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The Whitney extension theorem

in high dimensions

Alan Chang

Abstract. We prove a variant of the standard Whitney extension theorem
for Cm(Rn), in which the norm of the extension operator has polynomial
growth in n for fixed m.

1. Introduction

Let E ⊂ R
n be a compact set. Let F : Rn → R be a Cm function. For each point

y ∈ E, define

Py(x) =
∑

|α|≤m

∂αF (y)
(x − y)α

α!
.(1.1)

Thus, we obtain a Whitney field, that is, a family (Py)y∈E of polynomials of de-
gree ≤ m indexed by the points of E. We write F |E = (Py)y∈E to indicate that
the Whitney field (Py)y∈E arises from the function F .

We would like to know which Whitney fields arise from a Cm(Rn) function in
this way. Taylor’s theorem gives us some necessary conditions, namely:

sup
x∈E

|α|≤m

|∂αPx(x)| and sup
x,y∈E
x �=y

|α|≤m

|∂α(Px − Py)(x)|
|x− y|m−|α| are both finite,(1.2)

lim
|x−y|→0

|∂α(Px − Py)(x)|
|x− y|m−|α| = 0 for all |α| ≤ m.(1.3)

The Whitney extension theorem asserts that these necessary conditions are in fact
sufficient [5]. We can view the extension from Whitney fields to functions Rn → R

as a linear map between the normed spaces Cm(E) and Cm(Rn), which we define
now.
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Definition 1.1. Let m ∈ Z≥0. Suppose that F : Rn → R is m-times continuously
differentiable. We say F ∈ Cm(Rn) if M := sup{|∂αF (x)| : x ∈ R

n, |α| ≤ m} <∞.
The Cm(Rn) norm of F is M .

Definition 1.2. An element of Cm(E) is a Whitney field (Py)y∈E such that (1.2)
and (1.3) hold. The Cm(E) norm of (Py)y∈E is the greater supremum in (1.2).

Note: We will write (Py) as shorthand for (Py)y∈E . We will also write f to
denote a Whitney field (Py).

In this paper, we prove the following.

Theorem 1.3 (Whitney extension theorem, polynomial bound on norms). There
exists a linear operator Cm(E) → Cm(Rn) such that if f ∈ Cm(E) is mapped to
F ∈ Cm(Rn), then

F |E = f and F has derivatives of all orders on Ec.(1.4)

Furthermore, the norm of the operator is at most Cn5m/2, where C depends only
on m.

A linear operator Em satisfying (1.4) is an extension operator. In the well-
known proof of the Whitney extension theorem, the bound on the norm of the
operator grows exponentially with the dimension n. Consequentially, our main
result in this paper is the construction an extension operator Cm(E) → Cm(Rn)
that yields a bound having polynomial growth in n for fixed m.

In the standard proof, the exponential growth of the the dimension is due
to the behavior of “cutoff functions” (defined in Section 2) of “Whitney cubes”
(defined in Section 3) near their boundaries. We take care of this by averaging
over translations of the cubes, which eliminates the problematic behavior.

Remark 1.4. Whitney [5] gave the original proof of the theorem. Glaeser [1]
presented a version of the Whitney extension theorem using the space Cm,ω(E),
where ω is a modulus of continuity.1 Although we will work mainly with Cm(E),
we will invoke Glaeser’s result in the proof of Lemma 4.5 to show that the average
over a particular family of functions satisfies certain regularity conditions.

In this paper, we often refer to the proof given in Stein’s textbook [3]. Stein
presents a proof of Glaeser’s version of the theorem; to obtain a proof of the Cm(E)
version, we simply drop all instances of ω from the proof.

Remark 1.5. For Cm(Rn) and Cm(E), there are many equivalent choices of norms.
For example, we could also define the Cm(Rn) norm of F via

sup
x∈E

( ∑
|α|≤m

|∂αF (x)|2
)1/2

.

However, the choice of norm does not affect our main result. (The exponent 5m/2
in Theorem 1.3 might change, but the bound will remain a polynomial in n.)

1The space Cm,ω(E) is referred to as Lip(m + ω,E) in Section 4, (4.6) of [3].
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Remark 1.6. On C1,1(Rn), the space of functions with a Lipschitz derivative, we
could define a norm via the Lipschitz constant of the derivative:

‖F‖C1,1(Rn) = sup
x,y∈R

n

x �=y

|∇F (x)−∇F (y)|
|x− y| .

Given a Whitney field (Py) ∈ C1,1(E), the papers of Le Gruyer and Wells [2], [4]
calculate exactly the least possible C1,1(Rn) norm for any extension of (Py) and
provide a construction that attains this minimum. This is a remarkable result, but
the method does not seem to apply to other cases.

Remark 1.7. Unlike Le Gruyer, we are not finding an extension with minimal
norm. Instead, we are computing the least possible norm up to a constant that
depends only on the dimension n.

That is, suppose our extension operator (from Theorem 1.3) maps (Py) ∈
Cm(E) to F ∈ Cm(Rn), while F̃ ∈ Cm(Rn) is some competing extension. The
composition of restriction followed by extension gives us F̃ 	→ (Py) 	→ F . It is a
simple consequence of Taylor’s theorem that the norm of the restriction operator
is O(nm). (See Section A.) Combining this result with Theorem 1.3 guarantees
that ‖F‖Cm(Rn) ≤ Cn7m/2‖F̃‖Cm(Rn), where C only depends on m. Thus, F has

the least possible Cm norm up to a factor of Cn7m/2.

2. Cutoff functions

The proof of the Whitney extension theorem relies on cutoff functions. (We say
φ : Rn → R is a cutoff function of the cube Q ⊂ R

n if φ is 1 on Q and 0 outside
of Q∗, where Q∗ is a cube with the same center as Q but with a larger side length.)

2.1. Construction of cutoff functions

To construct cutoff functions, we start by fixing a σ : R → R with the following
properties: (1) σ(x) = 0 if x ≤ −1, (2) σ(x) = 1 if x ≥ 0, (3) σ is nondecreasing,
(4) σ ∈ C∞.

Next, let t ∈ (0, 1/4). (Eventually, we will choose t = 1/n, but for most
of the paper, t will be a parameter independent of n.) Consider the function
ϑ : R → R, where ϑ(x) is given by 0, σ(x/t), 1, σ((1− x)/t), 0 on (−∞,−t], [−t, 0],
[0, 1], [1, 1 + t], [1 + t,∞), respectively. Then ϑ is a smooth cutoff function of the
unit interval [0, 1].

For x = (x1, . . . , xn) ∈ R
n, we define Θ(x) = ϑ(x1) · · ·ϑ(xn). Then Θ(x) is a

smooth cutoff function for the unit n-cube [0, 1]n. For b = (b1, . . . , bn) ∈ R
n and

s > 0, the cube Q = [b1, b1 + s]× · · · × [bn, bn + s] will have cutoff function

φQ(x) = Θ
(x− b

s

)
.(2.1)

Note that ϑ and Θ both depend on t, but we do not write this dependence explicitly.
The parameter t affects how quickly the cutoff functions “drop from 1 to 0.”
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2.2. Estimates on sums over cutoff functions

Consider a tiling of Rn by cubes of unit length. We would like to obtain estimates
on sums over cutoff functions of these cubes (since such estimates would also give
us estimates on sums over a subset of the terms).

Let ψ : R → R be given by ψ(x) = 1 if dist(x,Z) ≤ t and ψ(x) = 0 otherwise.
(In other words, ψ is the characteristic function of “numbers close to the integers.”)

Lemma 2.1. For all x = (x1, . . . , xn) ∈ R
n and multi-indices α,

∑
a∈Zn

|∂αΘ(x− a)| � t−|α|
n∏

i=1

(ψ(xi) + 1).(2.2)

The implied constant does not depend on n or t.

Proof. Because Θ(x) = ϑ(x1) · · ·ϑ(xn), it suffices to prove the one-dimensional
version of (2.2). That is, we need to show for all x ∈ R and j ∈ Z≥0,∑

k∈Z

|ϑ(j)(x− k)| � t−j (ψ(x) + 1).(2.3)

If dist(x,Z) > t, then x ∈ (a + t, a + 1 − t) for some a ∈ Z and we have∑
k∈Z

|ϑ(j)(x − k)| = |ϑ(j)(x − a)| ≤ 1 (since ϑ is identically 1 in a neighborhood
of x− a).

If dist(x,Z) ≤ t, then x ∈ (a− t, a+ t) for some a ∈ Z and we have∑
k∈Z

|ϑ(j)(x− k)| = |ϑ(j)(x − a)|+ |ϑ(j)(x − (a− 1))| ≤ cjt
−j ,

with cj = 2 supx∈R
|σ(j)(x)|. Putting the two cases together gives us (2.3). �

Remark 2.2. For the rest of this paper, unless otherwise noted, the implied
constant in an expression A � B can depend only on σ, m and |α|.2 In particular,
the constant cannot depend on n or t.

3. The Whitney cube partition and the extension operator Em

3.1. Notation and basic properties

We will write the Whitney cube partition of Ec as Ec =
⋃∞

k=0Qk, where each
Qk ⊆ R

n is a closed cube with sides parallel to the axes and for j �= k, the interiors
of the cubes Qj and Qk are disjoint. The Qk are the Whitney cubes. Section 1
of [3] gives a construction of the Whitney cube partition. For this paper, it is
not important to know the details of the construction. We will rely mainly on the
properties listed below in Lemma 3.1.

2It might seem unnecessary to state that the implied constant can depend on |α|, since in
most cases we work with |α| ≤ m. However, in certain situations, we work with derivatives α of
all orders, including |α| > m.
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We let φk(x) denote the cutoff function of the cube Qk, given by (2.1). Then
we set S(x) =

∑
k φk(x) and φ

∗
k(x) = φk(x)/S(x). (Hence {φ∗k(x)}k is a partition

of unity.) We define the closed cube Q∗
k as follows: if Qk is centered at x and has

side length s, then Q∗
k is centered at x and has side length s(1+2t). Note that Q∗

k

contains the support of φk (and φ∗k).
We will need some auxiliary functions to be used in our estimates:

• δ(x) = dist(x,E).

• Ψ : Ec → R is given by

Ψ(x) =
∑

c′1δ(x)n−1/2 ≤ p ≤ c′2δ(x)n−1/2

[ n∏
i=1

(
ψ
(xi
p

)
+ 1

)]
(3.1)

where the sum over p is over powers of 2. Also, in (3.1), c′1 and c
′
2 are absolute

constants that will be specified later, in Section 3.2. (Recall that ψ is defined
in Section 2.2.)

Some basic properties of the Whitney cube partition include the following,
which we repeat from [3].

Lemma 3.1 (Basic properties of Whitney cubes).

• All Whitney cubes are dyadic. (We say a cube Q ⊂ R
n is dyadic if its side

length s is a power of 2 and its vertices all lie in the lattice sZn.)

• If two Whitney cubes of side lengths s1 and s2 intersect at their boundaries,
then 1

4s2 ≤ s1 ≤ 4s2.

• If two distinct Whitney cubes, say Q1 and Q2, are such that Q1 and Q∗
2

intersect, then Q1 and Q2 intersect at their boundaries.

• Let x ∈ Q∗
k. Let s be the side length of Qk. Then

δ(x) ≈ dist(Qk, E) ≈ dist(Q∗
k, E) ≈ diam(Qk) ≈ diam(Q∗

k) ≈ sn1/2,(3.2)

where diam(Q) denotes the diameter of the cube Q, and A ≈ B means both
A � B and B � A hold. The implied constants are absolute.

3.2. Estimates on the partition of unity

We need the following estimate on the partition of unity.

Lemma 3.2. Let x ∈ Ec, let Q be a Whitney cube that contains x, and let s be
the side length of Q. Then∑

k

|∂αφ∗k(x)| � (st)−|α| Ψ(x)|α|+1.

Following our conventions on the use of � (see Remark 2.2), the implied constant
does not depend on n, t or s.
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Proof. Observe that ∂αφk(x) �= 0 implies x ∈ Q∗
k. Then by Lemma 3.1, the side

lengths of Q and Qk differ by at most a factor of 4. Thus, we have

|∂αS(x)| ≤
∑
k

|∂αφk(x)| ≤
∑

s/4≤p≤4s

∑
a∈Zn

∣∣∣( ∂

∂x

)α

Θ
(x− a

p

)∣∣∣,(3.3)

where p ranges over powers of 2. By (3.2), there exist absolute constants c′1
and c′2 such that s/4 ≤ p ≤ 4s implies c′1δ(x)n−1/2 ≤ p ≤ c′2δ(x)n−1/2. Then
the right-hand side of (3.3) is � (st)−|α|Ψ(x) by Lemma 2.1. This implies that∣∣(∂/∂x)α[S(x)−1]

∣∣ � (st)−|α|Ψ(x)|α|, and the lemma follows. �

3.3. The extension operator Em

Since E is closed, for each k, we can find a point pk ∈ E such that dist(Qk, E) =
dist(Qk, pk). Then for f = (Py) ∈ Cm,ω(E), we set

Em(f)(x) =

{
Px(x) if x ∈ E,∑′

k Ppk
(x)φ∗k(x) if x ∈ Ec,

(3.4)

where the
∑′

means to sum over cubes Qk such that dist(Qk, E) ≤ 1. The Whitney
extension theorem asserts that Em is a linear extension operator Cm(E) → Cm(Rn).
To determine the growth of the norm of Em when n increases, we need more precise
estimates.

Lemma 3.3. Suppose f = (Py) ∈ Cm(E) with norm ≤ 1. Let F = Em(f). Let
x ∈ Ec and a ∈ E. Then

|F (x) − Pa(x)| � nm|x− a|m.(3.5)

|∂αF (x) − ∂αPa(x)| � nm+|α|/2t−|α|Ψ(x)|α|+1|x− a|m−|α| for |α| ≤ m.(3.6)

|∂αF (x)| � nm+|α|/2t−|α|Ψ(x)|α|+1 for |α| ≤ m.(3.7)

|∂αF (x)| � nm+|α|/2t−|α|Ψ(x)|α|+1δ(x)−|α| for |α| ≥ m+ 1.(3.8)

Proof. The proof is identical to the one given in Section 2.3.2 of [3]. To track the
dependence on n and t, we note the identity

∑
|β|=r 1/β! = nr/r! and use (3.2)

and Lemma 3.2 whenever necessary. �

4. Averaging

In this section, we introduce a parameter b ∈ R
n to Em and discuss averaging over

this parameter.

Definition 4.1. Let τ > 0. We say a function F : Rn → R is periodic with period τ
if x− x′ ∈ τZn implies F (x) = F (x′).

Definition 4.2. LetB ⊂ R
n be a measurable set. Then for any function g : B → R,

we denote the average of g on B by 〈g(b)〉B = 1
|B|

∫
B
g(b) db. Furthermore, if

g : Rn → R is periodic with period τ , we set 〈g(b)〉 = 〈g(b)〉[0,τ ]n .
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4.1. The dependence of Em on the choice of origin

The Whitney cube partition of Ec depends on the choice of origin since only certain
cubes in R

n are dyadic, and only dyadic cubes are allowed to be Whitney cubes.
As a result, the extension operator Em depends on the choice of origin. So far, we
have been working with respect to the standard origin 0 = (0, . . . , 0). To make
this dependence explicit, we rewrite (3.4) as

Em,[0](f)(x) =
∑′

k
Ppk,[0]

(x)φ∗k,[0](x) if x ∈ Ec.(4.1)

To denote an extension operator constructed with respect to another origin b ∈ R
n,

we replace all the [0] subscripts in (4.1) with [b].
When shifting the origin, the proper analogue of Ψ(x) is

Ψ[b](x) =
∑

c′1δ(x)n−1/2 ≤ p ≤ c′2δ(x)n−1/2

[ n∏
i=1

(
ψ
(xi − bi

p

)
+ 1

)]
.(4.2)

The x − b arises because the dyadic cubes for the origin b can by obtained by
translating the dyadic cubes for the standard origin by b. Thus, we have the
following version of (3.7) and (3.8).

Lemma 4.3. Suppose f = (Py) ∈ Cm(E) with norm ≤ 1. Let F[b] = Em,[b](f).
Then

|∂αF[b](x)| � nm+|α|/2t−|α|Ψ[b](x)
|α|+1 for x ∈ Ec, |α| ≤ m.

|∂αF[b](x)| � nm+|α|/2t−|α|Ψ[b](x)
|α|+1δ(x)−|α| for x ∈ Ec, |α| ≥ m+ 1.

4.2. The averaged extension operator 〈Em〉
We define the operator 〈Em〉 acting on Cm(E) as follows:

〈Em〉 (f)(x) = 〈Em,[b](f)(x)
〉
.(4.3)

The definition above requires that the map b 	→ Em,[b](f)(x) be periodic for all x.
We show that this is indeed the case.

Lemma 4.4. Fix x ∈ Ec. Then there exists τ > 0 and a neighborhood N of x
such that τ is a power of 2 and for each y ∈ N , the function b 	→ Em,[b](f)(y) is
periodic of period τ .

Proof. Fix an x ∈ Ec and let s[0] be the side length of a Whitney cube (for the
standard choice of origin) that contains x. For any other choice of origin, any
Whitney cube that contains x will have side length between 1

4s[0] and 4s[0].
We claim that if we translate the origin b by any element of 16s[0]Z

n, the
Whitney cube partition “near x” will not change. More precisely, suppose b− b′ ∈
16s[0]Z

n and consider the two partitions {Qk,[b]}k and {Qk,[b′]}k. We claim that if
Q ∈ {Qk,[b]}k and x ∈ Q∗, then Q ∈ {Qk,[b′]}k. This follows from how the Whitney
cubes are constructed – see the discussion on maximal cubes in Section 1.2 of [3].
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Thus, b 	→ Em,[b](f)(x) is periodic with period 16s[0]. (Recall that x is fixed
and that s[0] depends on x.) Since s[0] is comparable with δ(x), we can extend this
result to a neighborhood of x. �

Lemma 4.5. 〈Em〉 is an extension operator Cm(E) → Cm(Rn). Furthermore,

( ∂

∂x

)α

〈Em〉 (f)(x) =
〈( ∂

∂x

)α

Em,[b](f)(x)
〉
.(4.4)

Proof. Let f ∈ Cm(E), let F[b] = Em,[b](f), and let F = 〈Em〉 (f). Since E is
compact, f ∈ Cm,ω(E) for some modulus of continuity ω. Glaeser’s version of
the Whitney extension theorem [1] implies that F[b] ∈ Cm,ω(Rn) for all b ∈ R

n.
Furthermore, supb ‖F[b]‖Cm,ω(Rn) <∞. It follows that F ∈ Cm,ω(Rn) and that (4.4)
holds. �

4.3. Averages of Ψ[b](x)

By averaging, we replace the sharply-peaked Ψ[b](x) with something that is easier
to control.

Lemma 4.6. Fix x ∈ Ec and k ∈ Z>0. Then
〈
Ψ[b](x)

k
〉
� (1 + t2k+1)n. The

implied constant is independent of n and t (as usual), as well as of x, but will
depend on k.

Proof. Let τ be a power of 2 such that τ ≥ c′2δ(x)n
−1/2. Then we see that

b 	→ Ψ[b](x) has period τ . Expanding the sum Ψ[b](x)
k, we have

〈
Ψ[b](x)

k
〉
=

∑
p1,...,pk

n∏
i=1

〈 k∏
r=1

(
1 + ψ

(xi − bi
pr

))〉
[0,τ ]

≤
∑

p1,...,pk

n∏
i=1

k∏
r=1

〈(
1 + ψ

(xi − bi
pr

))k〉1/k

[0,τ ]
,(4.5)

where each pr (r = 1, . . . k) is a sum over powers of 2 in the range c′1δ(x)n
−1/2 ≤

pr ≤ c′2δ(x)n−1/2. (We apply Hölder’s inequality in the second line. This is where
we need k > 0.)

Due to our choice of τ , each average in (4.5) is over an whole number of periods
of (1 + ψ)k. Note that

〈
(1 + ψ(b))k

〉
[0,1]

= (1− 2t) · 1 + (2t) · 2k ≤ 1 + t2k+1. Also

note that the number of terms in the sum over a particular pr is comparable with
log2(c

′
2/c

′
1). Thus,

〈
Ψ[b](x)

k
〉
B
≤ ∑

p1,...,pk
(1 + t2k+1)n � (1 + t2k+1)n, where the

implied constant is independent of n, x, t (but will depend on k). �

4.4. Bounds on the norm of 〈Em〉
Up until now, t has been an independent parameter. We now take t = 1/n. With

this choice, we have (1 + n−12k+1)n ≤ e2
k+1

for all n. (In contrast, if we keep t
constant as n varies, then (1 + t2k+1)n grows exponentially in n.)
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Lemma 4.7. Let f ∈ Cm(E) with norm ≤ 1. Let F = 〈Em〉 (f). Then

|∂αF (x)| � nm+3|α|/2 for x ∈ Ec, |α| ≤ m.

|∂αF (x)| � nm+3|α|/2δ(x)−|α| for x ∈ Ec, |α| ≥ m+ 1.

Proof. Let F[b] = Em,[b](f). Fix x ∈ Ec and |α| ≤ m. Using Lemma 4.3 and
Lemma 4.5 (and letting t = 1/n), we have

|∂αF (x)| ≤ 〈|∂αF[b](x)|
〉
� nm+3|α|/2〈Ψ[b](x)

|α|+1
〉
� nm+3|α|/2e2

|α|+2 � nm+3|α|/2.

A similar argument proves the other inequality. �

Corollary 4.8. The norm of the map 〈Em〉 : Cm(E) → Cm(Rn) is O(n5m/2). The
implied constant depends only on m.

Remark 4.9. It is not hard to make small improvements to the power of n in
Theorem 4.8. However, we do not know the optimal power of n.

A. The norm of the restriction operator

Lemma A.1. The norm of the restriction map Cm(Rn) → Cm(E) given by F 	→
F |E is O(nm). The implied constant depends only on m.

Proof. Let F ∈ Cm(Rn) with ‖F‖Cm(Rn) ≤ 1. Let (Py)y∈E = F |E . Then for all
x ∈ E, we have |∂αPx(x)| = |∂αF (x)| ≤ 1. Also, by Taylor’s theorem, for any
x, y ∈ E, there exists a z ∈ R

n on the line segment joining x and y such that

|∂α(Px − Py)(x)| ≤
∑

|β|=m−|α|

∣∣∂α+βF (z)− ∂α+βF (y)
∣∣ |x− y||β|

β!

=
2nm−|α|

(m− |α|)! |x− y|m−|α|,

where we use the identity
∑

|β|=r 1/β! = nr/r!. �
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