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Interpolation of data

by smooth nonnegative functions

Charles Fefferman, Arie Israel, and Garving K. Luli

Abstract. We prove a finiteness principle for interpolation of data by
nonnegative Cm and Cm−1,1 functions. Our result raises the hope that
one can start to understand constrained interpolation problems in which,
e.g., the interpolating function F is required to be nonnegative.

Introduction

Continuing from [18], we prove a finiteness principle for interpolation of data by
nonnegative smooth functions.

Let us recall some notation used in [18].

We fix positive integers m, n. We write Cm (Rn) to denote the Banach space
of all real valued locally Cm functions F on R

n, for which the norm

‖F‖Cm(Rn) := sup
x∈Rn

max
|α|≤m

|∂αF (x)|

is finite.

We will also work with the function space Cm−1,1(Rn). A given continuous
function F : Rn → R belongs to Cm−1,1(Rn) if and only if its distribution deriva-
tives ∂βF belong to L∞(Rn) for |β| ≤ m. We may take the norm on Cm−1,1(Rn)
to be

‖F‖Cm−1,1(Rn) = max
|β|≤m

ess. sup
x∈Rn

∣∣∂βF (x)
∣∣ .

Expressions c (m,n), C (m,n), k (m,n), etc. denote constants depending only
on m, n; these expressions may denote different constants in different occurrences.
Similar conventions apply to constants denoted by C (m,n,D), k (D), etc.

If X is any finite set, then # (X) denotes the number of elements in X .

We are now ready to state our main theorem.
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Theorem 1. For large enough k# = k (m,n) and C# = C (m,n), the following
hold.

(a) (Cm flavor). Let f : E → [0,∞) with E ⊂ R
n finite. Suppose that for

each S ⊂ E with #(S) ≤ k#, there exists FS ∈ Cm (Rn) with norm
‖FS‖Cm(Rn) ≤ 1, such that FS = f on S and FS ≥ 0 on R

n.

Then there exists F ∈ Cm(Rn) with norm ‖F‖Cm(Rn) ≤ C#, such that F = f
on E and F ≥ 0 on R

n.

(b) (Cm−1,1 flavor). Let f : E → [0,∞) with E ⊂ R
n arbitrary. Suppose that

for each S ⊂ E with #(S) ≤ k#, there exists FS ∈ Cm−1,1(Rn) with norm
‖FS‖Cm−1,1(Rn) ≤ 1, such that FS = f on S and FS ≥ 0 on R

n.

Then there exists F ∈ Cm−1,1(Rn) with norm ‖F‖Cm−1,1(Rn) ≤ C#, such
that F = f on E and F ≥ 0 on R

n.

Our interest in Theorem 1 arises in part from its possible connection to the in-
terpolation algorithm of Fefferman–Klartag [15], [16]. Given a function f : E → R

with E ⊂ R
n finite, the goal of [15], [16] is to compute a function F ∈ Cm(Rn)

such that F = f on E, with ||F ||Cm(Rn) as small as possible up to a factor C(m,n).
Roughly speaking, the algorithm in [15], [16] computes such an F using O(N logN)
computer operations, where N = #(E). The algorithm is based on an easier ver-
sion [10] of Theorem 1. Our present result differs from the easier version in that we
have added the hypothesis FS ≥ 0 and the conclusion F ≥ 0. Accordingly, The-
orem 1 raises the hope that we can start to understand constrained interpolation
problems, in which e.g. the interpolant F is required to be nonnegative everywhere
on R

n.

For results related to Theorem 1, we refer the reader to our paper [18] and
references therein.

In the following sections, we will set up the notation; then we will recall a main
theorem in [18] and use it to prove Theorem 1.

This paper is part of a literature on extension, interpolation, and selection of
functions, going back to H. Whitney’s seminal work [33], and including fundamen-
tal contributions by G. Glaeser [19], Y. Brudnyi and P. Shvartsman [4], [6]–[9],
and [23]–[31], J. Wells [32], E. Le Gruyer [21], and E. Bierstone, P. Milman, and
W. Paw�lucki [1]–[3], as well as our own papers [10]–[17]. See e.g. [14] for the history
of the problem, as well as Zobin [34], [35] for a related problem.
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tional Research Station, the Fields Institute, and the College of William and Mary
for hosting workshops on interpolation and extension. We are grateful also to the
Air Force Office of Scientific Research, the National Science Foundation, the Office
of Naval Research, and the U.S.-Israel Binational Science Foundation for financial
support.

We are also grateful to Pavel Shvartsman and Alex Brudnyi for their comments
on an earlier version of our manuscript, and to all the participants of the Eighth
Whitney Problems Workshop for their interest in our work.
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1. Notation and preliminaries

1.1. Background notation

Fix m, n ≥ 1. We will work with cubes in R
n; all our cubes have sides parallel

to the coordinate axes. If Q is a cube, then δQ denotes the sidelength of Q. For
real numbers A > 0, AQ denotes the cube whose center is that of Q, and whose
sidelength is AδQ.

A dyadic cube is a cube of the form I1 × I2 × · · · × In ⊂ R
n, where each Iν

has the form [2k · iν , 2k · (iν + 1)) for integers i1, . . . , in, k. Each dyadic cube Q
is contained in one and only one dyadic cube with sidelength 2δQ; that cube is
denoted by Q+.

We write Bn (x, r) to denote the open ball in R
n with center x and radius r,

with respect to the Euclidean metric.
We write P to denote the vector space of all real-valued polynomials of degree

at most (m− 1) on R
n. If x ∈ R

n and F is a real-valued Cm−1 function on a
neighborhood of x, then Jx(F ) (the “jet” of F at x) denotes the (m− 1)

rst
order

Taylor polynomial of F at x, i.e.,

Jx(F )(y) =
∑

|α|≤m−1

1

α!
∂αF (x) · (y − x)

α
.

Thus, Jx(F ) ∈ P .
For each x ∈ R

n, there is a natural multiplication 	x on P (“multiplication of
jets at x”) defined by setting

P 	x Q = Jx (PQ) for P,Q ∈ P .

If F is a real-valued function on a cube Q, then we write F ∈ Cm(Q) to denote
that F and its derivatives up to m-th order extend continuously to the closure
of Q. For F ∈ Cm(Q), we define

‖F‖Cm(Q) = sup
x∈Q

max
|α|≤m

|∂αF (x)| .

The function space Cm−1,1(Q) and the norm ‖ · ‖Cm−1,1(Q) are defined analo-
gously.

If F ∈ Cm(Q) and x belongs to the boundary of Q, then we still write Jx(F )
to denote the (m− 1)

rst
degree Taylor polynomial of F at x, even though F isn’t

defined on a full neighborhood of x ∈ R
n.

Let S ⊂ R
n be non-empty and finite. A Whitney field on S is a family of

polynomials
�P = (P y)y∈S (each P y ∈ P),

parametrized by the points of S.
We write Wh(S) to denote the vector space of all Whitney fields on S. For

�P = (P y)y∈S ∈ Wh(S), we define the seminorm

∥∥�P∥∥
Ċm(S)

= max
x,y∈S,(x �=y),|α|≤m

|∂α (P x − P y) (x)|
|x− y|m−|α| .
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(If S consists of a single point, then ‖ �P‖Ċm(S) = 0.)

We also need an elementary fact about convex sets. See [22].

Helly’s theorem. Let K1, . . . ,KN ⊂R
D be convex. Suppose that Ki1∩ · · · ∩KiD+1

is nonempty for any i1, . . . , iD+1 ∈ {1, . . . , N}. Then K1 ∩ · · · ∩KN is nonempty.

1.2. Shape fields

Let E ⊂ R
n be finite. For each x ∈ E, M ∈ (0,∞), let Γ(x,M) ⊆ P be a (possibly

empty) convex set. We say that �Γ = (Γ(x,M))x∈E,M>0 is a shape field if for
all x ∈ E and 0 < M ′ ≤ M < ∞, we have

Γ (x,M ′) ⊆ Γ(x,M).

Let �Γ = (Γ(x,M))x∈E,M>0 be a shape field and let Cw, δmax be positive real

numbers. We say that �Γ is (Cw, δmax)-convex if the following condition holds:

Let 0 < δ ≤ δmax, x ∈ E, M ∈ (0,∞), P1, P2, Q1, Q2 ∈ P . Assume that

(1.1) P1, P2 ∈ Γ(x,M);

(1.2) |∂β(P1 − P2)(x)| ≤ Mδm−|β| for |β| ≤ m− 1;

(1.3) |∂βQi(x)| ≤ δ−|β| for |β| ≤ m− 1 for i = 1, 2;

(1.4) Q1 	x Q1 + Q2 	x Q2 = 1.

Then

(1.5) P := Q1 	x Q1 	x P1 + Q2 	x Q2 	x P2 ∈ Γ(x,CwM).

1.3. Finiteness principle for shape fields

We recall a main result proven in [18].

Theorem 2. For a large enough k# determined by m, n, the following holds. Let
�Γ0 = (Γ0(x,M))x∈E,M>0 be a (Cw, δmax)-convex shape field and let Q0 ⊂ R

n be a
cube of sidelength δQ0 ≤ δmax. Also, let x0 ∈ E∩5Q0 and M0 > 0 be given. Assume

that for each S ⊂ E with #(S) ≤ k# there exists a Whitney field �PS = (P z)z∈S

such that ∥∥�PS
∥∥
Ċm(S)

≤ M0,

and
P z ∈ Γ0 (z,M0) for all z ∈ S.

Then there exist P 0 ∈ Γ0 (x0,M0) and F ∈ Cm (Q0) such that the following hold,
with a constant C∗ determined by Cw, m, n:

• Jz(F ) ∈ Γ0 (z, C∗M0) for all z ∈ E ∩Q0.

• |∂β
(
F − P 0

)
(x)| ≤ C∗M0 δ

m−|β|
Q0

for all x ∈ Q0, |β| ≤ m.

• In particular,
∣∣∂βF (x)

∣∣ ≤ C∗M0 for all x ∈ Q0, |β| = m.
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2. Cm interpolation by nonnegative functions

In this section, c, C, C′, etc. denote constants determined by m and n. These
symbols may denote different constants in different occurrences. For x ∈ R

n and
M > 0, define

(2.1) Γ∗(x,M) =

{
P ∈ P : There exists F ∈ Cm(Rn) with ‖F‖Cm(Rn) ≤ M ,

F ≥ 0 on R
n, Jx(F ) = P .

}

It is not immediately clear how to compute Γ∗; we will return to this issue
in a later section. Let E ⊂ R

n be finite, and let f : E → [0,∞). Define �Γf =
(Γf (x,M))x∈E,M>0, where

(2.2) Γf (x,M) = {P ∈ Γ∗(x,M) : P (x) = f(x)}.

Lemma 1. �Γf is a (C, 1)-convex shape field.

Proof. It is clear that �Γf is a shape field, i.e., each Γf (x,M) is convex, and M ′ ≤ M
implies Γf (x,M ′) ⊆ Γf (x,M). To establish (C, 1)-convexity, suppose we are given
the following:

(2.3) 0 < δ ≤ 1, x ∈ E, M > 0;

(2.4) P1, P2 ∈ Γf (x,M) satisfying

(2.5)
∣∣∂β (P1 − P2) (x)

∣∣ ≤ Mδm−|β| for |β| ≤ m− 1;

(2.6) Q1, Q2 ∈ P satisfying

(2.7)
∣∣∂βQi(x)

∣∣ ≤ δ−|β| for |β| ≤ m− 1, i = 1, 2, and

(2.8) Q1 	x Q1 + Q2 	x Q2 = 1.

Set

(2.9) P = Q1 	x Q1 	x P1 + Q2 	x Q2 	x P2.

We must prove that

(2.10) P ∈ Γf (x,CM) .

Thanks to (2.4), we have

(2.11) P1(x) = f(x) and P2(x) = f(x),

and there exist functions F1, F2 ∈ Cm(Rn) such that

(2.12) ‖Fi‖Cm(Rn) ≤ M (i = 1, 2),

(2.13) Fi ≥ 0 on R
n (i = 1, 2), and

(2.14) Jx (Fi) = Pi (i = 1, 2).
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We fix F1, F2 as above. By (2.8), we have |Qi(x)| ≥ 1/
√

2 for i = 1 or for i = 2.
By possibly interchanging Q1 and Q2, and then possibly changing Q1 to −Q1, we
may suppose that

(2.15) Q1(x) ≥ 1√
2
.

For small enough c0, (2.7) and (2.15) yield

(2.16) Q1(y) ≥ 1

10
for |y − x| ≤ c0 δ.

Fix c0 as in (2.16). We introduce a Cm cutoff function χ on R
n with the

following properties.

(2.17) 0 ≤ χ ≤ 1 on R
n; χ = 0 outside Bn (x, c0δ); χ = 1 in a neighborhood of x;

(2.18)
∣∣∂βχ

∣∣ ≤ Cδ−|β| on R
n, for |β| ≤ m.

We then define

θ̃1 = χ ·Q1 + (1 − χ) and θ̃2 = χ ·Q2.

These functions satisfy the following: θ̃i ∈ Cm(Rn) and |∂β θ̃i| ≤ Cδ−|β| on R
n for

|β| ≤ m, i = 1, 2; θ̃1 ≥ 1/10 on R
n; Jx(θ̃i) = Qi for i = 1, 2; outside Bn (x, c0δ) we

have θ̃1 = 1 and θ̃2 = 0. Setting

θi = θ̃i · (θ̃21 + θ̃22)−1/2

for i = 1, 2, we find that

(2.19) θi ∈ Cm(Rn) and
∣∣∂βθi

∣∣ ≤ Cδ−|β| on R
n for |β| ≤ m, i = 1, 2;

(2.20) θ21 + θ22 = 1 on R
n;

(2.21) Jx (θi) = Qi for i = 1, 2 (here we use (2.8)); and

(2.22) outside Bn (x, c0δ) we have θ1 = 1 and θ2 = 0.

Now set

(2.23) F = θ21F1 + θ22F2 = F1 + θ22 (F2 − F1) (see (2.20)).

Clearly F ∈ Cm(Rn). By (2.14), we have

Jx(F2 − F1) = P2 − P1;

hence (2.5) yields the estimate

∣∣∂β (F2 − F1) (x)
∣∣ ≤ CMδm−|β| for |β| ≤ m− 1.

Together with (2.12), this tells us that

∣∣∂β (F2 − F1)
∣∣ ≤ CMδm−|β| on Bn (x, c0δ) for |β| ≤ m.
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Recalling (2.19), we deduce that

∣∣∂β
(
θ22 · (F2 − F1)

)∣∣ ≤ CMδm−|β| on Bn(x, c0δ) for |β| ≤ m.

Together with (2.12) and (2.23), this implies that

|∂βF | ≤ CM on Bn(x, c0δ),

since 0 < δ ≤ 1 (see (2.3)). On the other hand, outside Bn(x, c0δ) we have F = F1

by (2.22), (2.23); hence |∂βF | ≤ CM outside Bn(x, c0δ) for |β| ≤ m, by (2.12).
Thus, |∂βF | ≤ CM on all of Rn for |β| ≤ m, i.e.,

(2.24) ‖F‖Cm(Rn) ≤ CM.

Also, from (2.13) and (2.23) we have

(2.25) F ≥ 0 on R
n;

and (2.9), (2.14), (2.21), (2.23) imply that

(2.26) Jx(F ) = Q1 	x Q1 	x P1 + Q2 	x Q2 	x P2 = P.

Since F ∈ Cm(Rn) satisfies (2.24), (2.25), (2.26), we have

(2.27) P ∈ Γ∗ (x,CM) .

Moreover,

(2.28) P (x) = (Q1(x))
2
f(x) + (Q2(x))

2
f(x) = f(x),

thanks to (2.8), (2.9), (2.11).

From (2.27), (2.28) we conclude that P ∈ Γf (x,CM), completing the proof of
Lemma 1. �

Lemma 2. Let (P x)x∈E be a Whitney field on the finite set E, and let M > 0.
Suppose that

(2.29) P x ∈ Γ∗(x,M) for each x ∈ E,

and that

(2.30)
∣∣∂β(P x − P x′

)(x)
∣∣ ≤ M |x− x′|m−|β|

for x, x′ ∈ E and |β| ≤ m− 1.

Then there exists F ∈ Cm(Rn) such that

(2.31) ‖F‖Cm(Rn) ≤ CM ,

(2.32) F ≥ 0 on R
n, and

(2.33) Jx(F ) = P x for all x ∈ E.
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Proof. We modify slightly Whitney’s proof [33] of the Whitney extension theorem.
We say that a dyadic cube Q ⊂ R

n is “OK” if #(E ∩ 5Q) ≤ 1 and δQ ≤ 1. Then
every small enough Q is OK (because E is finite), and no Q of sidelength δQ > 1
is OK. Also, let Q,Q′ be dyadic cubes with 5Q ⊂ 5Q′. If Q′ is OK, then also Q
is OK. We define a Calderón–Zygmund (or CZ) cube to be an OK cube Q such that
no Q′ that strictly contains Q is OK. The above remarks imply that the CZ cubes
form a partition of Rn; that the sidelengths of the CZ cubes are bounded above
by 1 and below by some positive number; and that the following condition holds:

(2.34) “Good geometry”: if Q,Q′ ∈ CZ and 65
64Q∩65

64Q
′ = ∅, then 1

2δQ ≤ δQ′ ≤ 2δQ.

We classify CZ cubes into three types as follows. Q ∈ CZ is of

Type 1. If E ∩ 5Q = ∅.

Type 2. If E ∩ 5Q = ∅ and δQ < 1.

Type 3. If E ∩ 5Q = ∅ and δQ = 1.

Let Q ∈ CZ be of Type 1. Since Q is OK, we have #(E ∩ 5Q) ≤ 1. Hence
E ∩ 5Q is a singleton, E ∩ 5Q = {xQ}. Since P xQ ∈ Γ∗ (xQ,M), there exists
FQ ∈ Cm(Rn) such that

(2.35) ‖FQ‖Cm(Rn) ≤ M, FQ ≥ 0 on R
n, JxQ (FQ) = P xQ .

We fix FQ as in (2.35).

Let Q ∈ CZ be of Type 2. Then δQ+ ≤ 1 but Q+ is not OK; hence # (E ∩ 5Q+)
≥ 2. We pick xQ ∈ E ∩ 5Q+. Since P xQ ∈ Γ∗ (xQ,M), there exists FQ ∈ Cm(Rn)
satisfying (2.35). We fix such an FQ.

Let Q ∈ CZ be of Type 3. Then we set FQ = 0. In place of (2.35), we have the
trivial results

(2.36) ‖FQ‖Cm(Rn) = 0 and FQ ≥ 0 on R
n.

Thus, we have defined FQ for all Q ∈ CZ, and we have defined xQ ∈ E ∩ 5Q+

for all Q of Type 1 or Type 2. Note that

(2.37) Jx (FQ) = P x for all x ∈ E ∩ 5Q.

Indeed, if Q is of Type 1, then (2.37) follows from (2.35) since E ∩ 5Q = {xQ}.
If Q is of Type 2 or Type 3, then (2.37) holds vacuously since E ∩ 5Q = ∅. Now
suppose Q,Q′ ∈ CZ and 65

64Q ∩ 65
64Q

′ = ∅. We will show that

(2.38)
∣∣∂β (FQ − FQ′)

∣∣ ≤ CMδ
m−|β|
Q on 65

64Q ∩ 65
64Q

′ for |β| ≤ m.

To see this, suppose first that Q or Q′ is of Type 3. Then δQ or δQ′ is equal
to 1, hence δQ ≥ 1/2 by (2.34). Consequently, (2.38) asserts simply that

(2.39)
∣∣∂β (FQ − FQ′)

∣∣ ≤ CM on 65
64Q ∩ 65

64Q
′ for |β| ≤ m,

and (2.39) follows at once from (2.35), (2.36). Thus, (2.38) holds if Q or Q′ is of
Type 3.
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Suppose that neither Q nor Q′ is of Type 3. Then xQ ∈ E ∩ 5Q+, xQ′ ∈
E ∩ 5(Q′+), 65

64Q ∩ 65
64Q

′ = ∅, 1
2δQ ≤ δQ′ ≤ 2δQ. Consequently,

(2.40) |xQ − xQ′ | ≤ CδQ, and

(2.41) |x− xQ|, |x− xQ′ | ≤ CδQ for all x ∈ 65
64Q ∩ 65

64Q
′.

Applying (2.35) to Q and to Q′, we find that, for x ∈ 65
64Q ∩ 65

64Q
′, |β| ≤ m,

(2.42)
∣∣∂β (FQ − P xQ) (x)

∣∣ ≤ CM |x− xQ|m−|β| ≤ CMδ
m−|β|
Q , and

(2.43)
∣∣∂β (FQ′ − P xQ′ ) (x)

∣∣ ≤ CM |x− xQ′ |m−|β| ≤ CMδ
m−|β|
Q ,

Also, (2.30), (2.40), (2.41) imply that

(2.44)
∣∣∂β (P xQ − P xQ′ ) (x)

∣∣ ≤ CMδ
m−|β|
Q for x ∈ 65

64
Q ∩ 65

64
Q′, |β| ≤ m.

(Recall, P xQ − P xQ′ is a polynomial of degree at most m− 1.)

Estimates (2.42), (2.43), (2.44) together imply (2.38) in case neither Q nor Q′

is of Type 3. Thus, (2.38) holds in all cases.

Next, as in Whitney [33], we introduce a partition of unity

(2.45) 1 =
∑

Q∈CZ

θQ on R
n,

where each θQ ∈ Cm(Rn), and

(2.46) suppθQ ⊂ 65
64Q, |∂βθQ| ≤ Cδ

−|β|
Q for |β| ≤ m, θQ ≥ 0 on R

n.

We define

(2.47) F =
∑

Q∈CZ

θQFQ on R
n.

Thus, F ∈ Cm
loc(R

n) since CZ is a locally finite partition of R
n, and F ≥ 0

on R
n since θQ ≥ 0 and FQ ≥ 0 for each Q. Let x̂ ∈ R

n, and let Q̂ be the one and
only CZ cube containing x̂. Then for |β| ≤ m, we have

(2.48) ∂βF (x̂) = ∂βFQ̂ (x̂) +
∑

Q∈CZ

∂β
(
θQ · (FQ − FQ̂)

)
(x̂).

A given Q ∈ CZ enters into the sum in (2.48) only if x̂ ∈ 65
64Q; there are at

most C such cubes Q, thanks to (2.34). Moreover, for each Q ∈ CZ with x̂ ∈ 65
64Q,

we learn from (2.38) and (2.46) that

∣∣∂β(θQ · (FQ − FQ̂))(x̂)
∣∣ ≤ CMδ

m−|β|
Q ≤ CM for |β| ≤ m, since δQ ≤ 1.

Since also |∂βFQ̂(x̂)| ≤ CM for |β| ≤ m by (2.35), (2.36), it now follows from (2.48)

that |∂βF (x̂)| ≤ CM for all |β| ≤ m. Here, x̂ ∈ R
n is arbitrary. Thus, F ∈ Cm(Rn)

and ||F ||Cm(Rn) ≤ CM .
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Next, let x ∈ E. For any Q ∈ CZ such that x ∈ 65
64Q, we have Jx(FQ) = P x,

by (2.37). Since support θQ ⊂ 65
64Q for each Q ∈ CZ, it follows that Jx(θQFQ) =

Jx(θQ) 	x P x for each Q ∈ CZ, and consequently,

Jx(F ) =
∑

Q∈CZ

Jx (θQFQ) =
[ ∑
Q∈CZ

Jx (θQ)
]
	x P x = P x, by (2.45).

Thus, F ∈ Cm(Rn), ‖F‖Cm(Rn) ≤ CM , F ≥ 0 on R
n, and Jx(F ) = P x for each

x ∈ E.
The proof of Lemma 2 is complete. �

Theorem 3 (Finiteness principle for nonnegative Cm interpolation). There exist
constants k#, C, depending only on m, n, such that the following holds.

Let E ⊂ R
n be finite, and let f : E → [0,∞). Let M0 > 0. Suppose that for

each S ⊂ E with #(S) ≤ k#, there exists �PS = (P x)x∈S ∈ Wh(S) such that

• P x ∈ Γf (x,M0) for each x ∈ S, and

• |∂β(P x − P y)(x)| ≤ M0|x− y|m−|β| for x, y ∈ S, |β| ≤ m− 1.

Then there exists F ∈ Cm(Rn) such that

• ‖F‖Cm(Rn) ≤ CM0,

• F ≥ 0 on R
n, and

• F = f on E.

Proof. Suppose first that E ⊂ 1
2Q0 for a cube Q0 of sidelength δQ0 = 1. Pick

any x0 ∈ E. (If E is empty, our theorem holds trivially.)
Let S ⊂ E with #(S) ≤ k#.

Our present hypotheses supply the Whitney field �PS required in the hypotheses
of Theorem 2.

Hence, recalling Lemma 1 and applying Theorem 2, we obtain

(2.49) P 0 ∈ Γf (x0, CM0) and F 0 ∈ Cm(Q0)

such that

(2.50) Jx(F 0) ∈ Γf (x,CM0) for all x ∈ E ∩Q0 = E

and

(2.51) |∂β(P 0 − F 0)| ≤ CM0 on Q0, for |β| ≤ m.

From (2.1), (2.2), (2.49), we have |∂βP 0(x0)| ≤ CM0 for |β| ≤ m− 1.

Since P 0 is a polynomial of degree at most m − 1, and since x0 ∈ E ⊂ Q0

with δQ0 = 1, it follows that |∂βP 0| ≤ CM0 on Q0 for |β| ≤ m.
Together with (2.51), this tells us that

(2.52) |∂βF 0| ≤ CM0 on Q0 for |β| ≤ m.

Note that F 0 need not be nonnegative.
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Set P x = Jx(F 0) for x ∈ E. Then

P x ∈ Γf (x,CM0) for x ∈ E, and(2.53) ∣∣∂β (P x − P y) (x)
∣∣ ≤ CM0 |x− y|m−|β|

for x, y ∈ E, |β| ≤ m− 1.(2.54)

By Lemma 2, there exists F ∈ Cm (Rn) such that

‖F‖Cm(Rn) ≤ CM0,(2.55)

F ≥ 0 on R
n, and(2.56)

Jx(F ) = P x for each x ∈ E.(2.57)

From (2.53) and (2.2), we have P x(x) = f(x) for each x ∈ E; hence, (2.57)
implies that

(2.58) F (x) = f(x) for each x ∈ E.

Our results (2.55), (2.56), (2.58) are the conclusions of our theorem. Thus, we
have proven Theorem 3 in the case in which E ⊂ 1

2Q0 with δQ0 = 1.

To pass to the general case (arbitrary finite E ⊂ R
n), we set up a parti-

tion of unity 1 =
∑

ν χν on R
n, where each χν ∈ Cm(Rn) and χν ≥ 0 on R

n,
‖χν‖Cm(Rn) ≤ C, support χν ⊂ 1

2Qν , with δQν = 1, and with any given point
of Rn belonging to at most C of the Qν .

For each ν, we apply the known special case of our theorem to the set Eν =
E ∩ 1

2Qν and the function fν = f |Eν . Thus, we obtain Fν ∈ Cm(Rn), with
‖Fν‖Cm(Rn) ≤ CM0, Fν ≥ 0 on R

n, and Fν = f on E ∩ 1
2Qν .

Setting F =
∑

ν χνFν ∈ Cm
loc(R

n), we verify easily that

F ∈ Cm(Rn), ‖F‖Cm(Rn) ≤ CM0, F ≥ 0 on R
n, and F = f on E.

This completes the proof of Theorem 3. �

Remark. Conversely, we make the following trivial observation: let E ⊂ R
n

be finite, let f : E → [0,∞), and let M0 > 0. Suppose F ∈ Cm(Rn) satisfies
‖F‖Cm(Rn) ≤ M0, F ≥ 0 on R

n, F = f on E. Then for each x ∈ E, we have

• P x = Jx(F ) ∈ Γf (x,M0) by (2.1), (2.2); and

• |∂β(P x − P y)(x)| ≤ CM0|x− y|m−|β| for x, y ∈ E, |β| ≤ m− 1.

Therefore, for any S ⊂ E, the Whitney field �PS = (P x)x∈S ∈ Wh(S) satisfies

• P x ∈ Γf (x,CM0) for x ∈ S, and

• |∂β(P x − P y)(x)| ≤ CM0|x− y|m−|β| for x, y ∈ S, |β| ≤ m− 1.

Note that Theorem 1 (a) follows easily from Theorem 3.
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3. Computable convex sets

In this section, we discuss computational issues regarding the convex set

(3.1) Γ∗(x,M) =
{
Jx(F ) : F ∈ Cm(Rn), ‖F‖Cm(Rn) ≤ M , F ≥ 0 on R

n
}
.

We write c, C, C′, etc., to denote constants determined by m and n. These
symbols may denote different constants in different occurrences.

We will define convex sets Γ̃∗(x,M) ⊂ P , prove that

(3.2) Γ̃∗(x, cM) ⊂ Γ∗(x,M) ⊂ Γ̃∗(x,CM) for all x ∈ R
n, M > 0,

and explain how (in principle) one can compute Γ̃∗(x,M).
We may then use

(3.3) Γ̃f (x,M) =
{
P ∈ Γ̃∗(x,M) : P (x) = f(x)

}
in place of Γf (x,M) in the statement of Theorem 3. (The assertion in terms of Γ̃f

follows trivially from (3.2) and the original assertion in terms of Γf .)
To achieve (3.2), we will define

(3.4) Γ̃∗(x,M) =
{
MP (· + x)) : P ∈ Γ̃0

}
, for a convex set Γ̃0.

We will prove that

(3.5) Γ∗(0, c) ⊂ Γ̃0 ⊂ Γ∗(0, C).

Property (3.2) then follows at once from (3.1), (3.4), and (3.5).

Thus, our task is to define a convex set Γ̃0 satisfying (3.5), and explain how
(in principle) one can compute Γ̃0.

Recall that P is the vector space of (m − 1)-jets. We will work in the space
of m-jets. In this section, we let P+ denote the vector space of real-valued poly-
nomials of degree at most m on R

n, and we write J+
x (F ) to denote the mth-degree

Taylor polynomial of F at x, i.e.,

J+
x (F )(y) =

∑
|α|≤m

1

α!
(∂αF (x)) · (y − x)α .

We define

(3.6) Γ+
0 =

⎧⎪⎨
⎪⎩

P ∈ P+ : |∂βP (0)| ≤ 1 for |β| ≤ m; P (x) + |x|m ≥ 0

for all x ∈ R
n; and for every ε > 0, there exists δ > 0

such that P (x) + ε |x|m ≥ 0 for |x| ≤ δ.

⎫⎪⎬
⎪⎭ .

Later, we will discuss how Γ+
0 may be computed in principle.

We next establish the following result.

Lemma 3. For small enough c and large enough C, the following hold.

(a) If F ∈ Cm(Rn), ‖F‖Cm(Rn) ≤ c, F ≥ 0 on R
n, then J+

0 (F ) ∈ Γ+
0 .

(b) If P ∈ Γ+
0 , then there exists F ∈ Cm(Rn) such that ‖F‖Cm(Rn) ≤ C, F ≥ 0

on R
n, and J+

0 (F ) = P .
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Proof. (a) follows trivially from Taylor’s theorem. We prove (b).

Let P ∈ Γ+
0 be given. We introduce cutoff functions ϕ, χ ∈ Cm(Rn) with the

following properties:

(3.7)
‖χ‖Cm(Rn) ≤ C, χ = 1 in a neighborhood of 0, χ = 0 outside Bn (0, 1/2),

and 0 ≤ χ ≤ 1 on R
n.

and

(3.8)
‖ϕ‖Cm(Rn) ≤ C, ϕ = 1 for 1/2 ≤ |x| ≤ 2, ϕ ≥ 0 on R

n,

and ϕ(x) = 0 unless 1/4 < |x| < 4.

For k ≥ 0, let

(3.9) ϕk(x) = ϕ
(
2kx

)
(x ∈ R

n).

Thus,

(3.10)
‖ϕk‖Cm(Rn) ≤ C2mk, ϕk ≥ 0 on R

n, ϕk(x) = 1 for 2−1−k ≤ |x| ≤ 21−k,

ϕk(x) = 0 unless 2−2−k ≤ |x| ≤ 22−k.

Also, for k ≥ 0, we define a real number bk as follows.

(3.11) bk = 0 if P (x) ≥ 0 for |x| ≤ 2−k; bk = −min{P (x) : |x| ≤ 2−k} otherwise.

Since P ∈ Γ+
0 , the bk satisfy the following:

(3.12) 0 ≤ bk ≤ 2−mk for all k ≥ 0.

(3.13) bk · 2mk → 0 as k → ∞.

By definition of the bk, we have also for each k ≥ 0 that

(3.14) P (x) + bk ≥ 0 for |x| ≤ 2−k.

We define a function F̃ on the closed unit ball Bn(0, 1) by setting

(3.15) F̃ (x) = P (x) +

∞∑
k=0

bk ϕk(x) for x ∈ Bn(0, 1).

(The sum contains at most C nonzero terms for any given x.)
We will check that

(3.16) F̃ ≥ 0 on Bn(0, 1).

Indeed, F̃ (0)=P (0) ≥ 0 since each ϕk(0) = 0 and P ∈ Γ+
0 . For x̂ ∈ Bn(0, 1) \ {0}

we have 2−1−k̂ ≤ |x̂| ≤ 2−k̂ for some k̂ ≥ 0.
We then have ϕk̂(x̂) = 1 by (3.10), hence P (x̂) + bk̂ϕk̂(x̂) ≥ 0 by (3.14). Since

also bk ϕk(x̂) ≥ 0 for all k, it follows that

F̃ (x̂) =
[
P (x̂) + bk̂ϕk̂(x̂)

]
+

∑
k �=k̂

bk ϕk(x) ≥ 0,

completing the proof of (3.16).
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Next, we check that

(3.17) F̃ ∈ Cm
(
Bn(0, 1)

)
, ‖F̃‖Cm(Bn(0,1) )

≤ C, J+
0

(
F̃
)

= P.

To see this, let

(3.18) F̃K = P +

K∑
k=0

bk ϕk for K ≥ 0.

Since P ∈ Γ+
0 , we have

∣∣∂βP (0)
∣∣ ≤ 1 for |β| ≤ m, hence

(3.19) ‖P‖Cm(Bn(0,1))
≤ C.

Also, (3.10) and (3.12) give

‖bk ϕk‖Cm(Bn(0,1) ) ≤ C for each k.

Since any given x ∈ Bn(0, 1) belongs to at most C of the supports of the ϕk, it
follows that

(3.20)
∥∥∥

K∑
k=0

bk ϕk

∥∥∥
Cm(Bn(0,1))

≤ C.

From (3.18), (3.19), (3.20), we see that

(3.21) F̃K ∈ Cm
(
Bn(0, 1)

)
and

∥∥F̃∥∥
Cm(Bn(0,1) )

≤ C.

Also, (3.10) and (3.18) tell us that

(3.22) J+
0 (F̃K) = P for each K.

Furthermore for K1 < K2, (3.18) gives F̃K2 − F̃K1 =
∑

K1<k≤K2
bk ϕk. Let ε > 0.

From (3.10) and (3.13) we see that

max
K1<k≤K2

‖bk ϕk‖Cm(Bn(0,1) ) < ε if K1 is large enough.

Since any given point lies in support ϕk for at most C distinct k, it follows that∥∥∥ ∑
K1<k≤K2

bk ϕk

∥∥∥
Cm(Bn(0,1) )

≤ Cε if K2 > K1 and K1 is large enough.

Thus, (F̃K)K≥0 is a Cauchy sequence in Cm(Bn(0, 1)). Consequently, F̃K → F̃∞ in

Cm(Bn(0, 1))-norm for some F̃∞ ∈ Cm(Bn(0, 1)). From (3.21) and (3.22), we have∥∥F̃∞
∥∥
Cm(Bn(0,1))

≤ C and J+
0 (F̃∞) = P .

On the other hand, comparing (3.15) to (3.18), and recalling that any given x
belongs to support θk for at most C distinct k, we conclude that F̃K → F̃ pointwise
as K → ∞.
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Since also F̃K → F̃∞ pointwise as K → ∞, we have F̃∞ = F̃ . Thus,

F̃ ∈ Cm
(
Bn(0, 1)

)
, ‖F̃‖Cm(Bn(0,1))

≤ C, and J+
0

(
F̃
)

= P,

completing the proof of (3.17).

Finally, we recall the cutoff function χ from (3.7), and define F = χF̃ on R
n.

From (3.16), (3.17), and the properties (3.7) of χ, we conclude that

F ∈ Cm(Rn), ‖F‖Cm(Rn) ≤ C, F ≥ 0 on R
n, and J+

0 (F ) = P.

Thus, we have established (b). The proof of Lemma 3 is complete. �

Now let π : P+ → P denote the natural projection from m-jets at 0 to (m− 1)-
jets at 0, namely,

πP = J0(P )

for P ∈ P+.

We then set

Γ̃0 = πΓ+
0 .

From the above lemma, we learn the following.

(A′) Let F ∈ Cm (Rn) with ‖F‖Cm(Rn) ≤ c, F ≥ 0 on R
n. Then J0(F ) ∈ Γ̃0.

(B′) Let P ∈ Γ̃0. Then there exists F ∈ Cm(Rn) such that ‖F‖Cm(Rn) ≤ C, F ≥ 0

on R
n, and J0(F ) = P .

Recalling the definition (3.1), we conclude from (A′) and (B′) that

Γ∗(0, c) ⊂ Γ̃0 ⊂ Γ∗(0, C).

Thus, our Γ̃0 satisfies the key condition (3.5).

We discuss briefly how the convex set Γ̃0 may be computed in principle. Re-
call (see [20]) that a semialgebraic set is a subset of a vector space obtained
by taking finitely many unions, intersections, and complements of sets of the
form {P > 0} for polynomials P . Any subset of a vector space V defined by
E = {x ∈ V : Φ(x) is true}, where Φ is a formula of first-order predicate calculus
(for the theory of real-closed fields) is semialgebraic; moreover, there is an algo-
rithm that accepts Φ as input and exhibits E as a Boolean combination of sets of
the form {P > 0} for polynomials P . For any given m, n, we see, by inspection of
the definitions of Γ+

0 and Γ̃0, that Γ+
0 ⊂ P+ is defined by a formula of first-order

predicate calculus; hence, the same holds for Γ̃0 ⊂ P .

Therefore, in principle, we can compute Γ̃0 as a Boolean combination of sets of
the form {P ∈ P : Π(P ) > 0}, where Π is a polynomial on P .

In practice, we make no claim that we know how to compute Γ̃0.

It would be interesting to give a more practical method to compute a convex
set satisfying (3.5).
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4. Cm−1,1 interpolation by nonnegative functions

In this section we will establish Theorem 1 (b) and discuss computational issues
for Cm−1,1 interpolation by nonnegative functions.

We note that the derivatives ∂βF of F ∈ Cm−1,1(Rn) of order |β| ≤ m− 1 are
continuous. Also, Taylor’s theorem holds in the form

∣∣∣∂βF (y) −
∑

|β|+|γ|≤m−1

1

γ!

[
∂γ+βF (x)

] · (y − x)γ
∣∣∣ ≤ C ‖F‖Cm−1,1(Rn) · |y − x|m−|β|

for x, y ∈ R
n.

Similar remarks apply to Cm−1,1(Q) and Cm(Q) for cubes Q ⊂ R
n.

Therefore, we may repeat the proofs of Lemmas 1 and 2 in Section 2, to derive
the following results.

Lemma 4. For x ∈ R
n, M > 0, let

Γ′
∗(x,M) =

{
P ∈ P : ∃F ∈ Cm−1,1(Rn) such that

‖F‖Cm−1,1(Rn) ≤ M,F ≥ 0 on R
n, Jx(F ) = P

}
.

Let f : E → [0,∞), where E ⊂ R
n is finite. For x ∈ E, M > 0, let

Γ′
f (x,M) = {P ∈ Γ′

∗(x,M) : P (x) = f(x)} .

Then �Γ′
f := (Γ′

f (x,M))x∈E,M>0 is a (C, 1)-convex shape field, where C depends
only on m, n.

Lemma 5. Let E, f , Γ′
∗(x,M) be as in Lemma 4, and let M > 0, �P = (P x)x∈E ∈

Wh (E). Suppose we have P x ∈ Γ′
∗(x,M) for all x ∈ E, and

∣∣∂β (P x − P y) (x)
∣∣ ≤

M |x− y|m−|β|
for x, y ∈ E, |β| ≤ m− 1. Then there exists F ∈ Cm−1,1(Rn) such

that Jx(F ) = P x for all x ∈ E, and ‖F‖Cm−1,1(Rn) ≤ CM , where C depends only
on m, n.

Similarly, by making small changes in the proof of Theorem 3, we obtain the
following result.

Lemma 6. There exist k#, C, depending only on m, n for which the following
holds.

Let E ⊂ R
n be finite, let f : E → [0,∞), and let M0 > 0. Suppose that for

each S ⊂ E with #(S) ≤ k# there exists �PS = (P x)x∈S ∈ Wh(S) such that

P x ∈ Γ′
f (x,M0) for all x ∈ S, and

∣∣∂β (P x − P y)
∣∣ ≤ M0 |x− y|m−|β|

for x, y ∈ S,
|β| ≤ m− 1.

Then there exists F ∈ Cm−1,1(Rn) such that ‖F‖Cm−1,1(Rn) ≤ CM0, F ≥ 0
on R

n, and F = f on E.

Now we can easily deduce the following result.
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Theorem 4 (Finiteness principle for nonnegative Cm−1,1-interpolation). There
exists constants k#, C, depending only on m,n for which the following holds.

Let f : E → [0,∞), with E ⊂ R
n arbitrary (not necessarily finite). Let M0 > 0.

Suppose that for each S ⊂ E with #(S) ≤ k# there exists �P = (P x)x∈S ∈ Wh(S)
such that

• P x ∈ Γ′
f (x,M0) for all x ∈ S,

•
∣∣∂β (P x − P y) (x)

∣∣ ≤ M0 |x− y|m−|β|
for x, y ∈ S, |β| ≤ m− 1.

Then there exists F ∈ Cm−1,1(Rn) such that

• ||F ||Cm−1,1(Rn) ≤ CM0,

• F ≥ 0, and

• F = f on E.

Proof. Suppose first that E ⊂ Q for some cube Q ⊂ R
n. Then by Ascoli’s theorem,

{
F ∈ Cm−1,1(Q) : ‖F‖Cm−1,1(Q) ≤ CM0, F ≥ 0 on Q

} ≡ X

is compact in the Cm−1(Q)-norm topology.
For each finite E0 ⊂ E, Lemma 6 tells us that there exists F ∈ X such that

F = f on E0.
Consequently, there exists F ∈ X such that F = f on E. That is,

(4.1) F ∈ Cm−1,1(Q), ‖F‖Cm−1,1(Q) ≤ CM0, F ≥ 0 on Q, F = f on E.

We have achieved (4.1), assuming that E ⊂ Q.

Now suppose E ⊂ R
n is arbitrary.

We introduce a partition of unity 1 =
∑

ν θν on R
n, with θν ≥ 0 on R

n,
θν ∈ Cm(Rn), ‖θν‖Cm(Rn) ≤ C, support θν ⊂ Qν for a cube Qν ⊂ R

n, with (say)
δQν = 1, and such that any given x ∈ R

n has a neighborhood that intersects at
most C of the Qν . (Here C depends only on m,n.)

Applying our result (4.1) to f |E∩Qν : E ∩ Qν → [0,∞) for each ν, we obtain
functions Fν ∈ Cm−1,1 (Qν) such that ‖Fν‖Cm−1,1(Qν)

≤ CM0, Fν ≥ 0 on Qν ,
Fν = f on E ∩Qν .

(Here C depends only on m,n.)
We define F =

∑
ν θνFν on R

n. One checks easily that ‖F‖Cm−1,1(Rn) ≤ C′M0

with C′ determined by m, n; F ≥ 0 on R
n; and F = f on E.

This completes the proof of Theorem 4. �

Note that Theorem 4 easily implies Theorem 1 (b).
As in the case of nonnegative Cm-interpolation, we want to replace Γ′

f(x,M)

by something easier to calculate. In the Cm−1,1-setting, it is enough to make the
following observation.

Define

Γ̃′
0 =

{
P ∈ P :

∣∣∂βP (0)
∣∣ ≤ 1 for |β| ≤ m− 1 and

P (x) + |x|m ≥ 0 for all x ∈ R
n

}
.
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Then

(4.2) Γ′
∗(0, c) ⊂ Γ̃′

0 ⊂ Γ̃′
∗(0, C), with c, C depending only on m, n.

Indeed, the first inclusion in (4.2) is immediate from the definitions and Taylor’s
theorem. To prove the second inclusion, we let P ∈ Γ̃′

0 be given, and set F (x) =
χ(x)(P (x) + |x|m), where χ is a nonnegative Cm function with norm at most C∗
(depending only on m, n), satisfying J0(χ) = 1 and support χ ⊂ Bn(0, 1).

We then have F ∈ Cm−1,1(Rn), ‖F‖Cm−1,1(Rn) ≤ C (depending only on m, n),

F ≥ 0 on R
n, J0(F ) = P . Hence, P ∈ Γ′

∗(0, C), completing the proof of (4.2).

This concludes our discussion of interpolation by nonnegative Cm−1,1 functions.
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