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Stability properties of periodic traveling waves

for the intermediate long wave equation

Jaime Angulo, Eleomar Cardoso Jr. and Fábio Natali

Abstract. In this paper we determine orbital and linear stability of a
class of spatially periodic wavetrain solutions with the mean zero property
related to the intermediate long wave equation. Our arguments follow
recent developments for the study of the stability of periodic traveling
waves.

1. Introduction

One of the most fascinating phenomena appearing in nonlinear dispersive equa-
tions is the existence of solutions that maintain their shape and travel with constant
speed. Such solutions are the result of a perfect balance between the nonlinear and
dispersive effects at the medium. In general, these solutions are called traveling
waves, and it is well known that their existence has very wide applications in fluid
dynamics, nonlinear optics, hydrodynamic and many other fields (see pioneering
works due to Boussinesq, Benjamin–Ono, Benjamin–Bona–Mahoney, Miura, Gard-
ner, and Kruskal). The study of the dynamics of these solutions has become one of
the important issues of the last decades for evolutive nonlinear partial differential
equations.

We can say that the initial impetus for the scientific activity of these profiles
was the inverse scattering theory (IST) for the Korteweg–de Vries equation (KdV-
equation henceforth)

ut + ux + (u2)x + uxxx = 0.

One of the lessons learned from the IST is that the traveling wave with a solitary
wave profile, namely, u(x, t) = ψ(x− ct) with c > 0 and

lim
|ξ|→+∞

ψ(ξ) = 0,

plays a central role in the long-time asymptotics of solutions to the initial-value
problem associated to the KdV-equation. Indeed, general classes of initial data are
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known that evolve as a finite sequence of solitary waves followed by a dispersive tail.
A companion result is that individual solitary waves are orbitally stable solutions
of the evolution equation. The exact theory of stability of solitary waves for the
KdV-equation was started by Benjamin in [12] (see also Bona in [14]), and reached
maturity a decade ago with works due to Albert [4], Albert and Bona [5], Albert,
Bona and Henry [6] and Weinstein [38], [40]. Next, in papers due to Strauss et al.
and Weinstein [15], [24], [39] it was shown that not all solitary wave solutions are
stable. Both necessary and sufficient conditions for stability of the traveling waves
solutions of a range of nonlinear dispersive evolution equations appear in various
of the above references.

In the last years, the study of stability of traveling waves of periodic type associ-
ated with nonlinear dispersive equations has increased significantly. A rich variety
of new mathematical problems have emerged, as well as the physical importance
related to them. This subject is often studied in relation to the natural symmetries
associated to the model (translation invariance and/or rotation invariance) and by
perturbations of symmetric classes, e.g., the class of periodic functions with the
same minimal period as the underlying wave. In the case of shallow-water wave
models (or long internal waves in a density-stratified ocean, ion-acoustic waves in a
plasma or acoustic waves on a crystal lattice), a formal stability theory of periodic
traveling wave has started with the pioneering work of Benjamin [13] regarding the
periodic steady solutions called cnoidal waves for the KdV equation. The wave-
form profiles were found first by Korteweg and de Vries for the KdV-equation. The
cnoidal traveling wave solution, namely, u(x, t) = ϕc(x− ct), has a profile given by

(1.1) ϕc(ξ) = β2 + (β3 − β2) cn
2
(√β3 − β1

12
ξ; k
)
,

where cn(· ; k) represents the Jacobi elliptic function called cnoidal associated with
the elliptic modulus k ∈ (0, 1), and the βi’s are real constants satisfying the classical
relations

(1.2) β1 < β2 < β3, β1 + β2 + β3 = 3c, k2 =
β3 − β2
β3 − β1

.

We recall that ϕc satisfies the second order differential equation

(1.3) − ϕ′′
c (ξ) + c ϕc(ξ)−

1

2
ϕ2
c(ξ) = Aϕc , ξ ∈ R,

with Aϕc = − 1
6

∑
i<j βiβj , and that the formula (1.1) is deduced from the theory of

elliptic integrals and elliptic functions (see Angulo [8]). The existence of a smooth
curve of solutions for (1.3) with a minimal period L, c ∈ I ⊂ R → ϕc ∈ Hn

per([0, L])
follows from the implicit function theorem. The interval I in general depends of
the qualitative properties of ϕc. In fact, if ϕc has the mean zero property,∫ L

0

ϕc(ξ) dξ = 0,
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we have I = (0,+∞). If Aϕc = 0 and ϕc(ξ) > 0, for all ξ ∈ R, we have I =
(4π2/L2,+∞). A first stability approach for the cnoidal wave profile (1.1) was
introduced by Benjamin in [13] regarding the stability in H1

per([0, L]) of the orbit

(1.4) Ωϕc = {ϕc(·+ y) : y ∈ R},

by the periodic flow of the KdV equation. Years later, a complete study was carried
out by Angulo, Bona and Scialom in [9] (see also [8]).

Recently, Angulo and Natali in [10] (see also [8]) have established a new ap-
proach for studying the stability of even and positive periodic traveling waves
solutions associated to the general dispersive model

(1.5) ut + 2uux − (Mu)x = 0,

where M is a differential or pseudo-differential operator in the framework of peri-
odic functions. M is defined as a Fourier multiplier operator by

(1.6) M̂g(n) = θ(n) ĝ(n), n ∈ Z,

where the symbol θ of M is assumed to be a measurable, locally bounded function
on R, satisfying the condition

(1.7) a1|n|m1 ≤ θ(n) ≤ a2(1 + |n|)m2 ,

where m1 ≤ m2, |n| � n0, θ(n) > b for all n ∈ Z, and ai ≥ 0. One of the
advantages of Angulo and Natali approach is the possibility of studying non-local
evolution models in a periodic framework. For instance, let us consider the case of
the Benjamin–Ono equation (henceforth BO-equation)

(1.8) ut + uux −Huxx = 0,

where H denotes the periodic Hilbert transform, defined for L-periodic func-
tions f as

(1.9) Hf(x) = 1

L
p.v.

∫ L/2

−L/2
cot
[π(x− y)

L

]
f(y) dy,

where p.v. represents the Cauchy principal value of the integral. The Fourier trans-

form of Hf is given by the sequence {Ĥf(n)}n∈Z, where Ĥf(n) = −i sgn(n)f̂(n).
In other words, we have that M = H∂x has a symbol given by θ(n) = |n|. The
periodic traveling waves u(x, t) = ϕc(x − ct) for the BO-equation with minimal
period L satisfy the following non-local pseudo-differential equation:

Hϕc + cϕc −
1

2
ϕ2
c = 0,

and they are given by

ϕc(x) =
4π

L

sinh(γ)

cosh(γ)− cos(2πx/L)
,

where γ > 0 satisfies tanh(γ) = 2π/(cL) (therefore the wave speed c must satisfy
c > 2π/L). In [10], the authors showed the first orbital stability result for the orbit
generated by ϕc.
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In this paper, we are interested in studying the orbital and linear stability of
a periodic family of traveling waves for the physically relevant intermediate long
wave equation (ILW-equation henceforth),

(1.10) ut + 2uux + δ−1ux − (Tδu)xx = 0, δ > 0,

with u = u(x, t) a L-periodic function and x, t ∈ R. The linear operator Tδ is
defined by

Tδu(x) =
1

L
p.v.

∫ L/2

−L/2
Γδ,L(x− y)u(y) dy,

where

Γδ,L(ξ) = −i
∑
n�=0

coth
(2πnδ

L

)
e2inπξ/L.

Thus, via the Fourier transform we obtain that

Tδu(x) = −i
∑
n�=0

coth
(2πnδ

L

)
û(n) e2inπξ/L.

Moreover, for δ → ∞, L fixed, we have (see [2])

lim
δ→∞

Γδ,L(x) = − cot
(πx
L

)
,

which is the kernel of the Hilbert transform in (1.9). Therefore, the ILW equa-
tion (1.10) is the natural periodic extension of the BO-equation (1.8). We note
that the ILW equation is an example of the class of dispersive models (1.5) with
Mδ = Tδ∂x − 1/δ.

One of the main objectives in this paper will be to find periodic solutions
for (1.10) of the form u(x, t) = ϕc(x− ct) with the periodic profile ϕc having mean
zero and satisfying

(1.11) − cϕc + ϕ2
c −Mδϕc = Ac,

where Ac will be an integration constant given by Ac = 1
L

∫ L
0 ϕ2

c(x)dx. In sec-
tion 3, we obtain the following property associated to the pseudo-differential equa-
tion (1.11):

(P0) There is a smooth curve of even periodic solutions for (1.11) with the mean
zero property, in the form

c ∈ I ⊂ R �→ ϕc ∈ Hn
per([0, L]), n ∈ N,

all of them with the same minimal period L > 0.

By following arguments of Parker [37] (see also Nakamura and Matsuno in [36]),
we obtain the following formula for even periodic solution for (1.11) with the mean
zero property (see section 3 below):

(1.12) ϕc(x) =
2K(k)i

L

[
Z
(2K(k)

L
(x− iδ); k

)
− Z

(2K(k)

L
(x+ iδ); k

)]
,
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where K(k) denotes the complete elliptic integral of the first kind, Z is the Jacobi
zeta function and k ∈ (0, 1) (see notation section below). For fixed L and δ, the
wave speed c and the elliptic modulus k must satisfy specific restrictions.

Another issue of our study will be the stability of the periodic profile ϕc. There
are two common approaches to the stability question. Firstly, we can analyze
the nonlinear initial-value problem governing the difference between an arbitrary
solution of the ILW equation and a given exact solution representing a wavetrain,
the profile ϕc. In the first approximation, we assume that the difference is small and
we linearize the evolution equation. The resulting linear equation can be studied
in an appropriate frame of reference by a spectral approach. To our knowledge,
the linearized spectral approach has never been established for the ILW equation.
A second approach to stability is the orbital stability, more precisely, we study the
Lyapunov stability property of the orbit

(1.13) Ωϕc = {ϕc(·+ y) : y ∈ R}

generated by the profile ϕc. The study of the dynamics of the set Ωϕc consist in
verifying that for any initial condition u0 close to Ωϕc we have that the solution
u(t) of (1.10) with u(0) = u0 remains close to Ωϕc for all values of t ∈ R. The
specific notion of “close” is based in terms of the following pseudo-metric defined
on a determined space W : for f, g ∈W ,

(1.14) d2(f, g) = inf
r∈R

‖f − τrg‖W ,

with τrh(x) = h(x+ r). The translation symmetry τ enables us to form a quotient
space, W/τ , by identifying the translations τf of each f ∈ W . If we consider f
and g as elements of W/τ , we obtain that d2 represents a well-defined metric on
this set. Note that in W/τ , the difference u−ϕc between ϕc and the perturbed so-
lution u will represent the most crucial difference between two wave forms, namely,
the shape. Again, according to our best knowledge, the orbital stability property
associated to the profile ϕc in (1.12) has never been established for the ILW equa-
tion in a periodic setting.

Next, we shall give a brief explanation of our work. Let us consider the new
variable

v(x, t) = u(x+ ct, t)− ϕc(x),

where u solves (1.10) and ϕc solves (1.11). Substituting this in equation (1.10) and
by using (1.11), one finds that v satisfies the nonlinear equation

(1.15) vt + 2vvx + 2(vϕc)x − cvx −Mδvx = 0.

As a leading approximation for small perturbations, we replace (1.15) by its lin-
earization around ϕc, and hence we obtain the linear equation

(1.16) vt = ∂x(Mδv + cv − 2vϕc).

Since ϕc depends only on x, the equation (1.16) admits treatment by separation of
variables, which leads naturally to a spectral problem. Then, by seeking particular
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solutions of (1.16) of the form v(x, t) = eλtψ(x), where λ ∈ C, we see that ψ
satisfies the eigenvalue problem

(1.17) ∂xLψ = λψ.

Here, L := Lc,δ denotes the self-adjoint operator

(1.18) Lc,δ := Mδ + c− 2ϕc.

We recall that the complex growth rate λ appears as (spectral) parameter. Equa-
tion (1.18) will only have a nonzero solution ψ in a given Banach space Y for
certain λ ∈ C. A necessary condition for the stability of ϕc is that there are not
points λ with Re(λ) > 0 (which would imply the existence of a solution v of (1.16)
that lies in Y as a function of x and grows exponentially in time). If we denote
by σ the spectrum of ∂xL, the latter discussion suggests the utility of the following
definition.

Definition 1.1 (Spectral stability and instability). A periodic traveling wave so-
lution ϕc of the ILW equation (1.10) is said to be spectrally stable if σ ⊂ iR.
Otherwise (i.e., if σ contains point with Re(λ) > 0), ϕc is spectrally unstable.

Since (1.16) is a real Hamiltonian equation, the spectrum σ has some elementary
symmetries; more precisely, σ is symmetric with respect to reflection in the real and
imaginary axes. Therefore, this implies that exponentially growing perturbation
are always paired with exponentially decaying ones. More precisely, if we find a
value of λ such that Re(λ) < 0, one has a reflected λ̃ such that Re(λ̃) > 0.

A spectral problem similar to (1.17) has been the focus of many research stud-
ies recently. For instance, if we restrict initially to traveling wave solutions of soli-
tary wave type, sufficient conditions in order to get the linear stability/instability
has been established for many specific dispersive equations in Kapitula and Ste-
fanov [32]. In particular, the linear stability related to the generalized Korteweg–de
Vries equation

(1.19) ut + (p+ 1)upux + uxxx = 0, p ∈ N,

was obtained by using a Krein-Hamiltonian instability index to count the number
of negative eigenvalues with positive real part. In the case of linear instability, Lin
in [34] and Lopes in [35] have presented sufficient conditions for general dispersive
models.

In a periodic framework, a general spectral problem of the form

JLψ = λψ

has emerged, with J = ∂x and L a self-adjoint operator. Since J is not a one-to-one
operator, classical linear stability results as those in [24] can not be applied. To
overcome this difficult, recently Deconinck and Kapitula in [22] (see also Haragus
and Kapitula [26]), have considered the similar problem

(1.20) JL
∣∣
H0
ψ = λψ,
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in the closed subspace H0 of mean zero,

(1.21) H0 =
{
f ∈ L2([0, L]);

∫ L

0

f(x) dx = 0
}
.

Thus, a specific Krein-Hamiltonian index formula was deduced for concluding the
linear stability of periodic profiles with the mean zero property. In particular, it was
deduced the linear stability of periodic traveling waves of cnoidal type associated
with equation (1.19) for p = 2 (we also refer the reader to Bronski, Johnson and
Kapitula in [17] and Deconinck and Nivala in [22]). We note, nevertheless, that
for obtaining this specific result was necessary to know the periodic wave profile,
as well as the quantity and multiplicity of the first eigenvalues associated to the
Lamé problem

−Φ′′ + 6k2sn2(x; k)Φ = θΦ.

Unfortunately, in our problem (1.17), this specific type of information can not be
established.

We note that the spectral/orbital stability properties of periodic traveling waves
in Hamiltonian equations that are first-order in time (e.g., the Korteweg–de Vries
or the Schrödinger equations) have been very well-studied in recent years by us-
ing approaches different to those discussed above. See, for instance, Bronski and
Johnson [16], Bronski, Johnson and Kapitula [17], [18], Bronski, Johnson and
Zumbrun [19], Deconinck and Kapitula [21], Deconinck and Nivala [23], Haragus
and Kapitula [26], Hur and Johnson [27], Jonhson [29], [30], and Kapitula and
Promislow [31].

In section 5 below, we use the approaches in Angulo and Natali [11], Deconinck
and Kapitula [22] and Haragus and Kapitula [26] for establishing the relevant
result that the periodic profile ϕc in (1.12) for the ILW equation is linearly stable
for positive values of c (see Remarks 4.4 and 5.9 below).

Our linear stability result determined in section 5 can be used to conclude the
orbital stability of the periodic waves ϕc. To do so, we shall use an adaptation of
the orbital stability analysis established by Andrade and Pastor in [7]. In our case,
we need to consider periodic waves depending on the elliptic modulus k instead
of the wave speed c in order to apply the mentioned approach. In this case, the
stability analysis will be performance in the energy space (Hilbert space)

(1.22) W =
{
g ∈ L2

per([0, L]); ||g||W :=
( +∞∑
m=−∞

[1 + θδ(m)]|ĝ(m)|2
)1/2

<∞
}
,

where θδ indicates the symbol associated to Mδ. In section 6, we briefly describe
the main arguments for obtaining our orbital result of the profile ϕc by the periodic
flow of the ILW-equation.

Our paper is organized as follows. In section 2 we present some notation and
the definition of the Jacobi elliptic functions. Section 3 is devoted to the existence
of periodic waves having the mean zero property. In section 4, we present the
required spectral property associated with the linear operator (1.18) by following
the arguments in [10]. In section 5, the linear stability of the periodic profile ϕc
in (1.12) will be shown. Finally, section 6 contains our orbital stability result.
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2. Notation

For k ∈ (0, 1), we define the normal elliptic integral of the first kind,

u(x; k) =

∫ x

0

dt√
(1− t2)(1 − k2t2)

=

∫ ϕ

0

dθ√
1− k2 sin2 θ

= F (ϕ; k),

with x = sinϕ. The number k and ϕ are called the modulus and the argument,
respectively. For x = 1 (ϕ = π/2), the integral above is said to be complete. In
this case, ones writes

K(k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

=

∫ π/2

0

dθ√
1− k2 sin2 θ

.

Hence, K(0) = π/2 and K(1) = +∞. For k fixed, u = u(x; k) is a strictly increas-
ing function of variable x (real). We define its inverse function by x ≡ sn(u; k)
(snoidal function). Then, we obtain the basic Jacobian elliptic functions cnoidal
and dnoidal, defined by cn(u; k) ≡

√
1− sn2(u; k) and dn(u; k) ≡

√
1− k2sn2(u; k)

(see Byrd and Friedman [20] and Abramowitz and Segun [3]). Snoidal, cnoidal, and
dnoidal have fundamental period 4K(k), 4K(k) and 2K(k), respectively. More-
over, sn2(u; k) + cn2(u; k) = 1, k2sn2(u; k) + dn2(u; k) = 1, sn(u; 0) = sin(u),
cn(u; 0) = cos(u), sn(u; 1) = tanh(u) and cn(u; 1) = dn(u, 1) = sech(u). The
Jacobi zeta function, Z(u) = Z(u, k), it is defined for u ∈ R by

Z(u) =

∫ u

0

[
dn2(x; k) − E(k)

K(k)

]
dx.

This function is odd, with fundamental period 2K(k). Moreover, Z(π/2, k) = 0
and Z(mK) = 0, m = 0, 1, 2, . . . For u being a complex argument we refer the
reader to formula 143.01 in [20]. In particular for u = ix, x ∈ R, we obtain

Z(ix, k) = i
sn(x; k′)
cn(x; k′)

dn(x; k′)− iZ(x, k′)− i
πx

2K(k)K(k′)
,

with k′ =
√
1− k2.

3. Existence of periodic waves

This section is devoted to establish the property (P0) presented in the introduction.
More precisely, we will construct a smooth curve of periodic waves with the mean
zero property, c ∈ I �→ ϕc ∈ Hs

per([0, L]) ∩ H0, where the period L and the
wave speed c satisfy some specific restrictions. Our arguments will follow Hirota’s
method, put forward in the works [36] and [37]. For the reader’s convenience, we
shall give a brief review of the method.

Indeed, let us assume the existence of f : C× R → C such that the profile

u(x, t) = i
∂

∂x

[
ln
(f(x+ iδ, t)

f(x− iδ, t)

)]
, (x, t) ∈ R× R,



Stability of periodic waves for the ILW equation 425

satisfies equation (1.10), with f(·, t) analytic in a specific rectangleR of the complex
plane. To simplify the notation, we define f+(x, t) = f(x + iδ, t) and f−(x, t) =
f(x − iδ, t). From arguments in [37], there exists a constant B such that the
following bilinear equation is satisfied:

(3.1)
[
iDt +

i

δ
Dx −D2

x +B
]
f+ · f− = 0,

with

Dm
t D

n
xa(x, t) · b(x, t) := (∂t − ∂t′)

m(∂x − ∂x′)na(x, t) b(x′, t′)|x=x′, t=t′ .

In addition, we can deduce from (3.1) that

(3.2) F (Dt, Dx)f · f = 0,

where

F (Dt, Dx) ≡ i
(
Dt +

1

δ
Dx

)
sinh(iδDx) + (D2

x −B) cosh(iδDx).

Next, we consider z = px + wt, where p, w ∈ R will be determined later.
Suppose that f has the following Jacobi theta profile (see [3]):

f(x, t) ≡ θ3(z, q) := 1 + 2
[ +∞∑
n=1

qn
2

cos(2nz)
]
=

+∞∑
n=−∞

qn
2

e2inz ,

where q = eiπτ , τ = iK(k′)/K(k), and K ′(k) ≡ K(
√
1− k2) is the complete

elliptic integral of the first kind. In general, q = q(τ) is the function called “nome”
with Im(τ) > 0. Substituting f in (3.2), one has

F̃0 θ3(2z, q
2) + F̃1 q

−1/2 θ2(2z, q
2) = 0.

Here, θ2 represents the Jacobi theta function of the second kind. Moreover, one has

F̃m =

+∞∑
n=−∞

F
[
2i(2n−m)w, 2i(2n−m)p

]
qn

2+(n−m)2 , m = 0, 1.

In order to prove that f(x, t) = θ3(z, q) is a periodic solution related to the
equation (1.10), it is sufficient to prove that F̃0 = F̃1 = 0. To do so, we need to
show that

(3.3)
1

δ

(
w +

p

δ

)
A′

0 −
p2

δ2
A′′

0 −A0B = 0

and

(3.4)
1

δ

(
w +

p

δ

)
A′

1 −
p2

δ2
A′′

1 −A1B = 0,
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where

A0 = A0(p; q, δ) =
+∞∑

n=−∞
q2n

2

cosh(4npδ) = θ3(2ipδ, q
2),

and

A1 = A1(p; q, δ) =

+∞∑
n=−∞

qn
2+(n−1)2 cosh[2(2n− 1)pδ] = q1/2 θ2(2ipδ, q

2).

Here, A′
0 and A

′
1 represent, respectively, the derivative of the parametersA0 and A1

with respect to p. Next, we consider fixed parameters p, q and δ as above. Solving
the system formed by (3.3) and (3.4), we get

B = B(p; q, δ) =
p2

δ2
A′

0A
′′
1 −A′′

0A
′
1

A0A′
1 −A′

0A1

and

w = w(p; q, δ) = −p
δ
+
p2

δ

A0A
′′
1 −A′′

0A1

A0A′
1 −A′

0A1
= −p

δ
+
p2

δ

∂

∂p
{ln[W (A0, A1)]} ,

where W (A0, A1) = A0A
′
1 − A′

0A1 indicates the Wronskian of A0 and A1. Now,
if we use some standard identities concerning the Jacobi elliptic functions (see [3]
and [20]), we deduce that f(x, t) = θ3(z, q) must satisfy the identity (3.2) provided
that

B = B(p; q, δ) = −p2
[θ′′1 (2ipδ, q)
θ1(2ipδ, q)

− θ′′′1 (0, q)

θ′1(0, q)

]
and

w = w(p; q, δ) = −p
δ
+ 2ip2

θ′1(2ipδ, q)
θ1(2ipδ, q)

,

where θ1 represents the Jacobi theta function of the first kind.
Similar arguments as above show that if we consider the change of variables

z �→ z/2, then

(3.5) B = B(p; k, δ) = −p
2

4

[θ′′1 (ipδ, q(k))
θ1(ipδ, q(k))

− θ′′′1 (0, q(k))

θ′1(0, q(k))

]
and

(3.6) w = w(p; k, δ) = −p
δ
+ ip2

θ′1(ipδ, q(k))
θ1(ipδ, q(k))

.

Hence, we obtain that our hypothetical solution u becomes

(3.7)

u(x, t) = i
∂

∂x

{
ln

[
θ3
(
1
2 (z − ipδ), q(k)

)
θ3
(
1
2 (z + ipδ), q(k)

)]}
=
ip

2

[
θ′3
(
1
2 (z − ipδ), q(k)

)
θ3
(
1
2 (z − ipδ), q(k)

) − θ′3
(
1
2 (z + ipδ), q(k)

)
θ3
(
1
2 (z + ipδ), q(k)

)].
Moreover, u represents a L-periodic function at the spatial variable with the natural
choice of p = 2π/L.
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Next, we need to determine specific restrictions on the parameters p, k and the
minimal period L in order to get a periodic function u. Indeed, let k ∈ (0, 1) be
fixed. It is well known that the theta function θ3(z, q(k)) has simple zeros at the
points

z =
(
m+

1

2

)
π +

(
n+

1

2

)
πτ, m, n ∈ Z.

So, the right-hand side of (3.7) has infinitely many isolated singularities which we
need to avoid. To overcome this difficulty, it is necessary to impose a convenient
condition over the parameters p, δ and k, namely,

(3.8) 0 < pδ < −iπτ = π
K(k′)
K(k)

.

To do so, it suffices to consider k ∈ (0, 1) satisfying

(3.9) v(L, δ, k) :=
2δ

L

K(k)

K(k′)
< 1.

Our next step is to present a convenient formula for the solution u in (3.7).
We consider the parameters B and w satisfying conditions in (3.5) and (3.6),
respectively. Then, by using formula 16.43.3 in [3] into (3.7), one has

(3.10) u(x, t) =
2K(k)i

L

[
Z
(2K(k)

L
(ξ − iδ); k

)
− Z

(2K(k)

L
(ξ + iδ); k

)]
,

where ξ := x − ct and c := −w/p. Therefore, identity (3.10) determines a class
of L-periodic functions which solves the ILW-equation (1.10) with wave speed c.
Here, Z represents the periodic Jacobi zeta function (see [3] and [20]).

Next, we will determine an expression for c. Indeed, in order to simplify the
notation, let us define d := 2K(k)/L. From the analysis above we obtain that

c := −w
p

=
1

δ
− ip

θ′1(ipδ, q(k))
θ1(ipδ, q(k))

=
1

δ
− 2πi

L

θ′1 (2πδi/L, q(k))
θ1 (2πδi/L, q(k))

.

Thus, by using formula 16.34.1 in [3], we get

(3.11) c =
1

δ
− 2di

[
Z (2diδ; k) +

cn (2diδ; k) dn (2diδ; k)

sn (2diδ; k)

]
,

where sn, cn and dn denote the Jacobi elliptic functions snoidal, cnoidal and
dnoidal, respectively. Hence, by considering ξ = x− ct in (2.10), we obtain the pe-
riodic traveling wave solution ϕc in (1.12) related to the ILW equation. Moreover,
by construction one has that ϕc ∈ H0.

Next, by using formula 143.01 in [20], we can rewrite the profile ϕc in terms of
the Jacobi elliptic functions snoidal, cnoidal, and dnoidal as

(3.12)

ϕc(x) = −2dZ (dδ; k′)− 4δπ

L2

K(k)

K(k′)

+ 2d
dn2 ( dx; k) cn (dδ; k′) sn (dδ; k′) dn (dδ; k′)

1− dn2 (dx; k) sn2 (dδ; k′)
.
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Figure 1. Function ϕc in (3.12) with L = π, δ = 1 and k = 0.5.

Moreover, formulas 143.02, 161.01 and 120.02 in [20] applied to the iden-
tity (3.11) give us a convenient expression for c = c(k):

(3.13) c =
1

δ
− 8πδK(k)

L2K(k′)
− 2dZ (2δd; k′)− 2d

cn (2δd; k′) dn (2δd; k′)
sn (2δd; k′)

.

Finally, from (3.9) we see that for L and δ fixed, there exist an interval (0, k1) ⊂
(0, 1) such that v(L, δ, k) < 1, for all k ∈ (0, k1). Therefore, we have the following
result, which guarantees the existence of periodic traveling wave solutions with the
mean zero property related to the ILW equation.

Theorem 3.1. Let L and δ be fixed. There exists k1 ∈ (0, 1) such that if c = c(k)
is defined as in (3.13), the map

(3.14) k ∈ (0, k1) → ϕc(k) ∈ Hn
per([0, L]) ∩H0, n ∈ N,

is smooth with respect to k ∈ (0, k1) and it satisfies (1.11) with Ac = A(k) =
1
L

∫ L
0
ϕ2
c(k)(x) dx.

In our linear and orbital stability analysis, we need to determine the sign of the
derivative of c(k) with respect to k ∈ (0, k1). For arbitrary values of L and δ, we are
not able to find an analytical argument showing the behaviour of c′(k). However,
numerical computations clearly show that c = c(k) is a strictly increasing function
over the interval (0, k1). For instance, by considering L = π and δ = 1, we obtain
the graphs of Figure 2, which show the behaviour of c(k) and its derivative c′(k),
respectively.

Moreover, by using formula in (3.13) and some numerical simulations, we obtain
that k1 in Theorem 3.1 is given by k1 ≈ 0, 944085037. Thus, for all k ∈ (0, k1),
one has the basic condition v(π, 1, k) < 1, such as is required in (3.9),

c(0) = lim
k→0+

c(k) ≈ −1.07462944, and lim
k→k−1

c(k) = +∞.
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Figure 2. Behaviour of c(k) and its derivative c′(k).

In addition, there exists a unique k0 ≈ 0.795178532 such that

(3.15) c(k0) = 0 and c(k) > 0, for all k ∈ (k0, k1),

that is, the wave speed c is negative over the interval (0, k0).

4. Spectral analysis

In this section, we present the characterization of the nonpositive spectrum con-
cerning the linearized operator L := Lc,δ defined in (1.18). The main idea for
this study will be to determine two specific spectral properties for L, namely, that
the kernel is one-dimensional with ker(L) = [ ddxϕc] and the existence of a unique
negative eigenvalue which is simple. Since the operator L is of non-local type,
this analysis is not immediate. In this point, we will apply the theory of Angulo
and Natali put forward in [11] for studying the stability of periodic traveling wave
solutions associated to the general nonlinear dispersive model (1.5). The initial
obstacle for applying Angulo and Natali’s approach is that the periodic traveling
wave profile ψ = ψς related to equation (1.5) needs to be positive and to satisfy
the equation

Mψ + ςψ − ψ2 = 0.

Moreover, the wave speed ς must satisfy ς > − infr∈R θ(r) in order to determine
that M + ς is a positive operator. In our analysis of existence established in last
section, the traveling wave profile ϕc in (1.12) has the mean zero property and the
constant Ac in (1.11) is not zero. In order to overcome this difficulty, we shall use
that the ILW-equation has the Galilean invariance given by the transformation

v(x, t) = u(x+ 2γt, t)− γ,

where γ ∈ R is an arbitrary constant. The second obstacle in our analysis is to
determine the required spectral properties associated to the linearized operator L
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in (1.18) for arbitrary values of L and δ. So, we shall restrict the analysis on a
couple of specific values L and δ, namely, L = π and δ = 1, respectively. How-
ever, numerical simulations enable us to conclude the same spectral properties for
arbitrary values of L and δ.

In what follows, we establish some preliminaries definitions and results deter-
mined by Angulo and Natali in [10]. Moreover, we write ϕc instead of ϕc(k) in
order to simplify the notation.

Definition 4.1. We say that a sequence α = (αn)n∈Z ⊆ R is in the class PF (2)
discrete if

i) αn > 0, for all n ∈ Z,

ii) αn1−m1αn2−m2 − αn1−m2αn2−m1 ≥ 0, for n1 < n2 and m1 < m2,

iii) αn1−m1αn2−m2 − αn1−m2αn2−m1 > 0, if n1 < n2, m1 < m2, n2 > m1, and
n1 < m2.

The definition above is a particular case of the continuous ones which appear
in [4] (see also Karlin [33]): we say that a function g : R → R is in PF (2)-conti-
nuous if

i) g(x) > 0, for all x ∈ R,

ii) g(x1 − y1)g(x2 − y2)− g(x1 − y2)g(x2 − y1) ≥ 0, for x1 < x2 and y1 < y2,

iii) strict inequality holds in (ii) whenever the intervals (x1, x2) and (y1, y2) in-
tersect.

A sufficient condition for g to belong to PF (2)-continuous appears if g is smooth
and logarithmically concave, namely,

d2

dx2
log[g(x)] < 0, x �= 0.

As examples of PF (2)-continuous functions, we have Q0(x) = sechp(x), for all
p > 0, and

Q(x) =
sinh(νx)

sinh(μx)
, 0 < ν < μ.

Hence, the sequences (Q0(n))n∈Z and (Q(n))n∈Z belong to the class PF (2) discrete.

The main theorem in [11] is the following:

Theorem 4.2. Suppose that ψς is an even positive solution of (1.11) with A ≡ 0,
namely,

Mψς + ςψς − ψ2
ς = 0,

such that {ψ̂ς(n)}n∈Z ∈ PF (2) discrete. Then the self-adjoint operator Lς :=
M + ς − 2ψς possesses only one negative eigenvalue which is simple and zero is
a simple eigenvalue with eigenfunction d

dxψς . Moreover, its spectrum is bounded
away from zero.

Our focus in the next lines is to apply Theorem 4.2 to determine the behaviour
of the non positive spectrum associated to the linear operator L in (1.18).
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Theorem 4.3. Let L = π and δ = 1 in (3.12)–(3.13). Consider c = c(k) and ϕc,
k ∈ (0, k1), as in Theorem 3.1. Then, L defined in (1.18) is a self-adjoint operator
such that ker(L) = [ ddxϕc]. In addition, L possess a unique negative eigenvalue
which simple and the remainder of the spectrum is constituted by isolated real
numbers which are bounded away from zero.

Proof. Initially, from the specific form of L, we obtain from classical perturbation
and spectral theories that L is a self-adjoint operator with a discrete spectrum
(see [10]).

Now, in order to simplify the notation, we denote

N(k) :=

∫ L

0

ϕ2
c(x) dx, R(k) :=

N(k)

L
,

and

m1 := 2dcn (δd; k′) sn (δd; k′) dn (δd; k′) ,(4.1)

m2 := sn2 (δd; k′) ,(4.2)

m3 := −2dZ (δd; k′)− 4δπ

L2

K(k)

K(k′)
.(4.3)

In our analysis, we shall consider L and δ arbitrary but fixed. Thus, from (3.12),
(4.1), (4.2) and (4.3), we get

(4.4) ϕc(x) = m1
dn2 (dx; k)

1−m2dn
2 (dx; k)

+m3

and, consequently,

N(k)

= m2
1

∫ L

0

dn4 (dx; k)[
1−m2dn

2 (dx; k)
]2 dx+ 2m1m3

∫ L

0

dn2 (dx; k)

1−m2dn
2 (dx; k)

dx + Lm2
3.(4.5)

Next, by using formula 410.04 in [20], we deduce

(4.6)

∫ L

0

dn2 (dx; k)

1−m2dn
2 (dx; k)

dx =
1

d

∫ dL

0

dn2 (ζ; k)

1−m2dn
2 (ζ; k)

dζ

=
1

d

∫ 2K(k)

0

dn2 (ζ; k)

1−m2 +m2k2sn2 (ζ; k)
dζ

=
2

d(1 −m2)

∫ K(k)

0

dn2 (ζ; k)

1− α2sn2 (ζ; k)
dζ

=
2

d(1 −m2)

[ π(k2 − α2)Λ0(ψ, k)

2
√
α2(1 − α2)(α2 − k2)

]
,
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where

(4.7) α2 = − m2k
2

1−m2
< 0, m2 �= 1, ψ = sin−1

(√
α2

α2 − k2

)
,

and Λ0 indicates the Heuman lambda function defined by

(4.8) Λ0(ψ, k) =
2

π
[E(k)F (ψ, k′) +K(k)E(ψ, k′)−K(k)F (ψ, k′)] ,

where

(4.9) E(k) =

∫ 1

0

√
1− k2t2

1− t2
dt, E(ψ, k′) =

∫ ψ

0

√
1− (1− k2) sin2(θ) dθ,

and

(4.10) F (ψ, k′) =
∫ ψ

0

dθ√
1− (1− k2) sin2(θ)

.

Therefore, formula 410.08 in [20] enables us to conclude∫ L

0

dn4 (dx; k)[
1−m2dn

2 (dx; k)
]2 dx =

1

d

∫ dL

0

[
dn2 (ζ; k)

]2[
1−m2dn

2 (ζ; k)
]2 dζ

=
1

d

∫ 2K(k)

0

[
1− k2sn2 (ζ; k)

]2[
1−m2 +m2k

2sn2 (ζ; k)
]2 dζ

=
2

d(1 −m2)2

∫ K(k)

0

[
1− k2sn2 (ζ; k)

]2[
1− α2sn2 (ζ; k)

]2 dζ

=
2

d(1 −m2)2
1

α4

[
k4K(k) + 2k2(α2 − k2)Π(α2, k) + (α2 − k2)2V2

]
,

where

(4.11) Π(α2, k) =
k2K(k)

k2 − α2
− πα2Λ0(ψ, k)

2
√
α2(1 − α2)(α2 − k2)

and

(4.12)

V2 =
1

2(α2 − 1)(k2 − α2)

{[2k4α2 − 2k4 + α4(1− k2)
]
K(k)

k2 − α2

+ α2E(k)−
π
(
2α2k2 + 2α2 − α4 − 3k2

)
α2Λ0(ψ, k)

2
√
α2(1 − α2)(α2 − k2)

}
.

Statements (4.1)–(4.12) give us

(4.13)

N(k) =
2m2

1

d(1−m2)2
1

α4

[
k4K(k) + 2k2(α2 − k2)Π(α2, k) + (α2 − k2)2V2

]
+

2m1m3

d(1 −m2)

[ π(k2 − α2)Λ0(ψ, k)√
α2(1− α2)(α2 − k2)

]
+ Lm2

3.
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Next, by considering the specific values of L = π, δ = 1, we obtain for each
k ∈ (0, k1), the existence of a = a(k) > 0 such that

(4.14) a2 + ca−R = 0.

Thus, one has

(4.15) a =
−c+

√
c2 + 4R

2
.

Moreover, by using that

min
x∈[0,L]

ϕc(x) = ϕc

(L
2

)
,

we find, by using numerical simulations (see Figure 3 below), that

(4.16) a(k) > −ϕc
(L
2

)
, for all k ∈ (0, k1).

Figure 3. Consider L = π and δ = 1 in (3.12)–(3.13). The continuous line gives us the
behaviour of the function a = a(k) in (4.15) for k ∈ (0, k1). The dashed line shows the
behaviour of −ϕc(L/2) for k ∈ (0, k1).

Now, let us define the velocity parameter ς = ς(k) by

ς := c+ 2a =
√
c2 + 4R > 0

and consider the translation function φς := a + ϕc. By using (4.16), we conclude
that φς > 0. Moreover, since ϕc is an even L-periodic function, one has that φς is
also an even L-periodic function. Now, we claim that φς satisfies equation (1.11)
with A ≡ 0. Indeed, sinceMδ(ϕc+β) = Mδϕc, for all β ∈ R, it follows from (1.11)
and (4.14) that

−Mδφς − ςφς + φ2ς = −Mδφς − cφς − 2aφς + φ2ς

= −Mδϕc − c(ϕc + a)− 2a(ϕc + a) + (ϕc + a)2

= −Mδϕc − cϕc + ϕ2
c − (ca+ a2) = 0.
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In what follows, we will verify that for all k ∈ (0, k1), {φ̂ς(n)}n∈Z ∈ PF (2)
discrete. We recall that if k ∈ (0, k1) one has that the analytic condition in (3.9) is
verified (L = π and δ = 1). Applying formula 905.01 in [20] into (1.12), we obtain

(4.17)

ϕc(x) =
2πi

L

+∞∑
m=1

[
sin
(
2mπ
L (x− iδ)

)
sinh (mπK(k′)/K(k))

−
sin
(
2mπ
L (x+ iδ)

)
sinh (mπK(k′)/K(k))

]

=
4π

L

+∞∑
m=1

sinh (2mπδ/L)

sinh (mπK(k′)/K(k))
cos (2mπx/L) ,

that is,

(4.18) φς(x) = a+
4π

L

+∞∑
m=1

sinh (2mπδ/L)

sinh (mπK(k′)/K(k))
cos (2mπx/L) .

So, the periodic Fourier transform of φς is expressed by φ̂ς(0) = a and

(4.19) φ̂ς(m) =
2π

L

sinh (2mπδ/L)

sinh (mπK(k′)/K(k))
, for all m ∈ Z− {0}.

Now, we consider

ν :=
2πδ

L
and μ :=

πK(k′)
K(k)

.

Then, from (3.9), we have 0 < ν < μ. On the other hand, by considering

(4.20) Q(x) :=
sinh(νx)

sinh(μx)
, x �= 0,

we see that

(4.21)
d2

dx2
[log(Q(x))] < 0, ∀ x �= 0.

Therefore, it follows that Q ∈ PF (2)-continuous (see [4]). In addition, we obtain
the following specific calculation which will be useful later:

(4.22) lim
x→0

2π

L

sinh (2πδx/L)

sinh (πK(k′)x/K(k))
=

4πδK(k)

L2K(k′)
.

Next, Figure 4 shows that the function

a(k)− 2π

L
v(L, δ, k) ≡ a(k)− 2v(π, 1, k), k ∈ (0, k1)

is strictly positive.
Therefore, we obtain for all k ∈ (0, k1), the following key inequality for a = a(k):

(4.23) a >
4πδK(k)

L2K(k′)
=

2π

L
v(L, δ, k).
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Figure 4.

Hence, statements (4.20)–(4.23) allow us to define a smooth function τ : R → R

τ(x) :=
2πQ(x)

L
, ∀x ∈ (−∞,−1] ∪ [1,+∞)

such that τ(0) = a and τ in (−1, 1), and such that τ ∈ PF (2) continuous. There-
fore, we can conclude that

{φ̂ς(m)}m∈Z ∈ PF (2) discrete.

Hence, from Theorem 4.2 we obtain that the linear operator Lς,δ = Mδ+ς−2φς
admits exactly one negative eigenvalue which is simple and zero is also a simple
eigenvalue whose correspondent eigenfunction is d

dxφς .
Finally, we analyze our linearized operator L in (1.18). Indeed, since

(4.24)
Lς,δ = Mδ + ς − 2φς = Mδ + (c+ 2a)− (2ϕc + 2a)

= Mδ + c− 2ϕc = L,

we obtain

(4.25) ker(L) = ker(Lς,δ) =
[ d
dx
φς

]
=
[ d
dx
ϕc

]
, and n(L) = 1.

This finishes the proof of the theorem. �

Remark 4.4. We have some technical difficulties to determine that (4.16) holds for
arbitrary values of L and δ (in our approach, we need to use numerical simulations
related to specific values of L and δ). However, Maple 16 software enables us to
conclude that (4.16) is valid for general values of L and δ provided that the analytic
condition in (3.9) is verified. As a consequence, the results in Theorem 4.3 can be
established for arbitrary values of L and δ.
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5. Linear stability for the ILW equation

In this section we establish our linear stability result for the mean zero traveling
wave ϕc in (1.12). For the convenience of the reader, we shall give some definitions
and sufficient conditions for obtaining our linear stability results (see [22] and [26]).

We start with the following definitions associated to the restricted operator
∂xL|H0 , where L = Lc,δ is given in (1.18) and H0 is defined in (1.21).

Definition 5.1. We define

1) kr as the number of real positive eigenvalues (counting multiplicities) of the
operator ∂xL|H0 ;

2) kc as the number of complex eigenvalues with positive real part (counting
multiplicities) of the operator ∂xL|H0 ;

3) the imaginary part of a linear operator B with domain D(B) as the linear
operator Im(B)u ≡ Im(Bu), u ∈ D(B).

From the previous definition, we see that since Im(L) ≡ 0, then kc is an even
integer. Next, if B is a self-adjoint operator, we denote by n(〈w,Bw〉) the dimension
of the maximal subspace such that 〈w,Bw〉 < 0 (also called the Morse index
of B). Moreover, let λ be an eigenvalue for ∂xL and consider its corresponding
eigenspace Eλ. The eigenvalue λ is said to have negative Krein signature if

k−i (λ) := n(〈w, (L
∣∣
H0

)
∣∣
Eλ
w〉) ≥ 1;

if k−i (λ) = 0, the eigenvalue λ is said to have positive Krein signature. If λ is a
geometrically and algebraically simple eigenvalue related to ∂xL with eigenfunc-
tion ψλ, then Eλ = [ψλ], and so

k−i (λ) =

{
0, if 〈ψλ, (L

∣∣
H0

)ψλ〉 > 0,

1, if 〈ψλ, (L
∣∣
H0

)ψλ〉 < 0.

The total Krein signature is given by k−i :=
∑

λ∈iR\{0} k
−
i (λ). Since Im(L) = 0,

we obtain that k−i is an even integer.

Definition 5.2. The Hamiltonian-Krein index associated to the operator ∂xL is
the following non-negative integer:

KHam = kr + kc + k−i .

Next, let us consider the quantity

(5.1) I = 〈L−11, 1〉.

We note that for any f ∈ ker(L)⊥, the quantity 〈L−1f, f〉 is always independent
of h ∈ L−1f . Now, we denote by D the following determinant:

(5.2) D =
1

〈L−11, 1〉

∣∣∣∣ 〈L−1ϕc, ϕc〉 〈L−1ϕc, 1〉
〈L−1ϕc, 1〉 〈L−11, 1〉

∣∣∣∣ .
Thus, from [22] and [26] we have the following result.
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Theorem 5.3. Suppose that ker(L) = [ ddxϕc]. If I and D are both non-zero, the
following identity holds:

KHam = n(L)− n(I) − n(D).

Now, by considering A = I or A = D, we have n(A) = 0 ⇔ A > 0, and
n(A) = 1 ⇔ A < 0. An immediate consequence of Theorem 5.3 and Definition 1.1
is the following.

Corollary 5.4. Under the assumptions of Theorem 5.3, if kc = kr = k−i = 0, then
the periodic wave ϕc is linearly stable. In addition, if KHam = 1, then the periodic
wave is linearly unstable.

Proof. The first part of the corollary is an immediate consequence of Theorem 2.7
in [22] (see also [26]). Now, if KHam = 1 we deduce that kr = 1 since kc and k−i
are even nonnegative integers. Then, the spectral problem in (1.20) has a positive
eigenvalue. This last fact enables us to deduce the linear instability of the periodic
wave ϕc. �

Next, we establish our linear stability result associated to the periodic traveling
wave ϕc in (3.12). Since our study will be based on Theorem 5.3, the value of KHam

must be calculated. From Theorem 4.3, we have that n(L) = 1. Now, we will prove
that n(D) = 1 and n(I) = 0, only for c > 0 (by technical reasons associated to the
sign of c′(k)). Next, we obtain some convenient expressions for I and D. More
precisely, we have (see propositions below) the following formulas:

(5.3) I = 〈L−11, 1〉 = L2

cL+ 2
∂

∂c

[ ∫ L

0

ϕ2
c(x) dx

] ,
and

(5.4) D = −1

2

1

I
∂

∂c

∫ L

0

ϕ2
c(x) dx.

In our analysis, we deduce that ∂
∂c

∫ L
0
ϕ2
c(x)dx > 0, and consequently, we get I > 0

and D < 0. Thus, one has, respectively, n(I) = 0 and n(D) = 1. Therefore, from
Theorem 4.3 and Theorem 5.3, we conclude that KHam = 0. Consequently, we
deduce the linear stability of the wave ϕc (see Corollary 5.4) according with next
result.

Theorem 5.5. Consider c > 0. The periodic traveling waves ϕc in (3.12) is
linearly stable for the ILW equation.

The focus of the following propositions will be to show that I > 0 and D < 0.
We recall that, for convenience, we are considering L = π and δ = 1. We start by
establishing the following key result.
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Proposition 5.6. For all c > 0 one has ∂
∂c

∫ L
0
ϕ2
c(x)dx > 0.

Proof. Initially we have, for N(k) =
∫ L
0 ϕ2

c(k)(x)dx, the relation

(5.5)
∂

∂c

[ ∫ L

0

ϕ2
c(x)dx

]
=
dk

dc

∂

∂k

[ ∫ L

0

ϕ2
c(k)(x)dx

]
≡ dk

dc
N ′(k).

Thus, since c′(k) > 0, for all k ∈ (k0, k1) (see (3.15)), we only need to establish
the sign of N ′(k). Before that, it is necessary to handle the quantity N(k) in (4.5)
for obtaining a convenient expression in our calculations. Indeed, from (4.17) and
from the Plancherel theorem we obtain

(5.6) N(k) = L
+∞∑

m=−∞
|ϕ̂c(m)|2 =

8π2

L

+∞∑
m=1

[sinh (2mπδ/L)]2

[sinh (mπK(k′)/K(k))]
2 ,

for all k ∈ (0, k1). So, one can take the first derivative with respect to k ∈ (k0, k1)
in (5.6) to deduce

N ′(k) = −16π3

L

+∞∑
m=1

{m[ sinh(2mπδ
L

)]2[
cosh

(mπK(k′)
K(k)

)][ d
dk

[K(k′)
K(k)

]]
[
sinh

(mπK(k′)
K(k)

)]3
}
.

Since
d

dk

[
K(k′)
K(k)

]
=

[E(k)−K(k)]K(k′) +K(k)E(k′)
k(k2 − 1)K(k)2

< 0,

for all k ∈ (0, 1), we obtain immediately that

(5.7) N ′(k) > 0, for all k ∈ (k0, k1).

This finishes the proof. �

Remark 5.7. From Proposition 5.6 and numerical calculations made in section 2
(see (3.15)), we see that N ′(k) > 0 for every k ∈ (0, k1)− {k0}. So, we have

(5.8)
d

dc
‖ϕc‖2 > 0, for every c �= 0.

Next we establish the formulas (5.3) and (5.4).

Proposition 5.8. For every c > 0, we have that I > 0. In particular, n(I) = 0.

Proof. Since f ≡ 1 ∈ Hs
per([0, L]), for all s ≥ 0, and Mδ(1) = 0, we get

(5.9) L(1) = Mδ(1) + c− 2ϕc = c− 2ϕc.

Thus, since ker(L) = [ ddxϕc],
d
dxϕc ⊥ 1 and d

dxϕc ⊥ ϕc, one has from (5.9) that

(5.10) 1 = cL−11− 2L−1ϕc.
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Then
c〈L−11, 1〉 = 〈1, 1〉+ 2〈L−1ϕc, 1〉.

Now, since c > 0, we get

(5.11) 〈L−11, 1〉 = L

c
+

2〈L−1ϕc, 1〉
c

.

Next, by differentiating identity (1.11) with respect to c, we obtain

(5.12) L
( ∂
∂c
ϕc

)
= −ϕc −

1

L

d

dc
‖ϕc‖2.

Applying the operator L−1 to both sides of (5.12), we deduce

(5.13)
∂

∂c
ϕc = −L−1ϕc −

1

L

d

dc
‖ϕc‖2L−11.

Hence, since ϕc has the mean zero property, we have

(5.14)
〈 ∂
∂c
ϕc, 1

〉
=

∂

∂c

∫ L

0

ϕc(x) dx = 0,

and so, by combining (5.13) and (5.14), it follows that

(5.15) 〈L−1ϕc, 1〉+
1

L

d

dc
‖ϕc‖2〈L−11, 1〉 = 0.

Therefore, from (5.11) and (5.15) we obtain the equality

〈L−11, 1〉+ 2

Lc

d

dc
‖ϕc‖2〈L−11, 1〉 = L

c
.

Finally, since d
dc‖ϕc‖2 > 0 (Proposition 5.6), we get

(5.16) I = 〈L−11, 1〉 = L2

cL+ 2
d

dc
‖ϕc‖2

.

Therefore, we obtain the formula in (5.3). Moreover, from the assumption
about c and Proposition 5.6, we have immediately that I > 0. This finishes the
proof. �

Remark 5.9. From (5.16), we note that our imposition about the positiveness
of c in Proposition 5.8 has only technical reasons. In fact, if c < 0, the study of
the behaviour of I will depend on exhaustive numerical calculations. Additional
calculations made in Maple 16 enable us to say that I > 0, for all c �= 0 (k ∈
(0, k1)− {k0}).

Proposition 5.10. For c > 0, we obtain D < 0. In particular, n(D) = 1.
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Proof. We start our proof by determining convenient expressions for each term
of D in (5.2). Indeed, from (5.11) and (5.16), we deduce

(5.17) 〈L−1ϕc, 1〉 =
c〈L−11, 1〉

2
− L

2
= −

L
d

dc
‖ϕc‖2

cL+ 2
d

dc
‖ϕc‖2

.

Hence, by using identities (5.10), (5.17) and the fact that ϕc ∈ H0, we obtain

(5.18) 〈L−1ϕc, ϕc〉 =
c

2
〈L−11, ϕc〉 = −

cL
d

dc
‖ϕc‖2

2cL+ 4
d

dc
‖ϕc‖2

.

Therefore, since I �= 0 (Proposition 5.8) it follows from (5.16), (5.17) and (5.18)
that

(5.19)

D =
1

I

[
〈L−1ϕc, ϕc〉 −

〈L−1ϕc, 1〉2
〈L−11, 1〉

]

= − 1

I

[
cL

d

dc
‖ϕc‖2

2cL+ 4
d

dc
‖ϕc‖2

−

[ d
dc

‖ϕc‖2
]2

cL+ 2
d

dc
‖ϕc‖2

]
= −1

2

1

I
d

dc
‖ϕc‖2.

Therefore, we obtain the formula in (5.4) and from Propositions 5.6 and 5.8, we
have D < 0. The proof of the proposition is completed. �

Remark 5.11. From (1.17) and the fact that L = Lς,δ, we deduce that the positive
and periodic wave φς is also linearly stable.

6. Orbital stability for the ILW-equation

In the last section, we have proved that the Krein-Hamiltonian index KHam as-
sociated to the linear operator ∂xL is zero, and thus the linear stability of the
periodic traveling wave ϕc was obtained. The next step of the theory is to obtain
information about the orbital stability of these periodic profiles. Indeed, by using
arguments in [22], [24], [25], and Chapter 5.2.2 of [31], we will deduce that ϕc is a
local minimizer of a constrained energy functional, and so the orbital stability of
these periodic waves can be deduced. The information obtained in Theorem 4.3
and Proposition 5.6 are the basis of our analysis.

Now, in some works in the current literature (for instance, [8], [12], [14], [25],
[24], [28], [39]), we see that the orbital stability of periodic traveling waves related
to the general model (1.11) were determined provided that the constant Ac does
not depend on the wave speed c (we believe that the mentioned approaches can
not be directly used to conclude the orbital stability of periodic profiles when Ac
is a function of c). Thus, our purpose will be to apply the recent development in
Andrade and Pastor [7] to overcome this difficulty and then, we obtain the orbital
stability of the profile ϕc in (1.12) for every c �= 0.
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We start our study by presenting the formal definition of orbital stability.

Definition 6.1. We say that the periodic wave ϕc in (1.12) is orbitally stable with
respect to (1.10) in the space W in (1.22), if for all ε > 0, there exists δ > 0 such
that if u0 ∈ Hs

per([0, L])∩W , s > 3/2, with ||u0−ϕc||W < δ and u(t) is the solution
of (1.10) with u(0) = u0, then for all t ∈ R, one has

inf
r∈R

||u(t)− ϕc(·+ r)||W < ε.

Otherwise, the periodic wave ϕc is said to be orbitally unstable.

Definition 6.1 forces us to obtain some information about the global well-
posedness related to the ILW-equation. This is the content of the following result.

Theorem 6.2. Consider u0 ∈ Hs
per([0, L]). If s > 3/2, there exists a unique

u ∈ C(R;Hs
per([0, L])) such that u solves the initial value problem

(6.1)

{
ut + 2uux − (Mδu)x = 0, (x, t) ∈ R× R,
u(0) = u0.

In addition, for all T > 0 the data-solution map

u0 ∈ Hs
per([0, L]) → u ∈ C([0, T ];Hs

per([0, L])),

is continuous.

Proof. See Abdelouhab et al., [1]. �

Now, the ILW equation has the following three basic conserved quantities:

(6.2) E−1(u) =

∫ L

0

u dx, E0(u) =
1

2

∫ L

0

u2 dx

and

(6.3) E1(u) =
1

2

∫ L

0

(Mδu)u dx− 1

3

∫ L

0

u3 dx.

Indeed, from Theorem 6.2 and density arguments, we deduce that, for all t,

E−1(u(t)) = E−1(u0), E0(u(t)) = E0(u0), and E1(u(t)) = E1(u0).

Moreover, the ILW equation admits the following Hamiltonian structure:

ut = −2uux + (Mδu)x = ∂x(−u2 +Mδu) = ∂xE
′
1(u).

Our purpose is to describe Andrade and Pastor’s approach in [7] for the case
of equation (1.10) (we note that the strategy established in [7] is a generalization
of the results in [28]). In fact, from Theorem 3.1 the wave speed c given by (1.12)
depends smoothly on the elliptic modulus k (see (3.11)). Our stability analysis will
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be based on this new parameter instead of the wave speed parameter c (the analysis
on the parameter c is standard in the classical literature). Therefore, we need
to establish a stability framework based on this new “wave speed” parameter k.
Thus, by using [7] and [24], we consider, for every k ∈ (0, k1), the following smooth
manifold in the space W :

(6.4) Σk =
{
u ∈ W ; Mk(u) =Mk(ϕk), where Mk(u) :=

dc

dk
E0(u)+

dA

dk
E−1(u)

}
,

where ϕk := ϕc(k) and A = A(k) = 1
L

∫ L
0 ϕ2

k(x)dx. Now, the assumptions to obtain
the orbital stability of ϕk in the sense of Definition 6.1 are the following:

(P0) There exists a smooth curve of periodic solutions for (1.11) in the form,

k ∈ J ⊂ R → ϕk ∈ Hn
per([0, L]) ∩H0, n ∈ N;

(P1) ker(L) = [ ddxϕk];

(P2) L has a unique negative eigenvalue λ which is simple;

(P3)
〈
L(∂ϕk

∂k ), (∂ϕk

∂k )
〉
< 0.

Conditions (P0)–(P1)–(P2) have been established in Theorems 3.1 and 4.3
above. Concerning condition (P3), if we differentiate the equation in (1.11) with
respect to k, we obtain the equality

L
(∂ϕk
∂k

)
= − dc

dk
ϕk −

dA

dk
= −M ′

k(ϕk).

Thus, from Proposition 5.6, Remark 4.4 and the fact that ϕk ∈ H0, we obtain, for
every k such that c = c(k) �= 0,

(6.5)
〈
L
(∂ϕk
∂k

)
,
(∂ϕk
∂k

)〉
= −

〈
M ′
k(ϕk),

∂ϕk
∂k

〉
= −1

2

dc

dk

d

dk

∫ L

0

ϕ2
k(x)dx < 0.

The main theorem of this section is now presented.

Theorem 6.3. Let k ∈ (0, k1) be fixed such that c = c(k) �= 0. Then the periodic
wave ϕk = ϕc(k) in (1.12) is orbitally stable by the periodic flow of equation (1.10)
in the sense of Definition 6.1.

For the reader’s convenience, we shall give a sketch of the proof of Theorem 6.3.
The proof of the next two lemmas follow from the ideas in [7], [8], [24], and [28].

Lemma 6.4. There exist ε > 0 and a C1-function, ω : Uε(ϕk) �→ R, with

Uε(ϕk) := {u ∈ W ; ‖u− ϕk‖W < ε},

such that

〈u(·+ ω(u)),
d

dx
ϕk〉 = 0, for all u ∈ Uε(ϕk).
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Lemma 6.5. Suppose that the conditions (P0), (P1), (P2), and (P3) are verified.
Define the set

Ak := {Φ ∈ W ; 〈Φ,M ′
k(ϕk)〉 = 〈Φ, d

dx
ϕk〉 = 0}.

Then, there exists a constant C > 0 such that

〈LΦ,Φ〉 ≥ C‖Φ‖2W , for all Φ ∈ Ak.

Now, for u ∈ W we define the pseudo-metric

ρ(u, ϕk) := inf
r∈[0,L]

‖u− ϕk(·+ r)‖W ,

which indicates the distance between u and the orbit generated by ϕk via the
translation symmetry, namely, Ωk = {ϕk(·+ r) : r ∈ [0, L]}.

The following lemma establishes the existence of local minimizers on the man-
ifold Σk.

Lemma 6.6. Suppose that the conditions (P0), (P1), (P2), and (P3) are verified.
Define the functional

Fk = E1 + cE0 +AE−1.

Then, there exist ε > 0 and a constant C(ε) > 0 satisfying

Fk(u)−Fk(ϕk) ≥ C(ε) [ρ(u, ϕk)]
2

for all u ∈ Uε(ϕk) ∩ Σk.

Proof. Consider u ∈ W . Since Fk is invariant under translations, one has Fk(u) =
Fk(u(·+ r)), for all r ∈ R. Hence, it is suffices to show that

Fk(u(·+ ω(u)))−Fk(ϕk) ≥ C[ρ(u, ϕk)]
2,

where ω is the smooth function obtained in Lemma 6.4. Thus, since u ∈ Σk, we
deduce from Lemma 6.4, the existence of a constant C1 ∈ R such that

(6.6) v := u(·+ ω(u))− ϕk = C1M
′
k(ϕk) + y,

where y ∈ Bk = [M ′
k(ϕk)]

⊥ ∩ [ ddxϕk]
⊥. Next, since Mk is also invariant under

translations, we can apply Taylor’s formula to obtain

(6.7) Mk(u) =Mk(u(·+ ω(u))) =Mk(ϕk) + 〈M ′
k(ϕk), v〉+O(‖v‖2W).

Hence, since y ∈ Bk one has 〈M ′
k(ϕk), v〉 = 〈M ′

k(ϕk), C1M
′
k(ϕk)〉 = C1N ,

where N is a constant which is associated with the wave speed c. Thus, since
Mk(u) =Mk(ϕk), we obtain from (6.7) that

(6.8) C1 = O(‖v‖2W).
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Now, since F ′
k(ϕk) = 0 and F ′′

k (ϕk) = L, we can use Taylor’s theorem to deduce

Fk(u)−Fk(ϕk) =
1

2
〈Lv, v〉 + o(‖v‖2W).

Therefore, from (6.6) and (6.8), we have 〈Lv, v〉 = 〈Ly, y〉+O(‖v‖3W), that is, we
conclude

Fk(u)−Fk(ϕk) =
1

2
〈Ly, y〉+ o(‖v‖2W).

Since y ∈ Bk, we obtain from Lemma 6.5 the existence of C > 0 such that 〈Ly, y〉 ≥
C‖y‖2W . Thus,

(6.9) Fk(u)−Fk(ϕk) ≥ C̃ ‖y‖2W + o(‖v‖2W),

where C̃ > 0. Therefore, from (6.6), we deduce that for ε > 0 small enough, there
exists C = C(ε) > 0 such that

Fk(u)−Fk(ϕk) ≥ C ‖v‖2W ≥ C [ρ(u, ϕk)]
2.

This finishes the proof. �

Proof of Theorem 6.3. The proof follows from Theorem 6.2, Lemma 6.6 and a con-
venient modification of Theorem 3.5 in [24] (see also [7]). We suppose that ϕk is
not orbitally stable and so we can select wn := un(·, 0) ∈ U1/n(ϕk) ∩Hs

per([0, L]),
s > 3/2, and ε > 0, such that ‖wn − ϕk‖Hs

per
→ 0, as n→ ∞, with

sup
t≥0

ρ(un(·, t), ϕk) ≥ ε,

where un(·, t) is the corresponding solution of (6.2) with initial data wn. Let us
consider ε > 0 satisfying Lemma 6.4. From continuity of un(t) at t ∈ R, we
consider the smallest tn > 0 satisfying

(6.10) ρ(un(·, tn), ϕk) =
ε

2
.

The following step in our analysis will be to determine the existence of αn > 0
such that αnun(·, tn) ∈ Σk, for n large. This is exactly the point in our approach
where we will apply the strategy in [7]. Indeed, let us define fn : R → R, such
that, for n fixed,

fn(α) =Mk(αun(·, tn)) =
α2

2

dc

dk

∫ L

0

|un(·, tn)|2 dx+ α
dA

dk

∫ L

0

un(·, tn) dx

=: α2gn + αhn.

We note immediately that fn(0) = 0, gn > 0 and Mk(ϕk) > 0. Thus, for all n ∈ N

there exists αn > 0 such that fn(αn) =Mk(ϕk). In other words, we guarantee the
existence of (αn)n∈N ⊂ R satisfying

(6.11) Mk(αnun(·, tn)) =Mk(ϕk), for all n ∈ N,

that is, (αnun(·, tn))n∈N ⊂ Σk.
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Next, let Tk(u) := dc
dkE0(u) and Rk(u) :=

dA
dkE−1(u). Then, since E0 and E−1

are continuous mappings, one has that Tk(wn) → Tk(ϕk) =: g �= 0, Rk(wn) →
Rk(ϕk) =: h and Mk(wn) −→Mk(ϕk), as n→ +∞. So,

�n := |α2
nTk(wn) + αnRk(wn)− (Tk(wn) +Rk(wn))|

= |Mk(αnun(·, tn))−Mk(wn)| = |Mk(wn)−Mk(ϕk)| −→ 0,

as n→ +∞. On the other hand,

0 ≤ |α2
nTk(wn) + αnRk(wn)− (g + h)| ≤ �n + |Tk(wn)− g|+ |Rk(wn)− h| −→ 0,

that is,

(6.12) zn := α2
nTk(wn) + αnRk(wn) −→ g + h.

Therefore, statement (6.12) gives us that (αn)n∈N is a bounded sequence and there-
fore, modulo a subsequence, one has αn −→ α0, as n → +∞. We will see that
α0 = 1. Indeed, from (6.12) we get

(6.13) (1 − α0)[(1 + α0)g + h] = 0.

Now, since

1 +
h

g
= 1 +

Rk(ϕk)

Tk(ϕk)
= 1 +

1

Tk(ϕk)
dA

dk

∫ L

0

ϕk(ξ) dξ = 1 +
0

Tk(ϕk)
= 1 > 0,

we obtain that α0 > 0. Therefore, since g �= 0, it follows from (6.13) that α0 = 1.
Next, we claim that

(6.14) ρ(un(·, tn), αnun(·, tn)) −→ 0, n→ +∞.

In fact, since ρ(un(·, tn), ϕk) = ε/2, there exist rn ∈ R and C2 > 0 such that

‖un(·, tn)‖W ≤ ‖un(·, tn)− ϕk(·+ rn)‖W + ‖ϕk(·+ rn)‖W
< ε+ ‖ϕk(·+ rn)‖W = C2,

that is, (‖un(·, tn)‖W)n∈N
is a bounded sequence. Therefore, the convergence

αn → 1 and the relation

(6.15)
ρ(un(·, tn), αnun(·, tn)) ≤ ‖un(·, tn)− αnun(·, tn)‖W

≤ |1−αn| · ‖un(·, tn)‖W ,

imply (6.14). Thus, an application of the triangle inequality and (6.10) show that
(αnun(·, tn))n∈N ⊂ Uε(ϕk). Hence, from Lemma 6.6 we conclude immediately the
convergence

(6.16) ρ(αnun(·, tn), ϕk) −→ 0, n→ +∞.

Finally, by using (6.14) and (6.16), we obtain that

ε

2
= ρ(un(·, tn), ϕk) ≤ ρ(un(·, tn), αnun(·, tn)) + ρ(αnun(·, tn), ϕk) −→ 0,

as n → +∞. Last fact gives us a contradiction, and the proof of Theorem 6.3 is
completed. �
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Remark 6.7. The positive and periodic wave φς in (4.18) is also orbitally stable
by using a direct application of the arguments in [10].

Acknowledgements. The authors would like to thank the two anonymous ref-
erees for their valuable suggestions and constructive comments that allowed us to
improve our manuscript.
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