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Curvature locus and principal configurations

of submanifolds of Euclidean space

Juan José Nuño Ballesteros, Maŕıa Carmen Romero Fuster,
and Federico Sánchez-Bringas

Abstract. We study relations between the properties of the curvature
loci of a submanifold M in Euclidean space and the behaviour of the
principal configurations of M , in particular the existence of umbilic and
quasiumbilic fields. We pay special attention to the case of submanifolds
with vanishing normal curvature. We also characterize local convexity in
terms of the curvature locus position in the normal space.

1. Introduction

The second order properties of an immersion of a manifold into an ambient space
determine a good part of its extrinsic geometry. Remarkable examples of this
would be properties such as vanishing of the normal curvature, existence of um-
bilic normal fields, existence of common principal directions for two or more linearly
independent normal fields, local convexity and so on. An interesting and useful
geometrical object associated with the second fundamental form is the curvature
locus. This is the natural generalization of the curvature ellipse, originally intro-
duced to study the extrinsic geometry of surfaces immersed in R

4 (see [8], [15], [16])
to the case of n-submanifolds immersed with any codimension. For submanifolds
of higher dimension the curvature locus becomes a more interesting geometrical
object. In fact, it is either the image of a Veronese manifold through a conve-
nient linear projection or its projection onto an Euclidean subspace of the normal
space at the considered point. A recent work for the particular case of 3-manifolds
([1], [2]) illustrates the rich variety of topological and geometrical types that a
curvature locus may present. On the other hand, the study of the curvature locus
for submanifolds with codimension 2 of Euclidean space carried out in [17] lead
to interesting results concerning the relations among some of the above mentioned
properties and the existence of hyperplanes with higher order contact with the
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submanifold. In the present paper we extend this last analysis to the case of sub-
manifolds immersed in higher codimension. In sections 2 and 3 we provide the
definitions of the notions referred above and prove that at a point where the nor-
mal curvature vanishes the curvature locus becomes a polyhedron whose vertices
are determined by the principal directions at p (Theorem 3.1). In section 4 we an-
alyze the possible existence of umbilic and preumbilic normal directions in terms
of the geometry of the curvature locus at a point. Section 5 is devoted to the study
of the connections between the existence of principal directions which are shared
by a certain number of linearly independent normal directions and the existence
of a ν-umbilic direction at a given point of the manifold. As a consequence, we
provide a table displaying the minimal number of shared principal directions, as
a function of the dimension and codimension of the manifold, that guarantee the
existence of an umbilic direction at a point of the submanifold. We also show the
connection between the corank of the singularities of the curvature locus map at
a given point p and the number of principal directions shared by normal linearly
independent fields at p (Proposition 5.3). In section 6 we analyze local convexity
of the manifold including its relation with the existence of higher order contact hy-
perplanes. This is characterized in terms of the relative position of the curvature
locus with respect to origin of the normal space (Corollary 6.1). We conclude by
discussing the contributions of the results of the article to the connections between
the properties of semiumbilicity, vanishing of the normal curvature, local convexity
and existence of higher order tangent hyperplanes for submanifolds of codimension
higher than 2.

2. Second fundamental form and principal configurations

Let M be an n-manifold immersed in R
n+k and let ∇̄ denote the Riemannian

connection of Rn+k. Given vector fields, X,Y , locally defined along M , we can
choose local extensions X̄, Ȳ over R

n+k, and define the Riemannian connection
on M as ∇XY = (∇̄X̄ Ȳ )�, that is, the tangent component of ∇̄X̄ on M .

If we denote by X (M) and N (M) respectively the spaces of tangent and normal
fields on M , the second fundamental form on M is defined as follows:

α : X (M)×X (M) −→ N (M)

(
X,Y

) �−→ ∇̄X̄ Ȳ −∇XY.

This bilinear symmetric map induces, for each p ∈ M and ν ∈ NpM , ν �= 0, a
bilinear form on the tangent space TpM given by Hν(v, w) =

〈
αp(v̄(p), w̄(p)), ν

〉
,

where v̄ and w̄ are tangent vector fields such that v̄(p) = v and w̄(p) = w. Since
this expression does not depend on the tangent vector fields off p, in the sequel we
will write Hν(v, w) =

〈
αp(v, w), ν

〉
. The corresponding quadratic form IIν(v) =

Hν(v, v) =
〈
α(v, v), ν

〉
is known as the second fundamental form in the direction ν.

Consider a local coordinate chart in a neighborhood of p ∈ M defined by (f, U),
where U ⊂ R

n is an open neighborhood of the origin. Assume that p = f(0)
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and {X1, . . . , Xn, ν1, . . . , νk} is an orthonormal moving frame in f(U), such that
{X1, . . . , Xn} is a tangent frame and {ν1, . . . , νk} is a normal frame. The vector
valued quadratic form αf induces, for each p ∈ M , a linear map Qp from the
normal space, NpM , of M at p to the space Q of quadratic forms in the variables
{x1, . . . , xn}. If we represent a vector v ∈ NpM by its coordinates (v1, . . . , vk)
with respect to the basis {ν1, . . . , νk}, we have

Qp(v1, . . . , vk) = v1
〈
d2f, ν1

〉
+ · · ·+ vk

〈
d2f, νk

〉
.

By using the natural identifications (through the basis induced by the above frame)

of NpM with R
k and of Q with R

1
2n(n+1), we can view this as the linear map

Qp : Rk → R
1
2n(n+1), whose matrix is the transpose of that of α at p.

If we denote 〈d2f, νr〉(Xi, Xj) = αr
ij , we have that the matrix of the map Qp

in the basis {νr}kr=1 of NpM and {x2
1, x

2
2, . . . , x

2
n, x1x2, x1x3, . . . , xn−1xn} of Q is

given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1
11 · · · αk

11

α1
22 · · · αk

22
...

. . .
...

α1
nn · · · αk

nn

α1
12 · · · αk

12
...

. . .
...

α1
n−1n · · · αk

n−1n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first normal space of the immersion f at the point p is defined as the
orthogonal complement of the kernel of the linear map Qp in NpM . We denote it
by N1

pM . Clearly dim N1
pM = rank Qp.

Given any normal field ν on M , its associated shape operator at a point p ∈ M
is given by

Aν : TpM −→ TpM

X �−→ Aν(X) = −(∇̄X̄ ν̄
)�

,

where ν̄ is a local extension of ν over a neighborhood of p in R
n+k and 
 denotes

the tangent component of the connection ∇̄. It satisfies the following equation:

〈
Aν(X), Y

〉
=

〈
α(X,Y ), ν

〉
; ∀X,Y ∈ TpM.

So, we can write
IIν(X) =

〈
Aν(X), X

〉
.

For each p ∈ M , there exists an orthonormal basis of eigenvectors of Aν ∈ TpM .
The corresponding eigenvalues κν

1 , . . . , κ
ν
n, will be referred to as the ν-principal

curvatures. For sake of simplicity we will avoid the superindex ν when it is not
necessary. A point p is said to be ν-preumbilic if there is an eigenvalue of multiplic-
ity r > 1 at p. When r = n, we say that p is ν-umbilic and when r = n− 1 it is a
ν-quasiumbilic. If all the points ofM are ν-umbilic, we shall say that ν is an umbilic
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field on M . Quasiumbilic and preumbilic fields in general are analogously defined.
We denote Uν(k

ν
i1 , . . . , k

ν
ir ) = {p ∈ M : ki1(p) = · · · = kir (p)}, r = 2, . . . , n. A

point lying in Uν(k1, . . . , kn) is called ν-umbilic. Let us denote by Uν the set of
ν-preumbilic points. Given p ∈ M − Uν , there are n ν-principal directions defined
by the eigenvectors of Aν . Provided M −Uν is open, this setting determines fields
of directions on M − Uν which are smooth and integrable. The integrals of these
fields are n families of orthogonal curves on M − Uν , called ν-principal lines of
curvature. These n orthogonal foliations of M − Uν , together with the decom-
position {Uν(ki1 , . . . , kir )} of Uν form the ν-principal configuration of M . The
points of Uν(ki1 , . . . , kir ) can be seen as the critical points for the ij-th foliation,
j = 1, . . . , r, whereas the ν-umbilics are critical points for the n foliations. The
behavior of these foliations in case M is a surface immersed in R

4 was analyzed
in [6], [7] and [19]. Since the self-adjoint operator Aν only depends on the value
of ν at the point p, the ν-principal directions, ν-preumbilicity and ν-umbilicity
are notions that only depend on the normal direction ν at p. We say that p is
umbilic if it is ν-umbilic for any normal direction ν and we call it semiumbilic if it
is ν-umbilic for any normal direction lying in some hyperplane of NpM , i.e., it is
an umbilic point of n− 1 linearly independent normal directions in NpM .

For X ∈ X (M) and ν ∈ N (M), we have the Weingarten equation

∇̄Xν = −Sν(X) + (∇̄Xν)⊥.

Denote DXν = (∇̄Xν)⊥. The normal curvature of M at p is defined as

RD : TpM × TpM ×NpM −→ NpM(
X,Y, ν

) �−→ (
DX̄(DȲ ν̄)−DȲ (DX̄ ν̄)−D[X̄,Ȳ ]ν̄

)
p
.

where bar means, as above, a vector field whose value at p is the corresponding
vector. It is well known that the following equivalence holds for submanifolds
immersed in any Euclidean space [20].

Remark 2.1. RD vanishes at p ∈ M if and only if there is an orthonormal basis
{X1, . . . , Xn} for TpM made of eigenvectors of Aν , for all ν ∈ N (M).

Definition 2.1. We say that k normal directions νi, i = 1, . . . , k share a principal
direction at a point p ∈ M if there is a non-zero vector in TpM tangent to a
νi-principal direction for all i = 1, . . . , k.

This definition allow us to consider in a natural way unitary normal fields that
share their principal lines of curvature.

An immediate result is the following:

Corollary 2.1. RD vanishes identically on M if and only if all unitary normal
fields on M share all their principal lines of curvature at all the points of M .
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3. Curvature locus

Following Little [8], given p ∈ M , we define the curvature locus of M at p as the
image of the following map:

η : Sn−1
p −→ NpM

X �−→ α(X,X),

where Sn−1
p is the unit sphere in TpM . The normal vector η(X) can be interpreted

as the curvature vector at p of the normal section of M in the direction X at p (=
curve obtained by intersecting M with the (k + 1)-space given by the direct sum
of the line spanned by the tangent direction X with NpM).

The orthonormal frame defined above determine orthonormal basis
{X1, . . . , Xn} and {ν1, . . . , νk} for TpM and NpM , respectively. If X = Σn

i=1xiXi,
we have

η(X) = (Σn
i,r=1α

1
ir xi xr) ν1 + · · ·+ (Σn

i,r=1α
k
ir xi xr) νk,

where we recall that < d2f(Xi, Xr), νj >= αj
ir . So η is the restriction of a homo-

geneous polynomial map of degree 2 to the (n − 1)-sphere Sn−1
p and its image, is

either a Veronese manifold or its projection onto some Euclidean space (depending
on the codimension k of M and the rank of α at p). This image is called the cur-
vature locus of M at p and will be denoted by V(p). We observe that a conformal
map on the ambient space induces a homothety on the curvature locus at every
point. The centroid of V(p) is the mean curvature vector of M at p, given by

H(p) =
1

n

((
Σn

i=1α
1
ii

)
ν1 + · · ·+ (

Σn
i=1α

k
ii

)
νk
)
.

Figures 1 and 2 provide examples of curvature loci of 3-manifolds in R
6. The

first one corresponds to the immersion

f : R3 → R
6; f(x1, x2, x3) = (x1, x2, x3, x

2
1 + x2

2 − x3
3, x1x2, x1x3),

at the point (0.0126,−0.2652, 0), and the curvature locus is a projection of the
Veronese surface given by a Steiner’s roman surface. The second one, corresponding
to the immersion

f : R3 → R
6; f(x1, x2, x3) = (x1, x2, x3, x

3
1 + x3

2, x
2
2x3, x

3
3),

at the point (0.1,−0.2, 0) illustrates a degenerate case in which the curvature
locus is a cone. Both pictures have been obtained with the aid of the program
ImmersionR3ToR6 due to A. Montesinos Amilibia [13].

Denote by Aff(p) the affine hull of V(p) and by L(p) its linear span. Given
orthonormal bases {X1, . . . , Xn} of TpM and {ν1, . . . , νk} of NpM , we have

η(Xi) = Σk
l=1α

l
iiνl,

η( 1√
2
(Xi +Xj)) =

1
2Σ

k
l=1(α

l
ii + 2αl

ij + αl
jj) νl.
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Figure 1. Curvature locus at a generic point of a 3-manifold in R
6.

Figure 2. Degenerate curvature locus of a 3-manifold in R
6.

It is not difficult to see that for any X ∈ Sn−1 ⊂ TpM , the point η(X) is an affine
combination of the points η(Xi) and η( 1√

2
(Xi +Xj)), i, j = 1, . . . , n. So Aff(p) is

the affine hull of these points. These points are affinely independent if and only if

rank Qp =

(
n+ 1
n− 1

)
.

The vector space L(p) is generated by

Σk
l=1(α

l
ii − αl

11) νl, i = 1, . . . , n,

Σk
l=1(2α

l
ij − αl

11) νl, i �= j, i, j = 1, . . . , n,

where all the coefficient functions are evaluated at p. We have that Aff(p) =
H(p) + L(p). Moreover,

N1
pM = L(p) + 〈H(p)〉,
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where 〈H(p)〉 means the line defined by H(p) in the normal space NpM . In the
case that rank(Qp) is maximal, namely the case of rankQp =

(
n+1
n−1

)
, this is a direct

sum and the following holds:

dimAff(p) = dimL(p) = rank(Qp)− 1.

If rank (Qp) <
(
n+1
n−1

)
, we may have either

i) H(p) ∈ L(p) = Aff(p), in which case N1
pM = L(p), or

ii) H(p) /∈ L(p), in which case N1
pM = L(p)⊕ 〈

H(p)
〉
.

Theorem 3.1. If RD = 0 at p ∈ M , then the curvature locus of M at p is a
convex polyhedron, given by the convex hull of the points η(Xi) in NpM , where
{Xi}ni=1 are the (univocally defined) principal directions at p.

Proof. Let {Xi}ni=1 be an orthonormal basis of TpM and {νi}ki=1 and orthonormal
basis of NpM , respectively. The shape operators in this basis have the expressions

Aνj (Xi) = Σn
r=1α

j
ir Xr.

Since RD(p) = 0, Remark 2.1 implies that we can choose the tangent basis
constituted only by ν-principal vectors ∀ν ∈ NpM , that is, Aνj (Xi) = λj

iXi for
i = 1, . . . , n and j = 1, . . . , k. Given any vector X ∈ Sn−1

p ⊂ TpM , we can write
X = x1X1 + · · ·+ xnXn, where x2

1 + · · ·+ x2
n = 1, and we have:

η(X) = Σk
j=1

(
Σn

i=1λ
j
i x

2
i

)
νj = x2

1

(
Σk

j=1λ
j
1 νj

)
+ · · ·+ x2

n

(
Σk

j=1λ
j
n νj

)
= Σn

i=1x
2
i Pi,

where Pi = Σk
j=1λ

j
i νj . Since x2

1 + · · ·+ x2
n = 1, and 0 ≤ x2

i ≤ 1 for all i = 1, . . . , n,
it follows that η(X) lies in the convex hull of the points P1, . . . , Pn. �

As an immediate consequence of the above theorem we get:

Corollary 3.1. If RD(p) = 0 then V(p) is a convex polyhedron of dimension less
than or equal to min(k, n− 1) with at most n vertices.

Corollary 3.2. If RD(p) = 0 then dim Aff(p) ≤ n− 1.

The following example shows that the converse of Theorem 3.1 is not true.

Example 3.1. Consider the embedding g : R5 → R
7 given by

g(x, y, z, t, u) = (x, y, z, t, u, 2x2 − 2z2 + u2,−x2 + 2y2 − z2 + t2 + tu).

A simple computation shows that the curvature locus V(0) is the triangle with
vertices (2,−1), (0, 2) and (−2,−1), but RD(0) �= 0. In fact, the restriction to
the (t, u)-plane gives a non degenerate ellipse contained in the triangle Δp (see
Figure 3).

The following lemma is an easy exercise for quadratic maps in the plane.
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Figure 3. Curvature locus at a point with non vanishing normal curvature.

Lemma 3.1. Let h = (h1, h2) : R
2 → R

2 be a quadratic map. The ellipse h(S1)
degenerates to a segment PQ if and only if P = h(X), Q = h(Y ), where {X,Y }
is an orthonormal frame of R2 which diagonalizes the two quadratic forms h1, h2

simultaneously.

The next result can be considered as a kind of “partial converse” of Theo-
rem 3.1.

Proposition 3.1. If V(p) is a polyhedron with at least n − 1 vertices, then
RD(p) = 0.

Proof. First assume that V(p) has n vertices, P1, . . . , Pn. If X1, . . . , Xn are vectors
of Sn−1

p ⊂ TpM such that η(Xi) = Pi, for i = 1, . . . , n, the image of the restriction

η : V ij(p) := Sn−1
p ∩ Pij → NpM,

where Pij is the plane generated by Xi and Xj, is the interval PiPj , since the
image of V ij(p) is a subset of the polygon V(p) containing the vertices Pi and Pj ,
and the restricted map is also a quadratic map. Therefore, Lemma 3.1 implies
that Xi and Xj are orthogonal directions. The restricted quadratic forms are
diagonal in this basis. Then, using the expression of the second fundamental form
we conclude that all the shape operators Aνi are diagonal in this basis. Therefore,
AνiAνj = AνjAνi . This implies that RD(p) = 0. The same argument can be
applied if V(p) has n − 1 vertices P1, . . . , Pn−1. We only need to observe that
a direction normal to V(p), denoted by Xn, determines degenerate ellipses with
respect to any other direction Xi, i = 1, . . . , n− 1. �

4. Existence of umbilic directions

We have the following characterization of umbilic directions in terms of the curva-
ture locus.

Proposition 4.1. Given p ∈ M and ν ∈ NpM , p is a ν-umbilic point if and only
if ν ⊥ L(p).
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Proof. Observe first that

L(p) = {λ(η(X)− η(Y )) : ∀X,Y ∈ Sn−1 ⊂ TpM ; ∀λ ∈ IR}.

Therefore ν ⊥ L(p) if and only if 〈η(X) − η(Y ), ν〉 = 0, ∀X,Y ∈ Sn−1 ⊂ TpM .
Now, p is ν-umbilic if and only if 〈Aν(X), X〉 = λ, ∀X ∈ Sn−1 ⊂ TpM . Considering
that 〈Aν(X), X〉 = 〈α(X,X), ν〉 we conclude that p is ν-umbilic if and only if
〈α(X,X), ν〉 = 〈α(Y, Y ), ν〉, ∀X,Y ∈ Sn−1 ⊂ TpM . Which is equivalent to 〈η(X)−
η(Y ), ν〉 = 0, ∀X,Y ∈ Sn−1 ⊂ TpM . �

Remark 4.1. Given p ∈ Mn ⊂ R
n+k, we have:

1) There exists some umbilic direction ν at p if and only if dim L(p) < k.

2) Suppose that n = k + 1. If V(p) is an (n − 1) simplex then RD(p) = 0. If
RD(p) = 0 then, either V(p) is a (n − 1) simplex or p is ν-umbilic for some
normal direction ν.

3) Suppose that n = k. Then if RD(p) = 0, the point p is ν-umbilic for some
normal direction ν.

4) The following example shows that ν umbilicity does not imply RD(p) = 0.
The curvature locus at the origin O = f(0, 0, 0) of the immersion

f : R3 → R
6, f(x, y, z) = (x, y, z, 2x2 + z2 + xy, xz, x2 + y2 + z2)

is a planar regionR which is not a triangle. It then follows from Corollary 3.1
that RD(O) �= 0. On the other hand, the orthogonal direction to the plane
determined by R in the normal space at O is an umbilic direction of the
3-manifold at the point O.

Let us study the projections of the curvature locus V(p) on lines normal to M
at p. For this we consider first the case were M is a hypersurface. In this case
the unique line lN normal to M at p contains the curvature locus. This is an
interval denoted by Iν that may degenerate into a point. We can identify R with
this line oriented in such a way that the orientation of the manifold is compatible
with that of Rn+1. Then, the extreme points of the interval correspond under
this identification to the extreme principal curvatures denoted by kmin and kmax,
respectively. Observe that for a general codimension k there is not a natural
orientation of lν . Thus, the extreme point of Iν corresponding to the minimal
(maximal) curvature will correspond to the maximal (minimal) curvature if we
consider the other orientation of lν .

Lemma 4.1. Let p ∈ Mn ⊂ R
n+k. Consider ν ∈ NpM and lν the line of NpM

generated by ν. The orthogonal projection Pν : NpM → lν , takes V(p) onto an
interval Iν that may degenerate into a point. Let us identify the oriented line lν
with R. Then, the extreme points of Iν correspond under this identification to the
minimal ν-principal curvature kνmin, and the maximal ν-principal curvature kνmax,
respectively.
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Proof. Consider the projection of M onto the linear space TpM ⊕ lν and denote
it by Mν. It is a hypersurface in this linear space. The curvature locus of Mν

coincides with the projection of the curvature locus of M onto lν . This implies
that the extreme values of the principal curvature of Mν at p coincide with the
extreme values of the ν-principal curvatures of M at p. �

A straightforward application of this lemma implies the following.

Proposition 4.2. The ν-principal curvature κν at the ν-umbilic point p satisfies
the following: |κν(p)| = |〈ν(p), H(p)〉|. Moreover, we have that κν(p) �= 0 if and
only if H(p) /∈ L(p), or equivalently, dimL(p) < dimN1

pM .

Proposition 4.3. Given p ∈ M such that RD(p) = 0, the normal directions to the
faces of the polyhedron V(p) are preumbilic directions at p with multiplicity greater
than or equal to the number of vertices of the given face. In particular, if V(p)
is a simplex of maximal dimension in NpM , the normals to the faces determine
quasiumbilic directions.

Proof. It follows immediately by applying the above lemma to the normal direc-
tions orthogonal to each face of the polyhedron given by the curvature locus. �

We now discuss the relations between the vanishing of the normal curvature and
the existence of umbilic, quasiumbilic and preumbilic normal directions of different
multiplicities at a given point.

Let us begin by considering a 3-manifold in R
3+s. A direct application of Propo-

sition 4.3 to the possible degenerations of a triangle in NpM ≡ R
s, s ≥ 2 implies:

Corollary 4.1. 1) Given a 3-manifold M in R
5 and p ∈ M , if RD(p) = 0 then,

either p is a quasiumbilic point of 3 normal directions which are pairwise linearly
independent, or p is an umbilic point of some normal direction.

2) Given a 3-manifold M in R
3+s, s > 2 and p ∈ M , if RD(p) = 0 then either

there are s−2 linearly independent umbilic directions and 3 quasiumbilic directions
which are pairwise linearly independent at p, or s− 1 linearly independent umbilic
directions at p (i.e., p is a semiumbilic point, or an umbilic point).

Remark 4.2. The existence of two quasiumbilic linearly independent directions
at p is not a sufficient condition for RD(0) = 0, as illustrated by the immersion

f : R3 → R
5, f(x, y, z) = (x, y, z, 2y2 − z2, xz).

The curvature locus of this immersion at the origin is represented in Figure 4.
It has a planar cone shape with two linearly independent quasiumbilic normal
directions corresponding to the normal directions of the two segments lying on its
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boundary. On the other hand, since the curvature locus is not a triangle, the
normal curvature does not vanish at the origin.

Figure 4. Curvature locus with a planar cone shape.

A direct application of Proposition 4.3 to the possible degenerations of an
n-simplex in NpM ≡ R

s, s > 2, implies the generalization of Corollary 4.1 to
higher dimensions.

Corollary 4.2. Let p be a point of an n-manifold immersed with codimension
n − 1 > 2 in the Euclidean space. Then, RD(p) = 0 if and only if one of the
following conditions hold:

1) There are n quasiumbilic directions such that all possible combinations of
n− 1 of them are linearly independent at p.

2) There exist r umbilic directions for 1 ≤ r ≤ n−3 and the locus is a polyhedron
with a number of edges less than or equal to n. Thus, if r = n− 2 the locus
is a segment, meanwhile if r = n− 1 it is a point.

3) There are n− 1 linearly independent umbilic directions at p.

Observe that in the case 2) for 1 ≤ r ≤ n − 2, the number of the edges
of this polyhedron determine preumbilic directions whose multiplicity increase as
this number decrease. We have the following immediate consequence.

Corollary 4.3. Let p be a point of an n-manifold immersed with codimension
n − 1 > 2 in the Euclidean space. Any one of the following situations imply that
RD(p) = 0:

1) There are n quasiumbilic directions such that all possible combinations of
n− 1 of them are linearly independent at p.

2) There is an umbilic direction and n− 1 quasiumbilic normal directions such
that all possible combinations of n− 2 of them are linearly independent at p.

3) There are n− 1 linearly independent umbilic directions at p.

Proof. It is obtained similarly to that of Proposition 3.1 by using Lemma 3.1. �



460 J. J. Nuño Ballesteros, M.C. Romero Fuster and F. Sánchez-Bringas

We can also extend the above results to higher codimension in a straightforward
manner.

Corollary 4.4. Let p be a point of an n-manifold immersed with codimension
n + s, s ≥ 0 in the Euclidean space. If RD(p) = 0 we have one of the following
situations:

1) There are s+1 umbilic and n−1 quasiumbilic directions linearly independent
at p.

2) There are s + r + 1, r ≤ n − 3 umbilic directions and n − r − 1 preumbilic
directions of multiplicity n− r linearly independent at p.

3) There are n+ s− 1 linearly independent umbilic directions at p (i.e., p is a
semiumbilic or umbilic point).

Corollary 4.5. Let p be a point of an n-manifold immersed with codimension
n + s, s ≥ 0 in the Euclidean space. Any of the following situations imply that
RD(p) = 0:

1) There are s+1 umbilic and n−1 quasiumbilic directions linearly independent
at p.

2) There are n− 1 linearly independent umbilic directions at p.

5. Sharing principal curvature directions

We consider in this section the family of principal configurations on an n-dimensio-
nal manifold M immersed with codimension k in the Euclidean space and study
the existence of umbilic directions in terms of the number of principal directions
shared by k linearly independent normal fields at a given point p ∈ M . We start
with a simple case.

Theorem 5.1. Assume that k linearly independent (i.e., all ) unit normal vector
fields share all their principal directions at p, where k ≥ n. Then, there exists
an umbilic direction at p. Moreover, if H(p) /∈ L(p) there are k − n + 1 linearly
independent umbilic directions with non-vanishing curvature at p.

The proof of this theorem is obtained by a direct application of Remark 2.1,
Corollary 3.1 and Proposition 4.1.

We provide now an upper bound for the dimension of the subspace L(p) in
terms of the number of principal directions shared by all the normal directions at
the point p.

Proposition 5.1. Suppose that there exist r < n common eigenvectors for the
shape operators associated to all the normal directions at p. Then

dim L(p) ≤ n− 1 +

(
n− r

2

)
.

In particular, if n−1+
(
n−r
2

)
< k, then M admits an umbilic normal direction.
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Proof. Assume that X1, . . . , Xr is a frame of common independent eigenvectors for
the shape operators associated to all the normal directions. Complete this frame
to a basis {X1, . . . , Xr, Xr+1, . . . , Xn} of TpM . The first r rows of any shape
operator Aν in this basis diagonalize in these coordinates. Let ν1, . . . , νk be an
orthonormal basis of NpM . Since Aνl , l = 1, . . . , k, coincides with the νl-second
fundamental form at this point, we have that

IIνl(X) =

r∑
i=1

αl
ii x

2
i +

n∑
i=r+1

αl
ij xi xj .

This implies that L(p) is generated by
∑k

l=1(α
l
ii − αl

11) νl, i = 2, . . . , n and∑k
l=1(2α

l
ij − αl

11) νl, i, j = r + 1, . . . , n, where i > j. �

By taking the lowest values r(n, k) satisfying n − 1 +
(
n−r(n,k)

2

)
< k, we ob-

tain the following table which shows, for each pair (n, k), the minimum number
r(n, k) of eigenvectors that must be shared by all shape operators at a point p of
an n-manifold immersed in R

n+k in order to ensure the existence of some umbilic
normal direction.

n\k 2 3 4 5 6 7 8
2 1 0 0 0 0 0 0
3 * 2 1 1 0 0 0
4 * * 3 2 2 1 1
5 * * * 4 3 3 2
6 * * * * 5 4 4
7 * * * * * 6 5
8 * * * * * * 7

Remark 5.1. This table substitutes a previous one obtained by using alternative
arguments in [14], where a mistake in the sign of a term in one the formulae
manipulated in the paper lead to wrong entries.

According to this table, for n = k we need to require that r(n, n) = n−1. This
means that all the normal fields must share all their principal directions which is
equivalent to ask that the manifold M have vanishing normal curvature. Observe
on the other hand, that the existence of an umbilic field on an n-manifold immersed
into R

2n does not necessarily imply that the manifold has vanishing curvature as
illustrated by the multiple examples of n-manifolds immersed with non vanishing
normal curvature into a 2n− 1-sphere.

An immediate consequence of the above results is the following.

Corollary 5.1. Suppose that RD(p) = 0.
a) If dimL(p) = n − 1, there exist n normal directions {νi} such that p is a

ν̄i-quasiumbilic point.
b) If dimL(p) = s < n− 1, (s > 1), then there exist

(
n
s

)
normal directions ν̄i

such that p is a νi-preumbilic with multiplicity s.
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Moreover, if H(p) /∈ L(p) then, there exist n − s linearly independent umbilic
directions with non-vanishing curvature.

Proof. Since RD(p) = 0, V(p) is convex polyhedron of dimension less than or equal
to min(k, n − 1), with at most n vertices Pi = η(Xi), where Xi is a unit vector
tangent to a principal direction. In case a), V(p) has n faces of dimension n−1. The
directions defined by vectors νi normal to these faces are quasiumbilic directions.
In case b), V(p) has s + 1 < n vertices. Therefore, the image by η of n − (s + 1)
principal directions lie inside V(p). Thus, the faces of dimension s determined by
all these points define n!

(n−s)!s! preumbilic normal directions of dimension s. �

Example 5.1. An example of 3-manifold with everywhere vanishing normal cur-
vature in R

6 is given by the immersion f(x, y, z) = (x, y, z, x2 + y2, x2 − y2, z2).
This is the product of a surface contained in a linear 4-space and a curve contained
in the complementary plane. It can be seen that the curvature locus at each point
of the 3-manifold is a triangle. Therefore, the manifold has an umbilic field and
two linearly independent quasiumbilic fields globally defined.

Lemma 5.1. ([21]) Let (V, 〈, 〉) be a finite dimensional vector space with inner
product and L : V → V a self-adjoint operator on V . Denote S={v ∈ V : 〈v, v〉=1}
and consider the function

hL : S −→ R

v �−→ 〈L(v), v〉.
Then v0 is a critical point of hL if and only if v0 is an eigenvector of L with
eigenvalue hL(v0).

An immediate consequence is the following.

Proposition 5.2. Given a normal field ν on an m-submanifold M of Rm+k, k ≥ 1,
the ν-principal directions at a point p ∈ M are the critical points of the function

hν : Sm−1
p −→ R

X �−→ 〈η(X), ν〉.
The corresponding critical values being the principal curvatures.

This allows us to obtain a sufficient condition, in terms of the curvature locus,
for a tangent direction to be a common eigenvector of more than one linearly
independent normal fields.

Proposition 5.3. The corank r singularities of the curvature locus map η : Sn−1
p →

NpM at p ∈ M are principal directions shared by r normal fields linearly indepen-
dent at p.

Proof. Let v ∈ Sn−1
p be a corank r singularity of η. The subset dη(p)(TvS

n−1
p ) is a

(k−r)-dimensional linear subspace of NpM , and we can choose r linearly indepen-
dent normal directions at p, ν1, . . . , νr, normal to this subspace. This means that
the point v ∈ Sn−1

p is a singular point of hν1 , . . . , hνr . Then we get from Proposi-
tion 5.2 that v must be a principal direction for the normal fields ν1, . . . , νr. �
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Remark 5.2. a) When the curvature locus is a truncated cone, as in Figure 2,
we have that the apex of the cone corresponds to a tangent direction which is a
principal direction shared by all the normal vector fields at the considered point.
On the other hand, the boundary curve of this cone corresponds to a curve of
tangent directions, with the property that each one of them is a principal direction
of 2 linearly independent normal fields.

b) The vertices of the polyhedron determined by the curvature locus at a point
p ∈ M such that RD(p) = 0 are images of the principal directions shared by all
the normal fields at p.

c) In the 5-manifold of example 3.1, the 3 vertices of the triangle determined
by the curvature locus at p = g(0) (Fig. 3) correspond to the 3 principal curvature
directions shared by all the normal fields at p. Observe that this manifold has no
umbilic directions at this point.

d) Some of the normal fields considered by the above proposition may be um-
bilic. For instance, we could have that the curvature locus at a point p of a
3-manifold immersed in R

7 is a surface with boundary contained in a normal plane
Π ⊂ NpM , which is not a triangle. Then the normal curvature does not vanish
at p, but there are two linearly independent (umbilic) normal directions at p, given
by any two linearly independent normal directions to the plane Π in NpM , such
that all the tangent directions in TpM can be considered principal directions for
this field. Moreover, the curve α determined by the points of V(p) lying in the
convex envelope corresponds to directions of TpM which are principal curvature
directions shared by 3 linearly independent normal fields, two of which are umbilic
fields and the third one is the normal direction to the curve α in the plane Π.

6. Strictly locally convex submanifolds

The contact of a submanifold with a hyperplane Π of Rn+k at a common point p is
determined by the behavior of the height function in the orthogonal direction to the
given hyperplane on M . That is, if we consider M locally given by an embedding
g : Rn → R

n+k in a neighbourhood of p, and v ∈ Sn+k−1 is the normal direction to
the given hyperplane, the height function hv : R

n → R, defined as hv(x) = 〈g(x), v〉,
provides a contact map for M and Π at p. The singularity type of this map at
the origin is independent of the local parameterization g chosen for M (see [12]).
Clearly, if p = g(0), we have that 0 is a singular point of hv if and only if v ∈ NpM .
Then, the singularity type of hv at 0 will describe the contact class of M with this
tangent hyperplane at the point p.

Definition 6.1. We say that M has a degenerate contact with the tangent hyper-
plane orthogonal to a normal direction v provided the function hv has a degenerate
(non Morse) singularity at 0, that is if the determinant of the Hessian of hv vanishes
at p. The normal direction v is called a degenerate direction.

In such case, the Hessian quadratic form has non zero vector in its kernel. These
vectors define what we call the contact directions of M with the hyperplane at p.
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Since the Hessian matrix of hv is equivalent to the matrix of the shape operator Sv

at p, it follows that v is a degenerate direction if and only if the corresponding
shape operator has a principal asymptotic direction at p. That is, a principal
direction with null eigenvalue.

In the case of surfaces immersed into R
4, it was shown in [9] that there may

be either two, one or none degenerate directions (also called binormals) at a point
p ∈ M , according it lies outside, on, or inside the curvature ellipse in NpM .
Under the first assumption, the two corresponding contact directions happen to be
conjugate directions ([8], [4]) and are also known as asymptotic directions of M ,
for they correspond to tangent lines with higher order contact with M at p ([10]).
For submanifolds immersed in higher codimension, the degenerate directions at a
point p form a (possibly degenerate) cone in NpM ([3], [11]). We shall refer to it
as the cone of degenerate directions at p. We have the following.

Lemma 6.1. The cone of degenerated directions contains all the orthogonal direc-
tions to the cone subtended by the curvature locus from the origin p of NpM .

Proof. Given a unit vector ν ∈ NpM , let us parameterize M in a neighborhood of
p with a Monge coordinate chart. For this, we can consider an orthonormal basis
{e1, . . . , en+k} of Rn+k such that the tangent plane TpM is the vector subspace
of Rn+k generated by e1, . . . , en and the normal vector ν coincides with en+k. In
this coordinate chart the Hessian matrix of the height function hν at p coincides
with the matrix of the shape operator Aν . Then it is easy to see that Aν has a zero
eigenvalue if the projection segment of the curvature locus onto the line spanned
by ν has one of its end points at the origin of NpM . In other words, the direction ν
is orthogonal to one of the tangent lines of the curvature locus passing through p.
Then it is a degenerate direction. �

The configuration described in this lemma is illustrated in Figure 5 for the case
of a surface in R

5.

Remark 6.1. There may be other degenerate directions corresponding to singular
points of the curvature locus (see Theorem 2.2 in [5]).

Definition 6.2. A tangent hyperplane Π is said to be a locally support hyperplane
for the submanifold M at the point p if M is locally contained at p in one of the two
closed half-spaces determined by Π in R

n+k. We say that M is locally convex at
p ∈ M if there is a locally support hyperplane Π of Rn+k at p. Moreover,M is said
to be strictly locally convex at p, provided there is a locally support hyperplane
having non-degenerate contact (i.e., of Morse type) with M .

As observed above, the matrix of the shape operator Aν and the Hessian matrix
of hν at p coincide, therefore we have that the tangent hyperplane orthogonal to ν
at the point p is a support hyperplane if and only if all the ν-principal curvatures are
positive (or all of them are negative). Notice that if all of ν-principal curvatures are
negative they become positive with respect to −ν. Then we can state the following.
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Figure 5. Cone of degenerate directions and curvature locus of a surface in R
5.

Proposition 6.1. A submanifold M is strictly locally convex at p if and only if
there exists ν ∈ NpM such that all the ν-principal curvatures are positive.

Now, as a consequence of Proposition 5.2 we obtain the following geometric
characterization of the local convexity in terms of the curvature locus.

Corollary 6.1. Given an n-manifold M immersed in R
n+k, we have

a) M is strictly locally convex at p if and only if the origin of the normal space
(identified with p ∈ R

n+k) is not contained in the convex hull of the locus of
curvature of M at p.

b) If H(p) /∈ L(p) then M is strictly locally convex at p.

Proof. These assertions follow immediately from Propositions 5.2 and 6.1 together
with the following observation: if the point p lies in the interior of the convex hull
of the curvature locus, any normal direction through the point cuts the curvature
locus at points in opposite directions. This implies that the maximal and minimal
ν-principal curvatures must have opposite signs for all ν. For a point lying on
the boundary of the convex hull the situation is similar but we may also have
some normal directions with a vanishing principal curvature (corresponding to a
tangency to the boundary of the convex hull) �

Remark 6.2. Notice that all the directions contained in the interior of the cone
which is orthogonal to the one subtended from the origin by the convex hull of
the curvature locus define positive defined height functions that determine locally
support hyperplanes at p.

Remark 6.3. The existence of an umbilic field at a point p of M also implies
the existence of a support hyperplane at p. Therefore, the conditions stated in
Proposition 5.1 guaranteeing the existence of umbilic fields on M guarantee the
local (not necessarily strict) convexity.
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Definition 6.3. A point p ∈ M is said to be semiumbilic if the curvature locus
at p is a (non radial) segment. A particular case is given by umbilic points, at
which the curvature locus degenerates to a point (which does not coincide with p).
A submanifold is said to be totally semiumbilic if it is exclusively composed of
semiumbilic points.

Special examples of semiumbilic submanifolds are provided by codimension 2
submanifolds contained in hyperspheres. On the other hand, not every semium-
bilic codimension 2 submanifold is hyperspherical, as illustrated by the Otsuki’s
spheres [18].

Given a point p of an n-manifold M immersed in R
n+2, the following relations

were shown in [17]:

RD(p) = 0

�����
�����

�����
�����

��

�����
�����

�����
�����

p is semiumbilic

������������������

����������������

����
����

����
����

��

����
����

����
����

∃n degenerate directions at p.

M is strictly locally convex at p

���������������������

�������������������

In the particular case of surfaces in R
4, we have the following stronger results:

semiumbilic ⇐⇒ RD = 0,

strictly locally convex ⇐⇒ there exist degenerate directions.

However, for n ≥ 3, these equivalences are not true in general. For instance, the
3-manifold M embedded in R

5, given by the parametrization

g(x, y, z) = (x, y, z, x2 − z2, y2 − z2),

is not strictly locally convex at p = 0, although it has vanishing normal curvature
at this point.

We discuss now some extension of these relations to submanifolds of higher
codimension. First we observe that from Corollaries 4.4 and 4.5 and Remark 6.3
it follows

p semiumbilic =⇒ RD(p) = 0.

On the other hand, Corollary 6.1 together with Lemma 6.1 lead to

M locally convex at p =⇒ M admits degenerate directions at p.

For the case RD(p) = 0, we get from Corollary 3.1 that the curvature locus at p is
a convex polyhedron. In such case, we have two possibilities, either p lies outside
or inside this polyhedron. In the first case, we get from Corollary 6.1 that M is
strictly locally convex at p and from Lemma 6.1 we conclude thatM has degenerate
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directions at p. In the case that p lies in the polyhedron, M is not strictly locally
convex at p, but the vertices and edges of the polyhedron are singular points of
the curvature locus and as mentioned in Remark 6.1 they determine degenerate
directions at p. So we obtain,

RD(p) = 0 =⇒ ∃ degenerate directions at p.

We finally observe that in high enough codimension (e.g., k > 1
2n(n + 1)) it is

possible to show that generically the curvature locus has no singular points and
under such assumption we can state: M is locally convex at p if and only if M
admits a cone of degenerate directions at p.
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Kōdai Math. Sem. Rep. 18 (1966), 101–115.
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Juan José Nuño Ballesteros: Departament de Matemàtiques, Universitat de
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cias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F.
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