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Multi-parameter singular integral operators
and representation theorem

Yumeng Ou

Abstract. We formulate a class of singular integral operators in arbi-
trarily many parameters using mixed type characterizing conditions. The
main result we prove for this class of operators is a multi-parameter rep-
resentation theorem stating that a generic operator in our class can be
represented as an average of sums of dyadic shifts, which implies a new
multi-parameter T1 theorem as a byproduct. This extends the represen-
tation principles of Hytönen’s and Martikainen’s to the multi-parameter
setting. Furthermore, equivalence between ours and Journé’s class of
multi-parameter operators is established, whose proof requires the multi-
parameter T1 theorem.

1. Introduction

The study of singular integral operators on product spaces generalizing the clas-
sical Calderón–Zygmund theory has a history of more than thirty years, starting
from [3] by Fefferman and Stein where bi-parameter operators of convolution type
are carefully treated. Later, Journé in [7] established the first class of general multi-
parameter singular integral operators which are not necessarily of convolution type,
using vector-valued Calderón–Zygmund theory and an inductive machinery. In the
same paper, a multi-parameter T 1 theorem is also proved. Very recently, Pott and
Villarroya [12] formulated a new class of bi-parameter singular integral operators
where the vector-valued formulations are replaced by mixed type conditions di-
rectly assumed on the operator. Their approach is then refined by Martikainen
in [10], where he proved a bi-parameter representation of singular integrals by
dyadic shifts, generalizing the famous one-parameter result of Hytönen [5].

The representation theorem has been proven to be an incredibly useful tool in
the field of singular integrals, as it enables one to reduce the problems of a general
operator to problems of some very simple dyadic shift operators. For example, in [6]
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it has been utilized by Hytönen, Pérez, Treil and Volberg to obtain a simplified
proof of the A2 conjecture, and in [1] it has been applied to derive an upper
bound estimate for iterated commutators by Dalenc and the author. Moreover,
the representation theorem also implies as a direct consequence a new T 1 theorem.

The theory of multi-parameter singular integral operators generally involves
an additional layer of difficulty beyond the bi-parameter theory. Usually for bi-
parameter problems on R×R, in the inductive step, by slicing away one dimension
one will reduce to the one-parameter setting. This is not the case for n-parameter
problems when n ≥ 3. Furthermore, there are results that are true in the bi-
parameter setting but fail to hold in the multi-parameter setting, for example
the results regarding rectangle atoms discussed by Fefferman in [2]. (Also see
Journé [8].) Naturally, it has been asked by several experts in the field [9] whether
one can establish a representation theorem in multi-parameters, which becomes
the main motivation and the central problem this article will be dealing with.

The first difficulty one encounters is how to generalize Martikainen’s class of
operators to more than two parameters, establishing a group of appropriate mixed
type conditions that characterizes operators suitable to work with. Recall that
in the classical T 1 theorem, the hypotheses involve assumptions on the size and
smoothness of the kernel, a weak boundedness property (WBP), and BMO condi-
tions. It is then natural to formulate nine different so-called mixed type conditions
(such as kernel/kernel, BMO/WBP and so on) for bi-parameter operators, which
is, morally speaking, what Martikainen did in [10]. However, there is no obvious
way to generalize to multi-parameters formulations of such mixed type conditions.
In fact, although Martikainen has done a brilliant job in [10] to introduce the so-
called full kernel and partial kernel assumptions on the operator, his assumptions
are clear precisely because once a parameter is taken away, what is left becomes a
one-parameter object.

The second difficulty, of course, is the proof of the representation theorem
itself. Once the proper assumptions on the operators are formulated, the proof in
the multi-parameter setting requires no new techniques. However, verifying that
the theorem holds requires a delicate analysis of the symmetries of the operator
and the particularly nice formulation of the conditions.

The main contributions of this article are the following. First, mixed type
conditions for multi-parameter operators are formulated along the lines of [12]
and [10], establishing the appropriate class of multi-parameter singular integral
operators. Second, we prove a representation theorem in arbitrarily many parame-
ters, which yields a new multi-parameter T 1 theorem. Finally, as an application of
our multi-parameter T 1 theorem, we show that our class of multi-parameter singu-
lar integrals is equivalent to the class studied by Journé in [7]. This generalizes a
recent result of Grau de la Herrán [4] to arbitrarily many parameters. This shows
that Journé’s class of operators, originally formulated in vector-valued language,
can be characterized by conditions that are more intrinsic and easier to verify.

The paper is organized as follows. In Section 2, we define a class of multi-
parameter singular integral operators characterized by new mixed type conditions.
The statement of the multi-parameter representation theorem and its proof are
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presented in Sections 3 and 4. We then discuss the equivalence between our class
and Journé’s class of operators in Section 5, followed by a discussion of the necessity
of some of the mixed conditions at the end.

Acknowledgements. The author would like to thank Henri Martikainen and
Jill Pipher for multiple fruitful conversations that granted deep insight for the
paper, and to express her gratitude to the anonymous referee for many valuable
suggestions.

2. A class of n-parameter singular integral operators

In R
�d := Rd1 ×· · ·×Rdn , where n ∈ N0 denotes the number of parameters, let T be

a linear operator continuously mapping C∞
0 (Rd1)× · · ·×C∞

0 (Rdn) to its dual. For
all S ⊂ {1, 2, . . . , n}, define the partial adjoint TS by exchanging the ith variable,
for all i ∈ S, i.e.,

〈T (fS ⊗ fSc), gS ⊗ gSc〉 = 〈TS(gS ⊗ fSc), fS ⊗ gSc〉,

where fS , gS are functions of the ith variables for i ∈ S, and fSc , gSc are functions
of the ith variables for i /∈ S.

We say T is in our class of n-parameter singular integral operators if for any S,
TS satisfies the following full kernel and partial kernel assumptions.

2.1. Full kernel

For any

f =

n⊗
i=1

fi, g =

n⊗
i=1

gi ∈ C∞
0 (Rd1)× · · · × C∞

0 (Rdn)

such that ∀i ∈ {1, 2, . . . , n}, spt fi ∩ spt gi = ∅, there holds

〈TSf, g〉 =
∫
R�d

∫
R�d

KS(x, y)f(y)g(x) dx dy,

where the kernel KS(x, y) satisfies the following mixed size-Hölder conditions: for
any subset W ⊂ {1, 2, . . . , n}, when |xi − x′

i| ≤ |xi − yi|/2, ∀i ∈ W , there holds

∣∣∣ ∑
Λ⊂W

(−1)|Λ|KΛ
S (x, x

′; y)
∣∣∣ �

( ∏
i∈W

|xi − x′
i|δ

|xi − yi|di+δ

)( ∏
i∈{1,2,...,n}\W

1

|xi − yi|di

)
,

where 0 < δ < 1 is a fixed constant, and KΛ
S (x, x

′; y) is defined as KS evaluated
at xi for i /∈ Λ while at x′

i for i ∈ Λ. Note that when W = ∅, this is the pure
size condition, while when W = {1, 2, . . . , n}, this becomes the Hölder condition
we are familiar with in the one-parameter and bi-parameter settings.
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2.2. Partial kernel

Let V be any nonempty proper subset of {1, 2, . . . , n}, and f = fV ⊗ fV c , g =
gV ⊗ gV c ∈ C∞

0 (Rd1) × · · · × C∞
0 (Rdn), where fV =

⊗
i∈V fi and similarly for

others. Suppose for any variable i ∈ V , spt fi ∩ spt gi = ∅, there holds

〈TSf, g〉 =
∫
⊗

i∈V Rdi

∫
⊗

i∈V Rdi

KV
S,fV c ,gV c (x, y)fV (y)gV (x) dx dy,

where the kernel KV
S,fV c ,gV c

satisfies the following mixed size-Hölder conditions:
for any subset W ⊂ V , when |xi − x′

i| ≤ |xi − yi|/2, ∀i ∈ W , there holds∣∣∣ ∑
Λ⊂W

(−1)|Λ|KV,Λ
S,fV c ,gV c

(x, x′; y)
∣∣∣

≤ CV
S (fV c , gV c)

( ∏
i∈W

|xi − x′
i|δ

|xi − yi|di+δ

)( ∏
i∈V \W

1

|xi − yi|di

)
,

where KV,Λ
S,fV c ,gV c

(x, x′; y) is defined as KV
S,fV c ,gV c

evaluated at xi for i /∈ Λ while
at x′

i for i ∈ Λ.
Moreover, we require that the constant CV

S (fV c , gV c) satisfies the following
WBP/BMO conditions: for any subset W ⊂ V c, any cubes Ii ⊂ Rdi , i ∈ W , there
holds∥∥CV

S ((⊗i∈WχIi)⊗
(⊗i∈V c\W 1

)
, (⊗i∈WχIi)⊗ ·)∥∥BMOprod(

⊗
i∈V c\W Rdi )

�
∏
i∈W

|Ii|.

There are several equivalent interpretations of the product BMO norm. One
result proved by Pipher and Ward in [11], and reproved by Treil in [13], is that
in the multi-parameter setting, a function is in product BMO if and only if it
is in dyadic product BMO uniformly with respect to any dyadic grids. Since
dyadic product BMO can be characterized via product Carleson measure, one can
express the WBP/BMO condition above as the following: for any product dyadic
grid D =

⊗
i∈V c\W Di,∑

R⊂Ω,R∈D
R=

⊗
j∈V c\W Jj

∣∣CV
S

((⊗i∈W χIi

)⊗ (⊗i∈V c\W 1
)
,
(⊗i∈W χIi

)⊗ (⊗j∈V c\W hJj

))∣∣2

� |Ω|
∏
i∈W

|Ii|2,

for any open set Ω in
⊗

i∈V c\W Rdi with finite measure.
The expression above is always well defined as the functions involved are all

tensor products. In the case when one can naturally extend the definition of the
operator T to act on more general multivariate functions, one can also rephrase
the WBP/BMO condition by duality as the following:

∣∣CV
S ((⊗i∈WχIi)⊗

(⊗i∈V c\W 1
)
, (⊗i∈WχIi)⊗ h)

∣∣ � ( ∏
i∈V c\W

|Ii|
)
‖h‖H1

prod

for any function h ∈ H1
prod(

⊗
i∈V c\W Rdi).
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This completes our definition of the n-parameter singular integral operators.
And one can similarly define an n-parameter CZO if there are some additional
boundedness assumption on the operator.

Definition 2.1. T is called an n-parameter CZO if it is an n-parameter singular
integral operator defined as above, and TS : L

2 → L2 for any S ⊂ {1, 2, . . . , n}.

In order to derive the multi-parameter representation theorem for such opera-
tors later in the article, as a preparation, we will need the definition of the so-called
mixed BMO/WBP assumptions, which we describe below. Note that these are not
characterizing conditions of our class of singular integrals.

2.3. BMO/WBP

We say that an operator TS satisfies the mixed BMO/WBP conditions if for any
subset W ⊂ {1, 2, . . . , n}, any cubes Ii ⊂ Rdi , i ∈ W , there holds

‖〈TS((⊗i∈WχIi)⊗ (⊗i∈W c1)), (⊗i∈WχIi)⊗ ·〉‖BMOprod(
⊗

i∈Wc Rdi ) �
∏
i∈W

|Ii|.

This is the pure BMO condition when W = ∅, and the pure dyadic weak bounded-
ness property when W = {1, 2, . . . , n}. Again, one can interpret the product BMO
norm in several different ways, as described above.

To end this section, we would like to emphasize that the class of singular integral
operators defined above is indeed a generalization of the most natural classes of
one-parameter and bi-parameter singular integral operators studied in harmonic
analysis. When n = 1, it coincides with the class of singular integral operators
associated with standard kernels. When n = 2, it is the same as the class of
bi-parameter operators defined by Martikainen in [10] (modulo that some of the
conditions in partial kernel assumptions are formulated slightly differently), and
is known to be equivalent to the classes of Journé [7] and Pott–Villarroya [12], a
result recently proved by Grau de la Herrán [4].

Furthermore, it is not hard to examine that our class of n-parameter singular
integrals includes operators of tensor product type as a special case. Take the case
n = 3 as an example. Given CZOs Ti defined on Rdi , i = 1, 2, 3, it is easy to see
that the operator T1 ⊗ T2 ⊗ T3 satisfies the full kernel assumptions. To check one
of the partial kernel assumptions, for any test functions with spt f1 ∩ spt g1 = ∅,
one can define a partial kernel

K
{1}
f2⊗f3,g2⊗g3

(x1, y1) = K1(x1, y1)〈T2 ⊗ T3(f2 ⊗ f3), g2 ⊗ g3〉,

where K1(x1, y1) is the kernel of T1. Observe that T2 ⊗ T3 is a Journé type bi-
parameter CZO studied in [7], hence is bounded on L2 and maps 1⊗ 1 into prod-
uct BMO, which thus implies the desired WBP/BMO conditions for constants
C{1}(f2 ⊗ f3, g2 ⊗ g3). We will give a more thorough discussion of the Journé type
multi-parameter singular integral operators in Section 5.
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2.4. A remark on the well-definedness of the BMO assumptions

Among the various conditions satisfied by an n-parameter operator T , many of
them are establishing certain bounds on bilinear forms involving T acting on func-
tion 1 in some of the variables. It is thus necessary to articulate how these objects
are defined. For simplicity, let us illustrate it in the case n = 3.

Recall that in the partial kernel assumptions, if f = f1⊗f2⊗f3, g = g1⊗g2⊗g3,
and spt f1 ∩ spt g1 = spt f2 ∩ spt g2 = ∅ (i.e., V = {1, 2}), one wants to show that
CV

S (1, ·) ∈ BMO(Rd3), which according to [11] is the same as showing that for any
dyadic system D of Rd3 , it is in dyadic BMOD(Rd3).

Hence, it suffices to give a meaning to CV
S (1, hI3) for any Haar function in

the third variable, i.e., to define the form 〈TS(f1 ⊗ f2 ⊗ 1), g1 ⊗ g2 ⊗ hI3〉. This
can be done by dividing 1 = χ3I3 + χ(3I3)c , where the first term makes sense
since T is continuous (more precisely, one needs kernel representation, WBP and
dominated convergence to justify the well-definedness of the bilinear form of non-
smooth functions), while the second term can be defined using the full kernel
representation whose convergence is guaranteed by Hölder conditions.

Second, still in the partial kernel assumptions, if one only has spt f3∩spt g3 = ∅
(i.e., V = {3}), the well-definedness of the constant CV

S (χI1 ⊗ 1, χI1 ⊗ ·) is similar
as the case above, so we only look at the meaning of CV

S (1⊗ 1, ·) as a function in
BMOD(Rd1×Rd2). To define 〈TS(1⊗ 1⊗ f3), hI1 ⊗ hI2 ⊗ g3〉, clearly, one can divide
1 ⊗ 1 = χ3I1 ⊗ χ3I2 + χ3I1 ⊗ χ(3I2)c + χ(3I1)c ⊗ χ3I2 + χ(3I1)c ⊗ χ(3I2)c , where the
first and last term are easy to deal with. While for the mixed terms, say, the third
one, if χ(3I1)c is replaced by a C∞

0 function, then the pairing is apparently well
defined through the partial kernel representation. Now even though χ(3I1)c is only
bounded, we can still define the pairing as∫

K
{1,3}
S,χ3I2 ,hI2

(x1, y1, x3, y3)χ(3I1)c(y1) f3(y3)hI1(x1) g3(x3) dx1 dx3 dy1 dy3,

where the integral converges since one can change the kernel to

K
{1,3}
S,χ3I2 ,hI2

(x1, y1, x3, y3)−K
{1,3}
S,χ3I2 ,hI2

(x1, y1, cI3 , y3)

and use the mixed Hölder-size condition.
Finally, in the BMO/WBP assumptions, to give a meaning to

〈TS((⊗i∈WχIi)⊗ (⊗i∈W c1)), (⊗i∈WχIi)⊗ ·〉,
it is then sufficient to define what it means for the function to be paired with
tensors of Haar functions. This can be done by dividing 1⊗· · ·⊗1 into several parts
similarly as above, and use partial kernel representations and Hölder conditions to
obtain the convergence of the corresponding integrals.

3. Multi-parameter representation theorem

In order to formulate the representation theorem in the multi-parameter setting,
we recall now the notion of shifted dyadic grids, which are essential elements of the
theorem.
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Denote D0
i := {2−k([0, 1]di + m) : k ∈ Z,m ∈ Zdi} as the standard dyadic

grid in the ith variable, 1 ≤ i ≤ n. Let ω = (ωj
i )j∈Z ∈ ({0, 1}di)Z and I � ωi :=

I +
∑

j:2−j<�(I) 2
−jωj

i . Then

Dω
i := {I � ωi : I ∈ D0

i }

is a shifted dyadic grid associated with parameter ωi. We usually write Di for
short when the dependence on ωi is not explicitly needed.

If we assume that each ωi is an independent random variable having an equal
probability 2−di of taking any of the 2di values in {0, 1}di, we obtain a random
dyadic system D1 × · · · × Dn.

A dyadic shift with parameter i1, j1, . . . , in, jn ∈ N associated with dyadic grids
D1, . . . ,Dn is an L2 → L2 operator with norm ≤ 1 defined as

Si1j1,...,injn
D1...Dn

f

:=
∑

K1∈D1

· · ·
∑

Kn∈Dn

∑
I1,J1∈D1

I1,J1⊂K1

�(I1)=2−i1 �(K1)

�(J1)=2−j1�(K1)

· · ·
∑

In,Jn∈Dn

In,Jn⊂Kn

�(In)=2−in �(Kn)

�(Jn)=2−jn �(Kn)

aI1J1K1...InJnKn · 〈f, hI1 ⊗ · · · ⊗ hIn〉
· hJ1 ⊗ · · · ⊗ hJn

=:
∑

K1∈D1

· · ·
∑

Kn∈Dn

(i1,j1)∑
I1,J1∈D1
I1,J1⊂K1

· · ·
(in,jn)∑

In,Jn∈Dn
In,Jn⊂Kn

aI1J1K1...InJnKn · 〈f, hI1 ⊗ · · · ⊗ hIn〉
· hJ1 ⊗ · · · ⊗ hJn ,

where the coefficients satisfy

|aI1J1K1...InJnKn | ≤
√|I1||J1| · · · |In||Jn|

|K1| · · · |Kn| ,

and hIi is a Haar function on Ii, similarly for hJi . Recall that for any dyadic
cube I ⊂ Rdi , there are 2di associated Haar functions hI , one of which being
the noncancellative function |I|−1/2χI and all the other ones being cancellative.
We allow any choices of Haar functions, noncancellative or cancellative, in the
definition of dyadic shifts. In addition, we will call the dyadic shift cancellative
if all the Haar functions that appear in the sum are cancellative. It is not hard
to show that when the shift is cancellative, the L2 boundedness requirement in
fact follows from the boundedness of the coefficients directly. Furthermore, it
also worths observing that n-parameter dyadic paraproducts with product BMO
symbol are particular examples of noncancellative dyadic shifts.

Now we are ready to state the representation theorem. Recall that T is said
to be an n-parameter singular integral operator in our class if it satisfies both the
full kernel and partial kernel assumptions defined in Sections 2.1, 2.2.

Theorem 3.1. For an n-parameter singular integral operator T , which satisfies
in addition the BMO/WBP assumptions (see Section 2.3), there holds for some



332 Y. Ou

n-parameter shifts Si1j1...injn
D1...Dn

that

〈Tf, g〉=CTEω1Eω2· · ·Eωn

∑
(i1,j1)∈N2

· · ·
∑

(in,jn)∈N2

( n∏
s=1

2−max(is,js)δ/2
)
〈Si1j1...injn

D1...Dn
f, g〉,

where noncancellative shifts may only appear when there is some s such that
(is, js) = (0, 0).

The f and g above are arbitrary functions taken from some particularly nice
dense subset of L2(R

�d), for example, the finite linear combinations of tensor prod-
ucts of univariate functions in C∞

0 (Rdi). Hence, according to the uniform bound-
edness of dyadic shifts, an immediate result implied by the representation theorem
is the following.

Corollary 3.2. An n-parameter singular integral operator T which satisfies the
BMO/WBP assumptions is bounded on L2(R

�d).

Remark 3.3. In the one-parameter and bi-parameter versions of the representa-
tion theorem, see [5], [10], one needs the additional a priori assumption that T is
bounded on L2 in order to justify the convergence of some infinite series in the
proof. This makes the T 1 type corollary only a quantitative result. However,
very recently, it is suggested by T. Hytönen that one can prove the representation
theorem without assuming any a priori bound on T , by first proving a “weak repre-
sentation” depending on functions f and g, which then implies that T is bounded
on L2. Hence, the corollary obtained above is indeed a T 1 theorem of full strength,
which is certainly of its own interest. Previously, the only known T 1 type theo-
rem in more than two parameters is proved by Journé in [7] by induction, using
a vector-valued argument. The advantage of our T 1 theorem is that the mixed
type conditions are expressed in a more transparent way and much easier to verify.
In fact, we will see an application of our T 1 theorem later in the paper, when
we establish the relationship between Journé’s and our class of multi-parameter
singular integral operators.

Another useful observation is that due to the symmetry of the assumptions
on the n-parameter singular integral operators, one can conclude that if T is an
n-parameter SIO satisfying the BMO/WBP assumptions, then any of its partial
adjoints TS is bounded on L2. Hence T is an n-parameter CZO defined in Section 2.
In fact, the other direction also holds true, i.e., T being an n-parameter CZO
implies the BMO/WBP assumptions. We leave the discussion of this point to the
end of the paper.

4. Proof of Theorem 3.1

Let us prove Theorem 3.1 in the case n = 3 as an example, which is sufficient
in showing the new difficulties that arise in the multi-parameter setting and in
explaining our strategy.
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4.1. Outline of the proof

Roughly speaking, the proof of representation theorems usually starts with devel-
oping some averaging formula, which represents the bilinear form 〈Tf, g〉 as an
expectation of randomized Haar expansion where only “good” dyadic cubes are
involved. We will establish a tri-parameter version of this formula in Section 4.2,
where the notions of good and bad cubes will also be recalled.

Next, one targets to decompose the averaging formula that represents 〈Tf, g〉
into finitely many parts, each of which will be shown to be a convergent sum of
bilinear forms

〈Si1j1i2j2i3j3f, g〉
for some dyadic shift Si1j1i2j2i3j3 . The proof will thus be complete. This step is
the key part of the argument. Since we have three free parameters to deal with,
there will be a large number of different cases to analyze. More precisely, for each
parameter, at some point one splits the summation into four parts: “separated”,
“inside”, “near” and “equal”, which yields at least 43 mixed parts for us to study.
Fortunately, many of them can be estimated via kernel assumptions and weak
boundedness properties, similarly as the one-parameter and bi-parameter cases
treated in [5] and [10], except for the cases where more complicated tri-parameter
paraproducts have to be involved. One typical example of such cases will be re-
ferred to as “Inside/Inside/Inside”, which we will study in Section 4.3 with full
details. An intrinsic difference between the bi-parameter case and our arbitrar-
ily many parameter case is that, one needs to deal with some multi-parameter
paraproduct mixed with dyadic shift in our case, which does not exist in the
bi-parameter setting. This is also one of the reasons why we have to formulate
our BMO assumptions on the operators in a global way, in contrast to the local
type assumptions in Martikainen’s bi-parameter formulation.

4.2. Randomizing process and averaging formula

To start with, through a similar process of randomization independently in each
variable, as described in [5] and [10], it is not hard to obtain the following tri-
parameter version of the key averaging formula:

〈Tf, g〉
= C E

∑
I1,J1∈D1

∑
I2,J2∈D2

∑
I3,J3∈D3

χgood(sm(I1, J1))χgood(sm(I2, J2))χgood(sm(I3, J3))

· 〈T (hI1 ⊗ hI2 ⊗ hI3), hJ1 ⊗ hJ2 ⊗ hJ3〉〈f, hI1 ⊗ hI2 ⊗ hI3〉〈g, hJ1 ⊗ hJ2 ⊗ hJ3〉,
where E = Eω1Eω2Eω3 and C = 1/(π1

goodπ
2
goodπ

3
good).

We remind the reader that a cube Ii ∈ Di is called bad if there is another
Ĩi ∈ Di such that �(Ĩi) ≥ 2r�(Ii) and d(Ii, ∂Ĩi) ≤ 2�(Ii)

γi�(Ĩi)
1−γi , where r is a

fixed large number, γi := δ/(2di + 2δ), and δ is the constant that appears in the
kernel assumptions of the operator. Naturally, a cube is called good if it is not bad.
And πi

good := Pωi(Ii � ωi is good) is a parameter depending only on δ, di and r.
One always fixes an r large enough so that πi

good > 0 for any 1 ≤ i ≤ n.
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In order to demonstrate the desired representation, we will then split the sums
on the right hand side of the averaging formula into several pieces depending on
the relative sizes of Ii, Ji, i = 1, 2, 3, and whether the smaller cubes are far away,
strictly inside, exactly equal, or close to the larger cubes (i.e., separated, inside,
equal or near). Specifically, for each variable i, we split the sum∑

Ii

∑
Ji

=
∑

�(Ii)≤�(Ji)

+
∑

�(Ii)>�(Ji)

=: I + II.

Then decompose

I =
∑

�(Ii)≤�(Ji)

d(Ii,Ji)>�(Ii)
γi�(Ji)

1−γi

+
∑
Ii�Ji

+
∑
Ii=Ji

+
∑

�(Ii)≤�(Ji)

d(Ii,Ji)≤�(Ii)
γi �(Ji)

1−γi

Ii∩Ji=∅
=: Separated+ Inside + Equal + Near,

and similarly for II. The strategy is to prove that each of the terms above can be
represented as convergent sums of bilinear forms of the type 〈Si1j1i2j2i3j3f, g〉.

Many of these cases can be discussed following the same techniques as in [10],
while for some mixed cases, new multi-parameter phenomena may appear and
require extreme care. The good news is that the new mixed cases will not do
us much harm since we have already formulated the proper assumptions on the
operators at the beginning to handle them.

As one has already encountered in the bi-parameter setting in [10], different
types of mixed paraproducts will appear depending on the relative sizes of Ii, Ji.
Since the worst situations one would expect are the mixed cases, we will look at the
part of the sum corresponding to |I1| ≤ |J1|, |I2| ≤ |J2|, |I3| > |J3|, observing that
other cases are symmetric or even simpler. According to the averaging formula, it
thus suffices to assume that I1, I2, J3 are all good cubes.

Moreover, recall that in [5] and [10], the separated, near, and equal parts of
the sum can basically be estimated using full kernel assumptions and WBP, while
the Inside part, being the most difficult one, involves in addition all the BMO
type estimates. Hence, we will study the inside/inside/inside part next, where
all the new multi-parameter phenomena will appear. Note that although this is
only one of the many cases one needs to discuss in order to obtain a full proof of
Theorem 3.1, all the main difficulties in other cases are in fact already embedded in
Inside/Inside/Inside, a fact that will become more and more clear throughout the
proof. We want to emphasize that the reason why we assumed from the beginning
that all the assumptions hold true for any partial adjoint TS of T is exactly because
of the much desired symmetry of the mixed cases.

4.3. Inside/inside/inside

In this section, we study the case inside/inside/inside, i.e., the summation over
I1 � J1, I2 � J2, J3 � I3. Recall that I1, I2, J3 are all good cubes. One first
decomposes

〈T (hI1 ⊗ hI2 ⊗ hI3), hJ1 ⊗ hJ2 ⊗ hJ3〉 = I + II + III + IV + V+VI + VII + VIII,
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where

I := 〈T (hI1 ⊗ hI2 ⊗ sJ3I3), sI1J1 ⊗ sI2J2 ⊗ hJ3〉,
II := 〈hI3〉J3〈T (hI1 ⊗ hI2 ⊗ 1), sI1J1 ⊗ sI2J2 ⊗ hJ3〉,
III := 〈hJ2〉I2〈T (hI1 ⊗ hI2 ⊗ sJ3I3), sI1J1 ⊗ 1⊗ hJ3〉,
IV := 〈hJ2〉I2〈hI3〉J3〈T (hI1 ⊗ hI2 ⊗ 1), sI1J1 ⊗ 1⊗ hJ3〉,
V := 〈hJ1〉I1〈T (hI1 ⊗ hI2 ⊗ sJ3I3), 1⊗ sI2J2 ⊗ hJ3〉,
VI := 〈hJ1〉I1〈hI3〉J3〈T (hI1 ⊗ hI2 ⊗ 1), 1⊗ sI2J2 ⊗ hJ3〉,
VII := 〈hJ1〉I1〈hJ2〉I2〈T (hI1 ⊗ hI2 ⊗ sJ3I3), 1⊗ 1⊗ hJ3〉,
VIII := 〈hJ1〉I1〈hJ2〉I2〈hI3〉J3〈T (hI1 ⊗ hI2 ⊗ 1), 1⊗ 1⊗ hJ3〉.

In the above,

sI1J1 := χQc
1
(hJ1 − 〈hJ1〉Q1), sI2J2 := χQc

2
(hJ2 − 〈hJ2〉Q2),

where Q1, Q2 are the children of J1, J2 containing I1, I2, respectively, and

sJ3I3 := χQc
3
(hI3 − 〈hI3〉Q3),

where Q3 is the child of I3 containing J3. The relevant properties are

spt sI1J1 ⊂ Qc
1, spt sI2J2 ⊂ Qc

2, spt sJ3I3 ⊂ Qc
3,

and
|sI1J1 | ≤ 2|J1|−1/2, |sI2J2 | ≤ 2|J2|−1/2, |sJ3I3 | ≤ 2|I3|−1/2.

Next, we show that the sum corresponding to each of the eight terms above
can be realized as a sum of bilinear forms associated with dyadic shifts. The es-
timate of term I does not require any BMO conditions, while all the other terms
require delicate BMO norm estimates and boundedness results of paraproducts.
Specifically, we will use one-parameter paraproduct to analyze terms III, V and II,
bi-parameter paraproduct for terms IV, VI and VII, and tri-parameter paraprod-
uct for the last term VIII. The reader will easily see that when the number of
parameters is more than three, analogous argument can be established.

4.3.1. Term I. As the functions in the form are all disjointly supported, following
from the full kernel assumptions, one can argue similarly as in Lemma 7.1 of [10]
that there holds

|〈T (hI1 ⊗ hI2 ⊗ sJ3I3), sI1J1 ⊗ sI2J2 ⊗ hJ3〉|

� |I1|1/2
|J1|1/2

( �(I1)

�(J1)

)δ/2 |I2|1/2
|J2|1/2

( �(I2)

�(J2)

)δ/2 |J3|1/2
|I3|1/2

( �(J3)
�(I3)

)δ/2

.

We omit the details. Hence, term I can be realized in the form

C

∞∑
i1=1

∞∑
i2=1

∞∑
j3=1

2−i1δ/2 2−i2δ/2 2−j3δ/2 〈Si10i200j3f, g〉.
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4.3.2. Terms III, V, and II. Next we deal with term III (symmetric with
term V), which can be written in the form∑

I1�J1

∑
J3�I3

∑
I2�J2

〈hJ2〉I2 〈T (hI1 ⊗ hI2 ⊗ sJ3I3), sI1J1 ⊗ 1⊗ hJ3〉
· 〈f, hI1 ⊗ hI2 ⊗ hI3〉〈g, hJ1 ⊗ hJ2 ⊗ hJ3〉

=
∑

I1�J1

∑
J3�I3

∑
V

〈〈g, hJ1 ⊗ hJ3〉1,3〉V 〈T (hI1 ⊗ hV ⊗ sJ3I3), sI1J1 ⊗ 1⊗ hJ3〉
· 〈f, hI1 ⊗ hV ⊗ hI3〉.

It is not hard to check the correct normalization of the coefficient

|〈T (hI1⊗hV ⊗ sJ3I3), sI1J1 ⊗ 1⊗ hJ3〉|

� |I1|1/2
|J1|1/2

( �(I1)

�(J1)

)δ/2 |J3|1/2
|I3|1/2

(�(J3)
�(I3)

)δ/2

|V |1/2,

which means that term III can be realized in the form

C

∞∑
i1=1

∞∑
j3=1

2−i1δ/2 2−j3δ/2 〈Si10000j3f, g〉.

As Si10000j3 is a noncancellative shift, we need to show its boundedness sepa-
rately, which requires a one-parameter BMO type estimate. Rewrite∑

V

〈〈g, hJ1 ⊗ hJ3〉1,3〉V 〈T (hI1 ⊗ hV ⊗ sJ3I3), sI1J1 ⊗ 1⊗ hJ3〉〈f, hI1 ⊗ hV ⊗ hI3〉

=
∑
V

〈〈g, hJ1 ⊗ hJ3〉1,3〉V 〈〈T ∗(sI1J1 ⊗ 1⊗ hJ3), hI1 ⊗ sJ3I3〉1,3, hV 〉2
· 〈〈f, hI1 ⊗ hI3〉1,3, hV 〉2

=: C 2−i1δ/2 2−j3δ/2 〈〈f, hI1 ⊗ hI3〉1,3,ΠbI1J1J3I3
(〈g, hJ1 ⊗ hJ3〉1,3)〉2

= C 2−i1δ/2 2−j3δ/2 〈hJ1 ⊗Π∗
bI1J1J3I3

(〈f, hI1 ⊗ hI3〉1,3)⊗ hJ3 , g〉,
where bI1J1J3I3 := 〈T ∗(sI1J1 ⊗ 1⊗ hJ3), hI1 ⊗ sJ3I3〉1,3/(C 2−i1δ/22−j3δ/2), and Πa

denotes a one-parameter paraproduct in the second variable defined as

Πb(f)(x2) :=
∑
V

〈b, hV 〉2〈f, |V |−1/2χV 〉2hV (x2)|V |−1/2.

Hence, one has

Si10000j3f

=
∑
J1

∑
I1⊂J1

�(I1)=2−i1 �(J1)

∑
I3

∑
J3⊂I3

�(J3)=2−j3 �(I3)

hJ1 ⊗Π∗
bI1J1J3I3

(〈f, hI1 ⊗ hI3〉1,3)⊗ hJ3

=:
∑
J1

(i1)∑
I1⊂J1

∑
I3

(j3)∑
J3⊂I3

hJ1 ⊗Π∗
bI1J1J3I3

(〈f, hI1 ⊗ hI3〉1,3)⊗ hJ3 .

One first observes that there holds the following estimate.
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Lemma 4.1.

‖bI1J1J3I3‖BMO(Rd2) �
|I1|1/2
|J1|1/2

|J3|1/2
|I3|1/2 .

Proof. For any cube V in Rd2 , let a be a function on Rd2 with spt a ⊂ V , |a| ≤ 1
and

∫
a = 0. It suffices to show that

|〈T (hI1 ⊗ a⊗ sJ3I3), sI1J1 ⊗ 1⊗ hJ3〉| �
|I1|1/2
|J1|1/2

|J3|1/2
|I3|1/2

( �(I1)

�(J1)

)δ/2( �(J3)
�(I3)

)δ/2

|V |.

Since in the form, functions of the first and third variables are disjointly sup-
ported, one can use the partial kernel representation, the standard kernel estimate
of K{1,3}

a,1 and the boundedness of the constant C{1,3}(a, 1) to derive the desired
estimate. We omit the details. �

This then implies that Π∗
bI1J1J3I3

is bounded on L2(Rd2), with norm bounded
by (|I1|/|J1|)1/2(|J3|/|I3|)1/2. We now claim that ‖Si10000j3f‖2 � ‖f‖2. The
idea behind is similar to Proposition 4.5 in [10], but what we face here is more
complicated as the relative sizes of cubes in different variables are of mixed type.

Proposition 4.2. For arbitrary i1, j3, there holds

∥∥∥∑
J1

(i1)∑
I1⊂J1

∑
I3

(j3)∑
J3⊂I3

hJ1 ⊗Π∗
bI1J1J3I3

(〈f, hI1 ⊗ hI3〉1,3)⊗ hJ3

∥∥∥2
L2(R�d)

� ‖f‖2
L2(R�d)

.

Proof. The orthogonality of Haar systems implies that

∥∥∥∑
J1

(i1)∑
I1⊂J1

∑
I3

(j3)∑
J3⊂I3

hJ1 ⊗Π∗
bI1J1J3I3

(〈f, hI1 ⊗ hI3〉1,3)⊗ hJ3

∥∥∥2
L2(R�d)

=
∑
J1

∑
J3

∥∥∥
(i1)∑

I1⊂J1

Π∗
b
I1J1J3J

(j3)
3

(〈f, hI1 ⊗ h
J

(j3)
3

〉1,3)
∥∥∥2
L2(Rd2)

≤
∑
J1

∑
J3

( (i1)∑
I1⊂J1

∥∥∥Π∗
b
I1J1J3J

(j3)
3

(〈f, hI1 ⊗ h
J

(j3)
3

〉1,3)
∥∥∥
L2(Rd2)

)2

,

where J
(j3)
3 denotes the jth

3 dyadic ancestor of J3. Now let P i1
J1

denote the orthog-
onal projection from L2(Rd1) onto the span of {hI1 : I1 ⊂ J1, �(I1) = 2−i1�(J1)}.
Then,∥∥Π∗

b
I1J1J3J

(j3)
3

(〈f, hI1 ⊗ h
J

(j3)
3

〉1,3)
∥∥
L2(Rd2)

� |I1|1/2
|J1|1/2

|J3|1/2
|J (j3)

3 |1/2
‖〈f, hI1 ⊗ h

J
(j3)
3

〉1,3‖L2(Rd2)

≤ |I1|1/2
|J1|1/2

|J3|1/2
|J (j3)

3 |1/2
(∫

Rd2

∫
I1

|P i1
J1
(〈f, h

J
(j3)
3

〉3)|2 dx1dx2

)1/2

.
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Therefore, one has

∥∥∥∑
J1

(i1)∑
I1⊂J1

∑
I3

(j3)∑
J3⊂I3

hJ1 ⊗Π∗
bI1J1J3I3

(〈f, hI1 ⊗ hI3〉1,3)⊗ hJ3

∥∥∥2
L2(R�d)

�
∑
J1

∑
J3

( (i1)∑
I1⊂J1

|I1|1/2
|J1|1/2

|J3|1/2
|J (j3)

3 |1/2
(∫

Rd2

∫
I1

|P i1
J1
(〈f, h

J
(j3)
3

〉3)|2 dx1dx2

)1/2 )2

,

which by Hölder’s inequality is bounded by

�
∑
J1

∑
J3

( (i1)∑
I1⊂J1

|I1|
|J1|

|J3|
|J (j3)

3 |
)( (i1)∑

I1⊂J1

∫
Rd2

∫
I1

|P i1
J1
(〈f, h

J
(j3)
3

〉3)|2 dx1dx2

)

=
∑
J3

|J3|
|J (j3)

3 |
∑
J1

∫
Rd2

∫
Rd1

|P i1
J1
(〈f, h

J
(j3)
3

〉3)|2 dx1dx2

=
∑
J3

|J3|
|J (j3)

3 |
‖〈f, h

J
(j3)
3

〉3‖2L2(Rd1+d2),

where the last step above follows from the orthogonality of {P i1
J1
}J1 . Note that by

reindexing J
(j3)
3 to I3, the above can be rewritten as

∑
I3

(j3)∑
J3⊂I3

|J3|
|I3| ‖〈f, hI3〉3‖2L2(Rd1+d2) = ‖f‖2

L2(R�d)
,

which completes the proof. �

This finishes the discussion of term III. Though term II is not completely sym-
metric to III or V, it can be handled similarly by realized in a form of sums
of terms involving one-parameter paraproducts and by using the following BMO
lemma. The boundedness of the arising dyadic shifts then follows from a similar
argument as Proposition 4.2.

Lemma 4.3. Define

bI1J1I2J2 =
〈T (hI1 ⊗ hI2 ⊗ 1), sI1J1 ⊗ sI2J2〉1,2

C 2−i1δ/2 2−i2δ/2
.

Then,

‖bI1J1I2J2‖BMO(Rd3) �
|I1|1/2
|J1|1/2

|I2|1/2
|J2|1/2 .

The proof of the lemma above is completely the same as Lemma 4.1, which is
left to the reader.
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4.3.3. Terms IV, VI, and VII. Now we turn to term IV (symmetric with
term VI), which can be realized in a form involving bi-parameter paraproduct.
Write∑

I1�J1

∑
I2�J2

∑
J3�I3

〈hJ2〉I2 〈hI3〉J3〈T (hI1 ⊗ hI2 ⊗ 1), sI1J1 ⊗ 1⊗ hJ3〉
· 〈f, hI1 ⊗ hI2 ⊗ hI3〉〈g, hJ1 ⊗ hJ2 ⊗ hJ3〉

=
∑

I1�J1

∑
V

∑
W

〈〈g, hJ1 ⊗ hW 〉1,3〉V 〈〈f, hI1 ⊗ hV 〉1,2〉W
· 〈T (hI1 ⊗ hV ⊗ 1), sI1J1 ⊗ 1⊗ hW 〉,

which is of the form

C
∞∑

i1=1

2−i1δ/2〈Si100000f, g〉,

if one can prove that the following correct normalization holds true:

|〈T (hI1 ⊗ hV ⊗ 1), sI1J1 ⊗ 1⊗ hW 〉| � |I1|1/2
|J1|1/2

( �(I1)

�(J1)

)δ/2

|V |1/2|W |1/2.

To see this, recall that by the partial kernel representation,

〈T (hI1 ⊗ hV ⊗ 1), sI1J1 ⊗ 1⊗ hW 〉 = 〈T2(hI1 ⊗ 1⊗ 1), sI1J1 ⊗ hV ⊗ hW 〉
=

∫
Rd1

∫
Rd1

K
{1}
2,1⊗1,hV ⊗hW

(x1, y1)hI1(y1)sI1J1(x1) dx1dy1,

where the partial kernel K{1}
2,1⊗1,hV ⊗hW

satisfies standard kernel estimates bounded
by constant C{1}(1⊗1, hV ⊗hW ), where additionally we have the assumption that
C{1}(1 ⊗ 1, ·) is a function in BMOprod(R

d2 × Rd3) with norm � 1. Hence, there
holds C{1}(1 ⊗ 1, hV ⊗ hW ) � |V |1/2|W |1/2, and the correct normalization of the
coefficient then follows from a completely same argument as Lemma 3.10 in [5].

It is then left to demonstrate the uniform boundedness of the shift Si100000.
Rewrite∑

V

∑
W

〈〈g, hJ1 ⊗ hW 〉1,3〉V 〈〈f, hI1 ⊗ hV 〉1,2〉W 〈T (hI1 ⊗ hV ⊗ 1), sI1J1 ⊗ 1⊗ hW 〉

= C 2−i1δ/2〈hJ1 ⊗ΠbI1J1
(〈f, hI1 〉1), g〉,

where bI1J1 := 〈T2(hI1 ⊗1⊗1), sI1J1〉1/(C 2−i1δ/2). The bi-parameter paraproduct
appearing above is

Πb(f) :=
∑
V,W

〈b, hV ⊗ hW 〉2,3〈f, hV ⊗ h1
W 〉2,3 h1

V ⊗ hW |V |−1/2 |W |−1/2,

where h1
V is a noncancellative Haar function defined as |V |−1/2χV , and h1

W is
defined similarly. Since the boundedness of ΠbI1J1

implies the uniform boundedness
of Si100000 similarly as in Proposition 4.2, it thus suffices to prove the following.

Lemma 4.4. ‖bI1J1‖BMOprod(Rd2×Rd3) � |I1|1/2/|J1|1/2.
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Proof. We make use of the partial kernel assumption and the WBP/BMO condi-
tions of the constant. Specifically, we will prove that for any dyadic grids D2,D3,
and any open set Ω ⊂ Rd2 × Rd3 with finite measure, there holds

1

|Ω|
∑

R⊂Ω,R∈D2×D3

R=J2×J3

|〈T2(hI1 ⊗ 1⊗ 1), sI1J1 ⊗ hJ2 ⊗ hJ3〉|2/(C22−i1δ) � |I1|
|J1| .

Due to the disjoint supports of hI1 and sI1J1 , one has

〈T2(hI1 ⊗ 1⊗ 1), sI1J1 ⊗ hJ2 ⊗ hJ3〉
=

∫
I1

∫
Qc

1

K
{1}
2,1⊗1,hJ2⊗hJ3

(x1, y1)hI1(y1)sI1J1(x1) dx1dy1.
(4.1)

If �(I1) < 2−r�(J1), the goodness of I1 implies d(I1, Qc
1) ≥ �(J1)(�(I1)/�(J1))

γ1 .
Hence, according to the mean zero property of hI1 and the Hölder condition of the
partial kernel, one has

|(4.1)| =
∣∣∣
∫
I1

∫
Qc

1

[
K

{1}
2,1⊗1,hJ2⊗hJ3

(x1, y1)−K
{1}
2,1⊗1,hJ2⊗hJ3

(x1, c(I1))
]

· hI1(y1)sI1J1(x1) dx1dy1

∣∣∣
� C

{1}
2 (1⊗ 1, hJ2 ⊗ hJ3) ‖hI1‖1 ‖sI1J1‖∞

∣∣∣
∫
Qc

1

�(I1)
δ

d(x1, I1)d1+δ
dx1

∣∣∣

� C
{1}
2 (1⊗ 1, hJ2 ⊗ hJ3)

|I1|1/2
|J1|1/2

( �(I1)

�(J1)

)δ/2

.

If �(I1) ≥ 2−r�(J1) instead, we further split (4.1) into two parts. Write

|(4.1)| ≤
∫
3I1\I1

∣∣∣
∫
I1

K
{1}
2,1⊗1,hJ2⊗hJ3

(x1, y1)hI1(y1) dy1

∣∣∣|sI1J1(x1)| dx1

+

∫
(3I1)c

∣∣∣
∫
I1

[K
{1}
2,1⊗1,hJ2⊗hJ3

(x1, y1)−K
{1}
2,1⊗1,hJ2⊗hJ3

(x1, c(I1))]hI1(y1) dy1

∣∣∣
· |sI1J1(x1)| dx1

� C
{1}
2 (1⊗ 1, hJ2 ⊗ hJ3) ‖hI1‖∞ ‖sI1J1‖∞

∫
3I1\I1

∫
I1

1

|x1 − y1|d1
dy1dx1

+ C
{1}
2 (1 ⊗ 1, hJ2 ⊗ hJ3) ‖hI1‖1 ‖sI1J1‖∞

∫
(3I1)c

�(I1)
δ

d(x1, I1)d1+δ
dx1

� C
{1}
2 (1⊗ 1, hJ2 ⊗ hJ3)

|I1|1/2
|J1|1/2 � C

{1}
2 (1⊗ 1, hJ2 ⊗ hJ3)

|I1|1/2
|J1|1/2

( �(I1)

�(J1)

)δ/2

.

Combining the two cases, we obtain

|(4.1)| � C
{1}
2 (1⊗ 1, hJ2 ⊗ hJ3)

|I1|1/2
|J1|1/2 2−i1δ/2,



Multi-parameter singular integrals and representation theorem 341

which then implies that

1

|Ω|
∑

R⊂Ω,R∈D2×D3

R=J2×J3

|〈T2(hI1 ⊗ 1⊗ 1), sI1J1 ⊗ hJ2 ⊗ hJ3〉|2/(C22−i1δ)

� 1

|Ω|
∑

R⊂Ω,R∈D2×D3

R=J2×J3

|C{1}
2 (1⊗ 1, hJ2 ⊗ hJ3)|2

|I1|
|J1| �

|I1|
|J1| ,

where the last step follows from the WBP/BMO assumption that C
{1}
2 (1⊗ 1, ·) is

a product BMO function with norm � 1. �

This finishes the discussion of the term IV. Similarly, term VII can also be
expressed as a sum of terms involving bi-parameter paraproducts, where the BMO
function and the correct boundedness are given in the following lemma, whose
proof is left to the reader.

Lemma 4.5. Define bJ3I3 = 〈T ∗(1⊗ 1⊗ hJ3), sJ3I3〉3/(C 2−j3δ/2). Then

‖bJ3I3‖BMOprod(Rd1×Rd2) �
|J3|1/2
|I3|1/2 .

4.3.4. Term VIII. In order to deal with the last term, one needs to realize it
into the desired form using tri-parameter paraproducts and apply the assumed
mixed BMO/WBP conditions. Specifically, write
∑

I1�J1

∑
I2�J2

∑
J3�I3

〈hJ1〉I1〈hJ2〉I2〈hI3 〉J3〈T ∗
3 (1), hI1 ⊗ hI2 ⊗ hJ3〉

· 〈f, hI1 ⊗ hI2 ⊗ hI3〉〈g, hJ1 ⊗ hJ2 ⊗ hJ3〉

=
∑

K,V,W

〈〈g, hW 〉3〉K×V 〈〈f, hK ⊗ hV 〉1,2〉W 〈T ∗
3 (1), hK ⊗ hV ⊗ hW 〉

=
∑

K,V,W

〈T ∗
3 (1), hK ⊗ hV ⊗ hW 〉〈f, hK ⊗ hV ⊗ h1

W 〉

· 〈g, h1
K ⊗ h1

V ⊗ hW 〉|K|−1/2 |V |−1/2 |W |−1/2

=: 〈ΠT∗
3 (1)f, g〉,

where the tri-parameter paraproduct above is defined as

Πb(f) :=
∑

K,V,W

〈b, hK ⊗ hV ⊗ hW 〉〈f, hK ⊗ hV ⊗ h1
W 〉

· h1
K ⊗ h1

V ⊗ hW |K|−1/2 |V |−1/2 |W |−1/2.

A hybrid square/maximal function argument shows that in the setting of arbitrarily
many parameters, the analogue of paraproduct Πb defined above is always bounded
on L2 for product BMO symbol function b. Since it is one of our mixed BMO/WBP
assumptions that T ∗

3 (1) ∈ BMOprod, term VIII can thus be realized of the form
C〈S000000f, g〉, which concludes the proof of the case inside/inside/inside.
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Now one can see that for estimates of other cases where not all the pairs of
cubes are nested, less multi-parameter paraproduct type estimates are involved.
One just needs to carefully apply the suitable standard kernel assumptions to derive
the correct normalization, which should not involve any other new elements once
we have seen what is happening in this more difficult case. It is also not hard to
observe that our argument can be easily adapted to handle all the different mixed
cases due to the symmetry of our conditions formulated at the beginning of the
paper, hence the proof of Theorem 3.1 is complete.

Before ending the section, we emphasize that unlike [10], in the setting of
more than two parameters, one has to deal with “partial type” multi-parameter
paraproducts (for example for term IV, VI, VII above) in addition to the classical
one-parameter ones in the discussion of the above and other cases. This explains
why one needs to formulate the full kernel, partial kernel, BMO/WBP assumptions
for the operator T in such a particular way as we did.

5. Comparison to Journé’s class

The first general class of bi-parameter singular integral operators containing non-
convolution type operators was established by Journé in [7], where he proved a
bi-parameter T 1 theorem as well. It is also pointed out in [7] that, by induction,
his approach can be generalized to arbitrarily many parameters.

Definition 5.1. Let T : C∞
0 (Rd1) ⊗ C∞

0 (Rd2) → [C∞
0 (Rd1) ⊗ C∞

0 (Rd2)]′ be a
continuous linear mapping. It is a Journé type bi-parameter δ-SIO if there exists
a pair (K1,K2) of δCZ-δ-standard kernels so that, for all f1, g1 ∈ C∞

0 (Rd1) and
f2, g2 ∈ C∞

0 (Rd2),

(5.1) 〈T (f1 ⊗ f2), g1 ⊗ g2〉 =
∫

f1(y1) 〈K1(x1, y1)f2, g2〉 g1(x1) dx1 dy1

when spt f1 ∩ spt g1 = ∅;

(5.2) 〈T (f1 ⊗ f2), g1 ⊗ g2〉 =
∫

f2(y2) 〈K2(x2, y2)f1, g1〉 g2(x2) dx2 dy2

when spt f2 ∩ spt g2 = ∅.
Recall that a δCZ-δ-standard kernel is a standard kernel with parameter δ

whose value is in the Banach space δCZ, the space of Calderón–Zygmund operators
equipped with the norm ‖T ‖L2→L2 + ‖K‖.

Let T1 denote the partial adjoint TS where S = {1}, then it is easy to see
that T1 is also a Journé type δ-SIO if T is. A Journé type δ-SIO T is called a
Journé type bi-parameter δ-CZO if both T, T1 are bounded on L2, associated with
the norm ‖T ‖L2→L2 + ‖T1‖L2→L2 + ‖K1‖δCZ + ‖K2‖δCZ . By induction, one can
also define Journé type n-parameter SIO accordingly.

It is recently proved by Grau de la Herrán in [4] that in the bi-parameter setting,
under the additional assumption that T is bounded on L2, T is a Journé type δ-SIO
satisfying certain WBP if and only if it satisfies Martikainen’s mixed type condi-
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tions in [10]. In the following, we reformulate this theorem without any assumption
of the L2 boundedness and prove it in the multi-parameter setting. In [4], the L2

boundedness is used only to compare the two different formulations of WBP. How-
ever, in both Journé’s and our class of singular integrals, the WBP enter only in
the context of the boundedness of the operator.

In the proof of the following Theorem 5.2, one of the intrinsic new difficulties
is that some type of multi-parameter T 1 theorem is needed, namely Corollary 3.2.

Theorem 5.2. T is an n-parameter singular integral operator satisfying both the
full kernel and partial kernel assumptions (see Sections 2.1 and 2.2) if and only if
it is a Journé type n-parameter SIO (see Definition 5.1).

Proof. We will prove this theorem in the case n = 3 as an example, which is
enough to demonstrate the new multi-parameter phenomena in the problem. And
for simplicity of notations, let us assume that the dimensions d1 = d2 = d3 = 1.
To remind ourselves, T is a Journé type tri-parameter SIO if there exists a triple
(K1,K2,K3) of δCZ(R× R)-δ-standard kernels such that
(5.3)

〈T (f1 ⊗ f2 ⊗ f3), g1 ⊗ g2 ⊗ g3〉 =
∫

f1(y1)〈K1(x1, y1)f2 ⊗ f3, g2 ⊗ g3〉g1(x1) dx1dy1

when spt f1 ∩ spt g1 = ∅, and similarly for K2,K3.
It is important to keep in mind that for any fixed x1, y1, K1(x1, y1) is a Journé

type bi-parameter SIO on R× R.
To show that any Journé type tri-parameter SIO T satisfies our full and partial

kernel assumptions, one can basically follow the strategy in [4], and note that
no L2 boundedness is needed. Due to the symmetries of the conditions, it suffices
to check the kernel assumptions for T while the results for other TS follow similarly.
The full kernel assumptions are straightforward to verify, which we omit. For the
partial kernel assumptions, let us look at the most difficult case V = {1} as an
example, while all the other cases follow similarly and symmetrically.

For any spt f1 ∩ spt g1 = ∅, since T is a Journé type operator, we have

〈T (f1⊗ f2⊗ f3), g1 ⊗ g2⊗ g3〉 =
∫

f1(y1)〈K1(x1, y1)f2 ⊗ f3, g2 ⊗ g3〉g1(x1) dx1dy1.

Define partial kernel K
{1}
f2⊗f3,g2⊗g3

(x1, y1) := 〈K1(x1, y1)f2 ⊗ f3, g2 ⊗ g3〉. Then
the mixed size-Hölder conditions are implied by the fact that K1(x1, y1) is a
δCZ(R × R)-δ-standard kernel. Let us first look at the standard kernel esti-
mates and the boundedness of constant C{1}(1 ⊗ 1, ·). Since K1(x1, y1) maps
L∞(R × R) boundedly into BMOprod(R × R) with operator norm bounded by
‖K1(x1, y1)‖δCZ(R×R), a result proved by Journé in [7], K{1}

1⊗1,g23
is thus well de-

fined for any function g23 ∈ H1
prod(R×R), which is not necessarily a tensor product.

Then in order to prove the size condition, one writes

|K{1}
1⊗1,g23

(x1, y1)| = |〈K1(x1, y1)1 ⊗ 1, g23〉| � ‖K1(x1, y1)‖δCZ(R×R),

where ‖g23‖H1
prod(R×R) ≤ 1.
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Hence, by the vector-valued standard kernel assumption of K1(x1, y1),

|K{1}
1⊗1,g23

(x1, y1)| ≤ C{1}(1⊗ 1, g23)
1

|x1 − y1| ,

where C{1}(1⊗ 1, g23) is some constant that is universally bounded.
For Hölder conditions, one can similarly write

|K{1}
1⊗1,g23

(x1, y1)−K
{1}
1⊗1,g23

(x′
1, y1)| = |〈(K1(x1, y1)−K1(x

′
1, y1))1 ⊗ 1, g23〉|

� ‖K1(x1, y1)−K1(x
′
1, y1)‖δCZ(R×R) � C{1}(1⊗ 1, g23)

|x1 − x′
1|δ

|x1 − y1|1+δ
,

where the constant C{1}(1⊗1, g23) is the same as before. This completes the proof
of the standard kernel estimates and the BMO condition of C{1}(1⊗ 1, ·) as well.

To prove the bounds for C{1}(χI2 ⊗ 1, χI2 ⊗ h) (h being an atom of H1(R)
adapted to cube V ), for simplicity we only verify the size condition as the Hölder
conditions are similar. Split

K
{1}
χI2⊗1,χI2⊗h(x1, y1) = 〈K1(x1, y1)χI2 ⊗ 1, χI2 ⊗ h〉
= 〈K1(x1, y1)χI2 ⊗ χ3V , χI2 ⊗ h〉+ 〈K1(x1, y1)χI2 ⊗ χ(3V )c , χI2 ⊗ h〉 =: I + II.

The first term can be estimated using L2 bounds:

|I| ≤ ‖K1(x1, y1)‖δCZ(R×R)‖χI2 ⊗ χ3V ‖2‖χI2 ⊗ h‖2 � ‖K1(x1, y1)‖δCZ(R×R)|I2|.
For the second term, noticing that χ(3V )c and h are disjointly supported, by

the definition of bi-parameter Journé type CZO, there exists Calderón–Zygmund
operator K3

1 (x1, y1, x3, y3) such that

II =

∫
χ(3V )c(y3) 〈K3

1 (x1, y1, x3, y3)χI2 , χI2〉h(x3) dx3 dy3,

which by the vector-valued standard kernel estimate equals

=

∫
χ(3V )c(y3)〈[K3

1 (x1, y1, x3, y3)−K3
1 (x1, y1, x3, c(V ))]χI2 , χI2〉h(x3) dx3 dy3

≤ |I2|
∫

|χ(3V )c(y3)h(x3)|‖K3
1 (x1, y1, x3, y3)−K3

1(x1, y1, x3, c(V ))‖δCZ(R) dx3 dy3

≤ |I2| ‖K1(x1, y1)‖δCZ(R×R)

∫
|χ(3V )c(y3)h(x3)| �(V )δ

d(y3, V )1+δ
dx3 dy3

� |I2| ‖K1(x1, y1)‖δCZ(R×R).

One thus has the size condition

|K{1}
χI2⊗1,χI2⊗h(x1, y1)| � C{1}(χI2 ⊗ 1, χI2 ⊗ h)

1

|x1 − y1| ,

where the constant is taken so that C{1}(χI2 ⊗ 1, χI2 ⊗ h) � |I2|, hence satisfies
the desired BMO estimate.
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Lastly, the estimate of C{1}(χI2 ⊗χI3 , χI2 ⊗χI3) can be proved similarly based
solely on the L2 boundedness of K1(x1, y1), which completes the easy direction of
the proof of Theorem 5.2.

To justify the other direction, for any given tri-parameter operator T , together
with all of its partial adjoints satisfying the full and partial kernel assumptions,
we will prove that it is a Journé type SIO, i.e., there exist δCZ(R×R)-δ-standard
kernels K1,K2 and K3. By symmetry, it suffices to show the existence of K1.

For any sptf1∩ sptg1 = ∅, there holds for some partial kernel K{1}
f2⊗f3,g2⊗g3

that

〈T (f1 ⊗ f2 ⊗ f3), g1 ⊗ g2 ⊗ g3〉 =
∫

K
{1}
f2⊗f3,g2⊗g3

(x1, y1) f1(y1) g1(x1) dx1 dy1.

This suggests us to define a bi-parameter operator K1(x1, y1) associated with the
following bilinear form:

〈K1(x1, y1)f2 ⊗ f3, g2 ⊗ g3〉 := K
{1}
f2⊗f3,g2⊗g3

(x1, y1).

It is left to prove that K1(x1, y1) is a Journé type δ-CZO on R × R and satisfies
the standard kernel estimates. For the sake of brevity, we will focus only on the
size condition, i.e., to show that ‖K1(x1, y1)‖δCZ(R×R) � |x1 − y1|−1.

For any fixed x1, y1, the fact that K1(x1, y1) defined above is indeed a linear
continuous mapping follows from the linearity and continuity of T itself, with the
aid of Lebesgue differentiation theorem.

To see that K1(x1, y1) is a Journé type bi-parameter δ-SIO, according to the
definition, we need to show the existence of a pair of δCZ-δ-standard kernels
(K2

1 (x1, y1, x2, y2),K
3
1 (x1, y1, x3, y3)) such that

〈K1(x1, y1)f2 ⊗ f3, g2 ⊗ g3〉 = K
{1}
f2⊗f3,g2⊗g3

(x1, y1)

=

∫
f2(y2)〈K2

1 (x1, y1, x2, y2)f3, g3〉 g2(x2) dx2 dy2(5.4)

when spt f2 ∩ spt g2 = ∅;
〈K1(x1, y1)f2 ⊗ f3, g2 ⊗ g3〉 = K

{1}
f2⊗f3,g2⊗g3

(x1, y1)

=

∫
f3(y3) 〈K3

1 (x1, y1, x3, y3)f2, g2〉 g3(x3) dx3 dy3(5.5)

when spt f3 ∩ spt g3 = ∅, and the δCZ-valued standard kernel estimates for the
operators Ki

1(x1, y1, xi, yi), i = 2, 3.
The existence of K2

1 and K3
1 follows from another partial kernel assumption.

Take K2
1 as an example, when sptfi ∩ sptgi = ∅ for i = 1, 2:

〈T (f1 ⊗ f2 ⊗ f3), g1 ⊗ g2 ⊗ g3〉
=

∫
K

{1,2}
f3,g3

(x1, y1, x2, y2) f1(y1) f2(y2) g1(x1) g2(x2) dx1 dx2 dy1 dy2

=

∫
K

{1}
f2⊗f3,g2⊗g3

(x1, y1) f1(y1) g1(x1) dx1 dy1.



346 Y. Ou

By Lebesgue differentiation, this implies

〈K1(x1, y1)f2 ⊗ f3, g2 ⊗ g3〉 = K
{1}
f2⊗f3,g2⊗g3

(x1, y1)

=

∫
K

{1,2}
f3,g3

(x1, y1, x2, y2) f2(y2) g2(x2) dx2 dy2.

It is thus natural to define 〈K2
1 (x1, y1, x2, y2)f3, g3〉 := K

{1,2}
f3,g3

(x1, y1, x2, y2).
We next show that ‖K2

1(x1, y1, x2, y2)‖δCZ � |x1 − y1|−1|x2 − y2|−1, which is
the size estimate, and the Hölder estimates follow similarly.

First, one can easily check that the operator K2
1 (x1, y1, x2, y2) is associated with

the kernel K(x1, y2, x2, y2, ·, ·), which is standard with the correct norm because
of the mixed size-Hölder conditions in the full kernel assumption. It thus suffices
to prove that ‖K2

1 (x1, y1, x2, y2)‖L2→L2 � |x1 − y1|−1|x2 − y2|−1, which will follow
from Corollary 3.2 in the case n = 1 provided that K2

1 (x1, y1, x2, y2) satisfies the
BMO/WBP properties. (This is exactly the classical T 1 theorem, rephrased in
our language.)

To see this last piece of fact, note that for any normalized H1 function h, any
cube I3 in the third variable,

|〈K2
1 (x1, y1, x2, y2)1, h〉| = |K{1,2}

1,h (x1, y1, x2, y2)| � C{1,2}(1, h)
1

|x1 − y1|
1

|x2 − y2|
� 1

|x1 − y1|
1

|x2 − y2| ,

|〈K2
1 (x1, y1, x2, y2)χI3 , χI3〉| = |K{1,2}

χI3 ,χI3
(x1, y1, x2, y2)|

� C{1,2}(χI3 , χI3)
1

|x1 − y1|
1

|x2 − y2| � |I3| 1

|x1 − y1|
1

|x2 − y2| ,

which are the BMO/WBP assumptions when n = 1. This demonstrates that
K1(x1, y1) is a Journé type bi-parameter δ-SIO on R× R.

Now the only gap left in the proof of Theorem 5.2 is to show that as a bi-
parameter operator,

(5.6) ‖K1(x1, y1)‖L2→L2 � 1

|x1 − y1| ,

together with the same bound for its partial adjoint. We omit the proof of the
partial adjoint part as it follows from the same argument by changing T to its
corresponding partial adjoint from the beginning.

The proof of (5.6) is exactly where the multi-parameter version of Corollary 3.2
comes into play, as we are in need of a multi-parameter T 1 type theorem of its
full strength. It thus suffices to demonstrate that K1(x1, y1) is a bi-parameter
singular integral satisfying our full and partial kernel assumptions, as well as the
additional BMO/WBP assumptions with the required norm. Note that without
loss of generality, we are free to discuss K1(x1, y1) itself only, as the similar results
for its partial adjoints will follow from the symmetry of the assumptions on T .

To demonstrate the full kernel assumption, noticing that K1(x1, y1) is associ-
ated with kernel K(x1, y1, ·, ·, ·, ·), it is not hard to check all the mixed size-Hölder
conditions of the kernel.
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For the partial kernel assumption, when spt f2 ∩ spt g2 = ∅, observe that

〈K1(x1, y1)f2 ⊗ f3, g2 ⊗ g3〉 =
∫

K
{1,2}
f3,g3

(x1, y1, x2, y2) f2(y2) g2(x2) dx2 dy2.

Then, the partial kernel K{1,2}
f3,g3

satisfies the collection of mixed size-Hölder condi-
tions with a constant bounded by C{1,2}(f3, g3)|x1 − y1|−1. And for any normal-
ized H1 function h and any cube I3,

C{1,2}(1, h) � 1, C{1,2}(χI3 , χI3) � |I3|.
The Hölder estimates for the partial kernel follow similarly.

It is thus left to check the BMO/WBP assumptions, which will also follow from
the partial kernel assumptions of T . First, for any dyadic grids D2,D3 and open
set Ω ⊂ R× R with finite measure, since

|〈K1(x1, y1)1⊗ 1, hJ2 ⊗ hJ3〉| = |K{1}
1⊗1,hJ2⊗hJ3

(x1, y1)|

� C{1}(1⊗ 1, hJ2 ⊗ hJ3)
1

|x1 − y1| ,

there holds
1

|Ω|
∑

R⊂Ω,R∈D2×D3

R=J2×J3

|〈K1(x1, y1)1⊗ 1, hJ2 ⊗ hJ3〉|2

� 1

|x1 − y1|
1

|Ω|
∑

R⊂Ω,R∈D2×D3

R=J2×J3

|C{1}(1 ⊗ 1, hJ2 ⊗ hJ3)|2 � 1

|x1 − y1| .

The last inequality above follows from the fact that C{1}(1 ⊗ 1) is a product
BMO function with norm � 1. To verify other BMO/WBP assumptions, for any
normalized H1(R) function h3 and cubes I2, I3, in the second and third variable
respectively, observe that

|〈K1(x1, y1)χI2 ⊗ χI3 , χI2 ⊗ χI3〉| � C{1}(χI2 ⊗ χI3 , χI2 ⊗ χI3)
1

|x1 − y1|
� |I2||I3| 1

|x1 − y1| ,

and

|〈K1(x1, y1)χI2 ⊗ 1, χI2 ⊗ h3〉| � C{1}(χI2 ⊗ 1, χI2 ⊗ h3)
1

|x1 − y1| � |I2| 1

|x1 − y1| .

Hence, applying Corollary 3.2 in the case n = 2 completes the proof. �

Remark 5.3. When the number of parameters increases, in order to prove The-
orem 5.2, one needs to use Corollary 3.2 in the setting of arbitrarily many param-
eters, where Journé’s T (1) theorem fails to be easily applicable due to its many
layers of vector-valued formulations. This demonstrates an important aspect of
the power of our n-parameter representation theorem for n ≥ 3.
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Once we have proved Theorem 5.2, the following characterization of Journé
type n-parameter δ-CZO follows immediately.

Corollary 5.4. T is a Journé type n-parameter δ-CZO if and only if it is an
n-parameter CZO defined in Section 2.

Proof. We have shown in Theorem 5.2 that Journé’s and our class of n-parame-
ter SIO are equivalent. It is thus left to verify the equivalence between the bound-
edness of all the partial adjoints of T . This can be shown directly from the inductive
definition of Journé type n-parameter CZO, observing that in (n− 1)-parameter,
the partial kernels are always CZOs themselves, satisfying the corresponding L2

boundedness in (n− 1)-parameter. �

Up to this point, we have successfully established a set of characterizing con-
ditions for an operator to be a Journé type n-parameter CZO. This is very useful
in the study of multi-parameter operators since the full kernel, partial kernel,
BMO/WBP conditions are usually much easier to verify and use compared with
Journé’s original vector-valued formulation.

6. Some discussion of the necessity of the BMO/WBP con-
ditions

Given an n-parameter singular integral operator T satisfying both full and partial
kernel assumptions, one might ask if the mixed BMO/WBP conditions are nec-
essary for T to be bounded on L2(R

�d). The answer is yes when n = 1, which is
a classical result of Calderón–Zygmund operators, but is no for n ≥ 2. In fact,
a counterexample has been constructed in [7] showing that in the bi-parameter
setting, T11 and T ∗

1 1 ∈ BMOprod are not necessary conditions for T to be L2

bounded.
However, one can indeed prove the necessity of some of the mixed BMO/WBP

conditions, more precisely, those that are formulated on T and T ∗ directly. It is
straightforward to verify that pure WBP, i.e.,

|〈T (χI1 ⊗ · · · ⊗ χIn), χI1 ⊗ · · · ⊗ χIn〉| �
n∏

i=1

|Ii|

is directly implied by the L2 boundedness of T . For the pure BMO conditions:
T 1, T ∗1 ∈ BMOprod, the necessity is first pointed out in [4] for bi-parameters,
and is not hard to extend to arbitrarily many parameters using Theorem 5.2. To
see this, suppose that there is a L2 bounded n-parameter SIO satisfying full and
partial kernel assumptions. By Theorem 5.2, T is also a Journé type n-parameter
SIO who is bounded on L2. Hence, Theorem 3 in [7] implies that T 1 ∈ BMOprod,
as well as T ∗1 ∈ BMOprod observing that T ∗ is also L2 bounded.

To prove that for operator T given above, there also hold the mixed BMO/WBP
conditions for T, T ∗, we take a look at the tri-parameter, d1 = d2 = d3 = 1 case as



Multi-parameter singular integrals and representation theorem 349

an example. In other words, one wants to show that

‖〈T (χI1 ⊗ 1⊗ 1), χI1 ⊗ ·〉‖BMOprod(R×R) � |I1|,(6.1)

‖〈T (χI1 ⊗ χI2 ⊗ 1), χI1 ⊗ χI2 ⊗ ·〉‖BMO(R) � |I1||I2|,(6.2)

and all the other mixed BMO/WBP conditions formulated on T will follow sym-
metrically, so are the ones for T ∗.

In order to prove (6.1), for any cube I1, one can define an operator 〈T 1χI1 , χI1〉
mapping C∞

0 (R)⊗ C∞
0 (R) to its dual:

〈〈T 1χI1 , χI1〉f2 ⊗ f3, g2 ⊗ g3〉 := 〈T (χI1 ⊗ f2 ⊗ f3), χI1 ⊗ g2 ⊗ g3〉.

By taking one parameter away, it is easy to see that 〈T 1χI1 , χI1〉 is a bi-parame-
ter SIO, whose full kernel is K

{2,3}
χI1 ,χI1

(x2, x3, y2, y3) with norm bounded by

C{2,3}(χI1 , χI1) � |I1|,

while the partial kernel assumptions can be verified similarly. Moreover, following
from the definition of 〈T 1χI1 , χI1〉 and the L2 boundedness of T , one can conclude
that 〈T 1χI1 , χI1〉 is a L2 bounded bi-parameter Journé type SIO with norm � |I1|,
thus maps 1⊗ 1 boundedly into BMOprod(R× R), which proves (6.1).

Using the same strategy, it is not hard to demonstrate (6.2) by slicing two
parameters away and apply the L∞ → BMO estimate for Calderón–Zygmund op-
erators. We omit the details.

This, together with the discussion at the end of Section 3, leads us to the
following characterization of the class of n-parameter CZO.

Corollary 6.1. Given an n-parameter singular integral operator T satisfying both
full and partial kernel assumptions, it is then an n-parameter CZO if and only if
the mixed BMO/WBP assumptions hold true.

To end the paper, we state the following result and sketch the proof, which
indicates the generality of our operator class and its inductive intrincity. Moreover,
it also shows that although our class of operators has been proven to be equivalent
to Journé’s, its mixed type characterizing conditions still provide us with a very
helpful tool to study n-parameter operators, especially when n is very large.

Proposition 6.2. Let T := T1⊗T2⊗· · ·⊗Ts be an operator on R
�d := R

�d1×· · ·×R
�ds ,

where for any 1 ≤ i ≤ s, Ti is a ti-parameter CZO on R
�di := Rd1

i × · · · × Rd
ti
i .

Then T is an n-parameter CZO, where n := t1 + · · ·+ ts.

Proof. Observing that the partial adjoints of T can be expressed as tensor products
of some partial adjoints of Ti, it suffices to prove that T itself verifies the full and
partial kernel assumptions, as the L2 boundedness is straightforward.

The full kernel assumption is easy to verify, since the tensor product of kernels
of Ti is the full kernel and satisfies all the mixed size-Hölder conditions.
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To show the partial kernel assumptions, note that in any case, one can always
write the partial kernel as a tensor product of some of the full or partial ker-
nels of Ti. And the BMO conditions for the constants follow from the fact that
the tensor product of partial kernels are always CZO with less parameters, hence
maps L∞ → BMO. To prove the mixed WBP/BMO conditions for the constants,
one just needs to take away more parameters and mimic what we did in the proof
of (6.1) earlier this section. We leave the details of the proof to the reader. �
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