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Harmonic measure and approximation of
uniformly rectifiable sets

Simon Bortz and Steve Hofmann

Abstract. Let E ⊂ R
n+1, n ≥ 1, be a uniformly rectifiable set of dimen-

sion n. We show E that has big pieces of boundaries of a class of domains
which satisfy a 2-sided corkscrew condition, and whose connected com-
ponents are all chord-arc domains (with uniform control of the various
constants). As a consequence, we deduce that E has big pieces of sets for
which harmonic measure belongs to weak-A∞.

1. Introduction

The results in this paper grew out of a project to prove higher dimensional, quan-
titative versions of the classical Frigyes and Marcel Riesz theorem [29]. The latter
states that for a simply connected domain in the complex plane, with a rectifiable
boundary, harmonic measure is absolutely continuous with respect to arclength
measure. A quantitative version of this theorem (again in the plane) was obtained
by Lavrentiev [24]. We note that some connectivity hypothesis is essential to these
results: indeed, Bishop and Jones [5] have presented a counter-example to show
that the result of [29] may fail in the absence of sufficient connectivity. Thus,
roughly speaking, rectifiability plus connectivity implies absolute continuity, but
rectifiability alone does not.

In higher dimensions, quantitative (scale-invariant) versions of the F. and M.
Riesz theorem were obtained by Dahlberg [10] in Lipschitz domains, and by David
and Jerison [11], and independently, by Semmes [30], in NTA domains with ADR
(Ahlfors–David regular) boundaries (all terminology and notation to be defined
below). In these quantitative results, the conclusion is that harmonic measure
satisfies a scale invariant version of absolute continuity with respect to surface
measure, namely that it belongs to the Muckenhoupt class A∞. To draw the anal-
ogy with the result of [29] more precisely, we note that recently, in [3] it has been
shown that for a domain Ω satisfying a scale invariant connectivity hypothesis (the
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so called “uniform” condition, which is a unilateral version of the NTA property),
whose boundary is UR (Uniformly Rectifiable, a scale invariant version of recti-
fiability which entails, in particular, the ADR property), then in fact Ω is NTA,
so that the result of [11] and [30] applies. An earlier, direct proof of the scale in-
variant absolute continuity of harmonic measure with respect to surface measure,
in a uniform domain with a UR boundary, appears in [19]. The converse is also
true, see [21].

As noted above, by the counter-example of [5], such results cannot hold in the
absence of some connectivity hypothesis. Nonetheless, in this paper, we obtain a
structure theorem for uniformly rectifiable sets of co-dimension 1, which yields in
particular that the F. and M. Riesz theorem holds for every such set E (viewed as
the boundary of an open set Ω = R

n+1 \ E), in a “big pieces” sense. Our main
result (the structure theorem) is the following (our terminology and notation will
be defined in the sequel; in particular, however, we let D(E) denote the collection
of “dyadic cubes” on the set E, as per David and Semmes [12] and M. Christ [9];
see Lemma 1.16 below).

Theorem 1.1. Let E ⊂ R
n+1 be a UR (uniformly rectifiable) set of dimension n.

Then for each Q ∈ D(E) there exists an open set Ω̃ = Ω̃Q ⊂ Ω := R
n+1 \ E, with

diam(Ω̃) ≈ diam(Q), such that Ω̃ has an ADR (Ahlfors–David regular) boundary,
satisfies a 2-sided corkscrew condition, and

(1.1) σ(∂Ω̃ ∩Q) � σ(Q).

Moreover, each connected component of Ω̃ is an NTA domain with ADR bound-
ary. The various NTA, ADR, and implicit constants are uniformly controlled, and
depend only on dimension and on the UR character of E.

We remark that, in particular, Theorem 1.1 says that E has big pieces of sets
satisfying a 2-sided corkscrew condition, and thus, by a result of David and Jeri-
son [11] (see also [14]), has “big pieces of big pieces of Lipschitz graphs” (BP2(LG);
see Definition 1.6 below). Theorem 1.1 therefore yields as an immediate corollary
the co-dimension 1 case of a result of Azzam and Schul [4].

Corollary 1.2. Let E ⊂ R
n+1 be a UR (uniformly rectifiable) set of co-dimen-

sion 1. Then E ∈ BP2(LG).

We should note that, in fact, the result of [4] establishes BP2(LG) for UR sets in
all co-dimensions, whereas our arguments do not address the case of co-dimension
greater than 1. On the other hand, in the co-dimension 1 case, our Theorem 1.1
yields extra structure which allows us to obtain estimates for harmonic measure.
More precisely, we have the following.

Theorem 1.3. Let E ⊂ R
n+1 be an n-dimensional UR set. Let Ω := R

n+1 \ E.
Then E ∈ IBP(GHME), that is, E has “interior big pieces of good harmonic
measure estimates”, in the following sense: for each Q ∈ D(E) there exists an

open set Ω̃ = Ω̃Q ⊂ Ω, with diam(Ω̃) ≈ diam(Q), such that Ω̃ satisfies a strong
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2-sided corkscrew condition along with estimate (1.1), and for each surface ball

Δ = Δ(x, r) := B(x, r) ∩ ∂Ω̃, with x ∈ ∂Ω̃ and r ∈ (0, diam(Ω̃)), and with interior

corkscrew point XΔ, it holds that ωXΔ := ωXΔ

˜Ω
, the harmonic measure for Ω̃ with

pole at XΔ, belongs to weak-A∞(Δ).

Thus, every UR set of co-dimension 1 has big pieces of sets satisfying a quanti-
tative, scale invariant F. and M. Riesz theorem. We remark that this fact actually
characterizes uniformly rectifiable sets of co-dimension 1, as the second named
author will show in a forthcoming joint paper with J.M. Martell [16].

For the sake of clarity, we note that in the statements of Theorems 1.1 and 1.3,
we use the notation

Ω := R
n+1 \ E ,

where E ⊂ R
n+1 is in particular an n-dimensional ADR set (hence closed); thus Ω

is open, but need not be a connected domain. The open set Ω̃ ⊂ Ω in Theorem 1.3
is the one that we construct in Theorem 1.1.

We remark that the weak-A∞ conclusion of Theorem 1.3 is in the nature of
best possible. Indeed, fix X ∈ Ω, let x̂ ∈ E be such that |X − x̂| = dist(X,E) =:
δ(X), and consider the ball BX := B(x̂, 10δ(X)), and corresponding surface ball
ΔX := BX ∩E. Choose Q ∈ D(E) such that diam(Q) ≈ δ(X), with Q ⊂ ΔX . Our

construction in the proof of Theorem 1.1 will yield that X ∈ Ω̃Q, and in fact is a

corkscrew point for a surface ball Δ̃ ⊂ ∂Ω̃Q, of radius r ≈ δ(X), which contains

Q ∩ ∂Ω̃Q. Consequently, if ωX
˜Ω

were in A∞(Δ̃) (rather than merely weak-A∞),

then by the maximum principle, letting ωX denote harmonic measure for Ω, we
would have

(1.2) A ⊂ ΔX , Hn(A) ≥ (1− η)Hn(ΔX) =⇒ ωX(A) ≥ ωX
˜Ω
(A ∩ Δ̃) ≥ c > 0 ,

for some uniform positive constant c, provided that η ∈ (0, 1) was sufficiently small

depending only on the ADR constants for E and for ∂Ω̃, and the implicit constant
in (1.1). In turn, by the result of [6], (1.2) for every X ∈ Ω would then imply
that ωX ∈ weak-A∞(ΔX), which cannot hold in general, by the example of [5].

Let us now define the terms used in the statements of our theorems. Most of
the following notions have meaning in co-dimensions greater than 1, but here we
shall discuss only the co-dimension 1 case that is of interest to us in the present
work.

Definition 1.4 (ADR, aka Ahlfors–David regular). We say that a set E ⊂ R
n+1,

of Hausdorff dimension n, is ADR if it is closed, and if there is some uniform
constant C such that

(1.3)
1

C
rn ≤ σ

(
Δ(x, r)

) ≤ C rn, ∀r ∈ (0, diam(E)), x ∈ E,

where diam(E) may be infinite. Here, Δ(x, r) := E ∩B(x, r) is the “surface ball”
of radius r, and σ := Hn|E is the “surface measure” on E, where Hn denotes
n-dimensional Hausdorff measure.
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Definition 1.5 (UR, aka uniformly rectifiable). An n-dimensional ADR (hence
closed) set E ⊂ R

n+1 is UR if and only if it contains “big pieces of Lipschitz
images” of Rn (BPLI). This means that there are positive constants θ and M0,
such that for each x ∈ E and each r ∈ (0, diam(E)), there is a Lipschitz mapping
ρ = ρx,r : R

n → R
n+1, with Lipschitz constant no larger than M0, such that

Hn
(
E ∩B(x, r) ∩ ρ ({z ∈ R

n : |z| < r}) ) ≥ θ rn .

We recall that n-dimensional rectifiable sets are characterized by the property
that they can be covered, up to a set of Hn measure 0, by a countable union of
Lipschitz images of Rn; thus, BPLI is a quantitative version of this fact.

There are numerous other characterizations of UR sets (many of which remain
valid in higher co-dimensions), see [12], [13]. In particular, at least among the class
of ADR sets, the UR sets are precisely those for which all “sufficiently nice” sin-
gular integrals are L2-bounded [12]. In fact, for n-dimensional ADR sets in R

n+1,
the L2 boundedness of certain special singular integral operators (the “Riesz trans-
forms”), suffices to characterize uniform rectifiability (see [27] for the case n = 1,
and [28] in general). We remark that there exist sets that are ADR (and that
even form the boundary of a domain satisfying interior corkscrew and Harnack
chain conditions), but that are totally non-rectifiable (e.g., see the construction of
Garnett’s “4-corners Cantor set” in Chapter 1 of [13]).

Definition 1.6 (BP(S) and BP2(LG)). Let S be a collection of subsets of Rn+1.
We say an n-dimensional ADR set E ⊂ R

n+1 has big pieces of S (“E ∈ BP(S)”)
if there exists a positive constant θ such that for each x ∈ E and r ∈ (0, diam(E)),
there is a set S ∈ S with

Hn(B(x, r) ∩ E ∩ S) ≥ θ rn.

A Lipschitz graph in R
n+1 is a set of the form

{y + ρ(y) : y ∈ P}
where P is an n-plane and ρ is a Lipschitz mapping onto a line perpendicular
to P. We say that E has big pieces of Lipschitz graphs (“BP(LG)”) if there exists
a positive constant M0 such that E ∈ BP(S), where S is the collection of all
Lipschitz graphs with Lipschitz constant no greater than M0.

Finally, if E has BP(S), where S is a collection of sets satisfying BP(LG), with
uniform bounds on the various constants, then we say that E ∈ BP2(LG).

Definition 1.7 (“UR character”). Given a UR set E ⊂ R
n+1, its “UR character” is

just the pair of constants (θ,M0) involved in the definition of uniform rectifiability,
along with the ADR constant; or equivalently, the quantitative bounds involved in
any particular characterization of uniform rectifiability.

1.1. Further notation and definitions

• We use the letters c, C to denote harmless positive constants, not necessarily the
same at each occurrence, which depend only on dimension and the constants
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appearing in the hypotheses of the theorems (which we refer to as the “allow-
able parameters”). We shall also sometimes write a � b and a ≈ b to mean,
respectively, that a ≤ Cb and 0 < c ≤ a/b ≤ C, where the constants c and C are
as above, unless explicitly noted to the contrary. At times, we shall designate
by M a particular constant whose value will remain unchanged throughout the
proof of a given lemma or proposition, but which may have a different value
during the proof of a different lemma or proposition.

• Given a closed set E ⊂ R
n+1, we shall use lower case letters x, y, z, etc., to

denote points on E, and capital letters X,Y, Z, etc., to denote generic points
in R

n+1 (especially those in R
n+1 \ E).

• The open (n+1)-dimensional Euclidean ball of radius r will be denoted B(x, r)
when the center x lies on E, or B(X, r) when the center X ∈ R

n+1 \ E. A
“surface ball” is denoted Δ(x, r) := B(x, r) ∩ E.

• Given a Euclidean ball B or surface ball Δ, its radius will be denoted rB or rΔ,
respectively.

• Given a Euclidean or surface ball B = B(X, r) or Δ = Δ(x, r), its concentric
dilate by a factor of κ > 0 will be denoted κB := B(X,κr) or κΔ := Δ(x, κr).

• Given a (fixed) closed set E ⊂ R
n+1, for X ∈ R

n+1, we set δ(X) := dist(X,E).

• We let Hn denote n-dimensional Hausdorff measure, and let σ := Hn
∣∣
E
denote

the “surface measure” on a closed set E of co-dimension 1.

• For a Borel set A ⊂ R
n+1, we let 1A denote the usual indicator function of A,

i.e. 1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x /∈ A.

• For a Borel set A ⊂ R
n+1, we let int(A) denote the interior of A.

• We shall use the letter I (and sometimes J) to denote a closed (n+1)-dimensional
Euclidean dyadic cube with sides parallel to the co-ordinate axes, and we let 
(I)
denote the side length of I. If 
(I) = 2−k, then we set kI := k. Given an ADR
set E ⊂ R

n+1, we use Q to denote a dyadic “cube” on E. The latter exist
(cf. [12], [9]), and enjoy certain properties which we enumerate in Lemma 1.16
below.

Definition 1.8 (Corkscrew point). Following [23], given an open set Ω ⊂ R
n+1,

and a ball B = B(x, r), with x ∈ ∂Ω and 0 < r < diam(∂Ω), we say that a point
X = XB ∈ Ω is a corkscrew point relative to B with constant c > 0, if there is a
ball B(X, cr) ⊂ B(x, r) ∩ Ω.

Definition 1.9 (2-sided corkscrew condition). We say that an open set Ω satisfies
the 2-sided corkscrew condition if for some uniform constant c > 0 (the “corkscrew
constant”), and for every x ∈ ∂Ω and 0 < r < diam(∂Ω), there are two corkscrew
points X1 and X2 relative to B(x, r), with constant c (as in Definition 1.8), and two
distinct connected components of Rn \ ∂Ω, O1 and O2, with B1 = B(X1, cr) ⊂ O1

and B2 = B(X2, cr) ⊂ O2. We recall that this property is called “Condition B” in
the work of David and Semmes [14]. We refer to the balls B1 and B2 as corkscrew
balls.
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Definition 1.10 (Strong 2-sided corkscrew condition). We say that an open set Ω
satisfies the strong 2-sided corkscrew condition if Ω satisfies the 2-sided corkscrew
condition, and one of the balls B1 ⊂ Ω or B2 ⊂ Ω.

Definition 1.11 (Harnack chain condition). Following [23], we say that Ω satisfies
the Harnack chain condition if there is a uniform constant C such that for every
ρ > 0, Λ ≥ 1, and every pair of points X,X ′ ∈ Ω with δ(X), δ(X ′) ≥ ρ and
|X − X ′| < Λ ρ, there is a chain of open balls B1, . . . , BN ⊂ Ω, N ≤ C(Λ),
with X ∈ B1, X

′ ∈ BN , Bk ∩ Bk+1 �= Ø and C−1 diam(Bk) ≤ dist(Bk, ∂Ω) ≤
C diam(Bk). The chain of balls is called a “Harnack chain”.

Definition 1.12 (NTA). Again following [23], we say that a domain Ω ⊂ R
n+1

is NTA (“non-tangentially accessible”) if it satisfies the Harnack chain condition,
and the strong 2-sided corkscrew condition.

Definition 1.13 (Chord-arc domain). An NTA domain with an ADR boundary
is said to be a chord-arc domain.

Definition 1.14 (A∞ and weak-A∞). Given an ADR set E ⊂ R
n+1, and a surface

ball Δ0 := B0∩E, we say that a Borel measure μ defined on E belongs to A∞(Δ0)
if there are positive constants C and θ such that for each surface ball Δ = B ∩E,
with B ⊆ B0, we have

(1.4) μ(F ) ≤ C
(σ(F )

σ(Δ)

)θ

μ(Δ) , for every Borel set F ⊂ Δ .

Similarly, μ ∈ weak-A∞(Δ0), with Δ0 = B0 ∩ ∂Ω, if for every Δ = B ∩ ∂Ω with
2B ⊆ B0 we have

(1.5) μ(F ) ≤ C
(σ(F )

σ(Δ)

)θ

μ(2Δ) , for every Borel set F ⊂ Δ .

In the case that μ = ω is harmonic measure for an open set Ω satisfying an interior
corkscrew condition, setting E = ∂Ω, we shall say that ω belongs to A∞ (resp.,
weak-A∞), if for every surface ball Δ0, and for any corkscrew point XΔ0 ∈ Ω
relative to Δ0, harmonic measure ωXΔ0 , with pole at XΔ0 , belongs to A∞(Δ0)
(resp., weak-A∞(Δ0)), in the sense above.

Definition 1.15 (IBP(GHME)). When the collection S in Definition 1.6 consists

of boundaries of domains Ω̃ ⊂ R
n+1\E, for which the associated harmonic measures

belong to weak-A∞, and if the various boundaries {∂Ω̃} are ADR, with uniform
control of the ADR and weak-A∞ constants, then we say that E has “interior big
pieces of good harmonic measure estimates”, and we write E ∈ IBP(GHME).

Lemma 1.16 (Existence and properties of the “dyadic grid”, [12], [13], [9]). Sup-
pose that E ⊂ R

n+1 is a closed n-dimensional ADR set. Then there exist constants
a0 > 0, γ > 0 and C1 < ∞, depending only on dimension and the ADR constant,
such that for each k ∈ Z, there is a collection of Borel sets (“cubes” )

Dk := {Qk
j ⊂ E : j ∈ Ik},



Harmonic measure and approximation of uniformly rectifiable sets 357

where Ik denotes some (possibly finite) index set depending on k, satisfying

(i) E = ∪jQ
k
j for each k ∈ Z.

(ii) If m ≥ k then either Qm
i ⊂ Qk

j or Qm
i ∩Qk

j = Ø.

(iii) For each (j, k) and each m < k, there is a unique i such that Qk
j ⊂ Qm

i .

(iv) diam
(
Qk

j

) ≤ C12
−k.

(v) Each Qk
j contains some “surface ball” Δ

(
xk
j , a02

−k
)
:= B

(
xk
j , a02

−k
) ∩E.

(vi) Hn({x ∈ Qk
j : dist(x,E \Qk

j ) ≤ � 2−k}) ≤ C1 �
γ Hn

(
Qk

j

)
, for all k, j and for

all � ∈ (0, a0).

A few remarks are in order concerning this lemma.

• In the setting of a general space of homogeneous type, this lemma has been
proved by Christ [9], with the dyadic parameter 1/2 replaced by some constant
δ ∈ (0, 1). In fact, one may always take δ = 1/2 (see the proof of Proposition 2.12
in [22]). In the presence of the Ahlfors–David property (1.3), the result already
appears in [12], [13].

• For our purposes, we may ignore those k ∈ Z such that 2−k � diam(E), in the
case that the latter is finite.

• We shall denote by D = D(E) the collection of all relevant Qk
j , i.e.,

D := ∪kDk,

where, if diam(E) is finite, the union runs over those k such that 2−k � diam(E).

• Properties (iv) and (v) imply that for each cube Q ∈ Dk, there is a point xQ ∈ E,
a Euclidean ball B(xQ, r) and a surface ball Δ(xQ, r) := B(xQ, r)∩E such that
r ≈ 2−k ≈ diam(Q) and

(1.6) Δ(xQ, r) ⊂ Q ⊂ Δ(xQ, Cr),

for some uniform constant C. We shall denote this ball and surface ball by

(1.7) BQ := B(xQ, r) , ΔQ := Δ(xQ, r),

and we shall refer to the point xQ as the “center” of Q.

• For each cube Q ∈ D, we let XQ be a corkscrew point relative to BQ, and refer
to this as a corkscrew point relative to Q. Such a corkscrew point exists, since E
is n-dimensional ADR (with the constant c in Definition 1.8 depending only on
dimension and the ADR constants).

• For a dyadic cube Q ∈ Dk, we shall set 
(Q) = 2−k, and we shall refer to this
quantity as the “length” of Q. Evidently, 
(Q) ≈ diam(Q).

• For a dyadic cube Q ∈ D, we let k(Q) denote the “dyadic generation” to which Q
belongs, i.e., we set k = k(Q) if Q ∈ Dk; thus, 
(Q) = 2−k(Q).
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2. A bilateral corona decomposition and corona type approx-
imation by chord-arc domains

In this section, we state a bilateral variant of the “corona decomposition” of David
and Semmes [12], [13]. The bilateral version was proved in [20], Lemma 2.2. We
first recall the notions of “coherency” and “semi-coherency”:

Definition 2.1 ([13]). Let S ⊂ D(E). We say that S is “coherent” if the following
conditions hold:

(a) S contains a unique maximal element Q(S) which contains all other elements
of S as subsets.

(b) If Q belongs to S, and if Q ⊂ Q̃ ⊂ Q(S), then Q̃ ∈ S.

(c) Given a cube Q ∈ S, either all of its children belong to S, or none of them do.

We say that S is “semi-coherent” if only conditions (a) and (b) hold.

The bilateral “corona decomposition” is as follows.

Lemma 2.2 (Lemma 2.2 in [20]). Suppose that E ⊂ R
n+1 is n-dimensional UR.

Then given any positive constants η � 1 and K � 1, there is a disjoint decompo-
sition D(E) = G ∪ B, satisfying the following properties.

(1) The “good” collection G is further subdivided into disjoint stopping time re-
gimes, such that each such regime S is coherent (cf. Definition 2.1).

(2) The “bad” cubes, as well as the maximal cubes Q(S), satisfy a Carleson
packing condition:∑

Q′⊂Q,Q′∈B
σ(Q′) +

∑
S:Q(S)⊂Q

σ
(
Q(S)

) ≤ Cη,K σ(Q) , ∀Q ∈ D(E) .

(3) For each S, there is a Lipschitz graph ΓS, with Lipschitz constant at most η,
such that, for every Q ∈ S,

(2.1) sup
x∈Δ∗

Q

dist(x,ΓS) + sup
y∈B∗

Q∩ΓS

dist(y, E) < η 
(Q) ,

where B∗
Q := B(xQ,K
(Q)) and Δ∗

Q := B∗
Q ∩ E.

In this section, we construct the same domains as in [20], for each stopping time
regime S in Lemma 2.2, a pair of NTA domains Ω±

S , with ADR boundaries, which
provide a good approximation to E, at the scales within S, in some appropriate
sense. To be a bit more precise, ΩS := Ω+

S ∪Ω−
S will be constructed as a sawtooth

region relative to some family of dyadic cubes, and the nature of this construction
will be essential to the dyadic analysis that we will use below. In this section, we
follow essentially verbatim the construction in [20], which we reproduce here for
the reader’s convenience.

We first discuss some preliminary matters. We shall utilize the notation and
constructions of [20] (and essentially that of [19] and [21]).
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Let W = W(Rn+1 \ E) denote a collection of (closed) dyadic Whitney cubes
of Rn+1 \ E, so that the cubes in W have pairwise disjoint interiors and cover
R

n+1 \ E, and furthermore satisfy

(2.2) 4 diam(I) ≤ dist(4I, E) ≤ dist(I, E) ≤ 40 diam(I) , ∀ I ∈ W

(just dyadically divide the standard Whitney cubes, as constructed in [31], Chap-
ter VI, into cubes with side length 1/8 as large) and also

(1/4) diam(I1) ≤ diam(I2) ≤ 4 diam(I1) ,

whenever I1 and I2 touch.
Let E be an n-dimensional ADR set and pick two parameters η � 1 andK � 1.

Define

(2.3) W0
Q :=

{
I ∈ W : η1/4
(Q) ≤ 
(I) ≤ K1/2
(Q), dist(I,Q) ≤ K1/2
(Q)

}
.

Remark 2.3. We note that W0
Q is non-empty, provided that we choose η small

enough, and K large enough, depending only on dimension and the ADR constant
of E.

Assume now that E is UR and make the corresponding bilateral corona decom-
position of Lemma 2.2 with η � 1 and K � 1. Given Q ∈ D(E), for this choice
of η and K, we set (as above) B∗

Q := B(xQ,K
(Q)), where we recall that xQ is
the “center” of Q (see (1.6)–(1.7)). For a fixed stopping time regime S, we choose
a co-ordinate system so that ΓS = {(z, ϕS(z)) : z ∈ R

n}, where ϕS : Rn �→ R is a
Lipschitz function with ‖ϕ‖Lip ≤ η.

Claim 2.4. If Q ∈ S, and I ∈ W0
Q, then I lies either above or below ΓS. More-

over, dist(I,ΓS) ≥ η1/2
(Q) (and therefore, by (2.1), dist(I,ΓS) ≈ dist(I, E), with
implicit constants that may depend on η and K).

Proof of Claim 2.4. Suppose by way of contradiction that dist(I,ΓS) ≤ η1/2
(Q).
Then we may choose y ∈ ΓS such that

dist(I, y) ≤ η1/2
(Q) .

By construction ofW0
Q, it follows that for all Z ∈ I, |Z−y| � K1/2
(Q). Moreover,

|Z − xQ| � K1/2
(Q), and therefore |y − xQ| � K1/2
(Q). In particular, y ∈
B∗

Q∩ΓS, so by (2.1), dist(y, E) ≤ η 
(Q). On the other hand, choosing Z0 ∈ I such

that |Z0−y| = dist(I, y) ≤ η1/2
(Q), we obtain dist(I, E) ≤ 2η1/2
(Q). For η small,
this contradicts the Whitney construction, since dist(I, E) ≈ 
(I) ≥ η1/4
(Q). �

Next, given Q ∈ S, we augment W0
Q. We split W0

Q = W0,+
Q ∪ W0,−

Q , where

I ∈ W0,+
Q if I lies above ΓS, and I ∈ W0,−

Q if I lies below ΓS. Choosing K large

and η small enough, by (2.1), we may assume that both W0,±
Q are non-empty.

We focus on W0,+
Q , as the construction for W0,−

Q is the same. For each I ∈ W0,+
Q ,
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letXI denote the center of I. Fix one particular I0 ∈ W0,+
Q , with centerX+

Q := XI0 .

Let Q̃ denote the dyadic parent of Q, unless Q = Q(S); in the latter case we simply

set Q̃ = Q. Note that Q̃ ∈ S, by the coherency of S. By Claim 2.4, for each I
in W0,+

Q , or in W0,+
˜Q

, we have

(2.4) dist(I, E) ≈ dist(I,Q) ≈ dist(I,ΓS) ,

where the implicit constants may depend on η and K. Thus, for each such I, we
may fix a Harnack chain, call it HI , relative to the Lipschitz domain

Ω+
ΓS

:=
{
(x, t) ∈ R

n+1 : t > ϕS(x)
}
,

connecting XI to X+
Q . By the bilateral approximation condition (2.1), the defini-

tion of W0
Q, and the fact that K1/2 � K, we may construct this Harnack chain

so that it consists of a bounded number of balls (depending on η and K), and
stays a distance at least cη1/2
(Q) away from ΓS and from E. We let W∗,+

Q denote
the set of all J ∈ W which meet at least one of the Harnack chains HI , with
I ∈ W0,+

Q ∪W0,+
˜Q

(or simply I ∈ W0,+
Q , if Q = Q(S)), i.e.,

(2.5) W∗,+
Q :=

{
J ∈ W : ∃ I ∈ W0,+

Q ∪W0,+
˜Q

for which HI ∩ J �= Ø
}
,

where as above, Q̃ is the dyadic parent of Q, unless Q = Q(S), in which case we

simply set Q̃ = Q (so the union is redundant). We observe that, in particular,
each I ∈ W0,+

Q ∪W0,+
˜Q

meets HI , by definition, and therefore

(2.6) W0,+
Q ∪W0,+

˜Q
⊂ W∗,+

Q .

Of course, we may construct W∗,−
Q analogously. We then set

W∗
Q := W∗,+

Q ∪W∗,−
Q .

It follows from the construction of the augmented collections W∗,±
Q that there are

uniform constants c and C such that

cη1/2
(Q) ≤ 
(I) ≤ CK1/2
(Q) , ∀I ∈ W∗
Q,(2.7)

dist(I,Q) ≤ CK1/2
(Q) , ∀I ∈ W∗
Q.

Observe that W∗,±
Q and hence also W∗

Q have been defined for any Q that be-
longs to some stopping time regime S, that is, for any Q belonging to the “good”
collection G of Lemma 2.2. On the other hand, we have defined W0

Q for arbi-
trary Q ∈ D(E).

We now set

(2.8) WQ :=

{ W∗
Q , Q ∈ G,

W0
Q , Q ∈ B,

and for Q ∈ G we shall henceforth simply write W±
Q in place of W∗,±

Q .
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Next, we choose a small parameter τ0 > 0, so that for any I ∈ W , and any τ ∈
(0, τ0], the concentric dilate I∗(τ) := (1 + τ)I still satisfies the Whitney property

(2.9) diam I ≈ diam I∗(τ) ≈ dist (I∗(τ), E) ≈ dist(I, E) , 0 < τ ≤ τ0 .

Moreover, for τ ≤ τ0 small enough, and for any I, J ∈ W , we have that I∗(τ)
meets J∗(τ) if and only if I and J have a boundary point in common, and that, if
I �= J , then I∗(τ) misses (3/4)J . Given an arbitrary Q ∈ D(E), we may define an
associated Whitney region UQ (not necessarily connected), as follows:

(2.10) UQ = UQ,τ :=
⋃

I∈WQ

I∗(τ)

For later use, it is also convenient to introduce some fattened version of UQ: if
0 < τ ≤ τ0/2,

(2.11) ÛQ = UQ,2 τ :=
⋃

I∈WQ

I∗(2 τ).

If Q ∈ G, then UQ splits into exactly two connected components

(2.12) U±
Q = U±

Q,τ :=
⋃

I∈W±
Q

I∗(τ) .

When the particular choice of τ ∈ (0, τ0] is not important, for the sake of nota-
tional convenience, we may simply write I∗, UQ, and U±

Q in place of I∗(τ), UQ,τ ,

and U±
Q,τ . We note that for Q ∈ G, each U±

Q is Harnack chain connected, by
construction (with constants depending on the implicit parameters τ, η and K);
moreover, for a fixed stopping time regime S, we claim that if Q′ is a child of Q,
with both Q′, Q ∈ S, then U+

Q′ ∪U+
Q is Harnack chain connected, and similarly for

U−
Q′ ∪U−

Q . Indeed, by construction (see (2.4), the ensuing discussion, and (2.5), as

well as (2.8) and (2.10)), each of U+
Q′ and U+

Q is a union of fattened Whitney boxes,
such that the center of each such fattened Whitney box I∗ may be connected via
a Harnack path to X+

Q ; moreover, any two such I∗1 and I∗2 either overlap, or are
separated by a distance comparable to 
(Q). The claimed Harnack chain property
follows readily.

We may also define “Carleson boxes” relative to any Q ∈ D(E), by

(2.13) TQ = TQ,τ := int
( ⋃

Q′∈DQ

UQ,τ

)
,

where

(2.14) DQ := {Q′ ∈ D(E) : Q′ ⊂ Q} .

Let us note that we may choose K large enough so that, for every Q,

(2.15) TQ ⊂ B∗
Q := B (xQ,K
(Q)) .
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For future reference, we also introduce dyadic sawtooth regions as follows. Given
a family F of disjoint cubes {Qj} ⊂ D, we define the “global discretized sawtooth”
relative to F by

(2.16) DF := D \⋃F DQj ,

i.e., DF is the collection of all Q ∈ D that are not contained in any Qj ∈ F . Given
some fixed cube Q, the “local discretized sawtooth” relative to F by

(2.17) DF ,Q := DQ \⋃F DQj = DF ∩ DQ.

Note that in this way DQ = DØ,Q.

Similarly, we may define geometric sawtooth regions as follows. Given a familyF
of disjoint cubes {Qj} ⊂ D, we define the “global sawtooth” and the “local saw-
tooth” relative to F by respectively

(2.18) ΩF := int
( ⋃

Q′∈DF
UQ′

)
, ΩF ,Q := int

( ⋃
Q′∈DF,Q

UQ′
)
.

Notice that ΩØ,Q = TQ. For the sake of notational convenience, given a pairwise
disjoint family F ∈ D, and a cube Q ∈ DF , we set

(2.19) WF :=
⋃

Q′∈DF
WQ′ , WF ,Q :=

⋃
Q′∈DF,Q

WQ′ ,

so that in particular, we may write

(2.20) ΩF ,Q = int
( ⋃

I∈WF,Q

I∗
)
.

Remark 2.5. Given a stopping time regime S as in Lemma 2.2, for any semi-
coherent subregime (cf. Definition 2.1) S′ ⊂ S (including, of course, S itself), we
now set

(2.21) Ω±
S′ = int

( ⋃
Q∈S′

U±
Q

)
,

and let ΩS′ := Ω+
S′ ∪Ω−

S′ . Note that implicitly, ΩS′ depends upon τ (since U±
Q has

such dependence). When it is necessary to consider the value of τ explicitly, we
shall write ΩS′(τ).

It is helpful to introduce some terminology now whose utility will become clear
later. Let Q ∈ D define the following

(2.22) I(Q) := {I ∈ W : I ∩ TQ �= Ø}
and also

(2.23) V (Q) = int
( ⋃

I∈I(Q)

I∗
)
.

We note that, trivially, TQ ⊂ V (Q). Notice also that if int(I∗) ⊂ V (Q) then

dist(I∗, Q) � 
(Q) and(2.24)


(I) � 
(Q).(2.25)
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Lemma 2.6. Let Q1, Q2 ∈ D(E). If UQ1 meets UQ2 then

(2.26) dist(Q1, Q2) � min{
(Q1), 
(Q2)}
with implicit constant depending only on K, η, and dimension. Moreover there
exists a constant Υ depending only on K, η, and dimension such that if

dist(Q1, Q2) > Υmax{
(Q1), 
(Q2)}
then

(2.27) V (Q1) ∩ V (Q2) = Ø.

Proof. Suppose that UQ1 meets UQ2 then we have that there exists a cube I∗1 ∈ UQ1

and I∗2 ∈ UQ2 such that I∗1 ∩ I∗2 �= Ø. Since I∗1 and I∗2 are Whitney cubes that
meet we have that

(2.28) 
(I1) ≈ 
(I2).

Then by construction of UQ1 and UQ′
2
we have


(Q1) ≈ 
(Q2),(2.29)

dist(Q1, I
∗
1 ) � 
(Q1),(2.30)

dist(Q2, I
∗
2 ) � 
(Q∗

2).(2.31)

So that (2.28), (2.29), (2.30), and (2.31) yield

dist(Q1, Q2) � 
(Q1).

One sees (2.24) and (2.25) imply, if V (Q1) meets V (Q2),

(2.32) dist(Q1, Q2) � max{
(Q1), 
(Q2)};
this shows (2.27).

In addition we can even put a distance between V (Q1) and V (Q2) on the order
of max{
(Q1), 
(Q2)} by making Υ larger. �

3. Carleson measures: proof of the Theorem 1.1

The proof will utilize the method of “extrapolation of Carleson measures”. This
method was first used by J. L. Lewis [25], whose work was influenced by the corona
construction of Carleson [7] and the work of Carleson and Garnett [8] (see also [17],
[1], [2], [18], [19].) We will apply this method to the (discrete) packing measure from
the bilateral corona decomposition. Let E ⊂ R

n+1 be a UR set of co-dimension 1.
We fix positive numbers η � 1, and K � 1, and for these values of η and K,
we perform the bilateral corona decomposition of D(E) guaranteed by Lemma 2.2.
Let M := {Q(S)}S denotes the collection of cubes which are the maximal elements
of the stopping time regimes in G.



364 S. Bortz and S. Hofmann

Given a cube Q ∈ D(E), we set

(3.1) αQ :=

{
σ(Q) , if Q ∈ M∪ B,
0 , otherwise.

Given any collection D
′ ⊂ D(E), we define

(3.2) m(D′) :=
∑
Q∈D′

αQ.

We recall that DQ is the “discrete Carleson region relative to Q”, defined in (2.14).
Then by Lemma 2.2 (2), we have the discrete Carleson measure estimate

(3.3) m(DQ) :=
∑

Q′⊂Q,Q′∈B
σ(Q′) +

∑
S:Q(S)⊂Q

σ
(
Q(S)

) ≤ Cη,K σ(Q) , ∀Q ∈ D(E) .

Given a family F := {Qj} ⊂ D(E) of pairwise disjoint cubes, we recall that the
“discrete sawtooth” DF is the collection of all cubes in D(E) that are not contained
in any Qj ∈ F (cf. (2.16)), and define the “restriction of m to the sawtooth DF” by

(3.4) mF(D′) := m(D′ ∩ DF ) =
∑

Q∈D′\(∪F DQj
)

αQ .

We define the usual Carleson norm, and the Carleson norm restricted to a cube Q,
as follows:

‖m‖C := sup
Q∈D(E)

m(DQ)

σ(Q)
, ‖m‖C(Q) := sup

Q′⊂Q

m(DQ′)

σ(Q′)
.

Note that by the way that we have defined m, we have

(3.5) ‖m‖C ≤ Cη,K

The following lemma will be one of two crucial lemmas in proving Theorem 1.1.

Lemma 3.1 (Lemma 7.2 in [19]). Suppose that E is ADR. Fix Q ∈ D(E) and m
as above. Let a ≥ 0 and b > 0, and suppose that m(DQ) ≤ (a+ b)σ(Q). Then there
is a family F = {Qj} ⊂ DQ of pairwise disjoint cubes, and a constant C depending
only on dimension and the ADR constant such that

(3.6) ‖mF‖C(Q) ≤ C b,

and

(3.7) σ(B) ≤ a+ b

a+ 2b
σ(Q) ,

where B is the union of those Qj ∈ F such that m(DQj \ {Qj}) > aσ(Qj).
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The other crucial lemma is the following.

Lemma 3.2 (Lemma 3.24 in [20]). Let S be a given stopping time regime as in
Lemma 2.2, and let S′ be any nonempty, semi-coherent subregime of S. Then
for 0 < τ ≤ τ0, with τ0 small enough, each of Ω±

S′ is an NTA domain, with ADR
boundary. The constants in the NTA and ADR conditions depend only on n, τ ,
η, K, and the ADR/UR constants for E.

The following standard covering type lemma will be required.

Lemma 3.3. Fix Q0 ∈ D(E) and let F = {Qj} ⊂ DQ0 be any pairwise disjoint
family of cubes. Then for any positive constant κ we may find a sub-collection
G = {Q̃i} ⊂ F with the following properties:

σ(∪GQ̃i) ≥ Cσ(∪FQj),(3.8)

dist(Q̃i, Q̃k) ≥ κmax{
(Q̃i), 
(Q̃k)),(3.9)

where C depends on κ, dimension and ADR.

Proof of Theorem 1.1. First we fix η and K so that that Lemma 3.2 holds. The
proof will follow by induction. For any a ≥ 0 we have the induction hypothe-
sis H(a), defined in the following way.

H(a) : There exists ηa > 0 such that for all Q0 ∈ D(E) satisfying m(DQ0) ≤
aσ(Q0), there is a collection D

′ ⊆ DQ0 , and an open set Ω̃ of the form

(3.10) Ω̃ := int
(∪Qj∈D′UQj

) ⊂ TQ0 ,

which has an ADR boundary and satisfies the strong 2-sided corkscrew condition
for open sets with corkscrew balls lying in V (Q0) (see (2.23)), and in addition

(3.11) σ(∂Ω̃ ∩Q0) ≥ ηaσ(Q0).

Moreover, each connected component of Ω̃ is an NTA domain with ADR boundary
with uniform constants possibly depending on a.

To prove the theorem it is enough to show that H(M0) holds where M0 is the
Carleson norm of m, that is, M0 = Cη,K in Lemma 2.2. We do this by showing
first that H(0) holds and then that H(a) implies H(a+b) for some fixed constant b
depending only on dimension and the ADR constants. This way we will only use
finitely many steps to get to H(M0). We set b = γ/C, where C is the constant
in (3.6) and γ is a small positive number to be chosen.

The fact that H(0) holds is somewhat trivial since this would imply that Q0

and all of its descendants are in the same stopping time regime and therefore Q0

coincides with a Lipschitz graph. Here we can also directly apply the results in [20].
We are then left with showing that H(a) implies H(a+ b).

Proof that H(a) =⇒ H(a+ b). Suppose that H(a) holds. Let Q0 ∈ D(E) be
such that m(DQ0) ≤ (a + b)σ(Q0). First let C2 be an integer so large that if
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Q1 ⊆ Q2 with k(Q2) + C2 − 5 < k(Q1) then we have that UQ2 ∩ V (Q1) = Ø.
We obtain via Lemma 3.1 a collection F = {Qj}∞j=1 such that

‖mF‖C(Q0) ≤ C b = γ and(3.12)

σ(B) ≤ a+ b

a+ 2b
σ(Q0) ,(3.13)

where B is the union of those Qj in F such that m(DQj \ {Qj}) > aσ(Qj),
call this collection Fbad. Define Fgood := F \ Fbad. Then by pigeon-holing, for
each Qj ∈ Fgood we may find a child of Qj to which we can apply the induction
hypothesis H(a).

Iterating the pigeon-holing argument, we may find a cube Q′
j that is C2 gen-

erations down from Qj (i.e., so that 
(Q′
j) = 2−C2
(Qj)), to which we may apply

the induction hypothesis.

Remark 3.4. Choosing γ, small enough in (3.12) (in fact, γ = 1/2 will suffice),
we obtain that DF ,Q0 does not contain any Q′ ∈ M ∪ B, where M := {Q(S)}S.
Fixing such a γ, we find therefore that every Q′ ∈ DF ,Q0 is a good cube, and more-
over all such Q′ belong to the same S, a stopping time regime as in Lemma 2.2.
Thus, DF ,Q0 is a semi-coherent (see Definition 2.1) subregime of that S, and
therefore ΩF ,Q0 splits into two disjoint NTA domains with ADR boundary, by
Lemma 3.2.

We may clearly assume that a < M0. Set η := 1− M0+b
M0+2b and A := Q \ (∪FQj)

and G := (∪FQj) \B. Then by (3.13), we see immediately that

σ(A ∪G) ≥ ησ(Q0).

If σ(A) > (η/2)σ(Q0), we set Ω̃ = ΩF ,Q0, and note that A ⊆ ∂Ω̃. Then H(a+ b)
holds in this case, by Remark 3.4.

Therefore it is enough to consider the case when σ(G) ≥ (η/2)σ(Q0). Suppose
first that F = {Q0}. Then necessarily, Q0 ∈ Fgood, and in this case we may apply
the induction hypothesis to a child of Q0 to see that H(a + b) holds. Thus, we
may assume that the collection F �= {Q0}. We now apply Lemma 3.3 to Fgood

with κ ≥ Υ, where κ is to be chosen momentarily, and where Υ is the constant in
Lemma 2.6, to obtain a subcollection F̃ ⊂ Fgood with the following properties:

σ(∪
˜F Qi) � σ(∪Fgood

Qj) ≥ (η/2)σ(Q0),

dist(Qi, Qk) ≥ κmax{
(Qi), 
(Qk)} , ∀Qi, Qk ∈ F̃ , i �= k.

Now for each Qj ∈ F̃ , we define two families as follows: let Q∗
j be the parent

of Qj, and let Q′
j be the cube C2 generations down to which we can apply the

induction hypothesis. Now set F ′ := {Q′
j}Qj∈ ˜F , and F∗ := {Q∗

j}Qj∈ ˜F . Notice

first that all of the cubes Q∗
j are in DF ,Q0 and that F ′ has the same properties

as F̃ , namely,

σ(∪F ′Q′
i) � σ(∪Fgood

Qj) � (η/2)σ(Q0) and(3.14)

dist(Q′
i, Q

′
k) ≥ κmax{
(Q′

i), 
(Q
′
k)} , ∀Q′

i, Q
′
k ∈ F ′, i �= k.(3.15)
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For each Q′
j ∈ F ′ we apply the induction hypothesis to obtain an open set as

in H(a) and call this set Ω̃j .
Next, we construct two “large” NTA domains with ADR boundary with the

help of Lemma 3.24 in [20]. For each Q′
j ∈ F ′, let Ij be the collection of fattened

Whitney cubes I∗ such that int(I∗) ⊂ ΩF ,Q0 , and I∗ meets V (Q′
j). Let Bj be

the collection of Q ∈ DQ0 such that there exists an I∗ ⊂ UQ with I∗ ∈ Ij . Now
we define F∞ as the cubes in F ∪ (∪jBj) which are maximal with respect to
containment.

By construction (see Remark 3.4), S′ := DF∞,Q0 is a semi-coherent subregime

of some stopping time regime S as in Lemma 2.2. Thus, setting Ω̃0 = ΩF∞,Q0 , by
Lemma 3.2 we obtain that Ω0 is the union of two disjoint NTA domains with ADR
boundaries, whose diameters are comparable to 
(Q0).

We will need to know that we did not remove too many cubes, namely, we do
not want to remove any Q∗

j ∈ F∗.

Claim 3.5. If κ is chosen large enough then for every j ≥ 1 we have for each
Q∗

j ∈ F∗ that Q∗
j ∈ DF∞,Q0 .

Proof of claim: Note that by our choice of C2, UQ does not meet V (Q′
j), for any

Q ⊇ Q∗
j . Moreover, by construction, we have that Q∗

j /∈ F . Suppose now for
the purposes of contradiction, that there is a j ≥ 1 such that Q∗

j ⊆ Q, with
Q ∈ F∞. Then there exists a k �= j such that Q ∈ Bk and UQ meets V (Q′

k)
for some Q′

k ∈ F ′. Then we have immediately that 
(Q) � 
(Q′
k) < 
(Qk) and

dist(Q′
k, Q) � 
(Q′

k) < 
(Qk) so that

dist(Q′
k, Q

′
j) � dist(Q′

k, Q) + 
(Q) � 
(Qk)

a contradiction for κ large enough. We remind the reader that we are only con-
sidering the cubes extracted with a covering lemma so that they separated (see
Lemma 3.3 and (3.15)). �

Remark 3.6. We note for future reference that V (Q′
j)∩(Ω̃0∪∂Ω̃0) = Ø, for every

j ≥ 1. Indeed, this follows by our observation, in the preceding paragraph, that by
choice of C2 large enough, UQ does not meet V (Q′

j), for any Q ⊇ Q∗
j . We further

note that V (Q′
j) ∩ V (Q′

k) = Ø, for all j �= k, with j, k ≥ 1, by (3.15), Lemma 2.6,
and our choice of κ ≥ Υ.

Recall that for j ≥ 1, Ω̃j is the open set associated to Q′
j ∈ F ′ via the induction

hypothesis, and Ω̃0 = ΩF∞,Q0 . We now set Ω̃ := ∪∞
j=0Ω̃j . We shall show that Ω̃

has all the desired properties. First we show that Ω̃ satisfies a 2-sided corkscrew
condition. Note that by Remark 3.6, the distinct components of Ω̃j remain distinct

components in Ω̃. We let x ∈ ∂Ω̃ and 0 < r ≤ 
(Q0), let M be a large number to

be chosen, and set δ(x) = dist(x,E). We note that ∂Ω̃ ⊆ (∪∞
j=0∂Ω̃j) ∪ Σ, where

Σ ⊂ ∂Ω, and for each x ∈ Σ, there is a subsequence of F ′, call it {Q′
jk
}, with

diam(Q′
jk
) → 0, and a sequence of points yjk ∈ Q′

jk
converging to x. We break

into two cases.
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Case 1: x ∈ ∂Ω̃0.

Recall that Ω̃0 splits into two NTA domains Ω̃±
0 . Moreover, following the

construction in [20], the interior and exterior corkscrew points for the domain Ω̃+
0

are found as follows. Without loss of generality we may assume that x ∈ ∂Ω̃+
0 .

For M sufficiently large (depending only on allowable constants) the argument
distinguishes between two cases, when r < Mδ(x) and when r ≥ Mδ(x). In

the case that r ≥ Mδ(x) we find one corkscrew point in the domain Ω̃−
0 and one

corkscrew point in Ω̃+
0 , and these serve as corkscrew points in separate components

for Ω̃ as well. In the case that r < Mδ(x), we have that δ(x) > 0, and x lies on the

face of a fattened Whitney cube I∗ whose interior lies in Ω̃+
0 . Moreover, x ∈ J , for

some Whitney cube J �∈ (∪Q∈DF∞,Q0
WQ); we then have one corkscrew point in I∗,

and a second in J \ Ω̃+
0 . Clearly, the first of these is also a corkscrew point for Ω̃,

in the component Ω̃+
0 . To see that the second is a corkscrew point relative to ∂Ω̃,

it remains to show that J misses ∂Ω̃ \ ∂Ω̃+
0 . If not, then J must intersect ∂Ω̃j for

some j ≥ 1, and therefore TQ′
j
meets J , so that J ⊂ V (Q′

j). On the other hand, J
also meets I∗, so that I∗ ∈ Ij , hence there is a cube Q ∈ DF∞,Q0 that belongs
to Bj, a contradiction.

Case 2: x ∈ ∂Ω̃j for some j ≥ 1, or x ∈ Σ.

Here Ω̃j is associated to Q′
j . Let us note that by definition, if x ∈ Σ, then there

is a “small cube near x”, more precisely, there is a cube Q′
j ∈ F ′ with r ≥ M
(Q′

j),
and a point yj ∈ Q′

j with |x− yj | < r/4.

Case 2a: x ∈ ∂Ω̃j for some j ≥ 1, with r ≥ M
(Q′
j), or x ∈ Σ. In the latter

case, we let Q′
j be “the small cube near x”, whose existence was noted in the

preceeding paragraph. In either of these scenarios, since Q∗
j ∈ DF∞,Q0 , we have

that int(U±
Q∗

j
) ⊂ Ω̃±

0 , so for M large enough depending on C2, there exists points

y± ∈ ∂Ω̃±
0 , with |x − y±| < r/2. We may then apply Case 1 to each of the balls

B(y±, r/2) ⊂ B(x, r).

Case 2b: x ∈ ∂Ω̃j for some j ≥ 1, with r < M
(Q′
j). From the induction

hypothesis we have two corkscrew balls B1 and B2 that satisfy the strong 2-sided
corkscrew condition, at scale r/M , relative to the open set Ω̃j (see Definition 1.10).

Without loss of generality we may assume that B1 ⊂ Ω̃j , hence also B1 ⊂ Ω̃.
We must show that these corkscrew balls satisfy the strong 2-sided corkscrew
condition for open sets, with Ω̃ the open set in question, thus, it remains to show
that B1, B2 ⊂ R

n+1 \ ∂Ω̃. To this end, we simply observe that B1 and B2 do

not meet ∂Ω̃j by hypothesis, nor they do not meet ∂Ω̃0 or ∂Ω̃i for some i �= j,
by Remark 3.6, since by the induction hypothesis B1, B2 are in V (Q′

j), and since

∂Ω̃i ⊂ V (Q′
i), by construction.

Next, we observe that ∂Ω̃0 is ADR, (see Appendix A in [20]), and that each ∂Ω̃j

is ADR, with uniform control of the ADR constants, by the induction hypothesis.
Thus, we are left with showing that Ω̃ has ADR boundary and that condition (3.11)

holds. We begin by verifying the upper ADR condition for ∂Ω̃. Let x ∈ ∂Ω̃ and
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0 < r ≤ diam(Q0). Recall that ∂Ω̃ ⊆ (∪∞
j=0∂Ω̃j) ∪Σ, where in particular Σ ⊂ ∂Ω.

Since ∂Ω is ADR by hypothesis, it suffices to check the upper ADR bound for
A := ∪∞

j=0∂Ω̃j. To this end, we observe that, trivially,

(3.16) Hn
(
B(x, r) ∩ A

) ≤ ∞∑
j=0

Hn
(
B(x, r) ∩ ∂Ω̃j

)
.

If B(x, r) meets ∂Ω̃0, then there is an x0 ∈ B(x, r)∩∂Ω̃0, and B(x0, 2r) ⊃ B(x, r).

By the ADR property for Ω̃0

(3.17) Hn(B(x, r) ∩ ∂Ω̃0) ≤ Hn(B(x0, 2r) ∩ ∂Ω̃0) � rn .

Next, we consider the contributions of ∂Ω̃j, j ≥ 1, which we write as

∞∑
j=1

Hn(B(x, r) ∩ ∂Ω̃j) =
∑

j: �(Q′
j)>r

+
∑

j: �(Q′
j)≤ r

=: I + II .

We recall that by construction ∂Ω̃j ⊂ V (Q′
j), so by Remark 3.6, the boundaries ∂Ω̃j

are pairwise disjoint. Thus, only a bounded number of terms can appear in the
sum I, so the desired bound I � rn follows by the ADR property of each ∂Ω̃j .

Moreover, for each j, the diameter of Ω̃j is comparable to 
(Q′
j), and therefore the

cubes Q′
j appearing in II are all contained in B(x,Cr), for some sufficiently large

constant C depending only on allowable parameters. Consequently, by the ADR
property of ∂Ω̃j and of E,

II �
∑

j:Q′
j⊂B(x,Cr)

Hn(∂Ω̃j) ≈
∑

j:Q′
j⊂B(x,Cr)

σ(Q′
j) ≤ σ(E ∩B(x,Cr)) ≈ rn .

Thus, we obtain the upper ADR bound.
With the upper ADR bound in hand we now know that ∂Ω̃ is a set of locally

finite perimeter, so by the isoperimetric inequality (see Theorem 2 on page 190
of [15]), and the strong two sided corkscrew condition for open sets, the lower
ADR bound follows. The last and easiest thing to show is that condition (3.11)

holds for Ω̃, but this follows readily from (3.14), and the fact that by the induction
hypothesis, (3.11) hold for each Q′

j . �

4. Proof of Theorem 1.3

The proof of Theorem 1.3 will be immediate from the following lemma.

Lemma 4.1. Let Ω be a bounded open set in R
n+1, with n-dimensional ADR

boundary, such that Ω := ∪jΩj is the union of its connected components Ωj. Sup-
pose further that each component is a chord-arc domain with uniform bounds on the
chord-arc constants. For x0 ∈ ∂Ω and r0 < 1

2 diamΩ, and for Y ∈ Ω \B(x0, 2r0),
let ωY denote the harmonic measure associated to Ω, and set Δ0 := B(x0, r0)∩∂Ω.
Then ωY ∈ weak-A∞(Δ0), with uniform control on the weak-A∞ constants.
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Proof. Fix B0 := B(x0, r0), with x0 ∈ ∂Ω, and r0 < diam(∂Ω). Set Δ = Δ(x, r)
and 2Δ = Δ(x, 2r), with x ∈ ∂Ω, and suppose that B(x, 2r) ⊂ B0 (thus, r0 ≥ 2r).
Recalling the definition of weak-A∞, we need to show there exist uniform positive
constants C and θ such that for each Borel set A ⊆ Δ

(4.1) ωY (A) ≤ C
( σ(A)

σ(Δ)

)θ

ω(2Δ) ,

whenever Y ∈ Ω \B(x0, 2r0). Let us fix such a point Y . We note that Y ∈ Ωj for
some j and therefore ωY is just the harmonic measure associated to the domain Ωj .
Thus, if A∩ ∂Ωj = Ø, then 4.1 holds trivially. We may therefore assume that this
is not the case. Let z ∈ A ∩ ∂Ωj , set A′ = A ∩ ∂Ωj , and set σj = Hn|∂Ωj .
Notice that dist(z, Y ) ≥ r0 ≥ 2r, since in particular, z ∈ B0, while Y ∈ Ω \ 2B0.
Thus, the diameter of Ωj must be greater than r. Moreover, by the result obtained
independently in [11] and in [30], ωY ∈ A∞(2Δ�), where Δ� = B(z, r)∩Ωj , 2Δ� =
B(z, 2r) ∩Ωj , and in particular, we have the doubling estimate

(4.2) ωY (2Δ�) � ωY (Δ�) .

Note further that Δ� ⊂ 2Δ, that A′ ⊂ 2Δ�, and also that by the uniform ADR
property, σ(Δ) ≈ σj(Δ�) = σ(Δ�).

Since ωY ∈ A∞(2Δ�), we therefore have that

ωY (A) = ωY (A′) ≤ C
( σj(A

′)
σj(Δ�)

)θ

ωY (2Δ�)

≤ C
( σ(A′)
σ(Δ�)

)θ

ωY (Δ�) �
(σ(A)

σ(Δ)

)θ

ωY (2Δ),

where in the next to last inequality, we have used (4.2). �

To prove Theorem 1.3, we apply the preceding lemma to each domain Ω̃ con-
structed in Theorem 1.1. We need only verify that the point Y ∈ Ω̃ \ 2B0 may be

replaced by any corkscrew point XΔ0 ∈ Ω̃, relative to the surface ball Δ0. To this

end, we fix such a corkscrew point XΔ0 , and observe that XΔ0 ∈ Ω̃ \ 2B1, for any

ball B1 meeting B0, centered on ∂Ω̃, with radius r1 = ηr0, if η > 0 is chosen small
enough depending only on the corkscrew constant for Ω̃. Then for each such B1,
by Lemma 4.1, ω0 := ωXΔ0 belongs to weak-A∞(Δ1), where Δ1 = B1 ∩ ∂Ω̃. Now

suppose that B(x, 2r) ⊂ B0, with x ∈ ∂Ω̃, and observe that B := B(x, r) may
be covered by a collection of balls F = {Bi := B(xi, ri)}, of bounded cardinality
depending only on dimension and η, such that ri ≈ r, 2Bi ⊂ 2B, and each Bi is
contained in some ball B1 = Bi

1 as above. Set Δ = B ∩ ∂Ω̃, Δi := Bi ∩ ∂Ω̃, and
for A ⊂ Δ, let Ai := A∩Δi. We then apply (4.1) to each Ai,Δ

i, and use that for
each i, Hn(Δ) ≈ Hn(Δi) (depending on η and the ADR constants). Since #F is
bounded, we may then sum in i to obtain Theorem 1.3.

We conclude by observing that Lemma 4.1, and hence Theorem 1.1, also apply
to the Riesz measure (“p-harmonic measure”) associated to the p-Laplace equation

Δpu := div
(|∇u|p−2∇u

)
= 0 .
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Definition 4.2. (p-harmonic measure). Let Ω ⊂ R
n+1 be open. For x ∈ ∂Ω,

0 < r < 1
8 diam(Ω), suppose that u ≥ 0, with u ≡ 0 on ∂Ω, Δpu = 0 in 4B ∩ Ω.

We define the p-harmonic measure μ associated to u, as the unique finite positive
Borel measure such that

(4.3) −
∫∫

Ω

|∇u|p−2∇u · ∇Φ dx =

∫
∂Ω

Φ dμ ∀Φ ∈ C∞
0 (4B).

Proposition 4.3. Let Ω be a bounded open set in R
n+1, with n-dimensional ADR

boundary, such that Ω := ∪jΩj is the union of its connected components Ωj, and
satisfies a strong 2-sided corkscrew condition. Suppose further that each compo-
nent Ωj is a chord-arc domain with uniform bounds on the chord-arc constants.
Then for x ∈ ∂Ω and r < 1

8 diam(Ω), let u and μ be as above, set μ̂ := μ|∂Ωj ,
and let ĉ be the corkscrew constant for the set Ω. If diam(Ωj) > 2ĉr, then μ̂ ∈
weak-A∞(Δ). In particular, given x ∈ ∂Ω and r ∈ (0, 18 diam(Ω)), if we let ΩΔ

be some component which contains an interior corkscrew point relative to the ball
B(x, r), then μ|∂ΩΔ ∈ weak-A∞(Δ).

Proof. The proof is the same as that of Lemma 4.1. Lewis and Nyström [26]
showed that for an NTA domainD with ADR boundary, if μ is p-harmonic measure
associated to a non-trivial positive p-harmonic function u in B(x, 4r) ∩ D, with
x ∈ ∂D, r < diam(D)/4, then μ ∈ A∞(∂D∩B(x, r)), with respect to σD := Hn|∂D;
we use this fact in place of the result of [11], [30]. �
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