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Twists of non-hyperelliptic curves

Elisa Lorenzo Garćıa

Abstract. In this paper we present a method for computing the set of
twists of a non-singular projective curve defined over an arbitrary (perfect)
field k. The method is based on a correspondence between twists and
solutions to a Galois embedding problem. When in addition, this curve
is non-hyperelliptic we show how to compute equations for the twists.
If k = Fq the method then becomes an algorithm, since in this case, it is
known how to solve the Galois embedding problems that appear. As an
example we compute the set of twists of the non-hyperelliptic genus 6 curve
x7 − y3 − 1 = 0 when we consider it defined over a number field such that
[k(ζ21) : k] = 12. For each twist equations are exhibited.

1. Introduction

The study of twists of curves can be a very useful tool for understanding some
arithmetic problems. For example, it has been proved to be really helpful for
exploring the Sato–Tate conjecture [8], [10], [11], [12],[14], as well as for solving
some Diophantine equations [18] or computing Q-curves realizing certain Galois
representations [2], [7].

The twists of curves of genus ≤ 2 are well known. While the genus 0 and 1 cases
date back a long time [20, X, Proposition 5.4], the genus 2 case is due to the work of
Cardona and Quer over number fields [3], [5], and to Cardona over finite fields [4].
All genus 0, 1 or 2 curves are hyperelliptic (at least in the sense that they are not
non-hyperelliptic, since genus 0 and 1 curves are not usually called hyperelliptic).
However, for genus greater than 2 almost all curves are non-hyperelliptic. Only few
twists of genus 3 curves over number fields have been previously computed [7], [18].
Over finite fields, more twists of curves of genus 3 have been computed [16], but,
in this case, equations are not given.

We devote the present paper to presenting a method for computing twists
of smooth curves of genus greater than 0, and in the particular case of non-
hyperelliptic curves we show how to compute equations for the twists. The method
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is not completely original since it is based on well-known results, but as far as we
know this is the first time that all the strategies used for computing twists are
joined together and all the gaps are filled in order to produce a systematic method.
In particular, when the field of definition of the curve has characteristic different
from zero, the method gives rise to an algorithm.

In a forthcoming paper [15], this method will be useful for computing the twists
of all non-hyperelliptic genus 3 curves defined over any number field.

1.1. Outline

The structure of this paper is as follows. Section 2 establishes a correspondence
between the set of twists of any smooth and irreducible genus g > 0 curve C defined
over a perfect field k and the set of solutions to a Galois embedding problem, see
Theorem 2.2. In Section 3, we show how to compute equations of the twists in the
particular case in which the curve C is non-hyperelliptic. We do this by studying
the action of the Galois group of a certain extension of the field of definition of the
curve C, in the vector space of regular differentials Ω1(C). Section 4 describes in
detail the method obtained for computing the twists of non-hyperelliptic curves.
The first step is computing a canonical model of the curve. The second one is posing
the corresponding Galois embedding problem, whose solutions are in bijection with
the set of twists, and solving it. In general, if k is a number field, there is no known
method for solving a Galois embedding problem over k, and this step should be
treated on a case-by-case basis. We compute the solutions to an infinity family of
such problems in Proposition 4.1. Nevertheless, if k is a finite field, it is known
how to solve any Galois embedding problem over k (e.g., [19], Chapter 1). The
third and last step is computing equations for the twists. Finally, in Section 5 we
illustrate the method by computing all the twists of the non-hyperelliptic genus 6
curve x7 − y3 − 1 = 0 when it is considered to be defined over a number field such
that [k(ζ21) : k] = 12.

1.2. Notation

We now fix some notation and conventions that will be valid through the paper.
For any field F , we denote by F̄ an algebraic closure of F , and by GF the absolute
Galois group Gal(F̄ /F ). We recurrently consider the action of GF on several
sets, and this action is in general denoted by left exponentiation. For a field F ,
let GLn(F ) (resp. PGLn(F )) be the group of n by n invertible matrices with
coefficients in F (resp. that are projective).

By k we always mean a perfect field. All field extensions of k that we consider
are contained in a fixed algebraic closure k̄. We write ζn to refer to a primitive
n-th root of unity in k̄. When k is a number field, we denote by Ok the ring of
integers of k.

Given a projective, smooth and geometrically irreducible curve C/k we denote
by Aut(C) the group of automorphisms of C defined over k̄. By K we denote
the minimal extension K/k where all the automorphism of C can be defined. The
k-vector space of regular differentials of C is denoted by Ω1(C).
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2. Galois embedding problems

Let k be a perfect field and C/k be a projective curve of genus g > 0. Recall
that K denotes the minimal field over which all the automorphisms of C can be
defined. Since the curve C is defined over k, the extension K/k is Galois. Define
the twisting group Γ := Aut(C) � Gal(K/k), where Gal(K/k) acts naturally on
Aut(C), and the multiplication rule is (α, σ)(β, τ) = (α σβ, στ) ([9], Section 2).

Define the following sets:

Twistk(C) :=
{
C′/k curve | ∃ k -isomorphism φ : C′ → C

}
/k -isomorphism,(2.1)

H1(Gk,Aut(C)) := {ξ : Gk → Aut(C) continuous | ξστ = ξσ ·σ ξτ} / ∼ ,(2.2)

where the topology in Gk is the profinite one, and we consider the discrete topology
in Aut(C). Two cocycles are cohomologous ξ ∼ ξ′, if and only if, there is ϕ ∈
Aut(C) such that ξ′σ = ϕ · ξσ · σϕ−1.

We denote by π2 : Γ → Gal(K/k) (resp. π1) the projection on the second
(resp. first) component of the elements of Γ. A continuous group homomorphism
Ψ: Gk → Γ (again with the profinite and discrete topologies respectively), such
that the composition π2 ◦ Ψ : Gk → Γ → Gal(K/k) equals the natural projection
Gk � Gal(K/k) : σ � σ̄, is called a pro2-morphism.

We also define

(2.3) H̃om(Gk,Γ) := {Ψ: Gk → Γ | Ψ pro2 -morphism} / ∼ ,

We say that Ψ ∼ Ψ′ are equivalent if there is (ϕ, 1) ∈ Γ such that Ψ′
σ =

(ϕ, 1)Ψσ(ϕ, 1)
−1.

Definition 2.1. With notation above, we say that L is the splitting field of the
twist φ : C′ → C, if L is the minimal field where, for all α ∈ Aut(C), the iso-
morphisms α ◦ φ are defined. Since the curves C and C′ are defined over k, the
extension L/k is Galois, and clearly K ⊆ L. Similarly, we define the splitting field
of a cocycle ξ as the field L that satisfies the condition

Gal(k̄/L) =
⋃
ξ∼ξ′

Ker(ξ′) .

Since Aut(C) is finite, there is a finite number of equivalent cocycles and their
kernels are fundamental open sets in Gk. Thus, the field L is well-defined.

For an element Ψ ∈ H̃om(Gk,Γ), we define its splitting field as the field L such
that Gal(k̄/L) = Ker(Ψ). Since Ψ is continuous, such field exists.
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Note that the previous splitting fields are all of them finite extensions of k since
we are considering curves of genus greater than 0, and then the group Aut(C)
is finite.

Theorem 2.2. There are natural one-to-one correspondences between the follow-
ing three sets:

Twistk(C) −→ H1(Gk,Aut(C)) −→ H̃om(Gk,Γ)

These correspondences send φ to ξσ = φ · σφ−1, and ξ to Ψσ = (ξσ, σ). More-
over, the splitting fields of elements in these three sets are preserved by these cor-
respondences.

Proof. The correspondence between the set (2.1) of twists Twistk(C) and the first
Galois cohomology set (2.2) is well known, and can be found in [20], X.2 Theo-
rem 2.2. The statement about the splitting fields follows by definition. So, it only
remains to prove that the map between the sets (2.2) and (2.3) is a bijection. Let
us first prove that it is well-defined. Clearly, given ξ ∈ H1(Gk,Aut(C)), we have

that Ψ defined by Ψσ := (ξσ, σ) defines an element in H̃om(Gk,Γ). Conversely,

given an element Ψ ∈ H̃om(Gk,Γ), we have that ξ := π1(Ψ) defines an element in
H1(Gk,Aut(C)). Finally, it is a straightforward computation to check that this two
maps are one inverse to the other and that they preserve the equivalence relations
defined in both sets. �

For the reader’s convenience, we recall here the definition of a Galois embedding
problem.

Definition 2.3. (Definition 9.4.1 in [17]) A Galois embedding problem E(G, ϕ, α)
for the profinite group G is a diagram

G

ϕ
����

1 �� A �� E α
�� Ḡ �� 1

with an exact sequence of profinite groups and a surjection π.
i) A solution of the embedding problem E is a homomorphism ψ : G→ E such

that α ◦ ψ = ϕ. A solution is called proper if ψ is surjective.
ii) Two solutions ψ and ψ′ are called equivalent if ψ′(σ) = a−1ψ(σ)a for all

σ ∈ G with a fixed element a ∈ A.

Remark 2.4. Note that any element Ψ ∈ H̃om(Gk,Γ) can be reinterpreted as a
solution to the following Galois embedding problem:

Gk

Ψ

�����
�
�
�
�

����
1 �� Aut(C) �

� �� Γ
π

�� Gal(K/k) �� 1

(2.4)
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Reciprocally, every solution Ψ of the above embedding problem is an element in

H̃om(Gk,Γ) and gives rise to a twist of C. In order to keep track of the equivalence
classes of twists we must here consider two solutions Ψ and Ψ′ equivalent only under
the restricted conjugations allowed in the definition of the set H̃om(Gk,Γ).

This remark and Theorem 2.2 allow us to reinterpret the set of twists of a
curve as the set of solutions of a Galois embedding problem, which is the crucial
observation in the method presented in this paper.

3. Equations of the twists

First of all, remark that a twist is not a curve, it is an equivalence class of curves,
so when we say that we compute equations for a twist, what we mean is that we
compute equations for some particular curve in the equivalence class. Secondly,
note that a curve can have different models, and a particular model for a non-
hyperelliptic curve is its canonical model, that is, the model given by the embedding
defined by the canonical class. The method that we present in this section, is a
method for computing the canonical model of a curve in the equivalence class of a
twist defined by a cocycle.

This method is a generalization of the one used by Fernández, González and
Lario [7], Section 4. They used it for computing equations of twists of some
particular non-hyperelliptic genus 3 curves, a special case for which the canonical
model coincides with the plane model.

Note that, in our context, finding equations for a twist that is given by a cocycle
ξ ∈ H1(Gk,Aut(C)), is actually equivalent to computing an inverse map for the
correspondence in Theorem 2.2

Twistk(C) −→ H1(Gk,Aut(C)) .

Let Ω1(C) be the k-vector space of regular differentials of C. Let ω1, . . . , ωg be
a basis of Ω1(C), where g is the genus of C (the existence of such a basis can be
deduced from the fact that there always exists a canonical divisor defined over the
definition field k of the curves, which is a consequence of [20], II, Lemma 5.8.1).
Given a cocycle ξ : Gk → Aut(C) and its splitting field L, we consider the extension
of scalars Ω1

L(C) = Ω1(C) ⊗k L which is a k-vector space of dimension g[L : k].
We can then view the elements of Ω1

L(C) as sums
∑
λi ωi where λi ∈ L. For every

σ ∈ Gal(L/k), we consider the twisted action on Ω1
L(C) defined as follows:

(∑
λi ωi

)σ

ξ
:=

∑
σλi ξ

∗−1
σ (ωi).

Here, ξ∗σ ∈ EndK(Ω1(C)) denotes the pull-back of ξσ = φ ·σ φ−1 ∈ AutK(C). One
readily checks that

ρξ : Gal(L/k) → GL(Ω1
L(C)), ρξ(σ)(ω) := ωσ

ξ
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is a k-linear representation. Indeed, since ξ∗στ = σξ∗τ · ξ∗σ, we have

ρξ(στ)
(∑

λi ωi

)
=

∑
στλi ξ

∗−1
στ (ωi) =

∑
στλi ξ

∗−1
σ ·σ ξ∗−1

τ (ωi)

= ρξ(σ)
(∑

τλi ξ
∗−1
τ (ωi)

)
= ρξ(σ)ρξ(τ)

(∑
λi ωi

)
.

Lemma 3.1. Let φ : C → C′ be a twist such that φ ·σ φ−1 = ξσ. Then, the
following k-vector spaces are isomorphic:

Ω1
L(C)

Gal(L/k)
ξ 
 Ω1(C′) .

Proof. We claim that the map Ω1
L(C)

Gal(L/k)
ξ → Ω1(C′) : ω → φ∗(ω) is an isomor-

phism of k-vector spaces. The only non-trivial fact is the surjectivity. But this is
a consequence of the equivalent result for function fields. Recall that the function
field k(C′) may be reinterpreted as the fixed field k(C)Gk

ξ where the action of the

Galois group Gk on k(C) is twisted by ξ according to fσ
ξ := f · ξσ ([20], X.2). �

We identify the previous vector spaces via an isomorphism as in Lemma 3.1,
so, for explicit computations, we can use

Ω1(C′) =
⋂

σ∈Gal(L/k)

Ker(ρξ(σ)− Id) .(3.1)

Consider the canonical morphism and the canonical model φK : C → C ⊂ Pg−1

given by the basis {ω1, . . . , ωg} of Ω1(C). Let

C : {Fh(ω1, . . . , ωg) = 0}h
be a set of polynomial equations defining the canonical model in Pg−1. Let

{∑g
i=1 μ

i
jωi}j be a basis of Ω1

L(C)
Gal(L/k)
ξ . We can then take a basis ω′

j =∑g
i=1 μ

i
jωi of Ω

1(C′) via an isomorphism as in Lemma 3.1. Thus, we can write

ωi =

g∑
j=1

ηij ω
′
j

for some ηij ∈ L. We then obtain equations for the canonical model C′, given by
the basis {ω′

j}, of the twist C′ via the substitution

C′ :
{
Fh

( g∑
j=1

η1j ω
′
j , . . . ,

g∑
j=1

ηgj ω
′
j

)
= F ′

h(ω
′
1, . . . , ω

′
g) = 0

}
h
.

Note that the projective matrix η = (ηij)ij defines an isomorphism of canonical

models η : C′ → C, and that η ·σ η−1 = (ξ∗σ)
−1. In general, on a canonical models

level, any morphism of curves is given by a matrix, since a morphism of curves
induces a linear morphism on the regular differential vector spaces.
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Remark 3.2. Note that for non-hyperelliptic curves and an isomorphism φ : C→ C′

defined over L of canonical models defined over k, Lemma 3.1 is equivalent to the

dimension of Ω1
L(C)

Gal(L/k)
ξ be equal to g, that is, to finding a matrix in η ∈ GLg(L)

such that η ·σ η−1 = (ξ∗σ)−1. But this is a consequence of Hilbert’s Theorem 90,
since (ξ∗)−1 ∈ H1(Gal(L/k),GL(Ω1

L(C))).

4. Description of the method

As above, let C be a smooth non-hyperelliptic genus g curve defined over a perfect
field k, and we continue to assume that its automorphism group Aut(C) is known
and let us denote by K the minimal field where Aut(C) is defined. We now proceed
to describe a method for computing the set of twists of the curve C. In each step,
we will compute different things:

Step 1: a canonical model

Firstly, we take a basis of Ω1(C), and via this basis we obtain a canonical
model C/k as the image of the canonical morphism C ↪→ Pg−1. Again, the existence
of a canonical divisor defined over k implies that we can take the canonical model C
also defined over k. Hence, C and C belong to the same class in Twistk (C) and
Twistk (C) = Twistk (C).

In addition, the automorphism group Aut (C) can be viewed in a natural way as
a subgroup of PGLg (K) (via the induced automorphism in Pg−1 by the canonical
morphism). Indeed, we can map it as a subgroup of GLg (K) if we look at its action
on Ω1(C) ⊗k K as a K-vector space. Furthermore, any isomorphism φ : C′ → C
can be also viewed as a matrix in PGLg

(
k̄
)
.

Step 2: the set Twistk(C)

We will first compute the set H̃om (Gk,Γ). From this set, we will compute the
cohomological set H1 (Gk,Aut (C)) via the correspondence in Theorem 2.2.

Given an element Ψ ∈ H̃om (Gk,Γ), let L be its splitting field. We have the
following isomorphisms: Ψ(GK) 
 Gal(L/K) and Ψ(Gk) 
 Gal(L/k). Hence, we
can see Ψ as a proper solution to the Galois embedding problem

Gk

Ψ

�����
�
�
�
�

����
1 �� Ψ(GK) �� Ψ(Gk) �� Gal(K/k) �� 1

As it was noticed in Section 2, we have isomorphisms Gal (L/k) 
 Image (Ψ) ⊆ Γ
and Gal (L/K) 
 Ψ(GK) ⊆ Aut (C)� {1}. Hence, we can break the computation

of H̃om (Gk,Γ), i.e., the solutions (proper or not) to the Galois embedding prob-
lem (2.4), into the computation of the proper solutions to some Galois embedding
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problems attached to a pair (G,H) as follows:

Gk

Ψ

�����
�
�
�
�

����
1 �� H �� G �� Gal(K/k) �� 1

(4.1)

where we consider all the pairs (G,H) such that G ⊆ Γ, H = G ∩ Aut (C) � {1}
and [G : H ] = |Gal (K/k)| (up to conjugacy by elements (ϕ, 1) ∈ Γ).

Every proper solution to a Galois embedding problem (4.1) can be lifted to a
solution to the Galois embedding problem (2.4).

Note that the same field L can appear as the splitting field of more than one so-
lution Ψ corresponding to a pair (G,H). This is because given an automorphism α
of Gal(L/k) that leaves Gal(K/k) fixed, αΨ is another solution that has L as split-
ting field. Two such solutions are equivalent if and only if there exists β ∈ Aut(C)
such that αΨ = βΨβ−1. So, the number of non-equivalent solutions with splitting
field L and Ψ(Gk) = G is the cardinality n(G,H) of the group ([5], Section 1.1):

Aut2 (G) / InnG (Aut (C)� {1}) ,(4.2)

where Aut2 (G) is the group of automorphisms of G such that leave the second
coordinate invariant and Inn (Aut (C)� {1}) is the group of inner automorphisms
of Aut (C)� {1} lifted in the natural way to Aut (G).

We can then divide this step in two:

Step 2a: computing the pairs (G,H). The pairs (G,H) and the number n(G,H)

defined above, can be, for example, computed with Magma [1] (cf. Appendix in [14]
for an implemented code).

Step 2b: computing the proper solutions to the Galois embedding prob-
lems (4.1). The solutions should be computed case-by-case for each pair (G,H).
If k is a finite field this is known how to be done (e.g. Theorem 1.1 in [19]), and the
method described in this paper becomes then an algorithm. Unfortunately, if k is
a number field there is no known systematic method for solving these problems

The next proposition, which is a generalization of Lemma 9.6 in [6] for q = 3,
will be useful for solving some of these Galois embedding problems.

Proposition 4.1. Let be q = pr, where p is a prime number, let k be a number
field, and let ζ be a fixed q-th primitive root of the unity in k̄. We denote K = k(ζ)
and we assume [k(ζ) : k] = pr−1(p− 1). Let us define Gq := Z/qZ� (Z/qZ)∗1with
the multiplication rule (a, b)(a′, b′) = (a + ba′, bb′). Let us consider the Galois
embedding problem:

Gk

π
����

1 �� Z/qZ �� Gq
�� (Z/qZ)∗ �� 1

,

where the horizontal morphisms are the natural ones, and the projection π is given
by π(σ) = (0, b) if σ(ζ) = ζb.
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Then, the splitting fields of the proper solutions to this Galois embedding prob-
lem are of the form L = K( q

√
m ) where m ∈ Ok is an integer that is not a p-power.

Moreover, every such field is the splitting field for a solution Ψ to the above Galois
embedding problem.

The proof of this proposition uses very similar arguments to the ones used in
Kummer theory (e.g., Section 2 in [21]).

Proof. Note first that there exist proper solutions Ψ to the Galois embedding prob-
lem. Given a field L = K( q

√
m) with m ∈ k and not a p-power, there is a natural

isomorphism Gal(L/k) 
 Gq compatible with the projection Gq → (Z/qZ)∗. The
natural projection Gk � Gal(L/k) then provides a solution to the Galois embed-
ding problem above.

Now, let Ψ be any proper solution to the problem, and let us denote by L its
splitting field. Let G be the subgroup of Gq that contains all the elements of the
form (0, b), and let σ ∈ Gk be such that Ψ(σ) = (1, 1).

Let α be a primitive element of the extension LG/k that moreover is an algebraic
integer. We then have that L = K(α). This is because [K : k] = pr−1(p − 1),[
LG : k

]
= q and LG ∩K = k. Define for i = 0, 1, . . . , q − 1 the numbers

ui = α+ ζiσ−1(α) + ζ2iσ−2(α) + · · ·+ ζ(q−1)iσ−(q−1)(α).

Then σ(ui) = ζiui and for any τ ∈ Gk such that Ψ(τ) = (0, b) we have Ψ(τσj) =
(0, b)(j, 1) = (bj, 1)(0, b) = Ψ(σbjτ), so τ(ui) = ui . In particular, we have that
u0, u

q
1, . . . , u

q
q−1 ∈ Ok. Hence, if uj �= 0 for some j > 0, we have that L = K(uj),

since LG = k(uj). So, if we put m = uqj ∈ Ok, we get L = K( q
√
m). Otherwise,

that is, if u1 = u2 = · · · = uq−1 = 0, then u0 = u0 + u1 + · · ·+ uq−1 = qα ∈ Ok,
what is a contradiction with α being a primitive element of the extension LG/k. �

For each proper solution Ψ to a Galois embedding problem (4.1) attached to a
pair (G,H), we trivially compute the corresponding cocycle ξ via the correspon-
dence between the sets (2.2) and (2.3) in Theorem 2.2.

Step 3: Equations

We want to compute equations for a twist corresponding to a given cocycle ξ.
For this purpose we use the method explained in Section 3. Computing equations
for a twist turns out to be equivalent to computing an isomorphism φ : C′ → C,
that is, to explicitly computing the inverse map to the correspondence between
sets (2.1) and (2.2) in Theorem 2.2.

5. An example

In order to illustrate the method, we will apply it to the smooth non-hyperelliptic
genus 6 curve which admits the affine plane model

C : x7 − y3 − 1 = 0 .

1This is the group of affine maps on Fq, that is sometimes denote by AGL2(q).
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As the only point at infinity, that we denote by ∞, is singular, the projec-
tivization of this plane model is not smooth. However, there is a unique curve,
up to Q-isomorphism, which is smooth and birationally equivalent to C. So, they
have the same function field. We will apply the method for this smooth curve,
which is non-hyperelliptic and has genus equal to 6.

Step 1

First, we must find a canonical model by the usual procedure: finding a basis of
holomorphic differentials. Let us compute the divisor associated to the functions x
and y.

div(x) = (0 : −1 : 1) + (0 : −ζ3 : 1) + (0 : −ζ23 : 1)− 3(0 : 1 : 0)

= P1 + P2 + P3 − 3∞ ,

div(y) = Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7 − 7∞ ,

where Qi = (ζi7 : 0 : 1). Then, dx is an uniformizer for all points except for the Qi,
because the tangent space to the curve at these points have equation x − α = 0
for some α ∈ k̄. Then, for the points Qi we have to use the expression

dx = − 3y2

7x6
dy

Thus, by [20], II, Proposition 4.3, we finally get a canonical divisor

div(dx) = 2(Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7)− 4∞ .

We obtain the following basis of holomorphic differentials:

ω1 =
dx

y2
, ω2 =

x dx

y2
, ω3 =

x2 dx

y2
, ω4 =

dx

y
, ω5 =

x3 dx

y2
, ω6 =

x dx

y
.

We consider the rational map

C → P5 : (x, y) → (1, x, x2, y, x3, xy).

The ideal of the image of this map clearly contains the homogeneous polynomials:

f1 = ω1ω6 − ω2ω4 , f2 = ω2
2 − ω1ω3 , f3 = ω2ω3 − ω1ω5 ,

f4 = ω2ω5 − ω2
3 , f5 = ω2ω6 − ω3ω4 , f6 = ω3ω6 − ω4ω5 ,

f7 = ω3
4 − ω2

3ω5 + ω3
1 , f8 = ω3

5 − ω4ω
2
6 − ω1ω

2
2 .

Now, we claim that the ideal generated by these polynomials gives a smooth curve.
To see this, note that, if ω1 �= 0, the deshomogenization of this ideal with respect
to ω1 gives the affine curve C. Now, we isolate from f2 and f3 the variables ω3

and ω5 and we plug them into f7. Therefore, C is birationally equivalent to
C ∩ {ω1 �= 0}. Next, if ω1 = 0, then the vanishing locus of f2, f4, f7, f8 is the point
(0 : 0 : 0 : 0 : 0 : 1). To check that C is non-singular at this point we consider the
partial derivatives of the polynomials: f1, f5, f6, f8. Thus, C is a canonical model
of the initial smooth non-hyperelliptic genus 6 curve.
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The automorphism group Aut(C) is generated by the automorphisms (Sec-
tion 4, figure 5 in [22])

(x, y) → (x, ζ3y) and (x, y) → (ζ7x, y).

Then, the automorphism group of the canonical model C is generated by the ma-
trices in PGL6

(
Q̄
)
:

r =

⎛
⎜⎜⎜⎜⎜⎜⎝

ζ3 0 0 0 0 0
0 ζ3 0 0 0 0
0 0 ζ3 0 0 0
0 0 0 ζ23 0 0
0 0 0 0 ζ3 0
0 0 0 0 0 ζ23

⎞
⎟⎟⎟⎟⎟⎟⎠
, s =

⎛
⎜⎜⎜⎜⎜⎜⎝

ζ7 0 0 0 0 0
0 ζ27 0 0 0 0
0 0 ζ37 0 0 0
0 0 0 ζ7 0 0
0 0 0 0 ζ47 0
0 0 0 0 0 ζ27

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Step 2a. Let k be a number field and consider the curve C/k. We want to
compute its twists over k. Let K = k(ζ7, ζ3) and assume that [K : k] = 12. Then,
the Galois group Gal(K/k) is generated by the elements τ1 : ζ3, ζ7 → ζ23 , ζ7 and
τ2 : ζ3, ζ7 → ζ3, ζ

3
7 . We compute using Magma the following possibilities for the

pairs (G,H):

ID(G)2 ID(H) gen(H) n(G,H)

1 < 12, 5 > < 1, 1 > 1 1
2 < 36, 12 > < 3, 1 > r 2
3 < 84, 7 > < 7, 1 > s 6
4 < 252, 26 > < 21, 2 > r, s 12

The fourth column in this table exhibits generators of the group H . In all the
cases G is the group generated by the elements (g, 1), for g in H , together with
the elements (1, τ1) and (1, τ2). The fifth column exhibits the cardinality of the
set in Formula (4.2) for each pair (G,H).

Step 2b. Now, we have to find the proper solutions to the Galois embedding
problems associated to each of the pairs (G,H).

(1) The first case is clear: L = K.

(2) For the second one, note that L = k(ζ7)M , for some M/k a solution to
the Galois embedding problem in Proposition 4.1 with q = 3. Hence, L =
k(ζ3, ζ7, 3

√
m ), for some m ∈ Ok that is not a 3-power.

(3) In this case, we can write L = k(ζ3)M , for someM/k a solution to the Galois
embedding problem in Proposition 4.1 with q = 7. Hence, L = k(ζ3, ζ7, 7

√
n ),

for some n ∈ Ok that is not a 7-power.

(4) In the last case, L =M1M2, for someMi/k solutions to the Galois embedding
problem in Proposition 4.1 with q = 3, 7. Hence, L = k(ζ3, ζ7, 3

√
m, 7

√
n ),

for some m,n ∈ Ok, such that m is not a 3-power and n is not a 7-power.

2By ID(G) we mean the corresponding SmallGroup Library-GAP [13] notation for the groupG,
where the group < N, r > denotes the group of order N that appears in the r-th position.
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Step 3

For each of the previous fields L, we will compute equations of a twist that
has L as splitting field. The other twists, with splitting field L, will be then easily
computed by considering symmetries. Let us consider a solution Ψ (that is, a
particular twist) to the Galois embedding problem with pair (G,H) and splitting
field L by fixing an isomorphism between the group H and the group Gal(L/K):

(r, 1) : 3
√
m, 7

√
n→ ζ3

3
√
m, 7

√
n ,

(s, 1) : 3
√
m, 7

√
n→ 3

√
m, ζ7

7
√
n .

Now, we compute equations for a twist in each case:

(1) Clearly, this solution gives us the trivial twist, so we have the curve C/k.
(2) The correspondence between the sets (2.2) and (2.3) gives us the cocycle

given by ξτ1 = 1, ξτ2 = 1 and ξ(r,1) = r. If we take the basis of Ω1
L(C)

given by {(a, b, c, i)} :=
{

3
√
maζb3ζ

c
7ωi

}
with a, b ∈ {0, 1, 2}, c ∈ {0, 1, . . . , 6}

and i ∈ {1, . . . , 6}, we obtain the twisted action of Gal(L/k) on Ω1
L(C) given

in Section 3:

τ1(a, b, c, i) = (a, 2b, c, i), τ2(a, b, c, i) = (a, b, 3c, i)

(r, 1)(a, b, c, i) =

{
(a, a+ b+ 2, c, i) if i = 4, 6

(a, a+ b+ 1, c, i) otherwise

Now, we use formula (3.1) and get a basis of Ω1(C′) 
 Ω1
L(C)Gal(L/k)

ξ given by:{ 3
√
m2 ω1,

3
√
m2 ω2,

3
√
m2 ω3,

3
√
mω4,

3
√
m2 ω5,

3
√
mω6

}
.

So we get the generators of the ideal defining the twist:

ω1ω6 − ω2ω4, ω2
2 − ω1ω3, ω2ω3 − ω1ω5, ω2ω5 − ω2

3 ,

ω2ω6 − ω3ω4, ω3ω6 − ω4ω5, mω3
4 − ω2

3ω5 + ω3
1 , ω3

5 −mω4ω
2
6−ω1ω

2
2

We obtain generators for the other solution Ψ that has L as splitting field
by exchanging m by m2.

(3) In this case, the correspondence between the sets (2.2) and (2.3) gives us the
cocycle given by ξτ1 = 1, ξτ2 = 1 and ξ(s,1) = s. If we take the basis of Ω1

L(C)
given by {(a, b, c, i)} :=

{
7
√
naζb3ζ

c
7ωi

}
, with a, c ∈ {0, 1, . . . , 6}, b ∈ {0, 1, 2}

and i ∈ {1, . . . , 6}, we obtain the twisted action of Gal(L/k) on it given in
Section 3:

τ1(a, b, c, i) = (a, 2b, c, i), τ2(a, b, c, i) = (a, b, 3c, i)

(r, 1)(a, b, c, i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(a, a+ b+ 1, c, i) if i = 1, 4

(a, a+ b+ 2, c, i) if i = 2, 6

(a, a+ b+ 3, c, i) if i = 3

(a, a+ b+ 4, c, i) if i = 5

Now, we use formula (3.1) again and get a basis of Ω1(C′) 
 Ω1
L(C)Gal(L/k)

ξ
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given by { 7
√
n6 ω1,

7
√
n5 ω2,

7
√
n4 ω3,

7
√
n6 ω4,

7
√
n3 ω5,

7
√
n5 ω6

}
.

Then, we get the set of generators of the ideal defining the twist:

ω1ω6 − ω2ω4, ω2
2 − ω1ω3, ω2ω3 − ω1ω5, ω2ω5 − ω2

3 ,

ω2ω6 − ω3ω4, ω3ω6 − ω4ω5, ω3
4 − nω2

3ω5 + ω3
1 , nω3

5 − ω4ω
2
6−ω1ω

2
2

We compute generators for the other solutions Ψ that have splitting field
equal to L by exchanging n by n2, n3, n4, n5, n6.

(4) In the last case, we have the cocycle given by ξτ = 1, ξ(r,1) = r and ξ(s,1) = s.

We take the basis of Ω1
L(C) given by {(a, b, c, d, i)} :=

{
3
√
ma 7

√
nbζc3ζ

d
7ωi

}
with a, c ∈ {0, 1, 2}, b, d ∈ {0, . . . , 6} and i ∈ {1, . . . , 6}, and we consider on
Ω1

L(C) the twisted action of Gal(L/k) given in Section 3. Thus, formula (3.1)

provides a basis of Ω1(C′) 
 Ω1
L(C)Gal(L/k)

ξ given by

{ 3
√
m2 7

√
n6 ω1,

3
√
m2 7

√
n5 ω2,

3
√
m2 7

√
n4 ω3,

3
√
m

7
√
n6 ω4,

3
√
m2 7

√
n3 ω5,

3
√
m

7
√
n5 ω6

}
.

Then, we get the set of generators of the ideal defining the twist

ω1ω6 − ω2ω4, ω2
2 − ω1ω3, ω2ω3 − ω1ω5, ω2ω5 − ω2

3 ,
ω2ω6 − ω3ω4, ω3ω6 − ω4ω5, mω3

4 − nω2
3ω5 + ω3

1 , nω3
5 −mω4ω

2
6 − ω1ω

2
2

We compute generators for the other solutions Ψ that have L as splitting
field by exchanging m and n by m, m2 and n, n2, n3, n4, n5, n6.

We can summarize these results as follows:

Proposition 5.1. The twists of the curve C/k defined above where k is a number
field such that [k(ζ21) : k] = 12, are in one-to-one correspondence with the curves
given by the ideals generated by the following homogeneous polynomials:

ω1ω6 − ω2ω4, ω2
2 − ω1ω3, ω2ω3 − ω1ω5, ω2ω5 − ω2

3 ,
ω2ω6 − ω3ω4, ω3ω6 − ω4ω5, mω3

4 − nω2
3ω5 + ω3

1 , nω3
5 −mω4ω

2
6 − ω1ω

2
2

wherem∈O∗
k/(O∗

k)
3 and n∈O∗

k/(O∗
k)

7. Equivalently, we can consider the (singular)
plane models

nx7 −my3z4 − z7 = 0 .
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[8] Fité, F., Kedlaya, K., Rotger, V. and Sutherland, A.V.: Sato–Tate distri-
butions and Galois endomorphism modules in genus 2. Compos. Math. 148 (2012),
no. 5, 1390–1442.
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