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Homogeneous structures of linear type on

ε-Kähler and ε-quaternion Kähler manifolds

Marco Castrillón López and Ignacio Luján

Abstract. We analyze degenerate homogeneous structures of linear type
in the pseudo-Kähler and para-Kähler cases. The local form and the holon-
omy of pseudo-Kähler or para-Kähler manifolds admitting such structure
are obtained. In addition the associated homogeneous models are studied
exhibiting their relation with the incompleteness of the metric. The same
questions are tackled in the pseudo-quaternion Kähler and para-quaternion
Kähler cases.

These results complete the study of homogeneous structures of linear
type in pseudo-Kähler, para-Kähler, pseudo-quaternion Kähler and para-
quaternion Kähler cases.

1. Introduction

Ambrose and Singer [2] generalized Cartan’s theorem on symmetric spaces char-
acterizing connected, simply-connected and complete homogeneous Riemannian
spaces in terms of a (1, 2)-tensor field S called homogeneous structure tensor (or
simply homogeneous structure) satisfying a system of geometric PDE’s, nowa-
days called Ambrose–Singer equations. In [12] this result is extended to homo-
geneous Riemannian manifolds presenting an additional geometric structure (such
as Kähler, quaternion Kähler, G2, etc.), and in [10] the theory is adapted to metrics
with signature. Homogeneous structures have proved to be one of the most suc-
cessful tools in the study of homogeneous spaces, probably due to the combination
of their algebraic and geometric nature. The first classification of homogeneous
structures was provided in [18] in the purely Riemannian case, and later in [8] the
classification of homogeneous structures for all the possible holonomy groups in
Berger’s list is given using a representation theoretical approach. These techniques
have been also used for metrics with signature (see for instance [3]). In many cases
(such as Kähler, hyper-Kähler, quaternion Kähler, G2 or Spin(7), as well as in the
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pseudo-Riemannian analogs) these classifications contain a class such that the cor-
responding pointwise tensor submodule has dimension growing linearly with the
dimension of the manifold. For that reason homogeneous structures belonging to
these classes are called of linear type. The corresponding tensor fields are defined
by a set of vector fields satisfying a system of PDE’s equivalent to Ambrose–
Singer equations.

For definite metrics, in the purely Riemannian case so as in the case of Kähler
and quaternion Kähler manifolds, homogeneous structures of linear type character-
ize spaces of negative constant sectional (resp. holomorphic sectional, quaternionic
sectional) curvature (see [5], [9] and [18]). When metrics with signature are stud-
ied, the causal character of the vector fields defining the homogeneous structure
tensor needs to be taken into account. In the purely pseudo-Riemannian case,
non-degenerate structures of linear type (i.e., given by a non null vector field)
characterize spaces of constant sectional curvature [10], while degenerate homo-
geneous structures of linear type (i.e., given by a null vector field) characterize
singular scale-invariant plane waves [16]. Furthermore, in [15] it is shown that ho-
mogeneous structures in the composed class S1+S3 are related to a larger class of
singular homogeneous plane waves. In [6] the authors generalize this result to the
pseudo-Kähler setting in the strongly degenerate case, i.e., homogeneous pseudo-
Kähler structures of linear type characterized by a null vector field ξ and vanishing
vector field ζ, resulting that the underlying geometry presents significant analogies
with the geometry of a singular homogenous plane wave. The same problem is ana-
lyzed in the case of pseudo-hyper-Kähler and pseudo-quaternion Kähler geometry,
finding that a metric admitting such a structure must be flat.

In this paper we study degenerate homogeneous structures of linear type in the
pseudo-Kähler and the para-Kähler settings, that is, homogeneous pseudo-Kähler
and para-Kähler structures of linear type defined by a null vector field ξ and an
arbitrary vector field ζ (see [3]). Note that this includes the strongly degenerate
case, so that the results obtained in this paper generalize those in [6]. With these
results, together with those in [14], we give a complete description of the geometry
of homogeneous structures of linear type. Essentially two cases arise in pseudo-
Kähler and para-Kähler manifolds. On one hand, non-degenerate structures locally
characterize constant curvature spaces. On the other, the degenerate case (struc-
tures studied in §3 and §4) provides geometries with an interesting parallelism with
homogeneous plane waves. This is analyzed at the end of the paper. Finally the
pseudo-quaternion and para-quaternion Kähler framework does not provide any
geometry other than spaces of constant curvature, a fact that indicates that the
quaternionic realm seems to be too rigid to contain generalizations of plane waves.

The paper is organized as follows. In Section 2, the general framework and
the notation is settled. Throughout the manuscript, the notions of pseudo-Kähler
and para-Kähler geometry will be unified and treated together via the definition
of ε-Kähler geometry, ε = ±1. In Section 3, we obtain the curvature and holonomy
of an ε-Kähler manifold admitting a degenerate homogeneous ε-Kähler structure
of linear type. In addition we prove that the vector field ζ must be a multiple
of ξ by a factor 0 or −ε/2. In Section 4 the local form of a metric admitting these
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structures is obtained. The corresponding local model is studied, focusing in the
singular nature of the metric. In Section 5 the homogeneous model associated to
a degenerate homogeneous ε-Kähler structure of linear type is computed, showing
that it is (geodesically) incomplete. In Section 6 the same problem in the pseudo-
quaternion Kähler and para-quaternion Kähler settings is tackled, resulting that
the corresponding metrics must be flat. Finally, Section 7 gives a complete view of
the geometry of manifolds endowed with a homogeneous structure of linear type.

2. Preliminaries

We shall combine the treatment of complex geometry and para-complex geometry
by defining ε = ±1, so that hereafter ε should be substituted by −1 for com-
plex geometry and by 1 for para-complex geometry (for a survey on para-complex
geometry see for example [7]).

Definition 2.1. Let (M, g) be a pseudo-Riemannian manifold of dimension 2n.

(1) An almost ε-Hermitian structure on (M, g) is a smooth section J of so(TM)
such that J2 = ε.

(2) (M, g) is called ε-Kähler if it admits a parallel almost ε-Hermitian structure J
with respect to the Levi-Civita connection.

The first previous definition implies that the signature of g is (2r, 2s), r+s = n,
for ε = −1, and (n, n) for ε = 1. The second definition is equivalent to the holonomy
being contained in U(r, s) for ε = −1, and GL(n,R) for ε = 1.

Hereafter (M, g, J) is supposed to be a connected ε-Kähler manifold of dimen-
sion dimM ≥ 4.

Definition 2.2. An ε-Kähler manifold (M, g, J) is called a homogeneous ε-Kähler
manifold if there is a connected Lie group G of isometries acting transitively on M
and preserving J . (M, g, J) is called a reductive homogeneous ε-Kähler manifold
if the Lie algebra g of G can be decomposed as g = h⊕m with

[h, h] ⊂ h, [h,m] ⊂ m.

Using Kiričenko’s theorem, [12] (see also [10]), we have:

Theorem 2.3. Let (M, g, J) be a connected, simply connected and complete ε-
Kähler manifold. Then the following are equivalent:

(1) (M, g, J) is a reductive homogeneous ε-Kähler manifold.

(2) (M, g, J) admits a linear connection ∇̃ such that

(2.1) ∇̃g = 0, ∇̃R = 0, ∇̃S = 0, ∇̃J = 0,

where S = ∇−∇̃, ∇ is the Levi-Civita connection of g, and R is the curvature
tensor of g.
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Definition 2.4. A tensor field S of type (1, 2) on an ε-Kähler manifold (M, g, J)
satisfying (2.1) is called a homogeneous ε-Kähler structure.

The classification with respect to the action of the maximal holonomy group of
homogeneous ε-Kähler structures is carried out in [3] and [10], resulting four prim-
itive classes K−1

1 ,K−1
2 ,K−1

3 ,K−1
4 for ε = −1, and eight primitive classes K1

1, . . . ,K1
8

for ε = 1. Among them, for K−1
2 , K−1

4 , K1
2, K1

4, K1
6, and K1

8 the correspond-
ing pointwise modules have dimension growing linearly with the dimension of M .
For this reason we define

Definition 2.5. A homogeneous ε-Kähler structure is called of linear type if it
belongs to

(1) K1
2 ⊕K1

4 for ε = −1,

(2) K1
2 ⊕K1

4 ⊕K1
6 ⊕K1

8 for ε = 1.

The following characterization can be obtained from [3] and [10].

Proposition 2.6. A homogeneous ε-Kähler structure S is of linear type if and
only if

SXY = g(X,Y )ξ−g(ξ, Y )X + εg(X, JY )Jξ−εg(ξ, JY )JX−2g(ζ, JX)JY,(2.2)

for some vector fields ξ and ζ.

Since we are dealing with metrics with signature we further distinguish the
following cases.

Definition 2.7. A homogeneous ε-Kähler structure of linear type S is called
(see [3])

(i) non-degenerate if g(ξ, ξ) �= 0,

(ii) degenerate if g(ξ, ξ) = 0,

(iii) strongly degenerate if g(ξ, ξ) = 0 and ζ = 0.

Case (i) was studied in [14], and case (iii) was studied in [6]. In this paper we
concentrate in case (ii).

3. Degenerate homogeneous ε-Kähler structures of linear type

It is a straightforward computation to prove (see [3]):

Proposition 3.1. A tensor field S on (M, g, J)defined by formula (2.2) is a ho-
mogeneous ε-Kähler structure if and only if

∇̃ξ = 0, ∇̃ζ = 0 , ∇̃R = 0 .

where ∇̃ = ∇− S.
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Equation ∇̃R = 0 reads

(3.1) (∇XR)Y ZWU = −RSXY ZWU −RY SXZWU −RY ZSXWU −RY ZWSXU ,

so applying the second Bianchi identity and substituting (2.2) we have

0 = S
XYZ

{2g(X, ξ)RY ZWU + g(X,W )RY ZξU + g(X,U)RY ZWξ

+2εg(X, JY )RJξZWU + εg(X, JW )RY ZJξU + εg(X, JU)RY ZWJξ} .(3.2)

Since g(ξ, ξ) = 0, there exists we an orthonormal basis {ek} such that g(e1, e1) = 1,
g(e2, e2) = −1, and ξ = g(ξ, e1)(e1+e2). Whence, contracting the previous formula
with respect to X and W and applying the first Bianchi identity, we obtain

(2n+ 2)RZY ξU = − 2g(Y, ξ) r(Z,U) + 2g(Z, ξ) r(Y, U)

− 2εg(Y, JZ) r(Jξ, U)− g(Y, U) r(Z, ξ)

− εg(Y, JU) r(Z, Jξ) + g(Z,U) r(Y, ξ) + εg(Z, JU) r(Y, Jξ) ,(3.3)

where r denotes the Ricci tensor. With the same orthonormal basis, contracting the
previous expression with respect to Y and U we arrive to r(Z, ξ) = (s/2n)g(Z, ξ),
where s stands for the scalar curvature. Setting a = 1/(2n+ 2) and ν = s/2n, we
can write

(3.4)
1

a
RξU = 2θ ∧ r(U)− 2ν ε θ(JU)F + ν U � ∧ θ − ε ν(JU)� ∧ (θ ◦ J) ,

where F denotes the symplectic form associated to g and J . From Bianchi’s first
identity we have RWUJξ· = RξJWU· −RξJUW · so we can write (3.3) as

0 = 2θ ∧RWU +W � ∧RξU − U � ∧RξW − 2ε F ∧ (RξJUW −RξJWU )

− ε (JW )� ∧RξJU + ε (JU)� ∧RξJW .(3.5)

Denoting by Ξ(U) the right-hand side of (3.4) and substituting in (3.5) we obtain

0 =
2

a
θ ∧RWU +W � ∧ Ξ(U) − U � ∧ Ξ(W )− 2ε F ∧ (iW Ξ(JU)− iU Ξ(JW ))

− ε (JW )� ∧ Ξ(JU) + ε (JU)� ∧ Ξ(JW ).

Then, taking W = ξ in the previous formula,

0 = ε(θ ∧ (θ ◦ J)) ∧ (r(JU) − ν(JU)�).

Now, since U is arbitrary, denoting α = r − νg, one has

θ ∧ (θ ◦ J) ∧ α(X) = 0,

for any vector field X . This implies that

α = λθ + μθ ◦ J,
for some 1-forms λ and μ.
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Note that since (M, g, J) is ε-Kähler, α = r−νg is symmetric and of type (1, 1).
Imposing this to the right-hand side of the previous equality we have that

λ = fθ, μ = −εf(θ ◦ J),
for some function f , so that we obtain

(3.6) r = νg + f (θ ⊗ θ − ε(θ ◦ J)⊗ (θ ◦ J)) .
Substituting (3.6) in (3.4) we obtain

(3.7)
1

a
RξU = ν R0

ξU + PξU ,

where

R0
XY ZW = g(X,Z)g(Y,W )− g(X,W )g(Y, Z)− ε g(X, JZ)g(Y, JW )

+ ε g(X, JW )g(Y, JZ)− 2ε g(X, JY )g(Z, JW ),

and
PξU = −2εfθ(JU)θ ∧ (θ ◦ J).

On the other hand, from ∇ξ = S · ξ and (2.2), the formula

RXY Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z

gives

(3.8) RXY ξ = −g(ξ, ξ)R0
XY ξ +Θζ

XY ξ = Θζ
XY ξ,

where

Θζ
XY ξ =− 2g(ζ, JY )g(X, Jξ)ξ + 2g(ζ, Y )g(X, Jξ)Jξ − 4g(ζ, JY )g(X, ξ)Jξ

+ 2g(ζ, JX)g(Y, Jξ)ξ − 2g(ζ,X)g(Y, Jξ)Jξ + 4g(ζ, JX)g(Y, ξ)Jξ

+ 4g(ξ, ζ)g(Y, JX)Jξ − 4εg(ζ, JY )g(ξ,X)Jξ + 4εg(ζ, JX)g(ζ, Y )Jξ.

Taking Y = JX and comparing (3.7) and (3.8) one finds that

2aν g(ξ, JX) = 0, 2aν g(ξ,X) = 0,

for every X , so that ν = 0. Hence the scalar curvature vanish. We now choose at
every point p ∈ M a basis

{ξ, Jξ, q1, Jq1, Xi, JXi}
of TpM , where g(ξ, q1) = 1, g(q1, q1) �= 0, and {Xi, JXi} is an orthonormal basis
of span{ξ, Jξ, q1, Jq1}⊥. Comparing again (3.7) and (3.8) for X = ξ and Y = Jq1,
and for X = Jξ and Y = Jq1 we obtain that g(ζ, Jξ) = 0 and g(ζ, ξ) = 0, so that
ζ ∈ span{ξ, Jξ}⊥. Taking X = Xi and Y = Jq1, and X = JXi and Y = Jq1
we also have g(ζ, JXi) = 0 and g(ζ,Xi) = 0 respectively, so that ζ ∈ span{ξ, Jξ}.
Finally, writing ζ = λξ + μJξ for some functions λ and μ, and taking X = q1 and
Y = Jq1 one finds g(ζ, Jq1) = 0 and 2af = −2ελ− 4λ2, so that

ζ = λξ, f = −1

a
λ(ε+ 2λ).
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Note that equations ∇̃ξ = 0 and ∇̃ζ = 0 imply that λ must be constant. This
agrees with the fact that the Ricci form

ρ = fθ ∧ (θ ◦ J)

is closed as (M, g, J) is ε-Kähler. We have proved:

Proposition 3.2. Let (M, g, J) be a ε-Kähler manifold admitting a degenerate
ε-Kähler homogeneous structure of linear type S given by (2.2). Then ζ = λξ for
some λ ∈ R and the Ricci curvature is

r = −1

a
λ (ε + 2λ) (θ ⊗ θ − ε(θ ◦ J)⊗ (θ ◦ J)) ,

where a = 1/(dimM + 2) and θ = ξ�. In particular the scalar curvature vanishes.

Since ν = 0, formula (3.7) becomes

RZY ξU = aPZY ξU = −2aεf(θ ∧ (θ ◦ J)⊗ (θ ◦ J))(Z, Y, U).

Looking again to formula (3.2) we obtain

−S
XYZ

2g(X, ξ)RY ZWU = S
XYZ

2af
{
(θ ∧ (θ ◦ J))⊗ (X� ∧ (θ ◦ J))(Y, Z,W,U)

+ ε (θ ∧ (θ ◦ J))⊗ (JX� ∧ (θ))(Y, Z,W,U)

− 2ε g(X, JY )θ ⊗ (θ ∧ (θ ◦ J))(Z,W,U)} .(3.9)

Substituting this in (3.1), and after a quite long computation, we obtain

(3.10) ∇XR = 4θ(X)⊗ (R− 1

2
ag� r)− 2aε

(
(X�∧ (θ ◦J))� ρ+(JX�∧ (θ))� ρ

)
,

where ρ is the Ricci form and � stands for the ε-complex Kulkarni–Nomizu product
defined as

h� k(X1, X2, X3, X4) = h(X1, X3)k(X2, X4) + h(X2, X4)k(X1, X3)

− h(X1, X4)k(X2, X3)− h(X2, X3)k(X1, X4)

− εh(X1, JX3)k(X2, JX4)− εh(X2, JX4)k(X1, JX3)

+ εh(X1, JX4)k(X2, JX3) + εh(X2, JX3)k(X1, JX4)

− 2εh(X1, JX2)k(X3, JX4)− 2εh(X3, JX4)k(X1, JX2) ,

for h and k symmetric (0, 2)-tensors.
With the help of (3.10) we now compute some terms of the curvature tensor

of g. We again choose a basis

{ξ, Jξ, q1, Jq1, Xi, JXi}

of TpM for every p ∈ M .
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Taking the symmetric sum with respect to X,Y, Z in (3.10) we have

0 = 4θ(X) (RY ZWU − 2ag � rY ZWU )

− 2aε
(
(X� ∧ (θ ◦ J))� ρ+ (JX� ∧ (θ)) � ρ

)
(Y, Z,W,U)

− 2aε
(
(Y � ∧ (θ ◦ J))� ρ+ (JY � ∧ (θ))� ρ

)
(Z,X,W,U)

− 2aε
(
(Z� ∧ (θ ◦ J))� ρ+ (JZ� ∧ (θ))� ρ

)
(X,Y,W,U).

Setting Y, Z ∈ span {ξ, Jξ}⊥ we obtain

(3.11) RY ZWU = −8aε g(Y, JZ) ρ(W,U), Y, Z ∈ span{ξ, Jξ}⊥

for every W,U . On the other hand, setting X = q1, Y = Jq1 and Z ∈ spanXi, JXi

we find

RY ZWU = af
(
g(Z,W )θ(JU)− g(Z,U)θ(JW )

− g(Z, JW )θ(U) + g(Z, JU)θ(W )
)
,

for every W,U , so that

Rq1ZWU = af
(
g(JZ,U)θ(JW )− g(JZ,W )θ(JU) + ε g(Z,U)θ(W )

− ε g(Z,W )θ(U)
)

(3.12)

for Z ∈ span{Xi, JXi} and all W,U .

Proposition 3.3. (M, g, J) is Ricci-flat.

Proof. Let g(q1, q1) = b and suppose for simplicity that b > 0 (the case b < 0 is
analogous). Denoting q2 = Jq1,for every p ∈ M we choose an orthonormal basis{√

b
(
ξ − q1

b

)
,
√
b
(
Jξ − q2

b

)
,
q1√
b
,
q2√
b
,Xi, JXi

}
of TpM , which has signature (−1, ε, 1,−ε, εi,−εεi), where g(Xi, Xi) = εi ∈ {±1}.
We compute the Ricci curvature by contracting the curvature tensor with respect
to this orthonormal basis and using (3.11) and (3.12):

r(W,U) = −R
(
W,

√
b
(
ξ − q1

b

)
, U,

√
b
(
ξ − q1

b

))
+ εR

(
W,

√
b
(
ξ − q2

b

)
, U,

√
b
(
ξ − q2

b

))
+R

(
W,

q1√
b
, U,

q1√
b

)
− εR

(
W,

q2√
b
, U,

q2√
b

)
+ εiR(W,Xi, U,Xi)− εεiR(W,JXi, U, JXi)

= 4af
(
θ ⊗ θ − ε(θ ◦ J)⊗ (θ ◦ J)

)
+ 2afε

∑
i

εi
(
θ ⊗ θ − ε(θ ◦ J)⊗ (θ ◦ J))

=
(
4a+ 2aε

∑
i

εi
)
r(W,U).
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We deduce that if r(W,U) �= 0 then 4a+ 2aε
∑

i ε
i = 1, therefore

dimM + 2 = 4 + 2aε
∑
i

εi ,

whence
dimM = 2 + 2aε

∑
i

εi < dimM .

Since this is impossible we conclude that r = 0. �

Corollary 3.4. The only possible values for λ are λ = 0 and λ = −ε/2.

In the next section we shall study the cases λ = 0 and λ = −ε/2 separately.

Proposition 3.5. The curvature tensor of g is given by

R = k(θ ∧ (θ ◦ J))⊗ (θ ∧ (θ ◦ J)),
for some function k. Moreover, if k �= 0, the holonomy algebra of g is given by

hol ∼= R

⎛
⎝ iε iε 0

−iε −iε 0
0 0 0n

⎞
⎠ ,

where iε is the ε-complex imaginary unit, which is a one dimensional subalgebra of
su(1, 1) ⊂ su(r, s), r+ s = n+2, for ε = −1, and sl(2,R) ⊂ sl(n+ 2,R) for ε = 1.

Proof. Since (M, g, J) is Ricci-flat, we have that f = 0, so that (3.10) becomes

∇R = 4θ ⊗R.

Taking symmetric sum in the previous formula and applying second Bianchi iden-
tity we have that θ ∧RWU = 0 for every W,U . But from the ε-Kähler symmetries
of R we also have (θ ◦ J) ∧RWU = 0. These force the curvature to be of the form

R = k(θ ∧ (θ ◦ J))⊗ (θ ∧ (θ ◦ J)),
for some function k.

On the other hand, since (M, g, J) is real analytic, the infinitesimal holonomy
algebra coincides with the holonomy algebra (see [13]). Recall that the infinitesimal
holonomy algebra at p ∈ M is defined as hol′ =

⋃∞
k=0 mk, where

m0 = span{RXY /X, Y ∈ TpM}
and

mk = span
{
mk−1 ∪ {(∇Zk

. . .∇Z1R)XY /Z1, . . . , Zk, X, Y ∈ TpM}}.
As a simple computation shows, one has

∇θ = θ ⊗ θ + (2λ+ ε)(θ ◦ J)⊗ (θ ◦ J).
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It is easy to see that this together with the recurrent formula ∇R = 4θ⊗R imply
that m0 = m1 = · · · = mk for every k ∈ N, so that hol′ = m0. Now, since
R = k(θ ∧ (θ ◦ J)) ⊗ (θ ∧ (θ ◦ J)), the space m0 is the one dimensional space
generated by the endomorphism

A : TpM → TpM
ξ, Jξ �→ 0

q1 �→ Jξ
q2 �→ εξ

Xi, JXi �→ 0 .

This endomorphism is expressed as

1

b

⎛
⎝ iε iε 0

−iε −iε 0
0 0 0n

⎞
⎠

with respect to the ε-complex orthonormal basis{ 1√|b| (q1 + εiεq2),
( 1√|b|q1 − s

√
|b|ξ

)
+ εiε

( 1√|b|q2 − s
√
|b|Jξ

)
, Xi + εiεJXi

}
,

where g(q1, q1) = b and s is the sign of b. �

As a consequence of Proposition 3.5 we have that for all the values ε = ±1
and λ = 0,−ε/2, (M, g, J) is an Osserman manifold with a 2-step nilpotent Jacobi
operator. It is also easy to see that (M, g, J) is VSI (vanishing scalar invariants).
Finally, it is worth noting that if (M, g, J) is connected and simply-connected, then
it is the product of a 2n-dimensional ε-complex flat and totally geodesic manifold
which can be thought of as an ε-complex wavefront, and a 4-dimensional Walker
ε-Kähler manifold with a parallel null ε-complex vector field, which can be think
of as the ε-complex time and direction of propagation of the wave.

4. Local form of the metrics

In previous sections (Propositions 3.2 and 3.3) we have seen that an ε-Kähler
manifold (M, g, J) admitting a degenerate homogeneous ε-Kähler structure of lin-
ear type satisfies ζ = λξ for some constant λ ∈ R and is Ricci-flat. As stated
in Corollary 3.4, this implies that the only possible values for λ are λ = 0 and
λ = −ε/2. Hereafter M is supposed to be non-flat and of dimension 2n+ 4.

4.1. λ = −ε/2

We shall obtain the local form of the metric in the case λ = −ε/2 for both values
of ε simultaneously.

Substituting the value λ = −ε/2 in (2.2) we have

SXY = g(X,Y )ξ − g(ξ, Y )X + εg(X, JY )Jξ − εg(ξ, JY )JX + εg(ξ, JX)JY.
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The condition ∇̃ξ = 0 then implies

∇ξ = θ ⊗ ξ,

which gives
∇θ = θ ⊗ θ, and ∇θ ◦ J = θ ⊗ (θ ◦ J).

In particular dθ = 0, so that fixing a point p ∈ M there is a neighborhood U and
a function v : U → R such that θ = dv. We consider

w1 = e−v,

whence dw1 = −e−v = −w1θ. We now consider

dw1 ◦ J = −w1(θ ◦ J).
Differentiating we obtain

d(dw1 ◦ J) = −dw1 ∧ (θ ◦ J)− w1d(θ ◦ J) = w1θ ∧ (θ ◦ J)− w1θ ∧ (θ ◦ J) = 0.

Therefore, reducing U if necessary, there is a function w2 : U → R such that dw2 =
εdw1 ◦ J . We consider the function w = w1 + iεw2. Then dw = dw1 + εiε(dw1 ◦ J),
so that dw is of type (1, 0) with respect to J and w : U → Cε is ε-holomorphic. In
addition, it is a straightforward computation to see that

∇dw = −dw1 ⊗ θ − w1∇θ − iεdw1 ⊗ (θ ◦ J)− iεw1∇(θ ◦ J) = 0,

i.e., dw is a nowhere vanishing parallel 1-form.
The function w : U → Cε defines a foliation of U by ε-complex hypersurfaces

Hτ = w−1(τ), τ ∈ Cε (for those τ with non empty w−1(τ)). Note that since the
tangent space to Hτ is given by the kernel of dw, the hypersurfaces Hτ are tangent
to the distribution span{ξ, Jξ}⊥. We consider the vector field

Z = grad(w1) = dw�
1 .

It is easy to see that, by construction,

JZ = −ε grad(w2) .

These vector fields are written as

Z = −w1ξ and JZ = −w1Jξ ,

so that
∇Z = −dw1 ⊗ ξ − w1∇ξ = w1θ ⊗ ξ − w1θ ⊗ ξ = 0 ,

and thus also ∇JZ = 0. This implies in particular that Z and JZ are commuting
ε-holomorphic Killing vector fields.

We now look at the holonomy of g at p, which was computed in Proposition 3.5.
Using the same notation as before we denote E = span{ξ, Jξ, q1, q2} ⊂ TpM . This
subspace is invariant under the holonomy action and so is E⊥. In fact, the holon-
omy action on E⊥ is trivial. This implies that, using the parallel transport with
respect to ∇, we can extend an orthonormal basis {(Xa)|p, (JXa)|p/ a = 1, . . . , n}
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of E⊥ to an orthonormal reference {Xa, JXa/ a = 1, . . . , n} on U such that ∇Xa =
0 = ∇JXa, a = 1, . . . , n. In particular these vector fields are commuting ε-
holomorphic Killing vector fields. In addition, let γ be any smooth curve on U , we
have

d

dt

∣∣∣∣
t=0

(
dw(Xa)γ(t)

)
=

(∇γ̇(t)dw
)
(Xa) + dw

(∇γ̇(t)Xa

)
= 0 ,

whence the function dw(Xa) is constant along γ and takes the value 0 at p. This
implies that Xa and thus JXa are tangent to the foliation Hτ . Finally note that
since they are parallel, Xa and JXa commute with Z and JZ.

We have thus constructed a set of commuting para-holomorphic Killing vector
fields {Z, JZ,Xa, JXa} tangent to Hτ . Therefore, reducing U if necessary, we can
take ε-complex coordinates {w, z, za} on U such that ∂z = 1

2 (Z + εiεJZ), ∂za =
1
2 (Xa+ εiεJXa). Note that since the distributions span{∂w, ∂z} and span{∂za , a =
1, . . . , n} are invariant by holonomy, the vector fields Xa and JXa are orthogonal
to span{∂w, ∂z}. Writing z = z1 + iεz

2, za = xa + iεy
a and w = w1 + iεw

2, and
rearranging the coordinates as {z1, z2, w1, w2, xa, ya}, we have that the metric with
respect to these coordinates is

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 . . . 0
0 0 0 −ε 0 . . . 0
1 0 b 0 0 . . . 0
0 −ε 0 −εb 0 . . . 0
0 0 0 0
...

...
...

... Σ
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for some function b, where

Σ = diag

((
εa 0
0 −εεa

)
, a = 1, . . . , n

)
,

with εa = g(Xa, Xa) ∈ {±1}. With respect to these coordinates, the ε-complex
structure reads

J =

⎛
⎜⎜⎜⎜⎜⎝

0 ε
1 0

. . .

0 ε
1 0

⎞
⎟⎟⎟⎟⎟⎠ .

Imposing that ∂z1 , ∂z2 , ∂xa and ∂a
y are parallel, it is easy to see that b does not

depend on z1, z2, xa, ya.
Finally, computing the curvature tensor with respect to these coordinates we

obtain

R =
1

2
Δεb(dw1 ∧ dw2)⊗ (dw1 ∧ dw2),

where

Δε = −ε
∂2

∂(w1)2
+

∂2

∂(w2)2
.



Homogenous ε-Kähler and ε-quaternion Kähler structures 151

Denoting F = Δεb and taking into account that dw1 and dw2 are parallel, we have
that

∇R =
1

2
dF ⊗ (dw1 ∧ dw2)⊗ (dw1 ∧ dw2).

Recall that the recurrent formula (3.10) together with the Ricci-flatness of g give
that

∇R = 4θ ⊗R.

Comparing these two formulas for ∇R we have that

dF = 4Fθ ,

where θ can be written as

θ = − 1

w1
dw1 .

Note that by construction w1 �= 0. The system of partial differential equations is
thus

∂F

∂w1
= − 4

w1
F

∂F

∂w2
= 0 ,

which has solution

F =
R0

(w1)4
,

for some constant R0 ∈ R. We have thus proved:

Proposition 4.1. Let (M, g, J) be an ε-Kähler manifold of dimension 2n + 4,
n ≥ 0, admitting a degenerate homogeneous ε-Kähler structure of linear type S
with ζ = − ε

2ξ. Then each p ∈ M has a neighborhood ε-holomorphically isometric
to an open subset of (Cε)n+2 with the ε-Kähler metric

(4.1) g = dw1dz1− εdw2dz2+ b(dw1dw1− εdw2dw2)+

n∑
a=1

εa(dxadxa− εdyadya),

where εa = ±1, and the function b only depends on the coordinates {w1, w2} and
satisfies

Δεb =
R0

(w1)4

for R0 ∈ R− {0}.

4.2. λ = 0

The case ε = −1 and λ = 0 was studied in [6], where the local form and some prop-
erties of the metric g and the complex structure J were obtained. We reproduce
below the main lines of the proof in [6], now for both values of ε simultaneously
and putting special attention to the formulas which depend on ε.
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Substituting the value λ = 0 in (2.2) we have that the homogeneous structure S
takes the form

SXY = g(X,Y )ξ − g(ξ, Y )X + εg(X, JY )Jξ − εg(ξ, JY )JX .

In analogy with the complex case we shall call S strongly degenerate. We consider
the form α = θ + εiε(θ ◦ J), which is of type (1, 0) with respect to the ε-complex
structure J (see [10]). As a straightforward computation shows, ∇α = α ⊗ α
so that dα = 0. This implies in particular that α is an ε-holomorphic 1-form.
Fixing a point p ∈ M , by the closeness of α there is a neighborhood U of p
and an ε-holomorphic function v : U → Cε such that α = dv. We consider the
ε-holomorphic function

w = e−v,

where the the exponential must read ex+iεy = ex(cos y + iε sin y) for ε = −1 and
ex+iεy = ex(cosh y+ iε sinh y) for ε = 1. Differentiating we obtain that ∇dw = 0 so
that dw is a nowhere vanishing parallel ε-holomorphic 1-form on U . The function
w : U → Cε defines a foliation of U by ε-complex hypersurfaces Hτ = w−1(τ),
τ ∈ Cε (if w−1(τ) is non empty).

It is easy to adapt the construction made in [6] for both values of ε simultane-
ously in order to find a set of coordinates {z1, z2, w1, w2, xa, ya} with respect to
which the metric takes the form

g = dw1dz1 − εdw2dz2 + b(dw1dw1 − εdw2dw2) +
n∑

a=1

εa(dxadxa − εdyadya),

and J is the standard ε-complex structure of R2n+4, where εa = ±1 and the
function b only depends on the coordinates {w1, w2}. In addition, as a simple
computation shows,

R =
1

2
Δεb(dw1 ∧ dw2)⊗ (dw1 ∧ dw2) ,

and

θ =
−1

(w1)2 − ε(w2)2
(w1dw1 − εw2dw

2) .

Finally, imposing the equation ∇R = 4θ ⊗ R and denoting F = Δεb, we obtain
the system of partial differential equations

∂F

∂w1
=

−4w1

(w1)2 − ε(w2)2
F

∂F

∂w2
=

4εw2

(w1)2 − ε(w2)2
F ,

which has solution

F =
R0

((w1)2 − ε(w2)2)2
,

for some constant R0 ∈ R. Note that since w = e−v we always have (w1)2 −
ε(w2)2 �= 0. We have thus proved:
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Proposition 4.2. Let (M, g, J) be an ε-Kähler manifold of dimension 2n + 4,
n ≥ 0, admitting a strongly degenerate homogeneous ε-Kähler structure of linear
type S. Then each p ∈ M has a neighborhood ε-holomorphically isometric to an
open subset of (Cε)n+2 with the ε-Kähler metric

(4.2) g = dw1dz1− εdw2dz2+b(dw1dw1− εdw2dw2)+

n∑
a=1

εa(dxadxa− εdyadya) ,

where εa = ±1, and the function b only depends on the coordinates {w1, w2} and
satisfies

Δεb =
R0

((w1)2 − ε(w2)2)2

for R0 ∈ R− {0}.

4.3. The manifold ((Cε)n+2, g)

Propositions 4.2 and 4.1 give the local forms (4.2) and (4.1) of the metric of a man-
ifold with a degenerate homogeneous ε-Kähler structure of linear type. This moti-
vates the study of the space (Cε)2+n endowed with this particular ε-Kähler metric,
which can thus be understood as the simplest instance of this type of manifolds.
In particular, the goal of this section is to study the singular nature of this spaces,
and their analogies with homogeneous plane waves. We shall restricts ourselves to
the Lorentz ε-Kähler case, i.e., metrics of index 2. Throughout this section ‖w‖λ
must be understood as

(4.3) ‖w‖2λ =

{
w2

1 − εw2
2 for λ = 0,

w2
1 for λ = −ε/2 .

In addition, Δε shall stand for the differential operator

Δε = −ε
∂2

∂w2
1

+
∂2

∂w2
2

.

We thus consider the manifold (Cε)2+n = (R2n+4, J0), where J0 is the standard
ε-complex structure, with real coordinates {z1, z2, w1, w2, xa, ya}, endowed with
the metric

(4.4) g = dw1dz1 − εdw2dz2 + b(dw1dw1 − εdw2dw2) +

n∑
a=1

(dxadxa − εdyadya),

where b is a function of the variables (w1, w2) satisfying

(4.5) Δεb =
R0

‖w‖4λ
, R0 ∈ R− {0} .

As computed before, the curvature (1, 3)-tensor field of g is

R =
1

2

R0

‖w‖4λ
(
(dw1 ∧ dw2)⊗ (dw1 ⊗ ∂z2) + ε(dw1 ∧ dw2)⊗ (dw2 ⊗ ∂z1)

)
.
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As R0 �= 0, it exhibits a singular behavior at

S = {‖w‖λ = 0}.
This set can be understood as a singularity of g in the cosmological sense: the
geodesic deviation equation is governed by the components of the curvature tensor
Rzj

w1w2wi , i, j = 1, 2, making the tidal forces infinite at S. Indeed, we can compute
a component of the curvature tensor with respect to an orthonormal parallel frame
along a geodesic reaching the singular set in finite time, and see that it is singular
(see [17]). Let γ be the geodesic with initial value γ(0) = (0, 0, 1, 0, . . . , 0) and
γ̇ = (0, 0,−1, 0, . . . , 0). It is easy to see that this geodesic is of the form

γ(t) = (z1(t), z2(t), 1 − t, 0, xa(t), ya(t))

for some functions z1(t), z2(t), xa(t), ya(t), a = 1, . . . , n, and reaches the singular
set S at t = 1. Let

E(t) = W 1(t)∂w1 +W 2(t)∂w2 + Z1(t)∂z1 + Z2(t)∂z2 +Xa(t)∂xa + Y a(t)∂ya

be a vector field along γ. E is parallel if the following equations hold:

0 = Ẇ 1, 0 = Ẇ 2,

0 = Ż1 −W 1Γz1

w1w1 −W 2Γz1

w1w2 , 0 = Ż2 −W 1Γz2

w1w1 −W 2Γz2

w1w2 ,

0 = Ẋa, 0 = Ẏ a.

We can thus obtain an orthonormal parallel frame {E1(t), . . . , E4+2n(t)} with E1(t)
and E2(t) of the form

E1(t) =
1√|b(0)|∂w1 + Z1

1 (t)∂z1 + Z2
1 (t)∂z2 +Xa

1∂xa + Y a
1 ∂ya ,

E2(t) =
1√|b(0)|∂w2 + Z1

2 (t)∂z1 + Z2
2 (t)∂z2 +Xa

2∂xa + Y a
2 ∂ya ,

where

E1(0) =
1√|b(0)|∂w1 , E2(0) =

1√|b(0)|∂w2 , and b(0) = b(0, 0).

The value of the curvature tensor applied to E1(t), E2(t) is

RE1(t)E2(t)E1(t)E2(t) =
R0

2b(0)2
1

||w(t)||4λ
=

R0

2b(0)2
1

(1− t)4
,

which is singular at t = 1.

Note that (Cε)2+n − S is connected and not simply-connected for ε = −1
and λ = 0 while it is not connected nor simply-connected for the other values.
Moreover, (Cε)2+n − S has two connected components for λ = −ε/2 and ε = ±1
and four connected components for λ = 0 and ε = 1.
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Singular set S λ = 0 λ = −ε/2

ε = −1

S : (w1)2 + (w2)2 = 0 S : w1 = 0

ε = 1

S : (w1)2 − (w2)2 = 0 S : w1 = 0

Finally we show that degenerate homogeneous ε-Kähler structures of linear
type indeed exist and are realized in the manifold ((Cε)2+n − S, g).

Proposition 4.3. For every data (b, R0) satisfying (4.5), the ε-Kähler manifold
((Cε)2+n−S, g) admits a strongly degenerate pseudo-Kähler homogeneous structure
of linear type.

Proof. Let

ξ =

⎧⎪⎪⎨
⎪⎪⎩

−1

(w1)2 − ε(w2)2
(w1∂z1 + w2∂z2) λ = 0 ,

− 1

w1
∂z1 λ = − ε

2
.

We take the tensor field

SXY = g(X,Y )ξ − g(ξ, Y )X + εg(X, JY )Jξ − εg(ξ, JY )JX

− 2λg(ξ, JX)JY.

A straightforward computation shows that ∇̃ξ = 0 and ∇̃R = 0, where ∇̃ = ∇−S,
so that S satisfies equations (2.1). �
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5. The homogeneous model for a degenerate homogeneous
ε-Kähler structure of linear type

Let (M, g, J) be an ε-Kähler manifold admitting a degenerate homogeneous struc-
ture of linear type S. From [18] one can construct a Lie algebra of infitesimal
isometries associated to S. This algebra is (fixing a point p ∈ M as the origin)

g = TpM ⊕ hol
˜∇

where ∇̃ = ∇ − S is the canonical connection associated to the homogeneous
structure tensor S. The brackets in g are

⎧⎪⎨
⎪⎩

[A,B] =AB −BA, A,B ∈ hol
˜∇

[A, η] =A · η, A ∈ hol
˜∇, η ∈ TpM

[η, ζ] =Sηζ − Sζη − R̃ηζ , η, ζ ∈ TpM ,

where R̃ is the curvature tensor of ∇̃. This curvature tensor can be computed as

R̃ = R−RS ,

where

RS
XY Z = [SX , SY ]Z − SSXY −SY XZ .

Let G be a Lie group with Lie algebra g, and let H be the connected Lie

subgroup with Lie algebra hol
˜∇. If H is closed in G, then the infinitesimal model

(g, hol
˜∇) is called regular, and we shall call G/H the homogeneous model for M

associated to S, which means that (M, g, J) is locally ε-holomorphically isometric
to G/H with the G-invariant metric and ε-complex structure given by g and J
at TpM .

In [6] the infinitesimal model for ε = −1 and λ = 0 is computed, proving that
it is regular and the corresponding homogeneous model is not complete. We shall
obtain the same result for the rest of the values of ε and λ.

5.1. The case λ = −ε/2

Denoting p1 = ξ and p2 = Jξ, for the sake of simplicity we choose p ∈ M such
that with respect to the basis

{p1, p2, q1, q2, Xa, JXa}

and its dual {p1, p2, q1, q2, Xa, JXa} the curvature is written

Rp = R0q
1 ∧ q2 ⊗ (q1 ⊗ p2 + εq2 ⊗ p1) .
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Substituting λ = −ε/2 in (2.2) we obtain by direct calculation that the non-

vanishing terms of R̃ are:

R̃p2q1 : q1 �→ 2p2
q2 �→ 2εp1
Xa �→ 0

JXa �→ 0
p1, p2 �→ 0

R̃q1q2 : q1 �→ (R0 − b(p))p2
q2 �→ (R0 − b(p))εp1
Xa �→ −JXa

JXa �→ −εXa

p1, p2 �→ 0

R̃q2Xa : q1 �→ −JXa

q2 �→ −εXa

Xa �→ p2
JXa �→ εp1
p1, p2 �→ 0

R̃q2JXa : q1 �→ −εXa

q2 �→ −εJXa

Xa �→ εp1
JXa �→ εp2
p1, p2 �→ 0

R̃XaJXa : q1 �→ −2p2
q2 �→ −2εp1
Xa �→ 0

JXa �→ 0
p1, p2 �→ 0,

so that dim(hol
˜∇) = 2n+ 2. Choosing endomorphisms

A = 2(q1 ⊗ p2 + εq2 ⊗ p1), Ba = R̃q2Xa , Ca = R̃q2JXa ,

K =
1

2
(R0 − b(p))A−

∑
a

(Xa ⊗ JXa + εJXa ⊗Xa)

as basis of hol
˜∇, the Lie algebra g has non-vanishing brackets

[Ba, Ca] = εA, [Ba,K] = −Ca, [Ca,K] = −εBa,
[A, q1] = 2p2, [A, q2] = 2εp1,
[Ba, q1] = −JXa, [Ba, q2] = −εXa, [Ba, Xa] = −p2, [Ba, JXa] = −εp1,
[Ca, q1] = −εXa, [Ca, q2] = −εya, [Ca, Xa] = εp1, [Ca, JXa] = εp2,
[K,Xa] = JXa, [K, JXa] = εXa,
[p1, q1] = −p1, [p2, q1] = −3p2 −A, [p2, q2] = −2εp1,
[q1, q2] = 2b(p)p2 − q2 − 1

2 (R0 − b(p))A+K,
[q1, Xa] = Xa, [q1, JXa] = JXa,
[q2, Xa] = 2JXa −Ba, [q2, JXa] 2εXa − Ca,
[Xa, JXa] = 2p2 +A.

One can check that g is a solvable Lie algebra with a 3-step nilradical n =
span {p1, p2, q2 −K,Xa, JXa, A,Ba, Ca, a = 1, . . . , n}. Since g has trivial center,
the adjoint representation is faithful and provides a matrix realization of g. With
respect to this realization it is a straightforward computation that by exponen-

tiation of g and hol
˜∇ we obtain a Lie group G and a closed Lie subgroup H

respectively, so that the infinitesimal model (g, hol
˜∇) is regular and G/H is a ho-

mogeneous model for (M, g, J). Let ḡ and J̄ be the G-invariant metric and complex
structure on G/H induced from (M, g, J) on G/H .
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Proposition 5.1. The homogeneous model (G/H, ḡ, J̄) is not geodesically com-
plete.

Proof. Let σ be the Lie algebra involution of g given by

σ : g→ g
A �→ −A
Ba �→ −Ba

Ca �→ Ca

K �→ −K
p1 �→ p1
p2 �→ −p2
q1 �→ q1
q2 �→ −q2
Xa �→ Xa

JXa �→ −JXa .

One can check that the restriction of σ to m is an isometry with respect to the
bilinear form given by ḡ. The subalgebra of fixed points is

gσ = span {p1, q1, Xa, Ca, a = 1, . . . , n} .
Working with the universal cover if necessary we can assume that G is simply-
connected so that σ induces an involution inG and therefore an isometric involution
in G/H . We will denote all this involutions by σ. Let Gσ be the connected Lie

subgroup of G with Lie algebra gσ, note that σ(hol
˜∇) ⊂ hol

˜∇, so that (G/H)
σ
=

Gσ/Hσ, where the superindex σ stands for the fixed point set by σ. It is a well-
known result that (G/H)

σ
is a closed totally geodesic submanifold of G/H . Let

now θ be the Lie algebra involution of gσ given by

θ : gσ → gσ

Ca �→ −Ca

p1 �→ p1
q1 �→ q1
Xa �→ −Xa ,

which is again an isometry with respect to the bilinear form induced in gσ by re-
striction from m. The subalgebra of fixed points is k = (gσ)

θ
= span {p1, q1}. Note

that k∩ hol
˜∇ = 0. Let G̃σ be the universal cover of Gσ and H̃σ the corresponding

closed subgroup, θ : gσ → gσ induces an isometric involution θ : G̃σ/H̃σ → G̃σ/H̃σ.

Therefore, let K be the connected Lie subgroup of G̃σ with lie algebra k, K is a
totally geodesic submanifold of G̃σ/H̃σ. Let s be the sign of b(p). We define the
left-invariant vector fields

U = 1/(
√
|b(p)|) q1 and V = U − s

√
|b(p)| p1

in k. We have

< U,U >= s, < V, V >= −s, < U, V >= 0, and [U, V ] =
1√|b(p)| (V − U),
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where <, > stands for the bilinear form inherited by k from gσ. It is a straight-
forward computation to see that K is not geodesically complete. Hence, since we
have the following inclusions of totally geodesic submanifolds,

K ⊂ G̃σ, Gσ = (G/H)σ ⊂ G/H,

the manifold (G/H, g, J) is not geodesically complete. �

Corollary 5.2. Let (M, g, J) be a connected and simply-connected ε-Kähler man-
ifold admitting a degenerate ε-Kähler structure of linear type with ζ = − ε

2ξ, then
it is not geodesically complete.

Proof. Suppose that (M, g, J) is geodesically complete, then Ambrose–Singer the-
orem assures that (M, g, J) is (globally) ε-holomorphically isometric to the ho-
mogeneous model (G/H, ḡ, J̄). But this homogeneous model is not geodesically
complete. �

5.2. The case λ = 0

Denoting again p1 = ξ and p2 = Jξ, we choose p ∈ M such that with respect to the
basis {p1, p2, q1, q2, Xa, JXa} and its dual {p1, p2, q1, q2, Xa, JXa} the curvature
is written

Rp = R0 q
1 ∧ q2 ⊗ (q1 ⊗ p2 + εq2 ⊗ p1).

Substituting λ = 0 in (2.2) we obtain by direct calculation that the non-vanishing

terms of R̃ are:

R̃p1q2 : q1 �→ −2p2
q2 �→ −2εp1
Xa �→ 0

JXa �→ 0
p1, p2 �→ 0

R̃p2q1 : q1 �→ 2p2
q2 �→ 2εp1
Xa �→ 0

JXa �→ 0
p1, p2 �→ 0

R̃q1q2 : q1 �→ (R0 − 2b(p))p2
q2 �→ (R0 − 2b(p))εp1
Xa �→ 0

JXa �→ 0
p1, p2 �→ 0

R̃XaJXa : q1 �→ −2p2
q2 �→ −2εp1
Xa �→ 0

JXa �→ 0
p1, p2 �→ 0,

so that dim(hol
˜∇) = 1. Choosing the endomorphism

A = 2(q1 ⊗ p2 + εq2 ⊗ p1)

as basis of hol
˜∇, the Lie algebra g has non-vanishing brackets

[A, q1] = 2p2, [A, q2] = 2εp1,
[p1, q1] = −p1, [p1, q2] = p2 + A,
[p2, q1] = −3p2 −A, [p2, q2] = −εp1,
[q1, q2] = 2b(p)p2 − 1

2 (R0 − 2b(p))A,
[q1, Xa] = Xa, [q1, JXa] = JXa,
[q2, Xa] = JXa, [q2, JXa] = εXa,
[Xa, JXa] = 2p2 +A.
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One can check that g is a solvable Lie algebra with a 2-step nilradical n =
span {p1, p2, Xa, JXa, A, a = 1, . . . , n}. Since g has trivial center, the adjoint rep-
resentation is faithful and provides a matrix realization of g. Exponentiating g

and hol
˜∇ we obtain a Lie group G and a closed Lie subgroup H respectively, so

that the infinitesimal model (g, hol
˜∇) is regular and G/H is a homogeneous model

for (M, g, J). Let ḡ and J̄ be the G-invariant metric and complex structure onG/H
induced from (M, g, J) on G/H .

Proposition 5.3. The homogeneous model (G/H, ḡ, J̄) is not geodesically com-
plete.

Proof. Following the same arguments as in the proof of Proposition 3.1 (see also
those in §4 of [6]), we find isometric involutions σ : g → g and gσ → gσ so that the

connected Lie subgroup with lie algebra k = (gσ)
θ
is not complete. �

Corollary 5.4. Let (M, g, J) be a connected and simply-connected ε-Kähler man-
ifold admitting a strongly-degenerate ε-Kähler structure of linear type. Then it is
not geodesically complete.

6. The ε-quaternion Kähler case

Throughout this section dim(M) = 4n ≥ 8 is assumed. We shall study degenerate
homogeneous structures of linear type in the ε-quaternion Kähler case.

Let ε = (ε1, ε2, ε3), we can combine some definitions of pseudo-quaternion ge-
ometry and para-quaternion geometry in the following way. For pseudo-quaternion
geometry εmust be substituted by (−1,−1,−1), and for para-quaternion geometry
ε must be substituted by (−1, 1, 1).

Definition 6.1. Let (M, g) be a pseudo-Riemannian manifold.

(1) An ε-quaternion Hermitian structure on (M, g) is a 3-rank subbundle Q ⊂
so(TM) with a local basis J1, J2, J3 satisfying

J2
a = εa, J1J2 = J3.

(2) (M, g) is called ε-quaternion Kähler if it is strongly-oriented and it admits
a parallel ε-quaternion Hermitian structure with respect to the Levi-Civita
connection.

The first previous definition means that at every point p ∈ M there is a subalge-
bra Qp ⊂ so(TpM) isomorphic to the imaginary ε-quaternions, and in particular g
has signature (4r, 4s), r+s = n for ε = (−1,−1,−1) and (2n, 2n) for ε = (−1, 1, 1).
We shall denote by Spε(n) the group Sp(r, s), r+s = n, when ε = (−1,−1,−1) and
Sp(n,R) when ε = (−1, 1, 1). Their Lie algebras are denoted by spε(n) respectively.
For the proof of the following proposition, see [1].
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Proposition 6.2 ([1]). An ε-quaternion Kähler manifold is Einstein and has Rie-
mann curvature tensor

R = νq R0 +Rspε(n),

where νq = s
16n(n+2) is one quarter the reduced scalar curvature, R0 is four times

the curvature of the ε-quaternionic hyperbolic space (of the corresponding signature)

(R0)XY ZW = g(X,Z)g(Y,W )− g(Y, Z)g(X,W )−
∑
a

εa
{
g(JaX,Z)g(JaY,W )

− g(JaY, Z)g(JaX,W ) + 2g(X, JaY )g(Z, JaW )
}
,(6.1)

and Rspε(n) is an algebraic curvature tensor of type spε(n).

Let J1, J2, J3 be a local basis of Q, and ωa = g(·, Ja·), a = 1, 2, 3. The 4-form

Ω =
∑
a

−εa ωa ∧ ωa

is independent of the choice of basis and hence it is globally defined. An ε-quater-
nion Hermitian manifold (M, g,Q) is ε-quaternion Kähler if and only if Ω is parallel
with respect to the Levi-Civita connection (cf. [1]), or equivalently if the holonomy
of the Levi-Civita connection is contained in Spε(n)Spε(1). This is also equiva-
lent to

(6.2) ∇Ja =

3∑
b=1

cab Jb, a = 1, 2, 3,

where (cab) is a matrix in spε(1).

Definition 6.3. An ε-quaternion Kähler manifold (M, g,Q) is called a homoge-
neous ε-quaternion Kähler manifold if there is a connected Lie groupG of isometries
acting transitively on M and preserving Q. (M, g,Q) is called a reductive homo-
geneous ε-quaternion Kähler manifold if the Lie algebra g of G can be decomposed
as g = h⊕m with

[h, h] ⊂ h, [h,m] ⊂ m.

As a corollary of Kiričenko’s theorem [12], we have

Theorem 6.4. A connected, simply-connected, (geodesically) complete ε-quater-
nion Kähler manifold (M, g,Q) is reductive homogeneous if and only if it admits

a linear connection ∇̃ satisfying

(6.3) ∇̃g = 0, ∇̃R = 0, ∇̃S = 0, ∇̃Ω = 0,

where S = ∇−∇̃, ∇ is the Levi-Civita connection, R is the curvature tensor of ∇,
and Ω is the canonical 4-form associated to Q.

Note that the condition ∇̃Ω = 0 is equivalent to

(6.4) ∇̃Ja =

3∑
b=1

c̃ab Jb, a = 1, 2, 3,
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where (c̃ab) ∈ spε(1). A tensor field S satisfying the previous equations is called a
homogeneous ε-quaternion Kähler structure. The classification of such structures
was obtained in [3] and [14], resulting five primitive classes: QKε

1, QKε
2, QKε

3, QKε
4

andQKε
5. Among them, QKε

1, QKε
2 andQKε

3 have dimension growing linearly with
respect to the dimension of M . Hence:

Definition 6.5. A homogeneous ε-quaternion Kähler structure S is called of linear
type if it belongs to the class QKε

1 +QKε
2 +QKε

3.

The local expression of S ∈ QKε
1 +QKε

2 +QKε
3 is

SXY = g(X,Y )ξ − g(Y, ξ)X −
3∑

a=1

εa (g(JaY, ξ)JaX − g(X, JaY )Jaξ)(6.5)

+

3∑
a=1

g(X, ζa)JaY,

where ξ and ζa, a = 1, 2, 3, are vector fields. We then give the following further
definition.

Definition 6.6. A homogeneous ε-quaternion Kähler structure of linear type is
called degenerate if ξ �= 0 and g(ξ, ξ) = 0.

Remark 6.7. The case ζa = 0 for a = 1, 2, 3 was studied in [6] resulting that the
manifold (M, g,Q) must be flat.

Proposition 6.8. Let (M, g,Q) be a ε-quaternion Kähler manifold admitting a de-
generate homogeneous ε-quaternion Kähler structure of linear type. Then (M, g,Q)
is flat.

Proof. Following Proposition 6.2 we decompose the curvature of (M, g,Q) as R =
νqR0 + Rspε(n). Recall that the space of algebraic curvature tensors Rspε(n) is
[S4E] with E = C2n for ε = (−1,−1,−1), and S4E with E = R2n for ε =
(−1, 1, 1). Since R0 is Spε(n)Spε(1)-invariant and νq is constant, the covariant
derivative ∇R0 vanishes. Moreover, for every vector field X , SX acts as an element
of spε(n) + spε(1), whence SR0 = 0. Using the second equation of (6.3) and

∇̃ = ∇− S, we have that

0 = ∇̃R = νq∇̃R0 + ∇̃Rspε(n) = ∇Rspε(n) − SRspε(n).

Writing T ∗M⊗(spε(n)+spε(1)) = T ∗M⊗spε(n)+T ∗M⊗spε(1) we can decompose
S = SE + SH , and hence SHRspε(n) = 0. We thus obtain

∇R = ∇Rspε(n) = SER
spε(n),

which we can write as

(6.6) (∇XR)Y ZWU = −R
spε(n)
SXY ZWU −R

spε(n)
Y SXZWU −R

spε(n)
Y ZSXWU −R

spε(n)
Y ZWSXU .
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Taking the cyclic sum in X,Y, Z and applying the Bianchi identities we obtain

0 = S
XYZ

{
2g(X, ξ)R

spε(n)
Y ZWU + g(X,W )R

spε(n)
Y ZξU + g(X,U)R

spε(n)
Y ZWξ

+ 2
∑
a

εa(g(X, JaY )R
spε(n)
JaξZWU+g(X, JaW )R

spε(n)
Y ZJaξU

+g(X, JaU)R
spε(n)
Y ZWJaξ

)
}
.

Contracting the previous formula with respect to X and W , and taking into ac-
count that Rspε(n) is traceless, we obtain

(4n+ 2)R
spε(n)
Y ZξU = 0 ,

for every vector fields Z, Y, U . Expanding the expression of S in (6.6) and using
the previous formula, we arrive at

0 = S
XYZ

θ(X)R
spε(n)
Y ZWU ,

where θ = ξ�, or equivalently

(6.7) 0 = θ ∧R
spε(n)
WU .

Noting thatRspε(n) satisfies the symmetries R
spε(n)
XJaYWU+R

spε(n)
JaXYWU = 0, a = 1, 2, 3,

we will also have

(6.8) 0 = (θ ◦ Ja) ∧R
spε(n)
WU = 0 , a = 1, 2, 3 .

It is easy to prove that a curvature tensor of type spε(n) satisfying equations (6.7)
and (6.8) must vanish. Therefore we conclude that R = νqR0.

Now, using the third equation of (6.3) together with (6.5), and taking into
account (6.4), we have

0 = g(X,Y )∇̃Zξ − g(∇̃Zξ, Y )X −
∑
a

εa(g(∇̃Zξ, JaY )JaX + g(X, JaY )Ja∇̃Zξ)

+
∑
a

g(X, ∇̃Zζ
a −

∑
b

c̃ba(Z)ζb)JaY,

whence we deduce that ∇̃ξ = 0. On the other hand,

RXY ξ =−∇X∇Y ξ +∇Y ∇Xξ +∇[X,Y ]ξ

=− g(Y,∇Xξ)ξ − g(Y, ξ)∇Xξ + g(X,∇Y ξ)ξ + g(X, ξ)∇Y ξ

−
∑
a

εa (g(Y,∇XJaξ)Jaξ + g(Y, Jaξ)∇XJaξ

−g(X,∇Y Jaξ)Jaξ − g(X, Jaξ)∇Y Jaξ)

+
∑
a

−g(Y,∇Xζa)Jaξ − g(Y, ζa)∇XJaξ

+ g(X,∇Y ζ
a)Jaξ + g(X, ζa)∇Y Jaξ.

Therefore, applying ∇̃ξ = 0 and (6.2) to this formula we see that RXY ξ ∈
span{ξ, J1ξ, J2ξ, J3ξ}. Comparing this fact with RXY ξ = νq(R0)XY ξ we obtain
that νq = 0, so that R = 0. �



164 M. Castrillón and I. Luján

7. Homogeneous structures of linear type

The aim of this section is to bring together all results for homogeneous structures
of linear type in the purely pseudo-Riemannian, ε-Kähler, and ε-quaternion Kähler
cases, in order to provide a general picture and a complete study of this kind of
structures. It is worth noting how different the non-degenerate and the degenerate
cases are, being the former closely related with the well known case of definite
metrics and spaces of constant curvature, while the latter is rather related to the
geometry of singular homogeneous plane waves.

7.1. The general picture

For the purely pseudo-Riemannian case, the following theorem was subsequently
proved in [18], [10], [16]. We recall that in this setting a homogeneous pseudo-
Riemannian structure is of linear type if it is of the form SXY = g(X,Y )ξ −
g(ξ, Y )X , for some vector field ξ. S is degenerate if g(ξ, ξ) = 0 and non-degenerate
otherwise.

Theorem 7.1. Let (M, g) be a pseudo-Riemannian manifold of dimension m ≥ 3.

(1) If (M, g) admits a non-degenerate homogeneous structure of linear type, then
it has constant sectional curvature c = −g(ξ, ξ). Conversely, every non-
flat simply-connected pseudo-Riemannian space form locally admits a non-
degenerate homogenous structure of linear type, being this structure globally
defined if and only if g is definite.

(2) If (M, g) admits a degenerate homogeneous structure of linear type, then (M, g)
is locally isometric to a singular scale-invariant homogeneous plane wave. Con-
versely, every singular scale-invariant homogeneous plane wave admits a de-
generate homogeneous structure of linear type.

For the ε-Kähler and ε-quaternion Kähler cases, the non-degenerate case was
obtained in [14] (see [5] and [9] for definite metrics), and the degenerate case was
partially solved in [6] and completed in the present manuscript.

Theorem 7.2. Let (M, g, J) be an ε-Kähler manifold of dimension m ≥ 4.

(1) If (M, g, J) admits a non-degenerate homogeneous ε-Kähler structure of linear
type, then it has constant ε-holomorphic sectional curvature c = −4g(ξ, ξ)
and ζ = 0. Conversely, every non-flat simply-connected ε-complex space form
locally admits a non-degenerate homogenous ε-Kähler structure of linear type,
being this structure globally defined if and only if g is definite.

(2) If (M, g, J) admits a degenerate homogeneous ε-Kähler structure of linear type,
then ζ = λξ, with λ ∈ {0,−ε/2}, and (M, g) is locally ε-holomorphically iso-
metric to (Cε)n+2 with the metric

ḡ = dw1dz1 − εdw2dz2 + b(dw1dw1 − εdw2dw2)

+

n∑
a=1

εa(dxadxa − εdyadya),(7.1)
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where εa = ±1, and the function b only depends on the coordinates {w1, w2}
and satisfies

Δεb =
R0

‖w‖4λ
for R0 ∈ R− {0} and ‖w‖λ defined in (4.3). Conversely, ((Cε)n+2, ḡ) admits
a degenerate homogeneous ε-Kähler structure of linear type.

Theorem 7.3. Let (M, g,Q) be an ε-quaternion Kähler manifold of dimension
m ≥ 8.

(1) If (M, g,Q) admits a non-degenerate homogeneous ε-quaternion Kähler struc-
ture of linear type, then it has constant ε-quaternionic sectional curvature c =
−4g(ξ, ξ) and ζa = 0. Conversely, every non-flat simply-connected ε-quaternion
space form locally admits a non-degenerate homogenous ε-quaternion Kähler
structure of linear type, being this structure globally defined if and only if g is
definite.

(2) If (M, g,Q) admits a degenerate homogeneous ε-quaternion Kähler structure
of linear type, then (M, g,Q) is flat.

7.2. Relation with homogeneous plane waves

We exhibit the parallelism between certain kind of (Lorentzian) homogeneous plane
waves and Lorentz–Kähler spaces admitting degenerate homogeneous structures of
linear type (by Lorentz–Kähler we mean pseudo-Kähler of index 2). Although, as
far as the authors know, there is no formal definition of a plane wave in complex
geometry, this relation could allow us to understand the latter spaces as a com-
plex generalization of the former, at least in the important Lorentz–Kähler case,
suggesting a starting point for a possible definition of complex plane wave.

A plane wave is a Lorentz manifold M = Rn+2 with metric

g = dudv +Aab(u)x
axbdu2 +

n∑
a=1

(dxa)2,

where (Aab)(u) is a symmetric matrix called the profile of g. Moreover, a plane
wave is called homogeneous if the Lie algebra of Killing vector fields acts transi-
tively in the tangent space at every point. Among homogeneous plane waves we
will be interested in two types. A Cahen–Wallach space is defined as a plane wave
with profile a constant symmetric matrix (Bab), which makes it symmetric and
geodesically complete. On the other hand, a singular scale-invariant homogeneous
plane wave is a plane wave with profile (Bab)/u

2, where (Bab) is a constant sym-
metric matrix. Singular scale-invariant homogeneous plane waves are homogeneous
but not symmetric. In addition they present a singularity in the cosmological sense
at {u = 0}, since the geodesic deviation equation (or Jacobi equation) governed
by the curvature is singular at this set (see [17]). Note that these two kind of
spaces are composed by the twisted product of a totally geodesic flat wave front
and a 2-dimensional manifold containing time and the direction of propagation.
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This 2-dimensional space gives the real geometric information of the total man-
ifold and in particular it contains a null parallel vector field. They are all VSI
and the curvature information is contained in the profile Aab(u), since the only
non-vanishing component of the curvature is given by Ruaub = −Aab(u). By The-
orem 7.1, singular scale-invariant homogeneous plane waves are characterized by
degenerate homogeneous structures of linear type. In addition, any indecompos-
able simply-connected Lorentzian symmetric space is isometric exactly to one of the
following: (R,−dt2), the de Sitter or the anti de Sitter space, or a Cahen–Wallach
space [4].

In the Lorentz–Kähler case, according to [11], there is only one possibility
for a simply-connected, indecomposable (and not irreducible), symmetric space of
complex dimension 2 and signature (2, 2) with a null parallel complex vector field,
that is a manifold with holonomy

holγ1=0,γ2=0
n=0 = R

(
i i
−i −i

)

in the notation of [11]. Note that this is the holonomy algebra in Proposition 3.5.
In order to get a plane wave structure we add a plane wave front by considering a
manifold (M, g, J) with holonomy holγ1=0,γ2=0

n=0 ⊕ {0n}. The result (see [6]) is, up
to local holomorphic isometry, the space Cn+2 with

(7.2) ḡ = dw1dz1 + dw2dz2 + b(dw1dw1 + dw2dw2) +

n∑
a=1

(dxadxa + dyadya) ,

where the function b only depends on w1 and w2 and satisfies

Δb = R0, R0 ∈ R− {0} .

This suggests to consider the manifold (C2+n, ḡ) as a natural Lorentz–Kähler ana-
logue to Cahen–Wallach spaces. As Cahen–Wallach spaces are simply-connected,
in order to have an actual analogue we only consider non-singular functions b, so
that (C2+n, ḡ) is complete.

On the other hand, since Lorentzian singular scale-invariant homogeneous plane
waves are characterized by degenerate pseudo-Riemannian homogeneous structures
of linear type, from Theorem 7.2 the natural analogues to these spaces are Lorentz–
Kähler manifolds with degenerate homogeneous pseudo-Kähler structures of linear
type. More precisely, the spaces (Cn+2 − {‖w‖λ = 0}, ḡ) with ‖w‖λ as in (4.3),
ḡ as in (7.1) with ε = −1 and signature (2, 2 + 2n), and (Cn+2, ḡ) with ḡ given
in (7.2), are composed by the twisted product of a flat and totally geodesic complex
manifold and a 2-dimensional complex manifold containing a null parallel complex
vector field. Moreover, the expression of (7.1) and (7.2) are the same except for
the function b, which has a different Laplacian in each case. As a straightforward
computation shows, the curvature tensor of both metrics is

R =
1

2
Δb(dw1 ∧ dw2)⊗ (dw1 ∧ dw2) ,
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whence all the curvature information is contained in the Laplacian of the function b.
For this reason, analogously to Lorentz plane waves, we call Δb the profile of the
metric.

It is worth noting that in the Lorentz case one goes from Cahen–Wallach spaces
to singular scale-invariant homogeneous plane waves by making the profile be sin-
gular with a term 1/u2. Doing so, the space is no longer geodesically complete
and a cosmological singularity at {u = 0} is created. In the same way, in the
Lorentz–Kähler case one goes from metric (7.2) to (7.1) by making the profile be
singular with a term 1/‖w‖4λ and again one transforms a geodesically complete
space to a geodesically incomplete space, and a singularity at {‖w‖λ = 0} is cre-
ated. This reinforces the parallelism and exhibits a close relation between this two
couples of spaces.

Symmetric Deg. homog.

space of linear type

Lorentz

Cahen–Wallach Singular s.-i. homog.
spaces plane wave

Profile: A(u) = B(const.) Profile: A(u) = B/u2

Geodesically complete Geodesically incomplete

Lorentz–Kähler

C
2+n with metric C

2+n − {‖w‖λ = 0}
(7.2) with metric (7.1)

Profile: Δb = R0(const.) Profile: Δb = R0/‖w‖4λ
Geodesically complete Geodesically incomplete

Finally, note that a pseudo-quaternion Kähler manifold admitting a degen-
erate homogeneous pseudo-quaternion Kähler structure of linear type must be
flat, suggesting that the notion of homogeneous plane wave cannot be adapted to
pseudo-quaternion Kähler geometry.
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