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A comparison principle for the porous medium

equation and its consequences

Benny Avelin and Teemu Lukkari

Abstract. We prove a comparison principle for the porous medium equa-
tion in more general open sets in R

n+1 than space-time cylinders. We
apply this result in two related contexts: we establish a connection be-
tween a potential theoretic notion of the obstacle problem and a notion
based on a variational inequality. We also prove the basic properties of the
PME capacity, in particular that there exists a capacitary extremal which
gives the capacity for compact sets.

1. Introduction

We study the porous medium equation (PME for short)

(1.1)
∂u

∂t
−Δum = 0 ,

where m > 1. This equation is an important prototype of a nonlinear parabolic
equation. The equation is degenerate, meaning that the modulus of ellipticity
vanishes when the solution is zero. The name stems from modeling the flow of a
gas in a porous medium: the continuity equation, Darcy’s law, and an equation of
state for the gas lead to (1.1) for the density of the gas, after scaling out various
physical constants. For more information about this equation, including numerous
further references, we refer to the monographs [8] and [17].

The comparison principle is a fundamental tool in the theory of elliptic and
parabolic equations. In particular, it can be used to define a class of supersolutions
which is the counterpart for superharmonic functions in classical potential theory:
we call a function a semicontinuous supersolution, if it satisfies the comparison
principle with respect to continuous solutions. The definition is due to F. Riesz [15],
and it makes the development of a nonlinear potential theory feasible.
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The comparison principle for parabolic equations is usually formulated for
space-time cylinders, meaning sets of the form ΩT = Ω × (0, T ). The boundary
values are then taken over the parabolic boundary, where only the initial and lateral
boundaries are taken into account. However, one often encounters situations where
one would like to apply the comparison principle in sets which are not space-time
cylinders. Thus our main objective is to establish a comparison principle for the
PME in more general open sets in R

n+1. Such a result is occasionally called the
elliptic comparison principle, in reference to the fact that the time variable no
longer has a special role. Moreover, the elliptic comparison principle can be used
to develop the Perron method in general space-time domains, see [3], [11]. We also
present two applications where such a comparison principle is indispensable.

For the heat equation, when m = 1, one may add constants to solutions.
A comparison principle for general open sets then follows from the space-time
cylinder case by a straightforward exhaustion argument. For the PME, there
is a comparison principle over cylindrical domains, but adding constants is no
longer possible. Our idea for circumventing this difficulty is to multiply one of
the functions being compared by a constant close to one. The modified function
is no longer a solution, but it still satisfies the PME with an error-term on the
right-hand side. The error-term vanishes as the multiplicative constant tends to
one. The comparison principle for the original functions then follows by the usual
duality proof, modified to account for the error-term. Our argument yields a
comparison principle for open sets of the form ΩT \K, where K is a compact set.

As the first application, we consider the obstacle problem. Roughly speaking,
this amounts to finding a solution to a PDE subject to the constraint that the so-
lution stays above a given function, the obstacle. Here we use a potential theoretic
method for solving the problem: we define the solution to the obstacle problem to
be the infimum of all supersolutions lying above the obstacle (réduite). For smooth
enough obstacles the réduite is the smallest supersolution above the obstacle. The
concept of réduite is standard in classical potential theory, and it has been uti-
lized in a nonlinear parabolic context in [14]. Existence and uniqueness follow in
a straightforward manner, at least for continuous obstacles. However, the relation
between the smallest supersolution and the variational solutions to obstacle prob-
lems constructed in [4] is not obvious. In this direction, we prove that the smallest
supersolution is also a variational solution for sufficiently smooth obstacles. This
follows from two facts. First, we prove that the smallest supersolution can always
be approximated by variational solutions. Second, the notion of variational solu-
tion is stable with respect to the convergence of the obstacles in certain norms,
see [4]. The converse of this, i.e., whether a variational solution agrees with the
smallest supersolution, remains a very interesting open problem.

The second application is a notion of parabolic capacity for the PME. This con-
cept is defined via a measure data problem, as in [12] for the parabolic p-Laplacian.
See also [18], [19] and the references therein for the capacity for the heat equation.
We prove the basic properties of the capacity related to the PME, such as count-
able subadditivity and the existence of the capacitary extremal of a compact set.
Our comparison principle plays a key role in the latter argument.
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The paper is organized as follows. In Section 2, we recall the necessary back-
ground material, in particular various notions of supersolutions. Section 3 contains
the proof of the comparison principle, and Section 4 is concerned with the obstacle
problem. Finally, the basic properties of capacity are proved in Section 5.

2. Weak supersolutions and semicontinuous supersolutions

Let Ω be an open and bounded subset of Rn, and let 0 < t1 < t2 < T . We use
the notation ΩT = Ω× (0, T ) and Ut1,t2 = U × (t1, t2), where U ⊂ Ω is open. The
parabolic boundary ∂pUt1,t2 of a space-time cylinder Ut1,t2 consists of the initial
and lateral boundaries, i.e.,

∂pUt1,t2 = (U × {t1}) ∪ (∂U × [t1, t2]) .

The notation Ut1,t2 � ΩT means that the closure Ut1,t2 is compact and Ut1,t2 ⊂ ΩT .
We use H1(Ω) to denote the usual Sobolev space, the space of functions u

in L2(Ω) such that the weak gradient exists and also belongs to L2(Ω). The norm
of H1(Ω) is defined by

‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) .

The Sobolev space with zero boundary values, denoted byH1
0 (Ω), is the completion

of C∞
0 (Ω) with respect to the norm of H1(Ω).
The parabolic Sobolev space L2(0, T ;H1(Ω)) consists of measurable functions

u : ΩT → [−∞,∞] such that x �→ u(x, t) belongs to H1(Ω) for almost all t ∈ (0, T ),
and ∫

ΩT

|u|2 + |∇u|2 dxdt <∞ .

The definition of L2(0, T ;H1
0(Ω)) is identical, apart from the requirement that

x �→ u(x, t) belongs to H1
0 (Ω). We say that u belongs to L2

loc(0, T ;H
1
loc(Ω)) if

u ∈ L2(t1, t2;H
1(U)) for all Ut1,t2 � ΩT .

Supersolutions to the porous medium equation are defined in the weak sense
in the parabolic Sobolev space.

Definition 2.1. A nonnegative function u : ΩT → R is a weak supersolution of
the equation

(2.1)
∂u

∂t
−Δum = 0 in ΩT

if um ∈ L2
loc(0, T ;H

1
loc(Ω)) and∫

ΩT

−u ∂ϕ
∂t

+∇um · ∇ϕdxdt ≥ 0 ,

for all positive, smooth test functions ϕ compactly supported in ΩT . The definition
of weak subsolutions is similar; the inequality is simply reversed. Weak solutions
are defined as functions that are both super- and subsolutions.
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Weak solutions are locally Hölder continuous, after a possible redefinition on a
set of measure zero. See [7], [8], [9], [17], or [20].

We have also the following class of supersolutions.

Definition 2.2. A function u : ΩT → [0,∞] is a semicontinuous supersolution if

(1) u is lower semicontinuous,

(2) u is finite in a dense subset of ΩT , and

(3) the following parabolic comparison principle holds: Let Ut1,t2 � Ω, and let h
be a solution to (2.1) which is continuous in Ut1,t2 . Then, if h ≤ u on ∂pUt1,t2 ,
h ≤ u also in Ut1,t2 .

Note that a semicontinuous supersolution is defined in every point. Every weak
supersolution is a semicontinuous supersolution provided that a proper pointwise
representative is chosen. This is a consequence of the following lemma.

Lemma 2.3 ([2]). Let u be a nonnegative weak supersolution to the porous medium
equation in Ω× (t1, t2). Then u has a lower semicontinuous representative.

In the other direction, a bounded semicontinuous supersolution is also a weak
supersolution, as shown in [13]. If unbounded functions are allowed, then the class
of semicontinuous supersolutions is strictly larger, since the Barenblatt solution is
a semicontinuous supersolution, but is not a weak supersolution, see [13].

Lemma 2.4 ([13]). Let u be a weak supersolution such that |u| ≤M <∞. Then∫∫
ΩT

η2 |∇um|2 dxdt ≤ 16M2m T

∫
Ω

|∇η|2 dx+ 6Mm+1

∫
Ω

η2 dx ,

for all nonnegative functions η ∈ C∞
0 (Ω).

An application of the Riesz representation theorem shows that for each weak
supersolution u, there exists a positive Radon measure μu such that∫∫

Ω∞
−u ∂ϕ

∂t
+∇um · ∇ϕdxdt =

∫
Ω∞

ϕ dμu

for all smooth compactly supported functions ϕ. This is the Riesz measure of u.
The integrals on the left hand side do not depend on the particular pointwise
representative of a supersolution. Thus a weak supersolution u and its lower semi-
continuous regularization û have the same Riesz measures.

Lemma 2.5. If u and v are weak supersolutions in Ω∞, u, v = 0 on ∂pΩ∞,
um, vm ∈ L2(0,∞;H1

0 (Ω)), and μv ≤ μu, then v ≤ u a.e. in Ω∞.

Proof. Let ϕ ∈ C∞
0 (Ω∞) be nonnegative. By subtracting the equations satisfied

by u and v and using the assumption about the measures, we have∫
Ω∞

−(u− v)ϕt +∇(um − vm) · ∇ϕdxdt =

∫
Ω∞

ϕdμu −
∫
Ω∞

ϕdμv ≥ 0 .
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By a standard approximation argument using the fact that um and vm belong to
L2(0,∞;H1

0 (Ω)), we may also take the test functions ϕ ∈ C∞(Ω∞) so that ϕ = 0
on the lateral boundary ∂Ω× (0,∞). We apply Green’s formula to get∫

Ω∞
−(u− v)ϕt − (um − vm)Δϕdxdt ≥ 0 .

The fact that v ≤ u follows from this inequality by repeating the standard du-
ality proof for the comparison principle for the PME, see e.g. Lemma 5 in [7],
Theorem 1.1.1 in [8], or Theorem 6.5 in [17]. �

Lemma 2.6. Let ui, i = 1, 2, . . ., be a uniformly bounded sequence of weak super-
solutions in Ω∞ such that ui → u a.e. in Ω∞. Then u is a weak supersolution
in Ω∞ and

lim
i→∞

∫
Ω∞

φ dμui =

∫
Ω∞

φ dμu ,

for every φ ∈ C∞
0 (Ω∞).

Proof. Due to the uniform bound on the functions ui, it easily follows that

(2.2)

∫
Ω∞

−u ∂φ
∂t

− umΔφdxdt ≥ 0 .

An application of Lemma 2.4 on each ui implies that ∇um ∈ L2
loc(Ω∞). This,

together with (2.2), yields that u is a weak supersolution. The claim about the
measures follows from the computation

lim
i→∞

∫
Ω∞

φ dμui = lim
i→∞

∫
Ω∞

−ui
∂φ

∂t
+∇umi · ∇φdxdt

=

∫
Ω∞

−u∂φ
∂t

+∇um · ∇φdxdt =
∫
Ω∞

φ dμu.

�

We will frequently use the following characterization of the weak convergence
of measures. See Theorem 1 on p. 54 in [10] for the proof.

Theorem 2.7. Let μ and μk, k = 1, 2, 3, . . . , be Radon measures on R
n. Then

the following statements are equivalent.

(1) For all compactly supported smooth functions φ, one has

lim
k→∞

∫
Rn

φ dμk =

∫
Rn

φ dμ .

(2) For all compact sets K, one has

lim sup
k→∞

μk(K) ≤ μ(K) .

(3) For all open sets U , one has

μ(U) ≤ lim inf
k→∞

μk(U) .
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3. A comparison principle

The core of our arguments is a suitable form of the comparison principle, which we
will prove in this section. We will work extensively with finite unions of space-time
cylinders, so we begin by introducing some notation for such sets. For space-time
cylinders Ut1,t2 = U × (t1, t2), we denote the lateral boundary by

S(Ut1,t2) = ∂U × (t1, t2) .

For a cylinder the definition of the parabolic boundary is standard, but for finite
unions of space time cylinders we will recall the definitions. The lateral boundary
of a finite union of space time cylinders U i

ti1,t
i
2
is then given by

S(∪U iti1,ti2) := (∪S(U iti1,ti2)) \ (∪U
i
ti1,t

i
2
) .

We also denote the tops of ∪U i
ti1,t

i
2
by

T (∪U iti1,ti2) := (∪U i × {ti2}) \ (∪U iti1,ti2) ,

and the bottoms similarly as

B(∪U iti1,ti2) := (∪U i × {ti1}) \ (∪U iti1,ti2) .

Thus the parabolic boundary of Q = ∪U i
ti1,t

i
2
is S(Q) ∪ B(Q), and the parabolic

boundary of backwards in time equations becomes S(Q) ∪ T (Q).
We want to use the very weak (i.e., distributional) formulation of the porous

medium equation, so we consider smooth test functions φ ∈ C∞(Q) where Q =
∪U i

ti1,t
i
2
, such that φ = 0 on S(Q). Note that the gradient of φ does not necessarily

vanish on S(Q). In the following we will always work with Ω a smooth domain.
Let us now write the PME in terms of the above class of test functions. Assume
at first that φ has compact support in space. Then a standard approximation
argument shows that we may write the definition of weak solutions as∫

Q

[
− uφt +∇um · ∇φ

]
dxdt+

∫
T (Q)

uφdx−
∫
B(Q)

uφdx = 0 .

After this, we may pass from compactly supported test functions to test functions
vanishing on the sides S(Q), since u and ∇um are in L2(Q). Now, apply Green’s
formula, which is justified by the usual trace theorem, to get

(3.1)

∫
T (Q)

uφdx−
∫
B(Q)

uφdx+

∫
Q

[
− uφt − umΔφ

]
dxdt

+

∫
S(Q)

um∂nφdσ dt = 0 .

A similar argument can be carried out for weak supersolutions and subsolutions. In
these cases, we get the appropriate inequalities in the final form. This formulation
will be our starting point in the proof of the comparison principle.
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Theorem 3.1. Let K be a compact set in ΩT where Ω is a smooth domain, let u
be a nonnegative upper semicontinuous function which is a continuous weak super-
solution in in ΩT \K and satisfies um ∈ L2(0, T ;H1(Ω)). Let v be a non-negative
lower semicontinuous function which is a weak supersolution in ΩT \K and sat-
isfies vm ∈ L2(0, T ;H1(Ω)), v > 0 on K and u ≤ v on K ∪ ∂pΩT . Then u ≤ v
in ΩT .

Proof. We let ε > 0, and denote

Dε =
{
(x, t) ∈ ΩT :

u

1 + ε
≥ v

}
.

The function u/(1 + ε) − v is upper semicontinuous, so that the set Dε is closed
in ΩT . Moreover, the set Dε does not intersect the set K, since u ≤ v on K
and infK v > 0. Since K is compact, there is a positive distance between Dε

and K. Thus we can cover Dε with a finite collection of space time cylinders not
intersecting K. Denote the covering set by D̂F

ε , and note that since Dε1 ⊂ Dε2 for
ε1 > ε2 we may choose the coverings for different values of ε so that D̂F

ε1 ⊂ D̂F
ε2 .

Let then DF
ε = ΩT ∩ D̂F

ε . The set D
F
ε is still a finite union of space-time cylinders,

and the function u is a weak solution in DF
ε .

Let uε = u/(1 + ε). We want to compare uε with v in DF
ε . To this end, note

first that uε < v on ∂DF
ε . Further, the function uε is a solution to

(uε)t −Δ(uε)
m = f :=

(1 + ε)m−1 − 1

(1 + ε)m
Δum ,

interpreted in the sense of distributions. To see this, we compute

[uε]t −Δ[uε]
m = [uε − u]t −Δ[umε − um](3.2)

=
( 1

1 + ε
− 1

)
ut −

( 1

(1 + ε)m
− 1

)
Δum

=
( 1

1 + ε
− 1

(1 + ε)m

)
Δum =

(1 + ε)m−1 − 1

(1 + ε)m
Δum .

We aim at adapting the proof of the comparison principle for the PME, see
e.g. [7]. To proceed, let

DF
ε,s = {(x, t) ∈ DF

ε : t ≤ s} ,

and take positive functions φ ∈ C∞
0 (DF

ε,s), and ψ ∈ C∞(DF
ε,s) which vanishes on

S(DF
ε,s), ∂nψ ≤ 0 on S(DF

ε,s) and so that ψ equals φ on T (DF
ε,s). Denote also

b = uε− v for brevity. Since b is negative and consequently also umε − vm on ∂DF
ε ,
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we have from (3.1) and (3.2), since ∂nψ ≤ 0 on S(DF
ε ),∫

DFε,s

fψ dxdt =

∫
T (DFε,s)

b φdx−
∫
B(DFε,s)

b ψ dx−
∫
DFε,s

bψt dxdt

−
∫
DFε,s

[umε − vm] Δψ dxdt+

∫
S(DFε,s)

[umε − vm] ∂nψ dσ dt

≥
∫
T (DFε,s)

b φdx−
∫
DFε,s

b ψt dxdt−
∫
DFε,s

[umε − vm] Δψ dxdt .

We can rewrite this as∫
T (DFε,s)

b φdx ≤
∫
DFε,s

b (ψt + aΔψ) dxdt+

∫
DFε,s

fψ dxdt ,(3.3)

where

a =

{
umε −vm
uε−v , if uε 
= v ,

0, if uε = v .

Next we use a regularization to make the term ψt + aΔψ small in the above
inequality. To do this let ak, k = 1, 2, . . . , be smooth functions in DF

ε,s such that

1

k
≤ ak ≤ k ,

and

(3.4)

∫
DFε,s

(ak − a)2

ak
dxdt→ 0 as k → ∞ .

We replace the function ψ in (3.3) by the solution ψk to the following boundary
value problem:

(3.5)

⎧⎪⎨⎪⎩
ut + akΔu = 0 , in DF

ε,s ,

u(x, s) = φ(x, s) , on T (DF
ε,s) ,

u = 0 , on S(DF
ε,s) ,

and get, by Hölder’s inequality,∫
T (DFε,s)

(uε − v)φdx ≤
∫
DFε,s

b(a− ak)Δψk dxdt−
∫
DFε,s

fψk dxdt

≤
[ ∫

DFε,s

b2
(a− ak)

2

ak
dxdt

]1/2[ ∫
DFε,s

ak(Δψk)
2 dxdt

]1/2
+

∫
DFε,s

fψk dxdt .(3.6)

To continue, we need to estimate the term on the right-hand side of (3.6)
containing the quantity ak(Δψk)

2 independently of k. To do this we follow the
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calculations of [7]. We use the equation (3.5) for ψk and integrate by parts, first
in time and then in space, which gives∫

DFε,s

[akΔψk]Δψk dxdt = −
∫
DFε,s

[ψk]tΔψk dxdt

=

∫
DFε,s

ψk[Δψk]t dxdt−
∫
T (DFε,s)

φΔφdx +

∫
B(DFε,s)

ψkΔψk dx

=

∫
DFε,s

ψkΔ[ψk]t dxdt+

∫
T (DFε,s)

|∇φ|2 dx−
∫
B(DFε,s)

|∇ψk|2 dx

≤ −
∫
S(DFε,s)

∂nψk[ψk]t dσ dt+

∫
DFε,s

Δψk[ψk]t dxdt+

∫
T (DFε,s)

|∇φ|2 dx .(3.7)

Note now that the first term on the right-hand side in (3.7) vanishes, since for
almost every t ≤ s we have [ψk]t = 0 on S[DF

ε,s] due to the fact that ψk vanishes
smoothly on the boundary. For the second term on the right-hand side in (3.7),
we use the first line in (3.7). This implies that∫

DFε,s

ak(Δψk)
2 dxdt ≤ 1

2

∫
T (DFε,s)

|∇φ|2 dx .(3.8)

With the estimate (3.8) in hand, we see from (3.4) and the fact that b is bounded
that

(3.9)
(∫

DFε,s

b2
(a− ak)

2

ak
dxdt

)1/2(∫
DFε,s

ak(Δψk)
2 dxdt

)1/2

→ 0 as k → ∞.

To proceed we need to take care of the term involving f on the right-hand side
in (3.6). Recall that, as a distribution,

f =
(1 + ε)m−1 − 1

(1 + ε)m
Δum .

Since the function ψk vanishes on the lateral boundary S(DF
ε,s) of D

F
ε,s, we have∫

DFε,s

fψk dxdt =
(1 + ε)m−1 − 1

(1 + ε)m

∫
DFε,s

∇um · ∇ψk dxdt

≤ (1 + ε)m−1 − 1

(1 + ε)m

( ∫
DFε,s

|∇um|2 dxdt
)1/2(∫

DFε,s

|∇ψk|2 dxdt
)1/2

.(3.10)

By the assumption um ∈ L2(0, T ;H1
0(Ω)), we see that the first integral is bounded

independent of k and ε.
Next we need to estimate the L2-norm of |∇ψk| independently of k, which we

do as in p. 133 in [17]. Multiply the equation (3.5) for ψk by the test function
θ = Δψkχ(t), where χ(0) = 1/2 and χ(s) = 1; thus χt ≈ 1/s. Next we integrate
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by parts, first in space and then in time, and get

0 =

∫
DFε,s

[ψk]tΔψkχ dxdt+

∫
DFε,s

ak(Δψk)
2 χ dxdt(3.11)

= −
∫
DFε,s

∇(ψk)t · ∇ψkχ dxdt+

∫
DFε,s

ak(Δψk)
2 χ dxdt

= −1

2

∫
DFε,s

[|∇ψk|2]t χ dxdt+

∫
DFε,s

ak(Δψk)
2 χ dxdt

=
1

2

∫
DFε,s

(|∇ψk|2)χt dxdt−
1

2

∫
T (DFε,s)

|∇ψk|2 χ

+
1

2

∫
B(DFε,s)

|∇ψk|2 χ+

∫
DFε,s

ak(Δψk)
2 χ dxdt .

Using (3.5) and (3.11) we get

(3.12)
1

s

∫
DFε,s

(|∇ψk|2) dxdt+
∫
DFε,s

ak(Δψk)
2 χ dxdt

≤ C
( ∫

T (DFε,s)

|∇ψk|2 χ dx−
∫
B(DFε,s)

|∇ψk|2 χ dx
)
≤ C

∫
T (DFε,s)

|∇φ|2 dx .

Combining (3.6), (3.9), (3.10) and (3.12), we have so far established

(3.13)

∫
T (DFε,s)

(uε − v)φdx ≤ C
(1 + ε)m−1 − 1

(1 + ε)m

∫
T (DFε,s)

|∇φ|2 dx .

Before letting ε→ 0, we still need to check that∫
T (DFε,s)

|∇φ|2 dx ≤ C ,

for some constant C not depending on ε > 0. We are free to assume that φ ∈
C∞

0 (Dε0,s) for some ε0. Then, since Dε0,s ⊂ DF
ε,s for ε < ε0, we have T (DF

ε,s) ∩
Dε0,s ⊂ T (Dε0,s) which proves the desired bound. Thus, letting ε → 0 in (3.13),
we get that ∫

Dε0,s∩[Rn×{s}]
(u − v)φdx ≤ 0 .

Since this holds for any positive φ, we obtain that u ≤ v a.e. in ΩT ∩ [Rn × {s}]
for any s, and then also in ΩT . �

The crucial point in the proof above is that we can approximate the set

Dε =
{
(x, t) ∈ ΩT :

u

1 + ε
≥ v

}
,

by finite unions of space time boxes while staying inside the set where u is a weak
solution. Thus we can also deduce the following theorem.
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Theorem 3.2. Let E be an open set in R
n+1, let u be a non-negative continuous

weak solution in E such that∫
E

[|um|2 + |∇um|2] dxdt <∞ .

Let v be a non-negative lower semicontinuous weak supersolution such that∫
E

[|vm|2 + |∇vm|2] dxdt <∞ ,

v > 0 on ∂E and u ≤ v on ∂E. Then u ≤ v in E. Furthermore if a connected
component of ∂E is the boundary of a finite union of space-time cylinders then we
can remove the assumption v > 0 on that component.

4. The obstacle problem

In this section, we construct solutions to the obstacle problem by a potential the-
oretic method. More specifically, we call a function u a solution to the obstacle
problem if it is the smallest supersolution above the given obstacle function ψ.

Existence and uniqueness are fairly easily established for this notion of solu-
tion to the obstacle problem. However, the relationship between the variational
solutions studied in [4] and the smallest supersolution is not immediately clear. In
this direction, we apply the comparison principle established earlier to prove that
the smallest supersolution is also a variational solution, provided that the obstacle
is sufficiently regular. This is a consequence of two facts: first, we prove that the
smallest supersolution is a pointwise limit of variational solutions. Second, varia-
tional solutions are stable with respect to convergence of the obstacles in a suitable
norm.

We expect that the converse is also true, i.e., that a variational solution is the
smallest supersolution. However, our version of the comparison principle in general
domains is not strong enough to prove this.

First we describe the notion of smallest supersolution in more detail.

Definition 4.1. Let ψ be a positive, bounded measurable function in Ω∞, and
denote

Uψ = {v is a semicontinuous supersolution in Ω∞ : v ≥ ψ in Ω∞} .
We define the réduite (or reduced function) of ψ as

Rψ = inf{v : v ∈ Uψ} .

For a measurable set E, we abbreviate RE = RχE . We denote by R̂ψ (lower

semicontinuous) ess lim inf-regularization of Rψ . The function R̂ψ is usually called
the balayage of ψ.

The terms réduite and balayage come from classical potential theory. The
notion is due to Poincaré. We will need the following basic theorem, for which the
proof is standard, but we reproduce it here for the reader’s convenience.
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Theorem 4.2. The balayage R̂ψ is a semicontinuous supersolution in ΩT .

Proof. Pick a space-time cylinder Ut1,t2 � ΩT and a weak solution u which is

continuous in U t1,t2 with u ≤ R̂ψ on ∂pUt1,t2 . Then also u ≤ v on ∂pUt1,t2 for
v ∈ Uψ, and by comparison the same holds in Ut1,t2 . We take the infimum over v to

get that u ≤ Rψ . Since û = u by the continuity of u, we conclude that u ≤ R̂ψ. �

Note that, in general, Rψ might not be lower semicontinuous, and R̂ψ might

not be above ψ in every point. However, for continuous ψ it holds that R̂ψ ≥ ψ

everywhere. This together with Theorem 4.2 implies that R̂ψ is the unique smallest
semicontinuous supersolution above the obstacle ψ. By the smallest supersolution,
we mean a function u ∈ Uψ with the property that

(4.1) u ≤ v for all v ∈ Uψ .

A semicontinuous supersolution with the property (4.1) is unique, if it exists;
indeed, if there are two functions u1, u2 ∈ Uψ satisfying (4.1), then two applications
of (4.1) give the inequalities u1 ≤ u2 and u2 ≤ u1, so that u1 = u2.

The next aim is to relate the smallest supersolution to the variational solutions
to the obstacle problem constructed in [4]. We first recall some facts from [4].

We consider nonnegative obstacle functions ψ defined on ΩT , with compact
support and satisfying

(4.2) ψm ∈ L2
(
0, T ;H1

0 (Ω)
)
, ∂t(ψ

m) ∈ L
m+1
m (ΩT ) .

The class of admissible functions for the obstacle problem is defined by

Kψ(ΩT ) :=
{
v : ΩT → [0,∞] : vm ∈ L2(0, T ;H1

0 (Ω)) , v ≥ ψ a.e. on ΩT
}
.

Note that ψ ∈ Kψ, and therefore Kψ 
= ∅.
With the above classes, we can state the definition of a strong solution to the

obstacle problem.

Definition 4.3. A nonnegative function u ∈ Kψ(ΩT ) is a strong solution to the
obstacle problem for the porous medium equation if ∂tu ∈ L2(0, T ;H−1(Ω)) and∫ T

0

〈∂tu, α(vm − um)〉dt+
∫
ΩT

α∇um · ∇(vm − um) dz ≥ 0 ,

holds for all comparison maps v ∈ Kψ(ΩT ) and every Lipschitz continuous cut-off
function α : [0, T ] → [0,∞] with α(T ) = 0.

The cutoff function α is needed for making this definition consistent with the
definition of weak solutions to the obstacle problem, which we will recall later.

For the existence of strong solutions, we still need the assumption

(4.3) Ψ := ∂tψ −Δψm ∈ L∞(ΩT ) .

The following result can be extracted from Theorem 2.6 in [4].
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Theorem 4.4. Let Ω be a bounded open subset of Rn with a smooth boundary.
Assume that the obstacle ψ satisfies the regularity conditions (4.2) and (4.3). Then
there exists a strong solution u to the obstacle problem for the PME in the sense
of Definition 4.3 satisfying um ∈ L2(0, T ;H1

0 (Ω)) and u( · , 0) = 0.
The function u is also locally Hölder continuous, and satisfies u ≥ ψ everywhere

in ΩT . Further, u is a weak supersolution to the porous medium equation in ΩT ,
and a weak solution in the open set {z ∈ ΩT : u(z) > ψ(z)}.

We now wish to show that u in Theorem 4.4 is a weak solution in the larger set

[ΩT \ supp(ψ)] ∪ {z ∈ ΩT : u(z) > ψ(z)} .

With this in mind we recall the following form of a partition of unity.

Lemma 4.5 (Partition of unity). Let U1, U2, . . . , Un be open sets, and let K be
a compact set such that K ⊂ U1 ∪ U2 ∪ · · · ∪ Un. Then there exist functions
ηi ∈ C∞

0 (Ui) such that
n∑
i=1

ηi = 1 on K.

Proof. For a version where the functions ηi are continuous, see Theorem 2.13, p. 40,
in [16]. The fact that one may also choose smooth functions follows easily from
the continuous version by applying a suitable mollification. �

Lemma 4.6. The strong solution to the obstacle problem given by Theorem 4.4 is
also a weak solution to the PME in the set ΩT \ supp(ψ).

Proof. Let δ > 0 be a number, and let ηδ : R → [0, 1] be a Lipschitz function with
ηδ(s) = 0 for s ≤ −δ, ηδ(s) = 1 for s ≥ 0, and |η′δ(s)| ≤ 1/δ. The solution u is
constructed in [4] as the uniform limit as δ → 0 of solutions to

∂tuδ −Δumδ = ηδ(ψ
m − umδ )(∂tψ −Δψm)+ .

The claim now follows from the fact that (∂tψ−Δψm)+ = 0 in ΩT \ supp(ψ). �

Theorem 4.7. Let ψ be a nonnegative, compactly supported function satisfying the
regularity assumptions (4.2) and (4.3), let u be the strong solution to the obstacle
problem given by Theorem 4.4 with obstacle ψ, and denote K = supp(ψ)∩{u = ψ}.
Then u is a weak solution in Ω∞ \K.

Proof. Denote U1 = Ω∞ \ supp(ψ) and U2 = {u > ψ}. These sets are open, and

Ω∞ \K = U1 ∪ U2 .

Further, u is a weak solution in U1 and in U2. The claim concerning the set U1

is Lemma 4.6, and the claim about U2 is a part of Theorem 4.4. To show that u
is a solution also in U1 ∪ U2, let ϕ ∈ C∞

0 (U1 ∪ U2). An application of Lemma 4.5
shows that there are functions ηi ∈ C∞

0 (Ui), i = 1, 2, such that η1 + η2 = 1 on the
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support of ϕ. By applying the fact that u is a weak solution in U1 and in U2,
we get∫

Ω∞
−u∂tϕ+∇um · ∇ϕdxdt =

2∑
i=1

∫
Ω∞

−u∂t(ϕηi) +∇um · ∇(ϕηi) dxdt = 0 .

Since this holds for any test function ϕ, u is a weak solution in U1 ∪ U2. �

We are now ready to proceed with the approximation result.

Theorem 4.8. Let ψ be continuous and compactly supported in ΩT . Then the
smallest supersolution R̂ψ is an increasing limit of strong solutions wj to the ob-
stacle problem with smooth compactly supported obstacles φj increasing to ψ.

Proof. Let Uj = {ψ > 1/j} for j = 1, 2, . . . , Kj = U j . First note that Kj and
Kj+1 have a positive distance between them. Thus if we let hj = (

√
ψ − 1/

√
j)+,

we see that hj+1 − hj is strictly positive in Kj. By a mollification argument it can
easily be seen that for each j ≥ 1 there exists a function fj ∈ C∞

0 (Kj+1) such that

hj ≤ fj ≤ hj+1 .

Taking φj = f2
j , j ≥ 1, we immediately see that φmj ∈ C2

0 (Kj+1), thus it satis-
fies (4.2) and (4.3). Moreover by construction we get

φ1 < φ2 < · · · < ψ, φj → ψ as j → ∞ .

Let wj be the strong solutions to the φj -obstacle problems. Since R̂ψ ≥ ψ by

the continuity of ψ, we have wj < R̂ψ on K = ∂({wj = φj} ∩ suppφj). Also

note that K ⊂ Uj+1, whence R̂ψ > 1/(j + 1) > 0 on K. This allows us to use
the comparison principle of Theorem 3.1 together with Theorem 4.7 to get that
wj ≤ R̂ψ. A similar argument shows that wj ≤ wj+1. Thus w = limj→∞ wj is a
semicontinuous supersolution as an increasing limit of continuous supersolutions,
and w ≤ R̂ψ. To finish the proof, we have that w ≥ ψ everywhere in ΩT , whence
Rψ ≤ w. Thus

w ≤ R̂ψ ≤ Rψ ≤ w ,

and the proof is complete. �

The final step is to combine the approximation result with a stability result
for variational solutions to conclude that the smallest supersolution is also a vari-
ational solution. We recall some more facts from [4], in particular the notion of a
weak variational solution, for which stability with respect to the obstacles can be
established.

For the notion of weak solutions, we use the class of admissible comparison
functions

K ′
ψ(ΩT ) =

{
v ∈ Kψ(ΩT ) : ∂t(v

m) ∈ L
m+1
m (ΩT )

}
.

We need to make sense of the time term in the variational inequality when we do
not know that ∂tu belongs to the dual of the parabolic Sobolev space. We do this
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as in [1] and [4]. We recall the notation

〈〈∂tu, αη(vm − um)〉〉u0 =

∫
ΩT

η
[
α′
[ 1

m+ 1
um+1 − uvm

]
− αu∂tv

m
]
dxdt

+ α(0)

∫
Ω

η
[ 1

m+ 1
um+1
0 − u0v

m( · , 0)
]
dx ,

where u0 ∈ Lm+1(Ω) is a function giving the initial values of the solution, and α
is a nonnegative Lipschitz continuous cutoff function depending only on the time
variable with α(T ) = 0. The role of the function α is to eliminate the final time
term, as we do not know in general whether u is continuous in time. Observe that
if ∂tu ∈ L2(0, T ;H−1(Ω)), we have∫ T

0

〈∂tu, αη(vm − um)〉dt = 〈〈∂tu, αη(vm − um)〉〉u0 .

This follows formally from integration by parts, and the rigorous justification is
given in Lemma 3.2 in [4]. This makes the following definition consistent with the
definition of strong solutions in the previous section, i.e., strong solutions are also
weak solutions.

Definition 4.9. A nonnegative function u ∈ Kψ(ΩT ) is a weak solution to the
obstacle problem for the porous medium equation if the inequality

〈〈∂tu, αη(vm − um)〉〉u0 +

∫
ΩT

α∇um · ∇
(
η(vm − um)

)
dz ≥ 0

holds true for all comparison maps v ∈ K ′
ψ(ΩT ) and every nonnegative, Lipschitz

continuous cut-off function depending only on the time variable with α(T ) = 0.

Theorem 4.10. Let Ω be a bounded open subset of Rn with a smooth boundary.
Assume that the obstacle ψ satisfies the regularity condition (4.2). Then there
exists a weak solution u to the obstacle problem for the porous medium equation
in the sense of Definition 4.9 satisfying um ∈ L2(0, T ;H1

0 (Ω)). Again, u is a weak
supersolution to the porous medium equation in ΩT .

The following theorem may be extracted from the proof of Theorem 2.7 in [4].

Theorem 4.11. Let ψi be a sequence of obstacles satisfying (4.2) with compact
support in ΩT such that

ψmi → ψm in L2(0, T ;H1
0 (Ω)) , and ∂t(ψ

m
i ) → ∂t(ψ

m) in L
m+1
m (ΩT ) ,

furthermore let ui be the respective variational weak solutions to the obstacle prob-
lem with obstacle ψi, see Theorem 4.10.

Then there is a function u ∈ L∞(0, T ;Lm+1(Ω)) with um ∈ L2(0, T ;H1
0(Ω))

and u( · , 0) = 0 such that, up to subsequences,

ui → u a.e., umi → um in L2(ΩT ), and ∇umi → ∇um weakly in L2(ΩT ) .

Furthermore, u is a variational weak solution to the obstacle problem with obsta-
cle ψ and initial values zero.
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Since strong variational solutions are also weak variational solutions, we get
the following theorem as an immediate consequence of Theorems 4.8 and 4.11.

Theorem 4.12. Let ψ be a continuous function with compact support in ΩT satis-
fying the regularity assumptions (4.2). Then the smallest supersolution R̂ψ is also
a variational weak solution.

A general converse for Theorem 4.12 remains open. We record the following
partial result for use in Section 5.

Theorem 4.13. Let ψ be a smooth obstacle with ψ > 0 in ΩT . Then any vari-
ational strong solution u to the obstacle problem coming from Theorem 4.4 satis-
fies u = R̂ψ.

Proof. Since ψ > 0, any strong solution is strictly positive inside ΩT . Thus, given
a semicontinuous supersolution v ∈ Uψ, we may apply Theorem 3.1 on the set

{u > ψ} to conclude that u ≤ v. Since u ∈ Uψ, we get u = R̂ψ. �

5. Parabolic capacity for the porous medium equation

In this section, we define the parabolic capacity for the porous medium equation
and establish its basic properties.

Definition 5.1. The PME capacity of an arbitrary subset E of Ω∞ is

cap(E) = sup{μ(Ω∞) : 0 ≤ uμ ≤ 1, supp(μ) ⊂ E} ,

where μ is a positive Radon measure, and uμ is a weak supersolution with uμ = 0
on ∂pΩ∞, and a weak solution to the measure data problem

(uμ)t −Δumμ = μ .

Our next result is that there exists a capacitary extremal for the PME capacity
of a compact set K, i.e., a semicontinuous supersolution u such that cap(K) =
μu(K). We need the following two lemmas.

Lemma 5.2. Let ψ be a smooth, positive compactly supported function, and set

ψε = (ψm + εm)1/m and vε = R̂ψε .

Then the limit function

v = lim
ε→0

vε

is a continuous weak supersolution and a weak variational solution to the obstacle
problem with obstacle ψ in ΩT . Furthermore, v is a weak solution in the open
set {v > ψ}.
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Proof. The existence of the pointwise limit as ε → 0 follows from the fact that
R̂ψε1 ≤ R̂ψε2 if ε1 ≤ ε2. The limit v is an upper semicontinuous weak supersolution
as a decreasing limit of continuous weak supersolutions, and v ≥ ψ since vε ≥ ψε.
By Theorem 4.13, we may take vε to be a strong variational solution to the obstacle
problem. Hence v is a weak variational solution to the obstacle problem by [4].
The continuity follows from [5].

Since vε is a variational strong solution to the obstacle problem, it is a weak
solution in the set {vε > ψε}. If K is now a compact set contained in {v > ψ}, we
have that K is also contained in {vε > ψε} for all sufficiently small ε, since

vε − ψε ≥ inf
K
(v − ψ)− ε

by the inequalities vε ≥ v, −ψε = −(ψm + εm)1/m ≥ −ψ − ε, and the fact that
infK(v − ψ) > 0. Thus∫

ΩT

−v ∂tϕ+∇vm · ∇ϕdxdt = lim
ε→0

∫
ΩT

−vε ∂tϕ+∇vmε · ∇ϕdxdt = 0

for all smooth test functions ϕ with support in K. Since K was arbitrary, v is a
weak solution in {v > ψ}. �

The next lemma is the key step in constructing the capacitary extremal. For
the proof, we record the following estimate. Let u be a positive weak supersolution
in Ω∞, u vanishing on the lateral boundary of Ω∞. Suppose in addition that there
exists a time t0 ≥ 0 so that u is a weak solution in Ωt0,∞. Then

(5.1) u(x, t) ≤ c (t− t0)
−1/(m−1)

for all t > t0 with a constant depending only on n, m, and the diameter of Ω. This
is the so-called universal estimate. See Proposition 5.17 in [17] for the proof.

Lemma 5.3. Let K be a compact subset of Ω∞. Assume that u and v are lower
semicontinuous weak supersolutions in Ω∞ and that u is continuous in Ω∞, and a
weak solution after a time T such that K � ΩT . Moreover, assume that u > 1 in
K, u = 0 on ∂pΩ∞, 0 ≤ v ≤ 1 in Ω∞, and v = 0 on ∂pΩ∞. Then

μv(K) ≤ μu(Ω∞) .

Proof. Let 0 ≤ ψi ∈ C∞
0 (Ω∞) be an increasing sequence of smooth obstacles

converging to v such that ψi < v and ψi < ψi+1. Denote the perturbed obstacles
ψεi = (ψmi + εm)1/m, and the corresponding solutions to the obstacle problem
by vεi . Further, let vi = limε→0 v

ε
i be the weak supersolutions in Ω∞ constructed

in Lemma 5.2. We argue as in the proof of Theorem 3.2 on p. 148–149 in [13] to
see that vi ≤ vi+1 ≤ v and vi → v as i→ ∞. Finally, we have that

sup
Ω∞

vεi = sup
Ω∞

ψεi ≤ 1 + ε and sup
Ω∞

vi = sup
Ω∞

ψi ≤ 1 .
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We define the supersolution
wεi = min(vεi , u) .

By lower semicontinuity, the set {u > 1} is open, and K is compactly contained
in it. This allows us to construct a compact set K ′ and an open set U such that
K ⊂ U ⊂ K ′ ⊂ {u > 1}. If ε is small enough we know that 1 + ε < u in K ′, so
that wεi = vεi in K ′. Hence for such ε we have that, for φ′ = 1 on U and φ′ = 0
outside K ′,

(5.2) μvεi (U) ≤
∫
U

φ′ dμvεi =

∫
U

φ′ dμwεi ≤ μwεi (K
′) .

Next note that since u = 0 on ∂pΩ and u ≤ ε for sufficiently large times by (5.1),
there is a compact set K ′′ ⊃ K ′ in Ω∞ such that in Ω∞ \K ′′ we have wεi = u since
vεi ≥ ε. Hence we obtain for φ′′ ∈ C∞

0 (Ω∞) such that φ′′ = 1 on K ′′ that∫
Ω∞

φ′′ dμwεi =

∫
Ω∞

−wεi
∂φ′′

∂t
+∇(wεi )

m · ∇φ′′ dxdt

=

∫
Ω∞

−uε ∂φ
′′

∂t
+∇um · ∇φ′′ dxdt =

∫
Ω∞

φ′′ dμu .

Thus we obtain the estimate

(5.3) μwεi (K
′) ≤

∫
Ω∞

φ′′ dμwεi =

∫
Ω∞

φ′′ dμu ≤ μu(Ω∞) .

We combine (5.2) and (5.3) to get the inequality

μvεi (U) ≤ μu(Ω∞) .

By construction vεi → vi pointwise, thus from Lemma 2.6 we get that μvεi → μvi
weakly. By the standard properties of weak convergence of measures, see Theo-
rem 2.7, we get that

μvi(U) ≤ lim inf
ε→0

μvεi (U) ≤ μu(Ω∞) .

The sequence (vi) is increasing, and converges pointwise to the original supersolu-
tion v. Again from Lemma 2.6 we get the weak convergence of the corresponding
measures. Another application of Theorem 2.7 now shows that

μv(K) ≤ μv(U) ≤ lim inf
i→∞

μvi(U) ≤ μu(Ω∞) ,

and the proof is complete. �

A consequence of Theorem 3.1, is that in the special case that we have a
decreasing sequence of smooth obstacles converging to a characteristic function of
a compact set, the obstacle problem is stable. If we had a full elliptic comparison
principle, this lemma would hold for a decreasing sequence of smooth obstacles
converging to an upper semi-continuous obstacle.
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Lemma 5.4. Let K ⊂ Ω∞ be a compact set. Let Ei � Ω∞, i = 1, 2, . . . be a
shrinking sequence of open sets such that Ei+1 � Ei

∞⋂
i=1

Ei = K .

Assume that the non-negative functions ψi : Ω∞ → R are supported in Ei, sat-
isfy (4.2) and (4.3), and ψi ≥ χK , i = 1, 2, . . . , is a decreasing sequence such that
ψi → χK pointwise in Ω∞ as i → ∞. Then Rψi → RK pointwise in Ω∞ and
μRψi → μRK weakly as i→ ∞.

Proof. By Theorem 4.7, the functions Rψi are continuous. Thus an application of
Lemma 2.6 shows that u = limi→∞Rψi is an upper semicontinuous weak super-
solution, and the respective measures also converge weakly. Further,

u ≥ RK ,

since Rψi ≥ RK for each i.
The lemma now follows if we prove the opposite inequality. To this end, note

first and that from Theorem 4.7, Rψi is a weak solution in {Rψi > ψi} ∪ (Ω∞ \
supp(ψi)), so that the support of the measure μRψi is contained in supp(ψi) ⊂ Ei.
These sets shrink to K, and the measures μRψi converge weakly to μu. Thus
supp(μu) ⊂ K, which implies that u is a weak solution in Ω∞ \K.

If now v ≥ χK is an arbitrary semicontinuous supersolution with v = 0
on ∂pΩ∞, it follows from Theorem 3.1 that u ≤ v. We take the infimum over v to
get that

u ≤ RK ,

and the proof is complete. �

A consequence of the stability Lemma 5.4 is that we have stability of the
balayage with respect to decreasing sequences of compact sets.

Lemma 5.5. Let Ki ⊂ Ω∞, i = 1, 2, . . ., be a decreasing sequence of compact sets
and denote K = ∩∞

i=1Ki. Then R̂Ki is a decreasing sequence converging to R̂K ,
moreover μR̂Ki

converges to μR̂K , weakly as i→ ∞.

Proof. Let us construct Ei = {d((x, t);Ki) < c/i}, i = 1, . . ., for a small constant
c < 1 such that E1 ⊂ Ω∞, then the sequence Ei satisfies the requirements of
Lemma 5.4.

Let us now construct smooth functions ψ̂i ∈ C∞
0 (Ei) such that ψ̂i = 1 on Ki,

then let ψi = [ψ̂i]
2, and we have that Rψi ≥ RKi by construction. As in the

proof of Theorem 4.8, the sequence ψi will satisfy (4.2) and (4.3). It is now clear
that the sequence ψi satisfies all requirements of Lemma 5.4 and thus we get that
Rψi → RK and consequently also RKi → RK , furthermore using Lemma 2.6 we
see that the measures μRKi converge weakly to μRK as i→ ∞. �
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Theorem 5.6. Let K be a compact subset of Ω∞. Then

cap(K) = μR̂K (K) .

Proof. Since R̂K is a semicontinuous supersolution such that 0 ≤ R̂K ≤ 1, it
follows immediately from the definition of the PME capacity that

μR̂K (K) ≤ cap(K) ,

since R̂K is a solution outside K.
To prove the opposite inequality, let first K ′ � Ω∞ be a compact set such

that K � K ′. To be able to use Lemma 5.4 we will let Ei ⊂ K ′, i = 1, 2, . . . be a
shrinking sequence of open sets such that

∞⋂
i=1

Ei = K .

Let ψ̂i ∈ C∞
0 (Ei), i = 1, . . ., be a decreasing sequence of smooth functions con-

verging to χK pointwise in Ω∞ as i→ ∞, and such that

ψ̂i =

√
1 +

1

2i
on K .

Consider now the functions ψi = [ψ̂i]
2, then ψmi ∈ C2

0 (Ei), and it is a decreasing
sequence of functions converging to χK pointwise in Ω∞ as i→ ∞, such that

ψi = 1+
1

2i
on K ,

moreover ψi satisfies (4.2) and (4.3) for all m > 1. Denote by ui the corresponding
solutions to the obstacle problems with obstacle ψi. Let now v be a weak super-
solution in Ω∞ such that 0 ≤ v ≤ 1 and v = 0 on ∂pΩ∞. Then it follows from
Lemma 5.3 that

μv(K) ≤ μui(Ω∞) = μui(K
′) .

We use Lemma 5.4 to see that μui → μR̂K weakly. The claim now follows from
the above estimate, since

lim sup
i→∞

μui(K
′) ≤ μR̂K (K

′) = μR̂K (K)

by Theorem 2.7. �

We have now developed all the technical tools needed to establish the basic
properties of the PME capacity, including that it is a regular, subadditive capacity.

Theorem 5.7. The PME capacity has the following properties.

(1) Countable subadditivity. In other words if Ei, i = 1, 2, . . . , are arbitrary
subsets of Ω∞ and E = ∪∞

i=1Ei, one has

cap(E) ≤
∞∑
i=1

cap(Ei) .
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(2) Stability with respect to increasing sequences of sets. Let Ei, i = 1, 2, . . . ,
be arbitrary subsets of Ω∞ with the property E1 ⊂ E2 ⊂ · · · , and denote
E = ∪∞

i=1Ei. Then
lim
i→∞

cap(Ei) = cap(E) .

(3) Stability with respect to decreasing sequences of compact sets. Let Ki ⊂ Ω∞,
i = 1, 2, . . ., be a decreasing sequence of compact sets and denote K =
∩∞
i=1Ki. Then

lim
i→∞

cap(Ki) = cap(K) .

(4) Let U � Ω∞ be an open set. Then

cap(U) = μRU (Ω∞) .

Proof. From the methods developed in [12] we see that (1) and (2) follow from
Lemma 2.5. Property (3) is a consequence of Theorem 5.6 and Lemma 5.5. Prop-
erty (4) follows from (2), Theorem 5.6, and Lemma 2.6 as in Lemma 5.9 in [12]. �

In conclusion we have established more than enough to say that Borel sets are
Choquet capacitable:

Theorem 5.8. The PME capacity is Choquet capacitable (inner regular). This
means that for all Borel sets E ⊂ Ω∞ it holds that

cap(E) = sup{cap(K) : K ⊂ E,K compact} .

Proof. Since the capacity is monotone, stable with respect to increasing sequences
of sets (Theorem 5.7 (2)) and stable with respect to decreasing sequences of com-
pact sets (Theorem 5.7 (3)), it is a regular capacity and hence the claim follows
from Choquet’s capacitability theorem, see Theorem 9.3 on p. 155 in [6]. �
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[9] DiBenedetto, E. and Friedman, A.: Hölder estimates for nonlinear degenerate
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