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On the generalized Cheeger problem

and an application to 2d strips

Aldo Pratelli and Giorgio Saracco

Abstract. In this paper we consider the generalization of the Cheeger
problem which comes by considering the ratio between the perimeter and
a certain power of the volume. This generalization has been already some-
times treated, but some of the main properties were still not studied, and
our main aim is to fill this gap. We will show that most of the first impor-
tant properties of the classical Cheeger problem are still valid, but others
fail; more precisely, long and thin rectangles will give a counterexample
to the property of Cheeger sets of being the union of all the balls of a
certain radius, as well as to the uniqueness. The shape of Cheeger set for
rectangles and strips is then studied as well as their Cheeger constant.

1. Introduction

The celebrated Cheeger problem consists in searching for sets E ⊆ R
n minimizing

the ratio

(1.1) inf
E⊆Ω

P (E)

|E| ,

where Ω ⊆ R
n is a given open set of finite volume. Throughout the paper, we

will write |E| to denote the volume (i.e., the Lebesgue Ln measure) of any Borel
set E, while P (E) will be its perimeter, that is, the Hn−1 Hausdorff measure of its
reduced boundary ∂∗E (for definitions and properties of sets of finite perimeter,
the reader can look in [2]). The most interesting questions in the Cheeger problem
regard existence, uniqueness and main features of the Cheeger sets, that are the
sets E realizing the above infimum. Notice that any set E which is a Cheeger
set for some Ω ⊇ E is also a Cheeger set for itself. Since the literature on this
problem is huge and well known, we do not try to give here a complete list: the
interested author can find a description of the history and a good bibliography in
the papers [12] and [10].
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In this paper, we are interested in the following generalization of the Cheeger
problem:

(1.2) hα(Ω) := inf
E⊆Ω

P (E)

|E|1/α ,

for α > 1. Notice that increasing α means that the isoperimetric properties of the
sets become “more important”. This problem is called the “α-Cheeger problem”,
the above ratio is called “α-Cheeger ratio of E”, and any set realizing the infimum
is called an “α-Cheeger set”. Actually, the problem is interesting only if α < 1∗

= n/(n − 1), as we will see later. This generalized Cheeger problem has been
already considered in the literature, see for instance [5], [4], and the references
therein for some general results. However, up to our knowledge, some of the main
basic properties were not studied or not proved: the main aim of the present paper
is to fill this gap. In particular, we will first concentrate, in Section 2, on the
very basic preliminary properties of the Cheeger problem, and we check how they
generalize to the α-Cheeger problem. Then, in Section 3 we show that the existence
of an α-Cheeger set E for any set Ω is always true. Section 4 is devoted to studying
more extensively the case of the rectangles, and checking how their Cheeger sets
behave; indeed, as we will see, long and thin rectangles are a counterexample to
the known property of the classical Cheeger problem that, if Ω is convex, then
its Cheeger set is unique, and it is the union of all the balls of a certain radius
contained in Ω. Finally, in the last Section 5 we generalize our observations to the
case of the strips, which have been studied a lot in literature lately.

2. Preliminary properties

In this first section, we give a list of well-known properties of the classical Cheeger
problem, and see how to generalize them for the α-Cheeger problem; most of them
will be straightforward generalizations.

Theorem 2.1. Let us denote by C1
Ω a Cheeger set for Ω and by h1(Ω) the infimum

in (1.1). Then, the following properties hold:

(1) The Cheeger problem is scale invariant while the Cheeger constant is not; more
precisely, for any t > 0, the Cheeger sets in tΩ are precisely the sets tE for
all the Cheeger sets E in Ω; consequently, h(tΩ) = t−1h(Ω).

(2) The constrained boundary of any Cheeger set, i.e., ∂C1
Ω ∩ ∂Ω, contains at least

two points.

(3) The free boundary of any Cheeger set, i.e., ∂C1
Ω ∩Ω, is analytic possibly except

for a closed singular set whose Hausdorff dimension does not exceed n− 8;

(4) The mean curvature of the free boundary is constant at every regular point and,
for n = 2, it equals h1(Ω).

(5) The free boundary of a Cheeger set meets ∂Ω tangentially at the regular points
of ∂Ω: more precisely, if the boundary of a Cheeger set contains a point x ∈ ∂Ω
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at which the normal vector to ∂Ω is defined, then also the normal vector to the
Cheeger set is defined at x, and the two vectors coincide.

(6) A Cheeger set of Ω ⊆ R
2 can not have corners with an angle smaller than π.

(7) If a Cheeger set exists, then any of its connected components is also a Cheeger
set.

(8) If Ω ⊆ R
2 is convex, then its Cheeger set is unique and convex; in particular,

it is the union of all the balls of radius 1/h1(Ω) which are contained in Ω.

(9) If Ω1 ⊆ Ω2 then h1(Ω1) ≥ h1(Ω2), but the strict inclusion does not imply the
strict inequality.

All the previous properties are well known, a discussion can be found for in-
stance in [11]. The only result of this section is the following, where we show
that all the above properties generalize, with minor changes, to the case of the
α-Cheeger problem; in particular, a stronger version of (7) holds, while only a
weaker version of (8) is true. We also add a couple of “new” properties, where we
compare the Cheeger constants relative to different powers α1 and α2, which of
course make no sense in the classical case. For the sake of shortness, here and in
the rest of the paper we will always write Cα

Ω to denote an α-Cheeger set in Ω.

Theorem 2.2. Let Ω,Ω1,Ω2 ⊆ R
n be open connected sets, let α, α1, α2 be in

(1, 1∗) and let B1 be the volume-unitary n-dimensional ball. Then the following
are true:

(1) The α-Cheeger problem is scale invariant while the α-Cheeger constant is not;
more precisely, for any t > 0, the α-Cheeger sets in tΩ are precisely the sets
tE for all the α-Cheeger sets E in Ω; consequently, hα(tΩ) = tn−1−n/αhα(Ω).

(2) The constrained boundary of an α-Cheeger set, i.e., ∂Cα
Ω ∩ ∂Ω, contains at

least two points.

(3) The free boundary of an α-Cheeger set, i.e., ∂Cα
Ω ∩ Ω, is analytic possibly

except for a closed singular set whose Hausdorff dimension does not exceed
n− 8.

(4) The mean curvature of the free boundary is constant at every regular point
and, for n = 2, it equals

(2.1)
hα(Ω)

α
|Cα

Ω|1/α−1.

(5) The free boundary of an α-Cheeger set meets ∂Ω tangentially at the regular
points of ∂Ω: more precisely, if the boundary of an α-Cheeger set contains a
point x ∈ ∂Ω at which the normal vector to ∂Ω is defined, then also the normal
vector to the α-Cheeger set is defined at x, and the two vectors coincide.

(6) An α-Cheeger set of Ω ⊆ R
2 can not have corners with an angle smaller

than π.

(7) Any α-Cheeger set is connected.
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(8) If Ω ⊆ R
2 is convex then any α-Cheeger set is convex.

(9) If Ω1 ⊆ Ω2 then hα(Ω1) ≥ hα(Ω2), but the strict inclusion does not imply
the strict inequality.

(10) If B1 ⊆ Ω and α2 > α1 then hα2(Ω) ≥ hα1(Ω).

(11) If |Ω| ≤ 1 and α2 > α1 then hα2(Ω) ≤ hα1(Ω).

Proof. (1) Given any set Ω ⊆ R
n, let us consider its rescaling tΩ for some t > 0:

there is a natural bijection between the subsets of Ω and the subsets of tΩ given
by E �→ tE. Thus we have

hα(tΩ) = inf
F⊆tΩ

P (F )

|F |1/α = inf
E⊆Ω

P (tE)

|tE|1/α

= tn−1−n/α inf
E⊆Ω

P (E)

|E|1/α = tn−1−n/α hα(Ω),(2.2)

which directly tells us that E is an α-Cheeger set for Ω if and only if tE is an
α-Cheeger set for tΩ. Note that we get an estimate not depending on t if α = 1∗,
the reason for that will appear clear in Section 3.

(2) First of all, assume the existence of an α-Cheeger set Cα
Ω such that Cα

Ω ⊂⊂ Ω.
Then, the rescaled set tCα

Ω would still be contained in Ω for some t > 1, and this
is against the minimality of Cα

Ω since for any α < n/(n− 1) it is

P (t Cα
Ω)

|t Cα
Ω|1/α

=
tn−1 P (Cα

Ω)

tn/α |Cα
Ω|1/α

= tn−1−n/α P (Cα
Ω)

|Cα
Ω|1/α

<
P (Cα

Ω)

|Cα
Ω|1/α

= hα(Ω) .

Suppose now that the boundary of some α-Cheeger set Cα
Ω touches ∂Ω in a single

point, and assume for simplicity this point to be the origin of Rn. Fix then two
small constants ε � δ � 1, and consider the modified set

C̃ = C1 ∪
[
1, 1 + ε

]
Γ ∪ (1 + ε)C2 ,

where

C1 = Cα
Ω ∩Bδ, C2 = Cα

Ω \Bδ , Γ = Cα
Ω ∩ ∂Bδ ,

and Bδ = {x ∈ R
n : |x| < δ} is the ball with radius δ centered at the origin. Notice

that C̃ ⊆ Ω as soon as ε and δ are small enough. Thanks to the well-known Vol’pert
theorem (see for instance Theorem 3.108 in [2]), for almost every δ > 0 one has
that ∂∗Cα

Ω ∩ ∂Bδ = ∂∗
n−1Γ up to a Hn−2-negligible set, where by ∂∗

n−1Γ we denote
the reduced boundary of Γ as a subset of the (n− 1)-dimensional sphere ∂Bδ. Up
to choose any such δ, one can then calculate

|C̃| = |C1|+ (1 + ε)n|C2|+ δ

n

(
(1 + ε)n − 1

)Hn−1(Γ) ,

P (C̃) = P (C1) + (1 + ε)n−1P (C2) + δ

n− 1

(
(1 + ε)n−1 − 1

)Hn−2(∂∗
n−1Γ) .
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As a consequence, a trivial calculation ensures that the α-Cheeger ratio of C̃ is
strictly better than that of Cα

Ω (and this is against the optimality of the latter) as
soon as ε is chosen small enough, if the inequality

(n− 1)P (C2) + δHn−2(∂∗
n−1Γ) <

P (Cα
Ω)n |C2|
α |Cα

Ω|
holds. And in turn, since |C2| (respectively, P (C2)) is arbitrarily close to |Cα

Ω| (re-
spectively, to P (Cα

Ω)) up to have chosen δ arbitrarily small, the contradiction comes
exactly as in (2.2) if we can select an arbitrarily small δ such that Hn−2(∂∗

n−1Γ)δ is
small as we wish. And finally, this is surely true, because otherwise one would have

lim inf
δ→0

Hn−2(∂∗
n−1Γ) δ > 0 ,

which would readily imply that P (Cα
Ω) = +∞, and this is obviously impossible,

being Cα
Ω an α-Cheeger set.

(3), (4), (5). Any α-Cheeger set is in particular a minimizer of the perimeter
among all the subsets of Ω having its same volume. Therefore, the regularity
properties of the free boundary follow by well-known results, see for instance [6]
and [11], and it only remains to prove the formula for the curvature in the two-
dimensional case.

To do so we observe that, in the two-dimensional case, a curve with constant
curvature is nothing else than an arc of circle, hence the free boundary of an α-
Cheeger set Cα

Ω is a union of arcs of circle. Let us then focus on a single arc; more
precisely, let us fix an arc of circle γ, with radius r and amplitude 2θ, which belongs
to ∂Cα

Ω and which is entirely contained in the interior of Ω; let us also call P and Q
the endpoints of γ. Let us now slightly modify the set ∂Cα

Ω as follows: we replace γ
with a similar arc of circle, still connecting P and Q, in such a way that the center
of the new arc has been moved of a distance ε toward the segment PQ. Of course,
if |ε| � 1 then the new set is the boundary of a set Aε, very similar to Cα

Ω and
contained inside Ω. A simple trigonometric calculation ensures that the radius and
the amplitude of the new arc are given by

r̃ = r − ε cos θ + o(ε) , θ̃ = θ + ε
sin θ

r
+ o(ε) ,

and as a consequence area and perimeter of Aε are

|Aε| = |Cα
Ω|+ 2rε (sin θ − θ cos θ) + o(ε) ,

P (Aε) = P (Cα
Ω) + 2ε (sin θ − θ cos θ) + o(ε) ,

which gives

P (Aε)

|Aε|1/α =
P (Cα

Ω)

|Cα
Ω|1/α

+ 2ε
(sin θ − θ cos θ)

|Cα
Ω|1/α

(
1− P (Cα

Ω) r

α |Cα
Ω|

)
+ o(ε) .

Since the α-Cheeger ratio of Aε cannot be better than that of the α-Cheeger set Cα
Ω,

and since any small positive or negative ε can be chosen, we obtain the equality
P (Cα

Ω)r = α|Cα
Ω|, from which the formula (2.1) for the curvature follows.
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(6) Suppose that an α-Cheeger set Cα
Ω contains an angle strictly smaller than π;

by “cutting away” the corner at a distance ε > 0, we can lower the perimeter of
a quantity which goes as ε, changing the volume only of a quantity proportional
to ε2. If ε � 1, the new set has a strictly better α-Cheeger ratio than Cα

Ω, and
since this is impossible we conclude also this point.

(7) Let Cα
Ω be a non-connected α-Cheeger set, and let C1 and C2 be two non-

empty open sets with disjoint closures such that Cα
Ω = C1 ∪ C2. Since of course

P (C1∪C2) = P (C1)+P (C2), while for any α > 1 it is |C1∪C2|1/α =
(|C1|+|C2|

)1/α
<

|C1|1/α + |C2|1/α, one has

min
{ P (C1)
|C1|1/α ,

P (C2)
|C2|1/α

}
≤ P (C1) + P (C2)

|C1|1/α + |C2|1/α <
P (C1 ∪ C2)
|C1 ∪ C2|1/α =

P (Cα
Ω)

|Cα
Ω|1/α

,

Since the above inequality says that there is some set which has α-Cheeger ratio
strictly better than Cα

Ω, the contradiction shows this point.

(8) In the two-dimensional case, the convex hull of any set E has bigger volume
and smaller perimeter than E, with strict inequalities if E is not already convex.
The convexity of any α-Cheeger set corresponding to a convex set Ω is then obvious.
It is to be mentioned that, for the standard Cheeger problem, the convexity of the
Cheeger sets of convex domains is known also in the higher dimensional case,
see [13], [1], and [7].

(9) This is obvious, since if Ω1 ⊆ Ω2 then any subset of Ω1 is also a subset of Ω2.
The fact that the strict inclusion does not imply the strict inequality follows by
trivial counterexamples.

(10) Let us take any set E ⊆ Ω with |E| ≤ 1, and let BE ⊆ B1 ⊆ Ω be a ball
with the same volume as E. Then,

P (E)

|E|1/α ≥ P (BE)

|BE |1/α ≥ P (B1)

|B1|1/α ,

where the last inequality holds true whenever α < 1∗. As a consequence, we derive
that

(2.3) hα(Ω) = inf
E⊆Ω, |E|≥1

P (E)

|E|1/α .

Observe now that, for any E ⊆ Ω with |E| ≥ 1, it is

P (E)

|E|1/α1
≤ P (E)

|E|1/α2
,

which by taking the infimum over the sets E and recalling (2.3) concludes the
claim.

(11) The proof of this last claim is almost identical to the previous one: since
|Ω| ≤ 1, then of course |E| ≤ 1 for every set E ⊆ Ω, thus

P (E)

|E|1/α1
≥ P (E)

|E|1/α2

and the claim again follows by taking the infimum over sets E. �
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Remark 2.3. If an α2-Cheeger set with volume strictly greater than 1 exists, then
point (10) of the previous theorem holds with a strict inequality. If an α1-Cheeger
set with volume strictly smaller than 1 exists, then point (11) of the previous
theorem holds with a strict inequality.

Remark 2.4. As a straight consequence of the previous proof we have obtained
that, to compute the α-Cheeger constant of any set Ω, one can reduce himself to
minimize the α-Cheeger ratio among the sets with volume bigger than the biggest
ball contained in Ω.

3. Existence

This short section is devoted to show the existence of α-Cheeger sets in any given
set Ω: the proof is identical to the one for the classical case, and we report it only
for the sake of completeness.

Before starting, let us briefly compute the α-Cheeger ratio of a ball Br of
radius r > 0, which is

P (Br)

|Br|1/α =
nωn r

n−1

(ωn rn)1/α
= nω1−1/α

n rn−1−n/α .

Notice that the exponent n−1−n/α is negative if and only if α < 1∗, and it is null
when α = 1∗. As a consequence, for α > 1∗, the α-Cheeger ratio of smaller and
smaller balls converges to 0, while for α = 1∗ all the balls have the same α-Cheeger
ratio, regardless of their radius. As a consequence, we can observe what follows.

Remark 3.1. If α > 1∗, then the α-Cheeger constant of any set Ω is 0, and there
are no α-Cheeger sets. If α = 1∗, every set Ω have the same α-Cheeger constant,
and the α-Cheeger sets are all and only the balls.

In other words, the α-Cheeger problem would be trivial for α ≥ 1∗, and this
is why one always chooses 1 < α < 1∗ for the generalized Cheeger problem.
Observe that, in principle, the problem would be non-trivial even for 0 < α < 1;
nevertheless, people usually consider the case α > 1 because this corresponds to
give more importance to the isoperimetric properties of the set; in other words,
when α increases then for the subsets E in the definition (1.2) it becomes more
and more important to have a smaller perimeter, instead of having a bigger area.

We can now pass to the existence result.

Theorem 3.2. Let Ω ⊆ R
n be any set with finite volume. Then, for every 1 <

α < 1∗ there exists an α-Cheeger set in Ω; in other words, the infimum in (1.2) is
a minimum.

Proof. Let {Ek}k be a minimizing sequence for (1.2). Then, χEk
is a bounded

sequence in BV (Rn) since

‖χEk
‖BV (Rn) = ‖χEk

‖L1(Rn) + ‖DχEk
‖M(Rn) = |Ek|+ P (Ek) ,
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and |Ek| is bounded by |Ω|, while P (Ek) is uniformly bounded because {Ek}
is a minimizing sequence for (1.2) –we can assume that hα(Ω) < +∞, because
otherwise any subset of Ω is an α-Cheeger set, and there is nothing to prove.
Thanks to the classical compactness results for BV (Rn) (see for instance [2]),
and recalling that Ω has finite volume, we obtain that, up to a subsequence, χEk

weakly converges in BV to some function ϕ. In particular, the convergence is
strong in L1, and this implies that ϕ is also the characteristic function of some
set E ⊆ Ω; moreover, the lower semi-continuity implies that

P (E) = ‖DχE‖M(Rn) ≤ lim inf
k→∞

‖DχEk
‖M(Rn) = lim inf

k→∞
P (Ek) .

Summarizing, we have proved the existence of a set E ⊆ Ω such that

|E| = lim
k→∞

|Ek| , P (E) ≤ lim inf
k→∞

P (Ek) .(3.1)

The proof will be concluded once we show that E is an α-Cheeger set in Ω, which
in turn is obvious from (3.1) as soon as we observe that |E| > 0. In fact, let us
assume that |E| = 0: this implies that |Ek| → 0, hence we would have, calling rk
the radius of a ball Bk with |Bk| = |Ek|,

P (Ek)

|Ek|1/α ≥ P (Bk)

|Bk|1/α = nω1−1/α
n r

n−1−n/α
k → ∞ ,

where the last convergence holds since 1 < α < 1∗. Since this last estimate is in
contradiction with the fact that {Ek} is a minimizing sequence for (1.2), we have
shown that it must be |E| > 0 and, as noticed above, this concludes the proof. �

4. α-Cheeger sets for rectangles

In this section, we study in detail the α-Cheeger problem for the case of the rectan-
gles, and in the next section we will generalize our results to the case of the strips
(which are “deformations” of a rectangle, see Definition 5.1). This is not just an
example: indeed, the study of 2-dimensional strips or 3-dimensional waveguides is
already important for the standard Cheeger problem (we will discuss this in the
next section); moreover, for the generalized Cheeger problem, we will observe that
rectangles give simple counterexamples to classical facts which are instead true for
the standard Cheeger problem.

The plan of this section is the following: first we give a structure result for the
α-Cheeger sets in rectangles, then we show how this gives the above-mentioned
counterexamples, and finally, for the sake of completeness, we explicitly compute
the α-Cheeger constants of rectangles.

4.1. A structure theorem for α-Cheeger sets of rectangles

Through all this section, we denote by RL = (−L/2, L/2)× (−1, 1) the rectangle
of length L ≥ 2 and width 2, and by R∞ = R× (−1, 1) the unbounded rectangle.
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Of course, by trivial rescaling one can treat also any other rectangle. Let us recall
the results which are known for the rectangles in the standard case.

Theorem 4.1. The infinite rectangle R∞ admits no Cheeger sets, but the rectan-
gles RL ⊆ R∞ are a minimizing sequence for (1.1) when L → ∞, and h(R∞) = 1.
Any rectangle RL admits a unique Cheeger set, which is the union of all the balls
of radius 1/h(RL) < 1, according to point (8) of Theorem 2.1: in particular, this
set is the whole rectangle with the four corners “cut away” by four arcs of circle.

We will notice that the situation is quite different when α > 1: we will observe
in Lemma 4.4 that the diameter of any α-Cheeger set is bounded independently
of L, and we will completely characterize, in Theorem 4.6, the structure of the
α-Cheeger sets, in particular showing that there exist α-Cheeger sets also for the
unbounded rectangle R∞. In the rest of the section, for simplicity of notation, we
will write Cα

L to denote an α-Cheeger set in RL, instead of Cα
RL

. First of all, we
observe that any α-Cheeger set of a rectangle can only have two possible shapes,
depicted in Figure 1.

Lemma 4.2. Let Cα
L be an α-Cheeger set in the rectangle RL. Then, the free

boundary of Cα
L is not empty and it has constant curvature 1/r. Moreover, either

r < 1 and the free boundary is given by four arcs of circle of amplitude π/2 “cutting
away” the four corners of RL, as in Figure 1 (left), or r = 1 and the free boundary
is given by two arcs of circle of amplitude π connecting the top and the bottom
sides of RL, as in Figure 1 (right).

Figure 1. The two possible shapes of the α-Cheeger sets in rectangles.

Proof. Thanks to Theorem 2.2, point (6), we know that (the closure of) Cα
L cannot

contain any of the four corners of RL. As a consequence, the free boundary of Cα
L is

not empty, and by point (4) of Theorem 2.2 we know that it has constant curvature,
call it 1/r. Thus, the free boundary of Cα

L is given by arcs of circle of radius r,
connecting regular points of the boundary of the rectangle. Since by point (5) of
Theorem 2.2 these arcs must meet ∂RL tangentially, the two endpoints of each arc
must lie on different sides of the rectangle.

Consider now the left side of RL; suppose first that its intersection with Cα
L is

not empty, and call P the highest point of this intersection; keep in mind that P
cannot be a corner of the rectangle. Thus, there is a connected component of the
free boundary which is an arc of circle of radius r starting from P ; as a consequence,
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the distance of P from the upper-left corner of the rectangle is at least r. Since,
analogously, the lowest point in the intersection of Cα

L with the left side of RL has at
least distance r from the lower-left corner, we immediately derive that r ≤ 1. From
that, and keeping in mind that L ≥ 2, it follows that the arc starting at P cannot
reach the right side of the rectangle, and it must instead reach the upper side (in
principle, it could also reach directly the lower side, but this would readily imply
that Cα

L is a disk with radius r < 1, and this case can be immediately ruled out by
observing that RL contains also disks of radius 1, whose α-Cheeger ratio is strictly
better). Therefore, we deduce that the distance of P from the upper-left corner is
exactly r. Summarizing, we have proved that if Cα

L has a non-empty intersection
with the left side of the rectangle, then the free boundary of Cα

L contains the two
arcs of circle of radius r and amplitude π/2 connecting the four points having
distance r from the upper-left and the lower-left corner.

Consider now the case when Cα
L does not intersect the left side of the rectangle;

then, let us call P a point of ∂Cα
L having minimal distance to the left side. Since ∂Cα

L

has positive curvature, P must be in the interior of the rectangle, hence it belongs
to some arc of circle with radius r; by assumption, this arc of circle does not touch
the left side of RL, so it must connect the upper and the lower side of the rectangle
(keep in mind the first case considered above, to exclude that this arc reaches the
right side). Since the arcs meet ∂RL tangentially, we deduce that r = 1 necessarily,
so the arc containing P has amplitude π. Summarizing, we have proved that if Cα

L

does not intersect the left side of the rectangle, then r = 1 and the closest point
of ∂Cα

L to the left side is contained in an arc of circle, belonging to the free boundary
of Cα

L, of radius r and amplitude π, which connects the two horizontal sides of RL.
Putting together the two cases discussed above, and their obvious counterparts

for the right sides, we immediately realize that there are only two possibilities:
either r < 1, and then the boundary of Cα

L contains the four arcs of radius r
and amplitude π/2 connecting the eight points at distance r from the corners, or
r = 1 and the boundary of Cα

L contains two arcs of radius r = 1 and amplitude π
connecting the above and the bottom side of the rectangle. Notice that, in this
case, it is possible that these two arcs meet also the lateral sides of the rectangle,
but this is not necessary: for instance, in Figure 1 (right), the left arc does not
touch the left side, while the right arc touches the right side.

To conclude the proof, we have then to prove that the free boundary of Cα
L

cannot contain any other arc, except those described above. Indeed, if r < 1 there
cannot be any other arc, simply because there does not exist any other arc of
radius r which connects two points in the boundary of the rectangle reaching them
in a tangential way; instead, if r = 1, the presence of other arcs in the free boundary
would imply that Cα

L is not connected, against point (7) of Theorem 2.2. �

Corollary 4.3. Let Cα
L be an α-Cheeger set in the rectangle RL with radius of

curvature r = 1. Then Cα
L is a rectangle of height 1 and width M topped with two

half-disks of radius 1, where

(4.1) M = M(α) :=
π

2
· 2− α

α− 1
.
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Proof. By Lemma 4.2 we know the two possible shapes of an α-Cheeger set in RL;
if r = 1, then the shape must be the one depicted in Figure 1 (right), so actu-
ally Cα

L is a rectangle topped with two half-disks, and to conclude we only have
to evaluate M . To do so, by simply rewriting (2.1) we can express the radius of
curvature of the free boundary in terms of the α-Cheeger constant and the area as

(4.2) r =
α

hα(RL)
|Cα

L|1−1/α ,

and since r = 1 we derive

α |Cα
L|1−1/α = hα(RL) =

P (Cα
L)

|Cα
L|1/α

.

Finally, substituting the values of area and perimeter of Cα
L gives (4.1). �

Let us now show that the diameter of the α-Cheeger sets in the rectangles is
uniformly bounded.

Lemma 4.4. For every α ∈ (1, 2), there exists d̄ = d̄(α) such that the diameter of
any α-Cheeger set Cα

L of RL is less than d̄. More precisely, the α-Cheeger ratio of
sets with diameter d diverges when d → ∞.

Proof. For any L < ∞, we already know by Theorem 3.2 that there exists an
α-Cheeger set Cα

L, and this set is connected by Theorem 2.2. Then, calling d the
diameter of this set, we know that P (Cα

L) ≥ 2d, and on the other hand |Cα
L| ≤ 2d

because the width of the rectangle is 2. Hence, we can estimate the α-Cheeger
constant of Cα

L as

hα(RL) =
P (Cα

L)

|Cα
L|1/α

≥ (2d)1−1/α .

Since the latter quantity diverges for d → ∞, and on the other hand the α-
Cheeger constants of the rectangles RL are uniformly bounded for L large thanks
to point (9) of Theorem 2.2, we obtain the thesis. �

An easy consequence of the above result is that the α-Cheeger sets in RL

necessarily have the shape of Figure 1 (right) as soon as L is big enough.

Corollary 4.5. For every α ∈ (1, 2), if L is big enough then the radius of curvature
is r = 1.

Proof. Thanks to Lemma 4.2, we know that either r = 1, or the diameter of an
α-Cheeger set is at least L. Since this is impossible for L > d̄(α) according to
Lemma 4.4, we conclude. �

To get a complete characterization of the α-Cheeger sets in the rectangles,
we have to distinguish for which values of L the shape of the α-Cheeger sets is
the first or the second possible one, according to Lemma 4.2. Keeping in mind
Corollary 4.3, for sure the possibility r = 1 can only happen if L ≥ M(α) + 2,
because otherwise a rectangle of length M topped with two half-circles cannot fit
into RL. Actually, we will see that this condition is also sufficient.
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Theorem 4.6 (Structure theorem of α-Cheeger sets for rectangles). For any α ∈
(1, 2) the following holds:

(i) if L < M(α) + 2, then RL has a unique α-Cheeger set, obtained from the
whole RL by cutting away the corners with four arcs of radius r, being

(4.3) r =
L+ 2−√

(L+ 2)2 − 2(4− π)(2 − α)Lα

(4 − π)(2− α)
< 1 ;

(ii) if L = M(α) + 2, then RL has a unique α-Cheeger set, obtained from the
whole RL by cutting away the corners with four arcs of radius r = 1;

(iii) if L > M(α) + 2, then RL has not a unique α-Cheeger set; more precisely,
its α-Cheeger sets are all the rectangles of sides M(α) and 2 topped by two
half-disks of radius 1 which fit into RL.

Proof. As noticed above, if L < M(α) + 2 then it is necessarily r < 1, and thus
by Lemma 4.2 an α-Cheeger set must be as in Figure 4 (left), that is, the whole
rectangle with the four corners cut away with arcs of radius r. Hence, an α-Cheeger
set is completely characterized by the value of r: notice that, in principle, there
could be more α-Cheeger sets, corresponding to different values of r. For any
0 < t < 1, let us now call Rt the rectangle RL with the four corners cut away with
quarters of circle of radius t: by construction, the α-Cheeger sets are exactly the
sets Rt minimizing the α-Cheeger ratio. Since the perimeter and area of Rt can
be calculated as

P (Rt) = 2L+ 4− (8− 2π)t , |Rt| = 2L− (4− π)t2 ,(4.4)

a straightforward minimization argument shows that there is a unique 0 < t < 1
minimizing the α-Cheeger ratio, and it is given by formula (4.3). Hence, point (i)
is concluded. One can check that r < 1 for every L < M(α) + 2, and r → 1 for
L → M(α) + 2.

Let us now consider the case L = M(α) + 2. The same calculations as before
ensure that, among all the sets Rt, the one corresponding to t = 1 uniquely
minimizes the α-Cheeger ratio. As a consequence, it is impossible that r < 1
and then it must be r = 1. By Corollary 4.3, we know that all the α-Cheeger
sets must be rectangles with height 1 and width M topped by two half-disks of
radius 1. However, since L = M(α) + 2, there is only one such set in RL, whose
free boundary is tangent to both the lateral sides of the rectangle. Hence, also
point (ii) is concluded.

Let us finally consider point (iii): we will have obtained it as soon as we exclude
that for some L > M(α) + 2 there is an α-Cheeger set with radius of curvature
r < 1. Suppose then, by contradiction, the existence of some L > M +2 admitting
an α-Cheeger set Cα

L with r < 1. Let us now take some L′ much bigger than L:
the set Cα

L is also contained in RL′ but, according to Corollary 4.5, any α-Cheeger
set in RL′ must have radius of curvature equal to 1, so Cα

L is not an α-Cheeger set
in RL′ . By Corollary 4.3, moreover, the α-Cheeger sets in RL′ are the rectangles
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of width M topped with half-disks of radius 1; observe that, since L > M + 2,
there is such a set, call it Cα

L′ , which is contained also in RL. This immediately
gives a contradiction: indeed, the α-Cheeger ratio of Cα

L′ is strictly better than
that of Cα

L, because Cα
L is not an α-Cheeger set of RL′ ; and since both Cα

L and Cα
L′

are contained in RL, this implies that Cα
L cannot be an α-Cheeger set in RL. The

proof is then concluded. �

Remark 4.7. By sending α → 1 or α → 2 in the previous result one derives, of
course, the already known results for the standard case (when α = 1) and the trivial
results of the case α = 1∗ = 2, already discussed at the beginning of Section 3. In
particular, our equation (4.3) extends the corresponding equation (11) of [7].

4.2. Counterexamples given by long and thin rectangles

Here we briefly discuss how the situation for the rectangles has completely changed
from the standard case to the generalized one. In particular, all the claims of
Theorem 4.1 fail, at least when L > M(α) + 2. More in general, we are going to
see that sufficiently long rectangles give counterexamples to all the properties of
Theorem 2.1 whose analogue is not stated in Theorem 2.2.

First of all, the infinite rectangle R∞ does admit α-Cheeger sets, namely, any
rectangle of length M(α) topped with two half-disks. In particular, the rectan-
gles RL are not a minimizing sequence for (1.2), since their α-Cheeger constants
explode when L → ∞.

As soon as L > M(α) + 2, RL does not admit a unique α-Cheeger set, and
point (8) of Theorem 2.1 almost completely fails for α > 1 (notice the difference
with point (8) of Theorem 2.2): it is true that any α-Cheeger set is convex, but it
is not unique, and in particular it is not the union of all the balls with radius r.

Another property which is easily observed for the rectangles in the standard
case is the following: if L1 < L2, then the Cheeger set corresponding to RL1 is
contained in the Cheeger set corresponding to RL2 . For the α-Cheeger problem,
this is only partially true: more precisely, any α-Cheeger set in RL1 is contained
in some α-Cheeger set in RL2 , but there are α-Cheeger sets in RL2 which do not
contain any α-Cheeger set in RL1 . Concerning different values of α, the same
happens: again by the non-uniqueness and the possible translations, in RL there
are α1-Cheeger sets and α2-Cheeger sets which are not contained one into the other.

4.3. Computation of hα for a given rectangle

In this last short subsection, for the sake of completeness, we briefly compute the
α-Cheeger constant of some given rectangle RL depending on the power α ∈ (1, 2);
we can assume without loss of generality that L ≥ 2 (otherwise, it is enough to
rotate and rescale the rectangle). Of course, first of all we need to determine when
the situation is the one of case (i), or (ii), or (iii) of the structure Theorem 4.6.
Actually, we already know that everything depends on the fact that L is bigger or
smaller than M(α) + 2, and recalling (4.1) this is equivalent to α being bigger or
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smaller than

ᾱ(L) =
2(π + L− 2)

π + 2L− 4
.

It is immediate to observe that L �→ ᾱ(L) is a strictly decreasing function, and
that ᾱ(L) ∈ (1, 2], being ᾱ(2) = 2 and ᾱ(+∞) = 1.

Proposition 4.8. The α-Cheeger constant of RL is given by

(4.5) hα(RL) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α
( π

α− 1

)1−1/α
if α ≥ ᾱ(L) ,

2L+ 4− (8− 2π)r(
2L− (4 − π)r2

)1/α otherwise ,

where r is given by (4.3).

Proof. If α ≥ ᾱ(L), then L ≥ M(α) + 2 and the α-Cheeger set is a rectangle of
length M(α) plus two half-disks. As a consequence, by (4.2) together with the fact
that r = 1 and using (4.1), we get

hα(RL) = α|Cα
L|1−1/α = α

(
2M(α) + π

)1−1/α
= α

( π

α− 1

)1−1/α

,

according with (4.5).
If α < ᾱ(L), instead, we know precisely the shape of the α-Cheeger set of RL,

which is the whole rectangle with the four corners cut away with arcs of circle
of radius r, where r is given by (4.3). Then, formula (4.5) follows straightforwardly.

�

Remark 4.9. By sending L → ∞, the first line of formula (4.5) gives also the
value of the α-Cheeger constant hα for the unbounded rectangle R∞. If we then
send α ↘ 1, we obtain that hα(R∞) converges to 1, which agrees with the fact
that h1(R∞) = 1, as well-known.

5. α-Cheeger sets for strips

Lately, due to their importance in many practical applications, especially in engi-
neering and in medicine, a vivid interest has arisen around the waveguides, and
their 2-dimensional counterpart, the strips. Roughly speaking, the waveguides are
deformations of cylinders, while strips are deformation of rectangles. The main
reason of the interest about these sets in the applications is due to their inter-
esting optical properties; mathematically speaking, the main feature that one is
interested in, is the study of the behaviour of the eigenvalues, which in turn is
strictly related with the study of the Cheeger constant. More about the meaning
and the importance of waveguides and strips can be found in [3], [8] and the refer-
ences therein, while recent mathematical studies can be found in [9], [11]. Actually,
for the applications the main case is that of “long and thin” waveguides or strips.
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The aim of this short section is to show that the results that we found for
rectangles in the last sections can be easily extended to the case of the strips. Let
us start with the relevant definitions.

Definition 5.1 (Strips). Let I ⊆ R be an interval, let γ : I → R
2 be a C1,1 curve,

parametrized at unit speed, and let us denote by ν : I → R
2 the unit normal vector

to the curve γ. Define the map Ψ: I × [−1, 1] → R
2 as

Ψ(s, t) = γ(s) + tν(s) .

If the map Ψ is injective, then we say that the image of Ψ is a strip of half-width 1.
We call length of the strip the length of the interval I; moreover, calling I = (a, b),
we will refer to Ψ(a, ·) and Ψ(b, ·) as the lateral sides of the strip, as well as to
Ψ(·,±1) as the horizontal sides of the strip.

Notice that the injectivity of the map Ψ in particular implies that the modulus
of the curvature of γ is bounded by 1; of course, a rectangle is the particular case
of a strip when γ is the parametrization of a segment. Notice that, depending on
the different properties of the curve γ, all the possible strips can be of four different
kinds:

• if I = [0, L) and γ(0) = γ(L), then we have a “closed strip”, usually called
generalized annulus ;

• if I = (0, L) and γ(0) �= γ(L), then we have an open finite strip;

• if I = (0,+∞), then we have an open semi-infinite strip;

• if I = (−∞,+∞), then we have an open infinite strip.

In the two latter cases, we will denote by SP the bounded strip corresponding
to the restriction of γ, respectively, to IP = (0, P ) and to IP = (−P/2, P/2). The
following results, for the standard Cheeger problem, were proved in [9], [11]:

• A generalized annulus is always the unique Cheeger set in itself.

• A finite strip with L ≥ 9π/2 has always a unique Cheeger set, corresponding
to the whole strip with the four corners cut away by arcs of circle.

• A semi-infinite strip and an infinite strip never have a Cheeger set, but the
subsets SP are always minimizing sequences when P → ∞.

In particular, for the annuli and for the finite strips the two properties, which
are characteristic of convex sets, are still valid, namely, the uniqueness of the
Cheeger set, and the fact that it is the union of all the balls of the correct radius
r = 1/h1(Ω). Roughly speaking, these results ensure that for strips and generalized
annuli more or less the same properties as for rectangles and annuli are valid, in
the standard Cheeger problem. We can now show that the same is true for the
α-Cheeger problem.

Indeed, let us consider a finite strip Ω with length L ≥ 9π/2 (this bound on the
length is not really needed, it just makes things simpler to treat, see the comment in
Remark 5.4). Let us discuss the possible shapes of the α-Cheeger sets. First of all,
we know that an α-Cheeger set Cα

Ω exists, and it cannot be the whole strip because
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the α-Cheeger set cannot contain corners; as a consequence, the intersection of ∂Cα
Ω

with Ω is a non-empty union of arcs of circle having radius r. Let us now argue as
in Lemma 4.2: by the bound on L, an arc cannot join the left and the right sides
of Ω, and by the curvature bound and the tangential property given by point (5)
of Theorem 2.2, an arc cannot joint two points on a same side of Ω. Therefore,
every arc should join the two horizontal sides, or an horizontal and a vertical side.
Moreover, an arc can join the two horizontal sides only if r = 1. As a consequence,
let us consider separately the two possibilities.

If r < 1, then there is only a possible shape for the α-Cheeger set, which is the
whole strip with the four corners cut away with arcs of radius r. Notice, however,
that formulas (4.4) for the area and perimeter of the whole strip without the four
corners cut away are no more valid in general, then also formula (4.3) is in general
false, and the exact value of r depends not only on L but also on γ.

Suppose, instead, that r = 1: we claim that, in this case, there are two arcs
with amplitude π joining the upper and the lower side of Ω, possibly (but not
necessarily) also touching the lateral sides, as in Figure 1. Indeed, again as in
Lemma 4.2, if no arc is touching the left side of the strip, then of course the “left
part” of the free boundary must be an arc between the upper and the lower side.
On the other hand, assume that some arc joins the left and the upper sides of the
strip, and call Q the center of this arc; then, the distance of Q from the upper side
of the strip equals r = 1, and so the distance of Q from the lower side of the strip
is also 1. As a consequence, the arc of circle which rules out the lower-left corner
of the strip, which does not belong to the α-Cheeger set, must necessarily be also
centered in the same point Q: the two arcs, then, are actually a single arc with
amplitude π.

Summarizing, we have observed that also for the finite strips there can only be
two possible shapes for the α-Cheeger sets, namely, the whole strip with the four
corners cut away with arcs of radius r < 1, or some smaller strip of length M < L
contained in Ω topped with two half-disks (we will call these sets “topped sub-
strips”). In order to distinguish between the two possibilities, we have to calculate
area and perimeter of the topped substrips: in fact, a simple calculation (for in-
stance done in Proposition 3.5 of [11]) ensures that all the topped substrips of
width M have the same area and perimeter, regardless of their shape, namely
2M + π and 2M + 2π (as in the case of the rectangle, which is a particular strip).
As a consequence, the same calculation as in Corollary 4.3 ensures that a topped
substrip can be an α-Cheeger set only if M is given by (4.1). In addition, the
very same argument as in the proof of Theorem 4.6 still ensures that, if a topped
substrip with the correct value of M fits into Ω, then it must necessarily be an
α-Cheeger set for Ω. In other words, the α-Cheeger sets are all the topped sub-
strips of width M(α), if there are any, and otherwise the strips with the corners
cut away.

Finally, let us discuss the existence of topped substrips of width M(α) fitting
into the strip Ω: in the case of rectangles, of course this happened if and only if
L ≥ M(α) + 2, but for the general strips the situation is different. Of course there
can be no topped substrip if L < M(α) + 2, but it is also possible that a strip has
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length L > M(α) + 2 and no topped substrips with width M(α); one can easily
notice that such a topped substrip exists for sure only when L ≥ M(α) + π, and
this bound is sharp and corresponds to a curve γ which has exactly curvature 1
around its extremes. Summarizing, we have proved the following result.

Theorem 5.2 (Structure theorem of α-Cheeger sets for open strips). Let Ω be an
open strip of length L ≥ 9π/2 (with L = +∞ for semi-infinite or infinite strips).
Then, for any α ∈ (1, 2) the following hold:

(i) If L < M(α) + 2 then Ω has a unique α-Cheeger set found by cutting away
the corners of Ω with arcs of radius r < 1, where r satisfies (4.2), but not
necessarily (4.3).

(ii) If L ≥ M(α) + π then Ω has not a unique α-Cheeger set; more precisely, its
Cheeger sets are all the topped substrips of length M(α) which fit into Ω.

(iii) If M(α)+2 ≤ L < M(α)+π, then the α-Cheeger sets of Ω are all the topped
substrips of length M(α) which fit into Ω, if there is any such set; otherwise,
there is a unique Cheeger set, which is as in case (i).

To conclude, let us consider the case of a generalized annulus. There are again
two possibilities for an α-Cheeger set Cα

Ω: either it coincides with Ω, thus the whole
annulus is the α-Cheeger set of itself, or the boundary ∂Cα

Ω intersects the interior
of Ω, and thus it is a finite union of arcs with radius r ≤ 1. However, for an
annulus Ω, the boundary of Ω is done by two disconnected curves (the “internal”
and the “external” boundary), and an immediate geometric argument ensures that
an arc of circle with radius r < 1 cannot connect two distinct points of the same
connected component. As a consequence, it must be r = 1, and thus an α-Cheeger
set not coinciding with Ω is again some topped substrip of length M(α); as before,
all such sets have the same perimeter and area, so they are all α-Cheeger sets (or
none of them is so). Moreover, this time it is no more true that such a topped
substrip which fits into Ω is automatically an α-Cheeger set: indeed, if the two
half-circles are almost tangent, then an immediate calculation ensures that the
whole annulus has a strictly better α-Cheeger ratio. Actually, since every topped
substrip has area 2M(α) + π and perimeter 2M(α) + 2π, while the whole annulus
has both perimeter and area equal to 2L, it is clear that the topped substrips are
better than the whole annulus (thus, they are α-Cheeger sets) if and only if

(5.1)
2π + 2M(α)

(2M(α) + π)1/α
≤ 2L

(2L)1/α
.

We can then conclude with the structure result for the generalized annuli.

Theorem 5.3 (Structure theorem of α-Cheeger sets for generalized annuli). Let Ω
be a generalized annulus of length L ≥ 9π/2. Then, for any α ∈ (1, 2) the following
hold:

(i) If there are no topped substrips of length M(α) which fit in Ω (in particular,
this always happens if L < M(α) + 2), or if such sets exist but the opposite
inequality in (5.1) holds true, then the only α-Cheeger set in Ω is the whole Ω
itself.
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(ii) If topped substrips of length M(α) which fit in Ω exist and the strict inequality
in (5.1) holds, then such sets are all and only the α-Cheeger sets in Ω.

(iii) If topped substrips of length M(α) which fit in Ω exist and equality in (5.1)
holds, then such sets, as well as the whole Ω itself, are all and only the
α-Cheeger sets in Ω.

Remark 5.4. Let us briefly comment about the bound of the length L ≥ 9π/2.
Exactly as in [11], the meaning of this bound is only to ensure that the strip has
actually four corners, as well as to exclude that an arc of circle in the free boundary
can connect the left and the right side of the boundary. Indeed, if we consider for
instance a curve γ given by an arc of circle of radius 1 and angle π/2, then the
corresponding strip is a quarter of a disk, which has only three corners instead
of four. As a consequence, if one wants to consider all the strips without a lower
bound on the length, then some simple but boring modifications in the claims
and in the proofs are needed. Since the claims are already technical enough, we
preferred to consider only the case of lengths bounded from below, also because, as
explained above, the whole interest in the study of the strips comes for extremely
long ones. For the same reason, we did not try to optimize the lower bound on the
length, the number 9π/2 is probably too high but we did not find it interesting to
obtain a better constant.

Remark 5.5. Notice that, in the limit cases when α = 1 or α = 2, equation (5.1)
is respectively never verified or always verified. As a consequence, for the standard
Cheeger problem we have found the already known result cited above, that is, the
whole generalized annulus is always the unique Cheeger set of itself; on the other
hand, for the limit case α = 2, we deduce the fact that the whole annulus is never
α-Cheeger in itself (which is obvious because, as observed above, when α = 2 then
the α-Cheeger sets are all and only the balls, of any radius, contained in Ω).

References

[1] Alter, F. and Caselles, V.: Uniqueness of the Cheeger set of a convex body.
Nonlinear Anal. 70 (2009), no. 1, 32–44.

[2] Ambrosio, L., Fusco, N. and Pallara, D.: Functions of bounded variation
and free discontinuity problems. Oxford Mathematical Monographs, The Clarendon
Press, Oxford University Press, New York, 2000.

[3] Duclos, P. and Exner, P.: Curvature-induced bound states in quantum waveg-
uides in two and three dimensions. Rev. Math. Phys. 7 (1995), no. 1, 73–102.

[4] Figalli, A., Maggi, F. and Pratelli, A.: A note on Cheeger sets. Proc. Amer.
Math. Soc. 137 (2009), no. 6, 2057–2062.

[5] Fusco, N., Maggi, F. and Pratelli, A.: Stability estimates for certain Faber–
Krahn, isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl.
Sci. (5) 8 (2009), no. 1, 51–71.

[6] Gonzalez, E., Massari, U. and Tamanini, I.: Minimal boundaries enclosing a
given volume. Manuscripta Math. 34 (1981), no. 2-3, 381–395.



On the generalized Cheeger problem and an application to 2d strips 237

[7] Kawohl, B. and Lachand-Robert, T.: Characterization of Cheeger sets for con-
vex subsets of the plane. Pacific J. Math. 225 (2006), no. 1, 103–118.
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