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An L1-type estimate for Riesz potentials

Armin Schikorra, Daniel Spector, and Jean Van Schaftingen

Abstract. In this paper we establish new L1-type estimates for the clas-
sical Riesz potentials of order α ∈ (0, N):

‖Iαu‖LN/(N−α)(RN ) ≤ C ‖Ru‖L1(RN ;RN ).

This sharpens the result of Stein and Weiss on the mapping properties
of Riesz potentials on the real Hardy space H1(RN ) and provides a new
family of L1-Sobolev inequalities for the Riesz fractional gradient.

1. Introduction and main results

Let N ≥ 2 and define the Riesz potential Iα of order α ∈ (0, N) by its action on a
measurable function u via the convolution

Iαu(x) ≡ (Iα ∗ u)(x) := 1

γ(α)

ˆ
RN

u(y)

|x− y|N−α dy,

whenever it is well-defined. Here, γ(α) = πN/2 2α Γ(α/2)/Γ((N − α)/2) is a nor-
malization constant (see [20], p. 117) that ensures that the Riesz potentials satisfy
the semigroup property

Iα+βu = IαIβu, for α, β > 0 such that α+ β < N,

for u in a suitable class of functions.
The study of the mapping properties of Iα on Lp(RN ) was initiated by Sobolev,

who proved the following fundamental theorem about integrals of the potential type
in 1938 ([17], p. 50).

Theorem 1 (Sobolev). Let 0 < α < N and 1 < p < N/α. Then there exists a
constant C = C(p, α,N) > 0 such that

‖Iαu‖LNp/(N−αp)(RN ) ≤ C ‖u‖Lp(RN )(1.1)

for all u ∈ Lp(RN ).
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In particular we see that Sobolev’s result concerns Lp estimates for Riesz po-
tentials when 1 < p < N/α, and strictly excludes the case p = 1. Indeed, it is
well known that no such inequality as (1.1) can hold in this regime – one may con-
sider, for example (cf. [20], p. 119), an approximation of the identity (for explicit
construction one can see Section 3 of this paper). Then the right-hand side of the
inequality in Theorem 1 stays bounded while pointwise

Iαρε(x) → Iα(x) =
1

γ(α)

1

|x|N−α ,

which does not belong to the Lebesgue space LN/(N−α)(RN ), and Fatou’s lemma
gives the desired contradiction.

It is then natural to ask if there is a substitute for the inequality (1.1). One
possibility was given by Stein and Weiss in [21] (p. 31), where they demonstrated
that if one replaces Lp(RN ) with the real Hardy space

Hp(RN ) :=
{
u ∈ Lp(RN ) : Ru ∈ Lp(RN ;RN )

}

(where Ru := DI1u is the vector-valued Riesz transform), one can extend the
validity of Theorem 1 to the regime p = 1. For p ∈ (1,∞), Hp(RN ) = Lp(RN ),
but for p = 1 the Hardy space H1(RN ) is strictly contained in L1(RN ). Their
result implies the following theorem.

Theorem 2 (Stein–Weiss). Let 0 < α < N and 1 ≤ p < N/α. Then there exists
a constant C = C(p, α,N) > 0 such that

‖Iαu‖LNp/(N−αp)(RN ) ≤ C
(‖u‖Lp(RN ) + ‖Ru‖Lp(RN ;RN )

)

for all u ∈ Hp(RN ).

Actually the approach to Sobolev inequalities due to Gagliardo (page 120 of [9])
and Nirenberg (page 128 of [13]) gives another replacement to Theorem 1 for
1 ≤ α < N . Indeed, written in the language of potentials, one sees that the
results [9] and [13] assert the existence of a constant C > 0 such that

‖I1u‖LN/(N−1)(RN ) ≤ C ‖Ru‖L1(RN ;RN ),

for all u ∈ C∞
c (RN ) such that Ru ∈ L1(RN ;RN ). Therefore, if 1 ≤ α < N ,

the preceding inequality and Theorem 1 applied to Iαu = Iα−1I1u allows us to
deduce that

‖Iαu‖LN/(N−α)(RN ) ≤ C ‖I1u‖LN/(N−1)(RN ) ≤ C ‖Ru‖L1(RN ;RN ),

for all u ∈ C∞
c (RN ) such that Ru ∈ L1(RN ;RN ).

The main result of this paper is the following theorem demonstrating that this
L1-type estimate holds for the Riesz potential of any order α ∈ (0, N).
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Theorem A. Let N ≥ 2 and 0 < α < N . Then there exists a constant C =
C(α,N) > 0 such that

‖Iαu‖LN/(N−α)(RN ) ≤ C ‖Ru‖L1(RN ;RN )

for all u ∈ C∞
c (RN ) such that Ru ∈ L1(RN ;RN).

Remark 3. Theorem A is false when N = 1, see Counterexample 6 in Section 3.

Our motivation for such an inequality can be found in the study of certain
fractional partial differential equations introduced in [16], where existence results
are demonstrated for a continuous spectrum of such equations parameterized by
the Riesz fractional gradient

Dαu := DI1−αu,

for 0 < α < 1. With this notation, an alternative formulation of Theorem A is the
following.

Theorem A′. Let N ≥ 2 and 0 < α < 1. Then there exists a constant C =
C(α,N) > 0 such that

‖u‖LN/(N−α)(RN ) ≤ C ‖Dαu‖L1(RN ;RN )(1.2)

for all u ∈ C∞
c (RN ).

Theorem A′ is a natural analogy to the Sobolev inequalities known for the frac-
tional Laplacian when p > 1 and integer order derivatives for p ≥ 1, though one
might have guessed such a theorem from several additional factors. Firstly, related
results for Besov spaces with the same degree of fractional differentiability have
long been known in the literature (see e.g. Theorem 2 in [18], Theorem 4 in [12],
Theorem 1.4 in [7], Lemma D.2 in [5],Theorem 8.3 in [26]). A second factor sug-
gesting such an inequality is the observation that the asymptotics of the constant
in Theorem 1 are O(1/(p− 1)) as p→ 1, which agrees with the asymptotics of the
operator norm of the vector-valued Riesz transform R : Lp(RN ) → Lp(RN ;RN ).
Finally, there is the more recent work of the second author and R. Garg [10], [11]
which shows that the logarithmic potential INu, defined for u ∈ C∞

c (RN ) by

INu(x) =
1

|SN−1|
ˆ
RN

log
( 1

|x− y|
)
u(y) dy,

has, for any u with1
´
RN u = 0, the representation

INu(x) =
1

|SN−1|
ˆ
RN

x− y

|x− y| ·Ru(y) dy.

Therefore, when α = N one has the corresponding estimate

‖INu‖L∞(RN ) ≤ C ‖Ru‖L1(RN ;RN ).

1For this class of functions, this is equivalent to asking Ru ∈ L1(RN ;RN ).
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Our proof of Theorem A is quite direct, and relies only on the boundedness
of the Riesz transform and of the classical maximal function operator on Lp for
1 < p < +∞. We do not rely upon any Sobolev type embedding nor any multiplier
theorem that goes beyond the Riesz transform. Here the crucial observation is that
the vector-valued Riesz transform is curl-free, i.e.,

∂Rju

∂xi
=
∂Riu

∂xj

for all i, j ∈ {1, . . . , N}. In fact, an interesting point to note is that the same proof
shows that one has

‖IαF‖LN/(N−α)(RN ;RN ) ≤ C ‖F‖L1(RN ;RN )(1.3)

for vector fields F ∈ L1(RN ;RN ) that satisfy either curlF = 0 or divF = 0, the
pair of which is reminiscent of the conditions for inclusion in the real Hardy
space [21].

The remainder of the paper is organized as follows. In Section 2 we give proofs
of the main results. In Section 3 we discuss several more intricate questions in
greater detail, including connections of our result with more technical results from
the literature, an open question in regard to a sharp result in the scale of Lorentz
spaces, and the details of the counterexample mentioned in Remark 3.

2. Proofs of the main results

We now prove Theorem A. In the course of the proof, we will use C to designate a
constant that may depend upon α and N , though the constant may change from
line to line.

Proof of Theorem A. Let u ∈ C∞
c (RN ) be such that Ru ∈ L1(RN ;RN ). We claim

it suffices to show that, for j ∈ {1, . . . , N}, one has the existence of a uniform
constant C = C(α,N) > 0 such that, for every ϕ ∈ C∞

c (RN ),

∣∣∣
ˆ
RN

Rju Iαϕ
∣∣∣ ≤ C ‖Ru‖L1(RN ;RN ) ‖ϕ‖LN/α(RN )(2.1)

Indeed, using the identity v =
∑N

i=1 −R2
i v, the boundedness of Ri : L

N/(N−α)(RN )
→ LN/(N−α)(RN ) , and duality we have

‖Iαu‖LN/(N−α)(RN ) ≤ C

N∑
i=1

‖RiIαu‖LN/(N−α)(RN ) = C

N∑
i=1

sup
‖ψi‖LN/α≤1

ˆ
RN

RiIαu ψi.

Now, Fubini’s theorem implies that

ˆ
RN

RiIαu ψi =

ˆ
RN

Riu Iαψi .
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Therefore we can estimate

‖Iαu‖LN/(N−α)(RN ) ≤ C

N∑
i=1

sup
‖ψi‖LN/α≤1

‖Ru‖L1(RN ;RN ) ‖ψi‖LN/α(RN )

= C

N∑
i=1

sup
‖ψi‖LN/α≤1

‖Ru‖L1(RN ;RN ) ‖ψi‖LN/α(RN ) ≤ C ‖Ru‖L1(RN ;RN ),

which is the thesis.
We therefore proceed to prove inequality (2.1). We follow the strategy of [24].

Without loss of generality, we take j = 1 and write x = (x′, xN ). We now introduce
a family of mollifiers: we take ρ ∈ C∞

c (RN ) such that supp ρ ⊂ B(0, 1), and
ˆ
RN

ρ = 1.

Then we define ρε(x) = ρ(x/ε)/εN and ϕε(x) = (ϕ ∗ ρε)(x) so that
ˆ
RN−1

R1u(x
′, xN)Iαϕ(x′, xN) dx′=

ˆ
RN−1

R1u(x
′, xN) [Iαϕ(x′, xN)−Iαϕε(x′, xN)] dx′

+

ˆ
RN−1

R1u(x
′, xN ) Iαϕε(x

′, xN ) dx′

=: I (ε) + II (ε).

For the first term we begin with the bound

I (ε) ≤ ‖R1u(·, xN )‖L1(RN−1) ‖Iαϕ(·, xN )− Iαϕε(·, xN )‖L∞(RN−1).

Now, the fundamental theorem of calculus implies that

Iαϕε(x) − Iαϕδ(x) =

ˆ ε

δ

∂

∂r
ρr ∗ Iαϕ(x) dr =

ˆ ε

δ

ˆ
RN

σr(x− y) Iαϕ(y) dy dr,

where

σr(z) :=
∂ρr
∂r

(z) =
1

rN

[
−∇ρ

(z
r

)
· z
r2

− N

r
ρ
(z
r

) ]
.

Thus sending δ → 0, Lebesgue’s dominated convergence theorem implies

Iαϕε(x) − Iαϕ(x) =

ˆ ε

0

ˆ
RN

σr(x− y) Iαϕ(y) dy dr.

As before, Fubini’s theorem yields the identity

Iαϕε(x)− Iαϕ(x) =

ˆ ε

0

ˆ
RN

Iασr(x− y)ϕ(y) dy dr.

Next, we claim that one has the pointwise inequality

|Iασr(z)| ≤ C

(r + |z|)N−α+1
.(2.2)
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We distinguish two cases: |z| ≤ 2r and |z| > 2r. When |z| ≤ 2r, one has

|Iασr(z)| = C

rN

∣∣∣
ˆ
B(0,r)

∇ρ ( zr
) · z

r2 + N
r ρ

(
z
r

)
|z − y|N−α dy

∣∣∣

≤ C

rN+1

ˆ
B(0,r)

1

|z − y|N−α dy ≤ C

rN−α+1
.

Then |z| ≤ 2r implies 1/rN−α+1 ≤ 3N−α+1/(|z|+ r)N−α+1, which allows us to
deduce the inequality (2.2) in this regime. Next, when |z| > 2r, we have

Iασr(z) =
C

rN

ˆ
B(0,r)

div
(
ρ
(
y
r

)
y
r

)
|z − y|N−α dy =

1

rN

ˆ
B(0,r)

− ρ
(
y
r

)
y
r

|z − y|N−α+1
· y − z

|y − z| dy,

which upon the change of variables w = y/r yields the bound

|Iασr(z)| ≤
ˆ
B(0,1)

C

|z − rw|N−α+1
dw

=
1

|z|N−α+1

ˆ
B(0,1)

C

| z|z| − r
|z|w|N−α+1

dw.

Finally, the assumption that we are in the regime |z| > 2r implies both that the
last integral is bounded and in a similar manner to before that 1/|z|N−α+1 ≤
C/(|z|+ r)N−α+1, thus proving (2.2).

Therefore, we can estimate

‖Iαϕ(·, xN )− Iαϕε(·, xN )‖L∞(RN−1) ≤ C sup
x′∈RN−1

ˆ ε

0

ˆ
RN

|ϕ(y)|
(r + |x− y|)N−α+1

dy dr.

By the Hölder inequality on R
N−1, we deduce that

‖Iαϕ(·, xN )−Iαϕε(·, xN )‖L∞(RN−1)

≤ C sup
x′∈RN−1

ˆ ε

0

ˆ
R

(ˆ
RN−1

|ϕ(y′, yN)|N/α dy′
)α/N

·
( ˆ

RN−1

1

(r +
√|xN − yN |2 + |x′ − y′|2)N+N/(N−α) dy

′
)1−α/N

dyN dr.

If we set

Φ(yN ) =
( ˆ

RN−1

|ϕ(y′, yN)|N/α dy′
)α/N

,

and can establish the estimate

sup
x′∈RN−1

( ˆ
RN−1

1

(r +
√|xN − yN |2 + |x′ − y′|2)N+N/(N−α) dy

′
)1−α/N

≤ C

(r + |xN − yN |)2−α/N ,
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then we would have the bound

‖Iαϕ(·, xN )− Iαϕε(·, xN )‖L∞(RN−1) ≤ C

ˆ ε

0

ˆ
R

Φ(yN)

(r + |xN − yN |)2−α/N dyN dr.

However, let us observe that

r + |xN − yN |+ |x′ − y′| ≤ C
(
r +

√
|xN − yN |2 + |x′ − y′|2 ),

and soˆ
RN−1

1

(r +
√|xN − yN |2 + |x′ − y′|2)N+N/(N−α) dy

′

≤
ˆ
RN−1

C

(r + |xN − yN |+ |x′ − y′|)N+N/(N−α) dy
′

=
C

(r + |xN − yN |)N+N/(N−α)

ˆ
RN−1

1

(1 + |x′−y′|
r+|xN−yN | )

N+N/(N−α)
dy′.

Integrating in spherical coordinates with center at x′, we find

ˆ
RN−1

1

(1 + |x′−y′|
r+|xN−yN |)

N+N/(N−α) dy
′ = C

ˆ ∞

0

tN−2

(1 + t
r+|xN−yN | )

N+N/(N−α) dt

= C (r + |xN − yN |)N−1

ˆ ∞

0

(t′)N−2

(1 + t′)N+N/(N−α) dt
′,

from which the result follows.
Finally, considering the integrand on dyadic annuli we have

ˆ ε

0

ˆ
R

Φ(yN )

(r + |xN − yN |)2−α/N dyN dr

=

ˆ ε

0

∑
n∈Z

ˆ
2nr<|xN−yN |<2n+1r

Φ(yN )

(r + |xN − yN |)2−α/N dyNdr

≤
ˆ ε

0

∑
n

2n+1 r

(1 + 2n)2−α/N
1

r2−α/N

 
B(xN ,2n+1r)

Φ(yN ) dyNdr

≤
∑
n

2n+1

(1 + 2n)2−α/N

(ˆ ε

0

1

r1−α/N
dr
)
MΦ(xN ),

where MΦ : R → R is the Hardy–Littlewood maximal function of Φ : R → R. We
have thus

(2.3) I (ε) ≤ C ‖R1u(·, xN )‖L1(RN−1) ε
α/N MΦ(xN ).

Now for II (ε) we apply the fundamental theorem of calculus to write

II (ε) = −
ˆ
RN−1

ˆ ∞

xN

∂

∂xN
R1u(x

′, t) Iαϕε(x′, xN ) dt dx′.
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We use the fact that the vector-valued Riesz transform is curl-free, i.e.,

∂Rju

∂xi
=
∂Riu

∂xj

for all i, j ∈ {1, . . . , N} and Fubini’s theorem to deduce that

−
ˆ
RN−1

ˆ ∞

xN

∂

∂xN
R1u(x

′, t) Iαϕε(x′, xN ) dt dx′

= −
ˆ
RN−1

ˆ ∞

xN

∂

∂x1
RNu(x

′, t) Iαϕε(x′, xN ) dt dx′

=

ˆ ∞

xN

(
−
ˆ
RN−1

∂

∂x1
RNu(x

′, t) Iαϕε(x′, xN ) dx′
)
dt.

The important point now is that N �= 1, allowing us to integrate by parts and
obtain

ˆ ∞

xN

(
−
ˆ
RN−1

∂

∂x1
RNu(x

′, t) Iαϕε(x′, xN ) dx′
)
dt

=

ˆ ∞

xN

ˆ
RN−1

RNu(x
′, t)

∂

∂x1
Iαϕε(x

′, xN ) dx′ dt .

Thus,

II (ε) ≤ ‖RNu‖L1(RN ) sup
x′∈RN−1

∣∣∣∂Iαϕε
∂x1

(x′, xN )
∣∣∣.

In a similar manner to the first case, we see that

∂Iαϕε(x
′, xN )

∂x1
=

ˆ
RN

∂ρε(y)

∂x1
Iαϕ(x − y) dy =

ˆ
RN

Iα
∂ρε
∂x1

(y)ϕ(x − y) dy,

where we again have the pointwise estimate

∣∣∣Iα ∂ρε
∂x1

(y)
∣∣∣ ≤ C

(ε+ |y|)N−α+1
.

Therefore, Hölder’s inequality in R
N−1 with an analogous estimate to the preceding

yields the bound

sup
x′∈RN−1

∣∣∣∂Iαϕε
∂x1

(x′, xN )
∣∣∣ ≤ C

ˆ
R

Φ(xN − yN )

(ε+ |yN |)2−α/N dyN .

Finally, the dyadic splitting can again be employed to enable one to conclude

sup
x′∈RN−1

∣∣∣∂Iαϕε
∂x1

(x′, xN )
∣∣∣ ≤ C

MΦ(xN )

ε1−α/N
,
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so that

II (ε) ≤ C ‖RNu‖L1(RN )

MΦ(xN )

ε1−α/N
.(2.4)

Choosing ε = ‖RNu‖L1(RN )/‖R1u(·, xN )‖L1(RN−1), equations (2.3) and (2.4)
imply that

ˆ
RN−1

R1u(x
′, xN ) Iαϕ(x

′, xN ) dx′

≤ C ‖R1u(·, xN )‖1−α/N
L1(RN−1)

‖RNu‖α/NL1(RN )
MΦ(xN ).

We now integrate this estimate with respect to xN on R to obtain, by the classical
Hölder inequality,

ˆ
RN

R1u Iαϕ ≤ C ‖RNu‖α/NL1(RN )

(ˆ
R

‖R1u(·, xN )‖L1(RN−1) dxN

)1−α/N

·
( ˆ

R

(MΦ(xN )
)N/α

dxN

)α/N
.

By the classical maximal function theorem,

ˆ
R

(MΦ(xN )
)N/α

dxN ≤ C

ˆ
R

Φ(xN )N/α dxN = C

ˆ
RN

|ϕ(x)|N/αdx,

which completes the proof of the claim and hence the theorem. �

Remark 4. Maximal function bounds on the integrals on slices of the type (2.3)
and (2.4) were introduced by Chanillo and Van Schaftingen [8].

Proof of Theorem A′. Theorem A′ can be proven in a similar manner, beginning
with an estimate for u in the space LN/(N−α)(RN ). �

3. Connections, improvements, counterexamples

3.1. Connections to several results in the literature

We have here given a proof of Theorem A (and one can similarly prove Theorem A′)
using elementary arguments, though there are other possible proofs that could be
employed. We mention several here for both historical propriety, and to satisfy the
curious reader. In Section 1, we have seen that such a result can be deduced directly
from classical and well-known results in the case α ≥ 1. However, a second method
that works for all values of α ∈ (0, N) can be used if one is willing to accept the
embeddings of W 1,1(RN ) and BV (RN ) into Besov spaces explored in Theorem 2
in [18], Theorem 4 in [12],Theorem 1.4 in [7], Lemma D.2 in [5], Theorem 8.3
in [26]. One then obtains the result by a combination of these embeddings with
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the embeddings of Besov spaces into Triebel–Lizorkin spaces, for example if N ≥ 2
and α ∈ (0, 1) and denoting

1

p
= 1− α

N
,

one has that 1 < p ≤ 2, and so

‖v‖Ḟ 1−α
p,2 (RN ) ≤ C ‖v‖Ḃ1−α

p,p (RN ) ≤ C ‖Dv‖L1(RN ;RN ),

which from a characterization of the space Ḟ 1−α
p,2 and taking v = I1u implies

‖Iαu‖Lp(RN ) ≤ C ‖Ru‖L1(RN ;RN ),

which is the inequality in Theorem A while the inequality in Theorem A′ follows
in a similar manner taking v = I1−αu.

Finally, as in the original proof of the authors, one can argue by duality. This
method was pioneered by Bourgain and Brezis in the works [2], [3], [4], who were
interested in constructing bounded solutions to the divergence equation

− divY = f

in the critical regime f ∈ LN . The dual result to this is a stronger form of the
inequality of Gagliardo and Nirenberg mentioned in the introduction. A simpler
proof of this result was given by the third author in [24], [25], [26], which is the
basic idea behind the slicing argument we have utilized. We also mention that
when α > 1/2 one has a stronger inequality in the spirit of the work of Bourgain
and Brezis via the analogous estimates by Bousquet, Mironescu, and Russ [6] in
the scale of Triebel–Lizorkin spaces.

3.2. Lorentz space improvements

As in the case of embeddings for Sobolev spaces, Theorems A and A′ are sharp in
the scale of Lp spaces, though can be improved when one considers the finer scale
of Lorentz spaces. For instance, in Theorem 1 one can replace the LNp/(N−αp)(RN )
norm on the left hand side with that of the Lorentz space LNp/(N−αp),p(RN ) (see
page 139 in [14]). While Lp,p(RN ) = Lp(RN ), a smaller second parameter in
the Lorentz spaces is more than microscopic improvement. One can easily see
this fact by comparing Trudinger’s result [23] that Du ∈ LN (RN ) implies u is
exponentially integrable (and not in general bounded) with Stein’s result [19] that
Du ∈ LN,1(RN ) implies that u is continuous.

In fact, we can show an estimate in the Lorentz space LN/(N−α),q(RN ) for any
q > 1 as follows. Let q′ = N/ε for some ε > 0. Then we utilize inequality (2.1) to
find a C = C(ε,N) > 0 such that

∣∣∣
ˆ
RN

Rju Iεϕ
∣∣∣ ≤ C ‖Ru‖L1(RN ;RN ) ‖ϕ‖LN/ε(RN ),
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which combined with the boundedness of Iα−ε : Lq(RN ) → LN/(N−α),q(RN ) (p. 139
in [14]) implies

‖Iαu‖LN/(N−α),q(RN ) ≤ ‖Iεu‖Lq(RN ) ≤ C ‖Ru‖L1(RN ;RN ),

which gives the desired result.

When α > 1, then Iαu = Iα−1I1u, and ‖I1u‖LN/(N−1),1 ≤ C‖Ru‖L1 (which
follows from the works [1], [22]), which combined with the previously cited convo-
lution estimates of O’Neil (see page 139 of [14]) shows that one can obtain q = 1
in this regime. Thus, the critical case here is the endpoint q = 1 and α ∈ (0, 1),
for which none of the preceding techniques can obviously applied to obtain the
estimate. This leads to the following open question concerning a sharper L1-type
estimate.

Open Question 5. Let N ≥ 2 and suppose 0 < α < 1. Does there exists a
constant C = C(α,N) > 0 such that

‖Iαu‖LN/(N−α),1(RN ) ≤ C ‖Ru‖L1(RN ;RN )

for all u ∈ C∞
c (RN ) such that Ru ∈ L1(RN ;RN)?

3.3. Counterexamples

We now provide the counterexample mentioned in Remark 3, substantiating our
claim that Theorem A is false when N = 1. Note the similarity to the standard
counterexample for the failure of Sobolev’s result in L1 discussed in the introduc-
tion.

Counterexample 6. Suppose one had such an inequality as given in Theorem A.
Then by density one obtains the inequality for all functions in the real Hardy
space H1(R). Now, in this setting Ru = Hu is the Hilbert transform, which by
our assumption, the identity H2 = −I, and boundedness on L1/(1−α)(R) would
imply

‖Iαv‖L1/(1−α)(R) ≤ C ‖HIαv‖L1/(1−α)(R) ≤ C ‖v‖L1(R),

for all v ∈ H1(R). Now taking vε(x) = ρ((x − 1)/ε)/ε− ρ((x + 1)/ε)/ε with ρ as
above (vε is the difference of two translated approximations of the identity), one
has vε ∈ H1(R) (as before, for a smooth, compactly supported function a necessary
and sufficient condition for this inclusion is that

´
vε = 0), the right-hand side stays

bounded, and

Iαvε(x) → 1

γ(α)

( 1

|x− 1|1−α − 1

|x+ 1|1−α
)
,

which fails to be locally L1/(1−α) near −1 and +1, and so an application of Fatou’s
lemma gives one the desired contradiction.
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The paper [15] contains an example of a one-dimensional failure of an embed-
ding of certain Besov spaces into BV (R). The preceding counterexample combined
with the known embeddings for Besov spaces previously discussed gives another
such example.
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