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Hypergroup properties for the deltoid model

Dominique Bakry and Olfa Zribi

Abstract. We investigate the hypergroup property for the family of or-
thogonal polynomials associated with the deltoid curve in the plane, re-
lated to the A2 root system. This provides also the same property for
another family of polynomials related to the G2 root system.

1. Introduction

The hypergroup property is a property shared by some orthonormal bases in proba-
bility spaces which allows for the complete description of all Markov sequences and
for multiplication formulas (see Section 2). It has been established for some families
of orthogonal polynomials in dimension 1, and relates in general to some special
structure of the underlying space. This is a quite powerful tool in many areas,
ranging from pure analysis and Lie group to statistics and computer algorithms.
Gasper’s theorem establishes this property for dissymetric Jacobi polynomials in
dimension 1 (see [10], [11], [12], [19]), and is an extension of an earlier result due
to Bochner concerning the symmetric case [6], [7]. Although many authors revis-
ited this result, a very elegant proof of Gasper’s theorem was recently proposed
by Carlen, Geronimo and Loss in [8], arising from the study of Kac’s model in
statistical mechanics. This proof relies on the construction of an auxiliary model,
and may be extended in many other situations. The aim of this paper is to show
how this technique applies in the particular case of one of the 2 dimensional exten-
sions of Jacobi polynomials, namely orthogonal polynomials on the deltoid domain
(defined below in Section 4) and associated to the A2 root system.

Jacobi polynomials are the unique family of orthogonal polynomials in dimen-
sion 1 (together with their scaled limits Hermite and Laguerre polynomials) which
are at the same time eigenvectors of a second order differential operator, and more
precisely of a diffusion operator [21]. Although there is no reason a priori for these
two properties to be related, it is worth to study the hypergroup property for
other families of such orthogonal polynomials in higher dimension. Among these
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orthogonal polynomials associated with diffusion operators, some of them arise
from root systems, the Heckman–Opdam Jacobi polynomials [13], [14]. It is an
open and challenging problem to analyse this question for these families in partic-
ular. Partial results have been obtained in this direction in [22], [23] in the BCn

case.
We investigate in this paper the family of orthogonal polynomials in dimen-

sion 2 related to the deltoid curve and the A2 and G2 root systems, introduced by
Koornwinder [16], [17], [18], as one as the special families of orthogonal polynomi-
als in dimension 2 which are at the same time eigenvectors of symmetric diffusion
operators (see [4] and Section 4). The scheme of Carlen–Geronimo–Loss relies in
a crucial way on the fact that the polynomials are eigenvectors of some operator,
and that the corresponding eigenspaces have dimension one. In the context that
we investigate, this last property fails to be true, and this introduces some extra
complexity in the formulation of the main hypergroup property result in Section 6.
This difficulty arises from a symmetry invariance in the deltoid model. To get
rid of this difficulty, we may look at simpler forms of the deltoid model, that is
consider only functions which are invariant under this symmetry. This leads to
investigate a new model, related to the G2 root system, for which the hypergroup
property takes the usual form.

The paper is organized follows. In Section 2, we present the hypergroup prop-
erty and the elegant approach initiated by Carlen–Geronimo–Loss [8] to obtain it.
In Section 3, we introduce the language of symmetric diffusion operators, which
be used through the rest of the paper. The deltoid model is described in Sec-
tion 4, where we give some details about the structure of the eigenspaces, and
show the relation with the A2 root system, through some geometric interpreta-
tions of the associated operators for two distinct values of the parameter. The
Carlen–Geronimo–Loss methods relies on the construction of some other model
space (in general in higher dimension), which projects on the model under study
and has some extra symmetry. This model (in our case 6-dimensional) is presented
in Section 5. Then we give in Section 6 the hypergroup property for the deltoid
model itself, and finally in Section 7, we introduce the projected model related to
the G2 root system on which the hypergroup property presents a simpler form.

2. Hypergroup property and Markov sequences

The word hypergroup had been first introduced in 1959 by H. S. Wall [24], to
generalize the notion of a group, when the product of two elements is the sum of
a finite numbers of elements. Different generalizations had been put forward by
C. Dunkl [9], and Jewett [15], see also the exposition book [5]. In our context,
we shall mostly be concerned by the hypergroup property, as defined in [2], and
which concerns some properties of orthonormal bases in L2(μ) spaces, where μ is
a probability measure, and that we describe below.

Let (X,A, μ) a probability space, for which some orthonormal basis of L2(μ)
is given, which we suppose countable, and therefore ranked as (f0, f1, . . . , fn, . . .).
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We suppose moreover that f0 = 1. A central question which arises quite often is to
determine all sequences (λn) such that, if one defines a linear operator K : L2(μ) �→
L2(μ) through K(fn) = λnfn, then this operator is Markov. This means that
K(1) = 1 and K(f) ≥ 0 whenever f ≥ 0. Of course, the first condition reduces
immediately to λ0 = 1 and the difficulty is to check the positivity preserving
property. We call such sequences Markov sequences, and the problem is known as
the Markov sequence problem (MSP in short).

When
∑

n λ
2
n < ∞, the operator K may be represented through the L2(μ⊗ μ)

kernel k(x, y) =
∑

n λnfn(x)fn(y) and, since all the functions fn (except f0) satisfy∫
fndμ = 0, the previous series is oscillating and positivity may not be checked

directly from this representation.
The real parameters λn are the eigenvalues of the symmetric operator K, and it

is well known (and quite immediate) that, if K is Markov, they must satisfy |λn|≤1.
It is obvious that if λ = (λn) and μ = (μn) are Markov sequences , the (λnμn) is a
Markov sequence. Moreover, for any θ ∈ [0, 1], θλ+ (1 − θ)μ = (θλn + (1 − θ)μn)
is again a Markov sequence, and the simple limit of Markov sequences is again a
Markov sequence. Therefore the question boils down to the determination of the
extremal points in the set of Markov sequences. The hypergroup property allows
for such description.

The hypergroup property holds when there exists some point x0 ∈ X such that,
for any x ∈ X , the sequence fn(x)/fn(x0) is a Markov sequence. Of course, for
this to make sense, one needs for example some topology on X and require the
functions (fn) to be continuous for this topology.

When the hypergroup property holds, then these sequences fn(x)/fn(x0) are
automatically the extremal points for the Markov sequence problem (see [2]) and
then, for any Markov sequence (λn), there exists a probability measure ν on Ω
such that

(2.1) λn =

∫
X

fn(x)

fn(x0)
ν(dx) .

To understand this representation, one should first extend the operator K by
duality as an operator acting on probability measures. Since formally, δx0 has a
density which may be written as

∑
n fn(x)fn(x0), then K(δx0) may be written as(∑

n λnfn(x)fn(x0)
)
dμ(x) and, with ν(dx) = K(δx0), one has∫

fn(x)

fn(x0)
ν(dx) = λn .

This of course is not really meaningful beyond the case of finite sets, and one
should replace δx0 by a smooth approximation of it. It what follows, we shall have
a symmetric diffusion operator L with eigenvectors fn, and the associated heat
kernel Pt = etL will be such that Pt(δx) has a bounded density with respect to μ
for any t > 0 and any x. One may then replace δx0 by Pt(δx0) in the previous
argument, and let then t → 0 to get the representation

When the space X is a finite set, it is a consequence of the definition that this
point x0 must be the point with minimal measure (see [2]). Moreover, provided we



198 D. Bakry and O. Zribi

chose the signs of (fn) such that fn(x0) ≥ 0, it is immediate (and does not require
the finiteness of the space X) that the functions fn reach their maximum (and the
maximum value of their modulus) at x0.

This hypergroup property is strongly related with product formulae (see [20]).
Indeed, assume that for any x ∈ Ω, the Markov kernel Kx with eigenvalues
fn(x)/fn(x0) has an L2 integrable density

Kx(f)(y) =

∫
f(z)K(x, y, z)μ(dz) .

Then, it is readily seen that

K(x, y, z) =
∑
n

fn(x)fn(y)fn(z)

fn(x0)

is a symmetric function of (x, y, z) and we get a product formula

(2.2) fn(x)fn(y) = fn(x0)

∫
fn(z)K(x, y, z)μ(dz) .

In [8], the authors provide a new and elegant proof of Gasper’s result, through
a method which proves to be efficient in many other situations, and that we shall
describe now. For this, we first require some topology on X and the functions (fn)
to be continuous for this topology.

We assume that there exists a self-adjoint operator, in general unbounded and
defined on a dense subset D ⊂ L2(μ), L: D �→ L2(μ), for which the functions fn
are eigenvectors, that is Lfn = μnfn. Moreover, we assume that the eigenspaces
of L for the eigenvalues μn are simple. In our context, one may chose D as the set
of the finite linear combinations of the functions fi.

We also assume the existence of an auxiliary probability space (Y,B, ν) with
a self adjoint operator L̂, again defined on a subset D̂ ⊂ L2(ν), L̂ : D̂ �→ L2(ν),
together with some application π : Y �→ X . For a function f : X �→ R, we denote
by π(f) : Y �→ R, the function π(f)(y) = f(π(y)). We suppose that π(D) ⊂ D̂ and
that L̂π = πL. This property is often described as “L is the image of L̂ under π ”,
or that “ L̂ projects onto L under π ”, or even that “π intertwines L and L̂ ”.

Moreover, one requires some measurable transformation Φ: Y �→ Y which com-
mutes with the action of L̂. That is, once again denoting Φ(f)(y) = f(Φ(y)), we
assume that Φ: D̂ �→ D̂ and L̂Φ = Φ L̂.

In order for the next proposition to make sense, we shall impose some topology
on Y , and require π and Φ to be continuous.

Let ξ be a random variable with values in Y , distributed according to ν. From
the hypotheses, it is quite clear that the laws of π(ξ) and of π(Φ(ξ)) are μ. We
look at the conditional law k(x, dy) of π(Φ(ξ)) given π(ξ), where x �→ k(x, dy) is
continuous for the weak topology.

Proposition 2.1. Assume that there exists some point x0 ∈ X such that the
conditional law k(x0, dy) is the Dirac mass at some point x1 ∈ X. Then, the
sequence λn = fn(x1)/fn(x0) is a Markov sequence.
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Proof. We consider the correlation operator, defined as

K(f)(x) =

∫
f(y) k(x, dy) .

It is a Markov operator by construction. The assumption tells us that, for f
continuous, K(f)(x0) = f(x1). We shall see that this operator K corresponds to
the choice of the Markov sequence (λn) = fn(x1)/fn(x0). By definition of the
conditional expectation, for any pair of L2(μ) functions∫

X

f K(g) dμ =

∫
Y

f(π(y)) g
(
π(Φ(y))

)
ν(dy) =

∫
Y

π(f)Φπ(g) dν .

We want to show first that for any n, fn is an eigenvector for K. For this, chose
any p and consider∫

X

LfpK(fn) dμ =

∫
Y

π L(fp)Φπ(fn) dν =

∫
Y

L̂π(fp)Φπ(fn) dν

=

∫
Y

π(fp) L̂ Φπ(fn) dν =

∫
Y

π(fp)Φπ L(fn) dν

= μn

∫
Y

π(fp)Φπ(fn) dν = μn

∫
X

fp K(fn) dμ .

Therefore, this being valid for any p, K(fn) is an eigenvector for L with eigen-
value μn. Since the eigenspaces are one dimensional, we deduce that K(fn) =
λnfn. Applying this at the point x0, we see that λn = fn(x1)/fn(x0). �

If we have at disposal a full family of such transformations Φ such that the
associated points x1(depending on Φ) cover X , we conclude to the semigroup
property. The main challenge for proving the hypergroup property, when we have
a basis given as eigenvectors for some operator L, is then to construct the space Y ,
the operator L̂, the projection π and the transformations Φ: Y �→ Y , which satisfy
the required properties. This is what we are going to do for the deltoid model in
Section 5.

3. Symmetric diffusion operators

We briefly recall in this Section the context of symmetric diffusion operators, fol-
lowing [1], a specific context adapted to our setting.

For a given probability space (X,X , μ), we suppose given an algebra A of
functions such that A ⊂ ∩1≤p<∞Lp(μ), where A is dense in L2(μ). A bilinear
application Γ : A×A �→ A is given such that, ∀f ∈ A, Γ(f, f) ≥ 0. If Φ: Rn �→ R

is a smooth function such that for any (f1, . . . , fn) ∈ An, Φ(f1, . . . , fn) ∈ A, then

Γ(Φ(f1, . . . , fk), g) =
∑
i

∂iΦΓ(fi, g) .
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A linear operator L is defined through

(3.1)
∫
X

f L(g) dμ = −
∫
X

Γ(f, g) dμ

and we assume that L maps A into A. We extend L into a self adjoint operator
and we suppose s that A is dense in the domain of L.

Then, for f = (f1, . . . , fk), and again if Φ is smooth with Φ(f1, . . . , fn) in A
whenever fi ∈ A, then

(3.2) L(Φ(f)) =

k∑
1

∂iΦ(f) L(fi) +

k∑
i,j=1

∂2
ijΦ(f) Γ(fi, fj) .

We have from (3.2)

Γ(f, g) =
1

2

(
L(fg)− f L(g)− g L(f)

)
.

If X is an open domain in Rd, of some smooth manifold, then, in a local system
of coordinates (x1, . . . , xd), L may in general be written as

(3.3) L(f) =
∑
ij

gij(x) ∂2
ijf +

∑
i

bi(x) ∂if ,

while

(3.4) Γ(f, g) =
∑
ij

gij(x) ∂if ∂jg ,

where gij = Γ(xi, xj) and bi = L(xi). The non negativity of Γ translates into the
fact that the symmetric matrix (gij)(x) is everywhere non negative. Observe then
that in order to describe L, we just have to describe L(xi) and Γ(xi, xj).

When the measure μ has a positive density ρ with respect to the Lebesgue
measure, then the symmetry property of L translates into

(3.5) L =
1

ρ

∑
ij

∂i
(
gijρ ∂j

)
,

which shows that, in formula (3.3),

(3.6) bi =
∑
j

∂jg
ij + gij∂j log ρ ,

and this formula may be applied in many circumstances to identify the measure
density ρ up to some normalizing constant. Since we shall mainly use this setting
for finite measure, we may always assume with no loss of generality that μ is a
probability measure.

A central question is to determine on which set of functions one applies the
operator L, particularly when Ω is bounded. Indeed, this requires to look at
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some self adjoint extension of L, and one needs in general to describe an algebra
of functions which is dense in the domain of L and on which the integration by
parts formula (3.1) holds true. This is done in general by prescribing boundary
conditions on the functions f , such as Neumann or Dirichlet conditions.

In our setting however, we will always work on bounded open sets Ω ⊂ Rd

with piecewise smooth boundary ∂Ω. Our functions gij and bi will be smooth
in Ω. Moreover, gij(x) will be defined and smooth in some neighborhood of Ω.
Then, suppose that in a neighborhood V of any regular point x of the boundary,
the boundary may be described through {F = 0}, where F is a smooth function,
defined in V and with real values. Then, our fundamental assumption is that

(3.7) Γ(F, xi) = 0 on ∂Ω ∩ V .

When this happens, we may choose for A the algebra of smooth compactly
supported functions defined in a neighborhood of Ω, referred in what follows as
“smooth functions”, and the integration by parts formula (3.1) holds true for those
functions. In other words, for such operators, there is no need to consider boundary
conditions of the functions in A (see [4]). In the context of orthogonal polynomi-
als on bounded domains that we shall consider, this property is always satisfied
(see [4]).

We shall make a strong use of the notion of image operator, to fit with the
setting described in Section 2. Suppose that we have a set of functions X =
(X1, . . . , Xk) for which

L(X i) = Bi(X), Γ(X i, Xj) = Gij(X) ,

then, for any smooth function Φ: Rk �→ R, and thanks to equation (3.2), one has

L(Φ(X)) = L1(Φ)(X) ,

where
L1 =

∑
ij

Gij∂2
ij +

∑
i

Bi∂i .

This is again a symmetric diffusion operator, defined on the image Ω1 = X(Ω), and
its reversible measure is the image of μ through X . This new diffusion operator L1

is therefore the image of L under Φ, in the sense described in Section 2: ΦL1 = LΦ
by construction.

In the next sections, we shall always work on polynomials, moreover in even
dimensions 2k. We shall suppose that the coordinates are paired as (xp, yp), p =
1, . . . , k. In this context, it is often quite simpler to use complex coordinates
(that is identify R2k � Ck), setting zp = xp + iyp, z̄p = xp − iyp and one has to
describe then, using linearity and bilinearity Γ(zp, zq),Γ(z̄p, z̄q),Γ(zp, z̄q), together
with L(zp) and L(z̄p).

For example, Γ(zp, zp) = Γ(xp, xp)− Γ(yp, yp) + 2iΓ(xp, yp).
The positivity of the metric here may be checked according to the parity of k.

For example, a careful inspection shows that indeed, the determinant of the metric
in the variables (zp, z̄p) is (−1)k4kdet(g), where the determinant is computed in
real variables.
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4. The deltoid model

The deltoid curve is a degree 4 algebraic plane curve which may be parametrized as

x(t) =
1

3
(2 cos t+ cos 2t), y(t) =

1

3
(2 sin t− sin 2t).

Figure 1. The deltoid domain.

The factor 1/3 in the previous formulae are just here to simplify future com-
putations, but play no fundamental rôle. The connected component Ω of the
complementary of the curve which contains 0 is a bounded open set, that we refer
to as the deltoid domain. It turns out that there exists on this domain a one pa-
rameter family L(λ) of symmetric diffusion operators which may be diagonalized in
a basis of orthogonal polynomials. It was introduced in [16], [17], and further stud-
ied in [25]. This is one of the 11 families of sets carrying such diffusion operators,
as described in [4].

In order to describe the operator, and thanks to the diffusion property (3.2), it
is enough to describe Γ(x, x), Γ(x, y), Γ(y, y), L(λ)(x) and L(λ)(y) (the operator Γ
does not depend on λ here).

The symmetric matrix (
Γ(x, x) Γ(x, y)
Γ(y, x) Γ(y, y)

)
is referred to in what follows as the metric associated with the operator, although
properly speaking it is in fact a co-metric. We may also use the complex structure
of R2 � C, and the complex variables Z = x + iy, Z̄ = x − iy, and it turns out
that the formulas are much simpler under this description.

The operator L(λ) is then described as

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Γ(Z,Z) = Z̄ − Z2,

Γ(Z̄, Z̄) = Z − Z̄2,

Γ(Z̄, Z) = 1/2(1− ZZ̄),

L(λ)(Z) = −λZ,L(λ)(Z̄) = −λZ̄,

where λ > 0 is a real parameter.
The boundary of the domain Ω turns out to be the curve with equation

P (Z, Z̄) := Γ(Z, Z̄)2 − Γ(Z,Z)Γ(Z̄, Z̄) = 0 ,
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and inside the domain Ω, the associated metric is positive definite, so that it
corresponds to some elliptic operator in Ω. Moreover, for this function P , the
boundary condition (3.7) is satisfied, with

Γ(P,Z) = −3ZP, Γ(P, Z̄) = −3Z̄P .

The reversible measure associated with it, easily identified through equation (3.6),
has density CαP (Z, Z̄)α with respective to the Lebesgue measure, where λ =
1
2 (6α + 5), and is a probability measure exactly when λ > 0 (see [25] for more
details). We shall refer to this probability measure on Ω as μ(λ).

It is quite immediate that the operator L(λ) commutes with the transforma-
tion Z �→ Z̄. Indeed, there is another invariance: the transformation Z �→ eiθZ
commutes with L(λ) provided e3iθ = 1. Therefore, everything is invariant under
Z �→ jZ and Z �→ j̄Z, where j and j̄ are the third roots of unity in the com-
plex plane.

From the form of the operator, we easily see that L(λ) maps the set Pn of
polynomials with total degree n (in the variables (Z, Z̄) or equivalently in the
variables (x, y)) into itself, and being symmetric, may be diagonalized in a basis
of orthogonal polynomials. We refer to [25] for a complete description of these
polynomials. In what follows, and it the rest of the paper, we shall forget the
dependance in λ of the polynomials, in order to have lighter notations.

The eigenspaces of L(λ) are described in [25]. For any (k, n), there is a unique
polynomial Rn,k which is a eigenvector with eigenvalue −λn,k = −((λ−1)(n+k)+
n2 + k2 + nk), which is a polynomial in the variables (Z, Z̄) with real coefficients,
and has a unique highest degree term ZnZ̄k. When n = k, the eigenspaces have
dimension 2, and we want to distinguish between the symmetric and antisymmetric
part, under the symmetry Z �→ Z̄. We therefore chose when n = k the basis
1
2 (Rn,k +Rk,n) and 1

2i (Rn,k −Rk,n). The following proposition summarizes a few
properties of this basis of eigenvectors.

Proposition 4.1. For any λ > 0, for any n, k ∈ N2, with k = n, there are
exactly, up to a sign, two real valued polynomials Pn,k(Z, Z̄) and Qn,k(Z, Z̄), with
degree n + k, Pn,k being symmetric and Qn,k antisymmetric under the symmetry
(Z, Z̄) �→ (Z̄, Z), with norm 1 in L2(μλ), such that

L(λ)Pn,k = −λn,kPn,k, L(λ)Qn,k = −λn,kQn,k ,

where λn,k = (λ− 1)(n+ k) + n2 + k2 + nk.
When n = k, there is exactly one such eigenvector Pn,n, with eigenvalue −λn,n,

and it is symmetric in (Z, Z̄).
Moreover, Pn,k has real coefficients, Qn,k purely imaginary ones, and they sat-

isfy

(4.2) Pn,k(jZ, j̄Z̄) + iQn,k(jZ, j̄Z̄) = j̄n−k
(
Pn,k(Z, Z̄) + iQn,k(Z, Z̄)

)
.

Observe that Pn,k and Qn,k are real valued. We shall investigate the hypergroup
property in terms of this basis. In order to have lighter notations, we shall often
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write Pn,k(Z) and Qn,k(Z) instead of Pn,k(Z, Z̄) and Qn,k(Z, Z̄), although they are
really polynomials of both variables Z and Z̄ (in particular, they are not harmonic
in C). Moreover, recall that we shall by convention set Qn,n = 0.

Proof. Let Rn,k(Z, Z̄) the unique eigenvector with unique highest degree term
ZnZ̄k. From the invariance under conjugacy, then when n = k, the conjugate
of Rn,k, that is R̄n,k(Z, Z̄) is an eigenvector with same eigenvalue, and looking at
the highest degree term, it is therefore Rk,n(Z, Z̄). Due to the conjugacy invariance,
Rn,k and Rk,n have the same L2(μλ) norm.

For n = k, let P̂n,k and Q̂n,k be the symmetric and antisymmetric eigenvectors
of L(λ) with dominant terms 1

2 (Z
nZ̄k + ZkZ̄n) and −i

2 (ZnZ̄k − ZkZ̄n) respec-
tively, so that P̂n,k and Q̂n,k take real values, with Q̂n,k vanishing on the real
axis. (By convention, set Q̂n,n = 0). The fact that

∫
(P

(λ)
n,k )

2dμλ =
∫
(P

(λ)
k,n )

2dμλ

(from the conjugacy invariance) shows that P̂n,k and Q̂n,k are orthogonal. More-
over, due to the invariance under Z �→ jZ, we know that P̂n,k(jZ) and Q̂n,k(jZ)
are again eigenvectors for L(λ) with the same eigenvalue, and therefore are linear
combinations of P̂n,k and Q̂n,k. Looking at the highest degree terms, one sees that

(4.3)

⎧⎨
⎩
P̂n,k(jZ) = ( j

n−k+j̄n−k

2 )P̂n,k(Z) + i( j
n−k−j̄n−k

2 ) Q̂n,k(Z) ,

Q̂n,k(jZ) = −i( j
n−k−j̄n−k

2 )P̂n,k(Z) + ( j
n−k+j̄n−k

2 ) Q̂n,k(Z) .

In other words, (P̂n,k+iQ̂n,k)(jZ) = j̄n−k(P̂n,k+iQ̂n,k)(Z). As a consequence,
since

∫
P̂n,k(jZ)2dμλ =

∫
P̂n,k(Z)2dμλ, one sees that ‖P̂n,k‖2 = ‖Q̂n,k‖2 when

n− k ≡ 0 mod (3). We do not know if this is true for n = k mod (3). Of course,
the problem does not exist when n = k.

We therefore may use the basis Pn,k = an,kP̂n,k and Qn,k = bn,kQ̂n,k as an
orthonormal basis for the eigenspace associated with the eigenvalue λn,k, with
an,k = bn,k when n−k ≡ 0 mod (3), and then equation (4.3) translates into (4.2).
If n− k ≡ 0 mod (3) , then (4.3) is trivial since in this case Pn,k(jZ) = Pn,k(Z),
Qn,k(jZ) = Qn,k(Z). �

There are two particular cases which are worth understanding, namely λ = 1
and λ = 4, corresponding to the parameters α = ±1/2. These two models show the
relation with the A2 root system, and indeed our polynomials are the examples of
Heckman–Opdam polynomials associated to this root system. We briefly present
those two models, referring to [25] for more details.

In the first case λ = 1, one sees that this operator is nothing else that the
image of the Euclidean Laplace operator on R2 acting on the functions which are
invariant under the symmetries around the lines of a regular triangular lattice.

Indeed, consider the three unit roots of identity in C, say (e1, e2, e3) = (1, j, j̄).
Then, consider the functions zk : C �→ C which are defined as

(4.4) zk(z) = ei�(zēk).

They satisfy |zk| = 1 and z1z2z3 = 1.
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For the 2 dimensional Laplace operator, the functions zi satisfy

Δ(zi) = −zi, Δ(z̄i) = −z̄i,

and, if we denote for i = j ∈ {1, 2, 3} by c(i, j) the index in {1, 2, 3} which differs
from i and j, that is {c(i, j), i, j} = {1, 2, 3},

(4.5)

⎧⎨
⎩
Γ(zi, zi) = −z2i , Γ(z̄i, z̄i) = −z̄2i , Γ(zi, z̄i) = 1,

Γ(zi, zj) =
1
2 z̄c(i,j), Γ(z̄i, z̄j) =

1
2 zc(i,j), Γ(zi, z̄j) =

1
2 ziz̄j , i = j.

Let now Z = 1
3 (z1 + z2 + z3). It is easily seen that, for the Euclidean Laplace

operator on R2, Z and Z̄ satisfy the relations (4.1) with λ = 1. Moreover, the
function Z : C �→ C is a diffeomorphism between the interior Ω1 of the triangle T
and Ω, where T is one of the equilateral triangles which contains the two edges 0
and 4π/3. The functions which are invariant under the symmetries of the triangular
lattice generated by this triangle T are exactly functions of Z. In particular, the
application (z1, z2) �→ Z = 1

3 (z1 + z2 + z̄1z̄2) maps S1 ×S1 onto the closure of the
deltoid domain Ω. The boundary of Ω is the image under Z of the boundary of
the triangle, and also of the set where 2 of the three variables (z1, z2, z3) coincide.
The cusps of the deltoid model are the images of the points z1 = z2 = z3, that is
zi = 1, j, j̄.

In particular, the set of all the points Z = 1
3 (z1 + z2 + z3) such that |zi| = 1

and z1z2z3 = 1 is the closure of Ω. Indeed, given Z ∈ Ω, there exist, up to
permutation, 3 unique and distinct complex numbers zi satisfying |zi| = 1 and
z1z2z3 = 1 such that Z = 1

3 (z1 + z2 + z3). They are the three distinct roots of
the equation P (X) = X3 − 3ZX2 + 3Z̄X − 1 = 0. It is worth for this to observe
that the discriminant of P is, up to a numerical constant, equal to P (Z, Z̄), and
therefore does not vanish in Ω.

The second description comes from the Casimir operator on SU(3). For SU(d),
one may describe this operator through its action on the various entries zij of the
matrices g ∈ SU(d). Up to some scaling factor, one has⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ΓSU(d)(zij , zkl) = zijzkl − dzilzkj ,

ΓSU(d)(z̄ij , z̄kl) = z̄ij z̄kl − dz̄ilz̄kj ,

ΓSU(d)(zij , z̄kl) = dδikδjl − zij z̄kl

LSU(d)(zij) = −(d2 − 1)zij , LSU(d)(z̄ij) = −(d2 − 1)z̄ij .

Then, choosing Z = 1
3 (z11 + z22 + z33), one obtains the relations (4.1) with λ = 4

when applying 3
4L

SU(3) to functions of Z and Z̄. For this particular case, we may
make full use of the group structure of SU(3) to obtain the hypergroup property
for the deltoid model, at any of the points Z = 1, Z = e2iπ/3, Z = e4iπ/3. It is
enough to follow the scheme described in Section 2, choosing Y = SU(3), π being
the application which associates 1

3 trace (g) to some matrix g ∈ SU(3) , Φ being the
map g �→ g0g, for any g0 ∈ SU(3). If π(g) = 1 for example, then g = Id, and the
conditional of π(Φ(g)) knowing that π(g) = 1 is the Dirac mass at π(g0). However,
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the eigenspaces being two dimensional, this introduces some extra complexity that
we shall examine in Section 6.

Similarly, using the representation for λ = 1, we may also prove the hypergroup
property in this case, using the translations in R2.

Our aim in what follows is to propose another 6-dimensional model which
projects onto the deltoid model in the general case (that is for λ = 1, 4), and on
which we have enough symmetry to use the machinery described in Section 2.

5. A 6-dimensional model for the deltoid

In this section, we construct a symmetric diffusion operator L̂λ in dimension 6
(or more precisely on an open bounded set Ω1 ⊂ C3), such that the image of
the operator L̂λ under the projection π : C3 �→ C which is π(z1, z2, z3) =

1
3 (z1 +

z2+z3) is exactly our deltoid model with parameter λ. Moreover, this operator may
be diagonalized in a complete system of orthogonal polynomials for its reversible
measure.

We consider a diffusion operator in C3, acting on 3 complex variables z1, z2, z3,
defined as follows. We set

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ̂(zi, zj) =
3
2 z̄c(i,j) − zizj for i = j,

Γ̂(z̄i, z̄j) =
3
2zc(i,j) − z̄iz̄j for i = j,

Γ̂(zi, zi) = −z2i ,

Γ̂(z̄i, z̄i) = −z̄2i ,

Γ̂(zi, z̄j) =
3
2δij − 1

2ziz̄j ,

L̂(zi) = −λzi, L̂(z̄i) = −λz̄i,

where as before c(i, j) the index in {1, 2, 3} which differs from i and j. It is worth
to observe that those relations fit with (4.5) whenever |zi| = 1 and z1z2z3 = 1, so
that those equations may be seen as an extension of (4.5) in the interior of some
domain bounded by those equations. We shall see that it is indeed the case, when
we shall describe the domain.

The first task is to observe that L̂ projects onto the deltoid model in the sense
of Section 2, with the same parameter λ.

Proposition 5.1. For z = (z1, z2, z3) ∈ C3, let π(z) := Z = 1
3 (z1 + z2 + z3).

Then, one has ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Γ̂(Z,Z) = Z̄ − Z2,

Γ̂(Z̄, Z̄) = Z − Z̄2,

Γ̂(Z, Z̄) = 1
2

(
1− ZZ̄

)
,

L̂(Z) = −λZ, L̂(Z̄) = −λZ̄.

This comes from an immediate computation. We see that these computations
fit with formulae (4.1).

The next task is to show that this corresponds to some elliptic symmetric
diffusion generator in some bounded domain Ω1 ⊂ C3.
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For this, let us introduce the following notations. We write zj = rje
iθj , with

rj = |zj |, and ⎧⎪⎪⎨
⎪⎪⎩

θ = θ1 + θ2 + θ3,

S1 = r21 + r22 + r23 ,

S2 = r41 + r42 + r43 ,

σ = r1r2r3 cos(θ),

and let

(5.2)

{
P1(z1, z2, z3) = 2− (S1 + 1)2 + 2S2 + 8σ,

P2(z1, z2, z3) = 2(S2 − 1)− (S1 − 1)2.

Let us describe the domain first. Let D be the determinant of the matrix Γ̂
(in both coordinates (zi, z̄i)). Then, define Ω1 to be the connected component of
C3 \ {D = 0} which contains (0, 0, 0).

Proposition 5.2. We have

(1) D = 35

26P1P2 ;

(2) the operator L̂ is elliptic in Ω1 ;

(3) Ω1 is bounded;

(4) P1 > 0 on Ω1 and P2 < 0 on Ω1 ;

(5) the boundary of Ω1 is included in {P1 = 0}.

Proof. The first item results from a direct computation. Since it is straightforward
although quite technical, we recommend that the reader uses a computer program
to check it.

For the second item, let us observe that the metric at z = (0, 0, 0) is the classical
Euclidean metric of C3, up to some scaling factor. Therefore, it remains elliptic as
long as no eigenvalue of the metric vanishes, that is in the connected component
of the set {D = 0} which contains {0, 0, 0}. It is therefore elliptic in Ω1.

For the third assertion, observe that as long as Γ̂ is positive definite, then one
has Γ(zi, z̄i)

2 > Γ(zi, zi)Γ(z̄i, z̄i). This translates into (3 + r2i )(1 − r2i ) > 0 so
that ri ≤ 1 in Ω1.

We have P2(0, 0, 0) < 0 and P1(0, 0, 0) > 0, so that, in Ω1, P1 > 0 and P2 < 0.
It remains to prove the last assertion. Any point z∈∂Ω1 satisfies P1(z)P2(z)=0.

Let z = (z1, z2, z3) ∈ ∂Ω1 such that P2(z) = 0. We shall prove that we also have
P1(z) = 0 at this point.

We know that S1 ≥ 0, and it is immediate that 1
3S

2
1 ≤ S2 ≤ S2

1 . From the
upper bound, we get P2 ≤ (S1 − 1)(S1 + 3). Therefore, at a point where P2 = 0,
one has S1 ≥ 1. At such a point, we also have P1 = 4(1− S1 + 2σ).

We now want to estimate the maximum possible value of r1r2r3 given S1 on
the set where P2 = 0 and 0 ≤ ri ≤ 1. We shall see that this maximum value
is (S1 − 1)/2. Setting xi = r2i , it amounts to look for the maximum value of
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π = x1x2x3 on the set where S2 :=
∑

i x
2
i = 1 + 1

2 (S1 − 1)2, where S1 =
∑

i xi

and 0 ≤ xi ≤ 1. Looking at the Lagrange multiplier, one sees that, if the maximum
is not attained at the boundary of the set, then one must have⎧⎪⎨

⎪⎩
x2 x3 = λ (1 + x1 − x2 − x3),

x1 x3 = λ (1 + x2 − x1 − x3),

x1 x2 = λ (1 + x3 − x1 − x2),

from which using S2 = 1+ 1
2 (S1−1)2, one deduces that 4λ(3−S1) = (S1−1)(S1+3)

and therefore, since S1 ≥ 1, we have λ > 0. Multiplying the first equation by x1

we find then that

π = x1x2x3 = λ (x2
1 + x1 + 2λ (x1 − 1)).

The same relation being true for x2 and x3, the values for xi must lie among the
two solutions of the equation

π = λ (x2 + x+ 2λ (x− 1)).

But π > 0 and λ > 0. Unless they are all equal, they may not be all positive.
Therefore, either the maximum is attained at a point (x, x, x), in which case this
common value is 1 and the point is at the boundary of the set. Therefore, one of
the values for xi is 1, and the fact that P2 = 0 implies that the two other values
are equal, in which case the value for π is [(S1 − 1)/2]2.

Therefore, when P2 = 0, P1 = 4(1 − S1 + 2σ) ≤ 4(1 − S1 + S1 − 1) = 0.
Since P1 > 0 in Ω1, then any point in ∂Ω1 which satisfies P2(z) = 0 also satisfies
P1(z) = 0. �

Remark 5.3. It may be worth to observe that P1 may take a somewhat simpler
form. Setting ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
σ0 = r1 + r2 + r3,

σ1 = −r1 + r2 + r3,

σ2 = r1 − r2 + r3,

σ3 = r1 + r2 − r3,

and

(5.3)

{
S = (1 + σ0)(1 − σ1)(1− σ2)(1− σ3),

D = (1− σ0)(1 + σ1)(1 + σ2)(1 + σ3),

one may write
P1 = S cos2(θ/2) +D sin2(θ/2).

Our next result shows that indeed the operator L̂ defined on Ω1 satisfies the
boundary condition (3.7).

Proposition 5.4.
(1) With P1 defined in (5.2), one has

(5.4) Γ̂(log(P1), zi) = −3zi, Γ̂(log(P1), z̄i) = −3z̄i .



Hypergroup properties for the deltoid model 209

(2) For i = 1, . . . , 3, one has

(5.5)

⎧⎪⎪⎨
⎪⎪⎩

3∑
j=1

∂zj Γ̂(zj , zi) + ∂z̄j Γ̂(z̄j , zi) = − 11
2 zi,

3∑
j=1

∂zj Γ̂(zj , z̄i) + ∂z̄j Γ̂(z̄j , z̄i) = − 11
2 z̄i.

Proof. These formulas may be checked with a direct and tedious computation.
However, we have no simple interpretation, beyond mere calculus, why this is true.
The first one is the condition required for the operator L̂ on Ω1 to be diagonalizable
in a system of orthogonal polynomials. The second will be used to identify the
reversible measure. �

Remark 5.5. Together with the fact that Γ(zi, zj), Γ(zi, z̄j) and Γ(z̄i, z̄j) are poly-
nomials in the variables (zi, z̄i), and following [4], equation (5.4) is the key identity
which insures that the operator L̂ may be diagonalized in a basis of orthogonal
polynomials.

We now prove the following lemma.

Lemma 5.6. For any β > −1,
∫
Ω1

P β
1 dx < ∞, where dx is the Lebesgue measure

on Ω1 ⊂ C3.

Before proving Lemma 5.6, we deduce the following.

Corollary 5.7. For any λ > 5/2, the operator L̂(λ) is reversible with respect to
the probability measure CβP

β
1 dx, where β = 1

6 (2λ−11), dx is the Lebesgue measure
in Ω1, and Cβ is the normalizing constant.

Proof of Corollary 5.7. This is a direct consequence of the general formula (3.6)
and Proposition 5.4. �

Remark 5.8. It is worth to observe that β = −1 corresponds to λ = 5/2, while

L̂(P1) = −4(λ+ 2)P1 + (2λ− 5)(P2 − 3P1)/6.

This suggest that, for this precise value λ = 5/2, the measure is concentrated
on the surface {P1 = 0}, and the associated process lives indeed on the boundary
of the domain Ω1.

Moreover, this limit β = 5/2 corresponds for the projected model on the deltoid
domain to the case α = 0, that is when the reversible measure of the image operator
on Ω is the Lebesgue measure.

Proof of Lemma 5.6. When looking at the behavior of P1 near a regular point of
the boundary {P1 = 0}, it is clear that the condition β > −1 is necessary for P β

1
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to be locally integrable near such a point, in the domain {P1 > 0}. But we have
also to consider the behavior near singular points. Set as before⎧⎪⎨

⎪⎩
S1 = r21 + r22 + r23 ,

S2 = r41 + r42 + r43 ,

τ = r1r2r3.

and, writing zj = rje
iθj , set t = θ1 + θ2 + θ3. Then we have

P1 = 2− (S1 + 1)2 + 2S2 + 8τ cos(t),

and we want to show that for β > −1, P β
1 is locally integrable with respect to the

measure r1r2r3dr1dr2dr3dt. on the domain 0 < ri < 1, t ∈ (0, 2π), and P1 > 0.
We set

A = 2− (S1 + 1)2 + 2S2, B = 8τ,

The first thing is to compute

I(A,B) =

∫
A+B cos(t)>0,t∈(0,2π)

(A+B cos(t))βdt(5.6)

= 2

∫ 1

−1

1lA+Bu>0 (A+Bu)β
du√
1− u2

,(5.7)

that we want to estimate up to some constants depending only on β. For this we
write I � J when cβ ≤ I

J ≤ Cβ , for two positive constants cβ and Cβ .
We cut the integral in (5.7) into

∫ 1

0 and
∫ 0

−1. Then we change variables to write
both integrals as

∫ 1

0
, and again change variables v �→ 1− v. Finally, we get

I(A,B) �
∫ 1

0

1lA+B−Bv>0(A+B−Bv)β
dv

v1/2
+

∫ 1

0

1lA−B+Bv>0(A−B+Bv)β
dv

v1/2
.

Write this I(A,B) = I1 + I2. Then{
I1(A,B) = 0 if A+B < 0 ,

I1(A,B) � (A+B)β+1/2B−1/2 if A+B > 0,

and ⎧⎪⎨
⎪⎩
I2 = 0 if A < 0 ,

I2 � Aβ+1B−1 if 0 < A < B ,

I2 � Aβ if 0 < B < A .

We now have to consider the integral of I1 and I2 on the image of the do-
main Ω1 through the projection (z1, z2, z3) �→ (r1, r2, r3), that is the integral of I1
and I2 with respect to the measure r1r2r3 dr1dr2dr3, on the domain {0 ≤ ri ≤ 1}∩
{A+B > 0} ∩ {A−B > 0}. An easy inspection shows that A + B = S and
A − B = D, where S and D are given in formulae (5.3). We see that I1 ≥
C(l1l2l3)

β+1/2B−1/2, where li are 3 independent affine forms, restricted to a do-
main where they are positive, and C is a constant. Such a function is integrable
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with respect to the measure B1/210<r1≤110<r2≤110<r3≤1dr1dr2dr3. This integral
is finite when β > −1.

The only problem comes from
∫
0<B<A,0<ri≤1

Aβr1r2r3dr1dr2dr3. We see that
one may reduce to a neighborhood of a point where both A and B vanish, which
means that (up to a permutation of the indices) r1 = 0, r2 + r3 = 1. Once again,
integrating in an area where 0 << r2 << 1 causes no problem, and it remains to
consider the integral on an area where r2 = 0, r3 = 1 ( or symmetrically). Then,
in a neighborhood of this point, we may bound A ≥ A−B = D, and consider the
integral of Dβ on D > 0. In this neighborhood, with the notations of Remark 5.3,
D is equivalent to (1−σ0)(1+σ3), which is the product of two independent linear
forms (in the variables r1, r2, r3) , and is locally integrable as soon as β > −1. �

6. Hypergroup property for the deltoid model

For λ > 5/2, the operator L̂(λ) provides a symmetric diffusion operator on the
set Ω1 which projects onto the deltoid model L(λ) with the same parameter through
the map π(z1, z2, z3) =

1
3 (z1 + z2 + z3).

We now observe that, for any θ = (θ1, θ2) ∈ R
2, the operator L̂ is invariant

under the transformations Φθ(z1, z2, z3) = (eiθ1z1, e
iθ2z2, e

−i(θ1+θ2)z3). It is worth
to notice that Φθ1Φθ2 = Φθ1+θ2 , and that the measure μα = Pα

1 dz is invariant
under Φθ. Therefore, if we define Φθ(f)(z) = f

(
Φθ(z)

)
, one sees that the adjoint

of Φθ is Φ−θ

To fit with the situation described in Section 2, it remains to identify the
point x0 of Proposition 2.1. Let then x0 = π(1, 1, 1) = 1: it belongs to the
boundary of Ω. According to the analysis of the flat model (λ = 1), θ �→ Φθ(1, 1, 1)
is onto the deltoid domain Ω, when θ varies in R

2. Indeed, we have seen that any
point in Ω may be written as 1

3 (z1+ z2+ z3), where |zi| = 1 and z1z2z3 = 1, which
corresponds to points Φθ(1, 1, 1).

Since |zi|2 ≤ 1 for any point in Ω, then, ∀z ∈ Ω, |π(z)| ≤ 1, and if π(z) = 1,
then z1 = z2 = z3 = 1. Therefore, π(Φθ(z1, z2, z3)) = Φθ(1, 1, 1). This shows that
the conditional law of π

(
Φθ(z)

)
when π(z) = 1 is a Dirac mass at Φθ(1, 1, 1).

Indeed, we may as well chose for x0 the image of the points (j, j, j) or (j̄, j̄, j̄),
and those three points correspond to the cusps of the deltoid curve. Define
Z(θ) = π((Φθ(1, 1, 1)). Then, π(Φθ(j, j, j)) = jZ(θ), and π(Φθ(j̄, j̄, j̄)) = j̄Z(θ).
Moreover, the conditional law of z = 1

3 (z1 + z2 + z3) knowing that π(z) is one
of the points 1, j, j̄ is a Dirac mass at Z(θ), jZ(θ) and j̄Z(θ) respectively. The
point Z(θ) is in the interior of the deltoid domain as soon as θ1 = θ2 mod (2π)
and 2θ1 = −θ2 mod (2π). Observe also that Z(−θ) = Z̄(θ).

To apply the method described in Section 2, the only problem is that the
eigenspaces associated with L(λ) have dimension 2, when n = k. They are inva-
riant under the symmetry Z �→ Z̄, and the model L̂(λ) also shares the symmetry
S : (z1, z2, z3) �→ (z̄1, z̄2, z̄3). So instead of looking at eigenvectors of L(λ) alone, one
may look at eigenvectors of L(λ) which are symmetric, or antisymmetric, through
the transformation Z �→ Z̄, which leads us to consider the basis (Pn,k, Qn,k)
described in Section 4.
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The transformation z �→ Φθ(z) is not invariant under the symmetry S. We have
Φθ(z) = Φ−θ(z̄). Observe also that the operators Φθ(f)(z) = f(Φθ(z)) satisfy
〈Φθf, g〉 = 〈f,Φ−θg〉, which comes from the fact that the measure is invariant
under the symmetry S.

From the general scheme described in Section 2, writing the Markov operator
Kθ(f) = E(f(π(Φθz))|π(z) = Z), we see that both Kθ(Pn,k) and Kθ(Qn,k) belong
to the eigenspace associated to the eigenvalue λn,k, defined in Proposition 4.1.
We have

Proposition 6.1. With Kθ(f)(Z) = E(f(π(Φθz))|π(z) = Z), one has(
Kθ(Pn,k)
Kθ(Qn,k)

)
=

(
αn,k(θ) βn,k(θ)
γn,k(θ) δn,k(θ)

)(
Pn,k

Qn,k

)
,

for any λ ≥ 5/2, with ⎧⎨
⎩
αn,k(θ) =

Pn,k(Z(θ))
Pn,k(1)

;

γn,k(θ) = −βn,k(θ) =
Qn,k(Z(θ))
Pn,k(1)

.

Moreover, αn,k(θ) = αn,k(−θ), δn,k(−θ) = δn,k(θ), and βn,k(θ) = −βn,k(−θ).

Proof. It is enough to check this property for λ > 5/2, since everything is contin-
uous and we would have the same property in the limit λ = 5/2.

Equation 〈Kθ(f), g〉 = 〈f,K−θ(g)〉 proves the parity relations, choosing f and g
either Pn,k or Qn,k.

If we apply Kθ(f)(1) = f
(
Z(θ)

)
, and using the fact that Qn,k(1) = 0, we get

Pn,k(1)αn,k(θ) = Pn,k

(
Z(θ)

)
, and Pn,k(1)γn,k(θ) = Qn,k

(
Z(θ)

)
. This shows that

Pn,k(1) may not vanish (since it would imply that Pn,k = 0 everywhere), and leads
to the representation formula for αn,k and γn,k. The formula for βn,k follows by
symmetry, since Z(−θ) = Z̄(θ) and Qn,k(Z̄) = −Qn,k(Z). �

Remark 6.2. The value of δn,k(θ) however is more difficult to obtain. One may
apply the identity Kθ(f)(j) = f(jZ(θ)) and formulae (4.3) whenever n − k = 0
mod (3), to get

δn,k(θ) =
cos(2(n− k)π/3)

sin(2(n− k)π/3)

Pn,k(Z(θ))

Pn,k(1)
.

This method, however, does not provide any information on δn,k(θ) when n−k ≡ 0
mod (3).

The point x0 = 1 corresponds to one of the 3 cusps of the deltoid curve, and is
the image of one of the points of S1 ×S1 ×S1 where z1 = z2 = z3 and z1z2z3 = 1.
There are 3 such points, corresponding to the three cusps of the deltoid, and we
could have similarly proved the hypergroup property for any of those points, but for
another polynomial basis. The choice of the point x0 = 1 corresponds to the choice
of the basis (Pn,k, Qn,k) such that, under the symmetry S : Z �→ Z̄, SPn,k = Pn,k

and SQn,k = −Qn,k.
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We may as well consider symmetries which leave the two other cusps invariant,
and this provides new bases for the eigenspace in which the operator Kθ has a
similar expression. A polynomial R is symmetric with respect to the symmetry
through the j axis if R(j̄Z̄) = R(Z). Then, thanks to equation (4.2), a basis
(Rn,k, Sn,k) of the eigenspace associated with λn,k for which the first element is
symmetric and the second antisymmetric under the symmetry around the j axis
would be Rn,k+iSn,k = jn−k(Pn,k+iQn,k). One also has the hypergroup property
for the family (Rn,k, Sn,k) and similarly for the family (Un,k, Vn,k) corresponding
to the point j̄.This leads to other representations of the Markov operator Kθ.

As usual, the operators Kθ lead to a full representation of Markov kernels.

Theorem 6.3. Let K be a symmetric Markov operator, bounded in L2(μ(λ)),
with λ ≥ 5/2. Assume that K commutes with L(λ). Then, with the notations of
Proposition 4.1, for any n, k ∈ N2, it satisfies

(6.1)
(
K(Pn,k)
K(Qn,k)

)
=

(
an,k bn,k
bn,k cn,k

)(
Pn,k

Qn,k

)
and there exists a probability measure ν1 on the deltoid domain Ω such that

(6.2) an,k =

∫
Pn,k(z)

Pn,k(1)
ν(dz), bn,k =

∫
Qn,k(z)

Pn,k(1)
ν(dz) .

Proof. We follow the lines of the proof described in Section 2. Equation (6.1)
is immediate from the fact that K commutes with L(λ) and the description of
the eigenspaces of L(λ) given in Proposition 4.1. Extending the operator K to
act on probability measures, we choose ν1(dz) = K(δ1). If Pt denotes the heat
kernel associated with L(λ), let νt = K

(
Pt(δ1)

)
. Following [3], we know that

Pt(δ1) has a bounded density with respect to μ(λ), which may be written as∑
n,k e

−λn,ktPn,k(z)Pn,k(1), where this simplified form comes from the fact that
Qn,k(1) = 0. Then, the density ht of νt with respect to μ(λ) may be written as

ht =
∑
n,k

e−λn,ktPn,k(1)(an,kPn,k(Z) + bn,kQn,k(Z)),

and we see that∫
Pn,k(Z)

Pn,k(1)
dνt = e−λn,ktan,k ,

∫
Qn,k(Z)

Pn,k(1)
dνt = e−λn,ktbn,k .

Since νt converges to ν = K(δ1) when t → 0, we get the result in the limit. �

The previous representation relies in an essential way on the fact that Qn,k(1) =
0. This choice comes from the symmetry properties of the operator under Z �→ Z̄,
that is the symmetry around the real axis.

In order to get informations about the coefficients cn,k, one may use the invari-
ance of the model under Z �→ jZ and Z �→ j̄Z whenever n− k ≡ 0 mod (3). One
may use similarly the invariance through multiplication by j and j̄ and symmetries
with the corresponding axis. This means that a similar presentation is valid in the
two other bases (Rn,k, Sn,k) and (Un,k, Vn,k) (using the symmetries leaving j and j̄
invariant respectively).
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In this new basis, the matrix of the operator is unchanged when n − k ≡ 0
mod (3), while the matrix of the operator K in this new basis becomes

1

4

(
an,k + 2ε

√
3bn,k + 3cn,k −ε

√
3an,k − 2bn,k + ε

√
3cn,k

−ε
√
3an,k − 2bn,k + ε

√
3cn,k 3an,k − 2ε

√
3bn,k + cn,k

)
,

where ε = 1 when n− k ≡ 1 mod (3) and ε = −1 when n− k ≡ 2 mod (3).
If we observe that (Rn,k + iSn,k)(jZ) = (Pn,k + iQn,k)(Z), so that Rn,k(j) =

Un,k(j̄) = Pn,k(1), we get a new representation, with the measure ν1 = K(δj),
when n− k ≡ 0 mod (3):

1

4
(an,k + 2ε

√
3bn,k + 3cn,k) =

∫
Rn,k(z)

Pn,k(1)
ν1(dz) =

∫
Un,k(z)

Pn,k(1)
ν2(dz)

1

4
(−ε

√
3an,k − 2bn,k + ε

√
3cn,k) =

∫
Sn,k(z)

Pn,k(1)
ν1(dz) =

∫
Vn,k(z)

Pn,k(1)
ν2(dz) .

This may be rewritten as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−an,k

2
− ε

√
3

2
bn,k =

∫
Pn,k(z)

Pn,k(1)
dν1(z),

−bn,k
2

− ε

√
3

2
cn,k =

∫
Qn,k(z)

Pn,k(1)
dν1(z) .

Changing j into j̄ amounts to change ε into −ε in the previous formulas, with
the measure ν2 = K(δj̄).

This in turn provides a representation of cn,k when n− k ≡ k mod (3), of the
form

cn,k = ε

∫
Qn,k(z)

Pn,k(1)

( 2√
3
dν1(z)− 1√

3
dν(z)

)
.

Unfortunately, this does not carry any information about cn,k when n ≡ k mod (3).

Remark 6.4. As we already observed, for λ = 5/2, the 6 dimensional model is in
fact carried by the algebraic hypersurface {P1 = 0}, and in fact is a 5-dimensional
model. However, for other values of λ (with the sole exception of λ = 1), we do not
know if the property is true. It would be interesting to construct lower dimensional
models for these values, but this seems quite hard.

Remark 6.5. It would be interesting to have an explicit expression for the ker-
nel Kθ(x, dy), in order to have an explicit representation for the product for-
mula (2.2). Unfortunately, the law of (Z,Rθ(Z)) is already apparently quite out
of reach through simple formulas.

7. Projection of the deltoid model and the G2-root system

As we saw in Section 6, the fact that the eigenspaces for L(λ) are two dimensional
introduce extra complexity in the representation of the eigenvalues of the Markov
operators which commute with L(λ). This works much better if we concentrate on
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functions which are symmetric in (Z, Z̄), which correspond to the symmetric poly-
nomials Pn,k(Z, Z̄). It turns out that these symmetric polynomials are again or-
thogonal polynomials corresponding to another bounded set Ω2 ⊂ R2, bounded by
a cuspidal cubic and a parabola, tangent to each other at the second order. Going
back to the triangle model, remember that the deltoid model in the case λ = 1
corresponds to functions which are invariant under the symmetries of a triangular
lattice, corresponding to the root system A2. Adding this new invariance under
Z �→ Z̄ amounts then to add new symmetries, namely with respect to the medians
of the triangles, corresponding to the root system G2. Let us describe this new
polynomial system. Setting s = Z + Z̄ and p = ZZ̄, formulae (4.1) give

(7.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Γ(s, s) = p− s2 + s+ 1,

Γ(s, p) = s2 − 2p− 3
2sp+

1
2s,

Γ(p, p) = s3 − 3p2 − 3sp+ p,

L(λ)(s) = −λs, L(λ)(p) = 1− (2λ+ 1)p .

Let us call L̃(λ) this operator acting on functions (indeed polynomials) in the
variables (s, p).

From equation (7.1), it is clear that the operator L̃(λ) preserves the set of
polynomials in the variables (s, p) (this just translates the invariance of L(λ) un-
der Z �→ Z̄). However, because of the term s3 in the coefficient Γ(p, p), it does not
preserve the degree of the polynomial. But things work better if we decide that the
degree of srpt is r+2t. Then, with this new notion of degree, a polynomial Q(s, p)
of degree k is transformed under L̃(λ) into a polynomial of degree k. One may
therefore find an orthonormal basis for L̃(λ) as polynomials in the variables (s, p).
In fact, it is nothing else than the symmetric polynomials Pn,k(Z, Z̄) expressed
as polynomials in (s, p). Since now, the eigenspaces are one dimensional, one
may play the same operation with the operator L̂(λ), but now with the projection
Ψ : Z �→ Z+Z̄ = s, ZZ̄ = p. We shall obtain the true hypergroup property for this
polynomial family, through the projection Ω1 �→ Rθ(z)+Rθ(z) = Rθ(z)+R−θ(z̄).

The image operator may be diagonalized in a family of orthogonal polynomials
(in the variables (s, p)) for the image measure. This model does not appear in
the [4] classification, since in this case the orthogonal polynomials must be ranked
according to a degree which is 2 deg(p) + deg(s), whereas in [4], the polynomials
are ranked according to their usual degree. The boundary of Ω2 is indeed the set
where the determinant of the metric vanishes. This determinant may be written as

1

4
(s2 − 4p)(3s2 + 12sp+ 6p− 4s3 − 1),

and the boundary of Ω2 is a degree 5 algebraic curve. The curves s2 − 4p = 0 and
3p2+12sp+6p− 4s3− 1 = 0 correspond respectively to the images under Ψ of the
line Z = Z̄ (the real axis), and of the boundary of Ω (the deltoid curve). It turns
out that this last curve is a cuspidal cubic. Setting

s = x− 1, p = y − 2x+ 1,
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(which corresponds to some affine change of coordinates), they are transformed in

4x3 − 3y2 = 0, x2 + 6x− 4y − 3 = 0 .

These two curves (cubic and parabola) cross in the point (1/3,−2/9), and are
tangent to the second order at the point (3, 6) (in the variables (x, y)). The cuspidal
point in the cubic (0, 0) is the image of j and j̄ in the deltoid (two of the cuspidal
points of the deltoid), while the point (3, 6) is the image of the third cusp of the
deltoid, that is the point 1, which is also on the line Z = Z̄.

Moreover, with Q1 = s2 − 4p and Q2 = 3p2 + 12sp + 6p − 4s3 − 1, both Q1

and Q2 satisfy an equation similar to equation (5.4), and more precisely,{
Γ(logQ1, s) = −2s− 2, Γ(logQ1, p) = −3p− 2s+ 1,

Γ(logQ2, s) = −3s, Γ(logQ2, p) = −6p .

This shows that the operator defined through equations (7.1) has reversible mea-
sure CλQ

−1/2
1 Q

(2λ−5)/6
2 dsdp, which is of course the image of the measure μ(λ)

through the projection Ψ. This operator therefore satisfies the usual hypergroup
property, with reference point the image of 1, which is (2, 1), that is the point
where the cuspidal cubic and the parabola are bi-tangent to each other.

But from the general presentation of [4], there is now a two-parameter family of
measures, namely μα,β(ds, dp) = Cα,βQ

α1
1 Qα2

2 ds dp on this set Ω2, for which there
exists a family of orthogonal polynomials which are eigenvectors of a diffusion
operator.

The conditions under which those measures are finite are α1 > −1, α2 > −5/6,
and α1 + α2 > −4/3. The condition α2 > −5/6 and α1 + α2 > −4/3 correspond
respectively to the integrability conditions around the cusp of the cubic and the
double tangent point. For the double tangent point, to check the integrability
condition, one may reduce, up to an affine transformation of the plane, to check
the integration condition for∫ 1

0

∫ 2

0

1y2<x<y2+cy3(x− y2)α1(y2 + cy3 − x)α2dx dy .

After a few changes of variables, this reduces to check the integrability condition
for

∫ 1

0
y3(α1+α2+1)dy. The cusp is easier to deal with and quite immediate.

For these measures μα1,α2 , we have an associated operator Lα1,α2 (sharing the
same Γ operator, and defined through formula (3.1)) and associated orthogonal
polynomials which are eigenvectors of Lα1,α2 .

We already mentioned that this model reflects in fact the symmetries of the
root system G2. In this context, the Weyl group acting on the roots has two orbits,
corresponding to the two irreducible factors of the boundary of Ω1, and to the two
parameters in the choice of the measure. When α1 = −1/2, the model is the direct
image of the deltoid model through the projection Ψ, and the eigenvectors of the
associated operators are just the rewriting of Pn,k as polynomials in the variables
s = Z + Z̄ and p = ZZ̄. The hypergroup property for this model is the direct
consequence of the previous Section 6, but may also be reproved directly using
the 6 dimensional model of Section 5.
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The case where α1 = −1/2 remains open. Let us show however how to deal
with a different value of α1, whenever α2 = −1/2. This relies on a very specific
property of this G2 polynomial model. We first observe that the domain Ω2 is
stable under the transformation

Ψ1 : (s, p) �→ (S = 3p− 1, P = 1 + s3 − 3ps− 6p) .

Under this transformation, the parabolic part of the boundary is mapped onto the
cubic one, and conversely. The transformation Ψ1 comes in fact from the invariance
Z �→ jZ in the deltoid model, where instead of looking at functions of (ZZ̄, Z+Z̄),
we looked at functions of (ZZ̄, Z3+ Z̄3), under a slight change of coordinates such
that the domain Ω2 is invariant under the transformation.

Moreover, one may check that, when α1 = −1/2, the image of the opera-
tor L−1/2,α2

is 1
3Lα2,−1/2. It may be easily checked looking at Γ(S, S), Γ(S, P ),

Γ(P, P ), L−1/2,α2
(S) and L−1/2,α2

(P ). There is nothing similar when α1 = −1/2.
The transformation Ψ1 is not a diffeomorphism, and the operators Lα1,α2 in gen-
eral do not have images under Ψ1 when α1 = −1/2. From the previous scheme,
we may now conclude to the hypergroup property for the orthogonal polynomials
associated with Lα,−1/2 when α ≥ 0.
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