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Continuity of the isoperimetric profile of a

complete Riemannian manifold under sectional
curvature conditions

Manuel Ritoré

Abstract. LetM be a complete Riemannian manifold possessing a strictly
convex Lipschitz continuous exhaustion function. We show that the isoperi-
metric profile of M is a continuous and non-decreasing function. Particular
cases are Hadamard manifolds and complete non-compact manifolds with
strictly positive sectional curvatures.

1. Introduction

Let M be a complete Riemannian manifold possessing a strictly convex Lipschitz
continuous exhaustion function. The aim of this paper is to show that the isoperi-
metric profile IM of M is a continuous and non-decreasing function. In particu-
lar, Hadamard manifolds: complete, simply connected Riemannian manifolds with
non-positive sectional curvatures (possibly unbounded), and complete non-compact
manifolds with strictly positive sectional curvatures satisfy this assumption.

The isoperimetric profile of a Riemannian manifold is the function that assigns
to a given positive volume the infimum of the perimeter of the sets of this volume.
The continuity of the isoperimetric profile of a compact manifold follows from
standard compactness results for sets of finite perimeter and the lower semiconti-
nuity of perimeter [16]. Alternative proofs are obtained from concavity arguments
(§ 7 (i) in [3], [4], [5], [18]), or from the metric arguments by Gallot [10], Lemme 6.2.
When the ambient manifold is a non-compact homogeneous space, Hsiang showed
that its isoperimetric profile is a non-decreasing and absolutely continuous func-
tion ([13], Lemma 3, Theorem 6). In Carnot groups or in cones, the existence of a
one-parameter group of dilations implies that the isoperimetric profile is a concave
function of the form I(v) = C vq/(q+1), where C > 0 and q ∈ N, and so it is a
continuous function [19], [25], [14]. Benjamini and Cao ([6], Corollary 1) proved
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that the isoperimetric profile of a simply connected, convex at infinity, complete
surface M2 satisfying

∫
M K+ dM < +∞, is a strictly increasing function. When

a Riemannian manifold has compact quotient under the action of its isometry
group, Morgan proved that isoperimetric regions exist for any given volume and
are bounded [17], see also [9]. Using the concavity arguments in [4], [18] this im-
plies that the profile is locally the sum of a concave function and a smooth one.
The author showed in [24] existence of isoperimetric regions in any complete convex
surface. This implies the concavity of the isoperimetric profile ([24], Corollary 4.1),
and hence its continuity. Nardulli (Corollary 1 in [21]) showed the absolute con-
tinuity of the isoperimetric profile under the assumption of bounded C2,α geome-
try. A manifold N is of C2,α bounded geometry if there is a lower bound on the
Ricci curvature, a lower bound on the volume of geodesic balls of radius 1, and
for every diverging sequence {pi}i∈N, the pointed Riemannian manifolds (M,pi)
subconverge in the C2,α topology to a pointed manifold. Muñoz Flores and Nar-
dulli [20] prove continuity of the isoperimetric profile of a complete non-compact
manifold M with Ricci curvature bounded below and volume of balls of radius one
uniformly bounded below. Partial results for cylindrically bounded convex sets
have been obtained by Ritoré and Vernadakis ([26], Proposition 4.4). For general
unbounded convex bodies, the concavity of the power I(n+1)/n of the isoperimetric
profile, where (n+1) is the dimension of the convex body, has been proven recently
by Leonardi, Ritoré and Vernadakis [15]. Hass [12] recently obtained examples of
disconnected isoperimetric regions in Hadamard manifolds, thus showing that the
corresponding isoperimetric profiles are not concave.

An example of a manifold with density with discontinuous isoperimetric pro-
file has been described by Adams, Morgan and Nardulli ([1], Proposition 2). As
indicated in the remark after Proposition 1 in [1], the authors tried to produce
an example of a Riemannian manifold with discontinuous isoperimetric profile by
using pieces of increasing negative curvature. By Theorem 3.2 in this paper, such
a construction is not possible if the resulting manifold M is simply connected with
non-positive sectional curvatures. The first example of a complete Riemannian
manifold whose isoperimetric profile is discontinuous has been recently given by
Nardulli and Pansu [22].

In this paper we consider a complete Riemannian manifold M of class C∞

having a strictly convex Lipschitz continuous exhaustion function f ∈ C∞(M).
These manifolds were considered by Greene and Wu [11], who derived interesting
topological and geometric properties from the existence of such a function, e.g.,
such manifolds are always diffeomorphic to the Euclidean space of the same dimen-
sion ([11], Theorem 3). Complete non-compact manifolds with strictly positive
sectional curvatures possess such a C∞ convex function. This follows from the ex-
istence of a continuous strictly convex function proven by Cheeger and Gromoll [8]
and the approximation result by C∞ functions by Greene and Wu, [11], Theorem 2.
In Hadamard manifolds, the squared distance function is known to be a C∞ strictly
convex exhaustion function [2], although it is not (globally) lipschitz. Composing
with a certain real function provides a C∞ strictly convex Lipschitz continuous
exhaustion function. Details are given in the proof of Theorem 3.2.
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Our main result is Theorem 3.1, where we prove the continuity of the isoperi-
metric profile of a complete non-compact Riemannian manifold having a strictly
convex Lipschitz continuous exhaustion function f ∈ C∞(M). Our strategy of
proof consists on approximating the isoperimetric profile IM of M by the profiles
of the sublevel sets of f , see Lemma 2.2. Then we show in Lemma 2.4 that the strict
convexity of f implies that the profiles of these sublevel sets are strictly increasing.
In addition, the compactness of the sublevel sets implies that these profiles are
continuous. It follows that the isoperimetric profile IM is the non-increasing limit
of a sequence of increasing continuous functions. Hence IM is right-continuous by
Lemma 2.6. It is worth to mention that Lemma 2.4 holds merely assuming that
the level sets of f have positive mean curvature and that the set of critical points
of f has measure zero.

It only remains to show the left-continuity of IM to complete the proof of
Theorem 3.1. The main ingredient is Lemma 2.1, that plays an important role in
the proof of Lemma 2.2. In Lemma 2.1 it is shown that, given a set E ⊂ M of
volume v > 0, a bounded set B ⊂ M of volume greater than v, a positive radius
r0 > 0, and a bounded set D ⊂ M containing the tubular neighborhood of radius
r0 of B, we can always place a ball B(x, r) of small radius centered at a point
x ∈ D such that |B(x, r) \ E| � Λ(r). The expression for Λ(r) in terms of r is
given in (2.1) and implies that Λ(r) approaches 0 if and only if r approaches 0.
This can be considered a refined version of Gallot’s Lemme 6.2 in [10] (see also
Lemma 2.4 in [21]). Lemma 2.1 will be used to add a small volume to a given set
while keeping a good control on the perimeter of the resulting set. It is essential
to add this small volume in a bounded subset of the manifold to use the classical
comparison theorems for volume and perimeter of geodesic balls when the sectional
curvatures are bounded from above and the Ricci curvature is bounded below.

The continuity and monotonicity of the isoperimetric profiles of Hadamard
manifolds, Theorem 3.2, and of complete manifolds with strictly positive sectional
curvatures, Theorem 3.3, are corollaries of Theorem 3.1.

A continuous monotone function can be decomposed as the sum of an abso-
lutely continuous function and a continuous singular function (such as the Cantor
function or Minkowski’s question mark function). It would be desirable to find
conditions ensuring the absolute continuity of IM .

An appropriate modification of the notion of convex function could make the
arguments in this paper work in the case of a manifold with density.

The author wishes to thank Ana Hurtado, Gian Paolo Leonardi and César
Rosales for their careful reading of the first version of this manuscript and their
useful suggestions, and to the referees for their constructive comments.

2. Preliminaries

Given a Riemannian manifold M and a measurable set E ⊂ M , we shall denote
by |E| its Riemannian volume. Given an open set Ω ⊂ M , the relative perimeter
of E in Ω, P (E,Ω), will be defined by

P (E,Ω) := sup
{∫

E

divX dM : X ∈ X1
0(Ω), ||X ||∞ � 1

}
,
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where div is the Riemannian divergence on M , dM the Riemannian volume ele-
ment, X1

0(Ω) the set of C1 vector fields with compact support in Ω, and || · ||∞ the
L∞-norm of a vector field. The perimeter P (E) of a measurable set E ⊂ M is the
relative perimeter P (E,M) of E in M .

The isoperimetric profile of M is the function IM : (0, |M |) → R
+ defined by

I(v) := inf{P (E) : E ⊂ M measurable, |E| = v}.
A measurable set E ⊂ M is isoperimetric if P (E) = IM (|E|). The isoperimetric
profile function determines the isoperimetric inequality P (F ) � IM (|F |) for any
measurable set F ⊂ M , with equality if and only if F is isoperimetric.

Open and closed balls of center x ∈ M and radius r > 0 will be denoted by
B(x, r) and B(x, r), respectively.

A continuous function f : M → R is strictly convex if f ◦ γ is strictly convex
for any geodesic γ : I → M . It follows that a smooth function f ∈ C∞(M) is
strictly convex if and only if (f ◦ γ)′′ > 0 on I for any geodesic γ : I → M .
A function f : M → R is Lipschitz continuous if there exists L > 0 such that
|f(p) − f(q)| � Ld(p, q) for any pair of points p, q ∈ M . We shall say that a
continuous function f : M → R is an exhaustion function if, for any r > inf f ,
the set Cr := {p ∈ M : f(p) � r} is a compact subset of M . In the sequel we
shall assume the existence of a strictly convex Lipschitz continuous exhaustion
function f ∈ C∞(M). The following properties for f and M are known:

1. f has a unique minimum x0, that is the only critical point of f .

2. The sets ∂Cr := {p ∈ M : f(p) = r} are strictly convex hypersurfaces
whenever r > f(x0). In particular, their mean curvatures are strictly positive.

3. If f(x0) = 0 then B(x0, L
−1r) ⊂ int(Cr), and so B(x0, L

−1r) ⊂ Cr.

4. If f(x0) = 0 then there exists a positive constant K such that, for all r � 1,
Cr ⊂ B(x0,K

−1r + 1).

5. M is diffeomorphic to R
n.

The uniqueness of x0 follows from the arguments at the beginning of the proof of
Theorem 3 (a) in the paper [11] by Greene and Wu. We remark that we can always
normalize the function f , by adding a constant, so that f(x0) = 0. Property 2
is well known, while property 3 is obtained from the inequality f(x) � f(x0) +
Ld(x0, x). Property 4 is a consequence of the arguments used to prove Theorem 5
in [11]. We sketch here a proof for completeness: choose some t0 ∈ (0, 1) such that
B(x0, t0) ⊂ C1 ⊂ Cr. Let K := inf{f(expx0

(t0v)) : v ∈ Tx0M, |v| = 1} > 0. If

x ∈ Cr \ B(x0, t0), using the Hopf–Rinow theorem we can connect x0 and x by a
unit-speed length-minimizing geodesic γ : [0, d(x0, x)] → M . Since (f ◦γ) is convex
we have

r � f(x) = (f ◦ γ)(d(x0, x)) � (f ◦ γ)(t0) + (f ◦ γ)′(t0)(d(x0, x)− t0)

� K(d(x0, x)− t0),

thus implying d(x0, x) � K−1r + t0 < K−1r + 1. If x ∈ B(x0, t0) the same
inequality holds and proves that Cr ⊂ B(x0,K

−1r + 1). Finally, property 5 is
proven in [11], Theorem 3 (a).



The isoperimetric profile of a complete manifold 243

Theorem 1 (a) in the paper [11] by Greene and Wu ensures the existence of a
strictly convex function Lipschitz continuous exhaustion function in any complete
Riemannian manifold with positive sectional curvatures. As we shall see later, such
functions also exist on Hadamard manifolds, complete simply connected Rieman-
nian manifolds with non-positive sectional curvatures.

The isoperimetric profiles Ir : (0, |Cr|) → R
+ of the sublevel sets of f will be

defined by
Ir(v) := inf{P (E) : E ⊂ Cr measurable, |E| = v}.

The compactness of Cr and the lower semicontinuity of perimeter imply the exis-
tence of isoperimetric regions in Cr for all v ∈ (0, |Cr|), as well as the continuity
of the isoperimetric profile of Cr. From the definitions of Ir and IM we have
IM � Ir � Is for all r � s > f(x0).

Given δ ∈ R, we shall denote by Vδ,n(r) the volume of the geodesic ball in
the n-dimensional complete simply connected manifold with constant sectional
curvatures equal to δ. When δ = 0, V0,n(r) = ωnr

n, where ωn is the n-volume of
the unit ball in R

n. In case δ > 0, the radius r will be taken smaller than π/δ1/2.
In what follows, we shall take π/δ1/2 := +∞ when δ � 0. The injectivity radius
of x0 ∈ M will be denoted by inj(x0). If K ⊂ M , the injectivity radius of K will
be defined by inj(K) = infx∈K inj(x). When K is relatively compact, inj(K) > 0.

The following result will play a crucial role in the sequel. Given a set E ⊂ M
of fixed volume v and a small positive radius r > 0, there exists a ball B(x, r)
whose center lies in a fixed bounded set B (depending on the volume) so that
|B(x, r) \E| � Λ(r) > 0, where Λ(r) converges to 0 if and only if r converges to 0.

Lemma 2.1. Let M be an n-dimensional complete non-compact Riemannian man-
ifold, E ⊂ M a measurable set of finite volume, B ⊂ M a bounded measurable set
such that |B|− |E| > 0, and δ the supremum of the sectional curvatures of M in B.
Fix r0 > 0 and choose D ⊃ B bounded and measurable such that d(B, ∂D) > r0.
For any 0 < r < min{r0, inj(B), π/δ1/2} define

(2.1) Λ(r) :=
|B| − |E|

|D| Vδ,n(r).

Then there exists x ∈ D such that

|B(x, r) \ E| � Λ(r) > 0.

Proof. Given two measurable sets D,F ⊂ M of finite volume, the Fubini–Tonelli
theorem applied to the function (x, z) ∈ D ×M �→ χF∩B(x,r)(z) yields

∫
D

|F ∩B(x, r)| dM(x) =

∫
F

|B(z, r) ∩D| dM(z).

For F = M \ E, this formula reads

∫
D

|B(x, r) \ E| dM(x) =

∫
M\E

|B(z, r) ∩D| dM(z).
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Since r � r0, we have B(z, r) ∩D = B(z, r) for any z ∈ B, and we get the bound
∫
M\E

|B(z, r) ∩D| dM(z) �
∫
B\E

|B(z, r) ∩D| dM(z)

=

∫
B\E

|B(z, r)| dM(z) � |B \ E|Vδ,n(r) �
(|B| − |E|) Vδ,n(r),

where inequality |B(z, r)| � Vδ,n(r) follows from the Günther–Bishop volume com-
parison theorem (Theorem III.4.2 in [7]). On the other hand,

∫
D

|B(x, r) \ E| dM(x) � |D| sup
x∈D

|B(x, r) \ E|.

This way we obtain

sup
x∈D

|B(x, r) \ E| � |B| − |E|
|D| Vδ,n(r),

and the result follows. �

The following proof follows the lines of Lemma 3.1 in [27] with the modifications
imposed by the geometry of M .

Lemma 2.2. Let M be an n-dimensional complete non-compact Riemannian man-
ifold possessing a Lipschitz continuous exhaustion function f ∈ C∞(M). Then, for
every v ∈ (0, |M |), we have

IM (v) = inf
r>inf f

Ir(v).

Proof. From the definition of Ir it follows that Is � Ir � IM , for r � s, in
the interval (0, |Cs|). Hence IM � infr>inf f Ir . From now on, we assume f is
normalized so that f(x0) = 0.

To prove the opposite inequality we shall follow the arguments in [25]. Fix
0 < v < |M |, and let {Ei}i∈N

⊂ M be a sequence of sets of finite perimeter
satisfying |Ei| = v and limi→∞ P (Ei) = IM (v).

Since |Ei| = v < |M |, there exists Ri > 0 such that

|Ei \ CRi | <
1

i
.

We now define a sequence of real numbers {ri}i∈N
by taking r1 := R1 and ri+1 :=

max{ri, Ri+1}+ i. Then {ri}i∈N satisfies

ri+1 − ri � i , |Ei \ Cri | <
1

i
.

In case |Ei \ Cri+1 | = 0, we take a representative Gi of Ei contained in Cri+1

and we have

(2.2) Iri+1(v) � P (Gi) = P (Ei).



The isoperimetric profile of a complete manifold 245

In case |Ei \ Cri+1 | > 0, since |∇f | � L, the coarea formula implies

1

L

∫ ri+1

ri

Hn−1(Ei ∩ ∂Ct) dt < |Ei| = v.

Hence the set of r ∈ [ri, ri+1] such that Hn−1(Ei ∩ ∂Cr) � Lv/(ri+1 − ri) has
positive measure, where Hn−1 is the (n− 1)-dimensional Hausdorff measure in M .
By Exercise 18.3 in Chapter 28, page 216 of [16], we can choose ρ(i) ∈ [ri, ri+1] in
this set so that

P (Ei ∩Cρ(i)) = P (Ei, intCρ(i)) +Hn−1(Ei ∩ Cρ(i)).

By the choice of ρ(i) and the properties of {ri}i∈N we also have

Hn−1(Ei ∩ ∂Cρ(i)) �
Lv

i
.

Take now t > 0 such that |Ct| > v = |Ei| � |Ei ∩ Cρ(i)| for all i, and let δ(t) be
the maximum of the sectional curvatures of M in Ct. Let vi := |Ei| − |Ei ∩ Cρ(i)|.
The sequence {vi}i∈N converges to 0 since vi = |Ei \ Cρ(i)| � |Ei \ Cri | < 1/i. We
take si defined by the equality

vi =
|Ct| − |Ei ∩ Cρ(i)|

|C2t| Vδ(t),n(si),

for i large enough. From Lemma 2.1 we can find, for every i ∈ N, a point xi ∈ C2t

such that
|B(xi, si) \ (Ei ∩Cρ(i))| � vi.

Observe that limi→∞ si = 0 since limi→∞ |Ei∩Cρ(i)| = v < |Ct| and limi→∞ vi = 0.
By the continuity of the functions s �→ |B(xi, s) \ Ei|, we can find a sequence of
radii s∗i ∈ (0, si] so that B∗

i := B(xi, s
∗
i ) satisfies |B∗

i \ (Ei ∩ Cρ(i))| = vi for all i.
For large i, we have the inclusions B∗

i ⊂ Cρ(i), the set Fi := (Ei ∩ Cρ(i)) ∪B∗
i has

volume v, and we get

Iri+1(v) � P (Fi) � P (Ei ∩ Cρ(i)) + P (B∗
i )

� P (Ei, intCρ(i)) +Hn−1(Ei ∩ ∂Cρ(i)) + P (B∗
i )

� P (Ei) +
Lv

i
+ P (B∗

i ).

(2.3)

Since the balls B∗
i are centered at points of the bounded subset C2t with

radii s∗i converging to 0, Bishop’s comparison result for the area of geodesic spheres
when the Ricci curvature is bounded below (see [7], Theorem III.4.3) implies that
limi→∞ P (B∗

i ) = 0. Taking limits in (2.2) and (2.3) when i → ∞, we obtain
infr>inf f Ir(v) � IM (v). �

Remark 2.3. From the proof of Lemma 2.2 it is clear that the center of the
balls B∗

i must be taken in a bounded set of M to have limi→∞ P (B∗
i ) = 0. Indeed,

it is easy to produce a family of geodesic balls, each one in a hyperbolic space, with
radii going to 0 and perimeters converging to +∞.



246 M. Ritoré

The existence of a strictly convex exhaustion function on M implies that the
hypersurfaces ∂Cr = {x ∈ M : f(x) = r} foliate M \ {x0}, where x0 is the only
minimum of f . The vector field ∇f/|∇f |, defined on M \ {x0}, is the outer unit
normal to the hypersurfaces ∂Cr. For any x ∈ ∂Cr and e tangent to ∂Cr at x we
have

g
(
∇e

( ∇f

|∇f |
)
, e
)
=

1

|∇f | ∇
2f(e, e) > 0.

Hence the hypersurfaces ∂Cr are strictly convex. The function div(∇f/|∇f |) is
defined on M \ {x0}. Its value at x ∈ ∂Cr is the mean curvature of the hypersur-
face ∂Cr at x.

Lemma 2.4. Let M be an n-dimensional complete manifold M possessing a
strictly convex Lipschitz continuous exhaustion function f ∈ C∞(M). Then the
isoperimetric profile Ir, of the sublevel set Cr is a continuous and strictly increasing
function for r > inf f .

Proof. Continuity follows from the compactness of Cr and the lower semicontinuity
of perimeter since a limit of isoperimetric regions of volumes converging to v ∈
(0, |Cr|) is an isoperimetric region of volume v.

To check that Ir is non-decreasing, consider an isoperimetric region E ⊂ Cr

of volume v ∈ (0, |Cr|). Let 0 < w < v and take s ∈ (0, r) such that the set
Es := E ∩ Cs has volume w. Choose a sequence of radii si converging to s such
that P (E ∩Csi ) = P (E, intCsi) +Hn−1(E ∩ ∂Csi) and∫

E\Csi

divX dM = −
∫
E∩∂Csi

g(X, |∇f |−1∇f) dHn−1 +

∫
∂∗E\Csi

g(X, νE) d|∂E|,

for any vector field X of class C1 with compact support in an open neighborhood of
Cr \ intCsi . In the above formula, ∂∗E is the reduced boundary of E and d|∂E| is
the perimeter measure. We apply this formula to X = ∇f/|∇f |. Since divX > 0
on M \ {x0}, and g(X, νE) � 1 we have∫

E\Csi

divX dM +Hn−1(E ∩ ∂Csi) � P (E,M \ Csi).

Adding P (E,intCsi) to both sides of the above inequality and estimating P (E,intCsi)
+P (E,M \ Csi) � P (E), we get∫

E\Csi

divX dM + P (E ∩ Csi) � P (E).

Taking inferior limits, and using the lower semicontinuity of perimeter, we obtain

P (Es) <

∫
E\Cs

divX dM + P (Es) � P (E),

and so
Ir(w) � P (Es) < P (E) = Ir(v).

Thus Ir is a strictly increasing function. �
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Remark 2.5. We point out that only the condition divX > 0 on the set E\Csi has
been used in the proof of Lemma 2.4. Hence the proof works if we merely assume
that the level sets of the exhaustion function f have positive mean curvature and
that the set of critical points of f has measure zero.

The following elementary lemma will be needed to prove our main result.

Lemma 2.6. Let {fi}i∈N be a non-increasing (fi � fi+1) sequence of continuous
non-decreasing functions defined on an open interval I ⊂ R. Assume the limit
f(x) = limi→∞ fi(x) exists for every x ∈ I. Then f is a right-continuous function.

Remark 2.7. The hypotheses in Lemma 2.6 do not imply the left-continuity of f ,
as shown by the following example. Taking

fi(x) =

⎧⎪⎨
⎪⎩
1, 0 � x,

1 + i x, −1/i � x � 0,

0, x � −1/i,

we immediately see that the limit of the sequence {fi}i∈N is the characteristic
function of the interval [0,∞), which is not left-continuous.

Proof of Lemma 2.6. Fix x ∈ I. Let {xi}i∈N be any sequence such that xi � x.
Since f is a non-decreasing function, f(x) � f(xi) for all i. Hence

(2.4) f(x) � lim inf
i→∞

f(xi).

Assume now that x = limi→∞ xi. Let us build first an auxiliary sequence
{zi}i∈N strictly decreasing, converging to x and satisfying

(2.5) lim sup
i→∞

f(zi) � f(x).

To this aim, starting from an arbitrary z1 > x we inductively choose a point zi
satisfying x < zi < min{zi−1, x+ i−1} and

0 � fi(zi)− fi(x) �
1

i
.

This last condition follows from the continuity of fi. By construction, {zi}i∈N is
decreasing and converges to x. Since fi � f we get

f(zi) � fi(zi) � fi(x) +
1

i
,

and taking lim sup we obtain (2.5). Now choose a subsequence {yi}i∈N of {xi}i∈N

such that limi→∞ f(yi) = lim supi→∞ f(xi). Since the sequence {yi}i∈N converges
to x, for every i ∈ N, we can choose yj(i), with j(i) increasing in i, such that
x � yj(i) < zi. As f is non-decreasing,

(2.6) lim sup
i→∞

f(xi) = lim
i→∞

f(yi) = lim
i→∞

f(yj(i)) � lim sup
i→∞

f(zi) � f(x)

by (2.5). Inequalities (2.4) and (2.6) then yield the right continuity of f . �
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3. Proof of the main result

We give now the proof of our main result and their consequences.

Theorem 3.1. Let M be an n-dimensional complete manifold M possessing a
strictly convex Lipschitz continuous exhaustion function f ∈ C∞(M). Then the
isoperimetric profile IM of M is non-decreasing and continuous.

Proof. Lemmas 2.2 and 2.4 imply that the profile IM is the limit of the non-
increasing sequence {Ir}r>inf f of continuous non-decreasing isoperimetric profiles.
So IM is trivially non-decreasing and Lemma 2.6 implies that IM is right-continuous.

To prove the left-continuity of IM at v > 0, we take a sequence {vi}i∈N such
that vi ↑ v. Since IM is non-decreasing, IM (vi) � IM (v). Taking limits we get
lim supi→∞ IM (vi) � IM (v). To complete the proof, we shall show

(3.1) IM (v) � lim inf
i→∞

IM (vi).

Consider a sequence {Ei}i∈N of sets satisfying |Ei| = vi and P (Ei) � IM (vi)+ 1/i.
By Lemma 2.1, we can find a bounded sequence {xi}i∈N and a sequence of radii
{si}i∈N converging to 0 so that

|B(xi, si) \ Ei| � v − vi > 0.

We argue now as in the final part of the proof of Lemma 2.2: since the function
s ∈ [0, si] �→ |B(xi, s) \ Ei| is continuous, there exists, for large i, some s∗i ∈ (0, si]
such that |B(xi, s

∗
i ) \ Ei| = v − vi. Taking Fi := Ei ∪ B(xi, s

∗
i ) we have |Fi| =

|Ei|+ |B(xi, s
∗
i ) \ Ei| = v, and

IM (v) � P (Fi) � P (Ei) + P (B(xi, s
∗
i )) � IM (vi) + (1/i) + P (B(xi, s

∗
i )).

Taking limits we get (3.1). �

Theorem 3.2. The isoperimetric profile IM of a Hadamard manifold M is a
continuous and non-decreasing function.

Proof. We only need to construct a strictly convex Lipschitz continuous exhaustion
function. Fix x0 ∈ M and let h = 1

2 d
2, where d be the distance function to x0.

Standard comparison results for the Laplacian of the squared distance function
imply ∇2h � 1 (Chapter 3 of [23]). However, h is not Lipschitz continuous on M .
We consider instead the C∞ function m : (−1,+∞) → R

+ defined by m(x) =
(1+x)1/2, and the composition f = m◦h. Take some tangent vector e of modulus 1
at some point of M . Then

∇(m ◦ h) = (m′ ◦ h)∇h,

∇2(m ◦ h)(e, e) = (m′′ ◦ h) g(∇h, e)2 + (m′ ◦ h)∇2h(e, e).

From the first formula we obtain

∇f =
d

(1 + 1
2 d

2)1/2
∇d .
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Hence |∇f | is uniformly bounded from above and so the function f is Lipschitz
continuous on M . From the formula for the Hessian of (m ◦ h) we get

∇2f(e, e) = −1

4

1

(1 + 1
2 d

2)3/2
g(∇h, e)2 +

1

2

1

(1 + 1
2 d

2)1/2
∇2h(e, e).

By Schwarz’s inequality, g(∇h, e) � d, and we have

∇2f(e, e) � 1

2

1

(1 + 1
2 d

2)3/2
> 0 .

Hence f is strictly convex. Since the sublevel sets of f are geodesic balls, f is an
exhaustion function on M . Theorem 3.1 then implies that the isoperimetric profile
of M is a continuous and non-decreasing function. �

Theorem 3.3. The isoperimetric profile IM of a complete non-compact mani-
fold M with strictly positive sectional curvatures is a continuous and non-decreasing
function.

Proof. The existence of a strictly convex Lipschitz continuous exhaustion function
follows from Theorem 1 (a) in the paper [11] by Greene and Wu. The properties
of the isoperimetric profile from Theorem 3.1. �
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[26] Ritoré, M. and Vernadakis, E.: Isoperimetric inequalities in convex cylinders
and cylindrically bounded convex bodies. Calc. Var. Partial Differential Equations
54 (2015), no. 1, 643–663.
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