy

∣∣∣
=

∣∣∣ ∫ f1(x)
( ∫

f2(y)f3(x+ y)a(x, y) dy
)
dx

∣∣∣
≤

∣∣∣ ∫ ( ∫
f2(y)f3(x+ y)a(x, y) dy

)2

dx
∣∣∣1/2 · ‖f1‖2

≤
∣∣∣ ∫ ( ∫

|a(x, y)|2dy
)(∫ ∣∣f2(y)f3(x+ y)

∣∣2dy)dx∣∣∣1/2 · ‖f1‖2
≤ C δ

1/2
2 ‖f‖1 ‖f2‖2 ‖f3‖2 .

The other bound can be obtained similarly. �

The estimates in both Lemma 1.7 and Lemma 1.6 are sharp, which can be seen
by taking f1 = 1[0,δ1], f2 = 1[0,δ2] and f3 = 1[0,δ1+δ2].

3. Ideas of the algorithm

To employ Theorem 2.1 to attack Theorem 1.5, one needs to decompose supp (a)
into regions such that P (x, y) is well-behaved, where P = ∂x∂y(∂x− ∂y)S. Ideally,
one hopes P (x, y) to behave like a monomial with a negligible error term. The
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algorithm is driven by this idea. In each stage of iteration, ‘good’ regions (with
the desired property) are obtained via vertices and edges of N (P ) when P (x, y)
is ‘nonvanishing’, and ‘bad’ regions are obtained when P (x, y) ‘vanishes’ on these
edges. In each such ‘good’ region, P (x, y) behaves like a monomial and no further
treatment is required. Each of those ‘bad’ regions is then carried to the next stage
of iteration. A branch of iterations is created for each ‘bad’ region and one hopes
all the ‘bad’ regions will eventually go away as the iterations go deeper. To see how
it works, drop all zero coefficients and write the Taylor expansion of P (x, y) as

P (x, y) =
∑
p,q∈N

cp,q x
pyq

The Newton diagram is the boundary of N (P ), which consists of two non-compact
edges, a finite collection of compact edges E(P ) (may be empty) and a finite col-
lection of vertices V(P ). The Euler formula gives #V(P ) −#E(P ) = 1. For each
face F ∈ F(P ), define

PF (x, y) =
∑

(p,q)∈F

cp,q x
pyq.(3.1)

Choose one Lm ∈ SL(P ) and consider the region |y| ∼ |x|m associated to it. Notice
that Lm goes through at least one V ∈ V(P ), say V = (pv, qv). Let El and Er be
the edges left to and right to V with M(El) = ml and M(Er) = mr, respectively.
Then 0 ≤ ml ≤ m ≤ mr ≤ ∞. Consider the following three possible cases:

Case (1) ml < m < mr, Case (2) m = ml and Case (3) m = mr,

which correspond to: (1) the vertex V ‘dominates’ P (x, y), (2) the edge El ‘domi-
nates’ P (x, y) and (3) the edge Er ‘dominates’ P (x, y) respectively.

In Case (1), pv +mqv < p + mq for any other (p, q) with cp,q �= 0. Then in
the region |y| ∼ |x|m,

P (x, y) = PV (x, y) +O(|x|pv+mqv+ν), for some ν > 0.

Given |x| sufficiently small, PV (x, y) is the dominant term in P (x, y), i.e.,

P (x, y) ∼ PV (x, y) = cpv ,qv x
pvyqv .

Case (2) and Case (3) are exactly the same, so we only discuss Case (2)
m = ml here. In addition, we focus on the right half plane x > 0 and assume
y = rxm, where r ∈ R is a parameter. Notice that pv + mqv = p + mq for all
(p, q) ∈ El and pv +mqv < p+mq for all (p, q) /∈ El. Thus{

PEl
(x, rxm) = PEl

(1, r)xpv+mqv

P (x, y) = PEl
(1, r)xpv+mqv +O(xpv+mqv+ν), for some ν > 0.

As long as r is away from the non-zero real roots of PEl
(1, r), the origin and the

infinity, PEl
(x, y) is the dominant term of P (x, y). We refer this as the case that

the edge El ‘dominates’ P (x, y).
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y
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l

V3

V2

V1

Newton polyhedron

(2,4)

(3,2)

(5,1)

P (x, y) = x5y − x3y2 + x2y4

PV2(x, y) = −x3y2

|x|2 � |y| � |x|1/2

Figure 1. Case (1). The vertex V2 is dominant, where 1/2 < m < 2.

y

x
V3

V2

V1

Newton polyhedron

(2,4)

(3,2)

(5,1)

P (x, y) = x5y − x3y2 + x2y4

PV1V2(x, y) = −x3y2 + x2y4

|y| ∼ |x|1/2

Figure 2. Case (2). The edge V1V2 is dominant, where m = 1/2.

What remains are the ‘bad’ regions: when r is in some neighborhood of the non-
zero roots of PEl

(1, r), which demands most of the work. The traditional way of
further analyzing these ‘bad’ regions would be to do a coordinate change. Choose a
non-zero root r0 of PEl

(1, r), set (x1, y1) = (x, y− r0x
m) and consider the function

P (x, y) in the new coordinates, namely P1(x1, y1) = P (x1, y1+r0x
m
1 ). We can then

apply the above arguments to the function P1(x1, y1), which will result in a further
partition of a ‘bad’ region into ‘good’ regions where vertices or edges dominate, and
‘bad’ regions. Iterating such procedures would end up with an infinite collection of
‘good’ regions. As a by-product, one can find solutions for P (x, γ(x)) = 0, where
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each γ(x) is a Puiseux series. However, for analytic purposes it would be of sig-
nificant advantage and even crucial for the algorithm to converge. By saying an
algorithm converges, we always mean that it terminates after finitely many steps.
Indeed, if the algorithm fails to converge,

1) we may fail to find a neighborhood for the desired partition. Notice that in
each stage of iteration, in order for the functions P (x, y), P1(x1, y1), . . . to behave
like monomials, we need the support of |x|, |x1|, . . . to be sufficiently small. In the
case the algorithm fails to converge, it is unclear whether there is a uniform upper
bound for |x| = |x1| = . . . , that works for all stage of iterations. Without such
an upper bound, one may not partition the support of the cut-off function a(x, y)
into ‘good’ regions. However, this issue does not arise if the algorithm converges.
Another possible way to fix this issue is to investigate on how the upper bound
of |x| relies on the function P (x, y). This direction seems quite challenging but is
of great interest, for it is related to the stability of oscillatory integrals/operators.

2) Even assuming we can find a neighborhood to do the partition, it is signifi-
cantly simpler to work on a finite collection of ‘good’ regions rather than an infinite
collection. For the former, we essentially work in single ‘good’ region, since the
desired estimates are allowed to rely on the cardinality of ‘good’ regions, unless
one seeks for a uniform bound for a class of phases. For the latter, one has to
keep track of all constants appearing in all stages of iterations, and hope to be
able to absolutely sum all the resulting estimates together. Heuristically, a conver-
gent algorithm allows us to divide a problem concerning an arbitrary real analytic
function into finitely many subproblems, each of which is concerning a ‘monomial’.

Unfortunately, only performing the change of coordinates (x1, y1) = (x, y −
r0x

m) is not sufficient for the algorithm to converge. For example, if we apply the
above algorithm to the function

P (x, y) =
(
y −

( ∞∑
j=0

rj x
j+1

))n

,

we will end up with repeating the following change of variables:

yj+1 = yj − rj x, for j ≥ 0,

and the iterations will never stop.
How can one modify the above ideas to ensure the convergence of the algorithm?

Greenblatt [6] had some very nice observations in achieving this goal. The key
is to complexify the change of coordinates in each stage of iterations by means
of the implicit function theorem (IFT). Roughly speaking, each such change of
coordinates helps to decrease certain ‘order’ of P (x, y) by at least 1,

To see how this works, choose a root r0 of PEl
(1, r) and assume its order is s0.

Applying the IFT to ∂s0−1
y P (x, y) = 0 yields that there is a unique h(x) such that

1. ∂s0−1
y P (x, h(x)) = 0,

2. h(x) is a real analytic function of x1/M whose leading term is given by r0x
m,

where M is some positive integer.
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Instead of doing coordinate change of the form y1 = y − r0x
m, one must do

coordinate change of the form y1 = y − h(x). Consequently, each root r1, an
analogue of r0 from the next stage of iteration, has order s1 at most s0 − 1. Then
the algorithm must converge. As a trade-off, the function h(x) is given implicitly
as a Puiseux series, which is not easy to compute in general. For instance, consider
the function

P (x, y) = (y − x)n + xny2n.

One can see that N (P ) has only one compact edge E and PE(1, r) has only one
root r0 of order s0 = n. To apply the algorithm in [6], one first uses the IFT to

solve ∂n−1
y P (x, y) = 0, i.e., y − x+ cxnyn+1 = 0 where c = (2n)!

n!(n+1)! . The solution

is then given by y = h(x) = x + O(x1+μ) for some μ > 0. Then change the
coordinate y = y1 + h(x1) and plug it into P (x, y). In general, to do iterations in
later stages, one needs to compute the Puiseux expansion of h(x) up to a certain
number of terms. One then needs to run the Newton–Puiseux algorithm to do
such computation.

Can one retain the simplicity and explicitness (avoid using the IFT) of the
change of variables/coordinates, and also ensure the convergence of the algorithm?
The answer is affirmative. To do so, we perform the change of variables in each
stage of iterations as follows:

(x, y) = (x1, r0 x
m
1 + y1 x

m
1 ).(3.2)

The xm
1 term in front of y1 plays the role in rescaling ‘curved’ regions back into

‘uncurved’ regions, allowing us to iterate in the same kind of regions. Now we
assume the algorithm does not stop, resulting in an infinite chain

[U, P ] = [U0, P0] → [U1, P1] → [U2, P2] → · · · → [Un, Pn] → · · · .(3.3)

Each Un = (0, ε) × (−ε, ε) is the domain for Pn(xn, yn), obtained inductively via
change of variables of the form (3.2), for instance P1(x1, y1) = P (x1, r0x

m
1 +xm

1 y1).
We then search for certain patterns inside N (Pn) as n → ∞. Amazingly, the
number of compact edges of N (Pn) converges to 1. More precisely, there exists
an n0 ∈ N such that for n ≥ n0, N (Pn) has only one compact edge En and the
restriction of Pn to it is cn(yn− rnx

mn
n )sn0 . With this observation at hand, we can

now turn off the iterations. At the n0-th stage of iteration, instead of repeating
the change of variables of the form (3.2), we do all of them together at a time

yn0 = yn0+1x
mn0
n0 +

∞∑
k=n0

rkx
mn0+mn0+1+···+mk
n0 ,

then the algorithm stops immediately; see Lemma 4.9.
The benefits of the explicitness and simplicity of the change of variables can

help keep very good track of variables in different stages. For any given n, one
can write down the relation between (xn, yn) and (x, y) explicitly; see (4.42). One
is also able to compute the Newton polyhedron of Pn, assuming we know how to
find roots of one-variable polynomials. It is also quite convenient to estimate lower
bounds of |P (x, y)| in ‘good’ regions from later stages of iterations inductively via
these Newton polyhedra; see (4.47) and (4.48).
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3.1. Two model examples

The function in the first example is quite simple, we aim to implement the al-
gorithm in details. In particular, we provide details to compute the size of the
original domain, i.e., ε = ε0 below. However, we would recommend the reader to
focus on the change of variables rather than the values of εk and ρk below. The
second example is slightly more complicated, with primary focus on the conver-
gence of the algorithm. In these two examples, we only handle the right half plane
x > 0, for the other half can be handled similarly.

Example 3.1. The first example is

P (x, y) = (y − x)(y − x− x2) = (y2 − 2xy + x2)− x2y + x3,

and we shall decompose the domain U0 = U = (0, ε)×(−ε, ε) into a finite collection
of ‘good’ regions, where ε = ε0 is sufficiently small that will be determined at the
end of the algorithm. The pair [U0, P0] = [U, P ] is the input and the algorithm
runs as follows.

(0) Notice N (P ) has two vertices V1 = (2, 0), V2 = (0, 2) and one compact edge
E = V1V2, whose slope is −1. Let ρ0 > 0 be sufficiently small, but much
greater than ε0, say ρ0 > 210ε0. The polynomial PE(1, y) has only one root
r0 = 1. Then in the ‘good’ region

U0,g,V1 = {(x, y) ∈ U : (1 + ρ0)x ≤ y < ε0}

one has

P (x, y) ∼ρ0 y2 = PV1(x, y),

and in the ‘good’ region

U0,g,V2 = {(x, y) ∈ U : −ε0 < y ≤ (1− ρ0)x}

one has

P (x, y) ∼ρ0 x2 = PV2(x, y).

The remaining ‘bad’ region is y = (1 + y1)x, where |y1| < ρ0. Set x1 = x,
y = x1 + x1y1 and

P1(x1, y1) = P (x1, x1(1 + y1)) = x2
1y

2
1 − x3

1y1.

Choose ε1 sufficiently small but much bigger than ρ0, say ε1 > 210ρ0, and set
U1 = (0, ε1)× (−ε1, ε1).

(1) Now we are in the 1-st stage of iteration, whose input is [U1, P1]. Notice N (P1)
has two vertices V ′

1 = (2, 2), V ′
2 = (3, 1) and only one compact edge E′ = V ′

1V
′
2 .

Let ρ1 > 210ε1. Similarly, in the region x1 < ε1, (1 + ρ1)x1 ≤ y1 < ε1,

P1(x1, y1) ∼ρ1 y21x
2
1 = P1,V ′

1
(x1, y1)
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and in the region x1 < ε1, −ε1 < y1 ≤ (1− ε1)x1,

P1(x1, y1) ∼ρ1 −y1x
3
1 = P1,V ′

2
(x1, y1).

The ‘bad’ region is y1 = (1 + y2)x2 with |y2| < ρ1. Change variables x2 = x1,
y1 = (1 + y2)x2 and set

P2(x2, y2) = P1(x2, (1 + y2)x2) = x3
2(1 + y2)y2.

Choose ε2 > 210ρ1 and set U2 = (0, ε2)× (−ε2, ε2).

(2) In the 2-nd stage, the input is [U2, P2]. Now N (P2) has only one vertex
V ′′ = (3, 1) and P2(x2, y2) ∼ x3

2 y2, given ε2 sufficiently small. The algorithm
stops here.

One can now determine the value of ε0, whose choice relies on how small one
wants the error term to be: by choosing ε0 > 0 sufficiently small, we can let the
ratio between the “dominant term” and the “error term” be sufficiently large. In
general, we need to compute {εk} and {ρk} backward. In this case, one can safely
take 2−10 > ε2 > 210ρ1 > 220ε1 > 230ρ0 > 240ε0 and in particular any value of ε0
less than 2−50.

The corresponding partition of U = (0, ε)× (−ε, ε) will be⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U0,g,V1 = {(x, y) ∈ U : y ≥ (1 + ρ0)x}, where P (x, y) ∼ y2,

U0,g,V2 = {(x, y) ∈ U : y ≤ (1− ρ0)x}, where P (x, y) ∼ x2,

U1,g,V ′
1
= {(x, y) ∈ U : y1 ≥ (1 + ρ1)x1}, where P (x, y) ∼ x2

1y
2
1 ,

U1,g,V ′
2
= {(x, y) ∈ U : y1 ≤ (1 − ρ1)x1}, where P (x, y) ∼ −x3

1y1,

U2,g = {(x, y) ∈ U : −ρ1 < y2 < ρ1}, where P (x, y) ∼ x3
2y2,

where {
x = x1 = x2,

y = x+ xy1 = x+ x2 + x2y2.

To help the reader better understand how the two algorithms work differently,
we also implement the one in [6] for this example.

First, notice s0 = 2, we then need to solve ∂yP (x, y) = 0. This gives y =
x+ x2/2. Set y = x+ x2/2 + y1, then

P̃1(x, y1) = P (x, x+ x2/2 + y1) = (y1 − x2/2)(y1 + x2/2).

The only compact edge of N (P̃1) has two roots, r1 = 1/2 and r′1 = −1/2. Set
y1 = x2/2 + y2 and assume |y2| < x2/2, then

P̃2(x, y2) = P̃1(x, x
2/2 + y2) = y2(y2 + x2) ∼ x2y2.

Similarly set y1 = −x2/2 + y′2 and assume |y′2| < x2/2, one has

P̃ ′
2(x, y

′
2) = P̃1(x,−x2/2 + y′2) = y′2(y

′
2 − x2) ∼ −x2y′2.

The algorithm stops here.
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Example 3.2. Since the major focus is the termination of the algorithm, we shall
be brief and not worry about technical details. Consider

P (x, y) = xy(y2 − x)(y − x2)
(
y −

∞∑
n=1

xn
)2

.

In the 0-th stage of iteration, the ‘bad’ regions are those near the curves y2−x = 0,
y − x2 = 0 and y − x = 0. Thus, away from the neighborhoods of the following
curves: y = −√

x, y =
√
x, y = x2 and y = x, the function P (x, y) behaves like a

monomial. Each of the ‘bad’ regions near y = −√
x, y =

√
x and y = x2 will go

away via one step of change of variables – all the resulting new Newton polyhedra
have only one vertex; see Example 4.7 in Section 4.

To address the ‘bad’ region near y = x, we do change of variables x = x1 and
y = x1 + x1y1, which yields

P1(x1, y1) = P (x1, x1 + x1y1) = Q1(x1, y1)x
6
1

(
y1 −

∞∑
n=1

xn
1

)2

,

where
Q1(x1, y1) = (1 + y1)(1 + y1 − x1)(−1 + x1(1 + y1)

2).

One can ignore the function Q1(x1, y1) since it is non-vanishing near the origin.
Doing change of variables of the form yk−1 = xk + xkyk does not help to resolve
the singularities, and the Newton polyhedron of Pk−1 only shifts to the right by 2
units. But we want the Newton polyhedron to end with only one vertex, which
corresponds to the case where a single vertex is dominant. This indeed can be
done as follows. Set {

x1 = x2,

y1 = x2 y2 +
∑∞

n=1 x
n
2 ;

then

P2(x2, y2) = P1

(
x2, x2y2 +

∞∑
n=1

xn
2

)
= Q2(x2, y2)x

8
2 y

2
2 .

The function Q2(x2, y2) is non-vanishing and P2(x2, y2) behaves like the mono-
mial x8

2 y
2
2 . The algorithm stops here.

4. An algorithm for resolution of singularities in R
2

Let U be a sufficiently small neighborhood of 0 in R2. For simplicity, we restrict
our discussion to the right half-plane x > 0, since the left half plane can be reduced
to this case through the change of variables (x, y) → (−x, y) and the y-axis can be
ignored first. For the rest of this section, we take U = {(x, y) : 0 < x < ε,−ε <
y < ε} and choose ε to be sufficiently small. The exact value of ε depends on later
stages of iterations and will be clear at the end of the algorithm. An inductive
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resolution procedure will be performed on the pair [U, P ], where P is any analytic
function defined in an open neighborhood containing U . Let M ∈ N be a large
integer.

Definition 4.1. A region W is standard if

W =
{
(X,Y ) : 0 < X < ε, −ε < Y < ε

}
for some ε > 0, which is referred to as the size of W . A standard pair [W,Q]

is a standard region W together with a power series Q(X,Y ) of (X
1
M , Y ), which

converges absolutely in some neighborhood of W .

The iterations will always be performed on standard pairs, with the regions
and functions of (x1/M , y) varying.

4.1. Part I. Single step of partition

Set [U0, P0] = [U, P ], ε0 = ε and (x0, y0) = (x, y) to indicate the procedure is in
the 0-th stage. Consider

PE(x, y) =
∑

(p,q)∈E

cp,q x
pyq, for E ∈ E(P ).

Let VE,l = (pE,l, qE,l) and VE,r = (pE,r, qE,r) ∈ V(P ) be the left and right

vertices of E. SetmE =
pE,l−pE,r

qE,r−qE,l
, then the slope of E is −1/mE. The constantmE

is the most important constant associated to each edge E. Set eE = pE,l+mEqE,l,
then eE = p′+mEq

′ for all (p′, q′) ∈ E and there is a ν > 0 such that p′′+mEq
′′ ≥

eE + ν for all (p′′, q′′) /∈ E. On the curve y = rxmE , where r ∈ R \ {0},
PE(x, y) = xeE

∑
(p,q)∈E

cp,q r
q =: xeEPE(r)

and
P (x, y)− PE(x, y) = O(xeE+ν)

has a higher degree. Thus, given |x| sufficiently small, PE(x, y) dominates P (x, y),
unless

PE(r) =
∑

(p,q)∈E

cp,q r
q → 0.

Assume {rE,j}1≤j≤JE , labeled in an increasing order, is the set of non-zero roots
of PE(r) = 0 of orders {sE,j}1≤j≤JE , respectively. Then

JE ≤
∑

1≤j≤JE

sj ≤ qE,l − qE,r,

since PE(r) = rqE,r
∑

(p,q)∈E cp,q r
q−qE,r . For simplicity, we say rE,j is a root of E

instead of saying rE,j is a root of PE(r). Assign two constants cE and CE to each
edge E. They are independent from ε0 and satisfy

0 < cE < 2−10|rE,j | < 210|rE,j | < CE , for all 1 ≤ j ≤ JE .(4.1)
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The numbers 2−10 and 210 above (same as below) are just a random choice for
small and large numbers. Let Iρ0

j (E) = (rE,j −ρ0, rE,j+ρ0), where ρ0 > 0 is much
greater than ε0, but much smaller than any cE (and hence any rE,j), and

0 < ρ0 < 2−10 ·min
E

{cE}(4.2)

is to be determined at the end of iterations.
Set ⎧⎪⎪⎨

⎪⎪⎩
I(E) = [cE , CE ] ∪ [−CE ,−cE],

Ib(E) = ∪1≤j≤JE I
ρ0

j (E),

Ig(E) = I(E) \ Ib(E).

(4.3)

Here Ib(E) are the neighborhood of the roots {rE,j} and Ig(E) are the points away
from the non-zero roots, 0 and ∞. Then

|PE(r)| �ρ0 1 for r ∈ Ig(E).(4.4)

Thus PE(x, y) dominates P (x, y) if y = rxmE and r ∈ Ig(E). Let

U0,g(E) = {(x, y) ∈ U0 : y = rxmE , r ∈ Ig(E)}
be the ‘good’ regions generated by the edge E, which is a disjoint union of (JE+2)
‘good’ regions: U0,g(E, j). Each ‘good’ region U0,g(E, j) is a curved triangular
region of the form

U0,g(E, j) = {(x, y) ∈ U0 : bjx
mE ≤ y ≤ Bjx

mE},(4.5)

where [bj , Bj ] := Ig(E, j) is just a connected component of Ig(E) and (JE + 2)
comes from the number of connected components of Ig(E).

In the above notation, the subindex 0 in U0,g(E, j) indicates the algorithm is
in the 0-th stage, g indicates the region is ‘good’. The ‘bad’ regions are defined as

U0,b(E, j) = {(x, y) ∈ U0 : y = rxmE , r ∈ Iεj (E)}
= {(x, y) ∈ U0 : (rj − ρ0)x

mE < y < (rj + ρ0)x
mE},(4.6)

for 1 ≤ j ≤ JE . If {rE,j} is empty, then there is no ‘bad’ region generated by this
edge and the only two ‘good’ regions are

U0,g(E) = {(x, y) ∈ U0 : cEx
mE < |y| < CEx

mE}.
The following lemma states that P behaves almost like a monomial in each

‘good’ region U0,g(E, j).

Lemma 4.2. Let N > 0 and L > 0 be given. For any choices of cE’s, CE ’s
and ρ0 above, one can choose ε0 sufficiently small, such that for all E ∈ N (P ) and
(x, y) ∈ U0,g(E, j), one has

|xpE,l yqE,l | ∼ρ0 |PE(x, y)| ≥ 2N |P (x, y)− PE(x, y)|.(4.7)
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Here (pE,l, qE,l) is the left vertex of the edge E. In addition,

|∂α
x ∂

β
yP (x, y)| < Cmin{1, |xpE,l−αyqE,l−β |}(4.8)

for 0 ≤ α, β ≤ L.

Proof. In the region y = rxmE where r ∈ I(E),

|P (x, y)− PE(x, y)| < C xeE+ν ,

where ν is a positive fraction (can be computed but not necessary). By (4.4),
one has |PE(r)| ≥ C for r ∈ Ig(E), where C = C(cE , CE , ρ0, P ) > 0. Thus if
ε0 = ε0(ρ0, ν, C) is sufficiently small, then for all (x, y) ∈ U0,g(E, j) we have

|PE(x, y)| ∼ρ0 |xpE,lyqE,l | ∼ xeE > 2N ·O(xeE+ν) > 2N |P (x, y)− PE(x, y)|,

which proves (4.7).
Now we turn to (4.8). The bound |∂α

x ∂
β
yP (x, y)| � 1 is trivial. In the region

y = rxmE where r ∈ I(E), for 0 ≤ α, β ≤ L and every (p′′, q′′) ∈ E, one has

|xpE,l−αyqE,l−β | ∼ |x|p′′−α|y|q′′−β ∼ |x|eE−α−mEβ ,

even for p′′ − α < 0 or/and q′′ − β < 0. Notice that |y| ∼ |x|mE ; then

|∂α
x ∂

β
y (P (x, y)− PE(x, y))| � |x|eE+ν−α−mEβ.

Thus given |x| sufficiently small, one has

|∂α
x ∂

β
yP (x, y)| � |xpE,l−α yqE,l−β |.

This completes the the proof of (4.8). �

The above lemma handled the case when an edge E is dominant. Another
easy case is when a vertex V = (pv, qv) plays the dominant role. In this case,
let El and Er be the edges left and right to V , with slopes −1/mEl

and −1/mEr

respectively. Then 0 ≤ mEl
< mEr ≤ ∞. Consider the following region:

U0,g(V ) = {(x, y) ∈ U0 : CErx
mEr < |y| < cEl

xmEl},(4.9)

where CEr and cEl
are the constants chosen in (4.1). One can always choose ε0

small enough such that the two curves y = CErx
mEr and y = cE,lx

mEl do not
meet inside U0. In the case mEr = ∞, i.e., V is the rightmost vertex, set

U0,g(V ) = {(x, y) ∈ U0 : |y| < cEl
xmEl},(4.10)

which also contains the portion of the x-axis inside U0. Similarly, when mEl
= 0,

i.e., V is the leftmost vertex, we replace cEl
xmEl by ε0 in (4.9).

The following lemma is the vertex analogue of Lemma 4.2, whose proof is similar
to that of Lemma 4.2.
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Lemma 4.3. Given preselected numbers N and L, one can choose ε0 sufficiently
small (depending on N , L, CE’s, cE’s and P ), such that for (x, y) ∈ U0,g(V ) one
has, for 0 ≤ α, β ≤ L,

|xpvyqv | ∼ |PV (x, y)| ≥ 2N |P (x, y)− PV (x, y)|,(4.11)

|∂α
x ∂

β
yP (x, y)| < Cmin{1, |xpv−αyqv−β |}.(4.12)

Now let

G0(P0) = G0(P ) = {U0,g(V ) : V ∈ V(P )} ∪ {U0,g(E, j) : E ∈ E(P ) and all j},
which are the collection of ‘good’ regions in the 0-th stage. In addition, we say
U0,g ∈ G0(P0) is defined by (E,mE) if U0,g = U0,g(E, j) for some E and j, where
−1/mE is the slope of E, or defined by an edgeE for short. Similarly, U0,g ∈ G0(P0)
is defined by (V,ml,mr) represents U0,g = U0,g(V ) and −1/ml, −1/mr are the
slopes of the edges left and right to V , or defined by a vertex V for short.

Now we focus on the ‘bad’ regions

U0,b(E, j) = {(x, y) ∈ U0 : (rj − ρ0)x
mE < y < (rj + ρ0)x

mE}.(4.13)

Set

B0(P0) = B0(P ) = {U0,b(E, j) : E ∈ E(P ) and 1 ≤ j ≤ JE}
which is the collection of ‘bad’ regions in the 0-stage. If U0,b ∈ B0(P0) has the form
of (4.13), we say U0,b is defined by (E, y = rjx

mE ) or defined by y = rjx
mE for

short. The following graph demonstrates a partition of U (in the first quadrant)
into ‘good’ and ‘bad’ regions, according to the analytic function P (x, y) = xy(y2−
x)(y − x2)(y − ∑∞

n=1 x
n)2. Notice that the function R(x, y) = xy(y2 − x)(y −

x2)(y − x)2 also has the same partition. Here, we choose P (x, y) for the purpose
of illustrating the convergence of the algorithm later.

x

y y = x

y = x2

y =
√
x

bad
bad

bad

good

good

good

good

Figure 3. ‘Good’ regions and ‘bad’ regions of

P (x, y) = xy(y2 − x)(y − x2)(y −∑∞
n=1 x

n)2 in the first quadrant.
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We summarize the above discussion as follows:

Proposition 4.4 (Single step of partition). Let U be a standard region and P
be a real analytic function. If the size of U is sufficiently small, then U can be
partitioned into two families of curved triangular regions: G0(P ) and B0(P ). For
each U0,g ∈ G0(P ), U0,g is defined by (4.5) or (4.9). The behaviors of P in U0,g are
characterized by Lemma 4.2 or Lemma 4.3. Each U0,b ∈ B0(P ) is defined by (4.13).
Finally, the cardinalities of G0(P ) and B0(P ) are finite, depending on P .

4.2. The resolution algorithm, Part II. Iterations

The next step is to iterate Proposition 4.4. One main problem is that the region
U0,b ∈ B0(P ) is not standard. Nevertheless, via an appropriate change of variables,
we can always turn a U0,b into a subset of a standard region U1. Proposition 4.4
can then be applied to [U1, P1], where P1 is obtained from P0 = P via this change
of variables. Notice that the arguments in the previous subsection work equally
well for analytic functions of (x1/M , y). The flowchart below illustrates the main
ideas of how the algorithm runs. The letter ‘g’ represents a ‘good’ region, while
‘b’ represents a bad region. Each time, we choose one ‘bad’ region and ‘rescale’ it
(via change of variable) into a subset of a standard region.

g b . . . g . . .bU0

U0,b Rescale U0,b ⊂ U1

g b . . . g . . .bU1

U1,b Rescale U1,b ⊂ U2

g b . . . g . . .bU2

U2,b Rescale U2,b ⊂ U3

. . .

Figure 4.

Before diving into the details, we introduce the following notations which can
help keep track on certain invariants as the iterations go deeper.
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Definition 4.5. Let (pl, ql) and (pr, qr) be the leftmost and rightmost vertices of
N (P ), the Heights of N (P ) or P are defined as

Hght(N (P )) = Hght(P ) = ql − qr,

Hght∗(N (P )) = Hght∗(P ) = ql.

For an edge E ∈ E(P ), let (pE,l, qE,l) and (pE,r, qE,r) be its left and right vertices.
Then the height of this edge is defined to be

Hght(E) = qE,l − qE,r.

If {rE,j}1≤j≤JE is the set of non-zero roots of PE(r) of orders {sE,j}1≤j≤JE , then
we define the order of E as

Ord(E) =

JE∑
j=1

sE,j,

and the order of P to be

Ord(P ) =
∑

E∈E(P )

Ord(E) =
∑

E∈E(P )

JE∑
j=1

sE,j.

Finally, we say r is a root of P (x, y) or N (P ) if r = rE,j for some E ∈ E(P ) and
some 1 ≤ j ≤ JE .

Under the above notation,

Ord(E) ≤ Hght(E) = qE,l − qE,r

and

Ord(P ) ≤ Hght(P ) = ql − qr ≤ ql = Hght∗(P ).

Notice that
#B0(P ) =

∑
E∈E(P )

JE ≤
∑

E∈E(P )

Ord(E) = Ord(P ),

which gives:

Lemma 4.6.
#B0(P ) ≤ Ord(P ) ≤ Hght∗(P ).

Choose a U0,b ∈ B0(P0) and assume it is defined by y = r0x
m0 . The next step

is to utilize change of variables to turn [U0,b, P ] into a standard pair. Adopt the
previous notations [U0, P0] = [U, P ] and (x0, y0) = (x, y) and choose x to be the
principal variable which will be unchanged during iterations, i.e., x = xn for all
n ∈ N. Change variables {

x0 = x1,
y0 = (r0 + y1)x

m0
1 .

Then the region U0,b under the new coordinates/variables is{
0 < x1 < ε0,

−ρ0 < y1 < ρ0.
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Since ε0 �= ρ0, this region is not standard, but can be embedded into a larger
standard region U1. Let ε1 be sufficiently small but greater than ρ0. Set{

P1(x1, y1) = P (x1, (r0 + y1)x
m0
1 ),

U1 = {(x1, y1) : 0 < x1 < ε1,−ε1 < y1 < ε1}.
Then [U1, P1] is a standard pair in the coordinates (x1, y1). By applying Proposi-
tion 4.4 to [U1, P1], a finite collection G1(P1) of ‘good’ regions U1,g’s and a finite
collection B1(P1) of ‘bad’ regions U1,b’s are obtained. In a ‘good’ region U1,g, the
function P1(x1, y1) behaves like a monomial of (x1, y1) and no further treatment is
required. For the ‘bad’ regions, choose a U1,b ∈ B1(P1) and assume U1,b is defined
by y1 = r1x

m1
1 , i.e.,

U1,b = {(x1, y1) ∈ U1 : (r1 − ρ1)x
m1
1 < y1 < (r1 + ρ1)x

m1
1 }.

where ρ1 is an analogue of ρ0 in the 0-th stage of iteration. Like what has been
done, perform the following change of variables,{

x1 = x2,
y1 = (r1 + y2)x

m1
2 ,

choose ε2 sufficiently small but greater than ρ1, and set{
P2(x2, y2) = P1(x2, (r1 + y2)x

m1
2 ),

U2 = {(x2, y2) : 0 < x2 < ε2,−ε2 < y1 < ε2}.
Same procedures are repeated on the standard pair [U2, P2] and so on. Conse-
quently, a collection of standard pairs {[Un, Pn]} is obtained from these iterations.
Notice that this collection forms a tree structure with [U0, P0] = [U, P ] being the
top, with the parameter n representing the level of iterations. Sometimes we need
more information than merely the level of iterations. In those cases, we use the
notation [Un, Pn] = [Un,α, Pn,α], where

(
) α contains the information of the change of variables, i.e., for 0 ≤ k ≤ n−1
the following is known if α is given:{

xk = xk+1,

yk = (rk + yk+1)x
mk

k+1.
(4.14)

We also use Un,b,α and Un,g,α to represent any ‘bad’ region and any ‘good’ re-
gion in Un,α. Since Un,α may have more than one such regions, we list them
by Un,b,α,j and Un,g,α,j when necessary. The cardinality in j is uniformly bounded
(see Lemma 4.8) and thus there is no need to specify its range. Notice that Un,g,α,j

is a leaf of the tree, i.e., it has no child and no further analysis is needed.
Both notations are being used here: with and without the subindex α. To

avoid confusion, we follow the rules below:

(1) The one without such subindex is our primary choice. We often use [Un, Pn]
to represent an arbitrary pair from the n-th stage of iteration.

(2) The other is used occasionally. It is employed typically when at least two
different pairs from the same stage of iterations are mentioned simultaneously.
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These conventions also apply to Un,g’s, Un,b’s, Un,g,α and Un,b,α.

Example 4.7. The following graphs demonstrate the first step of the algorithm,
for the given analytic function P (x, y) = xy(y2 − x)(y − x2)(y −∑∞

n=1 x
n)2. The

Newton polyhedron N (P ) has 3 compact edges: E1, E2 and E3, see Figure 5
below.

y

x

N (P )

V1(1,6)

V2(2,4)

V3(4,2)

V4(6,1)

Hght∗(P ) = 6

Hght(P ) = 5

Ord(E1) = 1

Ord(E2) = 2

Ord(E3) = 1

Ord(P ) = 5

E1

E2

E3

Figure 5.

In the edge E1, PE1 = x(y2 − x)y4 has only two non-zero roots and the
corresponding ‘bad’ regions are defined by y = x1/2 and y = −x1/2. To han-

dle the former, change variables: (x, y) = (x1, x
1/2
1 (1 + y1)) yields P1(x1, y1) =

P (x1, x
1/2(1 + y1)) = x

7/2
1 y1 ·O(1). Here O(1) represents a function which is non-

vanishing at the origin. In Figure 6, N (P1) has only one vertex and the algorithm
stops. The latter is similar.

y1

x1

N (P1)

V ′(4, 1)

Hght∗(P1) = 1

Hght(P1) = 0

Ord(P1) = 0

Figure 6.
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There is only one root for PE2 = −x2y2(y − x)2 and the corresponding ‘bad’
region is defined by y = x. Change variables: (x, y) = (x1, x1(1 + y1)) yields
P1(x1, y1) = x6

1(y1−
∑∞

n=1 x
n)2 ·O(1). But N (P1) still has one edge which also has

one non-zero root; see Figure 7. The algorithm does not stop. Doing the change
variables (xk−1, yk−1) = (xk, xk(1 + yk)) only gives N (Pk) = N (Pk−1) + (2, 0)
for k ≥ 2.

y1

x1

N (P1)

V ′
2 (8, 0)

V ′
1 (6, 2)

Hght∗(P1) = 2

Hght(P1) = 2

Ord(P1) = 2

Ord(E′) = 2

E′

Figure 7.

Finally, PE3 = −x4y(y − x2). The only non-zero root is y = x2. Change of
variables: (x, y) = (x1, x

2
1(1 + y1)) yields P1(x1, y1) = x8

1y1 · O(1). The algorithm
stops; see Figure 8.

y1

x1

N (P1)

V ′(8, 1)

Hght∗(P1) = 1

Hght(P1) = 0

Ord(P1) = 0

Figure 8.

It is worth mentioning that the change of variables: (xn, yn) → (xn+1, yn+1)
maps one-to-one from Un,b to a rectangular subset of Un+1. Thus one can also
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embed such subset back into Un and etc.. In addition, if the change of variables:
(x, y) → (xn, yn) is specified, then we can use both coordinates (x, y) and (xn, yn)
to identify points in Un (or Un,b, Un,g). The relation between the two coordinates
(x, y) = ρ−1

n (xn, yn) is given by{
x = xn,

y = r0 x
m0 + r1 x

m0+m1 + · · ·+ rn−1 x
m0+···+mn−1 + yn x

m0+···+mn−1 .
(4.15)

In the above notation, the (k + 1)-th stage of iteration is generated by the ‘bad’
region defined by yk = rkx

mk for 0 ≤ k ≤ n−1. Under this notation, Pn = P ◦ρ−1
n .

We should also specify ρ−1
n to ρ−1

n,α, if Un is specified to Un,α.

To complete the algorithm, we need to settle the following two questions:

(i) In each stage of iteration, is the cardinality of {Un,b,α,j}α,j bounded above
uniformly?

(ii) Does this procedure terminate after a finite steps?

The answer to the second question is more delicate and extra preparation is
needed, but the first can be answered by:

Lemma 4.8. For each n ≥ 0, the cardinality of {Un,b,α,j}α,j is bounded above
by Ord(P ).

Proof. Indeed, there is a bijection between {U0,b} and the non-zero roots of PE(r)
E ∈ E(P ): eachU0,b = U0,b(E, j) is defined by (E, y = rE,jx

mE ). Assume the order
of rE,j is sE,j . Then P1(x1, y1) = P1,E,j(x1, y1) is obtained by setting P1(x1, y1) =
P0(x1, (y1 + rE,j)x

mE
1 ). Here, P1,E,j is used to specify that P1 is defined by the

root rE,j .
The following observation serves as an bridge between N (P0) and N (P1). Let

(pE,l, qE,l) be the left vertex of E and (p1,l, q1,l) be the leftmost vertex of N (P1).
Then {

p1,l = pE,l +mE · qE,l,

q1,l = sE,j .
(4.16)

This implies the order sE,j (in the 0-stage) is equal to the Hght∗(P1,E,j).
To prove (4.16), notice that

PE(x, y) = PE(x1, (y1 + rE,j)x
mE
1 ) = x

pE,l+mE ·qE,l

1 y
sE,j

1 ·O(1).

Indeed, the fact that the degree of y1 is sE,j follows from the fact that rE,j is a
root of PE(r) of order sE,j. Moreover, every term in

P1(x1, y1)− PE(x1, (y1 + rE,j)x
mE
1 )

has a x1-degree strictly greater than (pE,l +mE · qE,l). Consequently, (pE,l +mE ·
qE,l, sE,j) is the leftmost vertex of N (P1).
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Thus Ord(P1) ≤ Hght∗(P1) = sE,j and the cardinality of ‘bad’ regions {U1,b}
from a single P1 is at most Ord(P1) ≤ sE,j. Counting all possible P1 (coming from
different roots of different edges), the number of all possible U1,b is bounded by

∑
E∈E(P )

∑
1≤j≤JE

Ord(P1,E,j) ≤
∑

E∈E(P )

∑
1≤j≤JE

sE,j = Ord(P ).(4.17)

The cases when n ≥ 2 also follow from iterating (4.17). �

We now turn to the second question, which is the most crucial part of the
algorithm. Assume the procedure does not stop. We then obtain an infinite chain
of pairs:

[U0, P0] → [U1, P1] → [U2, P2] → · · · → [Un, Pn] → [Un+1, Pn+1] → . . .(4.18)

We shall find certain patterns inside this chain. Specify the change of variables
from [Un, Pn] → [Un+1, Pn+1] as{

xn = xn+1,

yn = (rn + yn+1)x
mn
n+1.

Then rn is a root of an edge in N (Pn). Let sn be the order of rn and (pn,l, qn,l)
be the leftmost vertex of N (Pn) and (pn, qn) be the left vertex of the edge in N (Pn)
that defines [Un+1, Pn+1]. By (4.16) one has{

pn+1 ≥ pn+1,l = pn +mn · qn,
qn+1 ≤ qn+1,l = sn ≤ qn,

(4.19)

and thus

Hght∗(P0) ≥ Hght(P0) ≥ s0 = Hght∗(P1) ≥ Hght(P1) ≥ s1 = Hght∗(P2)

≥ · · · ≥ sn−1 = Hght∗(Pn) ≥ Hght(Pn) ≥ sn = Hght∗(Pn+1) · · ·(4.20)

Notice that for all n, Hght(Pn) and sn must be positive integers. Otherwise, if
Hght(Pn) = 0 then N (Pn) has no compact edge and thus no root; if sn = 0,
then N (Pn) has no root. In both situations, the chain ends at the n-stage, which
contradicts to our assumption.

Since (4.20) is an infinite sequence and Hght∗(P0) is a finite positive number,
there is a least integer n0 ∈ N such that for all n ≥ n0 one has

Hght∗(Pn) = Hght(Pn) = sn = Hght∗(Pn0) = Hght(Pn0) = sn0 > 0.(4.21)

This implies for every n ≥ n0:
(i) N (Pn) has only one compact edge En,
(ii) in this edge En, Pn(xn, yn) has only one root rn of order sn = sn0 ,
(iii) when Pn is restricted to En, Pn,En(xn, yn) = cn(yn − rnx

mn
n )sn0 , for some

non-zero constant cn.
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This is the exact pattern we are looking for, which suggests Pn0(xn0 , yn0) has
a factor

yn0 −
∞∑

n=n0

rnx
mn0+mn0+1+···+mn
n0 ,

whose order is equal to sn0 . In Example 4.7, after the change of variable y =
x1 + x1y1, the function P1(x1, y1) has only one compact edge, which is factored as
(y1 − x1)

2. From n0 = 1, if we keep doing change of variables yn−1 = xn + xnyn,
we will have

Pn,En(xn, yn) = cn(yn − xn)
2.

Indeed, in this example P1(x1, y1) has a factor (y1 −
∑∞

n=1 x
n
1 ) of order exactly 2.

The following lemma shows that the chain (4.18) essentially ends at the (n0+1)-
stage.

Lemma 4.9. Assume we have an infinite chain (4.18) and n0 is the constant
defined in (4.21). Then there is a positive integer M such that

Pn0(xn0 , yn0) = x
pn0
n0 (yn0 − f(xn0))

sn0 Qn0(xn0 , yn0),(4.22)

where

f(xn0) =

∞∑
n=n0

rn x
mn0+mn0+1+···+mn
n0

is an analytic function of x
1/M
n0 , and Qn0(xn0 , yn0) is an analytic function of

(x
1/M
n0 , yn0) with Qn0(0, 0) �= 0.

Proof. To obtain Pn0(xn0 , yn0) from P0(x, y), we have iterated only finitely many

steps. Thus Pn0(xn0 , yn0) is a real analytic function of (x
1/M
n0 , yn0), for some M ∈N.

For n ≥ n0, the change of variables from [Un, Pn] to [Un+1, Pn+1] is xn = xn+1

and yn = (yn+1 + rn)x
mn . The only compact edge En of Pn is of the form

Pn,En(xn, yn) = cnx
pn
n (yn − rnx

mn)sn ,(4.23)

where cn is a nonzero constant and sn = sn0 . Using induction, it is not difficult
to prove that mnM is an integer for all n ≥ n0. Thus Pn(xn, yn) is a real analytic

function of (x
1/M
n , yn) for all n ∈ N. The Weierstrass preparation theorem implies

Pn0(xn0 , yn0) = x
pn0
n0 Qn0(xn0 , yn0)R(xn0 , yn0),(4.24)

where Qn0(xn0 , yn0) is a non-vanishing real analytic function of (x
1/M
n0 , yn0) and

R(xn0 , yn0) = ys0n0
+ as0−1(xn0 )y

s0−1 + as0−2(xn0)y
s0−2 + · · ·+ a0(xn0)

is a Weierstrass polynomial, i.e., a polynomial in y with analytic coefficients

in x
1/M
n0 . Our goal is to verify the following factorization:

R(xn0 , yn0) = (yn0 − f(xn0))
sn0(4.25)

in the sense of formal power series. Notice that this also implies that f(xn0) is a

real analytic function of x
1/M
n0 for it equals −as0−1(xn0)/sn0 . Therefore, (4.25) is

true pointwise in some small neighborhood of the origin.



100 L. Xiao

First, notice (pn + snmn, 0) is the rightmost vertex of N (Pn). By setting
yn = 0, (4.23) yields

Pn(xn, 0) = Cn x
pn+snmn
n +O(xpn+snmn+ν

n ),(4.26)

where ν > 0. Consider the partial sum of f(xn0),

fk(xn0 ) =
k∑

n=n0

rn x
mn0+mn0+1+···+mn
n0 , k ≥ n0.(4.27)

Then yn0 = yn x
mn0+mn0+1+···+mn−1
n0 + fn−1(xn0 ), n ≥ n0 + 1, and

Pn(xn, yn) = Pn0(xn, yn x
mn0+mn0+1+···+mn−1
n0 + fn−1(xn0 )).

By (4.26), we have

Pn0(xn0 , fn−1(xn0)) = Pn(xn, 0) = Cn x
pn+snmn
n +O(xpn+snmn+ν

n ).(4.28)

Notice that mn ≥ 1/M and sn = sn0 is a positive integer, thus

pn + snmn → ∞ as n → ∞,

which implies (in the sense of formal power series)

Pn0(xn0 , f(xn0)) = 0 = R(xn0 , fn0(xn0 )),(4.29)

since Qn0(xn0 , yn0) is non-vanishing. This yields Rn0(xn0 , yn0) has a factor (yn0 −
f(xn0)). To show its order is exactly sn0 , assume

R(xn0 , yn0) = (yn0 − f(xn0))
s R̄(xn0 , yn0),(4.30)

where R̄n0(xn0 , f(xn0)) �= 0. Write

R̄(xn0 , yn0) = R̄(xn0 , f(xn0)) +
(
R̄(xn0 , yn0)− R̄(xn0 , f(xn0))

)
and the latter term is divisible by (yn0 − f(xn0)). Assume the leading term of
R̄(xn0 , f(xn0)) is CxA

n0
(the nonzero term with lowest degree). Then

R̄(xn0 , fn−1(xn0)) = C xA
n0

+O(xA+ν
n0

) as n → ∞
for some ν > 0. Combining (4.30) and (4.24), one has

Pn0(xn0 , fn−1(xn0)) = C x
pn0+s(mn0+···+mn)+A
n0 +O

(
x
pn0+s(mn0+···+mn)+A+ν
n0

)
,

(4.31)

as n → ∞. Notice that, for all n > n0,

pn = pn−1 + sn−1mn−1 = pn−1 + sn0mn−1.(4.32)
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Iterating this identity yields

pn + snmn = pn0 + sn0(mn0 + · · ·+mn).(4.33)

Comparing (4.28) and (4.31) yields

A = 0 and s = s0,

as desired. �

Remark 4.10. The purpose of employing the Weierstrass preparation theorem
(WPT) here is to verify the analyticity of f(xn0), but its use is not essential here.
There should be other methods. For example, the referees kindly point out that one
can employ the IFT instead. I find the use of the WPT here is quite interesting, for
(yn0 − f(xn0))

s0 is indeed the Weierstrass polynomial of Pn0(xn0 , yn0). One may
be able to use the algorithm in this paper to compute the Weierstrass polynomial
of the original function P (x, y).

Based on Lemma 4.9, in the n0-stage, we refine the change of variables as
follows:

xn0 = xn0+1 and yn0 − f(xn0) = yn0+1 x
mn0
n0 .(4.34)

This will help us to eliminate all the nonzero roots of the new function Pn0+1, and
thus eliminate the ‘bad’ regions. Indeed, by (4.22) one has

Pn0+1(xn0+1, yn0+1) : = Pn0(xn0+1, yn0+1 x
mn0
n0+1 + f(xn0+1))(4.35)

= x
pn0+sn0mn0
n0+1 y

sn0
n0+1 Qn0+1(xn0+1, yn0+1),

where
Qn0+1(xn0+1, yn0+1) = Qn0(xn0+1, yn0+1 x

mn0

n0+1 + f(xn0+1)),

is non-vanishing near the origin. One can see that N (Pn0+1) has only one vertex
and Pn0+1(xn0+1, yn0+1) behaves like a monomial. Set

Un0+1 = {(xn0+1, yn0+1) : (xn0 , yn0) ∈ Un0,b},
then Un0+1,g = Un0+1, Un0+1,b = ∅ and the procedure ends here. Thus if we
take NP to be the maximum of all such n0+1 from all branches of iterations, then
the resolution algorithm ends at the NP -stage. Set

Gn = ∪α ∪j {Un,g,α,j},(4.36)

Vn = ∪αV(Pn,α),(4.37)

En = ∪αE(Pn,α),(4.38)

which represent the ‘good’ regions, vertices and compact edges in the n-th stage
respectively. The followings represent all the ‘good’ regions, vertices and compact
edges in all stages:

G = ∪0≤n≤NP Gn = ∪n ∪α ∪j{Un,g,α,j},(4.39)

V = ∪0≤n≤NP Vn = ∪n ∪α V(Pn,α),(4.40)

E = ∪0≤n≤NP En = ∪n ∪α E(Pn,α).(4.41)
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For n ≥ 1, we often refer to Un,g,α,j as a ‘good’ region defined by an edge
of E ∈ E(P ) in higher stage of iteration. Thus each ‘good’ region is either defined
by a vertex V ∈ V(P ) or by an edge E ∈ E(P ), or simply say defined by a
face F ∈ F(P ).

We can now determine ε0, the size of the original region U0. One needs to
go backward, starting from every leaf of the tree, i.e., every ‘good’ region to the
top. Each such path (from a chosen leaf to the top of the tree) will give rise to
an upper bound of ε0 and one can just take ε0 to be any number smaller than all
those bounds. We briefly describe how to do it. Notice first that all the roots rE ’s
from different edges of different stages of iterations are independent from sizes of
the regions Un’s, so are all assigned constants cE ’s and CE ’s defined in (4.1). For
convenience, all the {εn} and {ε′n} chosen below are less than 2−10cE for all E.

(1) Take one unchosen leaf from the tree. We use [Un0+1, Pn0+1] in the above case
as our example here. Recall that εn0+1 denotes the size of Un0+1.

(2) There is an of upper bound ε′n0+1 > 0, such that for every εn0+1 < ε′n0+1, the
function Pn0+1 behaves like a monomial in Un0+1. One can adjust the value
of ε′n0+1 to control the relative smallness of the error term. Choose one such
εn0+1 and move up to [Un0 , Pn0 ].

(3) Choose 0 < ρn0 < εn0+1 and set

ξn0 = inf{|PE(r)| : r ∈ Ig(E)}
where the infimum runs over all compact edges of N (Pn0) and Ig(E) is given
in (4.3) which relies on ρn0 . Then there is a 0 < ε′n0

< εn0+1 depending on
ρn0 , ξn0 and Pn0 , such that for every εn0 < ε′n0

, the function Pn0 behaves like
a monomial in all the ‘good’ regions of Un0 . Choose one such εn0 and move up
to [Un0−1, Pn0−1].

(4) Iterate (3) until we reach the top [U0, P0], which will gives rise to one ε′0.

(5) Iterate (1), (2), (3) and (4) until there is no unchosen leaf. We then obtain
finitely many ε′0’s. Choose one ε = ε0 less than any of them.

Theorem 4.11. For each analytic function P defined in a neighborhood of 0 ∈ R2,
there is a standard region U , which can be partitioned into a finite collection of
‘good’ regions {ρ−1

n (Un,g) ∩ U,Un,g ∈ G}, where
ρ−1
n (xn, yn) = (x, y) = (x0, y0)

is given by {
xn = x0 = x,

yn = γn(x) + yn x
m0+···+mn−1 ,

(4.42)

where γn(x) is defined as follows. If [Un, Pn] lies in an infinite chain

[U0, P0] → [U1, P1] → · · · → [Un, Pn] → [Un+1, Pn+1] → · · ·(4.43)
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and n− 1 = n0 for some n0 defined as in (4.21), then

γn(x) =
∞∑
k=0

rk x
m0+m1+···+mk
0 ,(4.44)

which converges for x with (x, y) ∈ U ; otherwise

γn(x) =
n−1∑
k=0

rk x
m0+m1+···+mk
0 .(4.45)

We assume also that the order of rk is sk. For 0 ≤ k ≤ n, let (pk,l, qk,l) be the
leftmost vertex of N (Pk). For 0 ≤ k ≤ n − 1, let (pk, qk) be the left vertex of the
edge that defines Uk,b ⊂ Uk, and (pn, qn) be defined as follows: if Un,g is defined
by a vertex V , then (pn, qn) = V ; else (pn, qn) is the left vertex of the edge that
defines Un,g. One has

qn ≤ qn,l ≤ sn−1 ≤ qn−1 ≤ qn−1,l ≤ · · · ≤ q1 ≤ s0 ≤ q0.(4.46)

For every supporting line Lmn ∈ SL(Pn) through (pn, qn), one also has

pn +mn qn ≤ p0 +m0 q0 +m1 q1,l + · · ·+mn qn,l

≤ p0 + q0 m0 + s0 (m1 + · · ·+mn).(4.47)

In addition, for any given L ∈ N, for all 0 ≤ α, β ≤ L and (x, y) = ρ−1
n (xn, yn) ∈

ρ−1
n (Un,g) ∩ U one has

|P (x, y)| = |Pn(xn, yn)| ∼ |xpn
n yqnn |(4.48)

|∂α
xn
∂β
yn
Pn(xn, yn)| � min{1, |xpn−α

n yqn−β
n |}(4.49)

|∂β
y P (x, y)| � min{1, |xpn−β(m0+···+mn−1)yqn−β

n |}.(4.50)

Remark 4.12. (i) This theorem also works for U = (−ε, ε) × (−ε, ε) (with a
smaller ε) and thus any open subset of U . First of all, we can apply this theorem
to a standard region in the left half plane, i.e., to U = (−ε, 0)× (−ε, ε) by setting
x = −x. Secondly, one can incorporate the y-axis into the ‘good’ regions defined
by the leftmost vertex of N (P ); see (4.10) for the case of incorporating the x-axis.

(ii) In applications, the estimate (4.48) is often used in conjunction with (4.46)
and (4.47) to relate the lower bound of |P (x, y)| in ‘good’ regions from higher stages
of iterations to the original Newton polyhedron of P . The estimates in (4.46)
and (4.47) contain more details than are needed for the proof of Theorem 1.5.
For example the middle term of (4.47) is not used explicitly in this proof. We
include such details for the purpose of future reference, since we may need strong
information from higher stages of iterations.

Proof of Theorem 4.11. The partition in the theorem is a consequence of the algo-
rithm. The region ρ−1

n,g(Un,g) does not necessarily all lie in U and hence we only



104 L. Xiao

need to take the portion in U , i.e., ρ−1
n,g(Un,g) ∩ U . The change of variables (4.42)

is obtained by iterating {
xk = xk+1,

yk = (rk + yk+1)x
mk

k+1.
(4.51)

The estimate (4.46) follows directly from (4.19) and (4.47) is a consequence of
iterating the following estimates:

pn +mn qn ≤ pn,l +mn qn,l = (pn−1 +mn−1 qn−1) +mn qn,l ,

where first estimate comes from the fact that (pn,l, qn,l) lies on or above the sup-
porting line Lmn and the identity is due to (4.19).

In addition, (4.48) and(4.49) come from Lemma 4.2 and Lemma 4.3. Fi-
nally, (4.50) is an outcome of (4.42) and the chain rule, since

∂y/∂yn = xm0+···+mn−1 . �

4.3. A smooth partition

In the above theorem, U is decomposed into disjoint ‘good’ regions ρ−1
n (Un,g)’s.

However, when it comes to application (in analysis), an overlap version is often
more suitable since it provides extra room to fit in a smooth partition. Further-
more, there is an extra benefit in our problem: this extra room can help us to
overcome the convexity assumption in Theorem 2.1. To be precise, the ‘good’
regions are in general not convex, even if they are localized to pieces with the
x-supports being dyadic intervals. If we take the convex hull of one such piece, as
needed in Theorem 2.1, the convex hull may lie in more than one ‘good’ regions. If
so, in such convex hull we may fail to find a uniform monomial to bound |P (x, y)|
from below. Fortunately, the algorithm here provides sufficient flexibility to adjust
the boundary of ‘good’ regions, which allows us to cut each of them into a number
of pieces so that each piece

1. is small enough with the convex hull lying essentially in the same ‘good’
region; and

2. is large enough with the total number of pieces bounded above uniformly by
a harmless constant; See Lemma 5.5 and Lemma 5.6.

For these reasons, we slightly enlarge Un,g to Un,g ⊂ U∗
n,g ⊂ U∗∗

n,g and Un,b to
Un,b ⊂ U∗

n,b ⊂ U∗∗
n,b. The U

∗
n,g’s are used to fit in a smooth partition and U∗∗

n,g’s are
used to address the convexity assumption. The first step is to enlarge I(E), Ig(E)
and Ib(E) as follows:

I∗(E) =
[
1
2 cE , 2CE

]
, I∗∗(E) =

[
1
4cE , 4CE

]
,

I∗g (E) = I∗(E) \ ( ∪1≤j≤JE I
ρ0/2
j (E)

)
, I∗∗g (E) = I∗∗(E) \ ( ∪1≤j≤JE I

ρ0/4
j (E)

)
and

I∗b (E) = ∪1≤j≤JE I2ρ0

j (E), I∗∗b (E) = ∪1≤j≤JE I4ρ0

j (E).
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Notice that our choices of ρ0 in (4.2) ensures that for all E, {I4ρ0

j (E)} do not
overlap. Then we can define the enlarged ‘good’ regions as

U∗
0,g(E) =

{
(x, y) ∈ U0 : y = rxmE , r ∈ I∗g (E)

}
,

U∗∗
0,g(E) = {(x, y) ∈ U0 : y = rxmE , r ∈ I∗∗g (E)}.

Both U∗
0,g(E) and U∗∗

0,g(E) consist of (JE+2) curved triangular regions {U∗
0,g(E, j)}

and {U∗∗
0,g(E, j)}, respectively. In addition, one has

U0,g(E, j) ⊂ U∗
0,g(E, j) ⊂ U∗∗

0,g(E, j).

The ‘good’ regions defined by a vertex are enlarged to:

U∗
0,g(V ) =

{
(x, y) ∈ U0 :

CEr

2 xmEr < y < 2 cEl
xmEl

}
,

U∗∗
0,g(V ) =

{
(x, y) ∈ U0 :

CEr

4 xmEr < y < 4 cEl
xmEl

}
,

and finally the enlarged ‘bad’ regions are

U∗
0,b(E, j) =

{
(x, y) ∈ U0 : (rj − 2ρ0)x

mE < y < (rj + 2ρ0)x
mE

}
,

U∗∗
0,b(E, j) =

{
(x, y) ∈ U0 : (rj − 4ρ0)x

mE < y < (rj + 4ρ0)x
mE

}
.

For n ≥ 1, U∗
n,g’s, U

∗
n,b’s and U∗∗

n,g’s, U
∗∗
n,b’s are defined similarly. Since ρk can be

chosen sufficiently small, the above definitions do not cause any conflict. We have:

Corollary 4.13. Let U and P as in Theorem 4.11. Then all the estimates in
Theorem 4.11 hold with Un,g replaced by U∗∗

n,g. In addition, U is contained in the
union of all U∗∗

n,g.

For a smooth partition, we issue some technical problems first. Let c be a
positive constant far away from all the roots of PE(x, y) for all E, say c > 210CE

for CE defined in (4.1) and for all E ∈ E(P ). Choose a constant ε = 2−5c. Then
y = ±cx divides the plane into four regions: R1, R2, R3 and R4, which represents
the East, North, West and South regions respectively. Let {Ψj}1≤j≤4 be smooth
functions such that

1 =

4∑
j=1

Ψj(x, y), (x, y) �= (0, 0).

Here Ψ1(x, y) is supported in

Rε
1 = {(x, y) : x > 0, −(c+ ε)x < y < (c+ ε)x},

and Ψ1(x, y) = 1 if

−(c− ε)x < y < (c− ε)x.

In addition, Ψ1 satisfies

|∂β
yΨ1(x, y)| ≤ Cβ |y|−β , for any β ∈ N.

The other functions Ψ2,Ψ3 and Ψ4 are defined similarly in the other regions.
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For a given analytic function P (x, y), let W be a small neighborhood of 0 so
that one can apply Theorem 4.11 and Corollary 4.13 to [W,P ]. Let Φ(x, y) be
a smooth function adapted to W , in the sense supp Φ ⊂ W and Φ(x, y) = 1 if
(2x, 2y) ∈ W . Then

Φ(x, y) = Φ(x, y)

4∑
j=1

Ψj(x, y), for (x, y) �= (0, 0).

We focus on ΦΨ1, since discussions for the others are similar. Let

U = W ∩Rε
1 ;

then ΦΨ1 is supported in U .
We now apply the resolution algorithm to P (x, y) in the region U , which

gives rise to a collection of ‘bad’ regions {U∗
n,b,α,j}(n,α,j). For a fixed U∗

n,b,α,j ,

ρ−1
n,α(U

∗
n,b,α,j) is equal to

U ∩ {γn(x) + (rn − 2ρn)x
m0+···+mn < y < γn(x) + (rn + 2ρn)x

m0+···+mn},
where γn(x) is given by (4.44) or (4.45). The assumption that U is contained in
the east region Rε

1 ensure that all the m0 is at least 1, i.e., the power of the leading
term of γn(x) is at least 1.

We can then define a smooth function Φn,b,α,j supported in ρ−1
n,α(U

∗
n,b,α,j) and

Φn,b,α,j(x, y) = 1 if (x, y) ∈ ρ−1
n,α(Un,b,α,j). In addition, the following is true

|∂β
yΦn,b,α,j(x, y)| ≤ Cβ |x|−β(m0+···+mn) ∀β ∈ N.(4.52)

Then
Φ(x, y)Ψ1(x, y)

(
1−

∑
α

∑
j

Φ0,b,α,j(x, y)
)

can be written as ∑
α

∑
j

Φ0,g,α,j(x, y),

where each Φ0,g,α,j(x, y) is supported in the ‘good’ region U∗
0,g,α,j . Similarly,

Φ(x, y)Ψ1(x, y)
(∑

α

∑
j

Φ0,b,α,j(x, y)
)(

1−
∑
α

∑
j

Φ1,b,α,j(x, y)
)

can be written as ∑
α

∑
j

Φ1,g,α,j(x, y),

where Φ1,g,α,j is supported in ρ−1
1,α(U

∗
1,g,α,j). Then we iterate the above procedures

until the end of the algorithm. Combining (4.52), we obtain a smooth partition
version of Theorem 4.11.

Theorem 4.14. Let Φ, Ψ1 and P be as above. Then

Φ(x, y)Ψ1(x, y) =
∑
n

∑
α

∑
j

Φn,g,α,j(x, y),(4.53)
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where Φn,g,α,j(x, y) is a smooth function supported in ρ−1
n,α(U

∗
n,g,α,j) and where

{Un,g,α,j} is the collection of ‘good’ regions as in Theorem 4.11. The behaviors of
P (x, y) in ‘good’ regions ρ−1

n,α(U
∗
n,g,α,j) ∩ U and ρ−1

n,α(U
∗∗
n,g,α,j) ∩ U are the same

as Corollary 4.13. Moreover, Φn,g,α,j(x, y) satisfies the following derivative condi-
tions:

(1) If Un,g,α,j is defined by an edge, then ρ−1
n,α(U

∗
n,g,α,j) is given by in a curved

triangular region of the form

bn,g,α,j x
m0+···+mn ≤ y − γn(x) ≤ Bn,g,α,j x

m0+···+mn

for some nonzero constants bn,g,α,j and Bn,g,α,j with the same signs. Then

|∂β
yΦn,g,α,j(x, y)| ≤ Cβ |x|−β(m0+···+mn), ∀β ∈ N.(4.54)

(2) Otherwise, Un,g,α,j is defined by a vertex. The region Un,g,α,j may lie only
in the first quadrant, only in the fourth quadrant or in both of them. In the first
case, ρ−1

n,α(U
∗
n,g,α,j) is given by

bn,g,α,j x
m0+···+mn−1+mn,r <y − γn(x) < Bn,g,α,j x

m0+···+mn−1+mn,l ,

where 0 ≤ mn,l < mn,r < ∞. In the upper portion of ρ−1
n,α(U

∗
n,g,α,j)\ρ−1

n,α(Un,g,α,j),
one has

|∂β
yΦn,g,α,j(x, y)| ≤ Cβ |x|−β(m0+···+mn−1+mn,l), ∀β ∈ N

and in the lower portion

|∂β
yΦn,g,α,j(x, y)| ≤ Cβ |x|−β(m0+···+mn−1+mn,r), ∀β ∈ N.

The second case is similar. In the last case, U∗
n,g,α,j is defined by the rightmost

vertex of N (Pn,α), and ρ−1
n,α(U

∗
n,g,α,j) is given by |y−γn(x)| � xm0+···+mn−1+mn,l ,

one has

|∂β
yΦn,g,α,j(x, y)| ≤ Cβ |x|−β(m0+···+mn−1+mn,l), ∀β ∈ N.

5. Proof of Theorem 1.5

Set P = ∂x∂y(∂x − ∂y)S and assume a(x, y) is supported in W/100, where W is
a neighborhood of 0 such that we can apply Theorem 4.11 and Corollary 4.13 to
[W,P ]. As what was done in Theorem 4.14, we divide W into 4 regions by lines
y = cx and y = −cx and restrict our discussion in the east region

U = W ∩ {(x, y) : x > 0, −(c+ ε)x < y < (c+ ε)x},(5.1)

since the others can be reduced to U by either changing x to −x or permuting x
and y, or both. Let Ψj(x, y) and Φ(x, y) be smooth functions as in Theorem 4.14.
Then

a(x, y) = a(x, y)Φ(x, y)
4∑

j=1

Ψj(x, y), for (x, y) �= (0, 0),
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and

ΛS(f1, f2, f3) =

4∑
j=1

Λj
S(f1, f2, f3),

where

Λj
S(f1, f2, f3) =

∫∫
eiλS(x,y) a(x, y)Φ(x, y)Ψj(x, y) f1(x) f2(y) f3(x+ y) dx dy.

We only focus on j = 1. Theorem 4.14 yields

a(x, y)Φ(x, y)Ψ1(x, y) =
∑

0≤n≤NP

∑
α

∑
j

an,g,α,j(x, y),

where

(5.2) an,g,α,j(x, y) = Φn,g,α,j(x, y) a(x, y).

Set

(5.3) Λn,g,α,j(f1, f2, f3) =

∫∫
eiλS(x,y)f1(x)f2(y)f3(x+ y)an,g,α,j(x, y) dx dy;

then

(5.4) Λ1
S(f1, f2, f3) =

∑
0≤n≤NP

∑
α

∑
j

Λn,g,α,j(f1, f2, f3).

Since the summands in (5.4) have only finitely many terms, it suffices to bound
each of them separately. For simplicity, we use Λn,g to represent Λn,g = Λn,g,α,j

for some α and j. Then Theorem 1.5 follows from:

Theorem 5.1. If Un,g is defined by F ∈ F(P ), then

‖Λ0,g‖ � |λ|− 1
2(3+dF ) .

We split the proof into three cases (i) n = 0 and U0,g is defined by an edge E,
(ii) n = 0 and U0,g is defined by a vertex V and (iii) n ≥ 1.

Proposition 5.2. If U0,g is defined by an edge E, then

‖Λ0,g‖ � |λ|− 1
2(3+dE) .

Proposition 5.3. If U0,g is defined by a vertex V , then

‖Λ0,g‖ � |λ|− 1
2(3+dV ) .

Proposition 5.4. If n ≥ 1 and Un,g is defined by an edge E, then

‖Λn,g‖ � |λ|− 1
2(3+dE) .

Heuristically, one can consider Proposition 5.2 as an estimate of ΛS in one
supporting line, i.e., in E ∈ SL(P ), and Proposition 5.3 as the sum/integral of such
estimates over all supporting lines through V . Although the function Pn(xn, yn)
becomes more singular as n increases, the region Un,g becomes nicer, which allows
one to exploit certain orthogonality. The rest of this section is devoted to the
proofs of the above propositions.



Trilinear oscillatory integrals and resolution of singularities 109

5.1. Proof of Proposition 5.2

Let 0 < σ < 1 be a dyadic number and let φσ(x) be a smooth function supported
in σ/2 < x < 2σ such that∑

0<σ<1

φσ(x) = 1 for 0 < x < 1/10.

Let Λ0,g,σ1,σ2(f1, f2, f3) denote∫∫
eiλS(x,y) f1(x) f2(y) f3(x+ y) a0,g(x, y)φσ1 (x)φσ2 (y) dx dy,

where σ1 and σ2 are positive dyadic numbers and a0,g = a0,g,α,j for some (α, j).
Notice that

supp (a0,g) ⊂ U∗
0,g,

which is a ‘good’ region defined by E. Notice that m = M(E) ≥ 1 due to (5.1).
Thus

(5.5) |y| ∼ xm and σ2 ∼ σm
1 ≤ σ1.

This yields, for fixed σ1, there are only finitely many choices of σ2. We lose no
generality in assuming, for a given σ1, that σ2 is fixed. To apply Theorem 2.1, we
need to verify its assumptions. For K ∈ N, equally divide the interval (σ1/2, 2σ1)
into K subintervals {Ik}1≤k≤K , and set

U∗
0,g,k = {(x, y) ∈ U∗

0,g : x ∈ Ik}.
Lemma 5.5. There is a constant K ∈ N, dependent of σ1 and σ2, such that

Conv(U∗
0,g,k) ⊂ U∗∗

0,g,

for all 1 ≤ k ≤ K.

The proof of this lemma is postponed to the end of this section. Now let (pl, ql)
be the left vertex of E. Then for every (x, y) ∈ Conv(U∗

0,g,k) ⊂ U∗∗
0,g, Theorem 4.11

and Corollary 4.13 yield

(5.6) |P (x, y)| � |x|pl |y|ql ∼ σpl

1 σql
2 ,

and for β = 0, 1, 2,

|∂β
yP (x, y)| � |x|pl |y|ql−β ∼ σpl

1 σql−β
2 .(5.7)

Theorem 4.14 together with (5.2) yields

(5.8) |∂β
y a0,g(x, y)| � σ−β

2 .

By invoking Theorem 2.1, one has

‖Λ0,g,σ1,σ2,k‖ � |λσpl

1 σql
2 |−1/6,
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where Λ0,g,σ1,σ2,k(f1, f2, f3) is given by∫∫
eiλS(x,y) f1(x)1Ik(x) f2(y) f3(x+ y) a0,g(x, y)φσ1 (x)φσ2 (y) dx dy .

Summing over 1 ≤ k ≤ K (K is a constant) yields

(5.9) ‖Λ0,g,σ1,σ2‖ � |λσpl

1 σql
2 |−1/6.

Employing Lemma 1.7, (5.5) and combining (5.9), one obtains

(5.10) ‖Λ0,g,σ1,σ2‖ �

⎧⎨
⎩

|λσpl

1 σql
2 |−1/6 ∼ |λσql+pl/m

2 |−1/6,

min{σ1, σ2}1/2= σ
1/2
2 .

Since for fixed σ2, σ1 is fixed, summing over σ2 yields∥∥∥ ∑
σ1,σ2

Λ0,g,σ1,σ2

∥∥∥ � |λ|− 1
2(3+ql+pl/m) = |λ|− 1

2(3+dE ) ,

as desired.

5.2. Proof of Proposition 5.3

Like in the proof of Proposition 5.2, insert the smooth support φσ1(x)φσ2 (y)
into Λ0,g. Set V = (p, q) and assume −1/ml and −1/mr be the slopes of the
edges left and right to V . Due to the assumption on U (5.1), we may replace ml

with 1 if ml < 1. Thus,

∞ ≥ mr > ml ≥ 1.(5.11)

Notice that
σ
1/mr

2 � σ1 � σ
1/ml

2 � σ2.

Consider all (σ1, σ2) with σ2 � λ2 := |λ|− 1
3+q+p/ml = |λ|− 1

3+dV . By Lemma 1.7
and the triangle inequality, we have

(5.12)

∥∥∥∥ ∑
σ2�λ2

(∑
σ1

Λ0,g,σ1,σ2

)∥∥∥∥ �
∑

σ2�λ2

|σ2|1/2 � |λ2|1/2 = |λ|− 1
2(3+dV ) .

Now assume σ2 � λ2. As it was done in the proof of Proposition 5.2, we invoke the
same trick to meet the convexity assumption of Theorem 2.1: splitting Λ0,g,σ1,σ2

into the sum of Λ0,g,σ1,σ2,k, applying Theorem 2.1 to each Λ0,g,σ1,σ2,k and summing
them together. This gives

‖Λ0,g,σ1,σ2‖ � |λσp
1σ

q
2 |−1/6.

Since σ1 � σ
1/ml

2 , thus ∑
σ1

‖Λ0,g,σ1,σ2‖ � |λσp/ml+q
2 |−1/6.

Summing all σ2 � λ2 we obtain the same bound as (5.12).
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5.3. Proof of Proposition 5.4

Assume the change of variables (x, y) = ρ−1
k (xk, yk) is given as in Theorem 4.11,

as well as the parameters rk, sk and (pk, qk) for 0 ≤ k ≤ n. Theorem 4.11 and
Corollary 4.13 yield

|P (x, y)| = |Pn(xn, yn)| ∼ |xpn
n yqnn |

for all (xn, yn) ∈ U∗∗
n,g. Since U

∗∗
n,g ⊂ U∗∗

n is a ‘good’ region, we can find m′
n and mn

such that
|xn|m′

n � |yn| � |xn|mn ,

where 0 ≤ mn ≤ m′
n ≤ ∞. In addition, if mn = m′

n, then U∗∗
n,g is defined by an

edge; otherwise by a vertex. Dyadically decompose xn ∼ σ1 and let Λn,g,σ1 denote
the operator Λn,g when xn is localized to this region.

Due to the ‘almost orthogonality’ below, we only need to handle one single σ1.

Claim 1. There is a constant L such that if

(5.13) ‖Λn,g,σ1‖ ≤ A

for some A > 0 then

(5.14)
∑
σ1

‖Λn,g,σ1‖ ≤ LA.

Proof of Claim 1. Recall that

y = y(x) = γn(x) + ynx
m0+···+mn−1(5.15)

where

γn(x) =

∗∑
k=0

rk x
m0+m1+···+mk
0 .

with ∗ = n− 1 or ∞; see (4.44) and (4.45). Set

Y (σ) = {y(x) : x ∼ σ}.
For σ small enough, one has |y| ∼ |r0σm0 | for y ∈ Y (σ). Thus, one can find L ∈ N

such that

(5.16) Y (σ1) ∩ Y (σ2) = ∅
given σ1 ≥ 2Lσ2 and σ1 is small.

Consider the congruence classes modulo L for all small σ1. Let

H
 = {σ1 = 2−h : h ≡ � mod L}
for 0 ≤ � < L. Notice that

Λn,g,σ1(f1, f2, f3) = Λn,g,σ1(f11Iσ1
, f21Y (σ1), f3),
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where Iσ1 denotes such x with x ∼ σ1. The triangle inequality, the Cauchy–
Schwartz inequality and (5.20) yield∣∣∣ ∑

σ1∈H�

Λn,g,σ1(f1, f2, f3)
∣∣∣ ≤ ∑

σ1∈H�

∣∣∣Λn,g,σ1(f11Iσ1
, f21Y (σ1), f3)

∣∣∣
≤ A

∑
σ1∈H�

‖f11Iσ1
‖2 ‖f21Y (σ1)‖2 ‖f3‖2

≤ A
∥∥∥ ∑

σ1∈H�

f11Iσ1

∥∥∥
2

∥∥∥ ∑
σ1∈H�

f21Y (σ1)

∥∥∥
2
‖f3‖2,

which is controlled by A‖f1‖2 ‖f2‖2 ‖f3‖2 due to (5.16). The desired estimates
then follow by the triangle inequality:∥∥∥∑

σ1

Λn,g,σ1

∥∥∥ ≤ L sup
0≤
<L

∥∥∥ ∑
σ1∈H�

Λn,g,σ1

∥∥∥ ≤ LA. �

Dyadically decompose (xn, yn) as{ |xn| ∼ σ1,
|yn| ∼ σ2 x

mn
n ∼ σ2 σ

mn
1 .

Use Un,g(σ1, σ2) and Λn,g,σ1,σ2 to denote the corresponding localization of the
‘good’ region Un,g and the operator Λn,g respectively. In what follows, we shall
focus on one single σ1 and prove a bound for ‖Λn,g,σ1‖ that is independent of σ1.

Even in the region Un,g(σ1, σ2), there is some orthogonality that one can em-
ploy. In fact, the change of variables (5.15) yields that the length of every x-section
of Un,g(σ1, σ2) denoted by �y is bounded by

�y � σ2 σ
m0+···+mn
1 .(5.17)

In addition, (5.15) gives

�y ∼ �x
dy

dx
∼ �x · σm0−1

1 ,

and thus

�x ∼ σ2 σ
m0+···+mn−(m0−1)
1 .(5.18)

Notice also m0 ≥ 1 due to the assumption |y| � |x| on U . We then divide the
interval (σ1/2, 2σ1) equally into H subintervals {Ih}1≤h≤H , where

H = K · σ1

(
σ2 σ

m0+···+mn−(m0−1)
1

)−1
.

Here K is a large constant, independent of (σ1, σ2) and designed to treat the
convexity assumption in Theorem 2.1. Set

U∗
n,g,h = {(x, y) ∈ U∗

n,g : x ∈ Ih}
and

Y (Ih) = {y(x) : x ∈ Ih and yn ∼ σ2 σ
mn
1 },
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where y(x) is defined in (5.15). Then Λn,g,σ1,σ2 can be further decomposed into
{Λn,g,σ1,σ2,h}1≤h≤H by restricting x ∈ Ih. By (5.15), y = y(x) is monotone
given |x| sufficiently small. Hence, given L = L(P, ε,K) large enough, by (5.17)
and (5.18) one has

(5.19) Y (Ih) ∩ Y (Ih′) = ∅ if |h− h′| ≥ L,

which implies the following ‘almost orthogonality’ principle,

Claim 2. If there is a constant A such that

(5.20) ‖Λn,g,σ1,σ2,h‖ ≤ A, for all 1 ≤ h ≤ H,

then

(5.21) ‖Λn,g,σ1,σ2‖ ≤ LA.

The proof of Claim 2 is almost identical to that of Claim 1, and it is omitted.
To prove (5.20) for a desired bound A, we also need the following lemma, which is
similar to Lemma 5.5 and whose proof can be found at the end of this section.

Lemma 5.6. There is a K = K(P, ε, n), such that for 1 ≤ h ≤ H, one has

Conv(ρ−1
n (U∗

n,g,h)) ⊂ ρ−1
n (U∗∗

n,g).

With all the preparation above, we now complete the proof of Proposition 5.4.
Invoking Lemma 1.7, Theorem 4.11, Corollary 4.13 and Theorem 2.1 yields

(5.22) ‖Λn,g,σ1,σ2,h‖ �
{ |λσpn+qnmn

1 σqn
2 |−1/6,

(σ2 σ
m0+···+mn
1 )1/2,

for every 1 ≤ h ≤ H . By Claim 2, summing over h yields

(5.23) ‖Λn,g,σ1,σ2‖ �
{ |λσpn+qnmn

1 σqn
2 |−1/6,

(σ2 σ
m0+···+mn

1 )1/2.

Balancing these two estimates via σ1 yields

(5.24) ‖Λn,g,σ1,σ2‖ � |λ|− 1
2(3+(pn+qnmn)/(m0+···+mn)) · σ

pn+mnqn−qn(m0+···+mn)

3(m0+···+mn)+pn+mnqn

2 .

By (4.46) and (4.47), we conclude that

(5.25) pn +mnqn − qn(m0 + · · ·+mn) ≥ 0.

In the case (5.25) is strictly positive, we can sum over σ2 in (5.24), which yields∑
σ2

‖Λn,g,σ1,σ2,h‖ � |λ|− 1
2(3+(pn+qnmn)/(m0+···+mn)) ≤ |λ|− 1

2(3+dE) ,

where the latter inequality will be proved in a moment.
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Otherwise,

pn +mn qn − qn(m0 + · · ·+mn) = 0,(5.26)

which implies {
p0 = 0

q0 = s0 = q1 = q2 = · · · = qn−1 = qn.
(5.27)

Then (5.23) becomes

‖Λn,g,σ1,σ2‖ �
{ |λσq0(m0+···+mn)

1 σq0
2 |−1/6,

(σ2 σ
m0+···+mn
1 )1/2.

(5.28)

Summing over σ2 yields

‖Λn,g,σ1‖ =
∥∥∥∑

σ2

Λn,g,σ1,σ2

∥∥∥ ≤
∑
σ2

‖Λn,g,σ1,σ2‖ � |λ|− 1
2(3+q0) = |λ|− 1

2(3+dE) .

The last equality comes from p0 = 0, m0 ≥ 1 and thus mult(P ) = dE = q0.
It remains to verify (pn + qnmn)/(m0 + · · ·+mn) ≤ dE . Indeed, (4.47) yields

pn + qn mn

m0 + · · ·+mn
≤ (p0 +m0 q0) + s0(m1 + · · ·+mn)

m0 + (m1 + · · ·+mn)
≤ p0 +m0 q0

m0
= dE ,

since

s0 ≤ q0 ≤ p0 +m0 q0
m0

≤ dE .

5.4. Proofs of Lemmas 5.5 and 5.6

We only provide the proof of Lemma 5.6 for the other is similar and even simpler.
First, notice that the upper and the lower boundaries of U∗

n,g,h can be represented
by two curves:

γ̄1(x) = r0 x
m0 + r1 x

m0+m1 + · · ·+ rn−1 x
m0+···+mn−1 + rn,1 x

m0+···+mn−1+mn ,

γ̄2(x) = r0 x
m0 + r1 x

m0+m1 + · · ·+ rn−1 x
m0+···+mn−1 + rn,2 x

m0+···+mn−1+m′
n ,

and the upper and the lower boundaries of U∗∗
n,g,h by

γ̄∗
1 (x) = r0 x

m0 + r1 x
m0+m1 + · · ·+ rn−1 x

m0+···+mn−1 + r∗n,1 x
m0+···+mn−1+mn ,

γ̄∗
2 (x) = r0 x

m0 + r1 x
m0+m1 + · · ·+ rn−1 x

m0+···+mn−1 + r∗n,2 x
m0+···+mn−1+m′

n ,

where rn,1 < r∗n,1, rn,2 > r∗n,2 and 0 ≤ mn ≤ m′
n. If mn = m′

n, we have in addition
rn,1 > rn,2. Notice that all the curves above have only finitely many terms of
fractional powers of x, even in the case when n = n0 − 1 for some n0 defined as
in (4.21). Assume without loss of generality r0 > 0 and in particular all the curves
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above are increasing functions of x. The assumption m0 ≥ 1 (see (5.1)) implies
that the curves γ̄1, γ̄2, γ̄∗

1 and γ̄∗
2 are concave up. Thus we only need to take

care of the upper boundary of U∗
n,g,h. Use σ1,h to denote the left end point of the

interval Ih, for 1 ≤ h ≤ H . By the definition of convexity, one needs to verify that
if K is sufficiently large, then

tγ̄1(σ1,h) + (1− t)γ̄1(σ1,h+1) < γ̄∗
1 (tσ1,h + (1− t)σ1,h+1)(5.29)

for all 0 ≤ t ≤ 1 and σ1 > 0 sufficiently small.
Since both γ̄1 and γ̄∗

1 are increasing functions, it suffices to show

γ̄1(σ1,h+1) < γ̄∗
1 (σ1,h).(5.30)

By the mean value theorem, there is a σ ∈ Ih such that

γ̄1(σ1,h+1)− γ̄1(σ1,h) = γ̄′
1(σ)(σ1,h+1 − σ1,h) =

3
2K σ2 σ

m0+···+mn−(m0−1)
1 γ̄′

1(σ).

Since σ1/2 ≤ σ ≤ 2σ1, then |γ̄′
1(σ)| ≤ Cσm0−1

1 for constant C. Thus

(5.31) γ̄1(σ1,h+1)− γ̄1(σ1,h) ≤ C

K
σ2 σ

m0+···+mn
1 <

C

K
σm0+···+mn
1 ,

since σ2 < 1. On the other hand,

γ̄∗
1 (σ1,h)− γ̄1(σ1,h) = (r∗1,n − r1,n)σ

m0+···+mn

1,h

≥ (r∗1,n − r1,n) (σ1/2)
m0+···+mn .(5.32)

Thus by choosing

K >
C

r∗1,n − r1,n
· 2m0+···+mn ,

(5.31) and (5.32) imply (5.30) and thus (5.29).
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