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Extremal sequences for the Bellman function

of the dyadic maximal operator

Eleftherios N. Nikolidakis

Abstract. We give a characterization of the extremal sequences for the
Bellman function of the dyadic maximal operator. In fact we prove that
they behave approximately like eigenfunctions of this operator for a specific
eigenvalue.

1. Introduction

The dyadic maximal operator on Rn is a useful tool in analysis and is defined by

(1.1) Md φ(x) = sup
{ 1

|Q|

∫
Q

|φ(u)|du : x ∈ Q, Q ⊆ Rn is a dyadic cube
}

for every φ ∈ L1
loc(R

n), where | · | is the Lebesgue measure on Rn and the dyadic
cubes are those formed by the grids 2−NZn, N = 0, 1, 2, . . .

It is well known that it satisfies the following weak type (1,1) inequality:

(1.2) |{x ∈ Rn : Mdφ(x) > λ}| ≤ 1

λ

∫
{Md φ>λ}

|φ(u)| du,

for every φ ∈ L1(Rn) and λ > 0.
It is easy to see that by using (1.2) one can prove the following Lp-inequality:

(1.3) ‖Md φ‖p ≤ p

p− 1
‖φ‖p,

for every p > 1 and φ ∈ Lp(Rn), and this can be done by using the well-known
Doob’s method for the dyadic maximal operator.

It is also easy to see that (1.2) is best possible, while (1.3) is also best possible
as can be seen in [18] (see [1] and [2] for general martingales).
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Our aim in this article is to study further this maximal operator. One way to
do this is to find certain refinements of the inequalities satisfied by it such as (1.2)
and (1.3). Concerning (1.2), refinements have been made in [8], [10] and [12].
Refinements of (1.3) can be found in [5], or even more general in [6].

In order to refine (1.3) we introduce the following function:

(1.4) BQ
p (f, F ) = sup

{ 1

|Q|

∫
Q

(Md φ)
p : φ ≥ 0, AvQ(φ) = f, AvQ(φ

p) = F
}
,

where p > 1, 0 < fp ≤ F , Q is a fixed dyadic cube in Rn, φ ∈ Lp(Q) and

AvQ(h) =
1

|Q|

∫
Q

|h(u)| du,

for every h ∈ L1(Q). This is the so-called Bellman function of two variables
associated to the dyadic maximal operator. By considering the above function, we
refine (1.3) by adding a norm variable, which is the L1-norm of φ, and which we
consider to be equal to a fixed constant f .

This function has been explicitly computed. Actually this is done in a much
more general setting of a non-atomic probability measure space (X,μ), where the
dyadic sets are now given by a family of sets T (called tree), which satisfies condi-
tions similar to those that are satisfied by the dyadic cubes on [0, 1]n (for details,
see section 2). We then define analogously the associated dyadic maximal opera-
tor MT by

(1.5) MT φ(x) = sup
{ 1

μ(I)

∫
I

|φ| dμ : x ∈ I ∈ T
}
,

for every φ ∈ L1(X,μ).
The Bellman function of two variables for p > 1 associated to MT is then

given by

(1.6) BT
p (f, F ) = sup

{∫
X

(MT φ)
p dμ : φ ≥ 0,

∫
X

φdμ = f,

∫
X

φp dμ = F
}
,

where 0 < fp ≤ F .
In [5], (1.6) has been found to be equal to Fωp(f

p/F )p, where ωp : [0, 1] →
[1, p/(p− 1)] is the inverse function H−1

p of Hp defined for z ∈ [1, p/(p− 1)] by
Hp(z) = −(p− 1)zp + pzp−1. This gives us as an immediate consequence that it is
independent of the measure space (X,μ) and the tree structure of T .

For the evaluation of this function the author in [5] introduced a technique
based on an effective linearization of the dyadic maximal operator that holds for
an adequate set of functions, called T -good. Certain sharp inequalities were proved
in [5] by using Hölder’s inequality upon suitable subsets of X in an effective way.
After the evaluation of (1.6) he was also able to evaluate other more general Bell-
man functions of MT that involve three parameters. The evaluations of these
new Bellman functions, which are connected with the dyadic Carleson imbedding
theorem and others, are based on the result of (1.6) entirely, and are proved by its
application on certain elements of the tree T .
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The next step for studying the dyadic maximal operator is to investigate the op-
posite problem for the Bellman function related to Kolmogorov’s inequality which
has been worked out in [7]. More precisely, the function

(1.7) Bq(f, h) = sup
{∫

X

(MT φ)
qdμ : φ ≥ 0,

∫
X

φdμ = f,

∫
X

φqdμ = h
}
,

has been computed there, where 0 < h ≤ f q and q ∈ (0, 1) is a fixed constant.
In [7] the authors precisely computed the above function by using the lin-

earization technique introduced in [5]. The techniques that were used in [7] to
evaluate (1.7) are different to those used in [5] for the computation of (1.6).

Additionally, the following has been proved in [11].

Proposition. Let (φn)n be a sequence of nonnegative functions in L1(X,μ) such
that

∫
X φn dμ = f and

∫
X φp

n dμ = F for all n ∈ N . If (φn)n is extremal for (1.6),

then for every I ∈ T we have that limn
1

μ(I)

∫
I φn dμ =f and limn

1
μ(I)

∫
I φ

p
n dμ =F .

Moreover,

lim
n

1

μ(I)

∫
I

(MT φn)
p dμ = BT

p (f, F ).

This gives as an immediate result that there do not exist extremal functions
for (1.7). This is true because if T differentiates L1(X,μ) we would have for any
extremal φ that it should be constant almost everywhere on X , so that F = fp

which is a trivial case that we do not consider.
Thus our interest is for those sequences of functions (φn)n that are extremal

for this Bellman function. That is φn : (X,μ) → R+, n ∈ N, must satisfy∫
X

φn dμ = f,

∫
X

φp
n dμ = F and lim

n

∫
X

(MT φn)
p dμ = Fωp(f

p/F )p.

Our aim in this paper is to give a characterization of these extremal sequences of
functions. For this reason we restrict ourselves to the class of T -good functions,
that is enough to describe the problem as it was settled in [5] (see section 3). We
give now the statement of our main result.

Theorem A. Let (φn)n be a sequence of nonnegative, T -good functions such that∫
X φn dμ = f and

∫
X φp

n dμ = F . Then (φn)n is extremal for (1.6) if and only if

lim
n

∫
X

|MT φn − cφn|p dμ = 0,

for c = ωp(f
p/F ).

That is, (φn)n is an extremal sequence for (1.6) if and only if its terms behave
approximately, in Lp, like eigenfunctions of MT , for the eigenvalue c = ωp(f

p/F ).
For the proof of the above theorem we use the technique introduced in [5] for

the evaluation of (1.6), which we generalize in two directions (see theorems 3.1
and 3.2), and by using these we prove theorem 3.3 for the extremal sequences we
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are interested in. This theorem is in fact a weak form of theorem A. It is proved
by producing two inequalities that involve the Lp-integrals of MT φ and φ over
measurable subsets A ⊂ X that have a certain form with respect to the tree T
and the function φ. More precisely, A is a union of certain elements of Sφ or a
complement of such a set, where Sφ is a subtree of T that depends on X and gives
all the information we need for MT φ (for the definition of Sφ see section 2). Using
theorems 3.1 and 3.2, we eventually reach to theorem 3.3.

In order to prove theorem A we need to apply theorem 3.3 to a new extremal
sequence (gφn) which is arbitrarily close to (φn)n in the Lp sense. In fact gφn is
defined properly on suitable subsets of X where φn is defined. The number of
different values of gφn on each of these subsets is at most two with the one being
zero. Then we prove that the measure of the set where gφn is zero tends to zero
by using the fact that (gφn) is extremal sequence for (1.6). Thus we can arrange
everything so that this new extremal sequence is constant on those suitable sets.
We denote this new sequence by (g′φn

). Since g′φn
is constant on each one of the

suitable subsets of X , we are in position to apply theorem 3.3 to it and by using
some additional technical lemmas we finally reach to theorem A.

We should also note that additional work concerning the Bellman functions
and certain symmetrization principles for the dyadic maximal operator can be
seen in [6] and [13]. It is also worth saying that in [14] it has been given an
alternative method for the evaluation of the Bellman function (1.6). Also we need
to remind that the phenomenon that the norm of a maximal operator is attained by
a sequence of eigenfunctions of such a maximal operator can be seen in [4] and [3].
So by considering the results of this paper one might guess that it shouldn’t be rare
and and may occur in other settings also, such as square functions or other dyadic
operators. Finally we mention that the extremizers for the Bellman function of
three variables related to Kolmogorov’s inequality have been characterized in [9].

At last we note that the Bellman function of the dyadic maximal operator has
been found by an alternative way in [15], while the Bellman function for the dyadic
Carleson imbedding theorem can be seen in [16]. Also related results with those
that appear in [15], appear in [17].

2. Preliminaries

Let (X,μ) be a non-atomic probability measure space.

Definition 2.1 ([5]). A set T of measurable subsets of X will be called a tree if
the following are satisfied:

i) X ∈ T and for every I ∈ T , μ(I) > 0.

ii) For every I ∈ T there corresponds a finite or countable subset C(I) of T
containing at least two elements such that

a) the elements of C(I) are pairwise disjoint subsets of I,

b) I = ∪C(I).
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iii) T =
⋃

m≥0 T(m), where T(0) = {X} and T(m+1) =
⋃

I∈T(m)
C(I).

iv) The following holds:
lim

m → ∞
sup

I∈T(m)

μ(I) = 0.

The following is presented in [5], and is a consequence of the properties i)-iv)
of Definition 2.1, which a tree T satisfies.

Lemma 2.1. For every I ∈ T and for every a ∈ (0, 1), there exists a subfamily
F(I) ⊆ T consisting of pairwise disjoint subsets of I such that

μ
( ⋃

J∈F(I)

J
)
=

∑
J∈F(I)

μ(J) = (1− a)μ(I).

Now, given a tree T , we define the maximal operator associated to it as follows:

MT φ(x) = sup
{ 1

μ(I)

∫
I

|φ|dμ : x ∈ I ∈ T
}
,

for every φ ∈ L1(X,μ). Then one can see in [5] the following.

Theorem 2.1. The equality

sup
{
(MT φ)

p dμ : φ ≥ 0,

∫
X

φdμ = f,

∫
X

φp dμ = F
}
= Fωp(f

p/F )p,

is true for every f and F such that 0 < fp ≤ F .

Additionally, we give the notion of the extremal sequence as:

Definition 2.2. Let (φn)n be a sequence of μ-measurable nonnegative functions
defined on X , p > 1 and 0 < fp ≤ F . Then (φn)n is called (p, f, F ) extremal, or
simply extremal, if the following hold:∫

X

φn dμ = f,

∫
X

φp
n dμ = F and lim

n

∫
X

(MT φn)
p dμ = Fωp(f

p/F )p.

3. Characterization of the extremal sequences

We describe now the effective linearization for the operator MT that was intro-
duced in [5] which is valid for certain class of functions φ.

For every φ ∈ L1(X,μ) nonnegative and I ∈ T we define

AvI(φ) =
1

μ(I)

∫
I

φdμ.

We will say that φ is T -good if the set

Aφ = {x ∈ X : MT φ(x) > AvI(φ) for all I ∈ T such that x ∈ I}

has μ-measure zero.
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Let φ be T -good and x ∈ X \Aφ. We define Iφ(x) to be the largest element in
the nonempty set

{I ∈ T : x ∈ I and MT φ(x) = AvI(φ)}.

Suppose now that I ∈ T . We define the following:

A(φ, I) = {x ∈ X \ Aφ : Iφ(x) = I} ⊆ I,

Sφ = {I ∈ T : μ(A(φ, I)) > 0} ∪ {X}.

Obviously then MT φ =
∑

I∈Sφ
AvI(φ)χA(φ,I), μ-a.e., where χE is the character-

istic function of E.
We define also the following correspondence I → I∗ by: I∗ is the smallest el-

ement of {J ∈ Sφ : I � J}. It is defined for every I ∈ Sφ except X . Then it is
obvious that the A(φ, I) are pairwise disjoint and that μ

(⋃
I /∈Sφ

(A(φ, I))
)
= 0, so

that
⋃

I∈Sφ
A(φ, I) ≈ X , where by A ≈ B we mean that μ(A \B) = μ(B \A) = 0.

The following is a consequence of the above.

Lemma 3.1. Let φ be T -good and let also I ∈ T , I �= X. Then I ∈ Sφ if and
only if for every J ∈ T that contains properly I we have that AvJ (φ) < AvI(φ).

Proof. Suppose that I ∈ Sφ. Then μ(A(φ, I)) > 0. Thus A(φ, I) �= ∅, so there
exists x ∈ A(φ, I). By the definition of A(φ, I) we have that Iφ(x) = I, that is I
is the largest element of T such that MT φ(x) = AvI(φ). As a consequence the
implication stated in our lemma holds.

Conversely suppose that I ∈ T and for every J ∈ T that contains properly I
we have that AvJ (φ) < AvI(φ). Then since φ is T -good, we have that for every
x ∈ I \ Aφ, there exists Jx = Iφ(x) in Sφ such that MT φ(x) = AvJx(φ) and
x ∈ Jx. By our hypothesis we must have that Jx ⊆ I. Consider the family
S1 = (Jx)x∈I\Aφ

. This obviously has the following property:
⋃

x∈I\Aφ
Jx ≈ I.

Choose now a pairwise disjoint subfamily S2 = (Ji)i with X ≈ ∪Ji. For this
choice we just need to consider those Jx ∈ S1 maximal under ⊆ relation. Then
by our construction AvJi(φ) ≥ AvI(φ). Suppose now that I /∈ Sφ. This means
that μ(A(φ, I)) = 0, that is we must have for every x ∈ I \ Aφ that Jx � I.
Since Jx belongs to Sφ for every such x, by the first part of the proof of this
lemma we conclude that AvJx(φ) > AvI(φ) and as a consequence we have that
AvJi(φ) > AvI(φ) for every i. Since S2 is a decomposition of I, and because of
the last mentioned inequality we reach to a contradiction. In this way we derive
our lemma. �

The following is proved in [5].

Lemma 3.2. Let φ be T -good

i) If I, J ∈ Sφ, then either A(φ, J) ∩ I = ∅ or J ⊆ I.

ii) If I ∈ Sφ, then there exists J ∈ C(I) such that J /∈ Sφ.
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iii) For every I ∈ Sφ we have that

I ≈
⋃

J∈Sφ, J⊆I

A(φ, J).

iv) For every I ∈ Sφ we have that

A(φ, I) = I \
⋃

J∈Sφ, J∗∈I

J, so that μ(A(φ, I)) = μ(I)−
∑

J∈Sφ, J∗=I

μ(J).

From all the above we see that

AvI(φ) =
1

μ(I)

∑
J∈Sφ, J⊆I

∫
A(φ,J)

φdμ =: yI ,

where I ∈ Sφ, and for those I we also define

xI = a
−1+1/p
I

∫
A(φ,I)

φdμ, where aI = μ(A(φ, I)).

We prove now the following.

Theorem 3.1. Let φ be T -good function such that
∫
X
φdμ = f . Let also B = {Ij}

be a family of pairwise disjoint elements of Sφ, which is maximal on Sφ under ⊆
relation. That is if I ∈ Sφ then I ∩ (∪Ij) �= ∅. Then the following inequality holds:

∫
X\

⋃
j Ij

φp dμ ≥
fp −

∑
j μ(Ij)y

p
Ij

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X\

⋃
j Ij

(MT φ)
p dμ

for every β > 0, where yIj = AvIj (φ).

Proof. We follow [5]. We obviously have that

(3.1)

∫
X\∪Ij

φp dμ =
∑

I�piece(B)
I∈Sφ

∫
A(φ,I)

φp dμ,

where by writing I � piece(B) we mean that I � Ij for some j. In fact (3.1) is
true since

X \
⋃
j

Ij ≈
⋃

J∈Sφ
I�piece(B)

A(φ, I)

in view of the maximality of B and lemma 3.2.
Now from (3.1) we have, by Hölder’s inequality, that

(3.2)

∫
X\

⋃
j Ij

φp dμ ≥
∑
I∈Sφ

I�piece(B)

xp
I =

∑
I∈Sφ

I�piece(B)

( ∫
A(φ,I) φdμ

)p
ap−1
I

.
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It is also true that, for every I ∈ Sφ,

μ(I)yI =
∑

J∈Sφ, J∗=I

μ(J) yJ +

∫
A(φ,I)

φdμ.

Thus by using Hölder’s inequality in the form

(λ1 + · · ·+ λm)p

(σ1 + · · ·+ σm)p−1
≤ λp

1

σp−1
1

+
λp
2

σp−1
2

+ · · ·+ λp
n

σp−1
m

,

we have

∫
X\∪Ij

φp dμ ≥
∑
I∈Sφ

I�piece(B)

(
μ(I)yI −

∑
J∈Sφ, J∗=I

μ(J)yJ
)p

(
μ(I)−

∑
J∈Sφ, J∗=I

μ(J)
)p−1

≥
∑
I∈Sφ

I�piece(B)

{ (μ(I)yI)
p

(τIμ(I))p−1
−

∑
J∈Sφ, J∗=I

(μ(J)yJ )
p

((β + 1)μ(J))p−1

}
,(3.3)

where τI = (β + 1)− βρI , ρI = aI/μ(I), and β > 0.

Then by (3.3) we have, because of the maximality of B, that

(3.4)

∫
X\

⋃
j Ij

φp dμ ≥
∑
I∈Sφ

I�piece(B)

μ(I)ypI
τp−1
I

−
∑
(∗)

μ(I)ypI
(β + 1)p−1

,

where the summation in (∗) is extended to: (a) I ∈ Sφ: I � piece(B) with I �= X ,
and (b) I ∈ Sφ is a piece of B (I = Ij , for some j).

As a consequence we can write

∫
X\∪Ij

φp dμ ≥ ypx

τp−1
x

+
∑

I∈Sφ, I �=X

I�piece(B)

1

ρI

( 1

τp−1
I

− 1

(β + 1)p−1

)
aI y

p
I

− 1

(β + 1)p−1

∑
j

μ(Ij) y
p
Ij
.(3.5)

Also, it is easy to see that

(3.6)
1

(β + 1− βx)p−1
− 1

(β + 1)p−1
≥ (p− 1)βx

(β + 1)p
,

for any x ∈ [0, 1], in view of the mean value theorem.
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Then by (3.5) we immediately conclude that∫
X\∪Ij

φp dμ ≥ ypX
τp−1
X

+
(p− 1)β

(β + 1)p

∑
I∈Sφ,I �=X

I�piece(B)

aIy
p
I − 1

(β + 1)p−1

∑
j

μ(Ij)y
p
Ij

=
[ 1

((β + 1)− βρX)p−1
− (p− 1)βρX

(β + 1)p

]
fp +

(p− 1)β

(β + 1)p

∑
I∈Sφ

I�piece(B)

aIy
p
I

− 1

(β + 1)p−1

∑
j

μ(Ij)y
p
Ij
.(3.7)

On the other hand, ∑
I∈Sφ

I�piece(B)

aI y
p
I =

∑
X\∪Ij

(MT φ)
p dμ,

thus in view of (3.6) we must have

∫
X\∪Ij

φp dμ ≥
fp −

∑
μ(Ij)y

p
Ij

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X\∪Ij

(MT φ)
p dμ,

for every β > 0, and the proof of the theorem is complete. �

If we follow the same proof as above but now work inside any of the Ij , we
obtain:

Theorem 3.2. Let φ be T -good and A = {Ij} be a pairwise disjoint family of
elements of Sφ. Then for every β > 0 we have that

∫
⋃

j Ij

φp dμ ≥
∑

j μ(Ij)y
p
Ij

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
⋃

j Ij

(MT φ)
p dμ.

Let us now prove the following generalization of theorem 3.1.

Corollary 3.1. Suppose that φ is T -good and let A = {Ij} be a pairwise disjoint
family of elements of Sφ. Then for every β > 0,

∫
X\

⋃
j Ij

φp dμ ≥
fp −

∑
j μ(Ij)y

p
Ij

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X\

⋃
j Ij

(MT φ)
p dμ,

where f =
∫
X φdμ.

Proof. This is true since there exist families B,Γ of pairwise disjoint elements
of Sφ with B as in the statement of theorem 3.1, such that B =

⋃
j I

′
j , Γ =

⋃
i Ji

with
⋃

j I
′
j =

(⋃
j Ij

)
∪
(⋃

i Ji
)
and the additional property that Ij is disjoint to Ji

for every j, i. Applying theorem 3.1 for B and theorem 3.2 for Γ we obtain, by
summing the respective inequalities, corollary 3.1. �
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We are in position now to prove the following.

Theorem 3.3. Let (φn)n an extremal sequence consisting of T -good functions.
Consider for every n ∈ N a pairwise disjoint family An = {Inj } of elements of Sφn

such that the following limit exists:

lim
n

∑
I∈An

μ(I) ypI,n, where yI,n = AvI(ϕn), I ∈ An.

Then

lim
n

∫
∪An

(Mφn)
p dμ = ωp(f

p/F )p lim
n

∫
∪An

φp
n dμ,

meaning that if one of the limits on the above relation exists then the other also
does, and we have the stated equality.

Proof. In view of theorem 3.2 and corollary 3.1 we have that∫
X\∪An

φp
n dμ ≥

fp −
∑

I∈An
μ(I)ypI,n

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X\∪An

(MT φn)
p dμ, and(3.8)

∫
∪An

φp
n dμ ≥

∑
I∈An

μ(I)ypI,n
(β + 1)p−1

+
(p− 1)β

(β + 1)p

∫
∪An

(MT φn)
p dμ,(3.9)

for every β > 0 and n ∈ N.
Summing relations (3.8) and (3.9) for every n ∈ N we obtain

(3.10) F =

∫
X

φp
n dμ ≥ fp

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X

(MT φn)
p dμ,

Since (φn)n is extremal we have equality in the limit in (3.10) for β = ωp(f
p/F )−1

(see [5], relation (4.24)).
So we must have equality on (3.8) and (3.9) in the limit for this value of β.

Suppose now that hn =
∑

I∈An
μ(I)ypI,n and that hn → h. Now we can write (3.9)

in the form

(3.11)

∫
∪An

(MT φn)
p dμ ≤

(
1 +

1

β

)(β + 1)p−1
∫
∪An

φp
n dμ− hn

p− 1

(see [5], relations (4.24) and (4.25)), for every β > 0. The right hand side of (3.11),
n ∈ N, is minimized for β = βn = ωp

(
hn

/ ∫
∪An

φp
n dμ

)
− 1, as can be seen at the

end of the proof of lemma 9 in [5], or by making the related simple calculations.
Since, we have equality in the limit in (3.11) we must have that

(3.12) lim
n

hn∫
∪An

φp
n dμ

=
fp

F
.

Thus (3.12) and (3.11) give

lim
n

∫
∪An

(MT φn)
p dμ = ωp(f

p/F )p lim
n

∫
∪An

φp
n,

and this holds in the sense stated above. This completes the proof of theorem 3.3.
�
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We need now some additional lemmas that we are going to state and prove
below. First we prove the following.

Lemma 3.3. Let φ be T -good. Then we can associate to φ, a measurable function
defined on X, gφ, which attains two at most values (cφJ or 0) on certain subsets of
A(φ, J), that decompose it, for every J ∈ Sφ, and which is defined in a way that
for every I ∈ T which contains an element of Sφ (that is, it is not contained in
any of the AJ ), we must have that

∫
I gφdμ =

∫
I φdμ. Additionally, for any I ∈ Sφ

we have that
∫
AI

gpφdμ =
∫
AI

φpdμ and μ({φ = 0} ∩ AI) ≤ μ({gφ = 0} ∩AI).

Proof. We define gφ inductively using lemma 3.2. Note that A(φ,X) = AX =

X \ ∪I∈Sφ,I∗=XI. We define first a function g
(1)
φ : X → R+ such that the integral

relation mentioned above holds for this function and additionally g
(1)
φ /AX attains

at most two values on certain subsets of AX , which are in fact unions of elements
of T , and which decompose AX . For this construction we proceed as follows. We

set g
(1)
φ (x) = φ(x), for x ∈ X \ AX . We write AX = ∪jIj,X , where (Ij,X)j is a

family of elements of T , maximal with respect to the relation Ij,X ⊆ AX . For
every Ij,X there exists an integer kj > 0, such that Ij,X ∈ T(kj). Then we consider
the unique I ′j,X such that Ij,X ∈ C(I ′j,X), that is I ′j,X ∈ T(kj−1) and I ′j,X � Ij,X .
By the maximality of Ij,X for any j, we have that I ′j,X ∩ (X \ AX) �= ∅, thus
by lemma 3.2 iv) there exists I ∈ Sφ such that I∗ = X and I ′j,X ∩ I �= ∅. Since
I ′j,X ∩ AX �= ∅, we conclude that I ′j,X � I, for any such I ∈ Sφ. We consider
now a maximal disjoint subfamily of (I ′j,X)j , denoted by (I ′jN ,X)N , which still
covers ∪jI

′
j,X . By the above construction we have that for every N , we can write

I ′jN ,X = DjN ∪ BjN , where BjN = I ′jN ,X ∩ AX and DjN is a union of some of
the elements J , of Sφ for which J∗ = X . Obviously we have ∪NBjN = AX and
each BjN is a union of certain elements of the family (Ij,X)j . Now fix a jN . For
any a ∈ (0, 1) which will be chosen later, using lemma 2.1, we construct a family
AX

φ,jN
, of elements of T , all of which are contained in BjN , and such that

(3.13)
∑

J∈AX
φ,jN

μ(J) = a μ(BjN ).

Define the function gN,φ,X : BjN → R+ by setting

(3.14)
gN,φ,X := cφN,X on ∪AX

φ,jN
,

:= 0 on BjN \ ∪AX
φ,jN

,

where the constants cφN,X and γφ
N,X := μ(∪AX

φ,jN
) = aμ(BjN ) satisfy

(3.15)

{ ∫
BjN

gN,φ,X dμ = cφN,X γφ
N,X =

∫
BjN

φdμ, and∫
BjN

gpN,φ,X dμ = (cφN,X)p γφ
N,X =

∫
BjN

φp dμ.

It is easy to see that such choices for cφN,X and γφ
N,X are possible.
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In fact (3.15) gives

γφ
N,X =

[( ∫
BjN

φdμ
)p

∫
BjN

φp dμ

]1/(p−1)

≤ μ(BjN ), by Hölder’s inequality,

so we just need to define γφ
N,X , by the above equation, and choose a so that

a =
γφ
N,X

μ(BjN )
.

At last we set cφN,X = (
∫
BjN

φdμ)/γφ
N,X . Define now g

(1)
φ on AX = ∪NBjN by

g
(1)
φ (t) = gN,φ,X(t), for t ∈ BjN , for any N . Note now that g

(1)
φ may attain more

than one positive values on AX . It is easy then to see that there exists a common
positive value, denoted by cφX , and measurable sets LN ⊆ BjN , such that if we

define gφ(t) = cφX for t ∈ LN , and gφ(t) = 0, for t ∈ BjN \ LN and for any N , we

still have that
∫
BjN

gφ dμ =
∫
BjN

φdμ = cφXμ(LN ) and
∫
AX

gpφ dμ =
∫
AX

φpdμ. For

the construction of LN and cφX , we just need to find first the subsets LN of BjN

such that the first two of the integral equalities mentioned above is true, and this
can be done for arbitrary cφX , since the space (X,μ) is nonatomic. Then we just

need to find the constant cφX for which the second integral equality is also true.

Note that for these choices of LN and cφX we may not have
∫
BjN

gpφ dμ =
∫
BjN

φpdμ,

for every N , but the respective equality with AX in place of BjN should be true.
Until now we have defined gφ on AX . We set now gφ = φ on X \ AX . It is

immediate then, by the construction of gφ, that if I ∈ T is such that I ∩ AX �= ∅,
and I ∩ (X \ AX) �= ∅, we must have that

∫
I gφ dμ =

∫
I φdμ. This is true since

then I can be written as a certain union of some subfamily of I ′jN ,X and of some J ,
where J is such that J∗ = X . This last fact is true by the construction of the
sets I ′jN ,X .

We continue then inductively and change the values of gφ on the sets AI ,
for I, which is such that I∗ = X , in the same way as was done before, but
now working inside those I. In this way we inductively define the function gφ
in all X , which obviously has the desired properties. Moreover the inequality
μ({φ = 0} ∩ AI) ≤ μ({gφ = 0} ∩ AI) is easily verified if we work as above in
BjN ∩ {φ > 0} instead of BjN . More precisely for the case of I = X we define the
family AX

φ,jN
, of elements of T , all of which are contained in BjN , by the relation

μ(∪AX
φ,jN

) = aμ(BjN ∩ {φ > 0}), and define analogously γφ
N,X , now integrating

on BjN ∩ {φ > 0}. Then we define in an analogous way a, that is we set a =

γφ
N,X/μ(BjN ∩ {φ > 0}). Now γφ

N,X is less or equal than μ(BjN ∩{φ > 0}), and by
using this last fact we deduce that the zero set of gφ in AX , increases in general, in
relation to that of φ on the same set. The proof of our lemma is now completed. �

Let now (φn)n be an extremal sequence consisting of T -good functions and let
gn = gφn . We are now ready to prove the following.
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Lemma 3.4. With the above notation for an extremal (φn)n sequence of T -good
functions, we have that limn μ({φn = 0}) = 0.

Proof. Fix n ∈ N and let φ = φn and gφ = gφn and S = Sφ the respective subtree
of φ. We consider two cases:

i) p ≥ 2. We set PI = (
∫
AI

φp dμ)/aI , for every I ∈ Sφ. We obviously have∑
I∈Sφ

aIPI = F . We consider then the sum Σφ =
∑

I∈Sφ
γIPI , where γI = γφ

I

comes from lemma 3.3. More precisely, it should be true that
∫
AI

φdμ = γIcI and∫
AI

φpdμ = γIc
p
I , for a suitable constant cI = cφI . Obviously 0 ≤ γI ≤ aI = μ(AI),

so we must have that

Σφ =
∑
I∈Sφ

γI

∫
AI

φp

aI
=

∑
I∈Sφ

γI
γI · cpI
aI

=
∑
I∈Sφ

γ2
I

cpI
aI

=
∑
I∈Sφ

γ2
I a

p−2
I cpI

ap−1
I

p≥2

≥
∑
I∈Sφ

(γIcI)
p

ap−1
I

=
∑
I∈Sφ

( ∫
AI

φ
)p

ap−1
I

.

From the first inequality in (4.20) of [5], and since φn is extremal, we have that the
last sum in the above inequality tends to F , as φ moves along (φn)n. We conclude
that

(3.16)
∑
I∈Sφ

γIPI ≈ F,

since Σφ ≤ F . Consider now, for every R > 0 and every φ, the following set:

Sφ,R =
⋃
{AI = A(φ, I) : I ∈ Sφ, PI < R}.

For every I ∈ Sφ such that PI < R we have that
∫
AI

φp < RaI . Summing for all
such I we obtain

(3.17)

∫
Sφ,R

φp dμ < Rμ(Sφ,R).

Additionally we see immediately that the following relations are true:∣∣∣ ∑
I∈Sφ, PI≥R

aI PI − F
∣∣∣ = ∫

Sφ,R

φp dμ,(3.18)

∑
I∈Sφ, PI<R

γI PI ≤
∑

I∈Sφ, PI<R

aI PI =

∫
Sφ,R

φp dμ.(3.19)

From (3.16) and (3.19) we have

(3.20) lim sup
φ

∣∣∣ ∑
I∈Sφ, PI≥R

γI PI − F
∣∣∣ ≤ lim

φ

∫
Sφ,R

φp dμ,

where we have supposed that the last limit exists (in the opposite case we just pass
to a subsequence of (φn)n).
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From (3.18) and (3.20) we conclude that

(3.21) lim sup
φ

∑
I∈Sφ,PI≥R

(aI − γI)PI ≤ 2 lim
φ

∫
Sφ,R

φp dμ.

By using then theorem 3.3 we have

lim
φ

∫
Kφ

(MT φ)
p dμ = ωp(f

p/F )p lim
φ

∫
Kφ

φp dμ,

whenever the limits exist, and Kφ be a union of pairwise disjoint elements of Sφ

(the conditions of theorem 3.3 are satisfied because of the boundedness of the
sequences mentioned there).

Now for a fixed R > 0, Sφ,R is a union of sets of the form AI , for certain
I ∈ Sφ. Each AI can be written, in view of lemma 3.2, as AI = I \

⋃
J∈Sφ,J∗=I J .

Using then a diagonal argument and passing if necessary to a subsequence we can
suppose that

(3.22) lim
φ

∫
Sφ,R

(MT φ)
p dμ = ωp(f

p/F )p lim
φ

∫
Sφ,R

φp,

by applying theorem 3.3 as mentioned above. Since now MT φ(t) ≥ f , for every
t ∈ X , we have that

(3.23) lim
φ

∫
Sφ,R

(MT φ)
p dμ ≥ (lim sup

φ
μ(Sφ,R))f

p,

and because of (3.17) we have that

(3.24) lim
φ

∫
Sφ,R

φp dμ ≤ lim sup
φ

Rμ(Sφ,R),

for any R > 0. Combining the last two relations (in view of (3.22)) we obtain that

(3.25) fp(lim sup
φ

μ(Sφ,R)) ≤ Rωp(f
p/F )p · (lim sup

φ
μ(Sφ,R)),

so by choosing R > 0 suitable small depending only on f and F , we have that

(3.26) lim sup
φ

μ(Sφ,R) = 0.

At last, using (3.21) and (3.24) we obtain, for this R, the following inequalities:

R lim sup
φ

∑
I∈Sφ, PI≥R

(aI − γI) ≤ 2 lim
φ

∫
Sφ,R

φp dμ ≤ 2R lim
φ

μ(Sφ,R) = 0.

Thus,

(3.27) lim
φ

∑
I∈Sφ,PI≥R

(aI − γI) = 0.
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Since
∑

I∈Sφ
aI = 1, and μ(Sφ,R) =

∑
I∈Sφ,PI<R aI we easily obtain from (3.27)

the following chain of implications:

lim
φ

[
1− μ(Sφ,R)−

∑
I∈Sφ,PI≥R

γI

]
= 0 =⇒ lim

φ

∑
I∈Sφ,PI≥R

γI = 1

=⇒ lim
φ

∑
I∈Sφ

γI = 1 =⇒ lim
φ

∑
I∈Sφ

(aI − γI) = 0.

Thus we must have that

μ({φ = 0}) ≤ μ({gφ = 0}) =
∑
I∈Sφ

(aI − γI)
φ−→ 0.

Lemma 3.4 is proved in the first case.

ii) The case 1 < p < 2 is treated in a similar way. Here we define PI =
(
∫
AI

φp)/ap−1
I , and prove in the same manner that

lim
φ

∑
I∈Sφ

(ap−1
I − γp−1

I )PI = 0.

Using then the inequality xq − yq > q(x − y), which holds for 1 > x > y and
0 < q < 1, we conclude that

lim
φ

∑
I∈Sφ

(aI − γI) = 0 ⇒ lim
φ

μ({gφ = 0}) = 0 ⇒ lim
φ

μ({φ = 0}) = 0,

and by this we end the proof of lemma 3.4. �

Suppose now that (φn)n is extremal. For every φ ∈ {φn, n = 1, 2, . . .}, we
define g′φ : x → R+ by g′φ(t) = cφI , t ∈ AI for I ∈ Sφ, that is, we ignore the zero
values of gφ. Then we easily see, because of lemma 3.4, that

lim
φ

∫
X

g′φ dμ = f, lim
φ

∫
X

(g′φ)
p dμ = F,

and

(3.28) lim
φ

∫
X

|gφ − g′φ|p dμ = 0.

Also, obviously by lemma 3.3, we see that

(3.29) AvI(gφ) = AvI(φ),

for every I ∈ Sφ. From (3.29) we have that MT gφ ≥ MT φ on X , so

lim
φ

∫
X

(MT gφ)
p dμ = Fωp(f

p/F )p,

in view of (3.15) and theorem 2.1.
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Since
∫
X gφ dμ = f and

∫
X(gφ)

p dμ = F , we have that (gφ)φ is an extremal
sequence. Suppose now that we have proved the following two equalities:

lim
φ

∫
X

|g′φ − φ|p dμ = 0,(3.30)

lim
φ

∫
X

|MT gφ − cgφ|p dμ = 0, for c = ωp(f
p/F ).(3.31)

Then because of (3.28) we would have that

lim
φ

∫
X

|φ− gφ|p dμ = 0
(3.31)⇒ lim

φ

∫
X

|MT φ− cφ|p dμ = 0,

which is the result of Theorem A. We proceed to the proof of (3.30) and (3.31).

Lemma 3.5. With the above notation,

lim
φ

∫
X

|MT gφ − cgφ|q dμ = 0.

Proof. We recall that c = ωp(f
p/F ). We set, for each φ ∈ {φn, n = 1, 2, . . .},

Δφ = {t ∈ X : MT gφ(t) > cgφ(t)}.

It is obvious, by passing if necessary to a subsequence, that

(3.32) lim
φ

∫
Δφ

(MT gφ)
p dμ ≥ ωp(f

p/F )p lim
φ

∫
Δφ

gpφ dμ.

We consider now for every I ∈ Sφ the set (X \Δφ)∩AI . We distinguish two cases:

(i) AvI(φ) = yI > ccφI , where cφI is the positive value of gφ on AI (if it exists).

Then because of (3.29) we have thatMT gφ(t) ≥ AvI(gφ) = AvI(φ) > ccφI ≥ cgφ(t),
for each t ∈ AI . Thus (X \Δφ) ∩ AI = ∅ in this case. We study now the second
case.

(ii) yI ≤ ccφI . Let now t ∈ AI with gφ(t) > 0, that is gφ(t) = cφI . We prove

that for each such t we have MT gφ(t) ≤ cgφ(t) = ccφI . Suppose now that for
some t we have the opposite inequality. Then there exists Jt such that t ∈ Jt and
AvJt(gφ) > ccφI . Then one of the following subcases holds:

(a) Jt ⊆ AI . Then by the form of gφ/AI (equals 0 or cφI ), we have that

AvJt(gφ) ≤ cφI < ccφI , which is a contradiction, since c > 1. Thus this case is
excluded.

(b) Jt is not a subset of AI . Then in this subcase two more subcases can occur.
b1) Jt ⊆ I and Jt contains properly an element of Sφ, J

′, for which (J ′)∗ = I.

Since now (ii) holds, t ∈ Jt and AvJt(gφ) > ccφI , we must have that J ′ � Jt � I.
We choose now an element of T , J ′

t � I, which contains Jt, with maximum value
on the average AvJ′

t
(φ). Then by the construction of J ′

t we have that, for each
K ∈ T such that J ′

t ⊆ K � I, there holds: AvK(φ) ≤ AvJ′
t
(φ). Since now I ∈ Sφ

and yI = AvI(φ) ≤ ccφI by lemma 3.1 and the choice of J ′
t we have that AvK(φ) <

AvJ′
t
(φ) for every K ∈ T such that J ′

t � K. So again by lemma 3.1 we conclude
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that J ′
t ∈ Sφ. But this is impossible since J ′ � J ′

t �, J ′, I ∈ Sφ and (J ′)∗ = I. We
turn now to the last subcase.

b2) I � Jt. Then by an application of lemma 3.3 we have that AvJt(φ) =

AvJt(gφ) > ccφI ≥ yI = AvI(φ), which is impossible by lemma 3.1, since I ∈ Sφ.
In any of the two cases b1) and b2) we have proved that we have (X \Δφ)∩AI =

AI \ (gφ = 0), while we showed that in case (i), (X \Δφ) ∩ AI = ∅.
Since

⋃
I∈Sφ

AI ≈ X we conclude by lemma 3.4 and the above discussion that

X\Δφ ≈ (
⋃

I∈S1,φ
AI)\Eφ, where μ(Eφ) → 0 and S1,φ is a subset of the subtree Sφ.

Since now each AI , I ∈ S1,φ ⊆ Sφ is written, by lemma 3.2, as a difference set of
unions of elements of Sφ, and theorem 3.3 holds for such unions, we conclude by a
diagonal argument and by passing if necessary to a subsequence, that

lim
φ

∫
∪AI

I∈S1,φ

(MT φ)
p dμ = ωp(f

p/F )p · lim
φ

∫
∪AI

I∈S1,φ

φp dμ, and since μ(Eφ) → 0,

=⇒ lim
φ

∫
X\Δφ

(MT φ)
p dμ = ωp(f

p/F )p lim
φ

∫
X\Δφ

φp dμ.

Because now of the relation MT gφ ≥ MT φ ,which holds μ-almost everywhere
on X , we have as a result that

(3.33) lim
φ

∫
X\Δφ

(MT gφ)
p dμ ≥ ωp(f

p/F )p lim
φ

∫
X\Δφ

gpφ dμ.

Adding the relations (3.32) and (3.33) we have obtained that limφ

∫
X
(MT gφ)

p dμ ≥
ωp(f

p/F )pF , which in fact is an equality since (gφ) is an extremal sequence. So
we must have equality in both (3.32) and (3.33). By using then the elementary
inequality xp−yp > (x−y)p, which holds for every x > y > 0 and p > 1, in view of
the inequality MT gφ > cgφ, which holds on Δφ, we must have that the following
is true:

(3.34) lim
φ

∫
Δφ

|MT gφ − cgφ|p dμ = 0.

Similarly for X \Δφ. That is,

(3.35) lim
φ

∫
X\Δφ

|MT gφ − cgφ|p dμ = 0.

Adding (3.34) and (3.35), we derive limφ ||MT gφ − cgφ||Lp = 0, and by this we
end the proof of our lemma. �

Lemma 3.6. Under the above notation, (3.30) is true.

Proof. We just need to prove that

(3.36) lim
φ

∫
{g′

φ≤φ}
[φp − (g′φ)

p] dμ = 0.
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Then, since

lim
φ

∫
{g′

φ≤φ}
[φp − (g′φ)

p] dμ = lim
φ

∫
φ≤g′

φ

[(g′φ)
p − φp], and p > 1,

we have the desired result, in view of the inequality (x − y)p < xp − yp, which
holds for 0 < y < x and p > 1.

We use the inequality

(3.37) t ≤ tp

p
+

1

q
, for every t > 0, where p, q > 1 such that

1

p
+

1

q
= 1,

For any I ∈ Sφ we set

Δ
(1)
I,φ = {g′φ ≤ φ} ∩A(φ, I) and Δ

(2)
I,φ = {φ < g′φ} ∩ A(φ, I).

Because of (3.37), if we write cI,φ instead of cφI and suppose that cI,φ > 0, we have
that the following inequality holds:

1

cI,φ
φ(x) ≤ 1

p

1

cpI,φ
φp(x) +

1

q
, for every x ∈ AI = A(φ, I).

Integrating over Δ
(1)
I,φ, and Δ

(2)
I,φ we then have

1

cI,φ

∫
Δ

(j)
I,φ

φdμ ≤ 1

p

1

cpI,φ

∫
Δ

(j)
I,φ

φp dμ+
1

q
μ(Δ

(j)
I,φ), for j = 1, 2, I ∈ Sφ,

which gives

cp−1
I,φ

∫
Δ

(j)
I,p

φdμ ≤ 1

p

∫
Δ

(j)
I,φ

φp dμ+
1

q
μ(Δ

(j)
I,φ) c

p
I,φ.

Note that the last inequality is satisfied even if cI,φ = 0. Summing the above for
I ∈ Sφ we obtain

(3.38)
∑
I∈Sφ

cp−1
I,φ

∫
Δ

(j)
I,φ

φdμ ≤ 1

p

∫
⋃

I Δ
(j)
I,φ

φpdμ+
1

q

∑
I∈Sφ

μ(Δ
(j)
I,φ) c

p
I,φ,

for j = 1, 2, thus by adding the above two inequalities we conclude that

(3.39)
∑
I∈Sφ

cp−1
I,φ

∫
A(φ,I)

φdμ ≤ 1

p
F +

1

q

∑
I∈Sφ

μ(A(φ, I)) cpI,φ.

The left hand-side of (3.39) is equal to

∑
I∈Sφ

cp−1
I,φ (cI,φγ

φ
I ) =

∑
I∈Sφ

γφ
I cpI,φ =

∫
X

gpφ dμ,

while the right hand-side is equal to 1
pF + 1

q

∫
X
(g′φ)

p dμ. Moreover, in the limit we

have equality on (3.39), because of (3.28). This gives equality on (3.38) for j = 1, 2
in the limit.
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Thus for j = 1 we obtain∑
I∈Sφ

cp−1
I,φ

∫
Δ

(1)
I,φ

φdμ ≈ 1

p

∑
I∈Sφ

∫
Δ

(1)
I,φ

φp dμ+
1

q

∑
I∈Sφ

cpI,φ μ(Δ
(1)
I,φ)

=⇒
∫
{g′

φ≤φ}
φ(g′φ)

p−1dμ ≈ 1

p

∫
{g′

φ≤φ}
φp dμ+

1

q

∫
{g′

φ≤φ}
(g′φ)

p dμ.(3.40)

So if we set

tφ =
(∫

{g′
φ≤φ}

φp dμ
)1/p

and Sφ =
( ∫

{g′
φ≤φ}

(g′φ)
p dμ

)1/p

,

we obtain ∫
{g′

φ
≤φ}

φ(g′φ)
p−1dμ ≤ tφ · Sp−1

φ ,

and (3.40) gives
1

p
tpφ +

1

q
Sp
φ ≤

φ
tφ · Sp−1

φ ,

so, as a result we have, because of (3.37), that

1

p
tpφ +

1

q
Sp
φ ≈

φ
tφ · Sp−1

φ .

Since in (3.37) we have equality only for t = 1, and tφ andSφ are bounded, we
conclude that

tpφ
Sp
φ

−→
φ

1 ⇒ tpφ − Sp
φ

φ−→ 0 ⇒
∫
{g′

φ≤φ}
[φp − (g′φ)

p] dμ
φ−→ 0,

which is (3.36). The proof of our lemma is now completed. �

We have thus completed the proof of theorem A. We should also mention that
since T -good functions include T -step functions, in the case of Rn, where the
Bellman function is given by (1.4) for a fixed dyadic cube Q, we obtain the result
in theorem A for every sequence of Lebesgue measurable functions (φn)n. In general
in all interesting cases we do not need the hypothesis for φn to be T -good since
T -simple functions are dense on Lp(X,μ).
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