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On multilinear fractional strong maximal operator
associated with rectangles and multiple weights

Mingming Cao, Qingying Xue and Kôzô Yabuta

Abstract. In this paper, we introduce the multilinear fractional strong
maximal operator MR,α and the corresponding multiple weights A(�p,q),R
associated with rectangles. Under the dyadic reverse doubling condition,
a necessary and sufficient condition for two-weight inequalities is given.
As consequences, we first obtain a necessary and sufficient condition for
one-weight inequalities. Then, we present a new proof for the weighted
estimates of multilinear fractional integral operator and fractional maximal
operator associated with cubes, which is quite different from and simpler
than the proof that has been presented previously.

1. Introduction

Multilinear Calderón–Zygmund theory originated in the works of Coifman and
Meyer on Calderón–Zygmund commutators in the 70s [4], [5]. Later on, the the-
ory was systematically studied by Grafakos and Torres in [11], [12]. In recent
years, the theory of multilinear Calderón–Zygmund and related operators, includ-
ing maximal multilinear singular operators, strong maximal operators, fractional
maximal operators, fractional integral operators, has attracted considerable at-
tention as a rapidly developing field in Harmonic analysis and many important
results have been achieved. Among such achievements are the celebrated works of
Grafakos [9], Grafakos, Liu, Pérez and Torres [10], Grafakos and Torres [12], Kenig
and Stein [14], Lerner, Ombrosi, Pérez, Torres and Trujillo-González [16].

The following multiple weight classes A(�p,q) were introduced and studied inde-
pendently by Moen [19] and Chen and Xue [3].

Definition 1.1 ([3] or [19]). Let 1 < p1, . . . , pm < ∞, 1/p = 1/p1+· · ·+1/pm, and
q > 0. Suppose that �ω = (ω1, . . . , ωm) and each ωi (i = 1, . . . ,m) is a nonnegative
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function on R
n. We say that �ω ∈ A(�p,q) if it satisfies

sup
Q

( 1

|Q|
∫
Q

νq�ω dx
)1/q m∏

i=1

( 1

|Q|
∫
Q

ω
−p′

i

i dx
)1/p′

i

< ∞,

where the supremum is taken over all cubes Q with sides parallel to the coordinate

axes and ν�w =
∏m

i=1 ωi. If pi = 1, ( 1
Q

∫
Q
ω
−p′

i
i )1/p

′
i is understood as (infQ ωi)

−1.

Based on a characterization of multiple A(�p,q) weights, some weighted estimates
for the operators Mα and Iα were established in [3] and [19]. These operators are
defined as follows.

Definition 1.2 ([3] or [19]). Let �f = (f1, . . . , fm) be an m-dimensional vector of
locally integrable functions. For any x ∈ R

n, we define the multilinear fractional
type maximal operator Mα and the multilinear fractional integral operator Iα by

Mα(�f )(x) = sup
Q�x

m∏
i=1

1

|Q|1− α
mn

∫
Q

|fi(yi)| dyi, for 0 < α < mn,(1.1)

and

(1.2) Iα(�f )(x) =
∫
(Rn)m

∏m
i=1 fi(x− yi)

|(y1, . . . , ym)|mn−α d�y, for 0 < α < mn,

respectively, where the supremum in (1.1) is taken over all cubes Q containing x
in R

n with the sides parallel to the axes, d�y = dy1 · · · dym and |(y1, . . . , ym)| =
|y1|+ · · ·+ |ym|.

We summarize now some known results of Mα and Iα.
Theorem A ([19]). Let 0 < α < mn, 1 < p1, . . . , pm < ∞, 1/p = 1/p1+· · ·+1/pm
and 1/q = 1/p− α/n. Then, �ω ∈ A(�p,q) if and only if either of the following two
inequalities hold:

∥∥Mα(�f )
∥∥
Lq(ν�ω

q)
≤ C

m∏
i=1

∥∥fi∥∥Lpi (ωi
pi )

;(1.3)

∥∥Iα(�f )∥∥Lq(ν�ω
q)

≤ C

m∏
i=1

∥∥fi∥∥Lpi (ωi
pi )

.(1.4)

Theorem B ([3] or [19]). Let 0 < α < mn, 1 ≤ p1, . . . , pm < ∞, 1/p = 1/p1 +
· · ·+ 1/pm and 1/q = 1/p− α/n. Then, for �ω ∈ A(�p,q), there is a constant C > 0

independent of �f such that

∥∥Mα(�f )
∥∥
Lq,∞(ν�ω

q)
≤ C

m∏
i=1

∥∥fi∥∥Lpi (ωi
pi )

;(1.5)

∥∥Iα(�f )∥∥Lq,∞(ν�ω
q)

≤ C

m∏
i=1

∥∥fi∥∥Lpi (ωi
pi )

.(1.6)
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It is well known that the geometry of rectangles in R
n is more intricate than

that of cubes, even when both classes of sets are restricted to have sides parallel
to the axes. This makes the investigation of the strong maximal function very
complex, but also quite interesting. In 1935, a maximal theorem was given by
Jessen, Marcinkiewicz and Zygmund in [13]. They pointed out that unlike the
classical Hardy–Littlewood maximal operator, the strong maximal function is not
of weak type (1, 1). Subsequently, an additional proof of the maximal theorem
was presented in 1975 by Córdoba and Fefferman, using an alternative geometric
method [6]. Some delicate properties of rectangles in R

n were also quantified in
that study. The basis of the work of Córdoba and Fefferman is a selection theorem
for families of rectangles in R

n. Their covering lemma is quite useful in the study
of the strong maximal function, as demonstrated in [1], [2], [10], [17], and [18].

Recently, Grafakos, Liu, Pérez and Torres [10] introduced the multilinear strong
maximal function MR by setting

MR(�f )(x) = sup
R�x
R∈R

m∏
i=1

1

|R|
∫
R

|fi(yi)| dyi,

where �f = (f1, . . . , fm) is an m-dimensional vector of locally integrable functions
and R denotes the family of all rectangles in R

n with sides parallel to the axes.
In the same paper, they also defined the corresponding multiple weights A�p,R
associated withR. More precisely, they defined A�p,R to be the collection of weights
�ω = (ω1, . . . , ωm) ∈ A�p,R such that

sup
R∈R

( 1

|R|
∫
R

ν�ω dx
) m∏

i=1

( 1

|R|
∫
R

ω
1−p′

i

i dx
)p/p′

i

< ∞,

where ν�ω =
∏m

i=1 ω
p/p′

i
i . In addition, they demonstrated the weak and strong type

boundedness of the multilinear strong maximal operators for the one-weight case �ω.

Theorem C ([10]). Let �p = (p1, . . . , pm) with 1 < p1, . . . , pm < ∞, 1/p = 1/p1 +
· · ·+ 1/pm and let �ω be an m-tuple of weights. Then �ω ∈ A�p,R if and only if one
of the following two inequalities holds:

∥∥MR(�f )
∥∥
Lp,∞(ν�ω)

≤ C

m∏
i=1

∥∥fi∥∥Lpi (ωi)
;(1.7)

∥∥MR(�f )
∥∥
Lp(ν�ω)

≤ C

m∏
i=1

∥∥fi∥∥Lpi (ωi)
.(1.8)

For the two-weight case (�ω, ν), weak type boundedness was established when-
ever (�ω, ν) satisfies a certain power bump variant of the multilinear Ap condition.
Moreover, a sharp end-point distributional estimate for the multilinear strong max-
imal operator was also given.

Motivated by the works in [3], [10] and [19], we first define the multilinear
fractional strong maximal operator MR,α and a class of multiple fractional type
weights A(�p,q),R associated with R. Then, we develop some weighted theory for
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multilinear fractional strong maximal operators. It is worth noting that all ar-
guments for MR,α are valid for the multilinear fractional maximal operator Mα

as well. Thus, we can employ a different method to show the above strong type
inequalities in Theorem A, which is simple than the method used by Moen in [19].

The article is organized as follows. Necessary definitions and our main results
are presented in Section 2. The proof of the two-weight inequality is given in Sec-
tion 3. In Section 4, we first give a characterization of the weight classes A(�p,q),R,

and then we investigate the relationship between the weights Ap,R, Ad
p,R and the

dyadic reverse doubling condition. Finally, in Section 5, an alternative proof of
one-weight estimate of multilinear fractional maximal operator is presented.

2. Definitions and main results

First, we introduce some definitions and notations.

Definition 2.1 (Multilinear fractional strong maximal operator). For 0 < α <

mn, and �f = (f1, . . . , fm) ∈ L1
loc(R

n) × · · · × L1
loc(R

n), we define the multilinear
fractional strong maximal operator MR,α by

MR,α(�f )(x) = sup
R�x

m∏
i=1

1

|R|1− α
mn

∫
R

|fi(yi)| dyi, x ∈ R
n,

where the supremum is taken over all rectangles R containing x with sides parallel
to the coordinate axes. Similarly, we can define the dyadic version of multilinear
fractional strong maximal operator Md

R,α.

Definition 2.2 (Class of A(�p,q),R). Let 1 < p1, . . . , pm < ∞, 1/p = 1/p1 + · · ·+
1/pm, and q > 0. Suppose that �ω = (ω1, . . . , ωm) and each ωi (i = 1, . . . ,m) is a
nonnegative function on R

n. We say that �ω satisfies the A(�p,q),R condition, written
�ω ∈ A(�p,q),R, if it satisfies

sup
R

( 1

|R|
∫
R

νq�ω dx
)1/q m∏

i=1

( 1

|R|
∫
R

ω
−p′

i

i dx
)1/p′

i

< ∞,

where ν�ω =
∏m

i=1 ωi. If pi = 1, then ( 1
R

∫
R
ω
−p′

i

i )1/p
′
i is understood as (infR ωi)

−1.

By Ad
(�p,q),R, we denote the dyadic analog.

Throughout this article, the notation DR will always denote the family of all
dyadic rectangles in R

n with sides parallel to the axes.

Definition 2.3 (Dyadic reverse doubling condition). We say that a nonnega-
tive measurable function ω satisfies the dyadic reverse doubling condition, or ω ∈
RD(d), if ω is locally integrable on R

n and there is a constant d > 1 such that

d

∫
I

ω(x) dx ≤
∫
J

ω(x) dx

for any I, J ∈ DR, where I ⊂ J and |I| = 1
2n |J |.
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Remark 2.4. The definition of dyadic reverse doubling condition and reverse
doubling condition associated with cubes can be found in [8], [15] and [24]. In [8],
this was introduced to study the boundedness of the dyadic fractional maximal
function. In Proposition 4.2, we demonstrate that this condition is very weak.

We now formulate the main results of this paper as follows.

Theorem 2.5 (Two-weighted estimates for MR,α). Let 0 < α < mn, 1/p =
1/p1+ · · ·+1/pm with 1 < p1, . . . , pm < ∞, and 0 < p < q < ∞. Assume that ν is

an arbitrary weight and that each ω
1−p′

i

i (i = 1, . . . ,m) satisfies the dyadic reverse
doubling condition. Then (�ω, ν) satisfies

(2.1) sup
R∈R

|R|α/n+1/q−1/p
( 1

|R|
∫
R

ν dx
)1/q m∏

i=1

( 1

|R|
∫
R

ω
1−p′

i

i dx
)1/p′

i

< ∞,

if and only if either of the following two inequalities hold:

∥∥MR,α(�f )
∥∥
Lq,∞(ν)

≤ C
m∏
i=1

∥∥fi∥∥Lpi (ωi)
;(2.2)

∥∥MR,α(�f )
∥∥
Lq(ν)

≤ C

m∏
i=1

∥∥fi∥∥Lpi (ωi)
.(2.3)

Similar results hold for Md
R,α with the corresponding dyadic version of two-

weight condition (2.1).

Theorem 2.6 (One-weighted estimates for MR,α). Let 0 < α < mn and 1/p =
1/p1 + · · · + 1/pm, with 1 < p1, . . . , pm < ∞, and p < q < ∞ satisfying 1/q =
1/p−α/n. Then �ω ∈ A(�p,q),R if and only if either of the following two inequalities
hold:

∥∥MR,α(�f )
∥∥
Lq,∞(ν�ω

q)
≤ C

m∏
i=1

∥∥fi∥∥Lpi(ωi
pi )

;(2.4)

∥∥MR,α(�f )
∥∥
Lq(ν�ω

q)
≤ C

m∏
i=1

∥∥fi∥∥Lpi(ωi
pi )

.(2.5)

Similar results hold for Md
R,α with �ω ∈ Ad

(�p,q),R.

3. Proof of Theorem 2.5

In order to prove Theorem 2.5, we need the following lemmas.

Lemma 3.1 ([24]). Let n be a positive integer, 1 < p < q < ∞, and 0 < b < 2n.
Let

D =
{
(F, f, ν); F ≥ 0, ν > 0, 0 ≤ f ≤ F 1/pν1/p

′}
.
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Then, there is a positive constant C such that

(3.1)
(
F − fp

2νp/p
′

)q/p

≥ C
f q

νq/p
′ +

1

2nq/p

2n∑
i=1

(
Fi − fp

i

2νip/p
′

)q/p

for all (F, f, ν), (Fi, fi, νi) ∈ D, where

F =
1

2n
(F1 + · · ·+ F2n), f =

1

2n
(f1 + · · ·+ f2n), ν =

1

2n
(ν1 + · · ·+ ν2n)

and νi ≤ bν (i = 1, . . . , 2n).

Remark 3.2. Inequality (3.1) is clearly not satisfied for p ≥ q and 1 < p, q < ∞.
Indeed, when n = 1, this can be verified by taking Fi = fi = νi = 1 for i = 1, 2.

We will need to apply the following Carleson embedding theorem at certain
points in the proof, with respect to two-weighted estimates.

Lemma 3.3 (Carleson embedding theorem). Let 1 < p < q < ∞, ω be a non-
negative locally integrable function on R

n. Assume that ω1−p′
satisfies the dyadic

reverse doubling condition. Then the inequality

∑
I∈DR

( ∫
I

ω1−p′
dx

)−q/p′ ( ∫
I

f(x) dx
)q

≤ C
(∫

Rn

f(x)pω dx
)q/p

holds for all nonnegative functions f ∈ Lp(ω),

Proof. The proof of Lemma 3.3 involves a routine application of the method used
in Theorem 1.1 of [24]. For the sake of completeness, we give a detailed proof here.

Given I ∈ DR, it suffices to show that there exists a positive constant C that
does not depend on I, such that the following inequality holds for all nonnegative
locally integrable functions f :

(3.2)
∑
J⊂I

J∈DR

(∫
J

ω1−p′
dx

)−q/p′(∫
J

f(x) dx
)q

≤ C
( ∫

I

f(x)pω dx
)q/p

.

To begin the proof, let (F, f, ν) ∈ D and let c be the same constant as in
Lemma 3.1. Define

B(F, f, ν) =
1

c

(
F − fp

2νp/p′

)q/p

.

Let f be a nonnegative measurable function such that
∫
I
f(x)pω dx < ∞. For a

measurable set A in I with |A| �= 0, define

FA =
1

|A|
∫
A

f(x)pω dx, fA =
1

|A|
∫
A

f(x) dx and νA =
1

|A|
∫
A

ω(x)1−p′
dx.

Then, by Hölder’s inequality, we have

1

|I|
∫
I

f(x) dx ≤
( 1

|I|
∫
I

f(x)pω dx
)1/p( 1

|I|
∫
I

ω−p′/p dx
)1/p′

.

Therefore, 0 ≤ fI ≤ F
1/p
I ν1/p

′
and we obtain that (FI , fI , νI) ∈ D.
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Let I1, . . . , I2n be the dyadic rectangles that are obtained by splitting I into 2n

equal parts. Then, it follows that

(FIi , fIi , νIi) ∈ D, i = 1, . . . , 2n,

FI =
1

2n
(FI1 + · · ·+FI2n ), fI =

1

2n
(fI1 + · · ·+fI2n ) and νI =

1

2n
(νI1 + · · ·+νI2n ).

Applying the dyadic reverse doubling condition to ω1−p′
gives us that νIi ≤ bνI

for 1 ≤ i ≤ 2n and b = 2n/d < 2n. Therefore, by Lemma 3.1,

B(FI , fI , νI) ≥ f q
I

ν
q/p′
I

+
1

2nq/p

2n∑
i=1

B(FIi , fIi , νIi).

Thus, we obtain the following inequality:

|I|q/pB(FI , fI , νI) ≥ |I|q/p ν−q/p′

I f q
I +

2n∑
1

|Ii|q/pB(FIi , fIi , νIi).

Repeated applications of the same technique to each Ii lead to the inequalities

|I|q/pB(FI , fI , νI) ≥
∑

J⊂I,J∈DR
|J|≥2−nk|I|

|J |q/pν−q/p′

J f q
J +

∑
J⊂I,J∈DR

|J|=2−n(k+1)|I|

|J |q/pB(FJ , fJ , νJ )

≥
∑

J⊂I,J∈DR
|J|≥2−nk|I|

|J |q/pν−q/p′

J f q
J =

∑
J⊂I,J∈DR
|J|≥2−nk|I|

( ∫
J

ω1−p′
dx

)−q/p′(∫
J

f(x) dx
)q

.

Taking the limit as k → ∞, we obtain

∑
J⊂I

J∈DR

(∫
J

ω1−p′
dx

)−q/p′( ∫
J

f(x) dx
)q

≤ |I|q/pB(FI , fI , νI)

= |I|q/p 1

c

(
FI − fp

I

2ν
p/p′
I

)q/p

≤ C′ |I|q/p F q/p
I = C′

( ∫
I

f(x)pω dx
)q/p

.

Thus, the proof of Lemma 3.3 is complete. �

The following key lemma provides a foundation for our analysis. It determines
the relationship between the maximal operator and the corresponding dyadic ver-
sion of the maximal operator.

Lemma 3.4. Let x, t ∈ R
n, 0 ≤ α < mn and 0 < q < ∞. For any �f ≥ 0, k ≥ 0,

let M(k)
R,α be the following truncated version of strong maximal operator:

M(k)
R,α(

�f )(x) := sup
R�x,R∈R,

every side length of R≤2k

m∏
i=1

1

|R|1− α
mn

∫
R

fi(yi) dyi.



562 M. Cao, Q. Xue and K. Yabuta

Then,

M(k)
R,α(

�f )(x)q ≤ Cn,α

|Bk|
∫
Bk

[
τ−t ◦Md

R,α ◦ �τt(�f )(x)
]q

dt, for any k ≥ 0,

where Bk = [−2k+2, 2k+2]n, τtg(x) = g(x− t) and �τt�f = (τtf1, . . . , τtfm).

The above inequality was established by Fefferman and Stein (see [7], p. 431) for
the Hardy–Littlewood maximal operator associated with cubes. For the fractional
maximal operator, the result was been given by Sawyer (see [21] and [22]).

Proof. Our method is similar to that employed in [15]. Let j be an integer and I
be an interval satisfying 2j−1 < |I| ≤ 2j. For k ∈ Z, j ≤ k, we introduce the
notation

E := {t ∈ (−2k+2, 2k+2); ∃ J such that |J | = 2j+1, I ⊂ J, J + t dyadic}.

Then, E enjoys the property |E| ≥ 2k+2 (see [7], p. 431).

Given �f ≥ 0 and x = (x1, . . . , xn) ∈ R
n, we take intervals Ij � xj , |Ij | ≤ 2k,

for 1 ≤ j ≤ n, such that

M(k)
R,α(

�f )(x) < 2

m∏
i=1

1

|R|1− α
mn

∫
R

fi(yi) dyi,

where the rectangle R = I1 × · · · × In.

For each j = 1, . . . , n, let nj be the integers satisfying 2nj−1 < |Ij | ≤ 2nj .
Then, it is obvious that nj ≤ k. Now, we introduce one more notation, Ej :

Ej := {t ∈ (−2k+2, 2k+2); ∃ I ′j such that |I ′j | = 2j+1, Ij ⊂ I ′j , I
′
j + t dyadic}.

We write E = E1 × · · · × En. Then, for each t = (t1, . . . , tn) ∈ E, there exist
intervals {I ′j}nj=1 such that Ij ⊂ I ′j and I ′j + tj are all dyadic. Let R

′′
= (I ′1 + t1)×

· · · × (I ′n + tn). Then, R
′′
is a dyadic rectangle and R ⊂ R

′′ − t. It now follows
that

(3.3)

M(k)
R,α(

�f )(x) < 2

m∏
i=1

1

|R|1− α
mn

∫
R

fi(yi) dyi

≤ 2
m∏
i=1

( |R′′|
|R|

)1− α
mn 1

|R′′|1− α
mn

∫
R′′−t

fi(yi) dyi

≤ 2× 4mn−α sup
R−t�x
R∈DR

m∏
i=1

1

|R|1− α
mn

∫
R−t

fi(yi) dyi,

where R− t = (I1 − t1)× · · · × (In − tn).
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Therefore, if we take a power on both sides of the inequality (3.3) by q and
integrate on E with respect to t, it yields that

M(k)
R,α(

�f )(x)q ≤ Cn,α

|E|
∫
E

[
τ−t ◦Md

R,α ◦ �τt(�f )(x)
]q

dt.

Since E ⊂ Bk and |E| ≥ 1
2n |Bk|, we obtain

M(k)
R,α(

�f )(x)q ≤ 2n × Cn,α

|Bk|
∫
Bk

[
τ−t ◦Md

R,α ◦ �τt(�f )(x)
]q

dt. �

Proof of Theorem 2.5. Our goal here is to prove that (2.3)⇒ (2.2)⇒ (2.1)⇒ (2.3).

It is obvious that (2.3) ⇒ (2.2). Then, it suffices to show that (2.2) ⇒ (2.1)
and (2.1) ⇒ (2.3). We will divide the proof in two steps, as follows.

Step 1. (2.2) ⇒ (2.1).

We may assume that �f ≥ 0 and that for a fixed rectangle R, �f satisfies the
following property:

m∏
i=1

1

|R|1− α
mn

∫
R

fi(yi) dyi > 0.

For x ∈ R, we have

m∏
i=1

1

|R|1− α
mn

∫
R

fi(yi) dyi ≤ MR,α(f1χR, . . . , fmχR)(x).

Therefore, for any λ satisfying

0 < λ <
m∏
i=1

1

|R|1− α
mn

∫
R

fi(yi) dyi,

we can obtain that

R ⊂ {x ∈ R
n;MR,α(f1χR, . . . , fmχR)(x) > λ}.

Hence, by (2.2), we get

ν(R) ≤ ν({x ∈ R
n;Md

R,α(f1χR, . . . , fmχR)(x) > λ}) ≤
(C
λ

m∏
i=1

∥∥fiχR

∥∥
Lpi (ωi)

)q

.

Letting λ → ∏m
i=1

1

|R|1− α
mn

∫
R
fi(yi) dyi, we obtain

|R|α/n−m ν(R)1/q
m∏
i=1

∫
R

fi(yi) dyi ≤ C

m∏
i=1

∥∥fiχR

∥∥
Lpi (ωi)

.

Taking fi = ω
1−p′

i

i , we get

|R|α/n−m ν(R)1/q
m∏
i=1

∫
R

ω
1−p′

i

i dx ≤ C
m∏
i=1

(∫
R

ω
1−p′

i

i dx
)1/pi

.

Therefore, the above inequality implies that (�ω, ν) satisfies the condition (2.1).
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Step 2. (2.1) ⇒ (2.3).
We will divide this step into two subcases.

• Case 1. Estimate for Md
R,α. Consider first the estimates for the dyadic

version of the maximal operator,

Md
R,α(

�f )(x) = sup
R�x

R∈DR

m∏
i=1

1

|R|1− α
mn

∫
R

|fi(yi)| dyi, x ∈ R
n.

Without loss of generality, we can assume that �f is bounded, �f ≥ 0 and has a
compact support. Therefore, Md

R,α(
�f )(x) < ∞ for all x ∈ R

n.

According to the definition of Md
R,α(

�f )(x), we have that for any x ∈ R
n, there

exists a dyadic rectangle R such that x ∈ R and

(3.4) Md
R,α(

�f )(x) ≤ 2

m∏
i=1

1

|R|1− α
mn

∫
R

fi(yi) dyi.

For any dyadic rectangle R, define

E(R) := {x ∈ R
n; x ∈ R and R is minimal for which (3.4) holds}.

From the definition of maximal operator and the inequality (3.4), it is obvious that

R
n =

⋃
R∈DR

E(R).

Since (�ω, ν) satisfies the condition (2.1), it follows that∫
Rn

(Md
R,α(

�f )(x)
)q
ν dx ≤

∑
R∈DR

∫
E(R)

(Md
R,α(

�f )(x)
)q
ν dx

�
∑

R∈DR

∫
R

( m∏
i=1

1

|R|1− α
mn

∫
R

fi(yi) dyi

)q

ν dx

=
∑

R∈DR

( m∏
i=1

(∫
R

ω
1−p′

i

i dx
)−q/p′

i
( ∫

R

fi(yi) dyi

)q)

×
(
|R|α/n+1/q−1/p

( 1

|R|
∫
R

ν dx
)1/q m∏

i=1

( 1

|R|
∫
R

ω
1−p′

i
i dx

)1/p′
i
)q

�
∑

R∈DR

m∏
i=1

( ∫
R

ω
1−p′

i

i dx
)−q/p′

i
(∫

R

fi(yi) dyi

)q

.

Therefor, by Hölder’s inequality
∑∞

j=1

∏m
i=1 |aij | ≤

∏m
i=1(

∑∞
j=1 |aij |pi/p)p/pi and

Lemma 3.3, we further deduce that∫
Rn

(Md
R,α(

�f )(x)
)q

ν dx ≤
m∏
i=1

[ ∑
R∈DR

( ∫
R

ω
1−p′

i

i dx
)(−qpi)/(p

′
ip)

×
(∫

R

fi(yi) dyi

)qpi/p
]p/pi

�
m∏
i=1

∥∥fi∥∥qLpi (ωi)
.
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• Case 2. Estimate for MR,α. By Lemma 3.4 and the Fubini–Tonelli theorem,
it follows that

∥∥M(k)
R,α(

�f )
∥∥q

Lq(ν)
� 1

|Bk|
∥∥∥
∫
Bk

[
τ−t ◦Md

R,α ◦ �τt(�f )
]q

dt
∥∥∥
L1(ν)

=
1

|Bk|
∫
Bk

∥∥τ−t ◦Md
R,α ◦ �τt(�f )

∥∥q

Lq(ν)
dt =

1

|Bk|
∫
Bk

∥∥Md
R,α�τt(

�f )
∥∥q

Lq(τtν)
dt.

Since (�ω, ν) satisfies the condition (2.1), we can further verify that (�τt�ω, τtν) also
satisfies the condition (2.1), and is independent of t. Therefore, from the estimate
in the previous step for Md

R,α, we obtain

∥∥M(k)
R,α(

�f )
∥∥q
Lq(ν)

� 1

|Bk|
∫
Bk

m∏
i=1

∥∥τtfi∥∥qLpi (τtωi)
dt

=
1

|Bk|
∫
Bk

m∏
i=1

∥∥fi∥∥qLpi (ωi)
dt =

m∏
i=1

∥∥fi∥∥q

Lpi(ωi)
.

Finally, we finish the proof by letting k tend to infinity. �

4. Proof of Theorem 2.6

To complete the proof of Theorem 2.6, we need the following characterizations
of A(�p,q),R classes, and the connection between the weights Ad

p,R and the dyadic
reverse doubling condition.

Proposition 4.1 (Characterization of A(�p,q),R class). Let 0 < α < mn, 1 <
p1, . . . , pm < ∞, 1/p = 1/p1 + · · · + 1/pm and 1/q = 1/p − α/n. Suppose that
�ω ∈ A(�p,q),R. Then,

(a) ν�ω
q ∈ Ar,R ⊂ Amq,R;

(b) ω
−p′

i

i ∈ Amp′
i,R;

(c) ω
−p′

i
i ∈ Ari,R, if α/n < (m− 2) + 1/pi + 1/pj, for any 1 ≤ i, j ≤ m,

where r = 1 + q(m− 1/p) and ri = 1 +
p′
i

q [1 + (m− 1)q − q/p+ q/pi].

Proof. The argument used in [3], Theorem 2.2, relies only on the use of Hölder’s
inequality, and does not involve any geometric property of cubes or rectangles.
Hence we may also use the method in [3] to complete our proof. Since the main
ideas are almost the same, we omit the proof here. �

Proposition 4.2. Let 1 < p < ∞, ω is a nonnegative weight. Then, it holds that

(i) A∞,R ⊂ RD(d);

(ii) if ω ∈ Ad
p,R, then ω1−p′ ∈ RD(d).
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Proof of Theorem 2.6. By Proposition 4.1 (b) and Proposition 4.2 (i), we have that

if �ω ∈ A(�p,q),R, then ω
−p′

i
i (i = 1, . . . ,m) satisfies the dyadic reverse doubling

condition.
Now, by the similar arguments and substituting ωpi

i and νq�ω with ωi and ν,
respectively in Theorem 2.5, we can complete the proof of Theorem 2.6. �

Proof of Proposition 4.2. First, let us prove (ii). Let I be any dyadic rectangle.
Dividing I into 2n equal parts, we obtain dyadic sub-rectangles of I, I1, . . . , I2n .
For a measurable set A ⊂ I and |A| �= 0, denote

uA =
1

|A|
∫
A

ω(x) dx, νA =
1

|A|
∫
A

ω(x)1−p′
dx.

Then, we have

uI =
1

2n
(uI1 + · · ·+ uI2n ), νI =

1

2n
(νI1 + · · ·+ νI2n ).

Notice that uIi ≤ 2nuI , for each i = 1, . . . , 2n. Since ω ∈ Ad
p,R, we have

1 ≤ u
1/p
I ν

1/p′

I ≤ K, 1 ≤ u
1/p
Ii

ν
1/p′

Ii
≤ K, for each i = 1, . . . , 2n,

where K is a positive constant that does not depend on I.
Hence, for all i = 1, . . . , 2n, we obtain the following inequalities:

νIi ≥
1

u
p′/p
Ii

≥ 1

(2nuI)p
′/p ≥ νI

2np′/p ·Kp′ ,

νIi = 2nνI −
∑
j 	=i

νIj ≤
(
2n − 2n − 1

2np′/p ·Kp′

)
νI = 2n

(
1− 1− 2−n

2np′/p ·Kp′

)
νI .

Because K ≥ 1, p > 1, if we take 1/d = 1− 1−2−n

2np′/p·Kp′ , then d > 1. Hence,

d

∫
Ii

ω(x)1−p′
dx = d |Ii| νIi ≤ 2n |Ii| νI = |I| νI =

∫
I

ω(x)1−p′
dx.

Therefore, ω1−p′ ∈ RD(d).
We are now in a position to demonstrate (i). Let ω ∈ A∞,R. Then, there exists

some 1 < p < ∞ such that ω ∈ Ap,R, where we refer the reader to [7], p. 458, for
further details. Therefore, the fact that Ap,R ⊂ Ad

p,R gives that ω ∈ Ad
p,R. By the

definition of Ad
p,R, it can be easily seen that ω−1/(p−1) ∈ Ad

p′,R. Hence, by (ii), we
have

ω =
(
ω−1/(p−1)

)−1/(p′−1) ∈ RD(d).

This completes the proof of Proposition 4.2. �

Corollary 4.3. Let 1 < p < q < ∞ and ω ∈ Ad
p,R. Let {μI}I∈DR be a collection

of nonnegative numbers indexed by I ∈ DR. Then, the following two statements
are equivalent:
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(i) There is a positive constant C1 such that

∑
I∈DR

μI

( 1

|I|
∫
I

f(x) dx
)q

≤ C1

( ∫
Rn

f(x)pω(x) dx
)q/p

for all nonnegative locally integrable function f .

(ii) There is a positive constant C2 such that

μI ≤ C2

(∫
I

ω(x) dx
)q/p

for all I ∈ DR.

Proof. Taking f = χI , one can check easily that (i) implies (ii). Conversely, if
ω ∈ Ad

p,R, by Hölder’s inequality, we get

1 =
1

|I|
∫
I

ω(x)1/p ω(x)−1/p dx ≤
( 1

|I|
∫
I

ω(x) dx
)1/p( 1

|I|
∫
I

ω(x)−
1

p−1 dx
)1/p′

≤ C

for all I ∈ DR, where the constant C is independent of I. By combining Lemma 3.3
and Proposition 4.2 with the above inequality, it is easy to see that (ii) implies (i).

�

5. A new proof of multilinear fractional integral operators
and maximal operators

In this section, we aim to present a new proof for Theorem A. The method that we
used in the proof of Theorem 2.6 can also be applied to the multilinear fractional
maximal operator Mα in Definition 1.2. This means that the conclusions of The-
orem 2.6 are also true for Mα, as well as Md

α. To obtain the weighted estimate
for Iα, it is sufficient to prove the following proposition.

Proposition 5.1. Let 0 < q < ∞, and 0 < α < mn. If ω ∈ A∞, then there exists
a positive constant C independent of f , such that

(5.1)

∫
Rn

|Iα(�f )(x)|q ω(x) dx ≤ C

∫
Rn

[Mα(�f )(x)]
q ω(x) dx

and

(5.2) sup
λ>0

λq ω(x ∈ R
n; |Iα(�f )(x)| > λ) ≤ C sup

λ>0
λq ω({x ∈ R

n; Mα(�f )(x) > λ}).

Remark 5.2. When m = 1, Theorem 1 of [20] is the linear result of Proposi-
tion 5.1. Furthermore, the inequality (5.1) has been proved by Moen in Theo-
rem 3.1 of [19], where an extrapolation theorem was used. The method we present
here is entirely different from that one.



568 M. Cao, Q. Xue and K. Yabuta

In order to prove Proposition 5.1, we need the following lemma.

Lemma 5.3. Let 0 < α < mn, λ > 0 and d > 0. For any m-vector of non-negative
locally integrable functions �f and cube Q in R

n. we assume that Iα(�f ) ≤ λ at some

point of Q. Define E = {x ∈ Q; Iα(�f )(x) ≥ λb,Mα(�f )(x) ≤ λd}. Then, there
exist constants B and K, depending only on α, m and n, such that for b ≥ B, it
holds that |E| ≤ K|Q|(d/b)n/(mn−α).

Proof. Here we need to use the end-point unweighted estimate for Iα in Lemma 7
of [14]. Lemma 5.3 is the multilinear version of Lemma 1 in [20]. Because the main
ideas are almost the same as those presented in [20], we omit the proof here. �

Remark 5.4. Lemma 5.3 does not hold for the dyadic maximal operator Md
α.

We give an example in the case m = 1. Let 0 < α < n, B > 0, Q1 = [0, 1]n

and Q−1 = [−1, 0]n. Set

f(x) =
χQ−1(x)

|x|α and λ = Iαf((1, 1, . . . , 1)).

Then, Iαf(0) =
∫
Q−1

dy/|y|n = +∞, and

(5.3) |{x ∈ Q1; Iαf(x) > bλ}| > 0 for any b > 0.

If a dyadic cube Q contains x ∈ Q1, then it must be contained in [0,∞)n. Since
supp f ⊂ (−∞, 0]n, we get

Md
α(f)(x) = sup

Q�x

1

|Q|1−α/n

∫
Q

|f(y)| dy = 0 for x ∈ Q1.

Therefore, for each d > 0, b ≥ B, by (5.3), we have

(5.4) |{x ∈ Q1; Iαf(x) > bλ, Md
α(f)(x) ≤ dλ}| = |{x ∈ Q1; Iαf(x) > bλ}| > 0.

Thus, there exists no K > 0 such that

|{x ∈ Q1; Iαf(x) > bλ, Md
α(f)(x) ≤ dλ}| ≤ K |Q1| (d/b)n/(n−α),

even though λ = Iαf((1, 1, . . . , 1)).

Proof of Proposition 5.1. The idea of the following arguments is essentially taken
from [20].

Without loss of generality, we can assume that �f is nonnegative and has com-
pact support. For a given λ > 0, applying a Whitney decomposition (Theorem 1,
p. 167, in [23]), there are cubes {Qj} with disjoint interiors such that

{x ∈ R
n; Iα(�f ) > λ} =

∞⋃
j=1

Qj,
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and for each j, Iα(�f ) ≤ λ at some point of 4Qj. Let B and K be the same as in
Lemma 5.3 and b = max(1, B). As a property of A∞ weight class, it is well known
that for any 0 < ε < 1 there exists δ > 0, such that |S| < δ|Q| implies ω(S) <
εω(Q), for any cube Q and its measurable subset S. Let δ be chosen in this way
corresponding to ε = 1

2b
−q for ω(x). Choose D so that δ = K4n(D/b)n/(mn−α).

Let 0 < d ≤ D, and

Ej = {x ∈ Qj ; Iα(�f ) > λb,Mα(�f ) ≤ λd}.
According to Lemma 5.3, we have that |Ej | ≤ K|4Qj|(d/b)n/(mn−α) < δ|Qj |.
Hence, ω(Ej) ≤ 1

2b
−qω(Qj). Thus, it holds that

ω({x ∈ R
n; Iα(�f )(x) > λb,Mα(�f )(x) ≤ λd})

=

∞∑
j=1

ω({x ∈ R
n; Iα(�f )(x) > λb,Mα(�f )(x) ≤ λd} ∩Qj)

=

∞∑
j=1

ω(Ej) ≤ 1

2
b−qω({x ∈ R

n; Iα(�f )(x) > λ}).

Consequently, we obtain

(5.5)
ω({x ∈ R

n; Iα(�f )(x) > λb}) ≤ ω({x ∈ R
n; Mα(�f )(x) > λd})

+
1

2
b−qω({x ∈ R

n; Iα(�f )(x) > λ}).

Because �f has compact support, there exists a cube Q such that �f = 0 for
any x outside Q. For fixed x outside 3Q, let x0 be the point in Q that is closest
to x, and let P be the smallest cube with center at x and sides parallel to Q that
contains Q. Then, there is a constant L = L(n) > 1 such that |P | ≤ L|x − x0|n.
Moreover,

Iα(�f )(x) ≤ 1

(m|x− x0|)mn−α

m∏
i=1

∫
Q

fi(yi) dyi ≤
( L

mn

)m−α/n

Mα(�f )(x).

Now, taking d = min{D, (L/mn)α/n−m}, we get

(5.6)
{
x ∈ R

n; Iα(�f )(x) > λ
} ∩ (3Q)c ⊂ {

x ∈ R
n; Mα(�f )(x) > λd

}
.

From (5.5) and (5.6), it follows that

ω({x ∈ R
n; Iα(�f )(x) > λb})

≤ ω({x∈R
n; Mα(�f )(x) > λd}) + 1

2
b−qω({x∈R

n; Iα(�f )(x) > λ} ∩ (3Q)c)

+
1

2
b−qω({x ∈ R

n; Iα(�f )(x) > λ} ∩ (3Q))

≤ 2ω({x ∈ R
n; Mα(�f )(x) > λd}) + 1

2
b−qω({x ∈ 3Q; Iα(�f )(x) > λ}).(5.7)
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Now, we give the proof of inequality (5.1). Let N be any positive number. We
multiply both sides of (5.7) by λq−1 and integrate with respect to λ from 0 to N ,
and then make a change of variables to obtain

b−q

∫ bN

0

λq−1ω({Iα(�f )(x) > λ})dλ

≤ 2

∫ N

0

λq−1ω({Mα(�f )(x) > λd})dλ +
1

2
b−q

∫ N

0

λq−1ω({Iα(�f )(x) > λ} ∩ 3Q)dλ

≤ 2d−q

∫ dN

0

λq−1ω({Mα(�f )(x) > λ})dλ +
1

2
b−q

∫ bN

0

λq−1ω({Iα(�f )(x) > λ})dλ.

Therefore,

b−q

∫ bN

0

λq−1ω({Iα(�f )(x) > λ}) dλ ≤ 4d−q

∫ dN

0

λq−1ω({Mα(�f )(x) > λ}) dλ.

Observing that
∥∥f∥∥

Lq(ω)
= q

∫∞
0

λq−1ω({x ∈ R
n; |f(x)| > λ})dλ for 0 < q < ∞,

and letting N approach ∞, we deduce that∫
Rn

|Iα(�f )(x)|qω(x) dx ≤ 4
( b
d

)q
∫
Rn

[Mα(�f )(x)]
q ω(x) dx.

Thus, we have finished the proof of the inequality (5.1).
Next, we shall prove inequality (5.2). Let N be any positive number. We

multiply both sides of (5.7) by λq, and then take the supremum of both sides for
0 < λ < N , and note the fact that sup(u + v) ≤ supu+ sup v to obtain

b−q sup
0<λ<bN

λqω({Iα(�f )(x) > λ})

≤ 2d−q sup
0<λ<dN

λqω({Mα(�f )(x) > λ}) + 1

2
b−q sup

0<λ<N
λqω({Iα(�f )(x) > λ} ∩ 3Q)

≤ 2d−q sup
0<λ<dN

λqω({Mα(�f )(x) > λ}) + 1

2
b−q sup

0<λ<bN
λqω({Iα(�f )(x) > λ}).

Thus

b−q sup
0<λ<bN

λqω({Iα(�f )(x) > λ}) ≤ 4d−q sup
0<λ<dN

λqω({Mα(�f )(x) > λ}).

Now letting N tend to ∞, we obtain

sup
λ>0

λqω({x ∈ R
n; |Iα(�f )(x)| > λ}) ≤ 4

( b
d

)q

sup
λ>0

λqω({x ∈ R
n;Mα(�f )(x) > λ}).

This shows that the inequality (5.2) is true. Thus, the proof of Proposition 5.1 is
finished. �
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rateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, 177–202.
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