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Sharpness of the differentiability almost
everywhere and capacitary estimates
for Sobolev mappings

Stanislav Hencl and Ville Tengvall

Abstract. We give sharp conformal conditions for the differentiability in
the Sobolev space Wlf)’cnfl(ﬂ, R™). Furthermore, we show that the space
Whm1(Q,R™) can be considered as the borderline space for some capac-
itary inequalities.

1. Introduction

Let Q C R™, n > 2, be a domain and suppose that f € I/Vll’"_l(Q,R”) is a home-

omorphism. If n = 2, then the theorem of Gehring and Leflzo [2] implies that f is
differentiable almost everywhere. Moreover, if we proceed to the case n > 3 then
the Sobolev embedding theorem on spheres implies that every homeomorphism in
I/Vli)’Cp(Q, R™), p > n—1, is differentiable almost everywhere, see Theorem 1.2 in [12].
On the other hand, Sobolev embedding theorem on spheres does not apply when
fe Wli’ffl(Q,R”), n > 3, which may cause the failure of the differentiability in
a set of positive measure. Indeed, in [1], Example 5.2, Csornyei, Hencl and Maly
constructed a nowhere differentiable homeomorphism f € I/Vlicn 71((71, ™ R™),
n > 3, of finite distortion with nowhere differentiable inverse.

Differentiability of mappings in the Sobolev space I/Vlicn 71(Q,R”), n > 3, can
be recovered by requiring some integrability of the distortion functions (see Prelim-
inaries for the definition of mappings of finite distortion). Indeed, it follows from
Theorem 1.1 in [11], together with Lemma 2.1 in [13], that every homeomorphism
in Wli’cnfl(Q, R™) with locally integrable inner distortion function is differentiable
almost everywhere. The topological assumptions above can be further relaxed by
assuming f to be only continuous, discrete (the set f~!(y) is a discrete set in Q
for every y € R™) and open (f(A) is an open set in R™ for every open set A in ),

see [17]. It was asked in [17] whether the local integrability assumption of the

Mathematics Subject Classification (2010): 26B05, 30C65, 46E35.
Keywords: Mapping of finite distortion, differentiability, capacity.



596 S. HENCL AND V. TENGVALL

inner distortion function above is sharp. We will now give a positive answer to
this question by a novel construction.

Theorem 1.1. Let 0 < § < 1 and n > 3. Then there is a homeomorphism
f e whn=l((=1,1)",R") with K; € L((—1,1)") such that f is not classically
differentiable on a set of positive measure.

When we are studying analytical properties, such as differentiability almost
everywhere and continuity, of mappings of finite distortion we are commonly lead
to study the geometry of these mappings via weighted capacitary inequalities. One
of the most well-known weighted capacitary inequalities in the study of mappings
of finite distortion is the Kj-inequality, also known as the Poletsky-type capacity
inequality.

Definition 1.2. Let f € I/Vlicl(Q R™) be a continuous and open mapping of finite
distortion with locally integrable inner distortion function. We say that f satisfies
the K-inequality if for every condenser (G, E) in  we have

(1.1) cap(f(G), [(E)) < C1(G) capg, (G, E),

where the constant C; > 0 depends only on the dimension n and on the maximum
multiplicity N(f,G) := sup,cgn card f~!(y) N G. For the terminology used above
we refer the reader to the preliminaries.

We remark that inequality (1.1) is enough to guarantee differentiability almost
everywhere for a continuous, discrete and open mapping, and especially for a home-
omorphism of finite distortion, see [15], [16]. It is also important to notice that
the best possible constant C7(G) plays an important role in several applications.
Moreover, inequalities similar to (1.1) has been applied widely to study properties
of quasiregular mappings, see e.g. [8], [9], and [10].

In the case of quasiregular mappings, K -inequality with the constant C;(G)= 1
was first proved by Martio, Rickman and Viiséla [10]. Later Martio improved this
result by improving the constant C7(G), see [8]. In [7] Koskela and Onninen gener-
alized this inequality for continuous, discrete and open mappings of finite distortion
in I/Vl1 (92, R™) with a locally integrable inner distortion function. It was further
shown that the regularity assumption f € Wl1 (€, R™) can be slightly relaxed,
say to |[Df["log™' (e + |Df]) € LL.(Q). These results by Koskela and Onninen
were based on a duality argument, relying on integration by parts against the Ja-
cobian determinant. This method does not work if we assume f € VVI P(Q,R")
for some p € [1,n).

In [17], Lemma 4.4, it was shown by applying Ziemer’s duality equation [20], [21]
that for spherical condensers the Kj-inequality is true even for continuous, open
and discrete mappings of finite distortion in "™~ (Q, R™) with locally integrable
inner distortion function. We will show that the space I/Vl1 e 1((2 R™) can be
considered as the borderline space for the K-inequality.
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Theorem 1.3. Let n > 3 and let € > 0. Then there is a homeomorphism f €
Wwhn=l=¢((—1,1)", R") with K; € L'((—1,1)") for which the K -inequality (1.1)
fails.

The main idea for the proof of Theorem 1.3 is to construct a homeomorphism
in Whn=1=¢((—-1,1)", R") with the given conformality conditions which does not
satisfy the Lusin’s condition (N) on almost every hyperplane with respect to
(n — 1)-dimensional Hausdorfl measure. In our construction we will actually fail
Lusin’s condition on every hyperplane. The reason for this comes from the proof
of Lemma 4.4 in [17], where the Sobolev regularity of a mapping was only used to
show that the mapping satisfies the condition (N) on almost every hyperplane.

In the proof of Theorem 1.3 we will apply probability-based techniques to cal-
culate LP-norms of distortion functions and differential matrices. More precisely,
we will apply the notion of expected value and the famous Khintchine inequality [6]
to calculate integrals in Theorem 1.3. As far as we know this is the first time that
the Khintchine inequality is used to study mappings of finite distortion.

2. Preliminaries

2.1. Notation

We will denote by C' := C(p1,...,px) a positive constant which depends only on
the given parameters pi,...pgr. The constant C' might change from line to line.
Furthermore, for given functions f and g we write f < g if there exists a positive
constant C' > 0 such that f(z) < Cg(z) for all points z. If both conditions f < g
and g < f are satisfied we denote f ~ g.

2.2. Mappings of finite distortion

Let Q C R™, n > 2 be a domain. We recall that a mapping f € VV&)S(Q,R") has
finite distortion if

(1) Ty € Lioe(9),

loc
(2) Jf(x) > 0 for almost every z € Q, and
(3) Df(zx) vanishes almost everywhere in the zero set of Jy(z) = det D f(x).

To such a mapping f we may associate the distortion function Ky : Q — [1,00] as
follows:

[D¥f()|™ s
K](IE) _ T (o)1 if Jf(m? > 0,
1, otherwise.
We call the function K; the inner distortion function of f. Above, D f stands for
the adjugate matrix of the differential matrix D f, and | A| stands for the operator
norm of a matrix A. When K; € L*°(Q2), we call the mapping f quasiregular.
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2.3. Condensers and the capacity

Suppose that @ C R™, n > 2, is a domain. A pair (G, E) of sets is called as a
condenser in §Q if

(1) G CcC Qis a domain, and
(2) E C G is a non-empty, compact subset of G.

The condenser (G, E) is called spherical if both G and E are balls centered at the
same point.

For a non-negative weight function w € L'(G), we define the w-weighted capac-
ity of a condenser (G, E) as

cap,, (G, E) := inf{ / [Vu(z)|"w(x)dz:u e CF(G),u>0and u >1on F } .
G
In the case w = 1 we write cap(G, E) instead of cap, (G, F).

2.4. Algorithm for constructing Cantor sets

Suppose that [—1,1]™ C R™, and denote by V the set of 2™ vertices of the cube
[—1,1]™. The sets
VE=Vx.--xV, keN,

will serve as the set of indices for our construction.
Next, suppose that {ax};2, is a decreasing sequence such that 1 = ag > a1 >
-+ >0, and define

T = 27]%1]c .

Set zp = 0. Then it follows that Q(zo,79) = (—1,1)™ and further we proceed by

induction. For v(k) = [v1,...,vx] € V¥ we denote w(k) = [v1, ..., vx_1] and define
1 1<
Zy(k) = Zw(k) T 5 Tk=1Vk = 20 + 2 ;rj—wj,

Qury) = Q2o 2 Far—1)  and  Quuy = Q(zo(k), 2 "ai) .

I
I

LI D
I

FIGURE 1. The cubes Qq(x) and Q. for k =1,2.
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Then for the measure of the k-th frame Q;(k)\Qv(k) we have

(2.1) L™( Qo) \Qu(r)) = 275 (afty — ag) -

Formally we should write w(v(k)) instead of w(k), but for the simplification of
the notation we will avoid this.
It is not difficult to find out that the resulting Cantor set

ﬂ U Qv(k) = C[{ak}zozo] =Cy X - %xCq
k=1wv(k)€Vk

is a product of m Cantor sets C, in R, and that the number of the cubes {Qy) :
v(k) € VF¥} is 2mk. Therefore, the measure of the Cantor set Cy := C[{ax }«] can
be calculated as

(2.2) L™(Cq) = lim 27%(2a,27F)™ = lim 2™a}".

k—oc0 k—o0

2.5. Canonical parametrizations

To prove Theorem 1.3 we need to find a way to map a Cantor set onto another
Cantor set by a homeomorphism. We will do this by using so-called canonical
parametrizations and canonical transformations, which were first introduced by
Hencl, Koskela and Maly in [5].

For a given z € R™ and r > 0 we denote

Qr(z):=[z1—rz1+7] X X[zm —Ty2m +7].
We define an affine map ¢g, .y : Q1(0) = Qr(2) as

0g, () () =re+z.

The mapping ¢, (») is called the canonical parametrization of the cube Q,(2).

Furthermore, if A = Q,/(2)\Q.(2) is a cubical annuli, we define

SDA(tvx) = (1 - t)<pQ’V‘(Z)(m) + t¢Q,,./(z)(m) ) (t,:ﬂ) € [O’ 1] X an(O) :

The mapping 4 is called the canonical parametrization of a cubical annuli A.

To calculate Dyy we may distinguish 2™ different cases, depending on which
side of the annuli we are. However, by symmetry it suffices to deal with the
case (t,x) € {(t,x) € [0,1] x 9Q1(0) : 1 = 1}. In this case, if we denote d :=
(1 = t)r + tr', then we may write

r—r 0 0 0 0
(r'—mr)ze d 0
Da(t,z) = (r—r)axzs 0 d 0 0
(r'—r)zm_1 0 0 d 0
(r=r)xm 0 0 0 d



600
and
1/(r"=r) 0O 0
—l‘g/d l/d 0

_ —x3/d 0 1/d
(Do (b)) msfd 01/
—l‘m_l/d 0 0
— T /d 0 0
2.6. Canonical transformation

Suppose that
A= Qp(2)\int(Qr(2))

S. HENCL AND V. TENGVALL

0 0
0 0
1/d 0
0 1/d

and B := Q#(2)\int(Qs(2))

are two cubical annuli. We define the canonical transformation of A onto B as

PaB = PBOW, .

PAB

Qr’ Qr

FIGURE 2. The canonical transformation of A onto B for m = 2.

Then

Doa g(pa(t,x)) = Dop(x,t) (Doa(z,t) 7"

As in Section 2.5, when we are calculating the matrix Dyy (@a(t,z)) we may
distinguish 2" different cases depending on which side of the cubical annuli A we
are. However, because of the symmetry we will again write the matrix formally
only in the first case of these 2™ different cases. Then we have

(522 — 9) (22— )
77 d _
DSDA,B(SOA(t,Z')) = (’l"'fr d.)(mS 23)
(i::: - g) (-rm—l — Zm—l)

) (@m — 2m)

where

0
d/d
0

0 :
djd -~ 0 0

0 d/d 0

0 0 d/d

d=1—t)r+tr and d=1—-t)7F4+t7.
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2.7. Mapping a Cantor set onto another

Consider two Cantor sets
Ca = Clar};lo] and Cp = C[{br}pl]

given by the algorithm introduced in the Section 2.4. Then we may define two
sequences of cubical annuli,

Ay = Qo \Int(Qury)  and By 1= Q) \ Int(Qu(r))
(k) (k)

where the cubes above are referring to the corresponding ones in the constructions
of the Cantor sets C4 and Cg.

We define the homeomorphism ® : (—1,1)™ — (—1,1)™ which takes C4 onto
Cp as the pointwise limit of mappings

N .

P (m) Zk:o Zv(k)evk Phyry Bor) (l) XAy (k) (l)v ifre U{sY:O Uy (k)evk Av(k)

N = ~
Dy (x), otherwise,

where x i denotes the characteristic function of a set E, and ® N is a linear mapping
which takes each cube Q) linearly onto corresponding cube Q,, (). To see that ®
defines a homeomorphism we refer the reader to [4], Section 4.3.

olo] | [o[o I

OA o|a o|a [0 l:‘l:‘ l:ll:‘ CB

olo] | [ofo I
oo oo I:‘l:‘ l:‘l:‘

FIGURE 3. Mapping the Cantor set C'4 onto Cp by using the mapping ®.

As in Sections 2.5 and 2.6, we may again distinguish 2" different case when we
are calculating D®. Again we calculate the differential matrix only in the first of
these 2" cases. In this case we have

C o 0 --- 0 O
(C — D) (x2 — 22) D 0 - = o
D¥(on, () = | (TP mT 0D 00
(C=D)(@nt—2n1) 0 0 = D 0
(C—D)(xm—2m) 0 0 0 D
where z = (21,...,2p) is the center of A,
o bp—1 — by and D — (1 — )by, + tbr_1

Ap—1 — Ak (]. — t)ak +tap_q '



602 S. HENCL AND V. TENGVALL

2.8. A Khintchine-type inequality

The Rademacher’s distribution is a discrete probability distribution such that

1/2, ifx=1,
(2.3) PX=2)=¢ 1/2, ifex=-1,
0, otherwise.

Furthermore, for a given 0 < ¢ < 1 we define the Bernoulli ¢-distribution to be the
discrete probability distribution defined by

q, ifx=1,
(2.4) P(X=2)=< 1—¢q, ifz=0,
0, otherwise.

Next, assume that X; and X5 are two independent random variables, X has
the Rademacher distribution and X5 has the Bernoulli ¢-distribution. If we define
Y := X1 X5, then the probability distribution of Y can be written as

q/2, ify=1,
) q/2, ify=-1,
0, otherwise.

From now on we will call this distribution RB(q)-distribution. Then we can give
a generalized version of the famous Khintchine inequality [6] in the RB(q)-setting.
In the case ¢ = 1 this result is the usual Khintchine inequality, see e.g. [6].

Lemma 2.1 (Khintchine-type inequality). Let 0 < ¢ < 1. Suppose that {Y3}32
s a sequence of independent and identically distributed random variables from the
RB(q)-distribution, and let {di}32, be a sequence of real numbers. Then for a
given p > 0 we can estimate the expected value as

26) B%q (Zdi) 1/2 < (EH deYk ’p] >1/p < /Alpﬂ (Zdi) 1/27

where the constants A, , and B, , are depending only on p and q.

Proof. For the convenience of the reader we include the proof of this estimate in
the case p > 1 which follows directly the approach of [19], Proposition 4.5. There
will be three steps in the proof:

(i) Let us first assume that p = 2. Recall that we may write
Yi = Xp1Xp2, keN,

where X}, ; are random variables from the Rademacher distribution, X}, o are ran-
dom variables from the Bernoulli ¢g-distribution, and all the random variables X}, ;
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are independent. By using this fact and independence we get

E ;deykf Zd2 Y2142 ded; EVR]E[Y;] =) di E[Y}]
k

k#j k

= Zdi E[Xk,l] Xk,2 =q Zdi
k k

(ii) For the upper bound we notice that for every ¢t > 0 we may estimate

tE)g dek HE tdek td}C + e*tdk) )

||::]

and by applying the numerical inequality %(ex +e )< ¢’ /2 we conclude
B[ St < 208 S
By applying Chebychev’s inequality to this estimate, we get

P(dey‘k > )\) < eftAE[etZk dek] < 2€7t)\+§ > dr
k

for any ¢ > 0 and A > 0. Taking ¢t = \/>", d? gives
D G
P(Y diVi > \) < 2e 22

and hence e
P(| Y diYi|>A) <de xR
k

By applying Cavalieri’s principle, we get

B S =p [ S 20
k
2
< 4p/ Nl IR ) — O (Zdi)p/z,
k

0

where the constant C' > 0 is depending only on p. This gives us the upper bound.

] )(pfl)/p

(iii) The lower bound follows from (i), (ii) and Hélder’s inequality:

St ~ B[] S awvi '] < (B[ T 1) (B[] S i
< (EH zk:dek |p] )1/p (Zk:di)lm,

and we have

()" 5 (01 ZaiP))” :
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2.9. Oscillating snowflake mapping on a Cantor set

Let Ca := Cl{ar}2,] be a Cantor set in R™. We recall that we may write every
index v € V¥ as

v = ('Ul,'UQ,---,'Uk) = ('Ul,la-"avl,ma'UQ,la-"7'02,7)’“-"avk’,la---avk’,m)a

=v1€V =vaeV =v, €V

where v, ; € {—1,1}. Thus, to every v € V¥ we may associate a number 6(v) €
{-1,1} as

d(v) := H Vi js
j=1

which will play a role of a sign function in our construction.

BIEY
FL]

BIEY
B

FIGURE 4. Sign of §(v).

+
L
N ES1}{ (53

Suppose that {di}7°, is a sequence of real numbers converging to zero. Then
we define a sequence {S;}72, of mappings S : (—1,1)" ! — R™T! as

Sk(T1, .o Ty Tiny1) = (mla co s Ty, Tl T Z 6(U)Hg)l:, (j)) )
veVk

where Z := (z1,...,z,,) and

di (a\ dy, infzeg}Qv|:272|, ifi‘EQv
Ay, () = { 0, otherwise.

FIGURE 5. Image of a 2-dimensional hyperplane for mappings S1 and Ss.
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Then we may define mappings Sy : (—1,1)"*! — R™*! ag
Sny(z):=(SyoSy_10---051)(x),

and set S() := limy 00 Sy(z). This limit exists for all € (—1,1)™! because
Z|dk Tk| = Z'dk 27k (Zk| < 0.
k k

Furthermore, it is not hard to see that S: (—1,1)™*! — S((—1,1)™*!) is a home-
omorphism.

2.10. Properties of DS

To calculate DS(x) we define, for every i = 1,...,m, the sets

Qi:{me@w‘ﬁ;i@ﬁ‘<1ENMj¢i}

T — (20)i
(@) == Qy N {xi > (20)i},
Q)" == Qi N {wi < (20)i},

and we define the indicator functions

1, ifze(Q)T,

5o, (@) =4 —1, ifze(Q,)",
0, otherwise.
Qv \\\ ///
N (1)
QDY % (@)

FIGURE 6. Sets (Q%L)~ and (Q%)" in the case m = 2.

For a given point x = (Z, yn41) € Qu(r) ¥ (—1,1), the differential matrix DSy (z)
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can be written as

1 0 0 0
0 1 0 0
DSk(jaxm-i-l) = ’
0 0 1 0
dk (511, dk (53 ce dk 621 1

where ), := c%v (2)0(v). Furthermore, by induction we conclude

Dsk(i‘a -rm—i-l) = DSy DSp—1

1 0 0 0 1 0 0 0
0 T . 0 0 0 1 0 0
0 0 1 0 0 0 1 0
A0y dyoy - dpdy 1 Dy, Di_, - Dpr; 1
1 o --- 0 0

0 1 .- 0 0

0 o --- 1 0

Dl D2 ... Dp 1

where DJ := Z;Zl dl(%( )(:2)5(1)[). We also notice that (% (%) and 0(v) are
vl v v

independent random variables, and thus it is easy to see that the probability mass

function of &7 can be defined as in (2.5) with ¢ = 1/(n — 1).

3. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. To capture the essential part of the
proof we will first give a detailed proof in the case n = 3, and then sketch the
proof in the case n > 4. Before starting the proof we will describe a basic building
block of our construction.

Let v > 0 be sufficiently small as described later. Let 0 < a <~v,0<n < 1/4
and 2a" < 1/2. Let h: [0,a] — [0, 1] be defined as

h(t) = min{ﬂ —t,log** % — log'/* %} .

Then h is a continuous, strictly decreasing function, piecewise C* with h(0) = 7
and h(a) = 0. We set ’
g(t) = 7“7: h(t) +a" .

Now |¢'(t)| = < |I'(t)], g(0) = 0 and g(a) = a”. We define a linear function

a" a —a
t) = t+ 2a"
plt) =5 —t+2a

Then p(2a") = 2a" and p(a) = a”.

26" —a
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Let us consider three anuloids 7' C S C R given by

1)2 +l‘2 < a2})

1)2 + 22 < (a")?}, and

1)? + 22 < (2a7)?}.

T:={[z,y,2] e R®: (\/y? + 22
S:={lz,y,2] eR®: (VVy?+ 22
] (

R:={[z,y,2] € R®: (\/y2 + 22

We will define a homeomorphism F : R — R such that F(p) = p for every p € OR
and F(0T) = 0S5 is given by the natural stretching. We will use the following
system of coordinates:

r radius in the anuloid: 7% = (\/y2 + 22 — 1) + 22,
a angle in the anuloid: sina = z/r,

B angle around the anuloid: sin 8 = y/v/y? + 22,

and we set

F(r,a,8) = [p(r),
F(r,a, ) = [g(r),
Lemma 3.1. Let F': R — R be as described above in (3.1), and let 0 < ¢ < 1.
Then

(1) F(p) =p for every p € OR,

(2) F is a homeomorphism,

(3) F(OT) =08, and

(4) |F(p) —p| =2 for every p € {[z,y,2] : y*> + 2% = 1 and z = 0}.

,p] for [r,a, 8] € R\T and
h

(3.1) yh(r)+ B8] for [r,a,pBleT .

o Q

Moreover, we have

1 1
|IDF|> < Ca*"log ~ + C ——— and
R a 10g1/2 1
(3.2) a

/ K9 < Ca®™ logl + Cq Mt
R a

where the constant C' > 0 depends only on n and §.

Proof. We start by verifying the conditions (1)—(4).

(1) By p(2a) = 2a™ we obtain F(p) = p for every p € OR.

(2) As p(a) = a" = g(a) and h(a) = 0, it is easy to check that the mapping is
continuous at 9T. By the first line in (3.1), and by applying the facts p(2a) = 2a”
and p(a) = a”, we easily see that F' is a homeomorphism of R\ T onto R\ S. It is
also a homeomorphism of 7" onto S as ¢ is increasing with ¢(0) = 0 and g(a) = a",
and in the 8 coordinate we have a simple rotation by the angle h(r).

(3) The property F(9T) = 0S easily follows from the arguments in (2).
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(4) We note that the middle circle ({y? + 22 = 1 and = = 0}) of R is rotated
by the angle of 7 = h(0) and hence we conclude that |F(p) — p| = 2 there.

We still have to verify (3.2). We express the derivative in the system of co-
ordinates given by [r,«, 5]. The radial direction (« and § fixed and r increases),
angular direction inside (r and § fixed and « increases) and angular direction
around (r and « fixed and f increases) are orthogonal and hence we can compute
|DF| or Jp with respect to these directions. The derivative in the corresponding
system of coordinates is given by (see Section 8 in [3] for similar computations)

pi(r) 0 0
F(r,a,B) = 0 p(r)/r 0 for [r,a, 8] € R\ T
0 0 M
and
g'(r) 0 K(r)
DF(r,a, ) = 0 g(r)/r 0 for [r,a, 8]l €T,
0 0 M
where
1—2a" 1+ 2a"
1+2a"_| |_1 2an"

Let us note that the middle term comes from the fact that the circle of radius 27r
is mapped to the circle of radius 2wp(r) (or 27g(r) in the second case) and hence
the derivative around this circle, which must be the same as the derivative in the
tangential direction to this circle, equals 2”2 (") The last term with M comes from
the fact that the length of any circle around our anuloid (in the § direction) has
length in [27(1 — 2a"),27(1 + 2a")] and it is mapped to the similar circle around
—as we are squeezing in the r direction this is not necessarily the same circle. Note
that as 2a” < 1/2 we have M ~ C for some constant C' > 0. Analogously we can
check that the normalization of the other terms in the matrix is done correctly.

It is easy to check that on R\ T we have p'(r) ~ C and p(r)/r > C and hence
|DF| ~ p(r)/r there.

Using polar coordinates it follows that

2 2a" 2
/ |DF|2§C p(;)SC/ p—(zr)rdr
R\T R\T T a r

20477 1 1
< Cazn/ —dr < Ca®"log - .
0 T a

As p/(r) ~ C it is easy to see that |[D#F| ~ p(r)/r and Jp ~ p(r)/r on R\T, and
hence

2a"
/ P <C ﬂ <C/ Tdr<Ca2"log—
R\T R\T

Now we estimate the derivative on 7. In the small part around r = 0 where
h(r) = m —r we have |¢'(r)| = %|h'(7‘)| = a"/m and also g(r)/r = a" /7. Tt follows
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that on this set we have |[DF| < C and

# 13 3n
(DTF) 6 @ g,
=y

~
IN

It follows that on this set we have
/|DF|2<C'|T|<C'(1 and /KI<C'(12 —on

and this causes no trouble for the estimate (3.2).

It remains to estimate the derivative on the main part of 7" where h(r) =
log'/4(1/r) —log"/*(1/a). We can clearly choose v > 0 small enough at the begin-
ning of the proof so that for every a < v we have

1 1 1
10g1/4 = 710g1/4 - — <10g1/4 E>(\4/§7 1) > = h(0) .

For a < 7, we thus consider integrals over the set where r € [a?, a], as this will

only enlarge the set. On this set we have

1 a” a” g(r) a”
/ / _a .y o a Lo
0~ oy 0= S0~ oty ana B2~
It follows that
|DF|* < C T rdr+C —rdr<C 1 1 Ca2n
a? T2 10g3/2 1 02 T2 og!/? 1 :

It is not difficult to check that |D#F| ~ |h’(7")|g(T—T) and Jp ~ |g’(r)|g(:) ~

a”|h'(r)|@ on this set, and hence

’ 7\ 0
[rpze [(EOlsy, o oo (1 ey,
a<n a?1r log / (1/r) 7

1 a
—nd —nd+2— 25
< Ca™ log35/4(1/a) /2 7”26 dr < Ca™"

3.1. Proof of Theorem 1.1 when n = 3

First, consider a sequence {b}7° , defined by

bk:%(uﬁ).

By applying the algorithm in Section 2.4 we construct a Cantor set

Cp = C[{br}r=]
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in [—1,1]3. Then, by (2.2) we get
L£3(Cp) = lim 23%(26,27%)3 = 1.
k—o0
Suppose that

Qury = Q2o 2 k1) and  Quuiy = Q20(r), 27 "),  wv(k) € V¥,

are the corresponding cubes in the construction of the Cantor set Cp.
We will now define our homeomorphism f. For this, set

| 1
ar = Z m1n{2 k4, (%(bk,1 — bk)) /777 (5} .
Given § < 1 we find 5 > 0 such that

—nd+2—-20>0.

For every k € N we consider homeomorphism as in Lemma 3.1 applied to a = ay,
scaled in each direction (both in the domain and in the target) by a factor of i?‘k.
We put a translated copy of such a homeomorphism in every

QL \ Qu,v € VF .

As QQZ < bg—1 — by there is enough room there (the volume of the anuloid is
roughly 27%=2 x 27%=2 x (27k=22(g;)")). In this way we obtain 23* copies of this
homeomorphism for each k € N and the supports of these maps are clearly disjoint.
These homeomorphisms are equal to the identity on the boundaries and hence we
can extend them by identity everywhere else and we obtain a homeomorphism of
(—1,1)% onto (—1,1)3.

We have 2%F cubes in the construction and by scaling by
directions we get by Lemma 3.1 that

2752 in all three

[ee]
1
2 kro—k—2\3( 27 il
/(_1,1)3|Df| SC;S(Q )(a,C logak—i—C 1/2L)<OO
as ap < i2fk4. Analogously we use —nd + 2 — 29 > 0 to show that
oo . 1
. < v a,'log— + Ca <00 .
63) [ KIOY s (allog o+ Cap )
(71»1)3 k=1 k

It remains to show that f is not differentiable at points of Cy = C, x C, x C,.
For every 2 € C4 and every k we can find v € V¥ such that z € Q,. In Q. \ Q
we have a translated and scaled copy of a homeomorphism as in Lemma 3.1 and
hence the distance of z to the support of this homeomorphism is less than 10-27%.
For p on the boundary of the corresponding anuloid we have f(p) = p, and as
f(x) = x we can see that if there is a classical derivative D f(x), it must be equal
to identity matrix D f(x) = I, as this happens on all scales k. On the other hand,
in the central circle of the anuloid our function is rotated and |f(p) — p| = $27%
there. This happens on all scales k and it follows that D f(z) cannot be I, and
hence f is not differentiable at x.
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3.2. Proof of the Theorem 1.1 when n > 4

The construction in the case n > 4 is very similar and therefore we only briefly
outline it. We work with anuloids like

R := {mER": ( $§+~-~+x%—1)2+x% < (2a”)2},
and again S has radius a” and T has radius a. We use spherical (n—1)-dimensional

coordinates inside the annulus (variables r, v, ..., ay,—2) and angle 8 around the
annulus as before.

We set

f=lp(r),a1,...,an_2,8] for|r,aq,...,an—9,0] € R\T and
f=lg(r),ar,...;an_o,h(r)+p] for[rai,...,en_2,81€T.

We only sketch the estimates of the most important terms. In 7" we have

g'(r) 0 0 B (r)
0 g(r)/r ... 0 0
Df: for [Taala"'aan—Qaﬁ]eTa
0 0 gr)/r 0
0 0 0 M

and hence |D¥ f| ~ |W'(r)|(g(r)/r)"~2 and J; ~ |g'(r)|(g(r)/r)"~? there. The
important part of the derivative (where h(t) = logl/4 L _Jog!/* 1) can be estimated
using (n — 1)-dimensional spherical coordinates as

1

n—2
EYm—y r dr < oo .

Df|" 1<C
/| f| a2 r"— 110g %

On this part we also estimate

(O (900)72
/KI<C/ = 1)n 7“) )r dr

(n=2)n \ s
(3.4) < C/ g T 1 arn . ) =2 dr < O gt 1=(n=1)8
n=Nrlog

Given 6 < 1 we can choose > 0 such that —né +n — 1 — (n — 1)d > 0. Other
integrals can be estimated analogously.

Similarly we construct a Cantor type set of positive measure in R and in each
of the 2%" sets Q) \ Qu, v € V¥, we put a translated and scaled (by a factor 27% in n
directions) copy of the homeomorphism as above. Analogously to the computation
in (3.3) we obtain, using —nd +n —1— (n —1)6 > 0 and (3.4), our conclusion.
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4. Proof of Theorem 1.3

4.1. Construction of the mapping
Let € > 0 and suppose that n > 2. We define a homeomorphism f: (—1,1)" — R"”
of finite distortion as follows:

(1) Define the sequences {ay}72, and {bx}7°, by setting

1 1 1
T and b= (14 ),
(k+ 1)~ an =g Ut log(e + k)
where a > 0. It is easy to see that for every k > 1 we have

1

klog®(e + k)

ap =

(4.1) ap_1 — A ~ and bgp_1 — by ~

ka+1
(2) Denote by

the Cantor sets in R"~! given by the sequences {ay}$, and {b}2, above. For
each index v(k) € V¥, k € N, we denote by

Ay 1= Qo \Int(Qury)  and  Byry 1= Q) \ Int(Qu(r))

the corresponding (n — 1)-dimensional cubical annuli in the construction of the
Cantor sets C'4 and Cpg. Then for k > 1 we have

En(A'v(k:) X (_L 1)) = 2—k(n—1)+1(a;€l:11 - a;clil)

—k(n—1
(42) — 27k(n71)+1( 1 B 1 ) - 2 ( )
(k _ 1)a(n—1) fo(n—1) fa(n—=1)+1"
and similarly,
27k(n71)
- klog®(e + k)

(3) Suppose that ®: (—1,1)"~1 — (—1,1)"~! is the transformation, introduced
in Section 2.7, mapping the Cantor set C'4 onto Cp. Define a homeomorphism
H: (—1,1)" = (=1,1)™ by

H(zy,...,xn) = (P(x1,...,Tpn-1),Tn) .
Then, up to a permutation of the (n — 1) first coordinate axes, for every point
r € Uyeyr Ay we have

En(Bv(k) X (_L 1)) = 27k(n*1)+1(bz:11 - bz_l)

(C' = D) (w2 — 22) D 0 - + ‘90

DH(J;) - : : . : 0 )
(C - D) (-rn—Q - Zn—2) 0 0 D 0 0
(C_D) (-rn—l—Zn_l) 0 o --- 0 D O
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where b ) ) )
L T D:(l—t)k+tk—1

C= ,
ap—1 — Qg (]. — t)ak + tag—1

for some ¢ € [0, 1] and z is the corresponding center (see Section 2.7). In particular,

br br—1 —br }Nka,

\DH ()| ~ max{
ak Af—1 — Gk

by =2 /b1 — by, ka(nfl)
(43) DHH @) ~ (2)"7 (2 L B
ak ag—1 — Ak log*(e + k)
b \N""2/bi_1 — by ka(nfl)
Ja(z) ~ | — ~ .
H( ) (ak> (ak_l—ak> ]0g2(6+k)
(4) Define a sequence {d;}7°, of real numbers by
1
dy =~
klog(e + k)

and suppose that S: (—=1,1)" — R" is the oscillating snowflake mapping on the
Cantor set C'p generated by the sequence {d;}72, (see Section 2.9). Then for every
point # € J,cyr Ayr) we have H(z) € |J,cyr By and thus

1 0 -+ 0 0
o 1 -~ 0 0

DS(H(x) =1 =+ o i,
o 0 -~ 1 0
D D ... Dp'o1

where D} = Zle dléé)(v (2)d(v;) (see Section 2.9). Therefore,

(44)  |DS(H(z))| = max |Di|, |Dﬁ5(H(x))|:max{1,lmax D} |}

1<j<n—1 <j<n-—1

Js(H(z))=1.

Recall that the distribution of 52?@1 (2)d(v;) is given by the RB(q)-distribution

(see end of Section 2.10). By applying Khintchine’s inequality Lemma 2.1 for a
given p > 0, we get

n—1 n—1

(45) [(DDJ )] <con S Eir 5 (@)

(5) Define f: (—1,1)" — R" as
fx) = (So H)(x).
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Then, for almost every point = € [, cyx Ayr) We have, using (4.3), that

D) = IDS(HE) DA <k (321D

ka(nfl)
(4.6) Jy(z) = Js(H(x))Ju (z) ~ m»
k(x(n 1) n—1
D8 (@) = IDSUH @)D HE) S oz (Zw )
Particularly,
O P S -
(4.7) Ki(z) = T T S < T (Z|D )

4.2. Properties of the mapping

Next we will show that f is a homeomorphism for which Lusin’s condition ()
fails on hyperplanes, f € Whin=1=¢((—1, 1), R"), K; € L*((—1,1)") and f maps
hyperplanes, perpendicular to n-th coordinate axis, to sets of infinite (n — 1)-di-
mensional Hausdorff measure.

(1) It is clear that f is a homeomorphism as a composed mapping of two homeo-
morphisms. Moreover, it is easy to see that f cannot satisfy Lusin’s condition ()
on any hyperplane H; = {z € (-1,1)" : a,, = t}, t € (—1,1), with respect to
the (n — 1)-dimensional Hausdorff measure. We know that the H"~! measure of
the (n — 1)-dimensional sets

Ch={re(-1,1)":(21,...,2,_1) € Cp and z,, = t}
is positive. Since S may only increase H" !, we have, for every set
={ze(-1,1)": (z1,...,2n-1) € Cy and z, = t},

that H"~1(CY) = 0 and H"1(f(CY)) = HH(S(CY)) > 0
(2) Let us denote Uy := Uyyevr Ay x (—1,1). By applying (4.2), (4.6)
and (4.5) with exponent p =n —1 — ¢ we get

/(_1 1)n|Df|”—1—s -~ Zﬁn(Uk)E[ﬂDf(lL'”n_l_s e Uk}]

—k(n—1) k(n—1) 1—5) n—1 . \n—1—¢
n— a(n—1—¢ J
~ Z fo(n—1)+1 2 E{k (Z |Dk|> ]
j=1
” 1 n—1— 6 [e’¢)
|Dj | (loglog(e + k)™=
5 Z k1+a€ ~ Z liras <00,
= k=1

which implies that f € WhHn=1=¢((—1,1)" R").
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(3) Similarly, by applying (4.2), (4.5) with exponent p = n and (4.7) we get

/( e K; = Zﬁ"(Uk)E[{KI(x) cx € U}l

k=1
92— k(n— 3 ko a(n—1) n—1
NZka(n 1)+1 2k 1)E{10g €+k‘ (Zl ) :|
n 1
|Dj " = (loglog(e 4 k))™/?
NZ klog (c+ k) Nzl Fog(e + k) O

which implies that Ky € L'((—1,1)").
(4) Suppose that ¢ € (—=1,1). Then for the image of the (n — 1)-dimensional
hyperplane H, = {(2,t) : & € (—8/10,8/10)"~ '} we have that

WS (HY) = W S(HD) = Jim 1 Sy (H)
2 lim Z 'H”_l(SN(Qv(k)))

~ N—oo v
:]\}gnooHnﬂ( U Q«;(k)) ( |DSN(y)| : y € U Qu(k x{t}})
veVN veVN
Nngnoon" V(2627 V)2 by, 27 E(| DSy |) ~ Jim IE(|DSN|)

and it remains to show that this expected value of the derivative is infinite. Us-
ing (4.4) it is enough to show that for every j € {1,n — 1} we have, using Khint-
chine’s inequality Lemma 2.1 for p = 1 similarly to (4.5),

(ZdQ) . ~ (loglog(e + N))l/2 N=eo
Thus H"~'(f(H,)) =

4.3. Failure of the Kj-inequality for f

In this section we will show that Kj-inequality (1.1) fails for f. This will end the
proof of Theorem 1.3. The failure of the Kj-inequality is given in Proposition 4.3.
In its proof, we will use the following two technical lemmata.

Lemma 4.1. Let A C R"~! be an open and bounded set. Suppose that ug: A — R
is a linear affine function and for each h > 0 define up : A — R as

up(z) = up(z) + h.

Suppose that G5 = { (x,un(x)) : & € A} is the graph of up on A, and let n be the
unit normal vector of the surface G,,. Denote by

Sh::{zeg z—i—ntegA for somet € R}
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the shadow of the set Q;fh on g;j‘o. Then for a given € > 0 there exist he > 0 such
that, for all 0 < h < he,

M (Sh) > (1 - )H"H(Gy,)

Lemma 4.1 follows easily from the fact S; ,* Sy, and we leave the proof for
the reader. In the next lemma we show that if we have some linear function and a
small slab between a small shift of this function, then it actually almost minimizes
some capacity among all continuous deformations of this slab.

FIGURE 7. The shadow S} of the graph th on Q;?O.

Lemma 4.2. Let A C R™™! be an open set and let D CC A be an open and convex
subset of A. Suppose that u: A — R is a linear affine function, and let f: A —- R
be an arbitrary continuous function such that

flz)=wu(x) forallxe A\D.

For h > 0 and for a given continuous function g: A — R define the number
Ch(g) := inf {/ [Vo(x)|"dz :v =0 on Qé) andv>1 on Qﬁ_h} ,
DxR

Then there exists hg > 0 such that
(4.8) Ch(u) <2"Cu(f),
for all 0 < h < hg.

Proof. Let 0 < e < 1/2, and suppose that S}, is the shadow of the set Qﬂrh on GP.
Due to Lemma 4.1 we may assume that there exist h. > 0 such that

anfl(Sh)

(@.9) HTHGY) <
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for all 0 < h < h.. Let us denote [ := dist(gf,gﬂ_h). By applying Fubini’s
theorem and (4.9) we get

[ H" 1 (Sh)

(4.10) hH"—l(D):/D(u+h)—/Du=m"—1(g5) <l

forall 0 < h < he.
Let n be the unit normal vector of G2 pointing in the direction of the set Q{?_HL.
Suppose that v: D x R — [0, 1] is an admissible test function for Cp,(u) such that

(i) v(x +tn) = t/I for all points € G2 and for all t € (0,1),
(ii) v(z) = 0 for all points x € D x R which are bellow the graph G2 and
(iii) v(xz) =1 for all points # € D x R which are above the graph G2, , .

FIGURE 8. Setting in Lemma 4.2.
Then it follows from (4.9) that for 0 < £ < 1/2 we have, using |Vv| = 1/,

n—1 D n—1
(4.11) Ch(u) S/ |Vo|” :/ L, _ H 7_(1gu ) < 2H Tsfh(u))
DxR Gp [ [n [n

for all 0 < h < h..
Let f: A — R be a continuous function as in the statement of lemma. Then
we may define a mapping F': A x R — R" by setting

F(zy, ... wn) = (1, s o1, T + f(@1,0201)) -
If we apply (4.10), we get

lHn—l(Sh)
1—¢

(12)  H(F(D x (O,h)))=/D(f+h)—/Df:hH"‘1(D)<
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for all 0 < h < h.. For each point z € QE let us define the 1-dimensional set I, as
I,={z€ F(D x (0,h)): z=x+tn for some t € R}.

Then, if w is an admissible test function for Cy,(f), we have

/ [Vw| >1
I

@

for every = € Sj. By integrating both sides over the set Sp, using Holder’s in-
equality, Fubini’s theorem and (4.12), we have

HY(S,) < /

S

[l < gm0y ([ var)”

(L[ o)

Thus, by assuming 0 < € < 1/2, we get

n—1 S
H ( h) </ |V’U)|”,

anl lnfl -

and if we take the infimum over all admissible test functions w, we conclude that

H”_I(Sh
(4.13) W < Cu(f),
for all 0 < h < h.. Claim follows now from (4.11) and (4.13). O

Proposition 4.3. Let 6 := 1/10 and let [ be the mapping given in Section 4.1.
For a given h > 0 define a condenser (Ey, Fg) by setting

Eg:i=(=1+4251-286)""" x (-1+26,0), and
Ep = (-14+61-8""1 x(=1+04,h).
Then

- cap(f(En), f(Eo)) _ ~
h—0 capKI(Eh,Eo)

Proof. Fix M > 1. For t € R denote E; = (—1425,1—28)""!x {t}, and whenever
t # s define

G@D(f(Er), f(EL) = inf / Vu(@)" de,

(-1,1)"~1xR

where the infimum is taken over all functions u € C°°((—1,1)""! x R) such that
ul oy =0and ulyp ) =1
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As§ = 1/10, we know that Cy4 C (=1 + 4,1 — &))", where Cy4 is the given
Cantor set of zero measure in the construction of f. Then it is easy to see that it
suffices to show that there is hys > 0 such that

cap(f(En), f(Eo))
capg, (En, Eo)

(4.14) > M,

forall0 < h < hy.

To prove (4.14) suppose that u is any test function which goes linearly from 1
to 0 along the line segments parallel to the n-th coordinate axes. We know by the
construction that f =& o H behaves the same way on each hyperplane and hence
the integral of K; over every (n — 1)-dimensional hyperplane (—1,1)"~1 x {t},
0 <t < h, is the same (see Section 4.1). By applying Fubini’s theorem we get

(4.15) capy, (En, Bo) < / V(@) K (z) de
(~1,1)n 1><(0 h)

Ki( C
-/ Wa-r [ [ Ki< o
(=1,1)m-1x(0,n) P (=1,1)m =t x{t} h

where the finite constant Cy := Cy(n,d, K;) > 1 depends only on n, § and on the
integral of K over the level set (—1,1)"~! x {0}.

Next, we denote fy := Sy o H. Then the calculation in Section 4.2 (4) shows
us that there is Ny > 1 such that

(4.16) HH(fn(Eo)) = H*H(Sn(Ep)) > 2" MCy

for all N > Ny. Let us fix N > Nj.

As the mappings in the construction of Sk are piecewise affine, we may divide
the sets Ey and E}, into ﬁnltely many palrvvlse disjoint, open, convex and maximal
(n — 1)-dimensional sets { EJ}! L_, and {Ej},_, such that:

(i) Eo = U;zl Ef) and Ej, = U;zl E{L, where the closure is taken in (—1,1)"7! x
R instead of R".

(i) B} =B} +hforallj=1,...,1

(iii) The sets ES, j=1,...,1, do not depend on h.

(iv) The restriction of Sy on each set ES and E,jl can be written as
Sn(&) = (&, Lj(z)) for all & € ) and
Sn(#) = (2,Lj(#) +h) forall & € EJ,

where L; : E] — R is a linear affine function.

Fix e € (0, 1/2) Denote by n; the unit normal vector of QL and S} the shadow of

the graph QL+h on QL (see Lemma 4.1). Then by applying Lemma 4.1 and (4.16)
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we may find he > 0 such that

l l l

SSHHS) 2 (- (S H G = (o) (M S (B)

j=1 j=1 j=1
(4.17) =(1—e)H" *(Sn,(Eo)) > 2"MCy,

for all 0 < h < h.. Fix 0 < h < he, and for each j = 1,...,[ define
Ijh = {I. : I, is a line segment parallel to n; starting at a point z € Sg

;
and ending to a point z + n;t € gfih for some t € R }.

Then, if u is an admissible test function for cap(fn (Eo), fx(En)), we have
/|Vu| >1 forallle Uélej.
I

By integrating over each (n — 1)-dimensional set Sg, applying Holder’s inequality
and using the fact that the length of each line segment I € Uélej is at most h,
we get

l

l
n—1/qJ _
;H (Sh)S;/s;;/zzwu'_/u;1sﬂhj/zz|vu|
! -\ (n=1)/n 1/n
< (wyoweusp) T fivar)
j=1

which implies together with (4.17) that

2" MC, .
h"*lo §/|Vu(m)| dz.

Thus, by taking the infimum over all admissible test functions u, we get

2"MCy

hn—l
The first n — 1 coordinate functions of f agree with the first n — 1 coordinate
functions of fy, and the last coordinate mapping of f agrees with that coordinate
of the piecewise linear mapping fn close to 9(—1+ 26,1 —28)"~1 x (0, hg). Hence
we can apply Lemma 4.2 (for the last coordinate mapping) and (4.18) to derive

(119)  cap(F(En). F(Bn) = 27 cap(fu(Bi), i (B) 2 it

(4.18) cap(fn(En), fn(Eo)) >

Finally, by putting together estimates in (4.15) and (4.19), we get

cap(f(En), f(Eo))
capy, (En, Eo)

> M,

and the claim follows. O
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