Rev. Mat. Iberoam. 33 (2017), no. 1, 251-289 © European Mathematical Society
DOI 10.4171/RMI1/936

Multiplicity theorems for nonlinear
nonhomogeneous Robin problems

Nikolaos S. Papageorgiou and Vicentiu D. Radulescu

Abstract. We study a nonlinear Robin boundary value driven by a non-
homogeneous differential operator with a Carathéodory reaction and we
look for multiple nontrivial solutions with sign information. We prove four
such multiplicity theorems producing three nontrivial solutions, for reso-
nant problems and for problems in which no global growth restriction is
assumed on the reaction. Also, in the semilinear case, we show that we
can have four nontrivial solutions, by producing a second nodal solution.

1. Introduction

Let 2 € RY be a bounded domain with a C2-boundary 9. In this paper, we
study the following nonlinear nonhomogeneous Robin problem:
—diva(Du(z)) = f(z,u(z)) inQ,

(L.1) 68: + ﬂ(z)|u(z)|p72u(z) =0 ond.

Here a: RV — RY is a strictly monotone, continuous map, which satisfies cer-
tain regularity and growth hypotheses. The precise conditions on a(-) are listed in
hypotheses H(a) in Section 2. These conditions are general enough to incorporate
in our framework many differential operators of interest such as the p-Laplacian.
In the boundary condition, du/dn, denotes the generalized normal derivative de-
fined by

ou

on,
(see Lieberman [14]). Here n(-) denotes the outward unit normal at 9. We should

point out that this type of normal derivative is dictated by the nonlinear Green’s
identity (see Gasinski and Papageorgiou [8], p.210). The reaction f(z,z) is a

= (G/(DU),H)RN for aH u e Wl’p(Q)
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Carathéodory function (that is, for all € R, the mapping z — f(z,z) is measur-
able and for almost all z € 0, x — f(z,z) is continuous).

Our aim is to prove multiplicity theorems for problem (1.1) providing pre-
cise sign information for all the solutions, under different growth conditions on
the reaction f(z,z). We prove four such multiplicity theorems producing three
nontrivial solutions. In the first multiplicity theorem, we assume that f(z,-) is
(p — 1)-sublinear near +oco and in the particular case of the p-Laplacian, resonance
is allowed with respect to the principal eigenvalue of the negative Robin p-Laplacian
(see Papageorgiou and Radulescu [21]). In the second and third multiplicity theo-
rems, no global growth restriction is imposed on f(z,-). Instead it is assumed that
f(z,-) has z-dependent zeros of constant sign and so the reaction f(z,-) exhibits
a kind of oscillatory behavior near zero. In all three multiplicity theorems, the
geometry near the origin is similar and implies the presence of a “concave” term
(that is, a term which is (p — 1)-superlinear as  — 0). In the particular case of
equations driven by the p-Laplacian, we can change this condition near zero and
deal also with reactions that are (p—1)-sublinear as  — 0. This is our fourth mul-
tiplicity theorem. Moreover, in the particular case of semilinear equations (driven
by the Laplace operator), we show that we can produce a second nodal solution
for a total of four nontrivial solutions.

This paper continues the recent works of Papageorgiou and R&dulescu ([21],
[22], [24]), where certain parametric equations driven by the p-Laplacian were
studied and multiplicity results were proved for certain values of the parameter.

We refer to the books by Ambrosetti and Arcoya [2] and Ambrosetti and Mal-
chiodi [3] for the basic abstract results used in this paper.

2. Mathematical preliminaries

In this section we review the main mathematical tools which will be used in this
work. Also, we introduce the hypotheses on the map y — a(y) and determine their
consequences.

Let X be a Banach space and let X* be its topological dual. By (-, -) we denote
the duality brackets for the pair (X*, X). Given ¢ € C*(X), we say that ¢ satisfies
the Palais—Smale condition (PS-condition), if the following holds:

“Every sequence {up}n>1 € X such that {¢(un)}n>1 € R is bounded and
¢ (up) — 0in X* as n — oo,
admits a strongly convergent subsequence”.

This is a compactness type condition on the functional ¢. We need such a
condition since the ambient space X need not be locally compact (being in general
infinite dimensional). Using the PS-condition, we can prove a deformation theorem
which is the key to the minimax theory for the critical values of . A main result

in that theory, is the so-called “mountain pass theorem” of Ambrosetti and Rabi-
nowitz [4].
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Theorem 2.1. Assume that ¢ € C1(X) satisfies the PS-condition, ug,u; € X,
|lur —uol| > p >0,

max{p(uo), p(u1)} <inflp(u) : [lu — uol[ = p] =,
and

c=inf max o(y(t) with T ={ye€C(0,1],X):7(0)=uo,7(1) =u}.

Then ¢ = n, and c is a critical value of .

The analysis of problem (1.1) will involve the Sobolev space WP(Q), for 1 <
p < 00, the Banach space C*(2) and the “boundary” spaces L"(992) (1 < r < c0).
In what follows, by | - | we denote the norm of RY, by (-,-)gry we denote the
inner product of RY and by ||-|| we denote the norm of the Sobolev space WP (£2)
defined by
ull = (2 + || Dull2]% for all u € WEe ().

The space C*(Q) is an ordered Banach space, with order cone
Cy ={uecC'(Q):u(z) =0 forall zecQ}.
This cone has a nonempty interior given by
intCy ={uecCy:u(z) >0 forall ze Q}.

On 99 we use the (N —1)-dimensional Hausdorff (surface) measure o(-). Using
this measure, we can define the Lebesgue spaces L"(9) (1 < r < 00). We denote
the norm of these spaces by || - ||r,00. We know that there exists a unique linear
continuous map o: WHP(Q) — LP(99), known as the “trace map”, such that
Yo(u) = ulaq for all uw € WHP(Q) N C(Q). The trace map is compact into L"(92)
for all € [1,2821) if 1 < p < N, and into L7(99) for all 7 € [1,00) if p > N.
We know that

imy, = WP 2(9Q) and kerryo = WP (Q)

with 1/p+1/p’ = 1.
In the sequel, for notational simplicity, we drop the use of the trace map 7y. The
restrictions of all Sobolev functions on 0f2 are understood in the sense of traces.

Let n € C*(0,00) with n(t) > 0 for all ¢ > 0 and assume that
Lt (1) -1 -1
(2.1) 0<C<W<co and P70 < n(t) < e (1+P70)
n
for all ¢ > 0, some c¢1,co > 0.

Now we are ready to introduce our hypotheses on the map a(-) involved in the
differential operator of (1.1):

(H(a)) aly) = ao(ly|)y for all y € RN, with ag(t) > 0 for all ¢ > 0, and
(i) ag € C1(0,0), the function ¢ — tag(t) is strictly increasing in (0, 00),

tag(t)
t—0+ ag(t)

taog(t) - 0" ast— 0" and

b
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(ii) there exists ¢ > 0 such that |Va(y)| < 03% for all y € RV\{0};

(i) (Va()¢, Opn > LELIE[2 for all y € RM\{0}, all £ € RY;

(iv) if Go(t) = fot sap(s)ds for all t > 0, then there exists ¢ € (1, p] such that

4
t — Go(t'/7) is convex in (0,00) and  lim 4Go(t) =¢>0.
t—0+ 14

Remark 2.2. Conditions H (a) (i), (ii), (iii) are motivated from the regularity the-
ory of Lieberman [14] and from the nonlinear maximum principle of Pucci and
Serrin [27]. Condition H (a) (iv) is particular for our problem, but as we will see
below is satisfied in many cases of interest. Hypotheses H(a) imply that the
primitive Go(-) is strictly convex and strictly increasing. Let us see how these
hypotheses are satisfied in the case of the p-Laplacian. Additional examples are
given below. In the case of the p-Laplace operator, a(y) = |y|P~2y for all y € RV,
with 1 < p < co. Then Gy(t) = %tf” for all ¢ > 0. So Gy(-) is strictly convex
and strictly increasing. Also in this case ¢ = p (see hypothesis H(a) (iv)). So, the

function
1 1
t Go(t'/P)y = = (1Y/P)p = ~¢
p p

is linear and of course ¢ = 1.

We set G(y) = Go(ly|) for all y € RY. Clearly G(-) is convex and G(0) = 0.
Also, we have

VG(y) = Gh(ly) L = ao(ly))y = aly) for all y € RN\{0}, VG(0) = 0.

ly|

Hence, G(-) is the primitive of the map a(-). The convexity of G(-) and the
fact that G(0) = 0, imply

(2.2) G(y) < (a(y),y)ry for all y € RV,

Hypotheses H(a) (i), (ii), (iii), and (2.1), (2.2), lead to the following lemma
summarizing the main properties of the map a(-).
Lemma 2.3. If hypotheses H(a) (i), (ii), (iii) hold, then

(a) the mapy — a(y) is continuous, strictly monotone, hence maximal monotone
too;

() la(y)] < ca(l+ |y[P~Y) for all y € RN and some ¢4 > 0;
(©) (a(y),y)rny = 25ly|P for ally € RN,

This lemma and (2.2) lead to the following growth estimates for the primi-
tive G(+).
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Corollary 2.4. If hypotheses H(a) (1), (ii), (iii) hold, then
C1

pp—1)

Example 2.5. The following maps satisfy hypotheses H(a):

lylP < G(y) <cs (14 |y[P)  for all y € RN and some c5 > 0.

(a) a(y) = |y[P~2y with 1 < p < cc.

This map corresponds to the p-Laplace differential operator

Ayu = div (|DuP~2Du)  for all u € WhP(Q).

(b) aly) = |yP~2y + |y|7?y with 1 < ¢ < p < 0.
This map corresponds to the (p, ¢)-differential operator defined by

Apu+ Agu for all uw € WHP(Q).

Such operator arise in problems of mathematical physics (Papageorgiou and
Rédulescu [23]) and were studied in the context of Dirichlet problems by
Mugnai and Papageorgiou [18], Papageorgiou and Réadulescu [20], [25] and
Papageorgiou and Winkert [26].

(c) aly) = (1 + |y*)#P=»/2y, with 1 < p < co.
This map corresponds to the generalized p-mean curvature differential oper-
ator defined by

div [(1+ | Dul?)(P=2)/2 Du] for all w € W"P(Q).

p—2 .
(d) aly) = |y|P~2y + ‘ﬂr‘y‘ff with 1 < p < oc.

The hypotheses on the boundary term [3(-) are the following:
(H(B)) B e Ch*(09Q), with a € (0,1), B(z) =0 for all z € 9.

Consider a Carathéodory function fo: 2 x R — R which exhibits subcritical
growth in the x € R variable, that is,
|fo(z,z)] < a(z)(1+|z|""') for almost all z € 2, all z € R,
with @ € L*>°(Q)4 and
N ifp < N,

* = N-p
L<r<p { boo N <p.

Let Fy(z,2) = [; fo(z,s)ds and consider the C'-functional ¢o: W'P() — R
defined by

— 1 Pdg — Lp
goo(u)f/QG(Du)derp/émB(z)M d /QFo(z,u)dz for all u € WHP(Q).

The next theorem can be proved as the corresponding result of Papageorgiou
and Radulescu [21], using the regularity results of Licberman [14].
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Theorem 2.6. Assume that ug € WHP(Q) is a local C*(Q)-minimizer of wo, that
is, there exists po > 0 such that

wo(uo) < @(ug +h)  for all h € C*(Q) with 1Bl oy < po-

Then ug € CH4(Q) with s € (0,1) and ug is also a local WYP(Q)-minimizer of o,
that s, there exists p1 > 0 such that

vo(uo) < wolug +h) for all h € WHP(Q) with ||h|| < p1 .

We will also need some facts concerning the spectrum of —A, (1 < ¢ < co0) with
Robin boundary condition (see Le [12] and Papageorgiou and Radulescu [21]). So,
we consider the following nonlinear eigenvalue problem:

93 —Agu(z) = AMu(z)|72u(z) in €,
= o=+ B(2) [u(2)]* % u(z)  on 9Q.
Here,
6_u = |Du|q_2(Du n) N = |Du|q_2 @ for all u € leP(Q)
Ong R on :

We say that AeRisan eigenvalue of the negative Robin g-Laplacian (denoted
for notational economy by fA(If), if problem (2.3) admits a nontrivial solution

@ € WHP(Q) known as an eigenfunction corresponding to A. We know that there
is a smallest eigenvalue A1 (q, 8) having the following properties:

e Mg, 8) = 0and A(q,8) > 0if B #£0.

. 5\1(q, B) is isolated in the spectrum &(q, 8) of —AqR.
and
|Dulld + [y B(2) [u|? do

. cu € WHP(Q),u # 0.
[|ullg

(24)  i(q.8) =inf |

Note that the infimum is realized on the corresponding one dimensional eigen-
space. Moreover, from (2.4) it is clear that the elements of this eigenspace do not
change sign. In the sequel by 14 (g, 8) we denote the positive L?-normalized (that
is, |[@1(q, B)||, = 1) eigenfunction corresponding to Ay(g,3). From the nonlinear
regularity theory of Lieberman [14] we have that 41(g, ) € C+\{0}. In fact, using
also the nonlinear maximum principle of Pucci and Serrin [27], pp. 111,120, we
conclude that @1 (q, 8) € int C.

The Ljusternik—Schnirelmann minimax scheme gives, in addition to A (¢,0), a
whole strictly increasing sequence { A (g, 3 ) }k>1 of eigenvalues such that Ak(q, B) =
+o0 as k — oo. These are known as the “LS-eigenvalues” of —A(If.

Since A (¢,5) = 0 is isolated and the spectrum 6 (g, 3) is closed, the second
eigenvalue of fAf is defined by

A3(g, B) = inf[A € 6(q, B) : A > Ai(q, B)]-
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We have that j\g(q,ﬂ) = Xg(q,ﬂ), that is, the second eigenvalue of quR and
the second LS-eigenvalue of quR coincide.

Let OBE" = {u € LUQ) : |Jull; = 1}, M = W14(Q) N OB+ and
I(u) = |[Dul|] +/ B(2)|u|tde  for all u € WH(Q).
o)

From Papageorgiou and Radulescu [21], we have the following minimax char-
acterization of A2(q, f).

Proposition 2.7. We have 5\2((],6) = inf%f max_1<i<1 V(§(t)), where

= {5 e C=11], M) : 57(=1) = —in(g, ), (1) = ia(g, )}
Let A: WHP(Q) — W1P(Q)* be the nonlinear map defined by

(2.5) (A(u),v) = /Q(a(Du),DU)RNdz for all u,v € WHP(Q).

From Gasinski and Papageorgiou [9], we have the following property.

Proposition 2.8. Assume that hypotheses H(a) (i), (ii), (iii) hold. Then the map
A WEP(Q) — WLP(Q)* defined by (2.5) is demicontinuous, monotone, hence
maximal monotone too and of type (S)4, that is,

if Un — u in Wl’p(Q) and limsup (A(up), u, —u) <0, then u, — u in Wl’p(ﬂ).
n—0o0
Our approach will also use tools from Morse theory (critical groups). So, let
us recall some basic definitions and facts from this theory.
Given ¢ € C*(X) and ¢ € R, we introduce the following sets:

e={ueX :p(u) <c}, Kp={ueX :¢'(u) =0} and K;:{UGIQP tp(u) = ¢}

For every topological pair (Y7, Y2) with Y2 C Y7 C X and every integer k > 0,
by Hy(Y1,Y2) we denote the kth relative singular homology group with integer
coefficients. Given an isolated u € K¢, the critical groups of ¢ at u are defined by

Cr(p,u) = Hi(¢° NU, o NU\{u}) for all integers k >0,

where U is a neighborhood of u such that K,Np°NU = {u} (recall that ue K,
is isolated). The excision property of singular homology theory implies that this
definition of critical groups is independent of the particular choice of the neighbor-
hood U.

If ¢ € C*(X) satisfies the PS-condition and inf p(K,) > —oo, then the critical
groups of ¢ at infinity are defined by

Cr(p,00) = Hp(X,¢°%) forallk >0,

where ¢ < inf ¢(K,). The second deformation theorem (see Gasinski and Papa-
georgiou [8], p.628), implies that this definition is independent of the particular
choice of the level ¢ < inf p(K,,).
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Assuming that K is finite, we define

M(t,u) :Zranka(go,u) th forallt € R, allu € K,
k>0

P(t,o0) = Zranka(go, c0)t* forall t € R.
k>0

Then the Morse relation says

(2.6) > M(t,u)=P(t,c0)+ (1+t)Q(t) forallteR,
uekK,

where Q(t) = > 450 Bk t* is a formal series in ¢ € R, with nonnegative integer
coefficients (.

Finally we fix our notation. So, given x € R, we set 2+ = max{+x,0}. Then for
u € WHP(Q), we define u®(-) = u(-)*. We know that u* € WHP(Q), u =ut —u~,
|u| = ut +u~. For a Carathéodory function g(z,z), we define Ny(u)(-) = g(-, u(-))
for all u € WHP(Q).

By |- |n we denote the Lebesgue measure on RY. Also, recall that W1P(Q) is
an ordered Banach space with order cone

Wy = {u € W(Q) : u(z) > 0 for almost all z € Q} .

Then given u,v € W1P(Q) with v < v (that is, v — u € W), by [u,v] we
denote the order interval defined by [u,v] = {y € Wl’p(Q) u(z) < y(z) < v(z)
for almost all z € Q}.

3. Resonant problems

In this section, we consider a reaction which exhibits (p — 1)-sublinear growth
near +oo, and in the particular case of a p-Laplacian equation, it can be resonant
with respect to the principal eigenvalue Ay (p, ).

So, the hypotheses on the reaction f(z,x) are the following:

(Hq) f: QxR —Ris a Carathéodory function such that f(z,0) =0

for almost all z € , and
(i) |f(z,2)] <a(z)(1+|z|P~!) for almost all z € Q, all z € R with a € L>(Q)4;
(i) For 8 =E18 € L®(Q), (with ¢; > 0 as in (3.14)),

flzx) _ a g

lim sup < E)\l(p, ﬁA), uniformly for almost all z € Q;

r—+o00 |5L'|Z)72 €

(i) if F(z,2) = [y f(z,5)ds, then limy4o0[f(2,2)2 — pF(z,2)] = +0o uni-
formly for almost all z € ;
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(iv) there exists no € L>(€)4 such that (g, 5) < no(2) for almost all z € Q,
no # ¢Ai(g, B) and

o flz@)
<
no(z) < hgjn_}gf P

uniformly for almost all z € €,

with 3 = 13 (here é > 0 and g € (1,p] are as in hypothesis H(a) (iv)).

Remark 3.1. Hypothesis H(a) (i) dictates a (p — 1)-sublinear growth for f(z,-).
If a(y) = |y|P~2y for all y € RV, then the differential operator is the p-Laplacian
and ¢; = p — 1 (see (2.1)). Hence 8 = f (see hypothesis H (ii)). So, hypoth-
esis H; (ii) says that the reaction can be resonant with respect to the principal
eigenvalue of ng (resonance equation). This possibility of resonance at +oo dic-
tates hypothesis H; (iii) which is needed in order for the energy functional of the
problem to satisfy the compactness condition. Hypothesis Hy (iv) which regulates
the behavior of f(z,-) near zero, is quite general and allows also for the presence
of concave terms (terms which are (p — 1)-superlinear near zero). Some additional
remarks are motivated by several interesting observations of the referee. Note that
hypothesis H; (iii) excludes some natural examples like the functions

fi(z) = |zP2x +2 for big |z| (g <p) or folz)=|2|7? with1l<q<p.

However, our emphasis in the work is to treat the resonant problem. To make
things more transparent, consider the case of the p-Laplacian. Then hypoth-
esis H; (ii) permits for resonance to occur at £oo. Hypothesis H; (iii) implies
that the resonance takes place from the “left” of ;\1(p) (see the asymptotic condi-
tion (3.12) in the proof of Proposition 3.3 below). This makes the energy functional
of the problem coercive and permits the use of the direct method of the calculus
of variations. So, the use of hypothesis H; (iv) leads to the existence of nontrivial
solutions of constant sign. Note that in general, since we want to incorporate also
the resonant case, an extra condition near +o0o is necessary, in order to guarantee
that the energy functional of the problem satisfies the compactness condition used
in the minimax methods (Palais—Smale condition or Cerami condition). If instead
we assume that

f(z,x)r — pF(z,2) = —o0 as & — £oo uniformly for a.a. z € 2

(this is satisfied by the functions f; and fo mentioned earlier), then we have reso-
nance from the “right” of Ay (p), and the coercivity of the energy functional fails.
So, we have to proceed in a different way. We use either the mountain pass theorem
(but then we need to change the condition near zero, see hypothesis H; (iv), and
so we fail to have extremal constant sign solutions, and consequently we cannot
produce a nodal solution) or we use critical groups (Morse theory). This second
approach is more promising, but not at all straightforward, since the computation
of critical groups in that case (resonant case) is difficult. This can be an interesting
separate project.
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Example 3.2. The following function satisfies hypotheses H;. For the sake of
simplicity, we drop the z-dependence:

) = { nxd~t —ca™t if |z <1

YaP~t — a7t if |z > 1,
with1<q<p<r<oo,n>5\1(p,ﬁ)219>0andc:77+1—19>0.
We introduce the following truncations-perturbations of the reaction:
. 0 ifx<0
f+(27$){ f(Z,.Z‘)+.Z‘p_1 if])>0,

(3.1)
f(z,2) +|z[P~22 ifx <0

and f(z’x)_{o 7 it 2> 0.

Both are Carathéodory functions. We set Fi(z,z) = fg: fi(z,8)ds and con-
sider the C!-functionals ¢4 : WHP(Q) — R defined, for all u € W1P(Q), by

W= [ GOt +s [ a0 do - [ P,
Q
Also, let ¢: WHP(Q) — R be the energy functional for problem (1.1) defined by
1
(u) = / G(Du) dz + —/ B(z) |ul? do — / F(z,u)dz for all u € WHP(Q).
Q P Joa o

Evidently, ¢ € C*(WhP(Q)).

Proposition 3.3. Assume that hypotheses H(a) (i), (ii), (iii), H(8) and Hy hold.
Then the functionals @ and p+ are coercive.

Proof. We do the proof for the functional ¢, the proofs for ¢4 being similar.
We argue indirectly. So, suppose that the functional ¢ is not coercive. Then
we can find {uy,}n>1 € WHP(Q) and My > 0 such that

(3.2) [lun|| = 00 asm — 0o, and @(u,) < M; foralln>1

We have, for all n > 1

(3.3) @(un):/QG(Dun)dz—f—%/E}Qﬁ(z)|un|pda—/QF(z,un)dzgMl.

Let yn, = upn/||un||, n = 1. Then ||y,|| = 1 for all n > 1 and so we may assume
that

(34) yp S yin WHP(Q), and y, — vy in LP(Q) and in LP(9N) as n — oco.

From (3.3) and Corollary 2.4, we have that, for all n > 1

(3.5) C1 yan / 6 |yn| do — / |(Z Un) dzg Ml

p(p—1) |t [P ||Un||p'
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Hypothesis H; (i) implies that
|F(z,2)|] < a(z)(1+ |z[?) for almost all z € Q, all x € R, with a € L*(Q)

— { F(un)

[P

} N C L'(Q) is uniformly integrable.
n=1

From the Dunford—Pettis theorem, and passing to a suitable subsequence if
necessary, we may assume that

NF(un) w

(3.6) Tan]|? Sk in LY(Q) as n — oo.
n

From hypothesis H; (ii), we have

F(z,x) 1

3.7 lim sup <
3.7 plp—1)

r—4oo |1'|p

Then (3.7) implies that

5\1(p, ﬁA) uniformly for almost all z € Q.

p(p—1)

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 14). We return
to (3.5), pass to the limit as n — oo and use (3.4), (3.6), (3.8). Then

(3.8) k= hly[P with h € L®(Q), h(z) < Ai(p, ) for almost all z € Q

plp—1)

(3.9) — (|Dy|l2 + /8 B oo < /Q h(z) [yl? d.

IDvll+ [ Bt trda]) < s [ )y s

First suppose that h # A (p, B) (see (3.8)). Then from (3.9) and Proposition 4
of Papageorgiou and Radulescu [21], we have

¢ |ly||P <0 for some ¢cg >0 = y=0.
Then from (3.4), (3.5), (3.6) and (3.8), we see that
Yn — 0 in Wl’p(Q) as n — 0o,

which contradicts the fact that ||y,|| =1 for all n > 1.

Next we assume that h(z) = A (p, ) for almost all z € Q (see (3.8)). Then
from (3.9) and (2.4), we have

||Dy||£+[996(z)|y|pdo=Xl(p,B)Hny;, — y=~Eu(pf), withéeR.

If £ =0, then y = 0 and as above, using (3.4), (3.6) and (3.8), we obtain
Yn — 0 in Wl’p(Q) as n — 0o,

contradicting the fact that ||y,|| =1 for all n > 1.
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So, we have £ # 0 and without any loss of generality, we may assume that £ > 0

(the reasoning is similar if £ < 0). Since 1 (p, 5) € int Cy, we have
(3.10) Un(z) = +oo  for almost all z € £, as n — 0.

Hypothesis H; (iil) implies that given & > 0, we can find My = M3(§) > 0 such
that

(3.11) f(z,x)x —pF(z,2) > ¢ for almost all z € Q, all |z] > Mo.
Then, for almost all z € Q and all s > M, we have

d Fz,5)  f(z8)s" —ps""'F(z,5) _ f(z.8)s —pF(z,5) &

ds sp <2p = ot > g (see (3.11))
F F 1 1
(z,y)  F(z2) >_§ {_ _ —} for almost all z € Q, all y > 2 > M.
yP P plyr  ap

We pass to the limit as y — 400 and use (3.7). Then

@)~ TED S E L

P s for almost all z € Q, all z > M,

C1
p—1

Xl(p,B)x” —pF(z,2) > £ for almost all z € Q, all © > Ms.

Since £ > 0 is arbitrary, it follows that

pcj 1;\1(p, B)aP — pF(z,m)} = +o0

(3.12) lim [

T—r+00

uniformly for almost all z € 2. From (3.10), (3.12) and Fatou’s lemma, we obtain

(3.13) lim [ a M (p, B) un(2)P —pF(z,un(z))} dz = +00.
Q

n—00 p—1

On the other hand, from (3.3) and Corollary 2.4, we have
_a
p(p—1)

(3.14) = /[ Cllj\l(p,ﬁ)uﬁpr(z,un)} dz<pM; foralln>1.
QtP—

[||D1m||£ +/ B(2) |unl? da} 7/ F(z,up)dz < My foralln>1
00 Q

Comparing (3.13) and (3.14), we reach a contradiction. Similarly for the func-
tionals @ . O

From this proposition we have the following additional property (see Papageor-
giou and Winkert [26]).

Corollary 3.4. If hypotheses H(a) (i), (i), (iii), H(B) and Hy hold, then the func-
tionals ¢ and o+ satisfy the PS-condition.
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Now using the direct method, we can produce two solutions of constant sign.

Proposition 3.5. Assume that hypotheses H(a), H(S) and Hy hold. Then prob-
lem (1.1) admits at least two constant sign solutions, ug € int Cy. and vy € —int Cy,
both local minimizers of the energy functional .

Proof. First we produce the positive solution. From Proposition 3.3 we know
that ¢4 is coercive. Also, using the Sobolev embedding theorem and the trace
theorem (which guarantee the compactness of the corresponding embedding and
trace maps), we see that ¢ is sequentially weakly lower semicontinuous. So, by
the Weierstrass theorem, we can find ug € W1P(Q) such that

(3.15) @4 (up) = inf[@y (u) : u € WHP(Q)].

By virtue of hypotheses H(a) (iv) and H;j (iv), given € > 0, we can find 0 =
d(e) € (0,1) such that

(3.16) Gly) <
(3.17) flz,2) =

1
~[é+€yl? for all y € RY with |y| <

q

(no(2) — €)x9~!  for almost all z € Q, all x € [0, ).

Since 41 (q, B) € int Cy, we can choose t € (0,1) small such that
(3.18) tii (g, B)(z) € (0,8] and t|Diy(q,B)(z)| <5 forall ze Q.

Then we have

o (i (g, B))

<l d DA+ [ aC) i p)rdo— [ P8 d:
(see (3.1), (3.16), (3.18))
< S+ d DG A+ T [ Bt Ayar 2 [ () —eyinta. iyra:
(see (3.17), (3.18) and recall that 6 € (0,1),q < p)
[||Du1 0B+ [ BE i) + = ehia )

- ; m0(2) (g, B)? dz + 56 (vecall that [[i(g, 5)ll; = 1)
Q

Note that

/9(770(2) - 55\1((],5)) ﬁl(q,ﬁ)q dz=¢">0 (see hypothesis Hy (iv)).
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Then
ta

P+ (tin (g, ) < 7 (=& +e(Mi(a, 8) + ).

Choosing € € (O , we see that

e )
T Ai(g,B)+1

O+ (tun (g, 5)) <0, = @1(ug) <0=4(0) (see (3.15)), hence ug # 0.
From (3.15), we have

@;(Uo) =0
= <A(“0)vh>+/|u0|p*2uOhd2+ B(z)(ug )P~ hdo
Q o)

(3.19) = / f+(z,u0)h dz for all h € WhP(Q).
Q

In (3.19) we choose h = —u; € WHP(Q). Using Lemma 2.3 (c), (3.1) and
hypothesis H(3), we obtain

C1
p—1

1Dug [+ [lug [I[; <O = uo >0, ug #0.
Therefore (3.19) becomes

(A(uo), By + [ B(z)ub"h d(T:/ f(z,ug)hdz for all Le WHP(Q) (see (3.1)),
o9 Q
= wyg is a positive solution of (1.1) (see Papageorgiou and Radulescu [21]).

From Winkert [29], we have that ug € L*(£2). So, we can apply the regularity
result of Lieberman [14] and infer that

ug € C+\{0} .

Hypotheses H; (i), (iv) imply that given any p > 0, we can find £, > 0 such
that

(3.20) flz,x)+&aP™1 >0 for almost all z € Q, all x € [0, ] .

Let p = ||uo||s and let £, > 0 be as postulated by (3.20). We have
—diva(Dug(2)) + &yuo ()P = f(z,u0(2)) +Epuo(2)P~ = 0 for almost all z € Q
(see (3.20) and Papageorgiou and Radulescu [21]), and so
(3.21) diva(Dug(z)) < Eyuo(2)P~  for almost all z € Q.

Let &(t) = tap(t) for all ¢ > 0. From hypothesis H(a) (iii) and (2.1), we have
the following one-dimensional estimate:

t&)(t) = t2al(t) + tag(t) = ¢z tP~1 for all t > 0 and some ¢; > 0.
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Integrating by parts leads to

(3.22) /t gl(s)d —tg(t)—/tg()d = Pag(t)—Go(t) = 7 for allt >0
. 0808 S = 0 . ols)as =1 agp 0 /p or a. .

We set H(t) = t?ao(t) — Go(t) and Hy(t) = cot?/p for all t > 0. For § € (0,1)
and s > 0, we introduce the sets

C1={te(0,1): H(t) > s} and Cy={t€(0,1): Ho(t) > s}.

From (3.22) we see that Co C C and so inf C; < inf Cy. Then, from Leoni [13]
(see p.6), we have
H™'(s) < Hy'(s).

Hence

5 5 5
/ — e 151) ds > / —T 151) ds = é—p ﬁ = 400
0 H-1(%zsP) 0 Hy'(32sP) 1Jo S

Then because of (3.21) we can apply the strong maximum principle of Pucci
and Serrin ([27], p.111) and have u(z) > 0 for all z € Q. Subsequently, using
the boundary point lemma of Pucci and Serrin ([27], p. 120) we have ug € int Cy.
Since

¢+|C+ = ¢|C+ (See (31))7

we infer that ug € int C is local C*(Q2)-minimizer of ¢, hence using Theorem 2.6,
we have that ug is also a local WP (Q)-minimizer of ¢.

In a similar fashion, working this time with the functional ¢_, we produce
vg € —int C4 a negative solution of problem (1.1), which is a local minimizer of
the energy functional ¢. O

In fact we can produce extremal constant sign solutions of (1.1), that is, the
smallest positive solution and the biggest negative solution. To reach that point,
we need some preliminary work.

Hypotheses H; (i),(iii) imply that given ¢ > 0 and r € (p,p*), we can find
cs = cg(€,r) > 0 such that

(3.23)  f(z,x)x = (no(z) —€)|z|? — cs|x|” for almost all z€ Q all z € R.

This unilateral growth estimate on the reaction, leads to the following auxiliary
Robin problem:

—diva(Du(z)) = (no(2) — €)|u(2)|72u(2) — cslu(z)|" 2u(z) in Q,
(3.24) ou
ong

Proposition 3.6. Assume that hypotheses H(a) and H((B) hold, ng € L>(Q) is
as in hypothesis Hy (iv), and p < r < p*. Then for all € > 0 small enough,
problem (3.24) has a unique positive solution 4 € int C, and since (3.18) is odd,
then v = —u € —int C'y is the unique negative solution.

(2) + B(2)|u(2)""*u(z) = 0 on 99
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Proof. First we establish the existence of a positive solution for problem (3.24).
Let puy : WHP(Q) — R be the C'-functional defined, for all u € W?(Q), by

i + 1 zu”cff1 z)—e€)(ur)?dz
u+<u>:/QG<Du>dz+l—)||u ||p+p/mﬂ< Yty d q/Q(Uo() ()i d
+ =t

Using Corollary 2.4, hypothesis H () and recalling that ng € L>(2), we have

C1 1 _
fug- () = mllDullﬁ + ol —co(|[ut]]§ — [lu"|[}) for some co > 0
(recall that ¢ <p <)
C1 1 _ —
= = 1)llDU||§ ol + oo (w577 = Dllu™13,

=> 4 is coercive.

Also, via the Sobolev embedding theorem and the trace theorem, we can check
that py is sequentially weakly lower semicontinuous. So, by the Weierstrass theo-
rem, we can find @ € WHP(Q) such that

(3.25) p (@) = infuy (u) : w € WHP(Q)].

Reasoning as in the proof of Proposition 3.5, using the hypothesis on 7y €
L>(Q) (see hypothesis H; (iv)), for € > 0 small we have

p (@) <0=py(0) = a#0.
From (3.25) we have p/, (@) = 0, and hence, for all h € WhP(Q),

(A(q), h) _/(a_)p_lhdz—i— . 5(2)(ﬂ+)p_1hda

Q
(3.26) _ /(770(2) _e)<a+)q—1hdz—c8/(a+)’“—1hdz.
Q Q
In (3.26) we choose h = —a~ € W1P(Q), and using Corollary 2.4, we have
C1 ~_ ~_ - -
p_1||Du IP+lla|f <0 = a=0,a#0.

Therefore (3.26) becomes

(3.27) (A(a),h) + B(z)aP hdo = /(770(2) — )i thdz — 08/ " thdz
a0 Q Q
for all h € WHP(Q) and for € > 0 small.

From (3.27) it follows that @ is a positive solution of (3.24) (see Papageorgiou
and Radulescu [21]). As before the nonlinear regularity theory of Lieberman [14],
p. 320, and the nonlinear maximum principle of Pucci and Serrin [27], pp. 111,120,
imply that @ € int C..
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Next we show the uniqueness of this positive solution.
To this end, let j: L1(2) — R = RU{+o0} be the integral functional defined by

1
. / G(Dul/q) dz + — ﬁ(z)u”/qda if u > O,Ul/q c Wl’p(Q))
Ju) = Q P Joq

+o00 otherwise.

Let uy,up € domj = {u € LI(Q) : j(u) < 400} (the effective domain of j). Let

1 1
vlzul/q and ’UQZUQ/Q.

We have vy, v € WHP(Q). We set
v = (tuy + (1 — t)uz)/9, with ¢ € [0, 1].
Using Lemma 1 of Diaz and Sad [6], we have

|Dv(2)] < (t{Dv1(2)|* + (1 = t)[ Doz (=) )"/
= Go(|Dv(2)]) < Go((t[Dvi(2)|* + (1 = 1)| Dva(2)|4)"/9)
(since Go(-) is increasing)
< tGo(|Duy (2)Y9]) + (1 — ) Go(|Duza(2)9)) for almost all z €€
(see hypothesis H (a) (iv))
—  G(Dv(2)) < tG(Dui(2)Y7) + (1 — t)G(Dug(2)'/7) for almost all z € Q,

= u»—)/G(Dul/q)dz is convex.
Q

Similarly, since § > 0 and ¢ < p, we have that u — fé)Q B(z)uP/9do is convex.
Therefore it follows that the integral functional j(-) is convex. Also, using Fatou’s
lemma, we see that j(-) is lower semicontinuous.

Suppose that u; and ug are positive solutions of problem (3.24). From the first
part of the proof, we have

Uy, ug € int Cy .

So, for every h € C*(Q) and for [t| > 0 small, we have
uf + th,ud +th € domj.

We can see that j(-) is Gateaux differentiable at u{ and ud in the direction h.
Moreover, using the chain rule and the nonlinear Green’s identity (see, for example,
Gasinski and Papageorgiou [8], p. 120), we have

. 1 —diva(Du
§'(u)(h) = = / 7q51 U as,
Q Uy

7 (ud)(h) = —/ %&Duz)hda for all h € C*(Q).
o  uj
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The convexity of j(-) implies the monotony of j’. Hence

0< /Q (—diva(Dul) B —diva(Duz)>(uq ) d

q—1 q—1 1 2
Uy g

= / cs(uy T—ul Hui—ud)dz = w3 =uy (since g <r).
Q
This proves the uniqueness of the positive solution @ € int C'y.

The oddness of (3.24) implies that © = —a € —int C;. is the unique negative
solution of (3.24). O

The functions @ € int Cy and © € —int C. from Proposition 3.6, provide bounds
for the constant sign solutions of problem (1.1).

Let S; (resp. S_) be the set of positive (resp. negative) solutions of (1.1).
From Proposition 3.5 and its proof, we know that

S+ 7& @ and S+ g int C+
S_#@ and S_CintCy.

Also, as in Filippakis, Kristaly and Papageorgiou [7], exploiting the monotonic-
ity of the map A(-), we have that

S+ is downward directed,
that is, if w1, ug € Sy, then there exists u € S; such that v < uy,u < ug. Also,
S_ is upward directed,
that is, if vy, vo € S_, then there exists v € S_ such that v; < v, v < v.

Proposition 3.7. Assume that hypotheses H(a), H1 and H(S) hold. Then u < u
for allu e Sy andv <0 for allv e S_.

Proof. We do the proof for the elements of S, the proof for the elements of S_
being similar.
So, let u € Sy and let ¢, : Q2 xR — R be the Carathéodory function defined by

0 if £ <0,
(3.28) Vy(z,2) =4 ( —e)x? ! — cgaxm ™t 4 2Pl if 0 <z <u(z),
(o(2) — )u(2)97t — cgu(2)" 1 +u(2)P~t if u(z) < x.
Let ©,(2,2) = [; Yu(z, s) ds and consider the C'-functional 4, : W?(Q) — R
defined, for all w € W1P(Q), by

A = 1wf” l 2V (wTPdo — z.w)dz
ﬁ(w)—/gcww)dwpu ||p+p/mﬁ< J(wt )P d /Qeum )dz.
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From (3.28) it is clear that 4 is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find @ € WP(Q) such that

(3.29) A (@) = inf[5; (w) : w € WHP(Q)].

As before (see the proof of Proposition 3.5), for ¢ € (0,1) small such that
ti1(q, 8) < u (recall that u € int C'y and use Lemma 3.3. of Filippakis, Kristaly
and Papageorgiou [7]), we have

A (tti(g, B)) <0=4F(0) = #F (@) <0=475(0) (see (3.29)), hence @ # 0.
From (3.29), we have (%,7) (@) = 0, hence, for all h € W1P(Q),
(3.30) / |a|P~ 2uhdz+/ Bz )P 1hda—/19 z,u)hdz

In (3.30), first we choose h = —u~ € WP(Q). Using Corollary 2.4 and (3.28),
we obtain

TlIDam [+ le7[[; <0 = @>0, a#0.
oo

Also, on (3.30) we act with (@ —u)* € W1P(Q). Then

(A(a), (@ —u)™) + /Qa”*l(a —u)tdz + ” B(z)aP~ (a —u)Tdz

= /Q[(UO(Z) —eul ! —cgu" T+ uP (@ — u)Tdz (see (3.28))

g/ f(z,u)(ﬂfu)+dz+/ uP~H(G—u)Tdz (see (3.23) and recall u € int C)
Q Q

=(A(u), (i—u)™) +/Qu”*1(ﬂfu)+dz + émﬂ(z)upfl(ﬂfuﬁda (since ue Sy),

= (a(Du) — a(Du), Du — Du)g~ dz +/ (P~ —uP M) (@ — u) dzt
{u>u} {u>u}

B) @ )@ —u)*do <0,
o0

= [{@ > u}|ny =0 (see Lemma 2.3 and hypothesis H(f)),
= ac[0,u] = {weW"(Q):0 < w(z) <u(z) for almost all z € Q}, 4 #0.
Then (3.30) becomes

(A(a),h) + B(z)aP  hdo = / ((no(2) — €)u?™! — cga" 1 dz
a0 Q

for all h € WHP(Q) (see (3.28)),
@ is a positive solution of (3.24) (see Papageorgiou and Radulescu [21]),

=u € int C (see Proposition 3.6),

§|

=
=
=

|

<u forallue S;.

In a similar fashion we show that v < for all v € S_. O
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Now we re ready to produce extremal constant sign solutions for problem (1.1),
that is the smallest positive and the biggest negative solutions of (1.1).

Proposition 3.8. Assume that hypotheses H(a), Hy and H(/3) hold. Then prob-
lem (1.1) has a smallest positive solution u,. € int Cy and a biggest negative solu-
tion v, € —int Cy.

Proof. First we produce the smallest positive solution.
Since S, is downward directed, without any loss of generality, we may assume
that

(3.31) [|ulloo < M3 for some M3 >0 all u € Sy.

From Hu and Papageorgiou [10], p. 178, we know that we can find {uy, },>1 C S+
such that
inf S, = inf w, .

n>1

For every n > 1, we have

P=lp do = 1,
(3.32) A(un), h) + - B(z)ul™"hd /Qf(z,un)h dz for all h € WhP(Q),

U< Up forallm > 1.

Choosing h = u, € WbHP(Q) in (3.32) and using Corollary 2.4, hypothesis
H(p), (3.31) and hypothesis H; (i), we see that

{untn>1 € WHP(Q) is bounded .
So, by passing to a suitable subsequence if necessary, we may assume that
(3.33)  up = u, in WHP(Q) and u,, — u, in LP(Q) and in LP(9S) as n — oo.

In (3.32), we choose h = u, — u, € WP(£), pass to the limit as n — oo and
use (3.33). Then
nh_}rrgo (A(up), up, — us) =0

(3.34) —  u, — u, in WHP(Q) as n — oo (see Proposition 2.8), @ < u. .

So, if in (3.32) we pass to the limit as n — oo and use (3.34), then

(A(ux), h) + B(z)uP~ hdo :/ f(z,u)hdz for all h € WHP(Q), @ < us
o9 Q
=  u, €954 and u, =inf Sy .

Similarly we produce the biggest negative solution v, € —int C} of problem (1.1).
O

Now that we have extremal constant sign solutions, we can produce a nodal
(sign changing) solution of problem (1.1). This requires a strengthening of the con-
dition on the reaction f(z,-) near zero. Nevertheless, the new stronger requirement
does not alter the overall geometry of the problem.
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The new hypotheses on f(z,z), are the following:

(Hz) f:Q xR — Risa Carathéodory function, f(z,0) =0 for almost all z € Q,
hypotheses Hs (i), (ii), and (iii) are the same as the corresponding hypothe-
ses Hi (i), (ii), and (iii), and

f(z,7)

[z[1=22

(iv) EXa(g, ) < lim i(I)lf uniformly for almost all z € Q.
z—

In what follows, u, € int Cy and v, € —int C'} are the extremal constant sign

solutions of problem (1.1) produced in Proposition 3.8. Using them in the next
proposition, we produce a nodal solution.

Proposition 3.9. If hypotheses H(a), Ha and H(B) hold, then problem (1.1)
admits a nodal solution yo € [vs,us] N CH(Q).

Proof. Let u, € intCy and v, € —intCy be the two extremal constant sign
solutions produced in Proposition 3.8. We introduce the following modifications
of the reaction f(z,2) and the boundary term B(z)|x|[P~2x:

F(20.(2)) + loa (P20 ()i 7 < 0 (),
(3.35) k(z,z) =< f(z,2) + |z|P~ 22 if v.(2) < 2 < u(2),
f(z,us(2)) + us(2)PL if ue(2) <z
for all (z,2) € Q x R;
BNoe ()P 20a(2) i & < 0a(2),
(3.36) b(z,x) =14 B(2)|zP~ % if v.(2) < & < u(z),
B(2)us(z)P~t if ue(z) <z
for all (z,z) € 9Q x R.

We also consider the positive and negative truncations of k(z,-) and b(z, -):
ki(z,x) = k(z,22%) and bi(z,z) = b(z, £27F).

All these functions are Carathéodory. We set
K(z,x) = / k(z,s)ds, Ki(z,z)= / ki(z,s)ds,
0 0
B(z,x) = / b(z,s)ds, Bi(z,z)= / bi(z,s)ds.
0 0
We introduce the C'-functionals v, 14 : W1P(2) — R defined by
1
Olu) = / G(Du)dz + 2 |[ul? +/ B(z,u) do / K (2 u) dz,
Q p a0 Q
1
i (u) = / G(Du)dz + 2 |[ul? +/ Bi(z,u)do - / Ke(zu)dz,
Q p a0 Q

for all u € WHP(Q).
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In what follows, we use the following three order intervals in WP (Q):

I = [ve,us] = {u € WHP(Q) : va(2) < u(2) < us(2) for almost all z € Q},
Iy = [0,u.] = {u € WHP(Q) : 0 < u(z) < ux(2) for almost all z € Q},

u
I = [v.,0] = {u € W"P(Q) : v.(2) < u(z) <0 for almost all z € Q}.

Claim 1.
Ky CI, Ky, ={0,u.}, Ky_ = {v.,0}.

Let © € Ky. Then

(3.37) <A(u),h>+/Q|u|p*2uhdz+/mb(z,u)hda:/Qk(z,u)hdz.

In (3.37), first we choose h = (u — u,)™ € WHP(Q). Using (3.35) and (3.36),

we have

(A(u), (u —u) ™) + / uP ™ (u— u) Tdz + ()uP ™ (u — u,) Tdo
Q o0

- /Q[f(zau*) +ul ™ (u — i) Tz
= Uy), (0 — uy) T uP L (u— ) Tdz
= (A, (0= w) ) + [ )t
+ [ B(z)ul™(u — u.)Tdo (since u. € S4),
o0

= (a(Du)—a(Du*),Du—Du*)RNdz—i—/ (uP~t —uP ) (u—uy) dz=0,
{u>u.} {u>u.}

= [{u>u.}|n =0 ( see Lemma 2.3), hence u < u,.

If in (3.37) we choose h = (v, —v)T € WLP(Q), then reasoning in a similar
way, we obtain v, < u. Therefore we conclude that

Kw g I = [v*,u*].
In a similar way, we show that
Ky, €I, =[0,u,] and Ky CI=[v,,0].

The extremality of u, € int Cy and v, € —int C'; (see Proposition 3.8), implies
that
Ky, ={0,u,} and Ky ={0,v.}.

This proves Claim 1.

Claim 2. u, € int Cy and v, € —int C1 are local minimizers of 1.

Consider the functional ;. From (3.35), (3.36) and Corollary 2.4, it is clear
that 14 is coercive. Also, the Sobolev embedding theorem and the trace theorem
imply that ¢4 is sequentially weakly lower semicontinuous.
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So, we can find 4, € W1P(Q) such that
(3.38) Yy () = infpy (u) :u € WHP(Q)] = my.

As in the proof of Proposition 3.5, for ¢ € (0,1) small, we have tﬂl(q,ﬁ) < Us
(see Lemma 3.3 of Filippakis, Kristaly and Papageorgiou [7]) and then

Y4 (tia(q, 8)) <0 = ¢4(Ux) <0=14(0), hence i, #0.
From (3.38) we have
. € Ky, \{0} = U, =u, €intCy (see Claim 1).

Clearly ¥|c, = ¢y|c,. So, u, € intCy is a local C''(Q)-minimizer of .
Therefore, we can use Theorem 2.6 and conclude that w, € intCy is a local
WP (Q)-minimizer of 1.

Similarly for v, € —intC, using this time the functional ¢)_. This proves
Claim 2.

Without any loss of generality, we may assume that
(3.39) P(vs) < P(u).

The analysis is similar if the opposite inequality holds. Also, we may assume
that K is finite. Indeed, if Ky is finite, then Claim 1 and the extremality of u.
and v, imply that we have an infinity of nodal solutions. So, Claim 2 implies that
we can find p € (0,1) small such that

(3.40)  (vs) < P(us) <inflip(w) : [lu —ua|[ = pl = mp,  Jus = vul[ > p

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29). The func-
tional 1) is coercive (see (3.35),(3.36) and Corollary 2.4). So, we infer that

(3.41) 1) satisfies the PS-condition

(see Corollary 3.4). Then (3.40) and (3.41) above, permit the use of Theorem 2.1
(the mountain pass theorem) and find yo € WP(Q) such that
(

3.42) yo € Ky and m, < ¥(yo).
From (3.42), (3.40) and Claim 1, we have
Yo € [vs, us]\{vs,us} = o is a solution of (1.1) (see (3.35), (3.36)).

So, if we show that yo # 0, then because of the extremality of u, and v, we
have that yo is nodal.

Since yg is a critical point of ¥ of mountain pass type with reference points
uy € int Cy and v, € —int Cy (see (3.40)), we have
(3.43) ¥(yo) = inf max (7(t))

~eT 0<t<1
where I'={ycC(0,1], W(Q)) : v(0) = vs, (1) = us}

According to (3.43), in order to show the nontriviality of yo, it suffices to
produce 7, € I' such that |,, < 0. In what follows, we construct such a path.
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Let OBF" = {u € L9(Q) : |Jul|; = 1} and set
M=wWh(Q)noBL" and M,=MnNC*Q).
We introduce the following two sets of paths:

I'={5€eC(-1,1], M) : 4(—1) = —iu(q, B),7(1) = @ (q, B)},
={§ € O([-1,1], M) : %(—1) = —tus(q, ), 4(1) = i1 (g, B)}-

From Papageorgiou and Radulescu [23], we know that I'. is dense in I for the
relative Wl’q(Q)—‘Eopology. Then using Proposition 2.7, we see that given 4 > 0,
we can find 49 € I'. such that

(3.44) max ¢9(50(t)) < EXa(g, B) +9,

—1<t<1

where we recall that ¥(u) = || Dul|] + Joo B(2)|ul?do for all u € Wh(Q).

Hypothesis H(a) (iv) implies that given € > 0, we can find §; = d;(€) > 0 such
that

for all y € RN with |y < 6

(3.45) Gly) < 5;

Also, hypothesis Hj (iv) implies that we can find d2 > 0 and & > E;\Q(q,ﬁ)
such that

1
(3.46) —&olz|? < F(z,z) for almost all z € Q, all |z] < 09
q
Let 6 = min{dy, 02, 1}. Since 4y € I'., u, € int Cy, ve € —int Cy, we can find
€ (0,1) small such that, for all t € [-1,1], all z € Q,

(3.47) TH0(t) € [ve,us],  To(0)(2)] <6, T[DY(t)(2)] <6
Then for all ¢ € [—1,1], we have

wlrin(®) = [ GrDiO)ds +3 [ sEhPdo — [ Ferin(0)ds
Q P Joa Q
(see (3.35), (3.36) and (3.47))
C+ e . cT4 ~ . T4 .
<SS Do)y + - /8 Aot — 6o R0
(see (3.45), (3.46) and recall that ¢ < p,d < 1)

74 -

< 7 l@ha(e,B) +0) + € — &
(see (3.44) and recall that ||50(¢)||q = 1).
Since &y > E;\Q(q, B) and ¢€,0 > 0 are arbitrary, we can choose them small so that

Y(T30(t) <0 forall t € [—1,1].
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Let 70 = 790. This is a continuous path in WLP(Q) connecting —711(q, 3) and
Tt1(q, 8) and have

(3.48) |y < 0.

Let my € R be as in (3.38). We have see that

(3.49) Vi (ux) =my <0 =1v,(0).

Invoking the second deformation theorem (see, for example, Gasinski and Pa-
pageorgiou [8], p.628), we can find a deformation h: [0,1] x (YQ\K}, ) — ¢§
such that

(3.50) h(0,u) =u foralluei\Ky ,

(351) h(Lu\KD,) C ol

(3.52) Wy (h(t,u)) < Y4(h(s,u)) forall (t,s) €[0,1],s<t, allue ¢3_\K3+.
Since u, € Ky, , from Claim 1 and (3.49), we se that ¢}'" = {u.}. Also,

Vi (rii(g, B)) = P(rin(g, B)) = ¢¥(10(1)) <0 (see (3.48))
—  Tin(g, ) € YI\KY, = vI\{0}.
Therefore we can define
Y4 (t) = h(t,mi1(q, B))* forall t € [0,1].
This is a continuous path in WP (Q). we have

74 (0) = 71 (g, B) (see (3.50) and recall that (g, 8) € int C),
v4+(1) = h(1,7a1(g, B))" = us (see (3.51) and recall that 1} " = {u.}).

So, the continuous path in W1P(Q2) connects Tﬁl(q,B) and u,. Moreover, for
all ¢t € [0, 1], we have

Yy (1) = p(h(t, Ta (g, 8)7)

o (h(t, 7 (g, B))) (since ¥le, = ¥le,)
< ¢y (ria(g, B)) (see (3.52))

U(ria(g, B)) (since ¢ylo, = vleo,)

0 (see (3.48)),

(3.53) = 1|y, <0.

In a similar fashion we produce a continuous path in W?(£2) connecting —71 (g, 3)
and v, for which we have

(3.54) ¥l <.
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We concatenate g, v+, 7— and generate v, € v such that
Y]y, <0 (see (3.48), (3.53), (3.54)) = wyo #0.

So, yo € C*(Q) (nonlinear regularity theory, see Lieberman [14]) is a nodal
solution of (1.1). O

Therefore, we can state our first multiplicity theorem for problem (1.1) (reso-
nant problems).

Theorem 3.10. Assume that hypotheses H(a), Hy and H(B) hold. Then prob-
lem (1.1) has at least three nontrivial solutions

up €intCy, wo € —intCy and yo € [vo, ug] N CH(Q) nodal.

Remark 3.11. Three solutions theorems for coercive problems were also proved
by Liu [15] and Liu and Liu [16] (Dirichlet problems driven by the p-Laplacian),
and Kyritsi and Papageorgiou [11] (Neumann problems driven by p-Laplacian).
However, none of the aforementioned works allows for resonance to occur. Also,
they do not obtain nodal solutions, neither extremal constant sign solutions.

4. Semilinear problems

In this section we deal with the semilinear problem (that is, a(y) = y for all
y € RY). Under stronger regularity conditions on the reaction f(z,-), we can
improve Theorem 3.10 and produce a second nodal solution for a total of four
nontrivial solutions.

The problem under consideration is the following:

(4.1) —Au(z) = f(z,u(z)) in Q, g—z + B(2)u(z) =0 on 0.

The hypotheses on the reaction f(z,x), are the following:

(Hs) f:Q xR — Ris ameasurable function such that for almost all z €
f(2,0)=0, f(z,-) € CI(R) and

(i) |fi(z,2)] < a(2)(1+ |z|"~2) for almost all z € , all x € R, with a € L*(Q)
and 2 < r < 2%

(ii) limsup f(z,2)/a < A1 (2, 3) uniformly for almost all z € Q;
r—Foo

(iii) lirin [f(z,z)x — 2F(z,2)] = 400 uniformly for almost all z € Q;
T—> 00

(iv) there exist integer m > 2 and Jp > 0 such that

f1(2,0) = lir% f(z z) < 5\m+1(2,6) uniformly for almost all z € Q,
z—

fa/c(v 0) 7_é 5\m+1(2,ﬂ),
)\m(2>6) 2

F(z,z) > — 2 for almost all z € 2, all || < dg.
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Remark 4.1. Hypothesis Hs (i) implies that given p > 0, we can find £, > 0
such that for almost all z € Q, the function « — f(z,2) + £, 2 is nondecreas-
ing on [—p, p]. Note that now we have weakened a little the condition near zero
(see hypothesis Hj (iv) and compare with hypothesis Hj (iv), where the inequality
is strict with respect to ;\2(2, B)). The reason is the extra regularity structure
on f(z,-) and the semilinearity of the problem. A careful reading of the proof of
Proposition 3.9 reveals that the strict inequality in hypothesis Hs (iv) was used in
order to be able to apply Proposition 2.7 and conclude that yo # 0, therefore yq is
nodal. In the present semilinear smooth case, this can be avoided and instead use
critical groups. Indeed, as we explain in detail in the proof of the next result (The-
orem 4.2), the energy functional ¢ has a local linking at the origin with respect to
the orthogonal direct sum

HYQ) = Hy @ Hyi1, where Hy, =@ E(Ni(2,8)),  Hpsr = H,
and so

Cr(p,0) = k.4, Z for all k € Ny, d,,, = dim H,, (see (28])

m

(4.2) = Cy(¥,0) =0p4,,Z forall k€ Nyand d,, > 2 (see [19]).

m

On the other hand, ¥ is a critical point of mountain pass-type of 1, hence

(4.3) Cr(¥,y0) #0.

From (4.2) and (4.3) we have that yo is nontrivial, hence nodal.

Theorem 4.2. Assume that hypotheses Hs and H((3) hold. Then problem (4.1)
admits at least four nontrivial solutions

up €intCy, w9 € —intCy  and Yo,y € inten (g, [vo, ug] nodal.
Proof. From Theorem 3.10, we already have three nontrivial solutions,
up €int Cy, vy € —intCy  and yo € [vg, up] N ct (©2) nodal.

Of course we may assume that ug and vy are extremal (see Proposition 3.9).
Let p = max{||uo||sc, ||v0]|loc} and let &, > 0 be as postulated by the previous
remark. Then

Ago(2) + Epio(2) = £ 30()) + Eptio(2) < (2, u0(2)) + Eptio(2) (since yo < o)
= —Aug(z) + & up(z) for almost all z € €,
= Aug —y0)(2) <& (up —yo)(z) for almost all z € Q (ug — yo € C+\{0}),
=  wup—yo € int C} (by the maximum principle).
Similarly, we show that
Yo —vp € int Cy .

Therefore we have proved that

(44) Yo € intcl(ﬁ) [’Uo, UQ] .
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As before, ¢: H'(2) — R is the energy functional for problem (4.1). So
1 1
o(u) = =||Dul|3 + —/ B(2)|u|?do — / F(z,u)dz foralluc H'Y(Q).
2 2 Joo 0

Hypotheses Hsz imply that ¢ € C?(H(2)). Also, let ¢ € C*(H'(Q)) be the
truncated functional as in the proof of Proposition 3.9. From (3.35) and (3.36),
we have

¢|[v0,u0] = w'[vo,uo] .
So, (4.4) implies that
Cr(eler @y vo) = Cr(¥ler @) yo)  forall k>0
(4.5) = Ci(p,y0) = Cr(¥,yo) forallk >0
(since C1(Q) is dense in H'(R), see Palais [19]).

Recall that yg is a critical point of ¢ of mountain pass type (see the proof of
Proposition 3.9). Hence

Ci(¥,90) #0 = Cilp,40) # 0 (see (4.5))
= Ci(p,y0) =0k1Z forallk >0
(see Proposition 2.5 in Bartsch [5])
(4.6) = Ci(¥,y0) = 0r1Z forall k >0 (see (4.5)).

Let Hy = O7LE(N(2,6) and Hypy = HYy = ®izmi1 E(Ai(2,8)) (here
E(X\i(2,8)) € CH(Q) is the eigenspace corresponding to the eigenvalue \;(2, 3)).
We have

(4.7) HYQ) = H,, @ Hypys -

From hypothesis Hj (iv) we see that given e > 0, we can find cg = ¢g(€) > 0
such that

1
F(z,xz) < E(f;(z,O) +€)z® 4 colz|”  for almost all z € Q, all z € R.

Ifue ﬁm+1, then

o0 > 51DulB+ 5 [ Ayt do =5 [ fue0)uds = Sl —ew )
for some c1g > 0
> cy1||u|[* — e1ol[ul|” for some ¢11 > 0 (see hypothesis Hj (iv)).
Since r > 2, we can find §; € (0,1) such that
(4.8) o(u) >0 forall u € Hyyq with 0 < [Jul] < 8;.

Note that H,, C C* (ﬁ) is finite dimensional and so all norms are equivalent.
So, we can find d2 > 0 such that

(4.9) w€ Hpy,||ul| <02 = |u(z)| <& forallzeQ.
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Hence if u € Hyy,, ||u]| < 2, then

Am (2,
@10)  p <D+ [ petde- 222E

2 go
22

(see (4.8) and hypothesis Hj (iv)).

From (4.8) and (4.10) we infer that ¢ has a local linking with respect to the
orthogonal direct sum decomposition (4.7). Since ¢ € C2(H'()), from Proposi-
tion 2.3 of Su [28] we have

Ck(p,0) = 0k.4,,Z for all k >0, with d,,, = dim H,, > 2
(4.11) - Ck(w, O) = 6k,dmZ forall k> 0.

Recall that wug, vy are local minimizers of ¥ (see the proof of Proposition 3.9,
Claim 2). Hence

(412) Ck(l/},UO) = Ck(l/},vo) = 5]@’02 for all k& 2 0.
Finally recall that + is coercive (see (3.35), (3.36)). Therefore
(4.13) Cr(¥,00) = 0,0Z forallk >0.

Suppose that Ky = {0, ug,v0,yo}. Then from (4.6), (4.11), (4.12), (4.13) and
the Morse relation (see (2.6)) with ¢ = —1, we have

()% 4+ 2(=1)"+ (-1)! = (-1)° = (=1) =0, a contradiction.
So, there exists § € Ky \{0, ug, vo,yo}. We have
§ € [vo,uo] (see the proof of Proposition 3.9, Claim 1)
— ¢ € CYQ) (regularity theory) is a nodal solution of (4.1).
Moreover, as we did earlier for yg, we show that

e intcl(ﬁ) [UQ,UO] . O

5. Oscillatory reaction

In this section we return to the study of problem (1.1) and we consider a reaction
with no global growth restriction. Instead, we assume a kind of oscillatory behavior
for f(z,-) near zero. Also, we weaken the conditions on the map a(-).

The new hypotheses on the map a(y) and the reaction f(z,z) are the following:

(H(a)) a(y) = ao(|y|)y for all y € RY with ag(t) > 0 for all ¢ > 0, hypotheses
H(a)' (i), (ii), (iii) are the same as hypotheses H(a) (i), (ii), (iii), and

(iv) if Go(t) = fot sao(s) ds, then there exists g € (1, p] such that

qGo(t)

limsup ————= < 40
t—0+ &
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and

(Hy) f: QxR — Ris a Carathéodory function such that f(z,0) =0

for almost all z € 2, and

(i) for every p > 0, there exists a, € L>(Q)4 such that |f(z,z)| < a,(z) for
almost all z € Q, all |2| < p;

(ii) there exist functions wy € WP(Q) N C(Q) such that
w_(z) <eo <0<cy <wy(z) forallzeQ,
Afwo) + B ~Pw_ <0< A(wy) + B~ in WHP(Q)7,
F(mws(2) SO flzw(2) forall z € 9

(iii) there exist p € (1,¢) and ¢ > 0 such that

uF(z,2) = f(z,2)x > 0 for almost all z € 2, as 0 < |z < 4.

Remark 5.1. We stress that no global condition is imposed on f(z,-). In hypoth-
esis Hy (ii), the second inequality means that

Aw-) )+ [ B Puohde <0< (A + [ s hdo
o0 o0
for all h € WHP(Q) with h > 0. Evidently, hypothesis Hy (ii) is satisfied if there
exist c_ < 0 < ¢4 such that
f(z,c4) <0< f(z,c2) for almost all z € Q.

Hypotheses Hy (ii), (iii) dictate a kind of oscillatory behavior for f(z,-) near
zero.

Example 5.2. The following function satisfies hypotheses Hy. For the sake of
simplicity, we drop the z-dependence:

|z|# 22 — |z 22 if 2| < 1,
flx) = .
n(z) if |z > 1,
where n € C1(R) with n(41) = 0.
Proposition 5.3. Assume that hypotheses H(a)', Hy and H(B3) hold. Then prob-

lem (1.1) admits at least two nontrivial constant sign solutions
up € [0,we]Nint C+  and vo € [w—,0] N (—int Cy).
Proof. First we produce the positive solution.
To this end we introduce the following truncation-perturbation of f(z,x):
0 if z <0,
(5.1) ér(z,2) =13 f(z,x)+aP! if 0 <z < wi(z),
e ws(2) +wi (P! i wy(2) <.
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This is a Carathéodory function. We set E, (z, ) = Jy é+(z,5)ds and consider
the C'-functional 74 : WP(Q) — R defined, for all u € WP (Q), by

/GDu dz+—||u||p / B(z pdaf/EAJr(z,u)dz.
Q

From (5.1) it is clear that 7 is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ug € WHP(Q) such that

(5.2) 74 (uo) = inf[7y (u) : u € WHP(Q)].
Hypothesis Hy (iii) implies that
(5.3) F(z,x2) = ciz2|x|* for almost all z € Q, all |z] < J with ¢;2 > 0.

Also, hypothesis H(a)’ (iv) implies that we can find 6 € (0, min{4, c4}) and ¢13 >0
such that

(5.4) Gly) < =2 |y|? for all y € RY with |y| <6

Let t € (0,1) small such that ti, (¢, 3)(z) < 6 for all z € Q (recall 4y(q, 8) €
int Cy). Then from (5.3) and (5.4) we have

ticy3

74 (tin(g, B)) <

1Dl + = [ B, 5) dr = cutllin(a. B

(see (5.1)).
Since p < q¢ < p (see Hy (iv)), choosing ¢t € (0,1) even smaller if necessary, we
will have

T4 (tur (g, B)) <0 = 74(up) <0 =74(0) (see (5.2)), so ug # 0.

From (5.2) we have 7/ (ug) = 0, and so, for all h € WP (),
(5.5) (A(ug),h / [uo|P " 2ugh dz —|—/ B(2)(ud )P~ hdo = / éy(z,up)hdz.

In (5.5) we choose h = —uy; € W1P(Q). Then

ug |[F + Jug |5 < 0 (see Corollary 2.4 and (5.1)) == wug > 0,up # 0.
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Also, in (5.5) we choose h = (ug — w4 )" € WHP(Q). We have

(A(ug), (uo —w4)™) + /Q ub ™ (ug — wy ) Tdz + /89 B(z)ub ™ (ug — wy ) tdo

= /QéJr(z,uo)(uo —w,)tdz
= /Q[f(zaﬂhr) + wzfl](uo —wy)Tdz (see (5.1))

< (Aw), =)+ [ wl wow) e+ [ pEen o) do
(see hypothesis Hy (ii))

— (Alw) = Alws), (o= w) )+ [ @ =l o —wa)

+ | BE)ug = wh ) (uo —wy)tdo <0
= [{uo > w+}|N8:QO (see Lemma 2.3), hence up < wy.
So, we have proved that
(5.6)  up €[0,wy] ={uecWhP(Q):0 < u(z) <wy(z) for almost all z € Q}

From (5.1) and (5.6), equation (5.5) becomes
(A(up), h) + B(z)ub ' hdo = / f(z,ug) hdz for all h € WHP(Q),
o0 Q

and this implies

—diva(Dug(z)) = f(z,u0(2)) for almost all z € Q,
ong

+B(z)ub™" =0 on 99 (see Papageorgiou and Radulescu [21]).

Hypotheses Hy (i), (iii) imply that given p > 0, we can find £, > 0 such that
(5.8) flz,x)x+&, |z >0 for almost allz € Q, all |z] < p.

From (5.7) and the nonlinear regularity theory of Lieberman [14], p.320, we
have ug € C;\{0}. Let p = |Juo||co and let £, > 0 be as in (5.8). Then from (5.7),
we have

diva(Dug(2)) < €yuo(z)P~* for almost all z € Q
= wp € int C} (see Pucci and Serrin [27], pp. 111,120).

For the negative solution, we introduce the Carathéodory function

fzw-(2) +w-(2)P2w-(2) if o <w_(2),
(5.9) é_(z,2) =< fl(z,2)+|zP %0 if w_(z) < <0,
0 if 0 < .
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Weset E_(z,x) = [; é_(z,s)ds, and consider the C'-functional 7_ : WP(Q) — R
defined, for all u € W1P(Q), by

7 = uzlu”—1 2)(u")Pdo — L (z,u) dz
) = [ GDwds+ Sl p/mm)( pdo— [ B-(su)dz.

Working as above with the functional 7 and suing (5.9), we produce a negative
solution vy € —int Cy. O

We introduce the following Carathéodory function:

F w0 (2) + o (2P (2) it < w_(2)
(5.10)  é(z,2) =< f(z,2) + |z[P~%x ifw_(z) <z < wy(z),
F(or w5 (2)) + w0y (2 if wy (2) < .

We set E(z,x) = Jy €(z,s)ds and consider the C'-functional 7 : W'P(Q) — R
defined, for all u € W1P(Q), by

1 1 .
Fu) = / G(Du) dz + H|Jul2 + —/ B()|ulPdo — / B, u) dz.
Q p P Joo Q
As in the proof of Proposition 3.9 (see Claim 1), using (5.10), we show that
(5.11) K; C [w_,wq].

Hypothesis Hy (iii) implies the presence of a concave (that is a p-superlinear
as ¢ — 0) term (see 5.3) and this leads to the following result due to Papageorgiou
and Réadulescu [23] (the first result in this direction for a more restricted class of
functionals, goes back to Moroz [17]).

Proposition 5.4. If hypotheses H(a)', Hy and H(B) hold, then Ci(7,0) =0 for
all k = 0.

Now we are ready for our second multiplicity theorem for problem (1.1). Note
that this theorem, we do not provide information concerning the sign of the third
solution.

Theorem 5.5. Assume that hypotheses H(a)', Hy and H(f3) hold. Then prob-
lem (1.1) admits at least three nontrivial solutions:

up € [0,wy ] NintCy, v € [w_,0]N (—intCy), o € [w_,w,]NCHRQ).
Proof. From Proposition 5.3 we already have two constant sign solutions
up € int [0,wy]NintCy  and vy € [w_,0] N (—int Cy).

From the proof of Proposition 5.3 we know that
e wug is a minimizer of the functional 7.

e g is a minimizer of the functional 7_.
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From (5.1), (5.9) and (5.10), we see that
7ﬁ+|c+ = 7/\'|C+ and 7ﬁ_|_c+ = 7/\—|—C+-

So, ug € int Cy and vy € —int C are also local C'!(Q)-minimizers of 7. The-
orem 2.6 implies that they are also local WP (Q)-minimizers of 7. Without any
loss of generality we may assume that 7(vg) < 7(ug) (the analysis is similar if the
opposite inequality holds). Also, we assume that K is finite or otherwise we al-
ready have an infinity of distinct nontrivial solutions for problem (1.1) (see (5.11)).
Since ug is a local minimizer of 7, we can find p € (0,1) small such that

(5.12) #(vo) < (up) < infl#(w) : [lu — uol| = pl = my, [vo — uo|| > p (see [1]).

The functional 7 is coercive (see (5.10)) and so we know that it satisfies the
PS-condition (see Corollary 3.4). Using this fact and (5.12), we see that we can
apply Theorem 2.1 (the mountain pass theorem) and produce yo € W(Q) such
that

(5.13) yo € K3 C Jw_,wy] (see (5.11)) and m, < 7(yo)-
From (5.12) and (5.13), we see that

Yo ¢ {Uo,uo}-

Also since yq is a critical point of 7 of mountain pass type, we have

(5.14) C1(7,50) #0.

From Proposition 5.4 we know that
(5.15) Crp(7,0) =0 forall k>0

Comparing (5.14) and (5.15), we infer that yo # 0. Finally the nonlinear
regularity theory (see [14]), implies that yo € [w_,w;]NC(Q) (see also (5.13)). O

If we return to the stronger conditions H (a) for the map a(-) and we impose a
unilateral growth condition f(z,-), we can improve Theorem 5.5 and provide sign
information for the third solution.

The new hypotheses on the reaction f(z,z) are the following:

(Hs) f: QxR — Ris a Carathéodory function such that f(z,x)

(i) for every p > 0, there exists a, € L>(Q)4 such that |f(z,z)| < a,(z) for
almost all z € Q, all |z| < p;

(ii) there exist functions wy € WP(Q) N C(Q) such that

w_(2) <co <0<cy <wy(z) forall z€Q,
Alw=) + B(2)w-[P"Pw- <0 < Alwy) + B(z)wh " in WHP(Q)",
f(z,wy(2) <0< (z,w (2)) for almost all z € Q;
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(iii) there exist ¢13 > 0 and r € (p, p*) such that
f(z,x)x = —crs|z|” for almost all z € Q all z € R;

(iv) with 8 = 18 € L>(Q)4, we have

~ 3 ) PR f(Z,J))
¢Aa(g, B) < llinigf 2

uniformly for almost all z € 2.

Remark 5.6. Hypotheses Hj (iii) is the extra unilateral growth condition imposed
on f(z,-). Note that hypothesis Hs (iv) permits also (¢ — 1)-linear growth near
zero f(z,-). This is more general than hypothesis Hy (iii), where pu < g.

Hypotheses Hj (iii), (iv) imply that we can find &, > ¢ o (q, B) and c14 > 0 such
that
fz,x)x = & |x|? — cra|z|” for almost all z € Q, all z € R.

This leads to the following auxiliary Robin problem:

—diva(Du(z)) = &lu(2)|7 2 u(z) — cralu(2)|"2u(z) in Q,

(5.16) 86: n ﬁ(z)|u(z)|p_2u(z) -0 on 0f).

Proposition 3.6 implies that problem (5.16) has a unique positive solution u4 €
int C; and since (5.16) is odd, we have that v_ = —uy € int Cy is the unique
negative solution of (5.16). Also, we have

uyr <u forallue Sy and v <w_ forall v e S_ (see Proposition 3.7).

Having these bounds and reasoning as in the proof of Proposition 3.8, we pro-
duce extremal constant sign solutions.

Proposition 5.7. If hypotheses H(a), Hs and H(3) hold, then problem (1.1) has a
smallest positive solution u, € int C and a biggest negative solution v, € —int C..

These extremal constant sign solutions, leads to a nodal solution (see the proof
of Proposition 3.9).

Proposition 5.8. If hypotheses H(a), Hs and H(B) hold, then problem (1.1) ad-
mits a nodal solution yo € [vs,u.] N CH(Q).

So, we can state the third multiplicity theorem for problem (1.1).

Theorem 5.9. Assume that hypotheses H(a), Hs and H(B) hold. Then prob-
lem (1.1) admits at least three nontrivial solutions:

up € [0,wy ] NintCy, v € [w_,0]N (—intCy), yo € [w_,w]NCHQ).
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6. p-Laplacian equations

In this section, we deal with equations driven by the p-Laplacian, that is a(y) =

ly[P=2y for all y € RY. So, now the differential operator is (p — 1)-homogeneous

and we can exploit this fact to drop the unilateral growth condition on f(z,-)

(see Hs (iil)) and return to the case of a reaction with no global growth restriction.
So, the problem under consideration is the following:

(6.1) — Apu(z) = f(z,u(z)) in €, Ju +B()|ulP2u=0 on dNQ.
on,,

Recall 5 5
- |Du|p*2—u for all u € WHP(Q).
on,, on

The new hypotheses on the reaction f(z,x) are the following:

(Hg) f: QxR —= Risa Carathéodory function such
that f(z,2) = 0 for almost all z € Q, and

(i) for every p > 0, there exists a, € L>(Q)4 such that |f(z,z)| < a,(z) for
almost all z € Q, all |z| < p;

(ii) there exist functions wy € WP(Q) N C(Q) such that

w_(z) <eo <0< wi(z) foralzeQ,
Afw_) + B P~Pw_ <0< A(wy) + Bt~ in WHP(Q)7,
f(z,wy(2)) <0< f(z,w_(z)) for almost all z € 2;

(iii) we have

A2(p, ) < lim inf GL)

<l
|z|p—22 Hﬁjgp |x|p—22

uniformly for almost all z € Q.
In this case to produce extremal constant sign solutions, we do not pass through

an auxiliary problem (see (5.16)), but instead we argue directly.

Proposition 6.1. Assume that hypotheses Hg and H () hold. Then problem (6.1)
admits a smallest positive solution u. € intCy and a biggest negative solution
v € —int Cy.

Proof. As in the proof of Proposition 3.8, we can find {u,}n<1 C S+ such that

inf S, = inf w, .

n>1

Thanks to (3.31), {un}n>1 € WHP(Q) is bounded and so we may assume that

(6.2) Up > uy in WHP(Q)  and  w, — u in LP(Q) and in LP(9Q).
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As in the proof of Proposition 3.8, using (6.2), we show that u. € Sy U{0}.
We need to show that u. # 0. Arguing by contradiction, suppose that u, = 0.
Let yn, = un/||un]| n = 1. Then ||y,|| = 1, y, = 0 for all n > 1. So, we may
assume that
(6.3) Yn — yin WHP(Q) and y, — yin LP(Q) and in LP(0Q),y > 0.

We have, for all n > 1, and all h € W1P(Q),
Ny (un
) 5o

(6.4) (A(yn), h) + 895(2)1/?7 hdff—/QW :

In (6.4) we choose h = y,, —y € WP(Q), pass to the limit as n — oo and use (6.3).
Then

lim (A(yn),yn —y) =0,

n—oo

(6.5) —  y, =y in W'P(Q) (see Proposition 2.8), hence ||y|| =1,y > 0.
Hypotheses Hg (i), (iii) imply that we can find ¢15 > 0 such that
|f(z,2)| < c15]x|P~" for almost all z € Q, all |z| < M3 (see (3.31))

Nf(un)

T —1 crr . .
— {Hun”p—l }n>1 C L? (Q) is bounded (1/p+1/p'=1)

Passing to a subsequence if necessary and using hypothesis Hg (iii) (recall we
assume u, = 0), we obtain

Nf(un) W

(6.6) TanlP-T B 9yP~tin LP (Q) with Aa(p, ) <9(z) <no for almost all z€Q

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 14). Returning
to (6.4), passing to the limit as n — oo and using (6.5) and (6.6), we obtain

(A(y), h) + B(z)y?  hdo = / IyP " hdz  for all h € WHP(Q),
o0 Q

and thus

ou
ony,
From (6.6) and (6.7) it follows that y must be nodal, which contradicts (6.5).

Therefore v, € S and u, =int S4.
Similarly we produce v, € —int C; the biggest negative solution of (6.1). O

(6.7) —Apy(2) =I(2)y(2)P~" for almost all z € Q, +B(2)yPt =00n 9Q.

Using these extremal constant sign solutions and reasoning as in the proof of
Proposition 3.9, we have the final multiplicity theorem.

Theorem 6.2. Assume that hypotheses Hg and H((3) hold. Then problem (6.1)
admits at least three nontrivial solutions:

ug € [0,wy]NintCy, wvo € [w_,0] N (=int Cy), yo € [w_,wy]NCH(Q) nodal.
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