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Sharpness of the differentiability almost

everywhere and capacitary estimates
for Sobolev mappings

Stanislav Hencl and Ville Tengvall

Abstract. We give sharp conformal conditions for the differentiability in
the Sobolev space W 1,n−1

loc (Ω,Rn). Furthermore, we show that the space
W 1,n−1

loc (Ω,Rn) can be considered as the borderline space for some capac-
itary inequalities.

1. Introduction

Let Ω ⊂ R
n, n ≥ 2, be a domain and suppose that f ∈ W 1,n−1

loc (Ω,Rn) is a home-
omorphism. If n = 2, then the theorem of Gehring and Lehto [2] implies that f is
differentiable almost everywhere. Moreover, if we proceed to the case n ≥ 3 then
the Sobolev embedding theorem on spheres implies that every homeomorphism in
W 1,p

loc (Ω,R
n), p > n−1, is differentiable almost everywhere, see Theorem 1.2 in [12].

On the other hand, Sobolev embedding theorem on spheres does not apply when
f ∈ W 1,n−1

loc (Ω,Rn), n ≥ 3, which may cause the failure of the differentiability in
a set of positive measure. Indeed, in [1], Example 5.2, Csörnyei, Hencl and Malý
constructed a nowhere differentiable homeomorphism f ∈ W 1,n−1

loc ((−1, 1)n,Rn),
n ≥ 3, of finite distortion with nowhere differentiable inverse.

Differentiability of mappings in the Sobolev space W 1,n−1
loc (Ω,Rn), n ≥ 3, can

be recovered by requiring some integrability of the distortion functions (see Prelim-
inaries for the definition of mappings of finite distortion). Indeed, it follows from
Theorem 1.1 in [11], together with Lemma 2.1 in [13], that every homeomorphism
in W 1,n−1

loc (Ω,Rn) with locally integrable inner distortion function is differentiable
almost everywhere. The topological assumptions above can be further relaxed by
assuming f to be only continuous, discrete (the set f−1(y) is a discrete set in Ω
for every y ∈ Rn) and open (f(A) is an open set in Rn for every open set A in Ω),
see [17]. It was asked in [17] whether the local integrability assumption of the
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inner distortion function above is sharp. We will now give a positive answer to
this question by a novel construction.

Theorem 1.1. Let 0 < δ < 1 and n ≥ 3. Then there is a homeomorphism
f ∈ W 1,n−1((−1, 1)n,Rn) with KI ∈ Lδ((−1, 1)n) such that f is not classically
differentiable on a set of positive measure.

When we are studying analytical properties, such as differentiability almost
everywhere and continuity, of mappings of finite distortion we are commonly lead
to study the geometry of these mappings via weighted capacitary inequalities. One
of the most well-known weighted capacitary inequalities in the study of mappings
of finite distortion is the KI-inequality, also known as the Poletsky-type capacity
inequality.

Definition 1.2. Let f ∈ W 1,1
loc (Ω,R

n) be a continuous and open mapping of finite
distortion with locally integrable inner distortion function. We say that f satisfies
the KI -inequality if for every condenser (G,E) in Ω we have

cap(f(G), f(E)) ≤ CI(G) capKI
(G,E) ,(1.1)

where the constant CI ≥ 0 depends only on the dimension n and on the maximum
multiplicity N(f,G) := supy∈Rn card f−1(y) ∩G. For the terminology used above
we refer the reader to the preliminaries.

We remark that inequality (1.1) is enough to guarantee differentiability almost
everywhere for a continuous, discrete and open mapping, and especially for a home-
omorphism of finite distortion, see [15], [16]. It is also important to notice that
the best possible constant CI(G) plays an important role in several applications.
Moreover, inequalities similar to (1.1) has been applied widely to study properties
of quasiregular mappings, see e.g. [8], [9], and [10].

In the case of quasiregular mappings,KI -inequality with the constant CI(G)≡ 1
was first proved by Martio, Rickman and Väisälä [10]. Later Martio improved this
result by improving the constant CI(G), see [8]. In [7] Koskela and Onninen gener-
alized this inequality for continuous, discrete and open mappings of finite distortion
in W 1,n

loc (Ω,R
n) with a locally integrable inner distortion function. It was further

shown that the regularity assumption f ∈ W 1,n
loc (Ω,R

n) can be slightly relaxed,
say to |Df |n log−1(e + |Df |) ∈ L1

loc(Ω). These results by Koskela and Onninen
were based on a duality argument, relying on integration by parts against the Ja-
cobian determinant. This method does not work if we assume f ∈ W 1,p

loc (Ω,R
n)

for some p ∈ [1, n).
In [17], Lemma 4.4, it was shown by applying Ziemer’s duality equation [20], [21]

that for spherical condensers the KI -inequality is true even for continuous, open
and discrete mappings of finite distortion in W 1,n−1

loc (Ω,Rn) with locally integrable

inner distortion function. We will show that the space W 1,n−1
loc (Ω,Rn) can be

considered as the borderline space for the KI -inequality.
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Theorem 1.3. Let n ≥ 3 and let ε > 0. Then there is a homeomorphism f ∈
W 1,n−1−ε((−1, 1)n,Rn) with KI ∈ L1((−1, 1)n) for which the KI-inequality (1.1)
fails.

The main idea for the proof of Theorem 1.3 is to construct a homeomorphism
in W 1,n−1−ε((−1, 1)n,Rn) with the given conformality conditions which does not
satisfy the Lusin’s condition (N) on almost every hyperplane with respect to
(n − 1)-dimensional Hausdorff measure. In our construction we will actually fail
Lusin’s condition on every hyperplane. The reason for this comes from the proof
of Lemma 4.4 in [17], where the Sobolev regularity of a mapping was only used to
show that the mapping satisfies the condition (N) on almost every hyperplane.

In the proof of Theorem 1.3 we will apply probability-based techniques to cal-
culate Lp-norms of distortion functions and differential matrices. More precisely,
we will apply the notion of expected value and the famous Khintchine inequality [6]
to calculate integrals in Theorem 1.3. As far as we know this is the first time that
the Khintchine inequality is used to study mappings of finite distortion.

2. Preliminaries

2.1. Notation

We will denote by C := C(p1, . . . , pk) a positive constant which depends only on
the given parameters p1, . . . pk. The constant C might change from line to line.
Furthermore, for given functions f and g we write f � g if there exists a positive
constant C > 0 such that f(x) ≤ Cg(x) for all points x. If both conditions f � g
and g � f are satisfied we denote f ∼ g.

2.2. Mappings of finite distortion

Let Ω ⊂ Rn, n ≥ 2 be a domain. We recall that a mapping f ∈ W 1,1
loc (Ω,R

n) has
finite distortion if

(1) Jf ∈ L1
loc(Ω),

(2) Jf (x) ≥ 0 for almost every x ∈ Ω, and

(3) Df(x) vanishes almost everywhere in the zero set of Jf (x) = detDf(x).

To such a mapping f we may associate the distortion function KI : Ω → [1,∞] as
follows:

KI(x) =

{
|D�f(x)|n
Jf (x)n−1 , if Jf (x) > 0,

1, otherwise.

We call the function KI the inner distortion function of f . Above, D�f stands for
the adjugate matrix of the differential matrix Df , and |A| stands for the operator
norm of a matrix A. When KI ∈ L∞(Ω), we call the mapping f quasiregular.
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2.3. Condensers and the capacity

Suppose that Ω ⊂ Rn, n ≥ 2, is a domain. A pair (G,E) of sets is called as a
condenser in Ω if

(1) G ⊂⊂ Ω is a domain, and

(2) E ⊂ G is a non-empty, compact subset of G.

The condenser (G,E) is called spherical if both G and E are balls centered at the
same point.

For a non-negative weight function ω ∈ L1(G), we define the ω-weighted capac-
ity of a condenser (G,E) as

capω(G,E) := inf
{ ∫

G

|∇u(x)|nω(x) dx : u ∈ C∞
0 (G), u ≥ 0 and u ≥ 1 on E

}
.

In the case ω ≡ 1 we write cap(G,E) instead of cap1(G,E).

2.4. Algorithm for constructing Cantor sets

Suppose that [−1, 1]m ⊂ R
m, and denote by V the set of 2m vertices of the cube

[−1, 1]m. The sets
V

k = V× · · · × V, k ∈ N ,

will serve as the set of indices for our construction.
Next, suppose that {ak}∞k=0 is a decreasing sequence such that 1 = a0 ≥ a1 ≥

· · · > 0, and define

rk = 2−kak .

Set z0 = 0. Then it follows that Q(z0, r0) = (−1, 1)m and further we proceed by
induction. For v(k) = [v1, . . . , vk] ∈ Vk we denote w(k) = [v1, . . . , vk−1] and define

zv(k) = zw(k) +
1

2
rk−1vk = z0 +

1

2

k∑
j=1

rj−1vj ,

Q′
v(k) = Q(zv(k), 2

−kak−1) and Qv(k) = Q(zv(k), 2
−kak) .

Figure 1. The cubes Qv(k) and Q′
v(k) for k = 1, 2.
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Then for the measure of the k-th frame Q′
v(k)\Qv(k) we have

Lm(Q′
v(k)\Qv(k)) = 2−km(amk−1 − amk ) .(2.1)

Formally we should write w(v(k)) instead of w(k), but for the simplification of
the notation we will avoid this.

It is not difficult to find out that the resulting Cantor set

∞⋂
k=1

⋃
v(k)∈Vk

Qv(k) =: C[{ak}∞k=0] = Ca × · · · × Ca

is a product of m Cantor sets Ca in R, and that the number of the cubes {Qv(k) :

v(k) ∈ Vk} is 2mk. Therefore, the measure of the Cantor set CA := C[{ak}k] can
be calculated as

Lm(CA) = lim
k→∞

2mk(2ak2
−k)m = lim

k→∞
2mamk .(2.2)

2.5. Canonical parametrizations

To prove Theorem 1.3 we need to find a way to map a Cantor set onto another
Cantor set by a homeomorphism. We will do this by using so-called canonical
parametrizations and canonical transformations, which were first introduced by
Hencl, Koskela and Malý in [5].

For a given z ∈ Rm and r > 0 we denote

Qr(z) := [z1 − r, z1 + r]× · · · × [zm − r, zm + r] .

We define an affine map ϕQr(z) : Q1(0) → Qr(z) as

ϕQr(z)(x) = rx+ z .

The mapping ϕQr(z) is called the canonical parametrization of the cube Qr(z).

Furthermore, if A = Qr′(z)\Qr(z) is a cubical annuli, we define

ϕA(t, x) = (1− t)ϕQr(z)(x) + tϕQr′ (z)(x) , (t, x) ∈ [0, 1]× ∂Q1(0) .

The mapping ϕA is called the canonical parametrization of a cubical annuli A.
To calculate DϕA we may distinguish 2m different cases, depending on which

side of the annuli we are. However, by symmetry it suffices to deal with the
case (t, x) ∈ {(t, x) ∈ [0, 1] × ∂Q1(0) : x1 = 1}. In this case, if we denote d :=
(1− t)r + tr′, then we may write

DϕA(t, x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r′ − r 0 0 · · · 0 0

(r′ − r)x2 d 0 · · · ...
...

(r′ − r)x3 0 d · · · 0 0
...

...
...

. . .
...

...
(r′ − r)xm−1 0 0 · · · d 0
(r′ − r)xm 0 0 · · · 0 d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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and

(DϕA(t, x))
−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/(r′ − r) 0 0 · · · 0 0

−x2/d 1/d 0 · · · ...
...

−x3/d 0 1/d · · · 0 0
...

...
...

. . .
...

...
−xm−1/d 0 0 · · · 1/d 0
−xm/d 0 0 · · · 0 1/d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

2.6. Canonical transformation

Suppose that

A := Qr′(z)\ int(Qr(z)) and B := Qr̃′(z̃)\ int(Qr̃′(z̃))

are two cubical annuli. We define the canonical transformation of A onto B as

ϕA,B = ϕB ◦ ϕ−1
A

.

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

ϕA,B

A

B

Qr Qr̃Qr′ Qr̃′

Figure 2. The canonical transformation of A onto B for m = 2.

Then

DϕA,B(ϕA(t, x)) = DϕB(x, t) (DϕA(x, t))
−1.

As in Section 2.5, when we are calculating the matrix DϕA,B(ϕA(t, x)) we may
distinguish 2m different cases depending on which side of the cubical annuli A we
are. However, because of the symmetry we will again write the matrix formally
only in the first case of these 2m different cases. Then we have

DϕA,B(ϕA(t, x)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̃′−r̃
r′−r 0 0 · · · 0 0(

r̃′−r̃
r′−r − d̃

d

)
(x2 − z2) d̃/d 0 · · · ...

...(
r̃′−r̃
r′−r − d̃

d

)
(x3 − z3) 0 d̃/d · · · 0 0

...
...

...
. . .

...
...(

r̃′−r̃
r′−r − d̃

d

)
(xm−1 − zm−1) 0 0 · · · d̃/d 0(

r̃′−r̃
r′−r − d̃

d

)
(xm − zm) 0 0 · · · 0 d̃/d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

d = (1− t)r + t r′ and d̃ = (1 − t) r̃ + t r̃′ .
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2.7. Mapping a Cantor set onto another

Consider two Cantor sets

CA := C[{ak}∞k=0] and CB := C[{bk}∞k=0]

given by the algorithm introduced in the Section 2.4. Then we may define two
sequences of cubical annuli,

Av(k) := Q′
v(k)\ int(Qv(k)) and Bv(k) := Q̃′

v(k)\ int(Q̃v(k)) ,

where the cubes above are referring to the corresponding ones in the constructions
of the Cantor sets CA and CB.

We define the homeomorphism Φ : (−1, 1)m → (−1, 1)m which takes CA onto
CB as the pointwise limit of mappings

ΦN (x) =

{ ∑N
k=0

∑
v(k)∈Vk ϕAv(k),Bv(k)

(x)χAv(k)
(x), if x ∈ ∪N

k=0 ∪v(k)∈Vk Av(k)

Φ̃N (x), otherwise,

where χE denotes the characteristic function of a set E, and Φ̃N is a linear mapping
which takes each cubeQv(N) linearly onto corresponding cube Q̃v(N). To see that Φ
defines a homeomorphism we refer the reader to [4], Section 4.3.

�
Φ

CA CB

Figure 3. Mapping the Cantor set CA onto CB by using the mapping Φ.

As in Sections 2.5 and 2.6, we may again distinguish 2m different case when we
are calculating DΦ. Again we calculate the differential matrix only in the first of
these 2m cases. In this case we have

DΦ(ϕAv(k)
(t, x)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

C 0 0 · · · 0 0

(C −D) (x2 − z2) D 0 · · · ...
...

(C −D) (x3 − z3) 0 D · · · 0 0
...

...
...

. . .
...

...
(C −D) (xm−1 − zm−1) 0 0 · · · D 0

(C −D) (xm − zm) 0 0 · · · 0 D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where z = (z1, . . . , zm) is the center of Av(k),

C =
bk−1 − bk
ak−1 − ak

and D =
(1− t)bk + tbk−1

(1− t)ak + tak−1
.
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2.8. A Khintchine-type inequality

The Rademacher’s distribution is a discrete probability distribution such that

P(X = x) =

⎧⎨⎩ 1/2, if x = 1,
1/2, if x = −1,
0, otherwise.

(2.3)

Furthermore, for a given 0 ≤ q ≤ 1 we define the Bernoulli q-distribution to be the
discrete probability distribution defined by

P(X = x) =

⎧⎨⎩ q, if x = 1,
1− q, if x = 0,
0, otherwise.

(2.4)

Next, assume that X1 and X2 are two independent random variables, X1 has
the Rademacher distribution and X2 has the Bernoulli q-distribution. If we define
Y := X1X2, then the probability distribution of Y can be written as

P(Y = y) =

⎧⎪⎪⎨⎪⎪⎩
q/2, if y = 1,
q/2, if y = −1,
1− q, if y = 0,
0, otherwise.

(2.5)

From now on we will call this distribution RB(q)-distribution. Then we can give
a generalized version of the famous Khintchine inequality [6] in the RB(q)-setting.
In the case q = 1 this result is the usual Khintchine inequality, see e.g. [6].

Lemma 2.1 (Khintchine-type inequality). Let 0 < q ≤ 1. Suppose that {Yk}∞k=1

is a sequence of independent and identically distributed random variables from the
RB(q)-distribution, and let {dk}∞k=1 be a sequence of real numbers. Then for a
given p > 0 we can estimate the expected value as

B̂p,q

(∑
k

d2k

)1/2
≤
(
E
[ ∣∣ ∑

k

dkYk

∣∣p ] )1/p ≤ Âp,q

(∑
k

d2k

)1/2
,(2.6)

where the constants Âp,q and B̂p,q are depending only on p and q.

Proof. For the convenience of the reader we include the proof of this estimate in
the case p > 1 which follows directly the approach of [19], Proposition 4.5. There
will be three steps in the proof:

(i) Let us first assume that p = 2. Recall that we may write

Yk = Xk,1Xk,2 , k ∈ N ,

where Xk,1 are random variables from the Rademacher distribution, Xk,2 are ran-
dom variables from the Bernoulli q-distribution, and all the random variables Xk,j
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are independent. By using this fact and independence we get

E
[ ∣∣ ∑

k

dkYk

∣∣2 ] =∑
k

d2k E[Y
2
k ] + 2

∑
k �=j

dkdj E[Yk]E[Yj ] =
∑
k

d2k E[Y
2
k ]

=
∑
k

d2k E[X
2
k,1]E[X

2
k,2] = q

∑
k

d2k .

(ii) For the upper bound we notice that for every t > 0 we may estimate

E
[
et

∑
k dkYk

]
=
∏
k

E
[
etdkYk

] ≤ 2

N∏
k=1

1

2

(
etdk + e−tdk

)
,

and by applying the numerical inequality 1
2 (e

x + e−x) ≤ ex
2/2 we conclude

E
[
et

∑
k dkYk

] ≤ 2 e
t2

2

∑
k d2

k .

By applying Chebychev’s inequality to this estimate, we get

P
(∑

k

dkYk ≥ λ
) ≤ e−tλ

E
[
et

∑
k dkYk

] ≤ 2 e−tλ+ t2

2

∑
k d2

k

for any t > 0 and λ > 0. Taking t = λ/
∑

k d
2
k gives

P
(∑

k

dkYk ≥ λ
) ≤ 2e

− λ2

2
∑

k d2
k ,

and hence

P
(∣∣ ∑

k

dkYk

∣∣ ≥ λ
) ≤ 4 e

− λ2

2
∑

k d2
k .

By applying Cavalieri’s principle, we get

E
[ ∣∣ ∑

k

dkYk

∣∣p ] = p

∫ ∞

0

λp−1
P
(∣∣ ∑

k

dkYk

∣∣ ≥ λ
)
dλ

≤ 4p

∫ ∞

0

λp−1 e
− λ2

2
∑

k d2
k dλ = C

(∑
k

d2k

)p/2
,

where the constant C > 0 is depending only on p. This gives us the upper bound.

(iii) The lower bound follows from (i), (ii) and Hölder’s inequality:∑
k

d2k ∼ E
[ ∣∣ ∑

k

dkYk

∣∣2 ] ≤ (E[ ∣∣ ∑
k

dkYk

∣∣p ] )1/p (E[ ∣∣ ∑
k

dkYk

∣∣ p
p−1

] )(p−1)/p

�
(
E
[ ∣∣ ∑

k

dkYk

∣∣p ] )1/p (∑
k

d2k

)1/2
,

and we have (∑
k

d2k

)1/2
�
(
E
[ ∣∣ ∑

k

dkYk

∣∣p ] )1/p . �
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2.9. Oscillating snowflake mapping on a Cantor set

Let CA := C[{ak}∞k=0] be a Cantor set in Rm. We recall that we may write every
index v ∈ Vk as

v = (v1,v2, . . . ,vk) = (v1,1, . . . ,v1,m︸ ︷︷ ︸
=v1∈V

,v2,1, . . . ,v2,m︸ ︷︷ ︸
=v2∈V

, . . . ,vk,1, . . . ,vk,m︸ ︷︷ ︸
=vm∈V

) ,

where vi,j ∈ {−1, 1}. Thus, to every v ∈ Vk we may associate a number δ(v) ∈
{−1, 1} as

δ(v) :=

m∏
j=1

vk,j ,

which will play a role of a sign function in our construction.

- +

+ -

- + - +

+ - + -

- + - +

+ - + -

Figure 4. Sign of δ(v).

Suppose that {dk}∞k=1 is a sequence of real numbers converging to zero. Then
we define a sequence {Sk}∞k=1 of mappings Sk : (−1, 1)m+1 → Rm+1 as

Sk(x1, . . . , xm, xm+1) =
(
x1, . . . , xm, xm+1 +

∑
v∈Vk

δ(v)Hdk

Qv
(x̂)

)
,

where x̂ := (x1, . . . , xm) and

Hdk

Qv
(x̂) =

{
dk infz∈∂Qv | x̂− z |, if x̂ ∈ Qv

0, otherwise.

Figure 5. Image of a 2-dimensional hyperplane for mappings S1 and S2.
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Then we may define mappings SN : (−1, 1)m+1 → Rm+1 as

SN (x) := (SN ◦ SN−1 ◦ · · · ◦ S1)(x) ,

and set S(x) := limN→∞ SN (x). This limit exists for all x ∈ (−1, 1)m+1 because∑
k

|dk rk| =
∑
k

|dk 2−k ak| < ∞ .

Furthermore, it is not hard to see that S : (−1, 1)m+1 → S((−1, 1)m+1) is a home-
omorphism.

2.10. Properties of DS
To calculate DS(x) we define, for every i = 1, . . . ,m, the sets

Qi
v :=

{
x ∈ Qv :

∣∣∣ xj − (zv)j
xi − (zv)i

∣∣∣ < 1 for all j �= i
}
,

(Qi
v)

− := Qi
v ∩ {xi > (zv)i} ,

(Qi
v)

+ := Qi
v ∩ {xi < (zv)i} ,

and we define the indicator functions

δiQv
(x) =

⎧⎨⎩ 1, if x ∈ (Qi
v)

+,
−1, if x ∈ (Qi

v)
−,

0, otherwise.

Figure 6. Sets (Qi
v)

− and (Qi
v)

+ in the case m = 2.

For a given point x = (x̂, xm+1) ∈ Qv(k)×(−1, 1), the differential matrixDSk(x)
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can be written as

DSk(x̂, xm+1) =

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
dk δ

1
v dk δ

2
v · · · dk δ

m
v 1

⎞⎟⎟⎟⎟⎟⎠ ,

where δjv := δjQv
(x̂)δ(v). Furthermore, by induction we conclude

DSk(x̂, xm+1) = DSk DSk−1

=

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
dk δ

1
v dk δ

2
v · · · dk δ

m
v 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
D1

k−1 D2
k−1 · · · Dm

k−1 1

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
D1

k D2
k · · · Dm

k 1

⎞⎟⎟⎟⎟⎟⎠ ,

where Dj
i :=

∑i
l=1 dlδ

j
Q(v1,...,vl)

(x̂)δ(vl). We also notice that δjQv
(x̂) and δ(v) are

independent random variables, and thus it is easy to see that the probability mass
function of δjv can be defined as in (2.5) with q = 1/(n− 1).

3. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. To capture the essential part of the
proof we will first give a detailed proof in the case n = 3, and then sketch the
proof in the case n ≥ 4. Before starting the proof we will describe a basic building
block of our construction.

Let γ > 0 be sufficiently small as described later. Let 0 < a < γ, 0 < η < 1/4
and 2aη < 1/2. Let h : [0, a] → [0, 1] be defined as

h(t) = min
{
π − t, log1/4 1

t − log1/4 1
a

}
.

Then h is a continuous, strictly decreasing function, piecewise C1 with h(0) = π
and h(a) = 0. We set

g(t) = −aη

π h(t) + aη .

Now |g′(t)| = aη

π |h′(t)|, g(0) = 0 and g(a) = aη. We define a linear function

ρ(t) =
aη

2aη − a
t+ 2aη

aη − a

2aη − a
.

Then ρ(2aη) = 2aη and ρ(a) = aη.
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Let us consider three anuloids T ⊂ S ⊂ R given by

T : = {[x, y, z] ∈ R
3 : (

√
y2 + z2 − 1)2 + x2 ≤ a2},

S : = {[x, y, z] ∈ R
3 : (

√
y2 + z2 − 1)2 + x2 ≤ (aη)2}, and

R : = {[x, y, z] ∈ R
3 : (

√
y2 + z2 − 1)2 + x2 ≤ (2aη)2} .

We will define a homeomorphism F : R → R such that F (p) = p for every p ∈ ∂R
and F (∂T ) = ∂S is given by the natural stretching. We will use the following
system of coordinates:

r radius in the anuloid: r2 = (
√

y2 + z2 − 1)2 + x2,

α angle in the anuloid: sinα = x/r,

β angle around the anuloid: sinβ = y/
√
y2 + z2 ,

and we set

(3.1)
F (r, α, β) = [ρ(r), α, β] for [r, α, β] ∈ R \ T and

F (r, α, β) = [g(r), α, h(r) + β] for [r, α, β] ∈ T .

Lemma 3.1. Let F : R → R be as described above in (3.1), and let 0 < δ < 1.
Then

(1) F (p) = p for every p ∈ ∂R,

(2) F is a homeomorphism,

(3) F (∂T ) = ∂S, and

(4) |F (p)− p| = 2 for every p ∈ {[x, y, z] : y2 + z2 = 1 and x = 0}.
Moreover, we have

(3.2)

∫
R

|DF |2 ≤ C a2η log
1

a
+ C

1

log1/2 1
a

and∫
R

Kδ
I ≤ C a2η log

1

a
+ C a−ηδ+2−2δ ,

where the constant C > 0 depends only on n and δ.

Proof. We start by verifying the conditions (1)–(4).

(1) By ρ(2aη) = 2aη we obtain F (p) = p for every p ∈ ∂R.

(2) As ρ(a) = aη = g(a) and h(a) = 0, it is easy to check that the mapping is
continuous at ∂T . By the first line in (3.1), and by applying the facts ρ(2aη) = 2aη

and ρ(a) = aη, we easily see that F is a homeomorphism of R \T onto R \S. It is
also a homeomorphism of T onto S as g is increasing with g(0) = 0 and g(a) = aη,
and in the β coordinate we have a simple rotation by the angle h(r).

(3) The property F (∂T ) = ∂S easily follows from the arguments in (2).
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(4) We note that the middle circle ({y2 + z2 = 1 and x = 0}) of R is rotated
by the angle of π = h(0) and hence we conclude that |F (p)− p| = 2 there.

We still have to verify (3.2). We express the derivative in the system of co-
ordinates given by [r, α, β]. The radial direction (α and β fixed and r increases),
angular direction inside (r and β fixed and α increases) and angular direction
around (r and α fixed and β increases) are orthogonal and hence we can compute
|DF | or JF with respect to these directions. The derivative in the corresponding
system of coordinates is given by (see Section 8 in [3] for similar computations)

DF (r, α, β) =

⎛⎝ ρ′(r) 0 0
0 ρ(r)/r 0
0 0 M

⎞⎠ for [r, α, β] ∈ R \ T

and

DF (r, α, β) =

⎛⎝ g′(r) 0 h′(r)
0 g(r)/r 0
0 0 M

⎞⎠ for [r, α, β] ∈ T ,

where
1− 2aη

1 + 2aη
≤ |M | ≤ 1 + 2aη

1− 2aη
.

Let us note that the middle term comes from the fact that the circle of radius 2πr
is mapped to the circle of radius 2πρ(r) (or 2πg(r) in the second case) and hence
the derivative around this circle, which must be the same as the derivative in the

tangential direction to this circle, equals 2πρ(r)
2πr . The last term with M comes from

the fact that the length of any circle around our anuloid (in the β direction) has
length in [2π(1 − 2aη), 2π(1 + 2aη)] and it is mapped to the similar circle around
– as we are squeezing in the r direction this is not necessarily the same circle. Note
that as 2aη < 1/2 we have M ∼ C for some constant C > 0. Analogously we can
check that the normalization of the other terms in the matrix is done correctly.

It is easy to check that on R \ T we have ρ′(r) ∼ C and ρ(r)/r ≥ C and hence
|DF | ∼ ρ(r)/r there.

Using polar coordinates it follows that∫
R\T

|DF |2 ≤ C

∫
R\T

ρ2(r)

r2
≤ C

∫ 2aη

a

ρ2(r)

r2
r dr

≤ Ca2η
∫ 2aη

a

1

r
dr ≤ Ca2η log

1

a
.

As ρ′(r) ∼ C it is easy to see that |D#F | ∼ ρ(r)/r and JF ∼ ρ(r)/r on R\T , and
hence ∫

R\T
|KI |δ ≤ C

∫
R\T

(ρ(r)
r

)2δ
≤ C

∫ 2aη

a

ρ2(r)

r2
r dr ≤ Ca2η log

1

a
.

Now we estimate the derivative on T . In the small part around r = 0 where
h(r) = π− r we have |g′(r)| = aη

π |h′(r)| = aη/π and also g(r)/r = aη/π. It follows



Differentiability and capacitary estimates for Sobolev mappings 609

that on this set we have |DF | ≤ C and

KI ≤ (D#F )3

J2
F

≤ C
a3η

(a2η)2
≤ C a−η .

It follows that on this set we have∫
|DF |2 ≤ C |T | ≤ C a2 and

∫
Kδ

I ≤ C a2a−δη

and this causes no trouble for the estimate (3.2).
It remains to estimate the derivative on the main part of T where h(r) =

log1/4(1/r)− log1/4(1/a). We can clearly choose γ > 0 small enough at the begin-
ning of the proof so that for every a < γ we have

log1/4
1

a2
− log1/4

1

a
=
(
log1/4

1

a

)
(

4
√
2− 1) > π = h(0) .

For a ≤ γ, we thus consider integrals over the set where r ∈ [a2, a], as this will
only enlarge the set. On this set we have

|h′(r)| ∼ 1

r log3/4 1
r

, |g′(r)| = aη

π
|h′(r)| ∼ aη

r log3/4 1
r

and
g(r)

r
∼ aη

r
.

It follows that∫
|DF |2 ≤ C

∫ a

a2

1

r2 log3/2 1
r

r dr + C

∫ a

a2

a2η

r2
r dr ≤ C

1

log1/2 1
a

+ Ca2η .

It is not difficult to check that |D#F | ∼ |h′(r)| g(r)r and JF ∼ |g′(r)| g(r)r ∼
aη|h′(r)| g(r)r on this set, and hence∫

Kδ
I ≤ C

∫ a

a2

( |h′(r)|
a2η

g(r)

r

)δ
r dr ≤ C

∫ a

a2

( 1

a2ηr log3/4(1/r)

aη

r

)δ
r dr

≤ Ca−ηδ 1

log3δ/4(1/a)

∫ a

a2

r

r2δ
dr ≤ Ca−ηδ+2−2δ .

�

3.1. Proof of Theorem 1.1 when n = 3

First, consider a sequence {bk}∞k=1 defined by

bk =
1

2

(
1 +

1

k + 1

)
.

By applying the algorithm in Section 2.4 we construct a Cantor set

CB := C[{bk}∞k=1]
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in [−1, 1]3. Then, by (2.2) we get

L3(CB) = lim
k→∞

23k(2bk2
−k)3 = 1 .

Suppose that

Q′
v(k) = Q(zv(k), 2

−kbk−1) and Qv(k) = Q(zv(k), 2
−kbk) , v(k) ∈ V

k ,

are the corresponding cubes in the construction of the Cantor set CB .
We will now define our homeomorphism f . For this, set

ak =
1

4
min{2−k4

,
(
1
2 (bk−1 − bk)

)1/η
, δ} .

Given δ < 1 we find η > 0 such that

−ηδ + 2− 2δ > 0 .

For every k ∈ N we consider homeomorphism as in Lemma 3.1 applied to a = ak
scaled in each direction (both in the domain and in the target) by a factor of 1

42
−k.

We put a translated copy of such a homeomorphism in every

Q′
v \Qv,v ∈ V

k .

As 2aηk < bk−1 − bk there is enough room there (the volume of the anuloid is
roughly 2−k−2 × 2−k−2 × (2−k−22(ak)

η)). In this way we obtain 23k copies of this
homeomorphism for each k ∈ N and the supports of these maps are clearly disjoint.
These homeomorphisms are equal to the identity on the boundaries and hence we
can extend them by identity everywhere else and we obtain a homeomorphism of
(−1, 1)3 onto (−1, 1)3.

We have 23k cubes in the construction and by scaling by 2−k−2 in all three
directions we get by Lemma 3.1 that∫

(−1,1)3
|Df |2 ≤ C

∞∑
k=1

8k(2−k−2)3
(
a2ηk log

1

ak
+ C

1

log1/2 1
ak

)
< ∞

as ak ≤ 1
42

−k4

. Analogously we use −ηδ + 2− 2δ > 0 to show that

(3.3)

∫
(−1,1)3

Kδ
I ≤ C

∞∑
k=1

8k(2−k−2)3
(
a2ηk log

1

ak
+ Ca−ηδ+2−2δ

k

)
< ∞ .

It remains to show that f is not differentiable at points of CA = Ca ×Ca×Ca.
For every x ∈ CA and every k we can find v ∈ V

k such that x ∈ Qv. In Q′
v \Qv

we have a translated and scaled copy of a homeomorphism as in Lemma 3.1 and
hence the distance of x to the support of this homeomorphism is less than 10 ·2−k.
For p on the boundary of the corresponding anuloid we have f(p) = p, and as
f(x) = x we can see that if there is a classical derivative Df(x), it must be equal
to identity matrix Df(x) = I, as this happens on all scales k. On the other hand,
in the central circle of the anuloid our function is rotated and |f(p) − p| = 1

22
−k

there. This happens on all scales k and it follows that Df(x) cannot be I, and
hence f is not differentiable at x.
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3.2. Proof of the Theorem 1.1 when n ≥ 4

The construction in the case n ≥ 4 is very similar and therefore we only briefly
outline it. We work with anuloids like

R :=
{
x ∈ R

n :
(√

x2
2 + · · ·+ x2

n − 1
)2

+ x2
1 ≤ (2aη)2

}
,

and again S has radius aη and T has radius a. We use spherical (n−1)-dimensional
coordinates inside the annulus (variables r, α1, . . . , αn−2) and angle β around the
annulus as before.

We set

f = [ρ(r), α1, . . . , αn−2, β] for [r, α1, . . . , αn−2, β] ∈ R \ T and

f = [g(r), α1, . . . , αn−2, h(r) + β] for [r, α1, . . . , αn−2, β] ∈ T .

We only sketch the estimates of the most important terms. In T we have

Df =

⎛⎜⎜⎜⎜⎜⎝
g′(r) 0 . . . 0 h′(r)
0 g(r)/r . . . 0 0
...

...
. . .

...
...

0 0 . . . g(r)/r 0
0 0 . . . 0 M

⎞⎟⎟⎟⎟⎟⎠ for [r, α1, . . . , αn−2, β] ∈ T,

and hence |D#f | ∼ |h′(r)|(g(r)/r)n−2 and Jf ∼ |g′(r)|(g(r)/r)n−2 there. The

important part of the derivative (where h(t) = log1/4 1
t −log1/4 1

a ) can be estimated
using (n− 1)-dimensional spherical coordinates as∫

|Df |n−1 ≤ C

∫ a

a2

1

rn−1 log
3
4 (n−1) 1

r

rn−2 dr < ∞ .

On this part we also estimate∫
Kδ

I ≤ C

∫ a

a2

( |h′(r)|
a(n−1)η

(g(r)
r

)n−2 )δ
rn−2 dr

≤ C

∫ a

a2

( 1

a(n−1)ηr log3/4 1
r

a(n−2)η

rn−2

)δ
rn−2 dr ≤ C a−ηδ+n−1−(n−1)δ .(3.4)

Given δ < 1 we can choose η > 0 such that −ηδ + n − 1 − (n − 1)δ > 0. Other
integrals can be estimated analogously.

Similarly we construct a Cantor type set of positive measure in Rn and in each
of the 2kn sets Q′

v\Qv,v ∈ Vk, we put a translated and scaled (by a factor 2−k in n
directions) copy of the homeomorphism as above. Analogously to the computation
in (3.3) we obtain, using −ηδ + n− 1− (n− 1)δ > 0 and (3.4), our conclusion.
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4. Proof of Theorem 1.3

4.1. Construction of the mapping

Let ε > 0 and suppose that n ≥ 2. We define a homeomorphism f : (−1, 1)n → Rn

of finite distortion as follows:

(1) Define the sequences {ak}∞k=0 and {bk}∞k=0 by setting

ak =
1

(k + 1)α
and bk =

1

2

(
1 +

1

log(e+ k)

)
,

where α > 0. It is easy to see that for every k ≥ 1 we have

ak−1 − ak ∼ 1

kα+1
and bk−1 − bk ∼ 1

k log2(e + k)
.(4.1)

(2) Denote by

CA := C[(ak)
∞
k=0] and CB := C[(bk)

∞
k=0]

the Cantor sets in Rn−1 given by the sequences {ak}∞k=0 and {bk}∞k=0 above. For
each index v(k) ∈ Vk, k ∈ N, we denote by

Av(k) := Q′
v(k)\ int(Qv(k)) and Bv(k) := Q̃′

v(k)\ int(Q̃v(k))

the corresponding (n − 1)-dimensional cubical annuli in the construction of the
Cantor sets CA and CB . Then for k ≥ 1 we have

Ln(Av(k) × (−1, 1)) = 2−k(n−1)+1(an−1
k−1 − an−1

k )

= 2−k(n−1)+1
( 1

(k − 1)α(n−1)
− 1

kα(n−1)

)
∼ 2−k(n−1)

kα(n−1)+1
,(4.2)

and similarly,

Ln(Bv(k) × (−1, 1)) = 2−k(n−1)+1(bn−1
k−1 − bn−1

k ) ∼ 2−k(n−1)

k log2(e+ k)
.

(3) Suppose that Φ: (−1, 1)n−1 → (−1, 1)n−1 is the transformation, introduced
in Section 2.7, mapping the Cantor set CA onto CB . Define a homeomorphism
H : (−1, 1)n → (−1, 1)n by

H(x1, . . . , xn) = (Φ(x1, . . . , xn−1), xn) .

Then, up to a permutation of the (n − 1) first coordinate axes, for every point
x ∈ ⋃v∈Vk Av(k) we have

DH(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C 0 0 · · · 0 0 0

(C −D) (x2 − z2) D 0 · · · ...
... 0

(C −D) (x3 − z3) 0 D · · · 0 0 0
...

...
...

. . .
...

... 0
(C −D) (xn−2 − zn−2) 0 0 · · · D 0 0
(C −D) (xn−1 − zn−1) 0 0 · · · 0 D 0

0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where

C =
bk−1 − bk
ak−1 − ak

and D =
(1− t)bk + tbk−1

(1− t)ak + tak−1
,

for some t ∈ [0, 1] and z is the corresponding center (see Section 2.7). In particular,

|DH(x)| ∼ max
{ bk
ak

,
bk−1 − bk
ak−1 − ak

, 1
}
∼ kα ,

|D�H(x)| ∼
( bk
ak

)n−2( bk−1 − bk
ak−1 − ak

)
∼ kα(n−1)

log2(e+ k)
,(4.3)

JH(x) ∼
( bk
ak

)n−2( bk−1 − bk
ak−1 − ak

)
∼ kα(n−1)

log2(e+ k)
.

(4) Define a sequence {dk}∞k=1 of real numbers by

dk =
1√

k log(e+ k)
,

and suppose that S : (−1, 1)n → Rn is the oscillating snowflake mapping on the
Cantor set CB generated by the sequence {dk}∞k=1 (see Section 2.9). Then for every
point x ∈ ⋃v∈Vk Av(k) we have H(x) ∈ ⋃v∈Vk Bv(k) and thus

DS(H(x)) =

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
D1

k D2
k · · · Dn−1

k 1

⎞⎟⎟⎟⎟⎟⎠ ,

where Dj
k :=

∑k
l=1 dlδ

j
Q(v1,...,vl)

(x̂)δ(vl) (see Section 2.9). Therefore,

|DS(H(x))| = max
1≤j≤n−1

|Dj
k| , |D�S(H(x))| = max

{
1, max

1≤j≤n−1
|Dj

k|
}
,(4.4)

JS(H(x)) = 1 .

Recall that the distribution of δjQ(v1,...,vl)
(x̂)δ(vl) is given by the RB(q)-distribution

(see end of Section 2.10). By applying Khintchine’s inequality Lemma 2.1 for a
given p > 0, we get

E

[( n−1∑
j=1

|Dj
k|
)p]

≤ C(n, p)

n−1∑
j=1

E
[|Dj

k|p
]
�

n−1∑
j=1

( k∑
l=1

d2l

)p/2
(4.5)

�
n−1∑
j=1

( k∑
l=1

1

k log(e+ k)

)p/2
∼ (log log(e+ k))p/2 .

(5) Define f : (−1, 1)n → Rn as

f(x) = (S ◦H)(x) .
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Then, for almost every point x ∈ ⋃v∈Vk Av(k) we have, using (4.3), that

|Df(x)| = |DS(H(x))DH(x)| � kα
( n−1∑

j=1

|Dj
k|
)
,

Jf (x) = JS(H(x))JH(x) ∼ kα(n−1)

log2(e+ k)
,(4.6)

|D�f(x)| = |D�S(H(x))D�H(x)| � kα(n−1)

log2(e + k)

( n−1∑
j=1

|Dj
k|
)
.

Particularly,

KI(x) =
|D�f(x)|n
Jf (x)n−1

� kα(n−1)

log2(e + k)

( n−1∑
j=1

|Dj
k|
)n

.(4.7)

4.2. Properties of the mapping

Next we will show that f is a homeomorphism for which Lusin’s condition (N)
fails on hyperplanes, f ∈ W 1,n−1−ε((−1, 1)n,Rn), KI ∈ L1((−1, 1)n) and f maps
hyperplanes, perpendicular to n-th coordinate axis, to sets of infinite (n− 1)-di-
mensional Hausdorff measure.

(1) It is clear that f is a homeomorphism as a composed mapping of two homeo-
morphisms. Moreover, it is easy to see that f cannot satisfy Lusin’s condition (N)
on any hyperplane Ht = {x ∈ (−1, 1)n : xn = t}, t ∈ (−1, 1), with respect to
the (n − 1)-dimensional Hausdorff measure. We know that the Hn−1 measure of
the (n− 1)-dimensional sets

Ct
B = {x ∈ (−1, 1)n : (x1, . . . , xn−1) ∈ CB and xn = t}

is positive. Since S may only increase Hn−1, we have, for every set

Ct
A = {x ∈ (−1, 1)n : (x1, . . . , xn−1) ∈ CA and xn = t},

that Hn−1(Ct
A) = 0 and Hn−1(f(Ct

A)) = Hn−1(S(Ct
B)) > 0.

(2) Let us denote Uk := ∪v(k)∈VkAv(k) × (−1, 1). By applying (4.2), (4.6)
and (4.5) with exponent p = n− 1− ε we get∫

(−1,1)n
|Df |n−1−ε ∼

∞∑
k=1

Ln(Uk)E[{|Df(x)|n−1−ε : x ∈ Uk}]

�
∞∑
k=1

2−k(n−1)

kα(n−1)+1
2k(n−1)

E

[
kα(n−1−ε)

( n−1∑
j=1

|Dj
k|
)n−1−ε ]

�
∞∑
k=1

E[
∑n−1

j=1 |Dj
k|n−1−ε ]

k1+αε
∼

∞∑
k=1

(log log(e+ k))
n−1−ε

2

k1+αε
< ∞ ,

which implies that f ∈ W 1,n−1−ε((−1, 1)n,Rn).
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(3) Similarly, by applying (4.2), (4.5) with exponent p = n and (4.7) we get∫
(−1,1)n

KI =
∞∑
k=1

Ln(Uk)E[{KI(x) : x ∈ Uk}]

�
∞∑
k=1

2−k(n−1)

kα(n−1)+1
2k(n−1)

E

[ kα(n−1)

log2(e+ k)

( n−1∑
j=1

|Dj
k|
)n ]

�
∞∑
k=1

E[
∑n−1

j=1 |Dj
k|n]

k log2(e+ k)
∼

∞∑
k=1

(log log(e+ k))n/2

k log2(e+ k)
< ∞ ,

which implies that KI ∈ L1((−1, 1)n).

(4) Suppose that t ∈ (−1, 1). Then for the image of the (n − 1)-dimensional
hyperplane Ht = {(x̂, t) : x̂ ∈ (−8/10, 8/10)n−1} we have that

Hn−1(f(Ht)) = Hn−1(S(Ht)) = lim
N→∞

Hn−1(SN (Ht))

� lim
N→∞

∑
v∈VN

Hn−1(SN (Qv(k)))

= lim
N→∞

Hn−1
( ⋃

v∈VN

Qv(k)

)
E

({|DSN (y)| : y ∈
⋃

v∈VN

Qv(k) × {t}})
∼ lim

N→∞
2N(n−1)(2bk2

−N)n−2 bk 2
−k

E
(|DSN |) ∼ lim

N→∞
E
(|DSN |) ,

and it remains to show that this expected value of the derivative is infinite. Us-
ing (4.4) it is enough to show that for every j ∈ {1, n− 1} we have, using Khint-
chine’s inequality Lemma 2.1 for p = 1 similarly to (4.5),

E(|Dj
N |) �

( N∑
l=1

d2l

)1/2
∼ (log log(e+N)

)1/2 N→∞−→ ∞ .

Thus Hn−1(f(Ht)) = ∞.

4.3. Failure of the KI-inequality for f

In this section we will show that KI -inequality (1.1) fails for f . This will end the
proof of Theorem 1.3. The failure of the KI-inequality is given in Proposition 4.3.
In its proof, we will use the following two technical lemmata.

Lemma 4.1. Let A ⊂ Rn−1 be an open and bounded set. Suppose that u0 : A → R

is a linear affine function and for each h ≥ 0 define uh : A → R as

uh(x) = u0(x) + h .

Suppose that GA
uh

= { (x, uh(x)) : x ∈ A} is the graph of uh on A, and let n be the
unit normal vector of the surface Gu0 . Denote by

Sh := { z ∈ GA
u0

: z + nt ∈ GA
uh

for some t ∈ R }
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the shadow of the set GA
uh

on GA
u0
. Then for a given ε > 0 there exist hε > 0 such

that, for all 0 ≤ h < hε,

Hn−1(Sh) ≥ (1− ε)Hn−1(GA
u0
)

Lemma 4.1 follows easily from the fact Sh ↗ S0, and we leave the proof for
the reader. In the next lemma we show that if we have some linear function and a
small slab between a small shift of this function, then it actually almost minimizes
some capacity among all continuous deformations of this slab.

Figure 7. The shadow Sh of the graph GA
uh

on GA
u0
.

Lemma 4.2. Let A ⊂ Rn−1 be an open set and let D ⊂⊂ A be an open and convex
subset of A. Suppose that u : A → R is a linear affine function, and let f : A → R

be an arbitrary continuous function such that

f(x) = u(x) for all x ∈ A\D .

For h > 0 and for a given continuous function g : A → R define the number

Ch(g) := inf
{∫

D×R

|∇v(x)|n dx : v = 0 on GD
g and v ≥ 1 on GD

g+h

}
,

Then there exists h0 > 0 such that

Ch(u) ≤ 2nCh(f) ,(4.8)

for all 0 < h < h0.

Proof. Let 0 < ε < 1/2, and suppose that Sh is the shadow of the set GD
u+h on GD

u .
Due to Lemma 4.1 we may assume that there exist hε > 0 such that

Hn−1(GD
u ) <

Hn−1(Sh)

1− ε
(4.9)
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for all 0 < h < hε. Let us denote l := dist(GD
u ,GD

u+h). By applying Fubini’s
theorem and (4.9) we get

hHn−1(D) =

∫
D

(u+ h)−
∫
D

u = lHn−1(GD
u ) <

lHn−1(Sh)

1− ε
(4.10)

for all 0 < h < hε.
Let n be the unit normal vector of GD

u pointing in the direction of the set GD
u+h.

Suppose that v : D × R → [0, 1] is an admissible test function for Ch(u) such that

(i) v(x+ tn) = t/l for all points x ∈ GD
u and for all t ∈ (0, l),

(ii) v(x) = 0 for all points x ∈ D × R which are bellow the graph GD
u , and

(iii) v(x) = 1 for all points x ∈ D × R which are above the graph GD
u+h.

Figure 8. Setting in Lemma 4.2.

Then it follows from (4.9) that for 0 < ε < 1/2 we have, using |∇v| = 1/l,

Ch(u) ≤
∫
D×R

|∇v|n =

∫
GD
u

l

ln
=

Hn−1(GD
u )

ln−1
<

2Hn−1(Sh(u))

ln−1
(4.11)

for all 0 < h < hε.

Let f : A → R be a continuous function as in the statement of lemma. Then
we may define a mapping F : A× R → R

n by setting

F (x1, . . . , xn) = (x1, . . . , xn−1, xn + f(x1, . . . , xn−1)) .

If we apply (4.10), we get

Hn(F (D × (0, h))) =

∫
D

(f + h)−
∫
D

f = hHn−1(D) <
lHn−1(Sh)

1− ε
,(4.12)
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for all 0 < h < hε. For each point x ∈ GD
u let us define the 1-dimensional set Ix as

Ix = { z ∈ F (D × (0, h)) : z = x+ tn for some t ∈ R } .

Then, if w is an admissible test function for Ch(f), we have∫
Ix

|∇w| ≥ 1

for every x ∈ Sh. By integrating both sides over the set Sh, using Hölder’s in-
equality, Fubini’s theorem and (4.12), we have

Hn−1(Sh) ≤
∫
Sh

∫
Ix

|∇w| ≤ (Hn(F (D × (0, h))))(n−1)/n
(∫

D×R

|∇w|n
)1/n

<
( lHn−1(Sh)

1− ε

)(n−1)/n(∫
D×R

|∇w|n
)1/n

.

Thus, by assuming 0 < ε < 1/2, we get

Hn−1(Sh)

2n−1 ln−1
≤
∫
D×R

|∇w|n,

and if we take the infimum over all admissible test functions w, we conclude that

Hn−1(Sh)

2n−1 ln−1
≤ Ch(f) ,(4.13)

for all 0 < h < hε. Claim follows now from (4.11) and (4.13). �

Proposition 4.3. Let δ := 1/10 and let f be the mapping given in Section 4.1.
For a given h > 0 define a condenser (Eh, E0) by setting

E0 := (−1 + 2δ, 1− 2δ)n−1 × (−1 + 2δ, 0) , and

Eh := (−1 + δ, 1− δ)n−1 × (−1 + δ, h) .

Then

lim
h→0

cap(f(Eh), f(E0))

capKI
(Eh, E0)

= ∞ .

Proof. Fix M ≥ 1. For t ∈ R denote Êt = (−1+2δ, 1−2δ)n−1×{t}, and whenever
t �= s define

ĉap(f(Êt), f(Ês)) = inf

∫
(−1,1)n−1×R

|∇u(x)|n dx ,

where the infimum is taken over all functions u ∈ C∞((−1, 1)n−1 × R) such that
u|f(Êt)

≡ 0 and u|f(Ês)
≡ 1.
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Asδ = 1/10, we know that CA ⊂ (−1 + δ, 1 − δ)n−1, where CA is the given
Cantor set of zero measure in the construction of f . Then it is easy to see that it
suffices to show that there is hM > 0 such that

ĉap(f(Êh), f(Ê0))

capKI
(Eh, E0)

≥ M ,(4.14)

for all 0 < h < hM .
To prove (4.14) suppose that u is any test function which goes linearly from 1

to 0 along the line segments parallel to the n-th coordinate axes. We know by the
construction that f = S ◦H behaves the same way on each hyperplane and hence
the integral of KI over every (n − 1)-dimensional hyperplane (−1, 1)n−1 × {t},
0 < t < h, is the same (see Section 4.1). By applying Fubini’s theorem we get

capKI
(Eh, E0) ≤

∫
(−1,1)n−1×(0,h)

|∇u(x)|n KI(x) dx(4.15)

=

∫
(−1,1)n−1×(0,h)

KI(x)

hn−1
dx =

1

hn

∫ h

0

∫
(−1,1)n−1×{t}

KI ≤ C0

hn−1
,

where the finite constant C0 := C0(n, δ,KI) ≥ 1 depends only on n, δ and on the
integral of KI over the level set (−1, 1)n−1 × {0}.

Next, we denote fN := SN ◦H . Then the calculation in Section 4.2 (4) shows
us that there is N0 ≥ 1 such that

Hn−1(fN (Ê0)) = Hn−1(SN (Ê0)) > 2n+1MC0(4.16)

for all N ≥ N0. Let us fix N ≥ N0.

As the mappings in the construction of Sk are piecewise affine, we may divide
the sets Ê0 and Êh into finitely many pairwise disjoint, open, convex and maximal
(n− 1)-dimensional sets {Ej

0}lj=1 and {Ej
h}lj=1 such that:

(i) Ê0 =
⋃l

j=1 E
j

0 and Êh =
⋃l

j=1 E
j

h, where the closure is taken in (−1, 1)n−1×
R instead of Rn.

(ii) Ej
h = Ej

0 + h for all j = 1, . . . , l.

(iii) The sets Ej
0 , j = 1, . . . , l, do not depend on h.

(iv) The restriction of SN on each set Ej
0 and Ej

h can be written as

SN (x̂) = (x̂, Lj(x̂)) for all x̂ ∈ Ej
0 and

SN (x̂) = (x̂, Lj(x̂) + h) for all x̂ ∈ Ej
h,

where Lj : E
j
0 → R is a linear affine function.

Fix ε ∈ (0, 1/2). Denote by nj the unit normal vector of GEj
0

Lj
and Sj

h the shadow of

the graph GEj
0

L+h on GEj
0

L (see Lemma 4.1). Then by applying Lemma 4.1 and (4.16)
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we may find hε > 0 such that

l∑
j=1

Hn−1(Sj
h) ≥ (1− ε)

( l∑
j=1

Hn−1
(GEj

0

Lj

))
= (1 − ε)

( l∑
j=1

Hn−1(SN0(E
j
0))
)

= (1− ε)Hn−1(SN0(E0)) > 2nMC0 ,(4.17)

for all 0 < h < hε. Fix 0 < h < hε, and for each j = 1, . . . , l define

Ih
j = {Iz : Iz is a line segment parallel to nj starting at a point z ∈ Sj

h

and ending to a point z + njt ∈ GEj
0

L+h for some t ∈ R } .

Then, if u is an admissible test function for ĉap(fN (Ê0), fN(Êh)), we have∫
I

|∇u| ≥ 1 for all I ∈ ∪l
j=1Ij .

By integrating over each (n− 1)-dimensional set Sj
h, applying Hölder’s inequality

and using the fact that the length of each line segment I ∈ ∪l
j=1Ij is at most h,

we get

l∑
j=1

Hn−1(Sj
h) ≤

l∑
j=1

∫
Sj
h

∫
Iz

|∇u| =
∫
∪l

j=1S
j
h

∫
Iz

|∇u|

≤
(
h

l∑
j=1

Hn−1(Sj
h)
)(n−1)/n(∫

|∇u|n
)1/n

,

which implies together with (4.17) that

2nMC0

hn−1
≤
∫
|∇u(x)|n dx .

Thus, by taking the infimum over all admissible test functions u, we get

ĉap(fN (Êh), fN (Ê0)) ≥ 2nMC0

hn−1
.(4.18)

The first n − 1 coordinate functions of f agree with the first n − 1 coordinate
functions of fN , and the last coordinate mapping of f agrees with that coordinate
of the piecewise linear mapping fN close to ∂(−1+ 2δ, 1− 2δ)n−1 × (0, h0). Hence
we can apply Lemma 4.2 (for the last coordinate mapping) and (4.18) to derive

cap(f(Êh), f(Ê0)) ≥ 2−n−1 cap(fN (Êh), fN (Ê0)) ≥ MC0

hn−1
.(4.19)

Finally, by putting together estimates in (4.15) and (4.19), we get

ĉap(f(Êh), f(Ê0))

capKI
(Eh, E0)

≥ M ,

and the claim follows. �
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